WO2010055582A1 - Radiation reactor for endothermic reaction - Google Patents

Radiation reactor for endothermic reaction Download PDF

Info

Publication number
WO2010055582A1
WO2010055582A1 PCT/JP2008/070824 JP2008070824W WO2010055582A1 WO 2010055582 A1 WO2010055582 A1 WO 2010055582A1 JP 2008070824 W JP2008070824 W JP 2008070824W WO 2010055582 A1 WO2010055582 A1 WO 2010055582A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasification
gasification chamber
product
gasified
chamber
Prior art date
Application number
PCT/JP2008/070824
Other languages
French (fr)
Japanese (ja)
Inventor
正康 坂井
Original Assignee
バイオマスエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バイオマスエナジー株式会社 filed Critical バイオマスエナジー株式会社
Priority to PCT/JP2008/070824 priority Critical patent/WO2010055582A1/en
Publication of WO2010055582A1 publication Critical patent/WO2010055582A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to an apparatus for thermochemically endothermically reacting and gasifying a gasification target using radiant energy, and in particular, the main components of the gasification target are an organic compound and water, more specifically.
  • the organic compounds are so-called biomass such as herbs and woods, agricultural or food organic waste, or organic waste such as waste plastics and waste oil, and these organic compounds are gasified by radiation endothermic reaction.
  • the present invention relates to a radiation endothermic reaction apparatus or a radiation endothermic reaction furnace for obtaining a product gas mainly composed of hydrogen and carbon monoxide.
  • Patent Literature 1 and Patent Literature 2 can be cited. These techniques use only components such as sugar and starch in biomass as a raw material, and obtain a liquid fuel containing ethanol as a main component by fermenting those components.
  • the gasification technology is to perform gasification of various biomasses as raw materials, and to obtain a product gas that can be used as a fuel gas or to synthesize a required liquid fuel Is to get.
  • Patent Document 3 As conventional examples of the gasification technique, there are techniques of Patent Document 3 and Patent Document 4.
  • the core of these conventional gasification technologies is that they employ a partial oxidation method in which biomass is semi-burned at less than the theoretical amount of air or oxygen.
  • a large amount of soot and tar is generated, and the exhaust gas used for heat generation is mixed into the product gas, so that a high-quality product gas cannot be obtained.
  • Patent Documents 5 to 7 The techniques disclosed in Patent Documents 5 to 7 are required by using biomass as a fuel and a raw material, burning the fuel biomass to obtain a high-temperature gas, and using the heat to heat the raw material biomass for gasification The main purpose is to obtain the product gas.
  • Patent Document 5 has a biomass combustion space and a biomass gasification space separated from each other, and a complete combustion hot gas formed by completely combusting fuel biomass obtained from the combustion space, By uniformly supplying the gasification space through the through holes, the raw material biomass in the gasification space is uniformly gasified. This makes it possible to gasify the biomass by controlling the exothermic reaction between fuel biomass and oxygen in the combustion space and the endothermic reaction of the raw material biomass in the gasification space. It became possible to obtain gas.
  • this gasification technology many fine holes must be processed, and uniform gasification of the raw material biomass depends on the complete combustion gas supplied to the gasification space through the plurality of holes. For this reason, there is a problem that carbon dioxide gas and nitrogen gas are mixed in the produced gas in a large amount without being quantitatively controlled, thereby reducing the quality of the produced gas.
  • Patent Document 6 and Patent Document 7 generally solve the problems of the technique of Patent Document 5, they have technical problems to be solved or improved including the following points.
  • the first disadvantage is that the biomass raw material for gasification must be powder of 3 mm or less, and the necessary grinding power is large, and in addition, the coarse powder of 10-20 mm or more causes trouble. Is a point.
  • a second disadvantage is that the water vapor supplied to the gasification space leaks from the powder supply port for supplying the raw biomass powder to the gasification space and communicates with the powder supply port. Condensation causes the raw material biomass powder to be highly hydrated, making it difficult to supply the powder smoothly, and significantly reducing the gasification capacity of the gasification reaction chamber because of the latent heat of water.
  • the third drawback is that the composition of the resulting product gas has a low hydrogen content, is not suitable as a fuel gas, and is insufficient for use as a raw material gas for synthesizing methanol, GTL, or the like as it is. That is the point.
  • An object of the present invention is to provide a radiation endothermic reaction apparatus that can use an organic compound such as solid biomass such as a raw material for obtaining a required product gas.
  • the present invention makes it possible to use organic compounds as described above, which have not been regarded as useful in the past, as raw materials, and to use them without pulverizing them, and it contains almost no soot and tar and has high purity.
  • An object of the present invention is to provide a radiation endothermic reactor capable of obtaining a product gas mainly composed of hydrogen and carbon monoxide. Further, the present invention can use the obtained produced gas as it is as a driving source of a gas engine or a gas turbine as it is a relatively small device. It aims at providing the radiation endothermic reaction apparatus which can be made more efficient than the large sized steam turbine power generator using the steam turbine made.
  • the radiation endothermic reaction apparatus of the present invention comprises a gasification chamber for gasifying a gasification object by heating with an appropriate heating means, and an appropriate gas phase inside the gasification chamber.
  • the gasification object is composed of a first gasification product containing an organic compound as a main component and a second gasification product containing water as a main component, and the first gasification product is contained in the gasification chamber.
  • the gasification chamber is heated by an appropriate heating means so that the second gasification product is in a gas phase to fill the gasification chamber with water vapor and radiate from the solid present on the gasification chamber side.
  • the energy is released into the gasification chamber, the first gasification product is heated in a steam atmosphere in the gasification chamber, and the first gasification product and the second gasification product are subjected to thermochemical endothermic reaction. Configured to produce gas It is characterized in.
  • the heating means can obtain an appropriate amount of heat without burning fuel in the gasification chamber.
  • the heating in the gasification chamber by the heating means is preferably by radiation or heat conduction.
  • the heating of the gasification chamber by this heating means may be performed from the outside of the gasification chamber.
  • the heating means is preferably the high-temperature gas obtained from a high-temperature gas generator that burns grasses or woods to generate a high-temperature gas in the combustion system.
  • the gasification chamber may be disposed in a heat insulating chamber configured to suppress heat in and out of the room.
  • the solid existing inside the gasification chamber may be a substance constituting the inner wall of the gasification chamber, or a multi-hole body that vertically defines the gasification chamber, where the multi-hole body is You may have the several hole thru
  • the gasification chamber can be provided with a first gasification material introduction means for introducing the first gasification material into the gasification chamber.
  • the gasification chamber may be provided with a second gasification material introduction means for introducing the second gasification material into the gasification chamber.
  • the first gasified substance introducing means has a first gasified substance introduction port for introducing the first gasified substance into the gasification chamber, and the first gasified substance introduction port is disposed at the upper part of the gasification chamber. May be.
  • the first gasified product may be introduced into the gasification chamber from the upper side to the lower side of the gasification chamber through the first gasified product inlet.
  • the second gasified substance introduction means has a second gasified substance introduction port for introducing the second gasified substance into the gasification chamber, and the second gasified substance introduction port is disposed at the lower part of the gasification chamber. May be.
  • the second gasified product is preferably introduced into the gasification chamber from the lower side to the upper side of the gasification chamber through the second gasified product inlet.
  • the second gasification product is preferably heated in advance to a predetermined temperature and introduced into the gasification chamber as superheated steam.
  • the introduction amount of the second gasified product introduced into the gasification chamber is preferably controlled so as to be 0.6 or more in terms of the weight ratio with respect to the dry weight of the first gasified product introduced into the gasification chamber. .
  • the temperature in the gasification chamber is preferably maintained at 800 ° C. or higher, more preferably 1000 ° C. or higher to cause an endothermic reaction.
  • the gasification chamber preferably has a gasification chamber wall temperature of 800 ° C. when the ashless first gasification product introduced into the gasification chamber is 1 kg / h. When the surface area is set to 0.008 m 2 or more and the temperature of the gasification chamber wall is set to 1000 ° C., the surface area of the gasification chamber wall is set to 0.004 m 2 or more.
  • the gasification chamber includes a first gasification chamber disposed on the upstream side and a second gasification chamber disposed on the downstream side of the first gasification chamber.
  • the gasification chamber and the second gasification chamber may communicate with each other.
  • the second gasification chamber is preferably cylindrical.
  • the gasification target object may include a third gasification product containing carbon dioxide as a main component.
  • the product gas is preferably mainly composed of one or more substances selected from hydrogen, carbon monoxide, methane, and ethylene.
  • the radiation endothermic reactor of the present invention has not been regarded as useful in the past for weeds, thinned wood, etc. by gasifying the raw material in an oxygen-free or low-oxygen state where oxygen is not actively introduced under superheated steam atmosphere.
  • organic waste such as organic waste, such as organic plastics, waste plastic, waste oil, waste paper, manure, leftovers, tofu shells, and other types of food waste such as sake lees
  • the compound can be employed as a gasification raw material, that is, a gasification target, and a product gas with very little soot and tar can be obtained while using these organic compounds as a gasification raw material.
  • the radiation endothermic reaction apparatus of the present invention appropriately sets the surface area in the gasification chamber, and correspondingly holds the gasification chamber at an appropriate temperature so that the second gasification product with respect to the dry weight of the first gasification product
  • a product gas having a required composition mainly composed of hydrogen, carbon monoxide, methane, ethylene, carbon dioxide, water, etc. is obtained from an appropriate organic compound as a raw material. Since the gasification chamber is composed of the first gasification chamber and the second gasification chamber arranged in communication with the downstream side, soot and tar are almost completely decomposed or gasified. A product gas with very few impurities can be obtained.
  • the obtained product gas can be used in a gas engine that uses kinetic energy or heat energy at the time of combustion, or a boiler that uses waste heat of the product gas as a heat source. Further, the subsequent generated gas can be used as a fuel gas that enables high-temperature combustion comparable to fossil fuels, or as a raw material gas for synthesizing liquid fuels such as methanol and GTL.
  • the radiant endothermic reaction device of the present invention defines a top and bottom of a gasification chamber by disposing a multi-hole body having a plurality of holes communicating with the top and bottom in the gasification chamber.
  • the gasified product can be introduced from the upper part of the gasification chamber, and the second gasified product can be supplied as an upward flow from the lower part of the multi-hole body.
  • the first gasified product is set to have a diameter of about 2 cm or less and the second gasified product is superheated steam, the first gasified product can be completely gasified while falling in the room.
  • the residue of this first gasified product can be gasified in a long time, but the product gas composition can be generated when the first gasified product is used as a raw material.
  • a product gas having a high hydrogen concentration can be obtained as well as a gas. Therefore, it is possible to almost completely gasify the organic compound that is the object to be gasified without pulverizing it, no pulverization is required, and the pulverization cost can be reduced.
  • the radiation endothermic reaction apparatus of the present invention comprises a gasification chamber made of a material having high thermal conductivity and high radiation, and the gasification chamber is disposed in the heat insulation chamber, thereby improving the thermal efficiency and improving the gas efficiency.
  • the energy required for the thermochemical endothermic reaction accompanying the gasification of the gasification object in the gasification chamber depends on the radiation energy from the inner wall and other solids existing in the gasification chamber and the contact with the inner wall and solid surface. It is possible to transmit by heat conduction and to supply the amount of heat necessary for this energy transfer by an external heating means.
  • the radiation endothermic reaction apparatus of the present invention is obtained by burning an electric heating means utilizing a thermoelectric effect or a fossil fuel combustion heating means utilizing heat obtained by combustion of fossil fuel, or waste plastic or waste paper.
  • Appropriate heating means such as waste combustion heating means using heat or biomass combustion heating means using heat obtained by burning biomass fuel is adopted as heating means for heating the gasification chamber. I can do it.
  • the chemical reaction related to the gasification of the gasification object in the gasification chamber is an endothermic reaction, a part of the thermal energy supplied from the outside by the heating means is There is an effect that the chemical potential of the product gas can be stored in the product gas.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a radiation endothermic reaction device of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a configuration of a radiation endothermic reaction device of Example 2.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a radiation endothermic reaction device of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a configuration of a radiation endothermic reaction device of Example 2.
  • FIG. 1 is a conceptual diagram showing the basic configuration and operating principle of an apparatus for obtaining a product gas 2 mainly composed of hydrogen, carbon monoxide, methane, ethylene or the like.
  • the basic configuration of the radiant endothermic reaction apparatus 1 of the present embodiment includes a gasification chamber 3 for gasifying a gasification target object therein, and a solid that is present inside the gasification chamber 3.
  • the radiant energy 4 in the gasification chamber 3 is schematically represented by a thin black arrow ( ⁇ ), and the first gasification product 5, the second gasification product 6, and the gasification are shown.
  • the heat 7, the generated gas 2, the ash 8, and the high temperature gas supplied to the chamber 3 are schematically represented by thick white arrows ( ⁇ ).
  • the gasification target consists of a first gasification product 5 and a second gasification product 6.
  • the first gasified product 5 is so-called biomass such as weeds represented by weeds and woods including thinned wood, or so-called biomass or waste plastic, waste oil, waste paper, manure, leftovers, tofu husk and sake lees It contains a wide range of organic compounds, such as agricultural or food-based foods represented by straw, etc., and other organic wastes, and is mainly composed of organic compounds contained therein.
  • the second gasification product 6 is mainly composed of water.
  • the gasification chamber 3 is separated from the outside by a partition wall 9.
  • a gasification space 10 having a predetermined volume and surface area is formed inside the gasification chamber 3, and an object to be gasified is inserted into the gasification chamber 3 from the outside of the gasification chamber 3.
  • ash content discharging means (not shown) for discharging the ash content 8 generated in a small amount due to gasification of the gasification object in the gasification chamber 3.
  • the partition wall 9 constituting the gasification chamber 3 is made of a material excellent in heat resistance and thermal shock resistance, and is configured to withstand a required temperature and temperature change.
  • a material constituting the partition wall 9 for example, ceramics such as aluminum titanate having higher heat resistance than cordierite and more resistant to thermal shock than silicon carbide can be used. The use of such ceramics is preferable because both heat resistance and thermal shock resistance can be achieved at a practical level, and the operable temperature range of the radiation endothermic reaction apparatus 1 can be improved.
  • a high heat resistant alloy such as a high chromium / high nickel alloy can be employed.
  • the volume and shape of the gasification space 10 in the gasification chamber 3 can be appropriately set according to the required gasification processing amount, but the gasification space 10 is the first gas to be gasified. It is necessary to set the size and shape of a space where an appropriate amount of the chemical compound 5 can be present.
  • the surface area in the gasification chamber 3 can be appropriately set according to the required gasification processing amount.
  • ashless dry biomass is used as the first gasification product 5 and the supply amount is 1 kg / h.
  • the wall temperature of the partition wall 9 is 800 ° C.
  • the surface area in the gasification chamber 3 is at least 0.008 m 2 or more, and when the wall temperature is 1000 ° C., the surface area is at least 0.004 m 2 or more. It is preferable.
  • the gasification object introduction port is used for introducing the first gasification product 5 into the gasification chamber 3 and the first gasification product introduction port for introducing the second gasification product 6 into the gasification chamber 3. It can be divided into two inlets, the second gasification inlet and the second gasifier inlet.
  • the first gasified inlet and the second gasified inlet can be appropriately set in diameter, shape, and the like according to the required gasification amount.
  • the first gasified gas inlet and the second gasified gas inlet are capable of introducing appropriate amounts of the first gasified gas 5 and the second gasified gas 6 into the gasification chamber 3, respectively.
  • it is not particularly limited, but it is preferable to devise the respective arrangement position and configuration in order to improve the gasification capacity.
  • the generated gas discharge port can be appropriately set in diameter, shape, etc. according to the required gasification amount.
  • the generated gas discharge port is not particularly limited as long as it can discharge the required generated gas 2 generated in the gasification chamber 3 to the outside of the gasification chamber 3. It is preferable to devise the configuration in order to improve the gasification capacity or to further increase the purity.
  • the ash discharge means is set in the gasification chamber 3 in accordance with the required gasification processing amount, and the ash 8 generated in a small amount due to gasification of the gasification target in the gasification chamber 3 is gasified. It is for discharging outside the chemical conversion chamber 3.
  • the ash content discharge means is not particularly limited as long as it can efficiently discharge or take out the ash content 8 generated in the gasification chamber 3 to the outside of the gasification chamber 3.
  • the gasification chamber 3 is heated by an appropriate heating means.
  • various conventionally known heating means can be used.
  • the gasification chamber 3 is heated from the outside of the gasification chamber 3, it is heated using an electric heating means that uses the thermoelectric effect or heat obtained by combustion of fossil fuel. Heating using fossil fuel combustion heating means, waste combustion heating means for heating using the heat obtained by burning waste plastic or paper, or heat obtained by burning biomass fuel
  • One or more heating means selected from appropriate heating means such as biomass combustion heating means can be employed as the heating means for heating the gasification chamber 3.
  • the heating means can be configured not only to heat from the outside of the gasification chamber 3 but also to heat from the inside of the gasification chamber 3.
  • the inside of the gasification chamber 3 is maintained at a required temperature, preferably 800 ° C. or more, more preferably 1000 ° C. or more, by heating the gasification chamber 3 with a heating means.
  • a required temperature preferably 800 ° C. or more, more preferably 1000 ° C. or more
  • the partition wall 9 constituting the gasification chamber 3 is made of a ceramic such as aluminum titanate or a high heat-resistant alloy such as a high chromium / high nickel alloy as described above
  • the temperature in the gasification chamber 3 It is possible to increase the thermochemical reaction temperature for gasifying the gasification target object in the gasification chamber 3 and to provide a margin for operating temperature fluctuations.
  • the gasification reaction temperature can be selected more freely.
  • the operable temperature of the radiation endothermic reaction apparatus 1 can be set to a higher temperature, and as a result, the amount of hydrogen generation can be increased.
  • the first gasification product 5 is introduced from the first gasification material introduction port while maintaining the gasification chamber 3 at a required temperature.
  • the first gasified product 5 is preferably coarsely pulverized to about 2 cm or less for gasification treatment.
  • the gasification chamber 3 can be provided with a first gasification material introduction means for efficiently introducing the first gasification material 5 into the gasification chamber 3.
  • a screw feeder can be employed as the first gasified product introducing means.
  • the first gasification product 5 is made to exist by an appropriate method using the first gasification material introduction means and the like, and the first gasification product 3 is introduced into the gasification chamber 3 from the second gasification material inlet.
  • a second gasified product 6 is introduced.
  • the second gasified product 6 is preheated and introduced as superheated steam before being introduced into the gasification chamber 3 through the second gasified product inlet, and the superheated steam is introduced into the gasification chamber 3.
  • the thermal efficiency can be improved, and the gasification capacity can be remarkably improved, which is preferable.
  • the gasification object introduction port can be separately provided as the first gasification product introduction port and the second gasification product introduction port. Thereby, the introduction amount of the first gasification product 5 and the introduction amount of the second gasification product 6 introduced into the gasification chamber 3 can be individually controlled.
  • the inside of the gasification chamber 3 into which the second gasified product 6 has been introduced is an overheated steam atmosphere. Further, when the first gasified product 5 is introduced into the gasification chamber 3, it is preferable not to mix oxygen and air. For example, the first gasified product 5 is introduced from the first gasified product inlet. When introducing the gasification chamber 3, an inert gas such as nitrogen gas or carbon dioxide gas may be fed. In this way, the gasification chamber 3 is filled with superheated steam, and oxygen or air is not actively introduced into the gasification chamber 3, but rather oxygen and air do not enter the gasification chamber. As a result, the gasification chamber 3 is brought into an oxygen-free or low-oxygen state. When carbon dioxide is used as the feed gas, this can be regarded as the third gasified product.
  • an inert gas such as nitrogen gas or carbon dioxide gas
  • the gasification chamber 3 When the gasification chamber 3 is heated by a suitable superheating means, the solid surface existing inside the gasification chamber 3, that is, from the surface of the partition wall 9 constituting the gasification chamber 3, Radiant energy 4 is emitted toward the. Therefore, the first gasified product 5 introduced into the gasification chamber 3 exists in the superheated steam atmosphere in the gasification chamber 3 and is heated to a required temperature, preferably 800 ° C. or higher, while being gasified chamber 3. 3 receives the radiant energy 4 released in the interior. The first gasified product 5 that has received the radiant energy 4 under superheated steam undergoes a thermochemical endothermic reaction with the superheated steam that is the second gasified product 6 and changes to the required product gas.
  • the required amount of water vapor as the second gasified product 6 varies depending on the properties of the first gasified product 5 to be introduced.
  • the minimum second gas necessary for this endothermic reaction can be expressed by expressing the abbreviated molecular formula with the subscript as the number of atoms as C 1.3 H 2 O 0.9.
  • the amount of water vapor as the compound 6 is 0.4H 2 O, and is preferably set to 3 H 2 O or more in practical operation.
  • the weight ratio of the second gasification product 6 to the first gasification product 5 is 0.6 or more, preferably 2 or more.
  • a typical endothermic reaction when the amount of the second gasified product 6 introduced into the gasification chamber 3 with respect to the first gasified product 5 is 3 as the biomass molar ratio is represented by the following chemical formula.
  • C 1.3 H 2 O 0.9 (s) + 3H 2 O (g) q 1 H 2 (g) + q 2 CO (g) + q 3 CH 4 (g) + q 4 C 2 H 4 (g) + q 5 CO 2 (g) + q 6 H 2 O (g) ⁇ 92 kJ
  • the product gas 2 has a composition mainly composed of hydrogen, carbon monoxide, methane, ethylene, carbon dioxide, water and the like.
  • Q 1 , q 2 , q 3 , q 4 , q 5 , and q 6 on the right side of the above chemical formula are appropriate real coefficients representing the number of molecules of the corresponding molecule, respectively.
  • the surface area of the inner wall of the gasification chamber 3 is 0.008 m 2 or more, preferably 0.01 m for gasification of 1 kg / h biomass.
  • the gasification reaction is established by setting it to 2 or more.
  • the temperature in the gasification chamber 3 is higher. in case of the 1100 ° C., the surface area of the gasification chamber 3 the inner wall relative to the biomass 1 kg / h is 0.004 m 2 or more, preferably can be 0.005 m 2 or more.
  • the generated gas 2 generated in the gasification chamber 3 is discharged out of the gasification chamber 3 through the generated gas discharge port.
  • the product gas 2 mainly composed of hydrogen, carbon monoxide, methane, and the like has gas compositions such as hydrogen, carbon monoxide, methane, etc. and their composition ratios according to the use of the product gas 2, and the gasification chamber 3.
  • the internal temperature, the heavy ratio between the first gasified product 5 and the second gasified product 6, or the supply amount and the water content of the first gasified product 5, and the pulverization degree of the first gasified product 5 It can adjust by controlling etc.
  • a cyclone or the like for removing impurities such as ash and soot contained in the product gas 2 in a small amount may be connected downstream of the product gas discharge port. Thermal efficiency can also be improved by connecting waste heat boilers that generate superheated steam using the heat energy carried by the product gas 2 as a heat source and utilizing the waste heat. Alternatively, a water spray scrubber for removing excess water mixed in the product gas 2 may be connected, and the product gas 2 may be passed therethrough to remove excess moisture.
  • FIG. 2 is a conceptual diagram illustrating a configuration of the radiation endothermic reaction device 101 of the first embodiment.
  • the first gasified product 105 which is a gasification target in the present embodiment, has an organic compound as a main component
  • the second gasified product 106 has water as a main component.
  • the radiation endothermic reaction apparatus 101 in the present embodiment includes a heat insulating chamber 111 for blocking heat flow inside and outside, a gasification chamber 103 disposed in the heat insulating chamber 111, First gasified substance introducing means 112 for introducing the first gasified substance 105 into the gasified chamber 103 and second gasified substance introducing means 113 for introducing the second gasified substance 106 into the gasified chamber 103.
  • a multi-hole body 115 having a plurality of through holes 114 communicating vertically is defined to vertically define the gasification chamber 103.
  • the gasification chamber 103 includes an ash content discharging means 116 for discharging the ash 108 generated in the gasification chamber 103 to the outside, and a generation for discharging the generated gas 102 generated in the gasification chamber 103 to the outside.
  • the heat insulation chamber 111 is for blocking the heat flow inside and outside, and is particularly configured so that the inside of the heat insulation chamber 111 can be kept at a required temperature, preferably 800 ° C. or higher, at a high temperature.
  • a required temperature preferably 800 ° C. or higher
  • the heat insulation chamber 111 can surround the gasification chamber 103 disposed in the heat insulation chamber 111, it can be configured using a conventionally known heat insulation material, and the shape, size, etc. are appropriately determined. It is possible to set.
  • a gap may be provided between the inner surface of the heat insulation chamber 111 and the outer surface of the gasification chamber 103 as shown in FIG.
  • the heat insulation chamber 111 has a communication port 122 communicating with the inside and outside for connecting the first gasified material introduction means 112, the second gasification material introduction means 113, the product gas discharge means 117 or the ash content discharge means 116 to the outside of the heat insulation chamber 111, If necessary, 131, 133, and 135 are formed in close contact with the first gasified substance introducing means 112, the second gasified substance introducing means 113, the product gas discharging means 117, the ash content discharging means 116, and the like so as not to leak heat. To do.
  • an appropriate amount of communication ports communicating with the inside and outside of the heat insulation chamber 111 may be formed as necessary, and heat 107 May be configured to be supplied or discharged.
  • the gasification chamber 103 is isolated from the outside by a partition wall 109, and has a gasification space 110 having a predetermined volume and surface area inside.
  • the outer surface of the partition wall 109 constituting the gasification chamber 103 is defined by the wall surface of the heat insulation chamber 111. It is go.
  • the gasification chamber 103 includes a first gasification inlet 118 for introducing the first gasification product 105 into the gasification chamber 103 from the outside, and a second gasification product 106 into the gasification chamber 103 from the outside.
  • the second gasified product inlet 119 is formed, and is connected to the first gasified product introducing unit 112 and the second gasified product introducing unit 113, respectively, and the first gasified product 105 and the second gasified product 106 are connected.
  • the gasification object including the gas can be introduced into the gasification chamber 103.
  • the first gasified product inlet 118 is formed in the upper part of the gasification chamber 103, and the first gasified product 105 introduced into the gasification chamber 103 from the outside through the first gasified product inlet 118 is formed in the gasification chamber 103. It is configured so that it can fall inside and be gasified in the fall process.
  • the second gasified product inlet 119 is formed in the lower part of the gasification chamber 103, and the second gasified product 106 introduced into the gasification chamber 103 from the outside through the second gasified product inlet 119 is connected to the gasification chamber 103. It is configured so that it can be introduced as an upward flow.
  • the gasification chamber 103 has a generated gas discharge port 120 for discharging the generated gas 102 generated in the gasification chamber 103 from the gasification chamber 103, and the gasification object 103 is gasified in the gasification chamber 103.
  • the generated gas discharge port 120 is formed at an appropriate height position on the side surface of the gasification chamber 103, preferably at an upper position than the arrangement height position of the multi-hole body 115.
  • the ash discharge port 121 is formed at the bottom of the gasification chamber 103 so as to be lower than the multi-hole body 115 and fall down by its own weight when the ash 108 is deposited so that it can be taken out to the outside. Composed.
  • the partition wall 109 forming the gasification chamber 103 is made of a material having excellent thermal conductivity, heat resistance, and thermal shock, makes it easy to transfer the heat 107 from the outside to the inside of the gasification chamber 103, and at a required temperature or temperature. Configure to withstand change.
  • the volume and shape of the gasification space 110 in the gasification chamber 103 can be appropriately set according to the required gasification processing amount, but the gasification space 110 is the first gas to be gasified.
  • the size and shape of the space are set so that an appropriate amount of the chemical compound 105 can exist.
  • the surface area in the gasification chamber 103 can be appropriately set according to the required gasification amount.
  • the inside of the gasification chamber 103 is vertically defined by a multi-hole body 115 having an appropriate thickness disposed at an appropriate height position in the vertical direction.
  • the multi-hole body 115 is made of a metal or ceramic that can withstand a required high temperature, has a substantially plate shape as a whole, and has a large number of through-holes 114 penetrating vertically.
  • the size of the through hole 114 is preferably set to a diameter that allows water vapor to pass through without difficulty and prevents the ungasified first gasified product 105 from passing through.
  • the multi-hole body 115 may be disposed slightly inclined from the horizontal.
  • the first gasified substance introduction means 112 communicates with the first gasified substance introduction port 118 formed in the gasification chamber 103 and extends substantially vertically to the outside of the heat insulation chamber 111 through the communication port 122 formed in the heat insulation chamber 111.
  • a pipe 123 made of a heat-resistant material having a predetermined inner diameter and length, a screw feeder 126 having an outlet 124 connected to the upper end thereof, and a screw 125 extending substantially horizontally, and a first screw A hopper 129 for supplying the gasified product 105.
  • the screw feeder 126 includes a cylindrical body 127 extending a predetermined length in a substantially horizontal direction, a screw 125 having a length substantially equal to the cylindrical body 127 rotatably mounted inside the cylindrical body 127, and And an actuator 128 that is disposed at one end of the screw 125 and drives the screw 125.
  • An exit 124 for discharging the first gasified product 105 fed by the rotation of the screw 125 from the screw feeder 126 is formed in the cylindrical body 127 in the vicinity of the tip on the opposite side where the actuator 128 is disposed.
  • An inlet 130 for taking the first gasified product 105 from the hopper 129 into the screw feeder 126 is formed in the upper portion of the cylindrical body 127 near the actuator 128.
  • the hopper 129 is connected to the inlet 130.
  • the second gasified substance introduction means 113 communicates with the second gasified substance introduction port 119 formed in the gasification chamber 103, and extends to the outside of the heat insulation chamber 111 through the communication port 131 formed in the heat insulation chamber 111.
  • a pipe 132 made of a material having an inner diameter and a length and having heat resistance and water vapor resistance is provided. Downstream of the pipe 132, a boiler (not shown) for obtaining superheated steam generated by heating by an appropriate method is connected, and the second gasification product 106 is introduced into the gasification chamber 103 in advance. It is preferable to preheat to superheated steam. More preferably, the heat efficiency is improved by using waste heat as a heat source of the boiler.
  • the generated gas discharge means 117 communicates with the generated gas discharge port 120 formed in the gasification chamber 103 and extends to the outside of the heat insulation chamber 111 through the communication port 133 formed in the heat insulation chamber 111.
  • the pipe 134 made of a material having heat resistance and corrosion resistance is provided. Although not shown, downstream of the pipe 134 is connected to a cyclone, a water sprayer, or the like, and the product gas 102 is passed through the cyclone or the water sprayer, so that the ash 108 or the like mixed in the product gas 102 in a small amount can be obtained. It is preferable to remove soot, tar or moisture.
  • the ash discharge means 116 communicates with the ash discharge port 121 formed in the gasification chamber 103 and has a predetermined inner diameter and length extending to the outside of the heat insulation chamber 111 through the communication port 135 formed in the heat insulation chamber 111.
  • a pipe 136 made of a heat-resistant material is provided downstream of the pipe 136. Downstream of the pipe 136, the pipe 136 can be freely opened and closed, and a valve (not shown) for opening or closing the communication state of the pipe 136 inside and outside the gasification chamber 103 is provided. .
  • the heat insulation chamber 111 and the gasification in the heat insulation chamber 111 from the outside of the radiation endothermic reaction apparatus 101 by an appropriate heating means.
  • Heat 107 is supplied to the gap between the chamber 103 and the gasification chamber 103 is heated to a required temperature, preferably 800 ° C. or higher.
  • the first gasified product 105 is introduced into the hopper 129 from above, and the screw feeder 126 is operated to take the first gasified product 105 into the screw feeder 126 from the hopper 129 at an appropriate speed. It feeds towards 124.
  • the first gasified product 105 put into the hopper 129 is preferably coarsely pulverized into small pieces of 2 cm or less in advance in terms of gasification efficiency.
  • the introduction amount of the first gasified product 105 to be introduced into the gasification chamber 103 by adjusting the introduction amount of the first gasified product 105 to be introduced into the gasification chamber 103 according to the water content of the first gasified product 105, It is preferable to optimize the composition of the product gas 102, and an adjusting means for performing such adjustment may be provided. For example, when the moisture content of the first gasification product 105 introduced into the gasification chamber 103 is 20% by weight, the introduction amount is reduced by 30% compared to the case where the dry first gasification product 105 is introduced.
  • the feed amount of the first gasified product 105 by the screw feeder 126 is adjusted by the number of rotations of the screw 125 of the screw feeder 126, etc., and according to the moisture content of the first gasified product 105 during operation.
  • the feed amount is controlled.
  • first gasified product 105 when the first gasified product 105 is introduced into the gasification chamber 103 by the screw feeder 126, nitrogen gas, carbon dioxide gas or air is introduced into the hopper 129 in which the first gasified product 105 is stored. It may be fed as a parallel gas (not shown) and supplied to the gasification chamber 103 via the screw feeder 126 together with the first gasified product 105.
  • a parallel gas When the parallel running gas is not supplied at all, a part of the water vapor introduced into the gasification chamber 103 through the screw feeder 126 may leak into the hopper 129. Thereby, dew condensation may occur in the hopper 129 storing the first gasified product 105 and the first gasified product 105, and a large amount of moisture may be absorbed by the first gasified product 105.
  • the moisture absorbed in the first gasification product 105 is heated and evaporated inside the gasification chamber 103 to become a high temperature, but it causes a large heat loss including latent heat of vaporization, resulting in a decrease in gasification processing capability. As a result, the capability reduction of the radiation endothermic reaction apparatus 101 is remarkable. In other words, the gasification capacity of the radiant endothermic reaction device 101 greatly depends on the water content of the first gasified product 105 that is a raw material for gasification.
  • this problem can be solved by supplying the co-running gas together with the first gasified product 105 into the gasification chamber 103 via the screw feeder 126, and maintaining the gasification treatment capacity high. enable.
  • This dew condensation prevention effect by the co-run gas is recognized when the co-feed amount is about 2-15% in the case of carbon dioxide and 2-10% in the case of nitrogen gas by the weight ratio of the co-run gas with respect to the first gasified product 105. It has been.
  • air is used as the co-run gas, a part of the product gas 102 is burned to reduce the calorific value, so that it is about 2 to 5%.
  • carbon dioxide can be combined with hydrogen to form methanol, when the product gas 102 obtained by the radiant endothermic reaction apparatus 101 of this embodiment is used for methanol synthesis, it runs alongside the first gasified product 105.
  • the parallel gas carbon dioxide is preferably selected, which can increase the amount of methanol synthesized economically.
  • the second gasification product 113 is used by using the second gasification product introduction means 113 according to the introduction amount of the first gasification product 105 introduced into the gasification chamber 103 as described above.
  • the second gasified product 106 is introduced from the introduction port 119. At this time, the second gasified product 106 can be heated in advance and introduced into the gasification chamber 103 as superheated steam, and thermal efficiency can be improved.
  • the second gasification product 106 introduced into the gasification chamber 103 from the lower part of the gasification chamber 103 through the second gasification product inlet 119 forms an upward flow and fills the gasification chamber 103 with superheated steam.
  • Make a superheated steam atmosphere Of course, this superheated steam passes from the lower part to the upper part through each through hole 114 of the multi-hole body 115 disposed in the gasification chamber 103, so that any of the upper and lower spaces defined by the multi-hole body 115 is used.
  • an appropriate amount of carbon dioxide may be mixed and a mixed gas composed of superheated steam and carbon dioxide may be employed.
  • the composition ratio of carbon dioxide in the product gas 102 is increased, and carbon dioxide is combined with hydrogen to become methanol, which is economically advantageous when the product gas 102 is used for methanol synthesis or the like.
  • a part of the first gasification product 105 fills the gasification chamber 103 while receiving high-temperature radiant energy 104 emitted from the inner wall of the gasification chamber 103 and the multi-hole body 115 by external heating.
  • the endothermic reaction is caused thermochemically, and the gas is almost completely gasified to form the product gas 102.
  • the first gasified product 105 in an ungasified state that could not be gasified during the dropping process is retained on the multi-hole body 115 disposed in the gasification chamber 103.
  • the first gasified product 105 retained on the multi-hole body 115 is gasified in a long time. This seems to be disadvantageous compared to the fact that the first gasified product 105 in a fine powder state reacts with superheated steam in a floating state and instantaneously gasifies, but in practice, it is retained on the multi-hole body 115.
  • the composition of the product gas 102 obtained from the first gasified product 105 thus obtained has a high hydrogen concentration, and the first gasified product 105 used as a raw material does not require fine pulverization, so that the application range of the raw material is expanded and pulverized. It is effective because power costs are reduced.
  • the product gas 102 thus generated in the gasification chamber 103 is mainly composed of hydrogen, carbon monoxide, methane, ethylene, carbon dioxide, and water, and the product gas outlet 120 formed in the gasification chamber 103. And it is discharged outside through the product gas discharge means 117.
  • the radiation endothermic reactor 101 of the present embodiment is a technique for generating fuel gas that enables high-temperature combustion comparable to fossil fuels using biomass or organic waste as a raw material, and also for synthesizing liquid fuel and the like. It can also be applied to chemically synthesized raw materials.
  • the composition ratio of hydrogen and carbon monoxide in the composition of the product gas 102 is important.
  • the following operation can be used.
  • the temperature of the gasification chamber 103 is maintained at a high temperature, and the powdery first gasified product 105 in which the particle size to be gasified by floating in the gasification chamber 103 is reduced is reduced. While reducing the introduction amount, and increasing the introduction amount of the first gasified product 105 in the form of a coarse piece of 10 mm to 20 mm that is gasified in a long time on the multi-hole body 115, the first gasified product 105 The introduction amount of the second gasified product 106 is increased with respect to the introduction amount.
  • the temperature in the gasification chamber 103 is maintained at a low temperature of about 800 ° C., the particle size of the first gasified product 105 is increased, and the first gasified product is increased. While increasing the introduction amount of 105, the residence time of the first gasification product 105 in the gasification chamber 103 is shortened.
  • the smaller the particle size the more gasification occurs.
  • the gasification reaction becomes difficult to proceed as the particle size increases.
  • the floating gasification reaction of the fine granular first gasified product 105 that gasifies while floating is completed in 1 second or less, the gas of the coarse gas-like first gasified product 105 on the multi-hole body 115 is obtained.
  • the gasification reaction takes a long time, gasification more than floating gasification can be caused by gasification in a state of being placed on the multi-hole body 115.
  • FIG. 3 is a conceptual diagram showing the configuration of the radiation endothermic reaction device 201 of the second embodiment.
  • the first gasified product 205 which is a gasification target in this embodiment, has an organic compound as a main component
  • the second gasified product 206 has water as a main component.
  • the radiation endothermic reactor 201 in the present embodiment uses a high-temperature gas 207 having a required temperature generated by an appropriate high-temperature gas generator (not shown) outside the reactor and carrying sufficiently large heat energy as a heating means. By introducing it into the radiant endothermic reaction apparatus 201 and using it as a heat source, the gasification target as a raw material is gasified.
  • the radiant endothermic reaction device 201 includes a heat insulating chamber 211 for shutting in and out heat inside and outside, and a gasification chamber 203 disposed in the heat insulating chamber 211.
  • the gasification chamber 203 includes a first gasification chamber 203a on the upstream side and a second gasification chamber 203b on the downstream side, and these first gasification chamber 203a and second gasification chamber 203b. And communicate with each other.
  • the first gasification chamber 203a includes a first gasified product introducing unit 212 for introducing the first gasified product 205 and a second gasified product introducing unit 213 for introducing the second gasified product 206. .
  • a multi-hole body 215 having a plurality of through holes 214 communicating vertically is defined at an appropriate height position in the first gasification chamber 203a and vertically defines the inside of the first gasification chamber 203a. Is done.
  • ash content discharging means 216 for discharging the ash 208 generated in the first gasification chamber 203a to the outside, and the generated gas generated in the first gasification chamber 203a are provided.
  • 202 is discharged to the outside of the first gasification chamber 203a, and a product gas delivery port 237 for feeding the product gas 202 to the second gasification chamber 203b is provided.
  • the second gasification chamber 203b includes a product gas introduction port 238 for introducing the product gas 202 and a product gas discharge port 220 for discharging the purified product gas 202 to the outside.
  • the product gas inlet 238 of the second gasification chamber 203b is connected to the product gas outlet 237 of the first gasification chamber 203a, and the first gasification chamber 203a and the second gasification chamber 203b are connected. Are configured to communicate with each other.
  • a shielding plate 239 is provided so as to partition the second gasification chamber 203b and to prevent the radiant energy 204 on each side from traveling to and from the other side.
  • the heat insulation chamber 211 is for blocking heat flow inside and outside, and is particularly configured so that the inside of the heat insulation chamber 211 can be kept at a required temperature, preferably 800 ° C. or higher, at a high temperature.
  • the heat insulating chamber 211 can be configured using a conventionally known heat insulating material, and surrounds both the first gasification chamber 203a and the second gasification chamber 203b disposed in the heat insulating chamber 211.
  • FIG. 3 as shown in FIG. 3, the inner surface of the heat insulation chamber 211, the outer surface of the first gasification chamber 203a, and the second A gap is provided between the gasification chamber 203b and the outer surface.
  • the heat insulation chamber 211 has a communication port 222 that communicates with the inside and outside of the heat insulation chamber 211 for connecting the first gasified material introduction means 212, the second gasified material introduction means 213, the product gas discharge port 220 or the ash content discharge means 216 to the outside of the heat insulation chamber 211.
  • 231, 233, and 235 are brought into close contact with the first gasified material introducing means 212, the second gasified material introducing means 213, the product gas outlet 220, the ash content discharging means 216, and the like, as necessary, so that heat does not leak.
  • the heat insulation chamber 211 is used after being introduced into the heat insulation chamber 211 and the high temperature gas introduction port 240 communicating with the inside and outside of the heat insulation chamber 211 for introducing the high temperature gas 207 for heating the heat insulation chamber 211.
  • the hot gas discharge port 241 for discharging the hot gas 207 to the outside of the heat insulation chamber 211 is provided.
  • the high-temperature gas 207 referred to here is generated by an appropriate high-temperature gas generator (not shown) outside the radiation endothermic reaction apparatus 201, and preferably has a temperature of 800 ° C. or higher.
  • the high-temperature gas generator a conventionally known technique can be adopted.
  • a device that generates a high-temperature gas in a combustion system by burning fossil fuel or natural gas can be used.
  • waste such as waste paper, waste plastic, and waste wood
  • the combustion system high-temperature gas 207 derived from the waste may be obtained.
  • a so-called biomass typified by weeds, thinned wood, etc. may be burned to adopt a device that can obtain a high-temperature gas 207 of a biomass-derived combustion system.
  • the shielding plate 239 partitions the inside of the heat insulating chamber 211 into an upstream side and a downstream side, and suppresses the radiant energy 204 on the upstream side and the radiant energy 204 on the downstream side from going to each other side. It is a substantially plate-like member made of a material having heat resistance and high radiation properties arranged in such a manner.
  • the upstream side and the downstream side referred to here are a heat insulating chamber formed in the heat insulating chamber 211 from a high temperature gas inlet 240 for introducing the high temperature gas 207 into the heat insulating chamber 211 from the outside formed in the heat insulating chamber 211.
  • the high temperature gas 207 that has flowed down the inside of the 211 and has been used up to the outside of the heat insulation chamber 211 corresponds to the upstream and the downstream in the flow direction to the high temperature gas discharge port 241. .
  • a flow path 242 through which the high temperature gas 207 can flow from the upstream side toward the downstream side is formed at an appropriate portion of the shielding plate 239, and the high temperature gas 207 can be made to flow down.
  • the shielding plate 239 is interposed between the first gasification chamber 203a disposed on the upstream side and the second gasification chamber 203b disposed on the downstream side.
  • a communication port 243 for communicating the chamber 203b from the downstream side to the upstream side is provided.
  • the first gasification chamber 203a is isolated from the outside by a partition wall 209, and has a primary gasification space 210a having a predetermined volume and surface area inside thereof, and the outer surface of the partition wall 209 constituting the first gasification chamber 203a. Is surrounded by the wall surface of the heat insulating chamber 211 and the shielding plate 239.
  • a first gasification inlet 218 for introducing the first gasification product 205 into the first gasification chamber 203a from the outside, and the first gasification chamber 203a from the outside.
  • a second gasified product inlet 219 for introducing the second gasified product 206 is formed therein, and is connected to the first gasified product introducing unit 212 and the second gasified product introducing unit 213, respectively.
  • a gasification object including 205 and the second gasification product 206 is configured to be introduced into the first gasification chamber 203a.
  • the first gasified product inlet 218 is formed in the upper part of the first gasified chamber 203a, and the first gasified product 205 introduced from the outside into the first gasified chamber 203a through the first gasified product inlet 218. However, it falls in the 1st gasification chamber 203a, and it is comprised so that it can gasify in the fall process.
  • the second gasified product inlet 219 is formed in the lower part of the first gasified chamber 203a, and is introduced into the first gasified chamber 203a from the outside through the second gasified product inlet 219. However, it can be introduced as an upward flow in the first gasification chamber 203a.
  • the first gasification chamber 203a has a generated gas outlet 237 for supplying the generated gas 202 generated therein to the second gasification chamber 203b from the first gasification chamber 203a, and a first gasification chamber 203a.
  • the gasification chamber 203a has an ash content outlet 221 for discharging the ash content 208 generated in a small amount in association with the gasification of the gasification target, and a second gasification chamber 203b and an ash content discharge means 216, respectively.
  • the generated gas 202 and the ash 208 generated in the first gasification chamber 203a can be sent out or discharged to the outside.
  • the generated gas delivery port 237 is formed at an appropriate height position on the side surface of the first gasification chamber 203a, preferably at an upper position than the arrangement height position of the multi-hole body 215.
  • the ash content discharge port 221 is formed at the bottom of the first gasification chamber 203a, is lower than the multi-hole body 215, and when the ash content 208 is deposited, it is dropped by its own weight and taken out to the outside. Configured to be able to.
  • the partition wall 209 forming the first gasification chamber 203a is made of a material having excellent thermal conductivity, heat resistance, and thermal shock, and facilitates heat transfer from the outside to the inside of the first gasification chamber 203a. Configure to withstand the required temperature and temperature changes.
  • the volume and shape of the primary gasification space 210a in the first gasification chamber 203a can be appropriately set according to the required gasification processing amount, but the primary gasification space 210a is a target for gasification.
  • the first gasified product 205 is set to a space having a size and a shape that allow an appropriate amount of the first gasified product 205 to be present.
  • the surface area in the first gasification chamber 203a can be appropriately set according to the required gasification amount.
  • the inside of the first gasification chamber 203a is vertically defined by a multi-hole body 215 having an appropriate thickness disposed at an appropriate height position in the vertical direction.
  • the multi-hole body 215 is made of a metal or ceramic that can withstand a required high temperature, is formed in a substantially plate shape as a whole, and has a large number of through-holes 214 penetrating vertically.
  • the size of the through-hole 214 is set to a diameter that allows water vapor to pass through without difficulty and prevents the first gasified product 205 in an ungasified state from passing through easily.
  • the multi-hole body 215 may be disposed slightly inclined from the horizontal.
  • the first gasified substance introducing means 212 communicates with the first gasified substance introducing port 218 formed in the first gasifying chamber 203a, and is almost vertical to the outside of the heat insulating chamber 211 through the communication port 222 formed in the heat insulating chamber 211.
  • a pipe 223 made of a heat-resistant material having a predetermined inner diameter and length, a screw feeder 226 having an outlet 224 connected to the upper end thereof, and an internally extending screw 225, and the screw feeder 226.
  • a hopper 229 for supplying the first gasified product 205.
  • the screw feeder 226 includes a cylindrical body 227 extending a predetermined length in a substantially horizontal direction, a screw 225 having a length substantially equal to the cylindrical body 227 rotatably mounted inside the cylindrical body 227, An actuator 228 that is disposed at one end of the screw 225 and drives the screw 225.
  • An outlet 224 for discharging the first gasified product 205 fed by the rotation of the screw 225 from the screw feeder 226 is formed in the cylindrical body 227 in the vicinity of the tip on the opposite side where the actuator 228 is disposed.
  • An inlet 230 for taking the first gasified product 205 from the hopper 229 into the screw feeder 226 is formed in an upper portion of the cylindrical body 227 near the actuator 228, and the hopper 229 is connected to the inlet 230.
  • the second gasified substance introducing means 213 communicates with the second gasified substance introducing port 219 formed in the first gasifying chamber 203a, and extends to the outside of the heat insulating chamber 211 through the communication port 231 formed in the heat insulating chamber 211.
  • a pipe 232 made of a material having heat resistance and water vapor resistance having a predetermined inner diameter and length is provided.
  • a boiler (not shown) for obtaining superheated steam generated by heating by an appropriate method is connected downstream of the pipe 232, and the second gasified product 206 is connected to the first gasification chamber 203a. Prior to introduction, superheated steam is obtained by heating in advance using waste heat.
  • the product gas outlet 237 is formed on the side wall of the first gasification chamber 203a on the downstream side of the first gasification chamber 203a.
  • the downstream side here refers to the inside of the heat insulation chamber 211 formed in the heat insulation chamber 211 from the high temperature gas introduction port 240 for introducing the high temperature gas 207 into the heat insulation chamber 211 from the outside formed in the heat insulation chamber 211.
  • This corresponds to the downstream side in the flow direction to the hot gas outlet 241 for discharging the hot gas 207 that has flowed down and is used to the outside of the heat insulation chamber 211.
  • the ash content discharge means 216 communicates with the ash content discharge port 221 formed in the first gasification chamber 203a, and extends to the outside of the heat insulation chamber 211 through the communication port 235 formed in the heat insulation chamber 211. Furthermore, a pipe 236 made of a heat-resistant material is provided. Downstream of the pipe 236, the pipe 236 can be freely opened and closed, and a valve (not shown) for opening or closing the communication state inside and outside the first gasification chamber 203a in the pipe 236 is provided. Arrange.
  • the second gasification chamber 203b is formed by forming a pipe material having a predetermined length and an inner diameter made of a material having heat resistance and high radiation property in a generally meandering shape, and a secondary gasification inside thereof. It has a space 210b. Most of the second gasification chamber 203 b is disposed on the downstream side in the heat insulating chamber 211, and is surrounded by the shielding plate 239 and the inner wall of the heat insulating chamber 211. The upstream end of the pipe material forming the second gasification chamber 203b forms a product gas inlet 238 connected to the product gas outlet 237 of the first gasification chamber 203a. The tip forms a product gas outlet 220 for discharging the product gas 202 that has been further purified in the second gasification chamber 203b to the outside of the radiation endothermic reactor 201.
  • the second gasification chamber 203b configured as described above is disposed across the upstream side and the downstream side in the heat insulation chamber 211 through the communication port 243 formed in the shielding plate 239, and the generated gas introduction port 238 is provided.
  • the product gas outlet 220 is connected to the product gas outlet 237 of the first gasification chamber 203 a, and the product gas outlet 220 is connected to a communication port 233 formed in an appropriate part of the downstream side wall of the heat insulation chamber 211.
  • a cyclone, a water sprayer, or the like can be connected further downstream of the communication port 233. By passing the product gas 202 through the cyclone or the water sprayer, the product gas 202 is mixed in a small amount. Ashes 208, soot, tar, or moisture can be removed.
  • a high temperature gas 207 having a required temperature is generated by an appropriate high temperature gas generating means, and the high temperature gas 207 is used as a heating means to heat the heat insulation chamber 211 at a high temperature.
  • Hot gas 207 is introduced from the gas inlet 240.
  • the gap in the heat insulation chamber 211 is set to 800 ° C.
  • the first gasification chamber 203a and the second gasification chamber 203b are heated to 800 ° C. or higher.
  • the first gasified product 205 is put into the hopper, and the screw feeder 226 is operated to take the first gasified product 205 from the hopper 229 into the screw feeder 226 and feed it toward the outlet 224. To pay.
  • the first gasified product 205 put into the hopper 229 is coarsely pulverized into small pieces of 2 cm or less in advance.
  • the introduction amount of the first gasification product 205 to be introduced into the first gasification chamber 203a according to the water content of the first gasification product 205 by adjusting the introduction amount of the first gasification product 205 to be introduced into the first gasification chamber 203a according to the water content of the first gasification product 205,
  • the composition of the product gas 202 can be optimized. For example, according to the moisture content of the first gasified product 205 at the time of operation, the supply amount of the first gasified product 205 by the screw feeder 226 is changed to the screw feeder.
  • the feed amount is controlled by adjusting the number of rotations of the screw 225 of the H.226.
  • the first gasified product 205 is introduced into the first gasification chamber 203a by the screw feeder 226, nitrogen gas or carbon dioxide gas is placed inside the hopper 229 in which the first gasified product 205 is stored.
  • air may be fed as a parallel gas (not shown), and the parallel gas may be supplied together with the first gasification product 205 to the first gasification chamber 203a via the screw feeder 226.
  • this parallel gas it is possible to prevent dew condensation due to leakage of water vapor from the first gasification chamber 203a in the hopper 229.
  • the anti-condensation effect is recognized when the combined amount is the weight ratio of the co-running gas to the first gasified product 205, about 2 to 15% for carbon dioxide and 2 to 10% for nitrogen gas.
  • a part of the product gas 202 is burned to reduce the calorific value, so that it is about 2 to 5%.
  • the second gasification product introduction means 213 is used according to the amount of the first gasification product 205 introduced into the first gasification chamber 203a as described above. Then, the second gasified product 206 is introduced from the second gasified product inlet 219. At this time, the second gasified product 206 can be preheated and introduced into the first gasification chamber 203a as superheated steam, thereby improving the thermal efficiency.
  • the second gasified product 206 introduced into the first gasified chamber 203a from the lower portion of the first gasified chamber 203a through the second gasified product inlet 219 forms an upward flow and the first gas.
  • the inside of the chemical conversion chamber 203a is filled with superheated steam to create a superheated steam atmosphere.
  • this superheated water vapor passes through the through holes 214 of the multi-hole body 215 disposed in the first gasification chamber 203 a from the lower part to the upper part, and the upper and lower spaces defined by the multi-hole body 215. All of these are superheated steam atmospheres.
  • an appropriate amount of carbon dioxide may be mixed and a mixed gas composed of superheated steam and carbon dioxide may be employed.
  • the composition ratio of carbon dioxide in the product gas 202 is increased, and the carbon dioxide is combined with hydrogen to become methanol, which is economically advantageous when the product gas 202 is used for methanol synthesis or the like.
  • the first gasification product 205 introduced into the first gasification chamber 203a from the first gasification product inlet 218 at the upper part of the first gasification chamber 203a falls in the first gasification chamber 203a.
  • a part of the first gasified product 205 receives the high-temperature radiation energy 204 emitted from the inner wall of the first gasification chamber 203a and the multi-hole body 215 by heating from the outside,
  • an endothermic reaction is caused thermochemically and almost completely gasified to become a product gas.
  • the first gasified product 205 in an ungasified state that could not be gasified during the dropping process is held on the multi-hole body 215 disposed in the first gasification chamber 203a.
  • the first gasified product 205 retained on the multi-hole body 215 is gasified in a long time. This seems to be disadvantageous compared to the fact that the first gasified product 205 in a fine powder state reacts with superheated steam in a floating state and instantly gasifies, but in reality, it is retained on the multi-hole body 215.
  • the composition of the product gas 202 obtained from the first gasified product 205 has a high hydrogen concentration and the first gasified product 205 used as a raw material does not require fine pulverization. It is effective because power costs are reduced.
  • the produced gas 202 produced in the first gasification chamber 203a is fed to the second gasification chamber 203b through the produced gas delivery port 237 formed in the first gasification chamber 203a.
  • the product gas 202 introduced into the second gasification chamber 203b flows down while meandering in the secondary gasification space 210b in the second gasification chamber 203b, and is generated in the secondary gasification space 210b.
  • Impurities and components such as soot, tar or moisture, which are mixed in the gas 202 in a small amount, are decomposed or gasified, and further purification is achieved.
  • the product gas 202 highly purified in the second gasification chamber 203b is mainly composed of hydrogen, carbon monoxide, methane, ethylene, and carbon dioxide, which contains almost no soot, tar, or moisture.
  • the gas is discharged to the outside through the product gas outlet 220 at the downstream end of the second gasification chamber 203b.
  • the first gasification chamber 203a requires a relatively high temperature and a large amount of heat.
  • the first gasification chamber 203a is disposed on the upstream side, and the first gasification chamber 203a is disposed by the shielding plate 239. And the gasification efficiency can be improved without lowering the thermal efficiency by defining the second gasification chamber 203b.
  • the radiation endothermic reaction device 201 of the present embodiment is a technique for generating fuel gas that enables high-temperature combustion comparable to fossil fuel from biomass or organic waste as a raw material, and at the same time synthesizes liquid fuel or the like. It can also be applied to chemical synthesis raw materials.
  • the composition ratio of hydrogen and carbon monoxide in the composition of the product gas 202 is important. For example, when synthesizing methanol using the product gas 202, it is desirable to increase the proportion of hydrogen and carbon monoxide in the gas composition and to make the hydrogen / carbon monoxide molar ratio approximately 2.
  • the first gasification chamber 203a when it is necessary to increase the composition ratio of hydrogen in the product gas 202, the first gasification chamber 203a needs to have a relatively high temperature. It is possible to increase the purity of the product gas 202 by providing the second gasification chamber 203b while keeping the one gasification chamber 203a at a relatively high temperature to increase the composition ratio of hydrogen. At this time, the second gasification chamber 203b can increase the purity of the product gas 202 even if the temperature is slightly lower than that of the first gasification chamber 203a.
  • the radiation endothermic reaction apparatus of the present invention is a conventional useful view of weeds, thinned wood, etc. by gasifying the raw material in an oxygen-free or low-oxygen state where oxygen is not actively introduced under superheated steam atmosphere.
  • biomass including organic compounds that were not used, a wide range of organic waste such as waste plastics, waste oil, waste paper, manure, leftovers, tofu husks, and squeezed foods such as sake lees
  • gasification raw materials that is, gasses to be generated into product gases of the required composition mainly composed of hydrogen, carbon monoxide, methane, ethylene, carbon dioxide, water, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A reactor which comprises: an adiabatic chamber (111); a gasification chamber (103) disposed in the adiabatic chamber (111); a first-gasifiable-substance introduction means (112) which introduces a first gasifiable substance (105) into the gasification chamber (103); a second-gasifiable-substance introduction means (113) which introduces a second gasifiable substance (106) into the gasification chamber (103); a perforated object (115) which has through-holes extending vertically and by which the gasification chamber is separated into upper and lower parts; an ash discharge means (116) by which ashes (108) generated in the gasification chamber are discharged outside; and a product-gas discharge means (117) by which a product gas (102) generated in the gasification chamber is discharged outside. Thus, the first gasifiable substance (105) and second gasifiable substance (106) introduced into the gasification chamber can be caused to thermochemically undergo an endothermic reaction and gasified.

Description

輻射吸熱反応装置Radiation endothermic reactor
 本発明は、輻射エネルギーを用いてガス化対象物を熱化学的に吸熱反応させてガス化させる装置に係り、特にガス化対象物の主成分が有機化合物と水であり、より具体的には該有機化合物が、草本類や木本類等の所謂バイオマスや農業系乃至食品系有機廃棄物或いは廃プラスチックや廃油等の有機系廃棄物であって、それらの有機系化合物を輻射吸熱反応によりガス化することで、水素及び一酸化炭素を主成分とする生成ガスを得るための輻射吸熱反応装置若しくは輻射吸熱反応炉に関するものである。 The present invention relates to an apparatus for thermochemically endothermically reacting and gasifying a gasification target using radiant energy, and in particular, the main components of the gasification target are an organic compound and water, more specifically. The organic compounds are so-called biomass such as herbs and woods, agricultural or food organic waste, or organic waste such as waste plastics and waste oil, and these organic compounds are gasified by radiation endothermic reaction. The present invention relates to a radiation endothermic reaction apparatus or a radiation endothermic reaction furnace for obtaining a product gas mainly composed of hydrogen and carbon monoxide.
 元来、固体系バイオマスのエネルギー変換は、直接燃焼による熱利用が主であった。しかしながらこのような固体系バイオマスを燃料とする直接燃焼によるエネルギー変換の場合、高度なエネルギー利用は困難であった。例えば、固体系バイオマス燃料の直接燃焼による熱を利用して発電する場合、木質チップ・ボイラで水蒸気を発生させ、その水蒸気のエネルギーでタービンを回動させて発電する方式の水蒸気タービン発電が採られるが、実プラントでは1000~3000kW規模で8~12%の発電効率に止まり、100kW程度の小規模プラントにあっては電力出力は得られないというのが実状である。また、固体系バイオマス燃料は、吸湿による乾度変化があって保存性が悪い上、占有容積が大きく輸送や保管に不向きであって汎用性に欠ける。 Originally, the energy conversion of solid biomass mainly used heat by direct combustion. However, in the case of such energy conversion by direct combustion using solid biomass as fuel, it has been difficult to use advanced energy. For example, in the case of generating power using heat generated by direct combustion of solid biomass fuel, steam turbine power generation is employed in which steam is generated by a wood chip boiler and the turbine is rotated by the energy of the steam to generate power. However, the actual plant has a power generation efficiency of 8 to 12% at a scale of 1000 to 3000 kW, and a power output cannot be obtained in a small plant of about 100 kW. In addition, solid biomass fuels have poor storage properties due to changes in dryness due to moisture absorption, have a large occupied volume, are unsuitable for transportation and storage, and lack versatility.
 これらのことからも明らかな通り、バイオマス系エネルギーの高度利用のためには、固体系バイオマスを液体系燃料へ転換することが不可欠であり、バイオマスの液体系燃料化は、燃料性状の均一化や安定化、減容化や軽量化、輸送性や保管性の向上、並びに自動車やバイク或いは発電機等の各種内燃機関系原動機用の燃料化等による汎用性の向上などの観点から望ましい。 As is clear from these facts, it is indispensable to convert solid biomass into liquid fuel for advanced utilization of biomass energy. It is desirable from the viewpoints of stabilization, volume reduction, weight reduction, improvement in transportability and storage, and improvement in versatility by using fuel for various internal combustion engine prime movers such as automobiles, motorcycles and generators.
 それらのような観点から固体系バイオマスを直接燃焼用の固体燃料とせず、固体系バイオマスを直接的に液体燃料化するバイオマスの液体燃料化技術が開発されている。そのような従来のバイオマスの液体燃料化技術としては、例えば、特許文献1や特許文献2を挙げることができる。これらの技術は、原料とするバイオマスの中でも糖質や澱粉質等の成分のみを利用し、それらの成分を醗酵させることによってエタノールを主成分とする液体燃料を得るものである。 From these perspectives, a biomass liquid fuel technology that directly converts solid biomass into liquid fuel without using solid biomass as a solid fuel for direct combustion has been developed. As such conventional biomass liquid fuel technology, for example, Patent Literature 1 and Patent Literature 2 can be cited. These techniques use only components such as sugar and starch in biomass as a raw material, and obtain a liquid fuel containing ethanol as a main component by fermenting those components.
 しかしながら、原料として用いられるバイオマスの糖質や澱粉質等の成分以外の部分は、燃料化不能な廃棄物とされるという問題がある。また、糖質や澱粉質を効率的に得るための原料バイオマスとしては、主としてサトウキビやトウモロコシ等に代表される食用植物が適していることから食料利用との競合が問題となる上、耕作面積当りの収穫量が少ないという問題がある。これらの点においては、植物油にメタノールを添加することによってエステル化して成るバイオディーゼル油燃料も同様の問題を抱えている。 However, there is a problem that parts other than components such as sugar and starch of biomass used as a raw material are considered as non-fuelable waste. In addition, edible plants such as sugar cane and corn are suitable as raw material biomass for efficiently obtaining sugars and starches. There is a problem that the amount of harvest is small. In these respects, biodiesel oil fuel obtained by esterification by adding methanol to vegetable oil has the same problem.
 これらのような従来の問題、即ち、バイオマス系エネルギーの変換効率の低さや汎用的利用性の無さ、或いは、原料バイオマスの食用との競合や耕作面積当量収量の少なさといった諸問題に鑑み、現在までにバイオマス系エネルギーの高度利用のための技術の中核を成すガス化技術の開発が、本発明者等を中心として進められてきた。そのガス化技術は、各種バイオマスを原料としてそれらのガス化を行なうものであって、燃料ガスとして使用することが可能な生成ガスを得たり、所要の液体燃料を合成することが可能な生成ガスを得るためのものである。 In view of conventional problems such as these, that is, low conversion efficiency of biomass energy and general versatility, or various problems such as competition with edible raw material biomass and low cultivated area equivalent yield, Up to now, development of gasification technology, which forms the core of technology for advanced use of biomass energy, has been promoted mainly by the present inventors. The gasification technology is to perform gasification of various biomasses as raw materials, and to obtain a product gas that can be used as a fuel gas or to synthesize a required liquid fuel Is to get.
 そのガス化技術の従来例としては、特許文献3や特許文献4の技術が挙げられる。それらの従来のガス化技術の核心は、空気又は酸素の理論量以下でバイオマスを半燃焼させる部分酸化法を採用している点にある。しかしながら、この方法によれば、煤やタールの発生量が多く、発熱に使われた排ガスが生成ガスに混入するため、高品質の生成ガスを得ることはできなかった。 As conventional examples of the gasification technique, there are techniques of Patent Document 3 and Patent Document 4. The core of these conventional gasification technologies is that they employ a partial oxidation method in which biomass is semi-burned at less than the theoretical amount of air or oxygen. However, according to this method, a large amount of soot and tar is generated, and the exhaust gas used for heat generation is mixed into the product gas, so that a high-quality product gas cannot be obtained.
 他方、本発明者等によって、近年、バイオマスを利用する発電用ガスエンジンに適合する高カロリでクリーンな燃料ガスが得られる浮遊外熱式ガス化方法が開発された。その内容は、特許文献5乃至7に開示されている。特許文献5乃至7に開示されている技術は、バイオマスを燃料及び原料として、燃料バイオマスを燃焼させて高温ガスを得つつ、その熱を利用して原料バイオマスを加熱してガス化することで所要の生成ガスを得ることを主たる目的とするものである。 On the other hand, in recent years, the present inventors have developed a floating external heat gasification method capable of obtaining a high calorie and clean fuel gas suitable for a power generation gas engine using biomass. The contents are disclosed in Patent Documents 5 to 7. The techniques disclosed in Patent Documents 5 to 7 are required by using biomass as a fuel and a raw material, burning the fuel biomass to obtain a high-temperature gas, and using the heat to heat the raw material biomass for gasification The main purpose is to obtain the product gas.
 特許文献5に開示の技術は、バイオマスの燃焼空間と、バイオマスのガス化空間とを分離して有し、該燃焼空間から得られる燃料バイオマスを完全燃焼させて成る完全燃焼高温ガスを、複数の透孔を通じて該ガス化空間に均一に供給することによって、該ガス化空間中の原料バイオマスを均一にガス化させるものである。
 これによって、燃焼空間における燃料バイオマスと酸素との発熱反応と、ガス化空間における原料バイオマスの吸熱反応とを、各々に制御してバイオマスをガス化することが可能となり、従来に無い高品質の燃料ガスを得ることが可能となった。
 しかし、このガス化技術においては、微細な透孔を多数加工しなければならない上、原料バイオマスの均一なガス化が、複数の透孔を通じてガス化空間に供給する完全燃焼ガスに依存するものであるため、生成ガス中に、炭酸ガスと窒素ガスが量的制御を出来ないまま多量に混入して該生成ガスの品質を低下させるという問題がある。
The technique disclosed in Patent Document 5 has a biomass combustion space and a biomass gasification space separated from each other, and a complete combustion hot gas formed by completely combusting fuel biomass obtained from the combustion space, By uniformly supplying the gasification space through the through holes, the raw material biomass in the gasification space is uniformly gasified.
This makes it possible to gasify the biomass by controlling the exothermic reaction between fuel biomass and oxygen in the combustion space and the endothermic reaction of the raw material biomass in the gasification space. It became possible to obtain gas.
However, in this gasification technology, many fine holes must be processed, and uniform gasification of the raw material biomass depends on the complete combustion gas supplied to the gasification space through the plurality of holes. For this reason, there is a problem that carbon dioxide gas and nitrogen gas are mixed in the produced gas in a large amount without being quantitatively controlled, thereby reducing the quality of the produced gas.
 特許文献6及び特許文献7に開示の技術は、特許文献5の技術の問題点を概ね解決しているものの、以下の点を含む解決乃至改善すべき技術的課題を抱えている。
 その第一の欠点は、ガス化するためのバイオマス原料が3mm以下の粉末でなければならず、必要な粉砕動力が大きいということの他、10~20mm以上の粗粉ではトラブルの原因となるという点である。
 第二の欠点は、ガス化空間に供給される水蒸気が、原料バイオマス粉体を該ガス化空間に供給するための粉体供給口から洩出し、該粉体供給口に連通した粉体供給ホッパに結露して、原料バイオマス粉体を高含水化し、粉体の平滑な供給を困難にすると共に、水の潜熱の大きさからガス化反応室のガス化能力を著しく低下させる点である。
 第三の欠点は、得られる生成ガスの組成は、水素分の比率が低く、燃料ガスとして不向きであり、且つ、そのままメタノールやGTLなどを合成するための原料ガスとして用いるには不十分であるという点である。
特開2004-208667号公報 特開2004-337099号公報 特開平9-263776号公報 特開2001-240878号公報 特開2002-88379号公報 特開2004-51717号公報 特開2004-51718号公報
Although the techniques disclosed in Patent Document 6 and Patent Document 7 generally solve the problems of the technique of Patent Document 5, they have technical problems to be solved or improved including the following points.
The first disadvantage is that the biomass raw material for gasification must be powder of 3 mm or less, and the necessary grinding power is large, and in addition, the coarse powder of 10-20 mm or more causes trouble. Is a point.
A second disadvantage is that the water vapor supplied to the gasification space leaks from the powder supply port for supplying the raw biomass powder to the gasification space and communicates with the powder supply port. Condensation causes the raw material biomass powder to be highly hydrated, making it difficult to supply the powder smoothly, and significantly reducing the gasification capacity of the gasification reaction chamber because of the latent heat of water.
The third drawback is that the composition of the resulting product gas has a low hydrogen content, is not suitable as a fuel gas, and is insufficient for use as a raw material gas for synthesizing methanol, GTL, or the like as it is. That is the point.
JP 2004-208667 A JP 2004-337099 A Japanese Patent Laid-Open No. 9-263767 JP 2001-240878 A JP 2002-88379 A JP 2004-51717 A Japanese Patent Laid-Open No. 2004-51718
 本発明は、上記問題点に鑑み、バイオマス系エネルギーの変換効率の向上と汎用的利用性の向上などのバイオマス系エネルギーの高度利用を可能とするべく、或いは、現代社会の化石燃料依存の現状から脱皮するための化石燃料代替エネルギーの供給を可能とする技術を欲する時代の強いニーズに応えるべく創作されたものであり、雑草などに代表される草本類或いは間伐材や廃木材を含む木本類等の固体系バイオマスをはじめとする有機化合物を、所要の生成ガスを得るための原料として利用することが可能な輻射吸熱反応装置を提供することを目的とする。 In view of the above problems, the present invention enables advanced utilization of biomass energy, such as improvement of conversion efficiency of biomass energy and improvement of general-purpose utility, or from the present state of dependence on fossil fuels in modern society. It was created to meet the strong needs of the era when we wanted the technology to enable the supply of fossil fuel alternative energy for molting, and weeds represented by weeds, etc. An object of the present invention is to provide a radiation endothermic reaction apparatus that can use an organic compound such as solid biomass such as a raw material for obtaining a required product gas.
 また、本発明は、従来有用視されてこなかった上記の如くの有機化合物を原料としつつ、それらを微粉化することなく使用することを可能とすると共に、煤やタールを殆ど含まず純度の高い水素と一酸化炭素を主成分とする生成ガスを得ることが出来る輻射吸熱反応装置を提供することを目的とする。更に、本発明は、比較的小型な装置でありながらも、得られた生成ガスをそのままガスエンジンやガスタービンの駆動源として利用することも可能で、その際の発電効率を、木質チップを燃料とする蒸気タービンを用いた大型の蒸気タービン発電装置よりも高効率に出来る輻射吸熱反応装置を提供することを目的とする。 In addition, the present invention makes it possible to use organic compounds as described above, which have not been regarded as useful in the past, as raw materials, and to use them without pulverizing them, and it contains almost no soot and tar and has high purity. An object of the present invention is to provide a radiation endothermic reactor capable of obtaining a product gas mainly composed of hydrogen and carbon monoxide. Further, the present invention can use the obtained produced gas as it is as a driving source of a gas engine or a gas turbine as it is a relatively small device. It aims at providing the radiation endothermic reaction apparatus which can be made more efficient than the large sized steam turbine power generator using the steam turbine made.
 上記目的を達成するために、本発明の輻射吸熱反応装置は、適宜の加熱手段によって加熱してガス化対象物をガス化するためのガス化室と、このガス化室内側に存在させる適宜の固体とを備え、上記ガス化対象物が、有機化合物を主成分とする第一のガス化物と、水を主成分とする第二のガス化物とから成り、ガス化室内に第一のガス化物を存在させると共に、適宜の加熱手段によってガス化室を加熱することで、第二のガス化物を気相状態にしてガス化室内を水蒸気で満たし、且つ、ガス化室内側に存在する固体から輻射エネルギーをガス化室内に放出させ、第一のガス化物をガス化室内の水蒸気雰囲気下において加熱し、第一のガス化物と第二のガス化物とを熱化学的に吸熱反応させることによって所要のガスを生成するように構成したことを特徴とする。 In order to achieve the above object, the radiation endothermic reaction apparatus of the present invention comprises a gasification chamber for gasifying a gasification object by heating with an appropriate heating means, and an appropriate gas phase inside the gasification chamber. And the gasification object is composed of a first gasification product containing an organic compound as a main component and a second gasification product containing water as a main component, and the first gasification product is contained in the gasification chamber. In addition, the gasification chamber is heated by an appropriate heating means so that the second gasification product is in a gas phase to fill the gasification chamber with water vapor and radiate from the solid present on the gasification chamber side. The energy is released into the gasification chamber, the first gasification product is heated in a steam atmosphere in the gasification chamber, and the first gasification product and the second gasification product are subjected to thermochemical endothermic reaction. Configured to produce gas It is characterized in.
 加熱手段は、ガス化室内において燃料を燃焼させることなく適宜の熱量を得ることが出来るものであることが好ましい。加熱手段によるガス化室内の加熱は、好ましくは、輻射乃至熱伝導によるものである。この加熱手段によるガス化室の加熱は、該ガス化室の外部から行われるものであってもよい。また、加熱手段は、好ましくは、草本類乃至木本類を燃焼させて燃焼系の高温ガスを生成する高温ガス発生装置から得られる該高温ガスである。
 ガス化室は、その室内外の熱の出入りを抑制するように構成される断熱室内に配設されていてもよい。ガス化室の内側に存在する固体は、ガス化室の内壁を構成する物質であってもよく、または、ガス化室を上下に画成する多穴体であって、多穴体が上下に連通した複数の穴乃至孔を有していてもよい。ガス化室は、このガス化室内に第一のガス化物を導入するための第一ガス化物導入手段を備えることができる。また、ガス化室は、ガス化室内に第二のガス化物を導入するための第二ガス化物導入手段を備えていてもよい。
 第一ガス化物導入手段は、第一のガス化物をガス化室内に導入するための第一ガス化物導入口を有し、第一ガス化物導入口が、ガス化室の上部に配設されていてもよい。また、第一のガス化物が、第一ガス化物導入口を通じて、ガス化室の上方から下方に向かって該ガス化室内に導入されていてもよい。第二ガス化物導入手段は、第二のガス化物をガス化室内に導入するための第二ガス化物導入口を有し、第二ガス化物導入口が、ガス化室の下部に配設されていてもよい。第二のガス化物は、好ましくは、第二ガス化物導入口を通じて、ガス化室の下方から上方に向かってガス化室内に導入される。第二のガス化物は、好ましくは、予め所定温度に加熱され、過熱水蒸気としてガス化室内に導入される。ガス化室に導入する第二のガス化物の導入量は、ガス化室に導入される第一のガス化物の乾燥重量に対する重量比で、0.6以上となるように制御されていれば好ましい。ガス化室内の温度は、好ましくは800℃以上、より好ましくは1000℃以上に保持されて吸熱反応を生じさせる。ガス化室は、好ましくは、ガス化室に導入する無灰の第一ガス化物の導入量1kg/hに対して、該ガス化室内壁の温度を800℃とする場合、ガス化室内壁の表面積が0.008m2以上に設定され、ガス化室内壁の温度を1000℃とする場合、該ガス化室内壁の表面積が0.004m2以上に設定される。
 ガス化室は、上流側に配設される第一のガス化室と、この第一のガス化室の下流側に配設される第二のガス化室とから成り、これら第一のガス化室と第二のガス化室とが互いに連通していてもよい。第二のガス化室は、好ましくは筒状をなす。ガス化対象物は、二酸化炭素を主成分とする第三のガス化物を含んで成っていてもよい。生成ガスは、好ましくは、水素、一酸化炭素、メタン、エチレンから選ばれる1つ以上の物質を主成分とする。
It is preferable that the heating means can obtain an appropriate amount of heat without burning fuel in the gasification chamber. The heating in the gasification chamber by the heating means is preferably by radiation or heat conduction. The heating of the gasification chamber by this heating means may be performed from the outside of the gasification chamber. The heating means is preferably the high-temperature gas obtained from a high-temperature gas generator that burns grasses or woods to generate a high-temperature gas in the combustion system.
The gasification chamber may be disposed in a heat insulating chamber configured to suppress heat in and out of the room. The solid existing inside the gasification chamber may be a substance constituting the inner wall of the gasification chamber, or a multi-hole body that vertically defines the gasification chamber, where the multi-hole body is You may have the several hole thru | or hole which connected. The gasification chamber can be provided with a first gasification material introduction means for introducing the first gasification material into the gasification chamber. Moreover, the gasification chamber may be provided with a second gasification material introduction means for introducing the second gasification material into the gasification chamber.
The first gasified substance introducing means has a first gasified substance introduction port for introducing the first gasified substance into the gasification chamber, and the first gasified substance introduction port is disposed at the upper part of the gasification chamber. May be. Further, the first gasified product may be introduced into the gasification chamber from the upper side to the lower side of the gasification chamber through the first gasified product inlet. The second gasified substance introduction means has a second gasified substance introduction port for introducing the second gasified substance into the gasification chamber, and the second gasified substance introduction port is disposed at the lower part of the gasification chamber. May be. The second gasified product is preferably introduced into the gasification chamber from the lower side to the upper side of the gasification chamber through the second gasified product inlet. The second gasification product is preferably heated in advance to a predetermined temperature and introduced into the gasification chamber as superheated steam. The introduction amount of the second gasified product introduced into the gasification chamber is preferably controlled so as to be 0.6 or more in terms of the weight ratio with respect to the dry weight of the first gasified product introduced into the gasification chamber. . The temperature in the gasification chamber is preferably maintained at 800 ° C. or higher, more preferably 1000 ° C. or higher to cause an endothermic reaction. The gasification chamber preferably has a gasification chamber wall temperature of 800 ° C. when the ashless first gasification product introduced into the gasification chamber is 1 kg / h. When the surface area is set to 0.008 m 2 or more and the temperature of the gasification chamber wall is set to 1000 ° C., the surface area of the gasification chamber wall is set to 0.004 m 2 or more.
The gasification chamber includes a first gasification chamber disposed on the upstream side and a second gasification chamber disposed on the downstream side of the first gasification chamber. The gasification chamber and the second gasification chamber may communicate with each other. The second gasification chamber is preferably cylindrical. The gasification target object may include a third gasification product containing carbon dioxide as a main component. The product gas is preferably mainly composed of one or more substances selected from hydrogen, carbon monoxide, methane, and ethylene.
 本発明の輻射吸熱反応装置は、過熱水蒸気雰囲気下且つ積極的に酸素を導入しない無酸素乃至低酸素状況下において、原料をガス化することによって、雑草や間伐材等の従来有用視されていなかった有機化合物をはじめとするバイオマスのみならず、廃プラスチック、廃油、廃紙、糞尿、残飯、豆腐殻や酒粕等の食品系搾り滓等に代表される広範な有機系廃棄物等の多様な有機化合物を、ガス化の原料即ちガス化対象物として採用することを可能とすると共に、それらの有機化合物をガス化原料としながらも煤やタールの極めて少ない生成ガスを得ることが出来る。 The radiation endothermic reactor of the present invention has not been regarded as useful in the past for weeds, thinned wood, etc. by gasifying the raw material in an oxygen-free or low-oxygen state where oxygen is not actively introduced under superheated steam atmosphere. A wide variety of organic waste such as organic waste, such as organic plastics, waste plastic, waste oil, waste paper, manure, leftovers, tofu shells, and other types of food waste such as sake lees The compound can be employed as a gasification raw material, that is, a gasification target, and a product gas with very little soot and tar can be obtained while using these organic compounds as a gasification raw material.
 本発明の輻射吸熱反応装置は、ガス化室内の表面積を適宜に設定すると共に、これに対応してガス化室内を適宜温度に保持し、第一のガス化物の乾燥重量に対する第二のガス化物の重量比を所定値に制御することによって、水素、一酸化炭素、メタン、エチレン、二酸化炭素、水等を主成分とする所要の組成の生成ガスを、原料とする適宜の有機化合物から得ることが可能であって、ガス化室を、第一のガス化室とその下流側に連通配置した第二のガス化室とから構成したことにより、煤やタールがほぼ完全に分解若しくはガス化され、不純物の極めて少ない生成ガスを得ることが出来る。得られた生成ガスは、その燃焼時の運動エネルギー乃至熱エネルギーを利用するガスエンジンに使用し或いはその生成ガスの廃熱を熱源とするボイラ等に利用可能である。更に、その後の生成ガスは、化石燃料並みの高温燃焼を可能とする燃料ガスとして、或いはメタノールやGTL等の液体燃料を合成するための原料ガスとして採用することも可能である。 The radiation endothermic reaction apparatus of the present invention appropriately sets the surface area in the gasification chamber, and correspondingly holds the gasification chamber at an appropriate temperature so that the second gasification product with respect to the dry weight of the first gasification product By controlling the weight ratio of these to a predetermined value, a product gas having a required composition mainly composed of hydrogen, carbon monoxide, methane, ethylene, carbon dioxide, water, etc. is obtained from an appropriate organic compound as a raw material. Since the gasification chamber is composed of the first gasification chamber and the second gasification chamber arranged in communication with the downstream side, soot and tar are almost completely decomposed or gasified. A product gas with very few impurities can be obtained. The obtained product gas can be used in a gas engine that uses kinetic energy or heat energy at the time of combustion, or a boiler that uses waste heat of the product gas as a heat source. Further, the subsequent generated gas can be used as a fuel gas that enables high-temperature combustion comparable to fossil fuels, or as a raw material gas for synthesizing liquid fuels such as methanol and GTL.
 本発明の輻射吸熱反応装置は、ガス化室に、上下に連通した複数の穴を有してなる多穴体をガス化室内に配設してガス化室内の上下を画成し、第一のガス化物をガス化室の上部から導入すると共に、第二のガス化物を多穴体の下部より上昇流として供給するように構成できる。この場合、第一のガス化物を直径約2cm以下に設定し且つ第二のガス化物を過熱水蒸気とすれば、第一のガス化物が室内において落下中にガス化しきれずに残留した際にも多穴板上に保留し得、この第一のガス化物の残留分は、長秒時間でガス化して行くが、生成ガス組成は、微粉化した第一のガス化物を原料とした場合の生成ガスに劣らず、高い水素濃度の生成ガスを得ることが出来る。従って、ガス化対象物である有機化合物を微粉化しなくてもほぼ完全にガス化することが可能であって微粉砕が要求されず、粉砕コストを軽減することが出来る。 The radiant endothermic reaction device of the present invention defines a top and bottom of a gasification chamber by disposing a multi-hole body having a plurality of holes communicating with the top and bottom in the gasification chamber. The gasified product can be introduced from the upper part of the gasification chamber, and the second gasified product can be supplied as an upward flow from the lower part of the multi-hole body. In this case, if the first gasified product is set to have a diameter of about 2 cm or less and the second gasified product is superheated steam, the first gasified product can be completely gasified while falling in the room. The residue of this first gasified product can be gasified in a long time, but the product gas composition can be generated when the first gasified product is used as a raw material. A product gas having a high hydrogen concentration can be obtained as well as a gas. Therefore, it is possible to almost completely gasify the organic compound that is the object to be gasified without pulverizing it, no pulverization is required, and the pulverization cost can be reduced.
 本発明の輻射吸熱反応装置は、高熱伝導性を有し且つ高輻射性を有する材料でガス化室を構成し、ガス化室を断熱室内に配設したことにより、熱効率を向上させつつ、ガス化室内におけるガス化対象物のガス化に伴う熱化学的な吸熱反応に必要なエネルギーを、ガス化室内側に存在する内壁やその他の固体からの輻射エネルギー及びそれら内壁や固体表面との接触による熱伝導によって伝達すること、及び、このエネルギーの伝達に必要な熱量を、外部の加熱手段によって供給することが可能となる。これによって、本発明の輻射吸熱反応装置は、熱電効果を利用した電気的加熱手段或いは化石燃料の燃焼によって得られる熱を利用する化石燃料燃焼加熱手段或いは廃プラスチックや廃紙を燃焼させて得られる熱を利用する廃棄物燃焼加熱手段或いはバイオマス系燃料を燃焼させることで得られる熱を利用するバイオマス燃焼加熱手段などの適宜の加熱手段を、ガス化室を加熱するための加熱手段として採用することが出来る。
 また、本発明の輻射吸熱反応装置においては、ガス化室内におけるガス化対象物のガス化に係る化学反応が吸熱反応であるために、加熱手段によって外部から供給される熱エネルギーの一部は、生成ガスの化学ポテンシャルとして該生成ガスに蓄えることが出来るという効果がある。
The radiation endothermic reaction apparatus of the present invention comprises a gasification chamber made of a material having high thermal conductivity and high radiation, and the gasification chamber is disposed in the heat insulation chamber, thereby improving the thermal efficiency and improving the gas efficiency. The energy required for the thermochemical endothermic reaction accompanying the gasification of the gasification object in the gasification chamber depends on the radiation energy from the inner wall and other solids existing in the gasification chamber and the contact with the inner wall and solid surface. It is possible to transmit by heat conduction and to supply the amount of heat necessary for this energy transfer by an external heating means. Thus, the radiation endothermic reaction apparatus of the present invention is obtained by burning an electric heating means utilizing a thermoelectric effect or a fossil fuel combustion heating means utilizing heat obtained by combustion of fossil fuel, or waste plastic or waste paper. Appropriate heating means such as waste combustion heating means using heat or biomass combustion heating means using heat obtained by burning biomass fuel is adopted as heating means for heating the gasification chamber. I can do it.
Further, in the radiation endothermic reaction device of the present invention, since the chemical reaction related to the gasification of the gasification object in the gasification chamber is an endothermic reaction, a part of the thermal energy supplied from the outside by the heating means is There is an effect that the chemical potential of the product gas can be stored in the product gas.
本発明の輻射吸熱反応装置の実施形態の基本構成及び運転原理を表す概念図である。It is a conceptual diagram showing the basic composition and operation principle of embodiment of the radiation endothermic reaction apparatus of this invention. 実施例1の輻射吸熱反応装置の構成を示す概略断面図である。1 is a schematic cross-sectional view showing a configuration of a radiation endothermic reaction device of Example 1. FIG. 実施例2の輻射吸熱反応装置の構成を示す概略断面図である。3 is a schematic cross-sectional view showing a configuration of a radiation endothermic reaction device of Example 2. FIG.
符号の説明Explanation of symbols
 1:輻射吸熱反応装置、 2:生成ガス、 3:ガス化室、 4:輻射エネルギー、 5:第一のガス化物、 6:第二のガス化物、 7:熱、 8:灰分、 9:隔壁、 10:ガス化空間、
 101:輻射吸熱反応装置、 102:生成ガス、 103:ガス化室、 104:輻射エネルギー、 105:第一のガス化物、 106 第二のガス化物、 107:熱、 108:灰分、 109:隔壁、 110:ガス化空間、 111:断熱室、 112:第一ガス化物導入手段、 113:第二ガス化物導入手段、 114:貫通穴、 115:多穴体、 116:灰分排出手段、 117:生成ガス排出手段、 118:第一ガス化物導入口、 119:第二ガス化物導入口、 120:生成ガス排出口、 121:灰分排出口、 122:連通口、 123:パイプ、 124:出口、 125:スクリュ、 126:スクリュフィーダ、 127:円筒体、 128:アクチュエータ、 129:ホッパ、 130:入口、 131:連通口、 132:パイプ、 133:連通口、 134:パイプ、 135:連通口、 136:パイプ、
 201:輻射吸熱反応装置、 202:生成ガス、 203:ガス化室、 203a:第一のガス化室、 203b:第二のガス化室、 204:輻射エネルギー、 205:第一のガス化物、 206:第二のガス化物、 207:高温ガス、 208:灰分、 209:隔壁、 210a:一次ガス化空間、 210b:二次ガス化空間 211:断熱室、 212:第一ガス化物導入手段、 213:第二ガス化物導入手段、 214:貫通穴、 215:多穴体、 216:灰分排出手段、 218:第一ガス化物導入口、 219:第二ガス化物導入口、 220:生成ガス排出口、 221:灰分排出口、 222:連通口、 223:パイプ、 224:出口、 225:スクリュ、 226:スクリュフィーダ、 227:円筒体、 228:アクチュエータ、 229:ホッパ、 230:入口、 231:連通口、 232:パイプ、 233:連通口、 235:連通口、 236:パイプ、 237:生成ガス送出口、 238:生成ガス導入口、 239:遮蔽板、 240:高温ガス導入口、 241:高温ガス排出口、 242:流路、 243:連通口
1: Radiation endothermic reactor, 2: Product gas, 3: Gasification chamber, 4: Radiant energy, 5: First gasification, 6: Second gasification, 7: Heat, 8: Ash, 9: Partition 10: Gasification space,
101: Radiation endothermic reaction device, 102: Product gas, 103: Gasification chamber, 104: Radiant energy, 105: First gasification, 106 Second gasification, 107: Heat, 108: Ash, 109: Partition wall, 110: Gasification space, 111: Thermal insulation chamber, 112: First gasified material introducing means, 113: Second gasified material introducing means, 114: Through hole, 115: Multi-hole body, 116: Ash content discharging means, 117: Product gas Discharge means, 118: first gasified inlet, 119: second gasified inlet, 120: product gas outlet, 121: ash outlet, 122: communication port, 123: pipe, 124: outlet, 125: screw 126: Screw feeder, 127: Cylindrical body, 128: Actuator, 129: Hopper, 130: Inlet, 131: Communication port, 132: Pipe, 13 : Communicating port 134: Pipe, 135: communication port, 136: pipe,
201: Radiation endothermic reaction device, 202: Product gas, 203: Gasification chamber, 203a: First gasification chamber, 203b: Second gasification chamber, 204: Radiant energy, 205: First gasification product, 206 : Second gasified product, 207: high temperature gas, 208: ash, 209: partition wall, 210a: primary gasification space, 210b: secondary gasification space, 211: heat insulation chamber, 212: first gasified gas introduction means, 213: Second gasified substance introducing means, 214: through-hole, 215: multi-hole body, 216: ash discharging means, 218: first gasified inlet, 219: second gasified inlet, 220: product gas outlet, 221 : Ash discharge port, 222: communication port, 223: pipe, 224: outlet, 225: screw, 226: screw feeder, 227: cylindrical body, 228: actuator, 22 : Hopper, 230: inlet, 231: communication port, 232: pipe, 233: communication port, 235: communication port, 236: pipe, 237: product gas outlet, 238: product gas inlet port, 239: shielding plate, 240 : Hot gas inlet, 241: hot gas outlet, 242: flow path, 243: communication port
 以下、本発明の好ましい実施の形態を、図1を参照しながら詳細に説明する。本実施形態における輻射吸熱反応装置1は、バイオマスや有機系廃棄物等の有機化合物と水とをガス化対象物即ち主原料として、それらを熱化学的に吸熱反応させることによって、それらの原料から水素や一酸化炭素或いはメタンやエチレン等を主成分とする生成ガス2を得るための装置であって、その基本構成及び運転原理を表す概念図を図1に示す。 Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIG. The radiation endothermic reaction apparatus 1 in the present embodiment uses an organic compound such as biomass or organic waste and water as a gasification target, that is, a main raw material, and thermochemically endothermicly reacts them with those raw materials. FIG. 1 is a conceptual diagram showing the basic configuration and operating principle of an apparatus for obtaining a product gas 2 mainly composed of hydrogen, carbon monoxide, methane, ethylene or the like.
 図1に示すように、本実施形態の輻射吸熱反応装置1の基本構成は、その内部においてガス化対象物をガス化するためのガス化室3と、このガス化室3内側に存在させる固体とを備える。尚、図1乃至図3においては、ガス化室3内における輻射エネルギー4を、細黒矢印(→)にて模式的に表し、第一のガス化物5、第二のガス化物6、ガス化室3に供給される熱7、生成ガス2、灰分8、高温ガスを、太白矢印(⇒)にて模式的に表すものとする。 As shown in FIG. 1, the basic configuration of the radiant endothermic reaction apparatus 1 of the present embodiment includes a gasification chamber 3 for gasifying a gasification target object therein, and a solid that is present inside the gasification chamber 3. With. 1 to 3, the radiant energy 4 in the gasification chamber 3 is schematically represented by a thin black arrow (→), and the first gasification product 5, the second gasification product 6, and the gasification are shown. The heat 7, the generated gas 2, the ash 8, and the high temperature gas supplied to the chamber 3 are schematically represented by thick white arrows (⇒).
 ガス化対象物は、第一のガス化物5と、第二のガス化物6とから成る。第一のガス化物5は、雑草等に代表される草本類や間伐材を含む木本類等の所謂バイオマス或いは廃プラスチック、廃油、廃紙、糞尿、残飯、豆腐殻や酒粕等の食品系搾り滓等に代表される農業系乃至食品系或いはその他の有機系廃棄物等の広範な有機化合物を含むものであり、それらに含有される有機化合物を主成分とするものである。第二のガス化物6は、水を主成分とするものである。 The gasification target consists of a first gasification product 5 and a second gasification product 6. The first gasified product 5 is so-called biomass such as weeds represented by weeds and woods including thinned wood, or so-called biomass or waste plastic, waste oil, waste paper, manure, leftovers, tofu husk and sake lees It contains a wide range of organic compounds, such as agricultural or food-based foods represented by straw, etc., and other organic wastes, and is mainly composed of organic compounds contained therein. The second gasification product 6 is mainly composed of water.
 ガス化室3は、外部と隔壁9で隔絶されて成り、その内部には所定の容積及び表面積のガス化空間10と、ガス化室3の外部からガス化室3の内部にガス化対象物を導入するためのガス化対象物導入口(図示せず)と、ガス化室3の内部において生成した生成ガス2をガス化室3の内部から排出するための生成ガス排出口(図示せず)と、ガス化室3内においてガス化対象物のガス化に伴って微量ながら生じた灰分8を排出するための灰分排出手段(図示せず)とを有する。 The gasification chamber 3 is separated from the outside by a partition wall 9. A gasification space 10 having a predetermined volume and surface area is formed inside the gasification chamber 3, and an object to be gasified is inserted into the gasification chamber 3 from the outside of the gasification chamber 3. A gasification object inlet (not shown) for introducing gas and a product gas outlet (not shown) for discharging the product gas 2 generated in the gasification chamber 3 from the gasification chamber 3. ) And ash content discharging means (not shown) for discharging the ash content 8 generated in a small amount due to gasification of the gasification object in the gasification chamber 3.
 ガス化室3を成す隔壁9は、耐熱性や熱衝撃性に優れた素材から成り、所要の温度や温度変化に耐え得るように構成する。この隔壁9を構成する素材としては、例えば、コージェライトよりも耐熱性が高く、炭化ケイ素よりも熱衝撃に強いチタン酸アルミニウム等のセラミックスを用いることが出来る。このようなセラミックスを採用した場合には、耐熱性と対熱衝撃性が実用性あるレベルで両立出来、輻射吸熱反応装置1の運転可能温度範囲を向上させることが出来て好ましい。また、チタン酸アルミニウム等のセラミックス材の表面に、金属を主成分とする表面コーティングを施すことも可能である。この表面コーティング材としては、例えば高クロム/高ニッケル合金等の高耐熱性の合金を採用することが出来る。 The partition wall 9 constituting the gasification chamber 3 is made of a material excellent in heat resistance and thermal shock resistance, and is configured to withstand a required temperature and temperature change. As a material constituting the partition wall 9, for example, ceramics such as aluminum titanate having higher heat resistance than cordierite and more resistant to thermal shock than silicon carbide can be used. The use of such ceramics is preferable because both heat resistance and thermal shock resistance can be achieved at a practical level, and the operable temperature range of the radiation endothermic reaction apparatus 1 can be improved. Moreover, it is also possible to give the surface coating which has a metal as a main component on the surface of ceramic materials, such as aluminum titanate. As this surface coating material, for example, a high heat resistant alloy such as a high chromium / high nickel alloy can be employed.
 ガス化室3内のガス化空間10の容積及び形状は、所要のガス化処理量に応じて適宜設定することが可能であるが、ガス化空間10はガス化の対象である第一のガス化物5を適宜量存在させることが出来る大きさ及び形状の空間に設定することが必要である。 The volume and shape of the gasification space 10 in the gasification chamber 3 can be appropriately set according to the required gasification processing amount, but the gasification space 10 is the first gas to be gasified. It is necessary to set the size and shape of a space where an appropriate amount of the chemical compound 5 can be present.
 ガス化室3内の表面積は、所要のガス化処理量に応じて適宜設定できるが、例えば、無灰乾燥バイオマスを第一のガス化物5として、その供給量を1kg/h、ガス化室3内における隔壁9の壁温を800℃とする場合、ガス化室3内の表面積を少なくとも0.008m2以上とし、壁温を1000℃とする場合には表面積を少なくとも0.004m2以上にすることが好ましい。 The surface area in the gasification chamber 3 can be appropriately set according to the required gasification processing amount. For example, ashless dry biomass is used as the first gasification product 5 and the supply amount is 1 kg / h. When the wall temperature of the partition wall 9 is 800 ° C., the surface area in the gasification chamber 3 is at least 0.008 m 2 or more, and when the wall temperature is 1000 ° C., the surface area is at least 0.004 m 2 or more. It is preferable.
 ガス化対象物導入口は、第一のガス化物5をガス化室3内に導入するための第一ガス化物導入口と、第二のガス化物6をガス化室3内に導入するための第二ガス化物導入口との二つの導入口に分けて配設することが出来る。それら第一ガス化物導入口及び第二ガス化物導入口は、所要のガス化処理量に応じて、口径や形状等を適宜設定することが可能である。勿論、それら第一ガス化物導入口及び第二ガス化物導入口は、それぞれ第一のガス化物5及び第二のガス化物6を適宜量、ガス化室3内に導入することができるものであればよく、それ以外特に限定されないが、ガス化処理能力を向上すべく、それぞれの配設位置や構成を工夫することが好ましい。 The gasification object introduction port is used for introducing the first gasification product 5 into the gasification chamber 3 and the first gasification product introduction port for introducing the second gasification product 6 into the gasification chamber 3. It can be divided into two inlets, the second gasification inlet and the second gasifier inlet. The first gasified inlet and the second gasified inlet can be appropriately set in diameter, shape, and the like according to the required gasification amount. Of course, the first gasified gas inlet and the second gasified gas inlet are capable of introducing appropriate amounts of the first gasified gas 5 and the second gasified gas 6 into the gasification chamber 3, respectively. Other than that, it is not particularly limited, but it is preferable to devise the respective arrangement position and configuration in order to improve the gasification capacity.
 生成ガス排出口は、所要のガス化処理量に応じて、口径や形状等を適宜設定可能である。勿論、生成ガス排出口は、ガス化室3内において生成した所要の生成ガス2をガス化室3外に排出することが出来るものであればよく、それ以外特に限定されるものではないが、ガス化処理能力を向上すべく、或いは、より一層純度を高めるべく、その構成を工夫することが好ましい。 The generated gas discharge port can be appropriately set in diameter, shape, etc. according to the required gasification amount. Of course, the generated gas discharge port is not particularly limited as long as it can discharge the required generated gas 2 generated in the gasification chamber 3 to the outside of the gasification chamber 3. It is preferable to devise the configuration in order to improve the gasification capacity or to further increase the purity.
 灰分排出手段は、所要のガス化処理量に応じてガス化室3に設定されるものであり、ガス化室3内においてガス化対象物のガス化に伴って微量ながら生じた灰分8をガス化室3の外部に排出するためのものである。灰分排出手段としては、ガス化室3内において発生した灰分8を効率よくガス化室3の外部に排出若しくは取り出すことが出来るものであればよく、それ以外特に限定されるものではない。 The ash discharge means is set in the gasification chamber 3 in accordance with the required gasification processing amount, and the ash 8 generated in a small amount due to gasification of the gasification target in the gasification chamber 3 is gasified. It is for discharging outside the chemical conversion chamber 3. The ash content discharge means is not particularly limited as long as it can efficiently discharge or take out the ash content 8 generated in the gasification chamber 3 to the outside of the gasification chamber 3.
 以上のように構成した本発明の輻射吸熱反応装置1を使用する場合には、適宜の加熱手段によってガス化室3を加熱する。
 この加熱手段としては、従来公知の多様な加熱手段を用いることが出来る。例えば、ガス化室3を、ガス化室3の外部から加熱する場合には、熱電効果を利用して加熱する電気的加熱手段、或いは、化石燃料の燃焼によって得られる熱を利用して加熱する化石燃料燃焼加熱手段、或いは、廃プラスチックや廃紙を燃焼させて得られる熱を利用して加熱する廃棄物燃焼加熱手段、或いは、バイオマス系燃料を燃焼させることで得られる熱を利用して加熱するバイオマス燃焼加熱手段等の適宜の加熱手段等から選ばれる1つ以上の加熱手段を、ガス化室3を加熱するための加熱手段として採用することが可能である。また、加熱手段は、ガス化室3の外部からの加熱のみならず、ガス化室3の内部からの加熱を行なうことが出来るように構成することも可能である。
When the radiation endothermic reaction apparatus 1 of the present invention configured as described above is used, the gasification chamber 3 is heated by an appropriate heating means.
As this heating means, various conventionally known heating means can be used. For example, when the gasification chamber 3 is heated from the outside of the gasification chamber 3, it is heated using an electric heating means that uses the thermoelectric effect or heat obtained by combustion of fossil fuel. Heating using fossil fuel combustion heating means, waste combustion heating means for heating using the heat obtained by burning waste plastic or paper, or heat obtained by burning biomass fuel One or more heating means selected from appropriate heating means such as biomass combustion heating means can be employed as the heating means for heating the gasification chamber 3. Further, the heating means can be configured not only to heat from the outside of the gasification chamber 3 but also to heat from the inside of the gasification chamber 3.
 ガス化室3内は、加熱手段によるガス化室3の加熱によって、所要の温度、好ましくは800℃以上、より好ましくは1000℃以上に保持する。この際、ガス化室3を成す隔壁9を、上記説明のように、チタン酸アルミニウム等のセラミックスや高クロム/高ニッケル合金等の高耐熱合金等で構成すれば、ガス化室3内の温度をより一層上昇できるようになり、ガス化室3内においてガス化対象物をガス化するための熱化学的な反応温度を高めることが可能になって、運転温度変動上の余裕を持たせることができ、ガス化反応温度をより自由に選択し得るようになる。 The inside of the gasification chamber 3 is maintained at a required temperature, preferably 800 ° C. or more, more preferably 1000 ° C. or more, by heating the gasification chamber 3 with a heating means. At this time, if the partition wall 9 constituting the gasification chamber 3 is made of a ceramic such as aluminum titanate or a high heat-resistant alloy such as a high chromium / high nickel alloy as described above, the temperature in the gasification chamber 3 It is possible to increase the thermochemical reaction temperature for gasifying the gasification target object in the gasification chamber 3 and to provide a margin for operating temperature fluctuations. Thus, the gasification reaction temperature can be selected more freely.
 従って、例えば、生成ガス2組成における水素の比率を高めて水素発生量を増加させる場合には、より高温下においてガス化対象物をガス化反応させることが求められるが、金属の耐熱温度限界に拘束されることなく、輻射吸熱反応装置1の運転可能温度を、より高温に設定することが可能となり、結果的に水素生成量を増加させることが出来る。 Accordingly, for example, when increasing the hydrogen generation rate by increasing the ratio of hydrogen in the composition of the product gas 2, it is required to gasify the gasification target at a higher temperature. Without being constrained, the operable temperature of the radiation endothermic reaction apparatus 1 can be set to a higher temperature, and as a result, the amount of hydrogen generation can be increased.
 ガス化室3内には、このガス化室3内を所要の温度に保持しつつ、第一のガス化物5を第一ガス化物導入口から導入する。尚、第一のガス化物5は、2cm以下程度に粗粉砕しておくことがガス化処理上好ましい。また、ガス化室3には、第一のガス化物5を効率よくガス化室3内に導入するための第一ガス化物導入手段を配設することが出来、第一のガス化物5として粗粉砕乃至微粉砕した物を採用する場合には、第一ガス化物導入手段として、例えば、スクリュフィーダを採用することが出来る。 In the gasification chamber 3, the first gasification product 5 is introduced from the first gasification material introduction port while maintaining the gasification chamber 3 at a required temperature. The first gasified product 5 is preferably coarsely pulverized to about 2 cm or less for gasification treatment. Further, the gasification chamber 3 can be provided with a first gasification material introduction means for efficiently introducing the first gasification material 5 into the gasification chamber 3. When employing a pulverized or finely pulverized product, for example, a screw feeder can be employed as the first gasified product introducing means.
 ガス化室3内には、第一ガス化物導入手段等を利用するような適宜の方法によって、第一のガス化物5を存在させると共に、ガス化室3内に第二ガス化物導入口から第二のガス化物6を導入する。この際、第二のガス化物6は、第二ガス化物導入口を通じてガス化室3内に導入する事前に、予熱して過熱水蒸気としておき、過熱水蒸気をガス化室3内に導入することで熱効率を改善出来、ガス化処理能力を著しく向上させることが出来て好ましい。 In the gasification chamber 3, the first gasification product 5 is made to exist by an appropriate method using the first gasification material introduction means and the like, and the first gasification product 3 is introduced into the gasification chamber 3 from the second gasification material inlet. A second gasified product 6 is introduced. At this time, the second gasified product 6 is preheated and introduced as superheated steam before being introduced into the gasification chamber 3 through the second gasified product inlet, and the superheated steam is introduced into the gasification chamber 3. The thermal efficiency can be improved, and the gasification capacity can be remarkably improved, which is preferable.
 本発明の輻射吸熱反応装置1においては、ガス化対象物導入口を、第一ガス化物導入口と、第二ガス化物導入口とのように、それぞれ分けて導入口を配設することが出来、これによって、ガス化室3内に導入する第一のガス化物5の導入量や第二のガス化物6の導入量をそれぞれ個別に制御することが出来る。 In the radiant endothermic reaction apparatus 1 of the present invention, the gasification object introduction port can be separately provided as the first gasification product introduction port and the second gasification product introduction port. Thereby, the introduction amount of the first gasification product 5 and the introduction amount of the second gasification product 6 introduced into the gasification chamber 3 can be individually controlled.
 第二のガス化物6が導入されたガス化室3内は、過熱水蒸気雰囲気となる。また、第一のガス化物5をガス化室3内に導入する際には、酸素や空気が混入しないようにすることが好ましく、例えば、第一のガス化物5を第一ガス化物導入口からガス化室3内に導入する際に、窒素ガスや炭酸ガス等の不活性ガスをフィードしてもよい。このようにして、ガス化室3内は、過熱水蒸気で満たされると共に、ガス化室3内には酸素或いは空気を積極的に導入せず、寧ろ酸素や空気をガス化室内に入り込まないようにすることで、ガス化室3内を無酸素乃至低酸素状態とする。炭酸ガスをフィードガスとして用いる場合には、これを第三のガス化物とみなすことが出来る。 The inside of the gasification chamber 3 into which the second gasified product 6 has been introduced is an overheated steam atmosphere. Further, when the first gasified product 5 is introduced into the gasification chamber 3, it is preferable not to mix oxygen and air. For example, the first gasified product 5 is introduced from the first gasified product inlet. When introducing the gasification chamber 3, an inert gas such as nitrogen gas or carbon dioxide gas may be fed. In this way, the gasification chamber 3 is filled with superheated steam, and oxygen or air is not actively introduced into the gasification chamber 3, but rather oxygen and air do not enter the gasification chamber. As a result, the gasification chamber 3 is brought into an oxygen-free or low-oxygen state. When carbon dioxide is used as the feed gas, this can be regarded as the third gasified product.
 ガス化室3が、適宜の過熱手段によって加熱されることによって、ガス化室3内側に存在する固体の表面、即ち、ガス化室3を構成する隔壁9の表面からは、ガス化室3内に向かって輻射エネルギー4が放出される。従って、ガス化室3内に導入された第一のガス化物5は、ガス化室3内の過熱水蒸気雰囲気下に存在して所要の温度、好ましくは800℃以上に加熱されつつ、ガス化室3内に放出された輻射エネルギー4を受ける。過熱水蒸気下において輻射エネルギー4を受けた第一のガス化物5は、第二のガス化物6である過熱水蒸気と熱化学的に吸熱反応して所要の生成ガスに変化する。 When the gasification chamber 3 is heated by a suitable superheating means, the solid surface existing inside the gasification chamber 3, that is, from the surface of the partition wall 9 constituting the gasification chamber 3, Radiant energy 4 is emitted toward the. Therefore, the first gasified product 5 introduced into the gasification chamber 3 exists in the superheated steam atmosphere in the gasification chamber 3 and is heated to a required temperature, preferably 800 ° C. or higher, while being gasified chamber 3. 3 receives the radiant energy 4 released in the interior. The first gasified product 5 that has received the radiant energy 4 under superheated steam undergoes a thermochemical endothermic reaction with the superheated steam that is the second gasified product 6 and changes to the required product gas.
 この吸熱反応では、導入される第一のガス化物5の性状によって、第二のガス化物6としての水蒸気の必要量が異なる。例えば、第一のガス化物5を一般木質系とする場合には、下添字を原子数とする略式分子式をC1.320.9と表現すると、この吸熱反応に必要な最少の第二のガス化物6である水蒸気の量は、0.4H2Oであり、実用運転では3 H2O以上に設定することが好ましい。 In this endothermic reaction, the required amount of water vapor as the second gasified product 6 varies depending on the properties of the first gasified product 5 to be introduced. For example, when the first gasified product 5 is a general wood system, the minimum second gas necessary for this endothermic reaction can be expressed by expressing the abbreviated molecular formula with the subscript as the number of atoms as C 1.3 H 2 O 0.9. The amount of water vapor as the compound 6 is 0.4H 2 O, and is preferably set to 3 H 2 O or more in practical operation.
 しかしながら、ガス化室3内に対する過剰な水分供給は、熱効率を低下させるので、第一のガス化物5に対する第二のガス化物6の重量比は0.6以上、好ましくは2以上にする。第一のガス化物5に対する第二のガス化物6のガス化室3内への導入量を、対バイオマスモル比を3とした場合の典型的な吸熱反応は、次の化学式で表される。
1.30.9(s)+3HO(g)=q(g)+qCO(g)+q
CH(g)+q(g)+qCO(g)+qO(g)-92kJ
However, since excessive moisture supply into the gasification chamber 3 reduces thermal efficiency, the weight ratio of the second gasification product 6 to the first gasification product 5 is 0.6 or more, preferably 2 or more. A typical endothermic reaction when the amount of the second gasified product 6 introduced into the gasification chamber 3 with respect to the first gasified product 5 is 3 as the biomass molar ratio is represented by the following chemical formula.
C 1.3 H 2 O 0.9 (s) + 3H 2 O (g) = q 1 H 2 (g) + q 2 CO (g) + q 3
CH 4 (g) + q 4 C 2 H 4 (g) + q 5 CO 2 (g) + q 6 H 2 O (g) −92 kJ
 上記化学式に表されるように、その生成ガス2は、水素、一酸化炭素、メタン、エチレン、二酸化炭素、水等を主成分とする組成となる。上記化学式の右辺におけるq、q、q、q、q、qは、それぞれ対応する分子の分子数を表す適当な実数係数である。 As represented by the above chemical formula, the product gas 2 has a composition mainly composed of hydrogen, carbon monoxide, methane, ethylene, carbon dioxide, water and the like. Q 1 , q 2 , q 3 , q 4 , q 5 , and q 6 on the right side of the above chemical formula are appropriate real coefficients representing the number of molecules of the corresponding molecule, respectively.
 また、上記化学式に表されるように、この吸熱反応においては、乾燥無灰バイオマス1kgに対し、約700kcal/kg-Bioの反応熱を与える必要があり、適宜の加熱手段を利用することによってこの吸熱反応に与えた熱エネルギーは、水素、一酸化炭素、メタン等を主成分とする生成ガス2に蓄えられる。 Further, as expressed in the chemical formula above, in this endothermic reaction, it is necessary to give about 700 kcal / kg-Bio reaction heat to 1 kg of dry ashless biomass. The thermal energy given to the endothermic reaction is stored in the product gas 2 mainly composed of hydrogen, carbon monoxide, methane and the like.
 例えば、ガス化室3の内壁から900℃の輻射熱を受けるものとすると、1kg/hのバイオマスのガス化には、ガス化室3の内壁の表面積を0.008m2以上、好ましくは0.01m2以上とすることでガス化反応を成立させる。本吸熱反応によって、液体燃料等の化学合成原料として用いる生成ガス2を得ることを目的とする場合には、ガス化室3内の温度は高い方が有利で、ガス化室3内壁の温度を1100℃とした場合には、バイオマス1kg/hに対してガス化室3内壁の表面積は0.004m2以上、好ましくは0.005m2以上とすることが出来る。 For example, assuming that 900 ° C. radiant heat is received from the inner wall of the gasification chamber 3, the surface area of the inner wall of the gasification chamber 3 is 0.008 m 2 or more, preferably 0.01 m for gasification of 1 kg / h biomass. The gasification reaction is established by setting it to 2 or more. When it is intended to obtain the product gas 2 used as a chemical synthesis raw material such as liquid fuel by this endothermic reaction, it is advantageous that the temperature in the gasification chamber 3 is higher. in case of the 1100 ° C., the surface area of the gasification chamber 3 the inner wall relative to the biomass 1 kg / h is 0.004 m 2 or more, preferably can be 0.005 m 2 or more.
 ガス化室3内において生成した生成ガス2は、生成ガス排出口を通じて、ガス化室3外に排出される。水素や一酸化炭素、メタン等を主成分とする生成ガス2は、それら水素、一酸化炭素、メタン等のガス組成やそれらの構成比を、生成ガス2の用途に応じて、ガス化室3内部の温度や第一のガス化物5と第二のガス化物6との重質比、或いは、第一のガス化物5の供給量やその含水率、並びに、第一のガス化物5の粉砕度等を制御することによって調整することが出来る。 The generated gas 2 generated in the gasification chamber 3 is discharged out of the gasification chamber 3 through the generated gas discharge port. The product gas 2 mainly composed of hydrogen, carbon monoxide, methane, and the like has gas compositions such as hydrogen, carbon monoxide, methane, etc. and their composition ratios according to the use of the product gas 2, and the gasification chamber 3. The internal temperature, the heavy ratio between the first gasified product 5 and the second gasified product 6, or the supply amount and the water content of the first gasified product 5, and the pulverization degree of the first gasified product 5 It can adjust by controlling etc.
 生成ガス排出口の下流には、生成ガス2中に微量ながらも含まれる灰やすす等の不純物を除去するためのサイクロン等を連結してもよい。生成ガス2が担持する熱エネルギーを熱源として過熱水蒸気を生成する廃熱ボイラを連結して廃熱利用することによって熱効率を改善することも出来る。或いは、生成ガス2に混在する余剰水分を除去するための水スプレ・スクラバを連結して、生成ガス2をこれに通過させて余剰水分を除去してもよい。 A cyclone or the like for removing impurities such as ash and soot contained in the product gas 2 in a small amount may be connected downstream of the product gas discharge port. Thermal efficiency can also be improved by connecting waste heat boilers that generate superheated steam using the heat energy carried by the product gas 2 as a heat source and utilizing the waste heat. Alternatively, a water spray scrubber for removing excess water mixed in the product gas 2 may be connected, and the product gas 2 may be passed therethrough to remove excess moisture.
 次に、本発明の輻射吸熱反応装置101の具体的な一実施例を図2を用いて説明する。尚、上記実施形態において説明した詳細については省略して説明するものとする。図2は、実施例1の輻射吸熱反応装置101の構成を示す概念図である。また、本実施例におけるガス化対象物である第一のガス化物105は、有機化合物を主成分とするものであり、第二のガス化物106は、水を主成分とするものである。 Next, a specific embodiment of the radiation endothermic reaction apparatus 101 of the present invention will be described with reference to FIG. Note that the details described in the above embodiment are omitted. FIG. 2 is a conceptual diagram illustrating a configuration of the radiation endothermic reaction device 101 of the first embodiment. In addition, the first gasified product 105, which is a gasification target in the present embodiment, has an organic compound as a main component, and the second gasified product 106 has water as a main component.
 本実施例における輻射吸熱反応装置101は、図2に示すように、内外の熱の出入りを遮断するための断熱室111と、この断熱室111内に配設されるガス化室103と、このガス化室103内に第一のガス化物105を導入するための第一ガス化物導入手段112と、ガス化室103内に第二のガス化物106を導入するための第二ガス化物導入手段113とを備える。ガス化室103内の適当な高さ位置には、上下に連通した複数の貫通穴114を有しガス化室103内を上下に画成する多穴体115が配設される。またガス化室103には、ガス化室103内に生じた灰分108を外部に排出するための灰分排出手段116と、ガス化室103内において生成した生成ガス102を外部に排出するための生成ガス排出手段117とを備える。 As shown in FIG. 2, the radiation endothermic reaction apparatus 101 in the present embodiment includes a heat insulating chamber 111 for blocking heat flow inside and outside, a gasification chamber 103 disposed in the heat insulating chamber 111, First gasified substance introducing means 112 for introducing the first gasified substance 105 into the gasified chamber 103 and second gasified substance introducing means 113 for introducing the second gasified substance 106 into the gasified chamber 103. With. At an appropriate height position in the gasification chamber 103, a multi-hole body 115 having a plurality of through holes 114 communicating vertically is defined to vertically define the gasification chamber 103. Further, the gasification chamber 103 includes an ash content discharging means 116 for discharging the ash 108 generated in the gasification chamber 103 to the outside, and a generation for discharging the generated gas 102 generated in the gasification chamber 103 to the outside. A gas discharge means 117.
 断熱室111は、その内外の熱の出入りを遮断するためのものであり、特に断熱室111の内側を高温にして所要の温度、好ましくは800℃以上に保持することが出来るように構成する。断熱室111は、断熱室111内に配設されるガス化室103を囲繞することが出来るものであれば従来公知の断熱材を利用して構成することが出来、形状や大きさ等は適宜設定することが可能である。ガス化室103を加熱するための加熱手段の形態に応じて、図2に示すように、断熱室111の内面とガス化室103の外面との間に間隙を持たせてもよい。
 特に、加熱手段として高温ガスを、ガス化室103の外面に供給してガス化室103をその外部から加熱する方式の高温ガス利用系の加熱手段を採用する場合には、断熱室111とガス化室103との間に間隙を持たせるように構成することが望ましい。
The heat insulation chamber 111 is for blocking the heat flow inside and outside, and is particularly configured so that the inside of the heat insulation chamber 111 can be kept at a required temperature, preferably 800 ° C. or higher, at a high temperature. As long as the heat insulation chamber 111 can surround the gasification chamber 103 disposed in the heat insulation chamber 111, it can be configured using a conventionally known heat insulation material, and the shape, size, etc. are appropriately determined. It is possible to set. Depending on the form of the heating means for heating the gasification chamber 103, a gap may be provided between the inner surface of the heat insulation chamber 111 and the outer surface of the gasification chamber 103 as shown in FIG.
In particular, in the case of employing a high-temperature gas utilization type heating means in which a high-temperature gas is supplied to the outer surface of the gasification chamber 103 as a heating means and the gasification chamber 103 is heated from the outside, the heat insulating chamber 111 and the gas It is desirable to provide a gap with the conversion chamber 103.
 断熱室111には、第一ガス化物導入手段112や第二ガス化物導入手段113、生成ガス排出手段117或いは灰分排出手段116を断熱室111の外部に繋げるための内外に連通した連通口122,131,133,135を、必要に応じてそれぞれ第一ガス化物導入手段112、第二ガス化物導入手段113、生成ガス排出手段117、灰分排出手段116等に密接させて熱が洩れないように形成する。 The heat insulation chamber 111 has a communication port 122 communicating with the inside and outside for connecting the first gasified material introduction means 112, the second gasification material introduction means 113, the product gas discharge means 117 or the ash content discharge means 116 to the outside of the heat insulation chamber 111, If necessary, 131, 133, and 135 are formed in close contact with the first gasified substance introducing means 112, the second gasified substance introducing means 113, the product gas discharging means 117, the ash content discharging means 116, and the like so as not to leak heat. To do.
 図示しないが、ガス化室103を加熱するための加熱手段によっては、必要に応じて断熱室111に、その内外に連通した連通口を適宜量形成し、外部から該断熱室111内に熱107を供給したり、或いは排出したりすることが出来るように構成してもよい。 Although not shown, depending on the heating means for heating the gasification chamber 103, an appropriate amount of communication ports communicating with the inside and outside of the heat insulation chamber 111 may be formed as necessary, and heat 107 May be configured to be supplied or discharged.
 ガス化室103は、その外部と隔壁109で隔絶され、その内部に所定の容積及び表面積のガス化空間110を有し、ガス化室103を構成する隔壁109の外面は断熱室111の壁面によって囲繞される。このガス化室103には、外部からガス化室103内に第一のガス化物105を導入するための第一ガス化物導入口118と、外部からガス化室103内に第二のガス化物106を導入するための第二ガス化物導入口119とが形成され、それぞれ第一ガス化物導入手段112、第二ガス化物導入手段113に連結され、第一のガス化物105と第二のガス化物106とを含むガス化対象物を、ガス化室103内に導入することが出来るように構成される。 The gasification chamber 103 is isolated from the outside by a partition wall 109, and has a gasification space 110 having a predetermined volume and surface area inside. The outer surface of the partition wall 109 constituting the gasification chamber 103 is defined by the wall surface of the heat insulation chamber 111. It is go. The gasification chamber 103 includes a first gasification inlet 118 for introducing the first gasification product 105 into the gasification chamber 103 from the outside, and a second gasification product 106 into the gasification chamber 103 from the outside. The second gasified product inlet 119 is formed, and is connected to the first gasified product introducing unit 112 and the second gasified product introducing unit 113, respectively, and the first gasified product 105 and the second gasified product 106 are connected. The gasification object including the gas can be introduced into the gasification chamber 103.
 第一ガス化物導入口118は、ガス化室103の上部に形成され、第一ガス化物導入口118を通じて外部からガス化室103内に導入される第一のガス化物105が、ガス化室103内において落下し、その落下過程においてガス化することが出来るように構成される。 The first gasified product inlet 118 is formed in the upper part of the gasification chamber 103, and the first gasified product 105 introduced into the gasification chamber 103 from the outside through the first gasified product inlet 118 is formed in the gasification chamber 103. It is configured so that it can fall inside and be gasified in the fall process.
 第二ガス化物導入口119は、ガス化室103の下部に形成され、第二ガス化物導入口119を通じて外部からガス化室103内に導入される第二のガス化物106が、ガス化室103内において上昇流として導入することが出来るように構成される。 The second gasified product inlet 119 is formed in the lower part of the gasification chamber 103, and the second gasified product 106 introduced into the gasification chamber 103 from the outside through the second gasified product inlet 119 is connected to the gasification chamber 103. It is configured so that it can be introduced as an upward flow.
 また、ガス化室103には、その内部において生成した生成ガス102をガス化室103から排出するための生成ガス排出口120と、ガス化室103内においてガス化対象物のガス化に伴って微量ながら生じた灰分108を排出するための灰分排出口121とを有し、それぞれ生成ガス排出手段117、灰分排出手段116に連結され、ガス化室103内において生成した生成ガス102や灰分108を外部に排出することが出来るように構成される。 The gasification chamber 103 has a generated gas discharge port 120 for discharging the generated gas 102 generated in the gasification chamber 103 from the gasification chamber 103, and the gasification object 103 is gasified in the gasification chamber 103. And an ash discharge port 121 for discharging the generated ash 108 in a small amount, and connected to the generated gas discharge means 117 and the ash discharge means 116, respectively, to generate the generated gas 102 and the ash 108 generated in the gasification chamber 103. It is configured so that it can be discharged to the outside.
 生成ガス排出口120は、ガス化室103の側面の適当な高さ位置、好ましくは、多穴体115の配設高さ位置よりも上部位置に形成される。これに対して、灰分排出口121は、ガス化室103の底部に形成し、多穴体115よりも下側であり且つ灰分108の堆積時には自重で落下して外部に取り出すことが出来るように構成される。 The generated gas discharge port 120 is formed at an appropriate height position on the side surface of the gasification chamber 103, preferably at an upper position than the arrangement height position of the multi-hole body 115. On the other hand, the ash discharge port 121 is formed at the bottom of the gasification chamber 103 so as to be lower than the multi-hole body 115 and fall down by its own weight when the ash 108 is deposited so that it can be taken out to the outside. Composed.
 ガス化室103を成す隔壁109は、熱伝導性や耐熱性や熱衝撃性に優れた素材から成り、ガス化室103の外部から内部に熱107を伝達し易くすると共に、所要の温度や温度変化に耐え得るように構成する。ガス化室103内のガス化空間110の容積及び形状は、所要のガス化処理量に応じて適宜設定することが可能であるが、ガス化空間110はガス化の対象である第一のガス化物105を適宜量存在させることが出来る大きさ及び形状の空間に設定する。ガス化室103内の表面積は、所要のガス化処理量に応じて適宜設定することが可能である。 The partition wall 109 forming the gasification chamber 103 is made of a material having excellent thermal conductivity, heat resistance, and thermal shock, makes it easy to transfer the heat 107 from the outside to the inside of the gasification chamber 103, and at a required temperature or temperature. Configure to withstand change. The volume and shape of the gasification space 110 in the gasification chamber 103 can be appropriately set according to the required gasification processing amount, but the gasification space 110 is the first gas to be gasified. The size and shape of the space are set so that an appropriate amount of the chemical compound 105 can exist. The surface area in the gasification chamber 103 can be appropriately set according to the required gasification amount.
 ガス化室103内は、上下方向の適当な高さ位置に配設される適当な厚さの多穴体115によって上下に画成される。多穴体115は、所要の高温に耐え得る金属若しくはセラミックス製で全体として略板状をなし、その上下に貫通した多数の貫通穴114を有する。貫通穴114の大きさは、水蒸気が難なく通過でき、未ガス化状態の第一のガス化物105が通過し難い程度の直径に設定することが好ましい。多穴体115は、若干水平から傾斜させて配設してもよい。 The inside of the gasification chamber 103 is vertically defined by a multi-hole body 115 having an appropriate thickness disposed at an appropriate height position in the vertical direction. The multi-hole body 115 is made of a metal or ceramic that can withstand a required high temperature, has a substantially plate shape as a whole, and has a large number of through-holes 114 penetrating vertically. The size of the through hole 114 is preferably set to a diameter that allows water vapor to pass through without difficulty and prevents the ungasified first gasified product 105 from passing through. The multi-hole body 115 may be disposed slightly inclined from the horizontal.
 第一ガス化物導入手段112は、ガス化室103に形成される第一ガス化物導入口118に連通し、断熱室111に形成される連通口122を通して断熱室111の外部までほぼ垂直に延出した所定の内径及び長さの、耐熱素材から成るパイプ123と、この上端に出口124が連結され、ほぼ水平に延びたスクリュ125を内装して成るスクリュフィーダ126と、このスクリュフィーダ126に第一のガス化物105を供給するためのホッパ129とを備える。 The first gasified substance introduction means 112 communicates with the first gasified substance introduction port 118 formed in the gasification chamber 103 and extends substantially vertically to the outside of the heat insulation chamber 111 through the communication port 122 formed in the heat insulation chamber 111. A pipe 123 made of a heat-resistant material having a predetermined inner diameter and length, a screw feeder 126 having an outlet 124 connected to the upper end thereof, and a screw 125 extending substantially horizontally, and a first screw A hopper 129 for supplying the gasified product 105.
 このスクリュフィーダ126は、ほぼ水平方向に所定の長さ延びた円筒体127と、この円筒体127の内部に回転自在に内装される円筒体127とほぼ同等の長さを有するスクリュ125と、このスクリュ125の一端に配設され、スクリュ125を駆動するアクチュエータ128とを備える。アクチュエータ128を配設した逆側の先端部付近には、スクリュ125の回動によって送給された第一のガス化物105をスクリュフィーダ126から排出するための出口124が円筒体127に形成され、円筒体127におけるアクチュエータ128付近の上部には、ホッパ129から第一のガス化物105をスクリュフィーダ126に取り込むための入口130が形成される。勿論、ホッパ129は、この入口130に連設される。 The screw feeder 126 includes a cylindrical body 127 extending a predetermined length in a substantially horizontal direction, a screw 125 having a length substantially equal to the cylindrical body 127 rotatably mounted inside the cylindrical body 127, and And an actuator 128 that is disposed at one end of the screw 125 and drives the screw 125. An exit 124 for discharging the first gasified product 105 fed by the rotation of the screw 125 from the screw feeder 126 is formed in the cylindrical body 127 in the vicinity of the tip on the opposite side where the actuator 128 is disposed. An inlet 130 for taking the first gasified product 105 from the hopper 129 into the screw feeder 126 is formed in the upper portion of the cylindrical body 127 near the actuator 128. Of course, the hopper 129 is connected to the inlet 130.
 第二ガス化物導入手段113は、ガス化室103に形成される第二ガス化物導入口119に連通し、断熱室111に形成される連通口131を通して断熱室111の外部まで延出した所定の内径及び長さの、耐熱性及び耐水蒸気性を有する素材から成るパイプ132を備える。このパイプ132の下流には、適宜の方法によって加熱することで生成する過熱水蒸気を得るためのボイラ(図示せず)を連結して、第二のガス化物106をガス化室103に導入する事前に予め加熱して過熱水蒸気とすることが好ましい。より好ましくは、このボイラの熱源として廃熱を利用することによって熱効率を向上させるように構成する。 The second gasified substance introduction means 113 communicates with the second gasified substance introduction port 119 formed in the gasification chamber 103, and extends to the outside of the heat insulation chamber 111 through the communication port 131 formed in the heat insulation chamber 111. A pipe 132 made of a material having an inner diameter and a length and having heat resistance and water vapor resistance is provided. Downstream of the pipe 132, a boiler (not shown) for obtaining superheated steam generated by heating by an appropriate method is connected, and the second gasification product 106 is introduced into the gasification chamber 103 in advance. It is preferable to preheat to superheated steam. More preferably, the heat efficiency is improved by using waste heat as a heat source of the boiler.
 生成ガス排出手段117は、ガス化室103に形成される生成ガス排出口120に連通し、断熱室111に形成される連通口133を通して断熱室111の外部まで延出した所定の内径及び長さの、耐熱性や耐食性を有する素材から成るパイプ134を備える。このパイプ134の下流には、図示しないが、サイクロンや水噴霧器等を連結して、生成ガス102をそれらサイクロンや水噴霧器内を通過させることで、生成ガス102に微量ながらも混在する灰分108や煤、タール或いは水分を除去するようにすることが好ましい。 The generated gas discharge means 117 communicates with the generated gas discharge port 120 formed in the gasification chamber 103 and extends to the outside of the heat insulation chamber 111 through the communication port 133 formed in the heat insulation chamber 111. The pipe 134 made of a material having heat resistance and corrosion resistance is provided. Although not shown, downstream of the pipe 134 is connected to a cyclone, a water sprayer, or the like, and the product gas 102 is passed through the cyclone or the water sprayer, so that the ash 108 or the like mixed in the product gas 102 in a small amount can be obtained. It is preferable to remove soot, tar or moisture.
 灰分排出手段116は、ガス化室103に形成される灰分排出口121に連通し、断熱室111に形成される連通口135を通して断熱室111の外部まで延出した所定の内径及び長さの、耐熱性を有する素材から成るパイプ136を備える。このパイプ136の下流には、パイプ136を自在に開閉でき、パイプ136におけるガス化室103内外の連通状態を開通状態にしたり、不通状態にしたりするためのバルブ(図示せず)を配設する。 The ash discharge means 116 communicates with the ash discharge port 121 formed in the gasification chamber 103 and has a predetermined inner diameter and length extending to the outside of the heat insulation chamber 111 through the communication port 135 formed in the heat insulation chamber 111. A pipe 136 made of a heat-resistant material is provided. Downstream of the pipe 136, the pipe 136 can be freely opened and closed, and a valve (not shown) for opening or closing the communication state of the pipe 136 inside and outside the gasification chamber 103 is provided. .
 以上説明したように構成される実施例1の輻射吸熱反応装置101を運転する場合には、先ず適宜の加熱手段によって、輻射吸熱反応装置101の外部から断熱室111内における断熱室111とガス化室103との間の間隙に、熱107を供給してガス化室103を所要の温度、好ましくは800℃以上に加熱する。そして、ホッパ129に第一のガス化物105をその上部から投入し、スクリュフィーダ126を操作して適宜の速度で第一のガス化物105を、ホッパ129からスクリュフィーダ126内に取り込みつつ、その出口124に向かって送給する。ホッパ129に投入する第一のガス化物105は、予め2cm以下の小片に粗粉砕しておくことがガス化の効率上好ましい。 When operating the radiation endothermic reaction apparatus 101 of the first embodiment configured as described above, first, the heat insulation chamber 111 and the gasification in the heat insulation chamber 111 from the outside of the radiation endothermic reaction apparatus 101 by an appropriate heating means. Heat 107 is supplied to the gap between the chamber 103 and the gasification chamber 103 is heated to a required temperature, preferably 800 ° C. or higher. Then, the first gasified product 105 is introduced into the hopper 129 from above, and the screw feeder 126 is operated to take the first gasified product 105 into the screw feeder 126 from the hopper 129 at an appropriate speed. It feeds towards 124. The first gasified product 105 put into the hopper 129 is preferably coarsely pulverized into small pieces of 2 cm or less in advance in terms of gasification efficiency.
 また、本実施例の輻射吸熱反応装置101においては、第一のガス化物105の含水量に応じて、ガス化室103内に導入する第一のガス化物105の導入量を調整することで、生成ガス102組成を適正化することが好ましく、このような調整を行なうための調整手段を設けてもよい。例えば、ガス化室103に導入する第一のガス化物105の水分量が20重量%である場合には、導入量を乾燥状態の第一のガス化物105を導入するケースに比べて30%減じて導入するべく、スクリュフィーダ126による第一のガス化物105の送給量を、スクリュフィーダ126のスクリュ125の回転数等で調整して、運転時の第一のガス化物105の水分量に応じて送給量を制御するように構成する。 Further, in the radiation endothermic reaction device 101 of the present embodiment, by adjusting the introduction amount of the first gasified product 105 to be introduced into the gasification chamber 103 according to the water content of the first gasified product 105, It is preferable to optimize the composition of the product gas 102, and an adjusting means for performing such adjustment may be provided. For example, when the moisture content of the first gasification product 105 introduced into the gasification chamber 103 is 20% by weight, the introduction amount is reduced by 30% compared to the case where the dry first gasification product 105 is introduced. Therefore, the feed amount of the first gasified product 105 by the screw feeder 126 is adjusted by the number of rotations of the screw 125 of the screw feeder 126, etc., and according to the moisture content of the first gasified product 105 during operation. The feed amount is controlled.
 また、スクリュフィーダ126によって第一のガス化物105をガス化室103内に導入する際には、第一のガス化物105が貯留されているホッパ129の内部に、窒素ガス或いは炭酸ガス又は空気を併走ガス(図示せず)として送り込み、この併走ガスを第一のガス化物105と共にスクリュフィーダ126を経由してガス化室103へ供給してもよい。この併走ガスを全く併給しない場合には、スクリュフィーダ126を経由して、ガス化室103内に多量に導入された水蒸気の一部が、ホッパ129へ洩出することがある。これによって、第一のガス化物105が貯留されているホッパ129や該第一のガス化物105に結露が生じて、多量の水分が第一のガス化物105に吸収されてしまうことがある。 Further, when the first gasified product 105 is introduced into the gasification chamber 103 by the screw feeder 126, nitrogen gas, carbon dioxide gas or air is introduced into the hopper 129 in which the first gasified product 105 is stored. It may be fed as a parallel gas (not shown) and supplied to the gasification chamber 103 via the screw feeder 126 together with the first gasified product 105. When the parallel running gas is not supplied at all, a part of the water vapor introduced into the gasification chamber 103 through the screw feeder 126 may leak into the hopper 129. Thereby, dew condensation may occur in the hopper 129 storing the first gasified product 105 and the first gasified product 105, and a large amount of moisture may be absorbed by the first gasified product 105.
 第一のガス化物105に吸収された水分は、ガス化室103の内部で加熱されて蒸発し高温になるが、蒸発潜熱も含め大きな熱損失となり、ガス化処理能力を低下させる結果となる。これによる輻射吸熱反応装置101の能力低下は著しい。つまり、輻射吸熱反応装置101のガス化処理能力は、ガス化の原料である第一のガス化物105の含水量に大きく左右される。 The moisture absorbed in the first gasification product 105 is heated and evaporated inside the gasification chamber 103 to become a high temperature, but it causes a large heat loss including latent heat of vaporization, resulting in a decrease in gasification processing capability. As a result, the capability reduction of the radiation endothermic reaction apparatus 101 is remarkable. In other words, the gasification capacity of the radiant endothermic reaction device 101 greatly depends on the water content of the first gasified product 105 that is a raw material for gasification.
 この問題は、上述のように、第一のガス化物105と共に併走ガスを、スクリュフィーダ126を経由してガス化室103内に併給することで解決され、ガス化処理能力を高く維持することを可能にする。この併走ガスによる結露防止効果は、その併給量が、第一のガス化物105に対する併走ガスの重量比で、炭酸ガスの場合2~15%程度、窒素ガスの場合2~10%で効果が認められている。併走ガスとして空気を用いる場合には、生成ガス102の一部が燃焼し発熱量を低下させるので2~5%程度とする。 As described above, this problem can be solved by supplying the co-running gas together with the first gasified product 105 into the gasification chamber 103 via the screw feeder 126, and maintaining the gasification treatment capacity high. enable. This dew condensation prevention effect by the co-run gas is recognized when the co-feed amount is about 2-15% in the case of carbon dioxide and 2-10% in the case of nitrogen gas by the weight ratio of the co-run gas with respect to the first gasified product 105. It has been. When air is used as the co-run gas, a part of the product gas 102 is burned to reduce the calorific value, so that it is about 2 to 5%.
 二酸化炭素は、水素と化合させてメタノールにすることができるので、本実施例の輻射吸熱反応装置101によって得られた生成ガス102を、メタノール合成に用いる場合、第一のガス化物105と併走する併走ガスとしては、二酸化炭素を選択することが好ましく、これによって経済的にメタノール合成量を増やすことができる。 Since carbon dioxide can be combined with hydrogen to form methanol, when the product gas 102 obtained by the radiant endothermic reaction apparatus 101 of this embodiment is used for methanol synthesis, it runs alongside the first gasified product 105. As the parallel gas, carbon dioxide is preferably selected, which can increase the amount of methanol synthesized economically.
 ガス化室103内には、上述のようにしてガス化室103内に導入された第一のガス化物105の導入量に応じて、第二ガス化物導入手段113を利用し、第二ガス化物導入口119から第二のガス化物106を導入する。この際、第二のガス化物106は、予め加熱して過熱水蒸気としてガス化室103内に導入することが可能であり、熱効率を向上させることが出来る。 In the gasification chamber 103, the second gasification product 113 is used by using the second gasification product introduction means 113 according to the introduction amount of the first gasification product 105 introduced into the gasification chamber 103 as described above. The second gasified product 106 is introduced from the introduction port 119. At this time, the second gasified product 106 can be heated in advance and introduced into the gasification chamber 103 as superheated steam, and thermal efficiency can be improved.
 ガス化室103の下部から第二ガス化物導入口119を通じて、ガス化室103内に導入された第二のガス化物106は、上昇流を形成すると共に、ガス化室103内を過熱水蒸気で満たし、過熱水蒸気雰囲気にする。勿論、この過熱水蒸気は、ガス化室103内に配設された多穴体115の各貫通穴114を通じてその下部から上部へ抜けて、多穴体115によって画成された上下の空間の何れも過熱水蒸気雰囲気とする。 The second gasification product 106 introduced into the gasification chamber 103 from the lower part of the gasification chamber 103 through the second gasification product inlet 119 forms an upward flow and fills the gasification chamber 103 with superheated steam. , Make a superheated steam atmosphere. Of course, this superheated steam passes from the lower part to the upper part through each through hole 114 of the multi-hole body 115 disposed in the gasification chamber 103, so that any of the upper and lower spaces defined by the multi-hole body 115 is used. Use a superheated steam atmosphere.
 また、ガス化室103内に導入する第二のガス化物106には、二酸化炭素を適宜量混合して、過熱水蒸気と二酸化炭素とから成る混合ガスを採用してもよい。この場合には、生成ガス102中の二酸化炭素の組成比が大きくなり、二酸化炭素は水素と化合してメタノールになるので、生成ガス102をメタノール合成等に用いる場合に経済的に有利である。 Further, as the second gasified product 106 introduced into the gasification chamber 103, an appropriate amount of carbon dioxide may be mixed and a mixed gas composed of superheated steam and carbon dioxide may be employed. In this case, the composition ratio of carbon dioxide in the product gas 102 is increased, and carbon dioxide is combined with hydrogen to become methanol, which is economically advantageous when the product gas 102 is used for methanol synthesis or the like.
 ガス化室103の上部の第一ガス化物導入口118からガス化室103内に導入された第一のガス化物105は、ガス化室103中を落下する。この落下過程において、第一のガス化物105の一部は、外部からの加熱によってガス化室103の内壁や多穴体115から発せられる高温の輻射エネルギー104を受けつつ、ガス化室103を満たしている第二のガス化物106と衝接することで、熱化学的に吸熱反応を起こしてほぼ完全にガス化して生成ガス102となる。 The first gasified product 105 introduced into the gasification chamber 103 from the first gasified product inlet 118 at the upper part of the gasification chamber 103 falls in the gasification chamber 103. In this dropping process, a part of the first gasification product 105 fills the gasification chamber 103 while receiving high-temperature radiant energy 104 emitted from the inner wall of the gasification chamber 103 and the multi-hole body 115 by external heating. By contacting the second gasified product 106, the endothermic reaction is caused thermochemically, and the gas is almost completely gasified to form the product gas 102.
 その落下過程においてガス化しきれなかった未ガス化状態の第一のガス化物105は、ガス化室103内に配設される多穴体115上に保留される。この多穴体115上に保留された第一のガス化物105は、長秒時間でガス化する。これは、微粉状態の第一のガス化物105が、浮遊状態で過熱水蒸気と反応して瞬時にガス化するのに比べて不利なようであるが、実際には、多穴体115上に保留された第一のガス化物105から得られる生成ガス102組成は、高い水素濃度となる上、原料とする第一のガス化物105に微粉砕が要求されないことから原料の適用範囲が拡がり、且つ粉砕動力コストも軽減されるので効果的である。 The first gasified product 105 in an ungasified state that could not be gasified during the dropping process is retained on the multi-hole body 115 disposed in the gasification chamber 103. The first gasified product 105 retained on the multi-hole body 115 is gasified in a long time. This seems to be disadvantageous compared to the fact that the first gasified product 105 in a fine powder state reacts with superheated steam in a floating state and instantaneously gasifies, but in practice, it is retained on the multi-hole body 115. The composition of the product gas 102 obtained from the first gasified product 105 thus obtained has a high hydrogen concentration, and the first gasified product 105 used as a raw material does not require fine pulverization, so that the application range of the raw material is expanded and pulverized. It is effective because power costs are reduced.
 こうしてガス化室103内において生成した生成ガス102は、水素、一酸化炭素、メタン、エチレン、二酸化炭素、水を主成分とするものであり、ガス化室103に形成された生成ガス排出口120及び生成ガス排出手段117を通じて外部に排出される。 The product gas 102 thus generated in the gasification chamber 103 is mainly composed of hydrogen, carbon monoxide, methane, ethylene, carbon dioxide, and water, and the product gas outlet 120 formed in the gasification chamber 103. And it is discharged outside through the product gas discharge means 117.
 本実施例の輻射吸熱反応装置101は、化石燃料並の高温燃焼を可能にする燃料ガスを、バイオマスや有機系廃棄物を原料として生成させる技術であると同時に、液体燃料等を合成するための化学合成原料にも適用し得るものである。 The radiation endothermic reactor 101 of the present embodiment is a technique for generating fuel gas that enables high-temperature combustion comparable to fossil fuels using biomass or organic waste as a raw material, and also for synthesizing liquid fuel and the like. It can also be applied to chemically synthesized raw materials.
 この化学合成原料として適用するための生成ガス102を得る場合には、生成ガス102組成中の水素と一酸化炭素の組成比が重要となる。例えば、生成ガス102を用いてメタノールを合成する場合には、水素と一酸化炭素の該ガス組成に占める割合を高めると共に、水素/一酸化炭素のモル比を凡そ2にすることが望ましく、このような適正な組成比の水素及び一酸化炭素を、輻射吸熱反応装置101によって得るには、次のような操作で達成することが出来る。 When obtaining the product gas 102 to be applied as this chemical synthesis raw material, the composition ratio of hydrogen and carbon monoxide in the composition of the product gas 102 is important. For example, when synthesizing methanol using the product gas 102, it is desirable to increase the proportion of hydrogen and carbon monoxide in the gas composition and to make the hydrogen / carbon monoxide molar ratio approximately 2, In order to obtain hydrogen and carbon monoxide having such an appropriate composition ratio by the radiation endothermic reaction apparatus 101, the following operation can be used.
 水素の組成比を増やす場合には、ガス化室103内の温度を高温に保持し、ガス化室103内を浮遊してガス化する粒径を小さくした粉状の第一のガス化物105の導入量を少なめにすると共に、多穴体115上において長秒時間でガス化する10mm乃至20mmの粗片状の第一のガス化物105の導入量を多めにしつつ、これら第一のガス化物105の導入量に対する第二のガス化物106の導入量を多めにする。 When increasing the composition ratio of hydrogen, the temperature of the gasification chamber 103 is maintained at a high temperature, and the powdery first gasified product 105 in which the particle size to be gasified by floating in the gasification chamber 103 is reduced is reduced. While reducing the introduction amount, and increasing the introduction amount of the first gasified product 105 in the form of a coarse piece of 10 mm to 20 mm that is gasified in a long time on the multi-hole body 115, the first gasified product 105 The introduction amount of the second gasified product 106 is increased with respect to the introduction amount.
 一酸化炭素の組成比を増やす場合には、ガス化室103内の温度を800℃程度の低温に保持し、第一のガス化物105の粒径を大径化すると共に、第一のガス化物105の導入量を増量しつつ、第一のガス化物105のガス化室103内における滞留時間の短縮化を図る。 When increasing the composition ratio of carbon monoxide, the temperature in the gasification chamber 103 is maintained at a low temperature of about 800 ° C., the particle size of the first gasified product 105 is increased, and the first gasified product is increased. While increasing the introduction amount of 105, the residence time of the first gasification product 105 in the gasification chamber 103 is shortened.
 本実施例の輻射吸熱反応装置101における、微粒状の第一のガス化物105が、第二のガス化物106中を浮遊しながらガス化する浮遊ガス化反応では、その粒径が小さい程ガス化し易く、粒径が大きくなる程ガス化反応が進み難くなる。浮遊しながらガス化する微粒状の第一のガス化物105の浮遊ガス化反応が1秒以下で完結するのに対して、多穴体115上における粗片状の第一のガス化物105のガス化反応は、長秒時間を要するものの、多穴体115上に載置した状態でガス化させることによって、浮遊ガス化以上のガス化反応を生じせることが出来る。 In the floating gasification reaction in which the fine gasified first gasified product 105 is gasified while floating in the second gasified product 106 in the radiation endothermic reaction apparatus 101 of the present embodiment, the smaller the particle size, the more gasification occurs. The gasification reaction becomes difficult to proceed as the particle size increases. While the floating gasification reaction of the fine granular first gasified product 105 that gasifies while floating is completed in 1 second or less, the gas of the coarse gas-like first gasified product 105 on the multi-hole body 115 is obtained. Although the gasification reaction takes a long time, gasification more than floating gasification can be caused by gasification in a state of being placed on the multi-hole body 115.
 次に、本発明の輻射吸熱反応装置201の別の実施例を図3を用いて説明する。上記実施形態及び実施例1において説明した詳細については説明を省略する。図3は、実施例2の輻射吸熱反応装置201の構成を示す概念図である。本実施例におけるガス化対象物である第一のガス化物205は、有機化合物を主成分とするものであり、第二のガス化物206は、水を主成分とするものである。 Next, another embodiment of the radiation endothermic reaction device 201 of the present invention will be described with reference to FIG. Description of the details described in the embodiment and Example 1 is omitted. FIG. 3 is a conceptual diagram showing the configuration of the radiation endothermic reaction device 201 of the second embodiment. The first gasified product 205, which is a gasification target in this embodiment, has an organic compound as a main component, and the second gasified product 206 has water as a main component.
 本実施例における輻射吸熱反応装置201は、その外部における適宜の高温ガス発生装置(図示せず)によって生成し十分に大きな熱エネルギーを担持して成る所要の温度の高温ガス207を加熱手段として、該輻射吸熱反応装置201内に導入し、これを熱源として利用することで、原料であるガス化対象物のガス化を行なうものである。 The radiation endothermic reactor 201 in the present embodiment uses a high-temperature gas 207 having a required temperature generated by an appropriate high-temperature gas generator (not shown) outside the reactor and carrying sufficiently large heat energy as a heating means. By introducing it into the radiant endothermic reaction apparatus 201 and using it as a heat source, the gasification target as a raw material is gasified.
 図3に示すように、輻射吸熱反応装置201は、内外の熱の出入りを遮断するための断熱室211と、この断熱室211内に配設されるガス化室203とを備える。このガス化室203は、上流側の第一のガス化室203aと、下流側の第二のガス化室203bとから成り、これらの第一のガス化室203aと第二のガス化室203bとが互いに連通して成る。 As shown in FIG. 3, the radiant endothermic reaction device 201 includes a heat insulating chamber 211 for shutting in and out heat inside and outside, and a gasification chamber 203 disposed in the heat insulating chamber 211. The gasification chamber 203 includes a first gasification chamber 203a on the upstream side and a second gasification chamber 203b on the downstream side, and these first gasification chamber 203a and second gasification chamber 203b. And communicate with each other.
 第一のガス化室203aは、第一のガス化物205を導入するための第一ガス化物導入手段212と、第二のガス化物206を導入するための第二ガス化物導入手段213とを備える。第一のガス化室203a内の適当な高さ位置には、上下に連通した複数の貫通穴214を有し第一のガス化室203a内を上下に画成する多穴体215が配設される。また第一のガス化室203aには、第一のガス化室203a内に生じた灰分208を外部に排出するための灰分排出手段216と、第一のガス化室203a内において生成した生成ガス202を第一のガス化室203aの外部に排出すると共に、生成ガス202を第二のガス化室203bに送給するための生成ガス送出口237とを備える。 The first gasification chamber 203a includes a first gasified product introducing unit 212 for introducing the first gasified product 205 and a second gasified product introducing unit 213 for introducing the second gasified product 206. . A multi-hole body 215 having a plurality of through holes 214 communicating vertically is defined at an appropriate height position in the first gasification chamber 203a and vertically defines the inside of the first gasification chamber 203a. Is done. In the first gasification chamber 203a, ash content discharging means 216 for discharging the ash 208 generated in the first gasification chamber 203a to the outside, and the generated gas generated in the first gasification chamber 203a are provided. 202 is discharged to the outside of the first gasification chamber 203a, and a product gas delivery port 237 for feeding the product gas 202 to the second gasification chamber 203b is provided.
 第二のガス化室203bは、生成ガス202を導入するための生成ガス導入口238と、高純度化した生成ガス202を外部に排出するための生成ガス排出口220とを備える。そして、第一のガス化室203aの生成ガス送出口237には、第二のガス化室203bの生成ガス導入口238が連結され、第一のガス化室203aと第二のガス化室203bとが互いに連通するように構成される。 The second gasification chamber 203b includes a product gas introduction port 238 for introducing the product gas 202 and a product gas discharge port 220 for discharging the purified product gas 202 to the outside. The product gas inlet 238 of the second gasification chamber 203b is connected to the product gas outlet 237 of the first gasification chamber 203a, and the first gasification chamber 203a and the second gasification chamber 203b are connected. Are configured to communicate with each other.
 また、断熱室211内に配設される第一のガス化室203aと、第二のガス化室203bとの間には、この断熱室211内を第一のガス化室203a側と、第二のガス化室203b側とに仕切って、それぞれの側の輻射エネルギー204が他方の側との間で行き来することを抑制する遮蔽板239が配設される。 Between the first gasification chamber 203a and the second gasification chamber 203b disposed in the heat insulation chamber 211, the inside of the heat insulation chamber 211 is connected to the first gasification chamber 203a side, A shielding plate 239 is provided so as to partition the second gasification chamber 203b and to prevent the radiant energy 204 on each side from traveling to and from the other side.
 断熱室211は、その内外の熱の出入りを遮断するためのものであり、特に断熱室211の内側を高温にして所要の温度、好ましくは800℃以上に保持することが出来るように構成する。断熱室211は、従来公知の断熱材を利用して構成することが出来、該断熱室211内に配設される第一のガス化室203a及び第二のガス化室203bを共に囲繞することが出来るものであればよく、形状や大きさ等は適宜設定することが可能であるが、図3に示すように、断熱室211の内面と第一のガス化室203aの外面及び第二のガス化室203bの外面との間には間隙を持たせる。 The heat insulation chamber 211 is for blocking heat flow inside and outside, and is particularly configured so that the inside of the heat insulation chamber 211 can be kept at a required temperature, preferably 800 ° C. or higher, at a high temperature. The heat insulating chamber 211 can be configured using a conventionally known heat insulating material, and surrounds both the first gasification chamber 203a and the second gasification chamber 203b disposed in the heat insulating chamber 211. However, as shown in FIG. 3, as shown in FIG. 3, the inner surface of the heat insulation chamber 211, the outer surface of the first gasification chamber 203a, and the second A gap is provided between the gasification chamber 203b and the outer surface.
 断熱室211には、第一ガス化物導入手段212や第二ガス化物導入手段213、生成ガス排出口220或いは灰分排出手段216を該断熱室211の外部に繋げるための内外に連通した連通口222,231,233,235を、必要に応じてそれぞれ第一ガス化物導入手段212、第二ガス化物導入手段213、生成ガス排出口220、灰分排出手段216等に密接させて熱が洩れないように形成する。 The heat insulation chamber 211 has a communication port 222 that communicates with the inside and outside of the heat insulation chamber 211 for connecting the first gasified material introduction means 212, the second gasified material introduction means 213, the product gas discharge port 220 or the ash content discharge means 216 to the outside of the heat insulation chamber 211. , 231, 233, and 235 are brought into close contact with the first gasified material introducing means 212, the second gasified material introducing means 213, the product gas outlet 220, the ash content discharging means 216, and the like, as necessary, so that heat does not leak. Form.
 断熱室211は、断熱室211内を加熱するための高温ガス207を導入するための、断熱室211の内外に連通した高温ガス導入口240と、断熱室211内に導入して使用済となった高温ガス207を、断熱室211の外部に排出するための高温ガス排出口241とを備える。 The heat insulation chamber 211 is used after being introduced into the heat insulation chamber 211 and the high temperature gas introduction port 240 communicating with the inside and outside of the heat insulation chamber 211 for introducing the high temperature gas 207 for heating the heat insulation chamber 211. The hot gas discharge port 241 for discharging the hot gas 207 to the outside of the heat insulation chamber 211 is provided.
 ここで言う高温ガス207は、輻射吸熱反応装置201の外部において、適宜の高温ガス発生装置(図示せず)によって生成されるものであり、好ましくは800℃以上の温度を有するものである。高温ガス発生装置としては、従来公知の技術を採用することが可能であり、例えば、化石燃料或いは天然ガスを燃焼させることによって燃焼系の高温ガスを発生させる装置を用いることも可能である。或いは、廃紙や廃プラスチックや廃木材等の廃棄物を燃焼させることで、それら廃棄物由来の燃焼系の高温ガス207を得てもよい。この他、例えば、雑草や間伐材等に代表される所謂バイオマスを燃焼させることで、バイオマス由来の燃焼系の高温ガス207を得ることが出来る装置を採用してもよい。 The high-temperature gas 207 referred to here is generated by an appropriate high-temperature gas generator (not shown) outside the radiation endothermic reaction apparatus 201, and preferably has a temperature of 800 ° C. or higher. As the high-temperature gas generator, a conventionally known technique can be adopted. For example, a device that generates a high-temperature gas in a combustion system by burning fossil fuel or natural gas can be used. Alternatively, by burning waste such as waste paper, waste plastic, and waste wood, the combustion system high-temperature gas 207 derived from the waste may be obtained. In addition, for example, a so-called biomass typified by weeds, thinned wood, etc. may be burned to adopt a device that can obtain a high-temperature gas 207 of a biomass-derived combustion system.
 遮蔽板239は、断熱室211内を上流側と下流側とに仕切るものであって、上流側における輻射エネルギー204と、下流側における輻射エネルギー204とが、それぞれ互いの側に行き来することを抑制するように配設される耐熱性及び高輻射性を有する素材から成る略板状の部材である。ただし、ここで言う上流側及び下流側は、断熱室211に形成される外部から高温ガス207を断熱室211内に導入するための高温ガス導入口240から、断熱室211に形成される断熱室211内を流下して使用済となった高温ガス207を断熱室211の外部に排出するための高温ガス排出口241までの流れの向きにおける上流と下流とにほぼ一致して対応するものである。 The shielding plate 239 partitions the inside of the heat insulating chamber 211 into an upstream side and a downstream side, and suppresses the radiant energy 204 on the upstream side and the radiant energy 204 on the downstream side from going to each other side. It is a substantially plate-like member made of a material having heat resistance and high radiation properties arranged in such a manner. However, the upstream side and the downstream side referred to here are a heat insulating chamber formed in the heat insulating chamber 211 from a high temperature gas inlet 240 for introducing the high temperature gas 207 into the heat insulating chamber 211 from the outside formed in the heat insulating chamber 211. The high temperature gas 207 that has flowed down the inside of the 211 and has been used up to the outside of the heat insulation chamber 211 corresponds to the upstream and the downstream in the flow direction to the high temperature gas discharge port 241. .
 遮蔽板239の適宜の部位には、高温ガス207が上流側から下流側に向かって流下し得る流路242が形成され、高温ガス207を流下させることが出来るように構成される。遮蔽板239は、上流側に配設される第一のガス化室203aと、下流側に配設される第二のガス化室203bとの間に介在させるものであり、第二のガス化室203bを下流側から上流側に連通させるための連通口243を有する。 A flow path 242 through which the high temperature gas 207 can flow from the upstream side toward the downstream side is formed at an appropriate portion of the shielding plate 239, and the high temperature gas 207 can be made to flow down. The shielding plate 239 is interposed between the first gasification chamber 203a disposed on the upstream side and the second gasification chamber 203b disposed on the downstream side. A communication port 243 for communicating the chamber 203b from the downstream side to the upstream side is provided.
 第一のガス化室203aは、その外部と隔壁209で隔絶され、その内部に所定の容積及び表面積の一次ガス化空間210aを有し、第一のガス化室203aを構成する隔壁209の外面は断熱室211の壁面及び遮蔽板239によって囲繞される。第一のガス化室203aには、外部から第一のガス化室203a内に第一のガス化物205を導入するための第一ガス化物導入口218と、外部から第一のガス化室203a内に第二のガス化物206を導入するための第二ガス化物導入口219とが形成され、それぞれ第一ガス化物導入手段212、第二ガス化物導入手段213に連結され、第一のガス化物205と第二のガス化物206とを含むガス化対象物を、第一のガス化室203a内に導入することが出来るように構成される。 The first gasification chamber 203a is isolated from the outside by a partition wall 209, and has a primary gasification space 210a having a predetermined volume and surface area inside thereof, and the outer surface of the partition wall 209 constituting the first gasification chamber 203a. Is surrounded by the wall surface of the heat insulating chamber 211 and the shielding plate 239. In the first gasification chamber 203a, a first gasification inlet 218 for introducing the first gasification product 205 into the first gasification chamber 203a from the outside, and the first gasification chamber 203a from the outside. A second gasified product inlet 219 for introducing the second gasified product 206 is formed therein, and is connected to the first gasified product introducing unit 212 and the second gasified product introducing unit 213, respectively. A gasification object including 205 and the second gasification product 206 is configured to be introduced into the first gasification chamber 203a.
 第一ガス化物導入口218は、第一のガス化室203aの上部に形成され、第一ガス化物導入口218を通じて外部から第一のガス化室203a内に導入される第一のガス化物205が、第一のガス化室203a内において落下し、その落下過程においてガス化することが出来るように構成される。 The first gasified product inlet 218 is formed in the upper part of the first gasified chamber 203a, and the first gasified product 205 introduced from the outside into the first gasified chamber 203a through the first gasified product inlet 218. However, it falls in the 1st gasification chamber 203a, and it is comprised so that it can gasify in the fall process.
 第二ガス化物導入口219は、第一のガス化室203aの下部に形成され、第二ガス化物導入口219を通じて外部から第一のガス化室203a内に導入される第二のガス化物206が、第一のガス化室203a内において上昇流として導入することが出来るように構成される。 The second gasified product inlet 219 is formed in the lower part of the first gasified chamber 203a, and is introduced into the first gasified chamber 203a from the outside through the second gasified product inlet 219. However, it can be introduced as an upward flow in the first gasification chamber 203a.
 第一のガス化室203aには、その内部において生成した生成ガス202を第一のガス化室203aから第二のガス化室203bに送給するための生成ガス送出口237と、第一のガス化室203a内において、ガス化対象物のガス化に伴って微量ながら生じた灰分208を排出するための灰分排出口221とを有し、それぞれ第二のガス化室203b、灰分排出手段216に連結され、第一のガス化室203a内において生成した生成ガス202や灰分208を外部に送出若しくは排出することが出来るように構成される。 The first gasification chamber 203a has a generated gas outlet 237 for supplying the generated gas 202 generated therein to the second gasification chamber 203b from the first gasification chamber 203a, and a first gasification chamber 203a. In the gasification chamber 203a, the gasification chamber 203a has an ash content outlet 221 for discharging the ash content 208 generated in a small amount in association with the gasification of the gasification target, and a second gasification chamber 203b and an ash content discharge means 216, respectively. The generated gas 202 and the ash 208 generated in the first gasification chamber 203a can be sent out or discharged to the outside.
 生成ガス送出口237は、第一のガス化室203aの側面の適当な高さ位置、好ましくは、多穴体215の配設高さ位置よりも上部位置に形成される。これに対して、灰分排出口221は、第一のガス化室203aの底部に形成し、多穴体215よりも下側であり且つ灰分208の堆積時には自重で落下して外部に取り出すことが出来るように構成される。 The generated gas delivery port 237 is formed at an appropriate height position on the side surface of the first gasification chamber 203a, preferably at an upper position than the arrangement height position of the multi-hole body 215. On the other hand, the ash content discharge port 221 is formed at the bottom of the first gasification chamber 203a, is lower than the multi-hole body 215, and when the ash content 208 is deposited, it is dropped by its own weight and taken out to the outside. Configured to be able to.
 第一のガス化室203aを成す隔壁209は、熱伝導性や耐熱性や熱衝撃性に優れた素材から成り、第一のガス化室203aの外部から内部に熱を伝達し易くすると共に、所要の温度や温度変化に耐え得るように構成する。第一のガス化室203a内の一次ガス化空間210aの容積及び形状は、所要のガス化処理量に応じて適宜設定することが可能であるが、一次ガス化空間210aはガス化の対象である第一のガス化物205を適宜量存在させることが出来る大きさ及び形状の空間に設定する。第一のガス化室203a内の表面積は、所要のガス化処理量に応じて適宜設定することが可能である。 The partition wall 209 forming the first gasification chamber 203a is made of a material having excellent thermal conductivity, heat resistance, and thermal shock, and facilitates heat transfer from the outside to the inside of the first gasification chamber 203a. Configure to withstand the required temperature and temperature changes. The volume and shape of the primary gasification space 210a in the first gasification chamber 203a can be appropriately set according to the required gasification processing amount, but the primary gasification space 210a is a target for gasification. The first gasified product 205 is set to a space having a size and a shape that allow an appropriate amount of the first gasified product 205 to be present. The surface area in the first gasification chamber 203a can be appropriately set according to the required gasification amount.
 第一のガス化室203a内は、上下方向の適当な高さ位置に配設される適当な厚さの多穴体215によって上下に画成される。この多穴体215は、所要の高温に耐え得る金属若しくはセラミックス製で全体として略板状に形成され、その上下に貫通した多数の貫通穴214を有する。この貫通穴214の大きさは、水蒸気が難なく通過でき、未ガス化状態の第一のガス化物205が通過し難い程度の直径に設定する。多穴体215は、若干水平から傾斜させて配設してもよい。 The inside of the first gasification chamber 203a is vertically defined by a multi-hole body 215 having an appropriate thickness disposed at an appropriate height position in the vertical direction. The multi-hole body 215 is made of a metal or ceramic that can withstand a required high temperature, is formed in a substantially plate shape as a whole, and has a large number of through-holes 214 penetrating vertically. The size of the through-hole 214 is set to a diameter that allows water vapor to pass through without difficulty and prevents the first gasified product 205 in an ungasified state from passing through easily. The multi-hole body 215 may be disposed slightly inclined from the horizontal.
 第一ガス化物導入手段212は、第一のガス化室203aに形成される第一ガス化物導入口218に連通し、断熱室211に形成される連通口222を通して断熱室211の外部までほぼ垂直に延出した所定の内径及び長さの耐熱素材から成るパイプ223と、この上端に出口224が連結され、ほぼ水平に延びたスクリュ225を内装して成るスクリュフィーダ226と、このスクリュフィーダ226に第一のガス化物205を供給するためのホッパ229とを備える。 The first gasified substance introducing means 212 communicates with the first gasified substance introducing port 218 formed in the first gasifying chamber 203a, and is almost vertical to the outside of the heat insulating chamber 211 through the communication port 222 formed in the heat insulating chamber 211. A pipe 223 made of a heat-resistant material having a predetermined inner diameter and length, a screw feeder 226 having an outlet 224 connected to the upper end thereof, and an internally extending screw 225, and the screw feeder 226. And a hopper 229 for supplying the first gasified product 205.
 このスクリュフィーダ226は、ほぼ水平方向に所定の長さ延びた円筒体227と、この円筒体227の内部に回転自在に内装される円筒体227とほぼ同等の長さを有するスクリュ225と、このスクリュ225の一端に配設されスクリュ225を駆動するアクチュエータ228とを備える。アクチュエータ228を配設した逆側の先端部付近には、スクリュ225の回動によって送給された第一のガス化物205をスクリュフィーダ226から排出するための出口224が円筒体227に形成され、円筒体227におけるアクチュエータ228付近の上部には、ホッパ229から第一のガス化物205をスクリュフィーダ226に取り込むための入口230が形成され、この入口230にホッパ229が連設される。 The screw feeder 226 includes a cylindrical body 227 extending a predetermined length in a substantially horizontal direction, a screw 225 having a length substantially equal to the cylindrical body 227 rotatably mounted inside the cylindrical body 227, An actuator 228 that is disposed at one end of the screw 225 and drives the screw 225. An outlet 224 for discharging the first gasified product 205 fed by the rotation of the screw 225 from the screw feeder 226 is formed in the cylindrical body 227 in the vicinity of the tip on the opposite side where the actuator 228 is disposed. An inlet 230 for taking the first gasified product 205 from the hopper 229 into the screw feeder 226 is formed in an upper portion of the cylindrical body 227 near the actuator 228, and the hopper 229 is connected to the inlet 230.
 第二ガス化物導入手段213は、第一のガス化室203aに形成される第二ガス化物導入口219に連通し、断熱室211に形成される連通口231を通して断熱室211の外部まで延出した所定の内径及び長さの、耐熱性及び耐水蒸気性を有する素材から成るパイプ232を備える。このパイプ232の下流には、適宜の方法によって加熱することで生成する過熱水蒸気を得るためのボイラ(図示せず)を連結して、第二のガス化物206を第一のガス化室203aに導入する事前に予め廃熱を利用して加熱して過熱水蒸気とする。 The second gasified substance introducing means 213 communicates with the second gasified substance introducing port 219 formed in the first gasifying chamber 203a, and extends to the outside of the heat insulating chamber 211 through the communication port 231 formed in the heat insulating chamber 211. A pipe 232 made of a material having heat resistance and water vapor resistance having a predetermined inner diameter and length is provided. A boiler (not shown) for obtaining superheated steam generated by heating by an appropriate method is connected downstream of the pipe 232, and the second gasified product 206 is connected to the first gasification chamber 203a. Prior to introduction, superheated steam is obtained by heating in advance using waste heat.
 生成ガス送出口237は、第一のガス化室203aの下流側の第一のガス化室203aを構成する側壁に形成される。ここで言う下流側は、断熱室211に形成される外部から高温ガス207を該断熱室211内に導入するための高温ガス導入口240から、該断熱室211に形成される断熱室211内を流下して使用済となった高温ガス207を断熱室211の外部に排出するための高温ガス排出口241までの流れの向きにおける下流側に一致して対応するものである。 The product gas outlet 237 is formed on the side wall of the first gasification chamber 203a on the downstream side of the first gasification chamber 203a. The downstream side here refers to the inside of the heat insulation chamber 211 formed in the heat insulation chamber 211 from the high temperature gas introduction port 240 for introducing the high temperature gas 207 into the heat insulation chamber 211 from the outside formed in the heat insulation chamber 211. This corresponds to the downstream side in the flow direction to the hot gas outlet 241 for discharging the hot gas 207 that has flowed down and is used to the outside of the heat insulation chamber 211.
 灰分排出手段216は、第一のガス化室203aに形成される灰分排出口221に連通し、断熱室211に形成される連通口235を通して断熱室211の外部まで延出した所定の内径及び長さの、耐熱性を有する素材から成るパイプ236を備える。このパイプ236の下流には、パイプ236を自在に開閉でき、パイプ236における第一のガス化室203a内外の連通状態を開通状態にしたり、不通状態にしたりするためのバルブ(図示せず)を配設する。 The ash content discharge means 216 communicates with the ash content discharge port 221 formed in the first gasification chamber 203a, and extends to the outside of the heat insulation chamber 211 through the communication port 235 formed in the heat insulation chamber 211. Furthermore, a pipe 236 made of a heat-resistant material is provided. Downstream of the pipe 236, the pipe 236 can be freely opened and closed, and a valve (not shown) for opening or closing the communication state inside and outside the first gasification chamber 203a in the pipe 236 is provided. Arrange.
 第二のガス化室203bは、耐熱性及び高輻射性を有する素材から成る所定の長さ及び内径を有するパイプ材を、全体として略蛇行状に形成して成り、その内部に二次ガス化空間210bを有する。この第二のガス化室203bの大部分は、断熱室211内における下流側に配設され、遮蔽板239と断熱室211の内壁によって囲繞される。第二のガス化室203bを成すパイプ材の上流側の先端は、第一のガス化室203aの生成ガス送出口237に連結される生成ガス導入口238を成し、パイプ材の下流側の先端は、第二のガス化室203b内部においてより一層高純度化された生成ガス202を輻射吸熱反応装置201の外部に排出するための生成ガス排出口220を成す。 The second gasification chamber 203b is formed by forming a pipe material having a predetermined length and an inner diameter made of a material having heat resistance and high radiation property in a generally meandering shape, and a secondary gasification inside thereof. It has a space 210b. Most of the second gasification chamber 203 b is disposed on the downstream side in the heat insulating chamber 211, and is surrounded by the shielding plate 239 and the inner wall of the heat insulating chamber 211. The upstream end of the pipe material forming the second gasification chamber 203b forms a product gas inlet 238 connected to the product gas outlet 237 of the first gasification chamber 203a. The tip forms a product gas outlet 220 for discharging the product gas 202 that has been further purified in the second gasification chamber 203b to the outside of the radiation endothermic reactor 201.
 このように構成される第二のガス化室203bは、遮蔽板239に形成された連通口243を通して断熱室211内の上流側と下流側とに跨って配設され、生成ガス導入口238が第一のガス化室203aの生成ガス送出口237に連結され、生成ガス排出口220が断熱室211の下流側の側壁の適宜の部位に形成される連通口233に連結される。この連通口233の更に下流には、図示しないが、サイクロンや水噴霧器等を連結することが出来、生成ガス202をそれらサイクロンや水噴霧器内を通過させることで、生成ガス202に微量ながらも混在する灰分208や煤、タール或いは水分を除去することが可能である。 The second gasification chamber 203b configured as described above is disposed across the upstream side and the downstream side in the heat insulation chamber 211 through the communication port 243 formed in the shielding plate 239, and the generated gas introduction port 238 is provided. The product gas outlet 220 is connected to the product gas outlet 237 of the first gasification chamber 203 a, and the product gas outlet 220 is connected to a communication port 233 formed in an appropriate part of the downstream side wall of the heat insulation chamber 211. Although not shown, a cyclone, a water sprayer, or the like can be connected further downstream of the communication port 233. By passing the product gas 202 through the cyclone or the water sprayer, the product gas 202 is mixed in a small amount. Ashes 208, soot, tar, or moisture can be removed.
 上記実施例2の輻射吸熱反応装置201を運転する場合には、先ず適宜の高温ガス発生手段によって所要の温度の高温ガス207を生成させ、この高温ガス207を加熱手段として、断熱室211の高温ガス導入口240から高温ガス207を導入する。これによって、断熱室211内における断熱室211と第一のガス化室203a及び第二のガス化室203bそれぞれとの間の間隙に、熱を供給して、断熱室211内の間隙を800℃以上の高温に保持し、第一のガス化室203a及び第二のガス化室203bを800℃以上に加熱する。 When operating the radiant endothermic reactor 201 of the second embodiment, first, a high temperature gas 207 having a required temperature is generated by an appropriate high temperature gas generating means, and the high temperature gas 207 is used as a heating means to heat the heat insulation chamber 211 at a high temperature. Hot gas 207 is introduced from the gas inlet 240. Thus, heat is supplied to the gap between the heat insulation chamber 211 and each of the first gasification chamber 203a and the second gasification chamber 203b in the heat insulation chamber 211, and the gap in the heat insulation chamber 211 is set to 800 ° C. While maintaining the above high temperature, the first gasification chamber 203a and the second gasification chamber 203b are heated to 800 ° C. or higher.
 そして、ホッパに第一のガス化物205を投入し、スクリュフィーダ226を操作して適宜の速度で第一のガス化物205をホッパ229からスクリュフィーダ226内に取り込みつつ、その出口224に向かって送給する。ホッパ229に投入する第一のガス化物205は、予め2cm以下の小片に粗粉砕しておく。 Then, the first gasified product 205 is put into the hopper, and the screw feeder 226 is operated to take the first gasified product 205 from the hopper 229 into the screw feeder 226 and feed it toward the outlet 224. To pay. The first gasified product 205 put into the hopper 229 is coarsely pulverized into small pieces of 2 cm or less in advance.
 本実施例の輻射吸熱反応装置201では、第一のガス化物205の含水量に応じて、第一のガス化室203a内に導入する第一のガス化物205の導入量を調整することで、生成ガス202組成を適正化することが可能であり、例えば、運転時の第一のガス化物205の水分量に応じて、スクリュフィーダ226による第一のガス化物205の送給量を、スクリュフィーダ226のスクリュ225の回転数等で調整して送給量を制御するように構成する。 In the radiation endothermic reaction apparatus 201 of the present embodiment, by adjusting the introduction amount of the first gasification product 205 to be introduced into the first gasification chamber 203a according to the water content of the first gasification product 205, The composition of the product gas 202 can be optimized. For example, according to the moisture content of the first gasified product 205 at the time of operation, the supply amount of the first gasified product 205 by the screw feeder 226 is changed to the screw feeder. The feed amount is controlled by adjusting the number of rotations of the screw 225 of the H.226.
 また、スクリュフィーダ226によって第一のガス化物205を第一のガス化室203a内に導入する際には、第一のガス化物205が貯留されているホッパ229の内部に、窒素ガス或いは炭酸ガス又は空気を併走ガス(図示せず)として送り込み、併走ガスを第一のガス化物205と共にスクリュフィーダ226を経由して第一のガス化室203aへ供給してもよく、この併走ガスによれば、ホッパ229内における第一のガス化室203aからの水蒸気の洩出による結露を防止することが出来る。その結露防止効果は、その併給量が第一のガス化物205に対する併走ガスの重量比で、炭酸ガスの場合2~15%程度、窒素ガスの場合2~10%で効果が認められている。併走ガスとして空気を用いる場合には、生成ガス202の一部が燃焼し発熱量を低下させるので2~5%程度とする。 Further, when the first gasified product 205 is introduced into the first gasification chamber 203a by the screw feeder 226, nitrogen gas or carbon dioxide gas is placed inside the hopper 229 in which the first gasified product 205 is stored. Alternatively, air may be fed as a parallel gas (not shown), and the parallel gas may be supplied together with the first gasification product 205 to the first gasification chamber 203a via the screw feeder 226. According to this parallel gas, In addition, it is possible to prevent dew condensation due to leakage of water vapor from the first gasification chamber 203a in the hopper 229. The anti-condensation effect is recognized when the combined amount is the weight ratio of the co-running gas to the first gasified product 205, about 2 to 15% for carbon dioxide and 2 to 10% for nitrogen gas. When air is used as the co-run gas, a part of the product gas 202 is burned to reduce the calorific value, so that it is about 2 to 5%.
 二酸化炭素は、水素と化合させてメタノールにすることができるので、本実施例の輻射吸熱反応装置201によって得られた生成ガス202を、メタノール合成に用いる場合、第一のガス化物205と併走する併走ガスとしては、二酸化炭素を選択すれば経済的にメタノール合成量を増やすことができる。 Since carbon dioxide can be combined with hydrogen to form methanol, when the product gas 202 obtained by the radiant endothermic reaction device 201 of this embodiment is used for methanol synthesis, it runs alongside the first gasified product 205. If carbon dioxide is selected as the parallel gas, the amount of methanol synthesized can be increased economically.
 第一のガス化室203a内には、上述のようにして第一のガス化室203a内に導入された第一のガス化物205の導入量に応じて、第二ガス化物導入手段213を利用し、第二ガス化物導入口219から第二のガス化物206を導入する。この際、第二のガス化物206は、予め加熱して過熱水蒸気として第一のガス化室203a内に導入することが可能であり、これにより熱効率を向上させることが出来る。 In the first gasification chamber 203a, the second gasification product introduction means 213 is used according to the amount of the first gasification product 205 introduced into the first gasification chamber 203a as described above. Then, the second gasified product 206 is introduced from the second gasified product inlet 219. At this time, the second gasified product 206 can be preheated and introduced into the first gasification chamber 203a as superheated steam, thereby improving the thermal efficiency.
 第一のガス化室203aの下部から第二ガス化物導入口219を通じて、第一のガス化室203a内に導入された第二のガス化物206は、上昇流を形成すると共に、第一のガス化室203a内を過熱水蒸気で満たし、過熱水蒸気雰囲気にする。勿論、この過熱水蒸気は、第一のガス化室203a内に配設された多穴体215の各貫通穴214を通じてその下部から上部へ抜けて、多穴体215によって画成された上下の空間の何れも過熱水蒸気雰囲気とする。 The second gasified product 206 introduced into the first gasified chamber 203a from the lower portion of the first gasified chamber 203a through the second gasified product inlet 219 forms an upward flow and the first gas. The inside of the chemical conversion chamber 203a is filled with superheated steam to create a superheated steam atmosphere. Of course, this superheated water vapor passes through the through holes 214 of the multi-hole body 215 disposed in the first gasification chamber 203 a from the lower part to the upper part, and the upper and lower spaces defined by the multi-hole body 215. All of these are superheated steam atmospheres.
 第一のガス化室203a内に導入する第二のガス化物206には、二酸化炭素を適宜量混合して、過熱水蒸気と二酸化炭素とから成る混合ガスを採用してもよい。この場合には、生成ガス202中の二酸化炭素の組成比が大きくなり、二酸化炭素は水素と化合してメタノールになるので、生成ガス202をメタノール合成等に用いる場合に経済的に有利である。 For the second gasification product 206 introduced into the first gasification chamber 203a, an appropriate amount of carbon dioxide may be mixed and a mixed gas composed of superheated steam and carbon dioxide may be employed. In this case, the composition ratio of carbon dioxide in the product gas 202 is increased, and the carbon dioxide is combined with hydrogen to become methanol, which is economically advantageous when the product gas 202 is used for methanol synthesis or the like.
 第一のガス化室203aの上部の第一ガス化物導入口218から第一のガス化室203a内に導入された第一のガス化物205は、この第一のガス化室203a中を落下する。この落下過程において、第一のガス化物205の一部は、外部からの加熱によって第一のガス化室203aの内壁や多穴体215から発せられる高温の輻射エネルギー204を受けつつ、第一のガス化室203aを満たしている第二のガス化物206と衝接することで、熱化学的に吸熱反応を起こしてほぼ完全にガス化して生成ガスとなる。 The first gasification product 205 introduced into the first gasification chamber 203a from the first gasification product inlet 218 at the upper part of the first gasification chamber 203a falls in the first gasification chamber 203a. . In this dropping process, a part of the first gasified product 205 receives the high-temperature radiation energy 204 emitted from the inner wall of the first gasification chamber 203a and the multi-hole body 215 by heating from the outside, By contacting the second gasification product 206 filling the gasification chamber 203a, an endothermic reaction is caused thermochemically and almost completely gasified to become a product gas.
 その落下過程においてガス化しきれなかった未ガス化状態の第一のガス化物205は、第一のガス化室203a内に配設される多穴体215上に保留される。この多穴体215上に保留された第一のガス化物205は、長秒時間でガス化する。これは、微粉状態の第一のガス化物205が、浮遊状態で過熱水蒸気と反応して瞬時にガス化するのに比べて不利なようであるが、実際には、多穴体215上に保留された第一のガス化物205から得られる生成ガス202組成は、高い水素濃度となる上、原料とする第一のガス化物205に微粉砕が要求されないことから原料の適用範囲が拡がり、且つ粉砕動力コストも軽減されるので効果的である。 The first gasified product 205 in an ungasified state that could not be gasified during the dropping process is held on the multi-hole body 215 disposed in the first gasification chamber 203a. The first gasified product 205 retained on the multi-hole body 215 is gasified in a long time. This seems to be disadvantageous compared to the fact that the first gasified product 205 in a fine powder state reacts with superheated steam in a floating state and instantly gasifies, but in reality, it is retained on the multi-hole body 215. The composition of the product gas 202 obtained from the first gasified product 205 has a high hydrogen concentration and the first gasified product 205 used as a raw material does not require fine pulverization. It is effective because power costs are reduced.
 第一のガス化室203a内において生成した生成ガス202は、第一のガス化室203aに形成された生成ガス送出口237を通じて第二のガス化室203bに送給される。第二のガス化室203b内に導入された生成ガス202は、第二のガス化室203b内における二次ガス化空間210b中を蛇行しながら流下し、二次ガス化空間210b中において、生成ガス202中に微量ながらも混在していた煤やタール或いは水分等の不純物や成分が分解乃至ガス化され、より一層の高純度化が図られる。 The produced gas 202 produced in the first gasification chamber 203a is fed to the second gasification chamber 203b through the produced gas delivery port 237 formed in the first gasification chamber 203a. The product gas 202 introduced into the second gasification chamber 203b flows down while meandering in the secondary gasification space 210b in the second gasification chamber 203b, and is generated in the secondary gasification space 210b. Impurities and components such as soot, tar or moisture, which are mixed in the gas 202 in a small amount, are decomposed or gasified, and further purification is achieved.
 こうして第二のガス化室203b内において高純度化された生成ガス202は、煤やタールや水分を殆ど含まない水素、一酸化炭素、メタン、エチレン、二酸化炭素を主成分とするものとなり、第二のガス化室203bの下流端の生成ガス排出口220を通じて外部に排出される。 The product gas 202 highly purified in the second gasification chamber 203b is mainly composed of hydrogen, carbon monoxide, methane, ethylene, and carbon dioxide, which contains almost no soot, tar, or moisture. The gas is discharged to the outside through the product gas outlet 220 at the downstream end of the second gasification chamber 203b.
 この際、第一のガス化室203aにおいては、比較的高温且つ多量の熱量が要求され、第一のガス化室203aを上流側に配置すると共に、遮蔽板239で第一のガス化室203aと第二のガス化室203bとを画成したことによって熱効率を下げることなく、ガス化効率を改善することが可能となる。 At this time, the first gasification chamber 203a requires a relatively high temperature and a large amount of heat. The first gasification chamber 203a is disposed on the upstream side, and the first gasification chamber 203a is disposed by the shielding plate 239. And the gasification efficiency can be improved without lowering the thermal efficiency by defining the second gasification chamber 203b.
 本発明は特許請求の範囲の趣旨を逸脱しない範囲で種々の変更又は改変が可能である。例えば、本実施例の輻射吸熱反応装置201は、化石燃料並の高温燃焼を可能にする燃料ガスを、バイオマスや有機系廃棄物を原料として生成させる技術であると同時に、液体燃料等を合成するための化学合成原料にも適用し得る。 The present invention can be variously changed or modified without departing from the gist of the claims. For example, the radiation endothermic reaction device 201 of the present embodiment is a technique for generating fuel gas that enables high-temperature combustion comparable to fossil fuel from biomass or organic waste as a raw material, and at the same time synthesizes liquid fuel or the like. It can also be applied to chemical synthesis raw materials.
 この化学合成原料として適用するための生成ガス202を得る場合には、生成ガス202組成中の水素と一酸化炭素の組成比が重要となる。例えば、生成ガス202を用いてメタノールを合成する場合には、水素と一酸化炭素のガス組成に占める割合を高めると共に、水素/一酸化炭素のモル比を凡そ2にすることが望ましい。 When obtaining the product gas 202 to be applied as this chemical synthesis raw material, the composition ratio of hydrogen and carbon monoxide in the composition of the product gas 202 is important. For example, when synthesizing methanol using the product gas 202, it is desirable to increase the proportion of hydrogen and carbon monoxide in the gas composition and to make the hydrogen / carbon monoxide molar ratio approximately 2.
 例えば、生成ガス202中における水素の組成比を大きくする必要がある場合には、第一のガス化室203aを比較的高温にする必要があるが、遮蔽板239を配設することによって、第一のガス化室203aを比較的高温に保って水素の組成比を大きくしつつも、第二のガス化室203bを備えて生成ガス202の高純度化を図ることが可能となる。この際、第二のガス化室203bは、第一のガス化室203aよりも若干温度が低くても生成ガス202の高純度化を図ることが出来る。 For example, when it is necessary to increase the composition ratio of hydrogen in the product gas 202, the first gasification chamber 203a needs to have a relatively high temperature. It is possible to increase the purity of the product gas 202 by providing the second gasification chamber 203b while keeping the one gasification chamber 203a at a relatively high temperature to increase the composition ratio of hydrogen. At this time, the second gasification chamber 203b can increase the purity of the product gas 202 even if the temperature is slightly lower than that of the first gasification chamber 203a.
産業上の利用分野Industrial application fields
 本発明の輻射吸熱反応装置は、過熱水蒸気雰囲気下且つ積極的に酸素を導入しない無酸素乃至低酸素状況下において、原料をガス化するようにしたことによって、雑草や間伐材等の従来有用視されていなかった有機化合物をはじめとするバイオマスのみならず、廃プラスチック、廃油、廃紙、糞尿、残飯、豆腐殻や酒粕等の食品系搾り滓等に代表される広範な有機系廃棄物等の多様な有機化合物をガス化の原料、即ちガス化対象物として水素、一酸化炭素、メタン、エチレン、二酸化炭素、水等を主成分とする所要の組成の生成ガスに変換することが可能である。 The radiation endothermic reaction apparatus of the present invention is a conventional useful view of weeds, thinned wood, etc. by gasifying the raw material in an oxygen-free or low-oxygen state where oxygen is not actively introduced under superheated steam atmosphere. In addition to biomass, including organic compounds that were not used, a wide range of organic waste such as waste plastics, waste oil, waste paper, manure, leftovers, tofu husks, and squeezed foods such as sake lees It is possible to convert various organic compounds to gasification raw materials, that is, gasses to be generated into product gases of the required composition mainly composed of hydrogen, carbon monoxide, methane, ethylene, carbon dioxide, water, etc. .

Claims (22)

  1.  加熱手段によって加熱して、ガス化対象物をガス化するためのガス化室と、このガス化室内側に存在させる固体とを備え、
     上記ガス化対象物が、有機化合物を主成分とする第一のガス化物と、水を主成分とする第二のガス化物とから成り、
     上記ガス化室内に上記第一のガス化物を存在させると共に、上記加熱手段によって上記ガス化室を加熱することで、上記第二のガス化物を気相状態にして該ガス化室内を過熱水蒸気で満たし、且つ、該ガス化室内側に存在する上記固体から輻射エネルギーを該ガス化室内に放出させ、上記第一のガス化物を該ガス化室内の過熱水蒸気雰囲気下において加熱し、上記第一のガス化物と上記第二のガス化物とを熱化学的に吸熱反応させることによって、所要のガスを生成するように構成されることを特徴とする、輻射吸熱反応装置。
    It comprises a gasification chamber for gasifying a gasification object by heating with a heating means, and a solid that is present on the gasification chamber side,
    The gasification object consists of a first gasification product containing an organic compound as a main component and a second gasification product containing water as a main component,
    The first gasification product is present in the gasification chamber, and the gasification chamber is heated by the heating means, whereby the second gasification product is brought into a gas phase state and the gasification chamber is heated with superheated steam. Radiating energy from the solid that is filled and present inside the gasification chamber is released into the gasification chamber, the first gasified product is heated in an overheated steam atmosphere in the gasification chamber, and the first A radiation endothermic reaction apparatus configured to generate a required gas by thermochemically endothermically reacting a gasified product and the second gasified product.
  2.  前記加熱手段が、前記ガス化室内において燃料を燃焼させることなく適宜の熱量を得ることが出来るものであることを特徴とする、請求の範囲1に記載の輻射吸熱反応装置。 The radiation endothermic reaction apparatus according to claim 1, wherein the heating means is capable of obtaining an appropriate amount of heat without burning fuel in the gasification chamber.
  3.  前記加熱手段によるガス化室内の加熱が、輻射乃至熱伝導によるものであることを特徴とする、請求の範囲1又は2に記載の輻射吸熱反応装置。 The radiation endothermic reaction apparatus according to claim 1 or 2, wherein heating in the gasification chamber by the heating means is by radiation or heat conduction.
  4.  前記加熱手段によるガス化室の加熱が、前記ガス化室の外部から行われるものであることを特徴とする、請求の範囲1乃至3の何れかに記載の輻射吸熱反応装置。 The radiation endothermic reaction device according to any one of claims 1 to 3, wherein heating of the gasification chamber by the heating means is performed from outside the gasification chamber.
  5.  前記加熱手段が、草本類乃至木本類を燃焼させて燃焼系の高温ガスを生成する高温ガス発生装置から得られる該高温ガスであることを特徴とする、請求の範囲1乃至4の何れかに記載の輻射吸熱反応装置。 5. The high-temperature gas obtained from a high-temperature gas generator that burns grasses or woods to generate a high-temperature gas in a combustion system, wherein the heating means is the high-temperature gas. A radiation endothermic reaction apparatus described in 1.
  6.  前記ガス化室が、その室内外の熱の出入りを抑制するように構成される断熱室内に配設されることを特徴とする、請求の範囲1乃至5の何れかに記載の輻射吸熱反応装置。 The radiation endothermic reaction device according to any one of claims 1 to 5, wherein the gasification chamber is disposed in a heat insulation chamber configured to suppress heat flow in and out of the room. .
  7.  前記ガス化室の内側に存在する前記固体が、該ガス化室の内壁を構成する物質であることを特徴とする、請求の範囲1に記載の輻射吸熱反応装置。 The radiation endothermic reaction device according to claim 1, wherein the solid existing inside the gasification chamber is a substance constituting an inner wall of the gasification chamber.
  8.  前記ガス化室の内側に存在する前記固体が、該ガス化室を上下に画成する多穴体であって、該多穴体が上下に連通した複数の穴乃至孔を有することを特徴とする、請求の範囲1に記載の輻射吸熱反応装置。 The solid existing inside the gasification chamber is a multi-hole body that vertically defines the gasification chamber, and the multi-hole body has a plurality of holes or holes that communicate with each other vertically. The radiation endothermic reaction device according to claim 1.
  9.  前記ガス化室が、該ガス化室内に第一のガス化物を導入するための第一ガス化物導入手段を備えることを特徴とする、請求の範囲1乃至8の何れかに記載の輻射吸熱反応装置。 The radiation endothermic reaction according to any one of claims 1 to 8, wherein the gasification chamber includes a first gasification material introduction means for introducing a first gasification material into the gasification chamber. apparatus.
  10.  前記ガス化室が、該ガス化室内に第二のガス化物を導入するための第二ガス化物導入手段を備えることを特徴とする、請求の範囲1乃至9の何れかに記載の輻射吸熱反応装置。 The radiation endothermic reaction according to any one of claims 1 to 9, wherein the gasification chamber is provided with a second gasification product introduction means for introducing a second gasification product into the gasification chamber. apparatus.
  11.  前記第一ガス化物導入手段が、前記第一のガス化物を前記ガス化室内に導入するための第一ガス化物導入口を有し、該第一ガス化物導入口が、該ガス化室の上部に配設されることを特徴とする、請求の範囲9に記載の輻射吸熱反応装置。 The first gasified substance introduction means has a first gasified substance introduction port for introducing the first gasified substance into the gasification chamber, and the first gasified substance introduction port is an upper part of the gasification chamber. The radiation endothermic reaction apparatus according to claim 9, wherein the radiation endothermic reaction apparatus is disposed in the area.
  12.  前記第一のガス化物が、前記第一ガス化物導入口を通じて、前記ガス化室の上方から下方に向かって該ガス化室内に導入されることを特徴とする、請求の範囲11に記載の輻射吸熱反応装置。 The radiation according to claim 11, wherein the first gasified product is introduced into the gasification chamber from the upper side to the lower side of the gasification chamber through the first gasified product inlet. Endothermic reactor.
  13.  前記第二ガス化物導入手段が、前記第二のガス化物を前記ガス化室内に導入するための第二ガス化物導入口を有し、該第二ガス化物導入口が、該ガス化室の下部に配設されることを特徴とする、請求の範囲10に記載の輻射吸熱反応装置。 The second gasified substance introduction means has a second gasified substance introduction port for introducing the second gasified substance into the gasification chamber, and the second gasified substance introduction port is located at a lower portion of the gasification chamber. The radiation endothermic reaction apparatus according to claim 10, wherein the radiation endothermic reaction apparatus is disposed in the area.
  14.  前記第二のガス化物が、前記第二ガス化物導入口を通じて、前記ガス化室の下方から上方に向かって該ガス化室内に導入されることを特徴とする、請求の範囲13に記載の輻射吸熱反応装置。 The radiation according to claim 13, wherein the second gasified product is introduced into the gasification chamber from the lower side to the upper side of the gasification chamber through the second gasified product inlet. Endothermic reactor.
  15.  前記第二のガス化物が、予め所定温度に加熱され、過熱水蒸気として前記ガス化室内に導入されることを特徴とする、請求の範囲1乃至14の何れかに記載の輻射吸熱反応装置。 The radiation endothermic reaction apparatus according to any one of claims 1 to 14, wherein the second gasified product is heated to a predetermined temperature in advance and introduced into the gasification chamber as superheated steam.
  16.  前記ガス化室に導入する前記第二のガス化物の導入量が、該ガス化室に導入される前記第一のガス化物の乾燥重量に対する重量比で、0.6以上となるように制御されることを特徴とする、請求の範囲1乃至15の何れかに記載の輻射吸熱反応装置。 The amount of the second gasified product introduced into the gasification chamber is controlled so that the weight ratio with respect to the dry weight of the first gasified product introduced into the gasification chamber is 0.6 or more. The radiation endothermic reaction device according to any one of claims 1 to 15, wherein:
  17.  前記ガス化室内の温度が、800℃以上に保持されて前記吸熱反応を生じさせることを特徴とする、請求の範囲1乃至16の何れかに記載の輻射吸熱反応装置。 The radiation endothermic reaction device according to any one of claims 1 to 16, wherein a temperature in the gasification chamber is maintained at 800 ° C or higher to cause the endothermic reaction.
  18.  前記ガス化室が、該ガス化室に導入する無灰の第一ガス化物の導入量1kg/hに対して、該ガス化室内壁の温度を800℃とする場合、該ガス化室内壁の表面積が、0.008m2以上に設定され、該ガス化室内壁の温度を1000℃とする場合、該ガス化室内壁の表面積が0.004m2以上に設定されることを特徴とする、請求の範囲1乃至17の何れかに記載の輻射吸熱反応装置。 When the gasification chamber is set to 800 ° C. with respect to the introduction amount of 1 kg / h of the ashless first gasified product introduced into the gasification chamber, When the surface area is set to 0.008 m 2 or more and the temperature of the gasification chamber inner wall is set to 1000 ° C., the surface area of the gasification chamber wall is set to 0.004 m 2 or more. The radiation endothermic reactor according to any one of the ranges 1 to 17.
  19.  前記ガス化室が、上流側に配設される第一のガス化室と、この第一のガス化室の下流側に配設される第二のガス化室とから成り、これら第一のガス化室と第二のガス化室とが互いに連通していることを特徴とする、請求の範囲1乃至18の何れかに記載の輻射吸熱反応装置。 The gasification chamber is composed of a first gasification chamber disposed on the upstream side and a second gasification chamber disposed on the downstream side of the first gasification chamber. The radiation endothermic reaction device according to any one of claims 1 to 18, wherein the gasification chamber and the second gasification chamber communicate with each other.
  20.  前記第二のガス化室が、筒状をなすことを特徴とする、請求の範囲1乃至19の何れかに記載の輻射吸熱反応装置。 The radiant endothermic reactor according to any one of claims 1 to 19, wherein the second gasification chamber has a cylindrical shape.
  21.  前記ガス化対象物が、二酸化炭素を主成分とする第三のガス化物を含んで成ることを特徴とする、請求の範囲1乃至20の何れかに記載の輻射吸熱反応装置。 21. The radiation endothermic reaction apparatus according to any one of claims 1 to 20, wherein the gasification object includes a third gasification product mainly composed of carbon dioxide.
  22.  前記生成ガスが、水素、一酸化炭素、メタン、エチレンから選ばれる1つ以上の物質を主成分とすることを特徴とする、請求の範囲1乃至21の何れかに記載の輻射吸熱反応装置。 The radiation endothermic reaction apparatus according to any one of claims 1 to 21, wherein the product gas contains, as a main component, one or more substances selected from hydrogen, carbon monoxide, methane, and ethylene.
PCT/JP2008/070824 2008-11-16 2008-11-16 Radiation reactor for endothermic reaction WO2010055582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/070824 WO2010055582A1 (en) 2008-11-16 2008-11-16 Radiation reactor for endothermic reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/070824 WO2010055582A1 (en) 2008-11-16 2008-11-16 Radiation reactor for endothermic reaction

Publications (1)

Publication Number Publication Date
WO2010055582A1 true WO2010055582A1 (en) 2010-05-20

Family

ID=42169731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070824 WO2010055582A1 (en) 2008-11-16 2008-11-16 Radiation reactor for endothermic reaction

Country Status (1)

Country Link
WO (1) WO2010055582A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911180A (en) * 2012-12-29 2014-07-09 新煤化工设计院(上海)有限公司 Production method for synthesis gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036458A (en) * 2006-08-01 2008-02-21 Matsushita Electric Ind Co Ltd Apparatus for treating organic material
WO2008050727A1 (en) * 2006-10-23 2008-05-02 Nagasaki Institute Of Applied Science Biomass gasification apparatus
JP2008285557A (en) * 2007-05-16 2008-11-27 Biomass Energy Kk Radiation endothermic reaction apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036458A (en) * 2006-08-01 2008-02-21 Matsushita Electric Ind Co Ltd Apparatus for treating organic material
WO2008050727A1 (en) * 2006-10-23 2008-05-02 Nagasaki Institute Of Applied Science Biomass gasification apparatus
JP2008285557A (en) * 2007-05-16 2008-11-27 Biomass Energy Kk Radiation endothermic reaction apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911180A (en) * 2012-12-29 2014-07-09 新煤化工设计院(上海)有限公司 Production method for synthesis gas
CN103911180B (en) * 2012-12-29 2016-06-29 新煤化工设计院(上海)有限公司 A kind of method producing synthesis gas

Similar Documents

Publication Publication Date Title
Skoulou et al. Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas
Bhavanam et al. Biomass gasification processes in downdraft fixed bed reactors: a review
US8771387B2 (en) Systems and methods for solar-thermal gasification of biomass
US9663363B2 (en) Various methods and apparatuses for multi-stage synthesis gas generation
JP4986080B2 (en) Biomass gasifier
TWI494423B (en) Process and device for the production of synthesis gas from biomass
CN101191060B (en) Method and device for preparing synthetic gas from solid biomass
US20090064583A1 (en) Method And Reactor For Biomass Pyrolytic Conversion
JP5136831B2 (en) Equipment for producing hydrocarbons from biomass
WO2013158343A1 (en) Various methods and apparatuses for multi-stage synthesis gas generation
WO2009060461A2 (en) Method and apparatus for producing fuel gas from biomass
JP4227771B2 (en) Biomass gasification method
JP2004051717A (en) Biomass gasifier
JP4665021B2 (en) Biomass gasification method
WO2010055582A1 (en) Radiation reactor for endothermic reaction
JP2008285557A (en) Radiation endothermic reaction apparatus
US20230151285A1 (en) Tar free cross flow gasification system for moisture containing feed
Poskrobko et al. Gasification of waste wood biomass
Elakiya et al. Performance evaluation of groundnut shell in a downdraft gasifier
Kosov et al. Development and optimization of a two-stage gasifier for heat and power production
Huai et al. Effects of the secondary air inlet position and gasifying agents on grape branch gasification in an improved downdraft gasifier
KOOME GASIFICATION
KR101519528B1 (en) Method and device for preparing synthesis gas from biomass
NZ569678A (en) Continuous pyrolysis processing unit having screw auger heat exchanger pyrolyser
JP2013006914A (en) Method and apparatus for producing synthesis gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP