WO2010055545A1 - Variable capacitance element and manufacturing method, and capacitance setting method therefor - Google Patents

Variable capacitance element and manufacturing method, and capacitance setting method therefor Download PDF

Info

Publication number
WO2010055545A1
WO2010055545A1 PCT/JP2008/003293 JP2008003293W WO2010055545A1 WO 2010055545 A1 WO2010055545 A1 WO 2010055545A1 JP 2008003293 W JP2008003293 W JP 2008003293W WO 2010055545 A1 WO2010055545 A1 WO 2010055545A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
actuator
variable capacitance
capacitance element
substrate
Prior art date
Application number
PCT/JP2008/003293
Other languages
French (fr)
Japanese (ja)
Inventor
中里典生
藤枝信男
石橋雅義
加藤美登里
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2010537615A priority Critical patent/JP5325893B2/en
Priority to PCT/JP2008/003293 priority patent/WO2010055545A1/en
Publication of WO2010055545A1 publication Critical patent/WO2010055545A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • H01G5/18Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes due to change in inclination, e.g. by flexing, by spiral wrapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/01Details
    • H01G5/011Electrodes

Definitions

  • the present invention relates to a variable capacitance element (capacitor) that changes its capacitance by changing a distance between electrodes, a method for manufacturing such a variable capacitance element, and a control method for such a variable capacitance element.
  • variable capacitance element or a varactor whose capacitance is variable is an indispensable component for a high frequency circuit such as a variable frequency transmitter, a tuning amplifier, a phase shifter, and an impedance matching circuit.
  • a variable capacitance element for realizing variable capacitance operation in a wide band is expected. Yes.
  • variable capacitance element for example, a varactor diode which is a semiconductor element has been used, as is also known from the following Patent Documents 1 and 2, and further, in order to realize a wider bandwidth.
  • a structure combining a switch and a capacitor array has been proposed.
  • Patent Document 6 a variable capacitance element using a movable electrode formed by laminating three metal thin films is disclosed, and according to Patent Document 7, a variable gap device using a rubber plate and The manufacturing method is already known.
  • actuators for driving the movable electrodes generally, in addition to electrostatic actuators, piezoelectric actuators, electromagnetic actuators, polymer actuators, and the like are already known.
  • an actuator using a polymer material is already known from Patent Document 8 below, and such an actuator can be manufactured by a printing process. Therefore, a small and lightweight actuator can be manufactured at low cost, and practical application is expected.
  • variable capacitance element when the variable capacitance element is formed of a semiconductor element, the number of elements increases, and when the variable capacitance element is formed on the same chip, the occupied area increases. I can't. Moreover, the variable capacitance element obtained by this has a loss larger than the variable capacitance element by MEMS technology, and Q value is low.
  • an object of the present invention is to provide a novel variable capacitance element that can be manufactured at low cost by employing an organic actuator.
  • the organic actuator can be expected to be manufactured at a low cost even when the element size is increased.
  • a current is supplied to maintain an arbitrary displacement.
  • the control voltage can be lowered as compared with other voltage control type actuators, the power consumption is increased.
  • the problem in adopting such an organic actuator is solved, that is, a low-power consumption operation is possible and a highly reliable capacitance variable element and a method for manufacturing the same are provided. It is an object of the present invention to provide a capacitance setting method for such a capacitance variable element.
  • the present invention in order to achieve the above-described object, first, two opposing substrates, electrodes formed on opposing surfaces of the two opposing substrates, and one of the two opposing electrodes And a dielectric layer provided on the surface of the capacitor, and forming a capacitance with the two opposing electrodes and the dielectric layer disposed between the two electrodes.
  • a capacitive element is provided.
  • one organic actuator of the two organic actuators is formed on a surface of the other electrode of the two electrodes, and the two organic actuators
  • the other organic actuator is preferably provided adjacent to the one organic actuator between the two opposing substrates, and the other organic actuator further includes the one organic actuator. It is preferable to form so that it may surround.
  • two opposing substrates are prepared, and electrode layers are respectively formed on the opposing surfaces of the two substrates, and one of the two substrates is formed.
  • two organic actuators formed by layering organic actuator materials are formed, and on the opposing surface of the other substrate of the two substrates, on the surface of the formed electrode.
  • a dielectric layer is formed, and the two substrates are bonded together so that the dielectric layer formed on the opposite surface of the other substrate faces the electrode layer formed on the opposite surface of the one substrate.
  • variable capacitance element that manufactures a variable capacitance element having a variable capacitance formed by the two opposing electrode layers and the dielectric layer disposed therebetween.
  • one of the two organic actuators is preferably formed by a film forming method.
  • two opposing substrates, electrodes formed on opposing surfaces of the two opposing substrates, and the two opposing electrodes A dielectric layer provided on the surface of one of the electrodes, and forming a capacitance with the two opposing electrodes and the dielectric layer disposed therebetween, further comprising: And at least two organic actuators formed by layering an organic actuator material between the two opposing substrates, and a driving electrode for supplying driving power to the organic actuator.
  • a capacitance setting method for a variable capacitance element is provided in which the capacitance is variably set by setting the position of the other organic actuator after setting the actuator in a steady state and then setting the position of the one organic actuator. Is done.
  • the driving power necessary to maintain a steady state is supplied to the one organic actuator.
  • variable capacitance element having a highly reliable structure capable of low power consumption operation while adopting an organic actuator, and its According to the manufacturing method, it can manufacture easily by a printing process.
  • capacitance setting method for the variable capacitance element it is possible to drive the organic actuator in the variable capacitance element to set the capacitance variably.
  • FIGS. 1 to 4 of the accompanying drawings show the structure of a cantilever type variable capacitance element according to the first embodiment (Example 1) of the present invention. It is a perspective view which shows the whole structure of the variable capacitance element of invention, FIG. 2 is the side view. Further, FIG. 3 attached hereto is a perspective view of the variable capacitance element shown with a part cut away for easy understanding of the internal structure, and FIG. 4 is a top view of the variable capacitance element viewed from above.
  • FIG. 1 to 4 of the accompanying drawings show the structure of a cantilever type variable capacitance element according to the first embodiment (Example 1) of the present invention. It is a perspective view which shows the whole structure of the variable capacitance element of invention, FIG. 2 is the side view. Further, FIG. 3 attached hereto is a perspective view of the variable capacitance element shown with a part cut away for easy understanding of the internal structure, and FIG. 4 is a top view of the variable capacitance element viewed from above.
  • variable capacitance element includes a first substrate (main substrate) 1 and has an upper surface at a predetermined position in the longitudinal direction (horizontal direction in the drawing).
  • a plurality of electrode layers are formed. More specifically, in this example, as clearly shown in the attached FIGS. 3 and 4, five electrodes are formed from the left side of the figure, the electrode layer 2, the electrode layer 3 and the electrode layer 4, and Electrode layer 5 and electrode layer 6 are formed. Furthermore, the following members are respectively formed on the upper surfaces of these electrode layers 2, 3, 4, 5 and 6.
  • the conductive adhesive layer 13 made of a conductive adhesive is formed on the upper surface of the electrode 2, and the upper surfaces of the electrode layers 3 and 4 are made of an organic material that will be described below across the two electrode layers.
  • the first actuator layer 11 is formed on the upper surfaces of the electrode layers 5 and 6, and the second actuator layer 12 made of an organic material, which will also be described below, is formed across these two electrodes. .
  • a dielectric layer 15 is formed on the upper surface of the first actuator layer 11, and an electrode layer 7 is formed across the upper surface of the dielectric layer 15 and the upper surface of the conductive adhesive layer 13. Furthermore, a second substrate (sub-substrate) 14 is attached across the upper surface of the electrode layer 7 and the upper surface of the second actuator layer 12.
  • variable capacitance element configured as described above is electrostatically formed by the dielectric layer 15 formed between the first actuator layer 11 and the electrode 7 which are formed on the upper surface of the electrode layer 3 to form a conductive layer. A capacitance is formed and the capacitance is varied by the first actuator layer 11 and the second actuator layer 12.
  • FIGS. 5 to 10 show the manufacturing process on the fixed electrode side in which various fixed electrodes are formed on the first substrate (main substrate) 1 of the variable capacitance element
  • FIGS. show manufacturing steps on the movable electrode side in which the movable electrode is formed on the first substrate (sub-substrate) 14 of the variable capacitance element.
  • the attached perspective view shown in FIG. 5 shows the state of the first substrate 1 immediately after the electrodes are formed.
  • a glass epoxy substrate for example, a glass epoxy substrate, a polyimide substrate, etc.
  • Electrode layers 2, 3, 4, and 5 are formed on the upper surface of a first substrate 1 formed by forming a so-called insulating material in a plate shape, such as an organic substrate, an inorganic substrate such as a glass substrate, or a ceramic substrate.
  • FIG. 6 attached is a top view immediately after forming the electrode layers 2, 3, 4 and 5, and as described above, the electrode layer 2, the electrode layer 3 and the electrode layer 4 from the left side of the figure. Then, the electrode layer 5 and the electrode layer 6 are formed.
  • FIG. 7 attached shows a state after the first actuator 11 is formed.
  • the electrodes 3 and 4 are connected to each other, that is, these The actuator 11 is formed across the electrodes.
  • a material for this actuator for example, the same applicant as the present application filed on May 19, 2005 and published on November 30, 2006.
  • a polymer material having a large absolute value of thermal expansion coefficient mixed with conductive fine particles (simply referred to as “organic actuator material”) is used. That is, it is obtained by applying a paste made of a conductive filler and an epoxy resin by a dispenser, screen printing or the like and then curing it by heating or a chemical reaction.
  • FIG. 8 attached herewith is a top view of the first substrate 1 after the first actuator 11 is formed.
  • FIG. 9 attached shows a state after the second actuator 12 and the conductive adhesive layer 13 are formed in addition to the first actuator 11 described above.
  • the second actuator 12 is also formed across the electrodes 5 and 6 in the same manner as the first actuator 11, and a paste made of a conductive filler and an epoxy resin is applied by a dispenser or screen printing. And then cured by heating or chemical reaction.
  • the conductive adhesive layer 13 is coated with a conductive adhesive on the upper surface of the electrode 2.
  • FIG. 10 is a top view of the 1st board
  • a second substrate 14 is prepared, and an electrode 7 is formed on one surface (the upper surface in the drawing).
  • the second substrate 14 is also a so-called insulating material such as a glass epoxy substrate, an organic substrate such as a polyimide substrate, an inorganic substrate such as a glass substrate, or a ceramic substrate, like the first substrate 1. Is formed in a plate shape.
  • the electrode 7 is etched by preparing an insulating substrate having a metal foil (for example, copper foil) pasted on one surface of the second substrate 14.
  • a method by processing, a method by mask vapor deposition, selective plating, or the like can be employed.
  • FIG. 11 shows the second substrate 14 immediately after forming the electrode 7 on the upper surface
  • the attached FIG. 12 is a top view thereof.
  • a dielectric film 15 is formed on the formed electrode 7 as an electrode protective film.
  • the material forming the dielectric film 15 is preferably a ferroelectric. More specifically, the ferroelectric material may be a barium titanate (BTO) composite material for coating.
  • FIG. 14 attached is a top view of the second substrate 14 after the dielectric layer 15 is formed.
  • the second substrate 14 on which the electrode 7 and the dielectric layer 15 are formed is turned over so that the formed dielectric layer 15 faces downward (see the arrow in the figure). ), And so as to face the upper surface of the first substrate 1 shown in FIG. 9 and FIG. That is, bonding is performed so that the electrode 7 faces the conductive adhesive layer 13, the dielectric layer 15 faces the first actuator 11, and the lower surface of the second substrate 14 faces the second actuator 12. After this bonding, the conductive adhesive layer 13 and the actuator 12 are cured. As a result, a capacitance is formed between the first actuator 11 and the electrode 7 protected (covered) by the dielectric layer 15, that is, constitutes a capacitance.
  • a variable capacitance element can be obtained by changing the capacitance formed by the action of the first actuator layer 11 and the second actuator layer 12. The capacitance at this time is measured between the terminals of the electrode 2 and the electrode 3 because the electrode 7 and the electrode 2 are electrically connected through the conductive adhesive layer 13. Can (get).
  • variable capacitance element of the present invention whose detailed structure and manufacturing method have been described above, the operation (principle) and the capacitance setting method will be described with reference to FIGS. However, it explains in detail.
  • FIG. 16 attached is a side view showing the internal structure of the variable capacitance element of the present invention including its drive circuit from the side, in which “L1” is the surface of the first substrate 1.
  • the height from the surface of the first substrate 1 to the surface of the second actuator 11 (or the lower surface of the second substrate 14) is “L2”.
  • “D” indicates a distance from the surface of the first actuator 11 to the lower surface of the dielectric 15.
  • Reference numeral 100 in the figure denotes a drive control unit that controls the entire electronic device, such as a mobile phone, on which the variable capacitance element according to the present invention is mounted.
  • a control signal including a command for changing the capacitance of the element and a value of the capacitance to be changed is output.
  • the drive control unit is configured by, for example, a CPU including a memory device.
  • Reference numeral 110 in the drawing generates drive power (current or voltage: Act1, Act2) described below based on the control signal from the drive control unit 100 described above to generate the first and second actuators 11.
  • , 12 shows a drive signal generation circuit for supplying the signal.
  • an actuator (hereinafter referred to as “organic actuator”) formed by applying and curing a paste made of the above-described conductive filler and epoxy resin is expanded by, for example, energization (heating expansion) of a drive current and cooled.
  • the organic actuator has a tendency to shrink to its original state with (stop of energization). Furthermore, after the organic actuator expands by heating and expansion, it will return (shrink) to its original state by cooling (stop of energization). However, it has a characteristic that when it is restrained in the middle and a predetermined time has passed, it remains stable (constrained height) and remains stable (held). Is called “latch function” or “latch state”.
  • the electrode interval can be arbitrarily set, and the capacitance of the variable capacitance element can be appropriately changed, and the power saving can be reduced. Will also be achieved at the same time.
  • the “latch function” or “latch state” in the organic actuator can be restored to the original steady state by energization heating again.
  • FIG. 17 shows a drive diagram of the above-described variable capacitance element, and in the vertical axis direction, changes in the positions of the above-mentioned “L1” and “L2” which are electrode positions (heights) are shown.
  • the driving state (“ON”, “OFF") of the driving current (Act2, Act1) is shown.
  • These drive currents (Act 2, Act 1) are energized through the electrodes 3 and 4 and the electrodes 3 and 4 provided on the lower surfaces of the first and second organic actuators 11 and 12, respectively. Is done.
  • the first organic actuator 11 is driven appropriately to maintain its steady state (a state in which the height is maintained).
  • the height of the first organic actuator 11 becomes a steady state and maintains a predetermined height, while the second organic actuator 12 cools and contracts to reduce its height.
  • the function of the first organic actuator 11 that maintains the steady state specifically, the lower surface of the dielectric 15 abuts on the upper surface of the first organic actuator 11 to stop the contraction).
  • the second organic actuator 12 enters the “latch state” and maintains its height (stable) thereafter.
  • the state at this time is shown in FIG.
  • the distance “D” from the surface of the first actuator 11 to the lower surface of the dielectric 15 is not only the height of the first actuator 11 but also the dielectric 15
  • the distance “D” is the height of the first organic actuator 11 in the initial state (steady state).
  • the height of the second organic actuator 12 in the “latch state” is determined by the height of the second organic actuator 12 in the “latch state”. It becomes variable depending on the height of the actuator 11 in the steady heating state.
  • the distance “D” can be set arbitrarily and arbitrarily according to the energization pattern to the first and second organic actuators 11 and 12.
  • the capacitance of the variable capacitance element can be freely changed with a relatively simple configuration.
  • the distance “D” from the surface of the first actuator 11 to the lower surface of the dielectric 15 is shown enlarged for the purpose of explanation. However, since this distance “D” is in units of microns, and the surface of the dielectric 15 is uneven (rough surface), the change in the capacitance of the variable capacitance element is actually In this case, the contact region between the surface of the dielectric 15 and the surface of the actuator 11 is brought about by a change.
  • the variable capacitance element of the present invention is suitable for power saving and low power consumption operation.
  • the organic actuators 11 and 12 that are self-heating type actuators constitute the element, so that degassing is performed as needed by heating during driving (capacity change).
  • the adsorbed material such as moisture that is easily adsorbed on the electrode surface can be desorbed by heating the actuator, it is possible to suppress moisture adsorption and the like, thereby reducing the risk of sticking and electrode corrosion. Will be.
  • the first organic actuator 11 is already in a steady state, and the drive current is not supplied.
  • the pattern of the drive current supplied to the first and second organic actuators 11, 12 includes a desired static value including the distance “D”. From the relationship with the electric capacity, it can be easily obtained by the drive signal generation circuit 110 by actually obtaining it in advance by experiments or the like and storing it in the memory device of the drive control unit 100 described above. It is possible to generate. Alternatively, instead of the above, it is also possible to store various patterns in the drive signal generation circuit 110 and appropriately select and output them based on the capacitance value to be changed in the control signal.
  • variable capacitance element a dielectric formed by a coating (printing) process is provided, and as described above, electrostatic control is performed by controlling the surface contact pressure between the electrode and the dielectric.
  • the dielectric layer 15 is formed on one substrate, and the first and second organic actuators 11 and 12 are formed on the other substrate.
  • the member can also be used as a protective film (spacer). According to such a configuration, particularly when a large number of variable capacitance elements are manufactured at a time using a relatively large substrate, the variable capacitance elements can be stably manufactured by a printing process.
  • variable capacitance element having a cantilever structure has been described above as an example. However, the present invention can also be applied to variable capacitance elements having other structures.
  • a variable capacitance element according to a second embodiment (embodiment 2) of the present invention in which a second organic actuator 22 having a “U” shape is formed surrounding the periphery of the organic actuator 21 will be described.
  • FIGS. 19 and 20 attached herewith show a top view and a side view of a variable capacitor according to the second embodiment.
  • a plurality of electrode layers 23, 24, 25, and 26 are formed on the upper surface of the first substrate (main substrate) 1, and are arranged in the central portion thereof.
  • the first actuator 21 is formed so as to straddle the pair of electrodes 23 and 24, and the “U” -shaped second actuator 22 is formed so as to surround the periphery of the first actuator 21.
  • the electrode layer 27 is formed on the lower surface of the second substrate (sub-substrate) 14, and the dielectric layer 15 is formed at the substantially central portion thereof.
  • the second substrate 14 is bonded so as to face the upper surface of the first substrate 1.
  • variable capacitance element in the variable capacitance element according to the second embodiment, the pattern signal from the drive signal generation circuit 110 described above, that is, the drive signals (Act1, Act2), It is supplied to the electrode 26.
  • An arbitrary variable capacitance is obtained (formed) between the electrode 23 and the electrode 26, as is apparent from the drawing.
  • the second substrate (sub-substrate) 29 is connected to the second organic actuator 22 having a “U” shape.
  • the distance “D” can be arbitrarily set by displacing the electrode 27 and the dielectric layer 15 provided on the lower surface thereof in the vertical axis direction.
  • other effects obtained thereby are as follows. This is almost the same as described above, and a description thereof is omitted here.
  • the first and second organic actuators for making the distance “D” variable in particular, the second organic actuator 22, and the first organic actuator 21 are used.
  • the so-called double-structured actuator is used as an external seal, so that foreign matter can be mixed. It becomes possible to prevent.
  • variable capacitance element in the variable capacitance element according to the second embodiment, the “U” -shaped actuator 22 is arranged around the outer periphery of the first actuator 21 to arrange the first embodiment. It is possible to configure without using a conductive adhesive as in 1.
  • the materials of these members are the same as those in the above-described embodiment, and therefore detailed description thereof is omitted here. The detailed operation is also the same as that of the third embodiment shown below, and is omitted here.
  • FIGS. 21 to 23 show a manufacturing method of the variable capacitance element according to the third embodiment (embodiment 3) of the present invention.
  • FIGS. 21A to 21D show the manufacturing process on the fixed electrode side centering on the first substrate (main substrate) 1, and FIGS. 22A and 22B show the second step.
  • the manufacturing process on the movable electrode side centering on the substrate (sub-substrate) 29, and FIGS. 23A and 23B are the first substrate 1 (main substrate: movable electrode side) and the second substrate.
  • Each of the manufacturing steps for attaching and assembling 14 (sub-substrate: fixed electrode side) is illustrated.
  • the same reference numerals as those in the first embodiment denote the same components in the first embodiment.
  • Electrode layers 33, 34, 35, and 36 are formed on the upper surface of the first substrate (main substrate) 1. Electrode layers 33, 34, 35, and 36 are formed. At this time, the electrode is formed by preparing an insulating substrate with a metal foil (for example, copper foil) on its surface, etching, mask vapor deposition, selective plating, or the like. A formation method by direct application drawing with ink or paste using nanoparticles is adopted.
  • a metal foil for example, copper foil
  • an insulator is applied on one (front) side of the electrodes 33 and 34 in the central portion, and the insulating film 37 is formed by baking the insulator. .
  • the paste made of the conductive filler and the epoxy resin is applied and baked by a dispenser, screen printing or the like.
  • the first organic actuator 38 is formed.
  • the paste is applied and baked in a “B” shape so as to surround the first organic actuator 38 to form a second organic actuator 39. .
  • the electrode 40 is formed on the upper surface thereof.
  • an insulating substrate having a metal foil (for example, copper foil) pasted on its surface is prepared and etching method, mask vapor deposition method, selective plating method or the like is used.
  • a forming method by direct coating drawing with ink or paste using particles is employed.
  • a dielectric layer 15 is formed by applying and baking a dielectric on the upper surface of the electrode 40 at a substantially central portion of the second substrate 14.
  • the second substrate (sub-substrate) 14 on which the electrode 40 and the dielectric layer 15 are formed is turned over so that the formed dielectric layer 15 faces downward (see FIG.
  • the second substrate (sub substrate) 14 turned upside down is bonded so as to face the upper surface of the first substrate (main substrate) 1. Bake.
  • FIG. 24 attached is a side view showing the internal structure of the variable capacitance element from its side, and in the variable capacitance element shown in this figure as well as in the first embodiment, the drive signal generation described above is performed.
  • the drive power current or voltage: Act1, Act2
  • the first organic actuator 38 and the second organic actuator 39 are driven and displaced, whereby the electrodes 34 and 34
  • the capacitance formed during the period is changed.
  • the electrode interval can be arbitrarily set, and the capacitance of the variable capacitance element can be appropriately varied. The achievement of power saving at the same time is the same as in the first embodiment.
  • the first organic actuator 38 has an appropriate driving current for maintaining a steady state (a state in which the height is maintained).
  • the height of the first organic actuator 38 is in a steady state and maintains a predetermined height, while the second organic actuator 39 is cooled and contracted to reduce its height.
  • the action of the first organic actuator 38 that maintains the steady state specifically, the contraction of the dielectric 15 is stopped when the lower surface of the dielectric 15 contacts the upper surface of the first organic actuator 38).
  • the second organic actuator 39 enters the “latch state” and maintains its height (stable) thereafter. .
  • the first organic actuator 38 is cooled and contracted, and then returns to the initial state and becomes a steady state.
  • the second organic actuator 39 is in a “latched state” and maintains its height stably.
  • the distance “D” is equal to the height of the first organic actuator 38 in the initial state and the second organic actuator, as in the first and second embodiments. 39 is determined by the height in the “latch (stable) state” of 39, and the height in the “latch state” of the second organic actuator 39 is the heating steady state of the first organic actuator 38. Depends on the height in the state, it becomes variable. That is, the distance “D” can be arbitrarily set arbitrarily according to the energization pattern to the first and second organic actuators 38 and 39 also by the variable capacitance element of the present embodiment and the control method therefor. Thus, the capacitance of the variable capacitance element can be freely changed with a relatively simple configuration. In addition, in the state after the capacitance has been variably set, the drive current to both organic actuators is not required. Therefore, once the capacitance has been changed, there is no power consumption. It is also suitable for power saving and low power consumption operation.
  • the first and second organic actuators for making the distance “D” variable in particular, the second organic actuator 39, and the first organic actuator 38 are used.
  • the so-called double-structured actuator is used as an external seal, so that foreign matter can be mixed. It becomes possible to prevent.
  • variable capacitance element according to the third embodiment also has a structure formed by a coating process as in the first embodiment, and the dielectric layer 15 formed on the electrode surface of one substrate or the like.
  • the organic actuator formed on the other substrate is used as a spacer in the sealing process, it can be easily manufactured by a printing process.
  • the variable capacitance elements can be stably manufactured by a printing process.
  • FIG. 1 is a perspective view showing an overall structure of a cantilever type variable capacitance element according to a first embodiment (Example 1) of the present invention. It is a side view for showing the internal structure of the cantilever type variable capacitance element. It is the perspective view which notched and showed the internal structure of the said cantilever type variable capacitance element in order to make it intelligible. It is the top view which looked at the above-mentioned cantilever type variable capacity element from the upper part. It is a perspective view which shows the manufacturing process of the 1st board
  • FIG. 1 It is a perspective view which shows the manufacturing process of the 2nd board
  • FIG. 1 shows the manufacturing process of the 2nd board
  • FIG. 4 is a side view of a variable capacitance element including a drive circuit for explaining a method of setting the capacitance of the cantilever type variable capacitance element. It is a figure which shows the drive diagram for demonstrating the setting method of the electrostatic capacitance of the said cantilever type variable capacitance element. It is a side view which shows the state of each part in the setting method of the electrostatic capacitance of the said cantilever type variable capacitance element. It is a top view which shows the structure of the variable capacity element which becomes 2nd embodiment (Example 2) of this invention. It is a side view which shows the structure of the variable capacitance element which becomes 2nd embodiment (Example 2) of this invention.
  • FIG. 6 is a side view of a variable capacitance element including a drive circuit for explaining a method for setting the capacitance of the variable capacitance element according to the third embodiment. It is a figure which shows the drive diagram for demonstrating the setting method of the electrostatic capacitance of the variable capacitance element of the said Example 3.
  • FIG. 6 shows the drive diagram for demonstrating the setting method of the electrostatic capacitance of the variable capacitance element of the said Example 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)

Abstract

Disclosed are a highly reliable variable-capacitance element that can operate with low power consumption, and a manufacturing method therefor. Additionally provided is a capacitance setting method for the variable-capacitance element. The variable-capacitance element comprises two opposing substrates (11) and (12), electrodes (2), (3), (4), (5) and (6) formed on the opposing surfaces of each of the substrates, dielectric layer (15) provided on the surface of one of the two opposing electrodes, and organic actuators (11) and (12) formed as layers between the two opposing substrates, wherein drive power is supplied to the organic actuators. The electrostatic capacitance can be set to any value by using the “latch function” or “latch state” of the organic actuators.

Description

可変容量素子及びその製造方法、並びに、その静電容量設定方法Variable capacitance element, manufacturing method thereof, and capacitance setting method thereof
 本発明は、電極間距離を変化させることによりその静電容量を変化する可変容量素子(コンデンサ)、及び、かかる可変容量素子の製造方法、更には、かかる可変容量素子の制御方法に関する。 The present invention relates to a variable capacitance element (capacitor) that changes its capacitance by changing a distance between electrodes, a method for manufacturing such a variable capacitance element, and a control method for such a variable capacitance element.
 一般に、その静電容量が可変である可変容量素子(コンデンサ)やバラクタは、可変周波数発信機、同調増幅器、位相シフタ、インピーダンス整合回路などの高周波回路には必須の部品である。特に、近年においては、モバイル通信端末機器におけるマルチバンド化、マルチモード化の開発が進展しており、それに伴い、広帯域での可変容量動作を実現するための可変容量素子(コンデンサ)が期待されている。 Generally, a variable capacitance element (capacitor) or a varactor whose capacitance is variable is an indispensable component for a high frequency circuit such as a variable frequency transmitter, a tuning amplifier, a phase shifter, and an impedance matching circuit. In particular, in recent years, development of multi-band and multi-mode mobile communication terminal devices has progressed, and accordingly, a variable capacitance element (capacitor) for realizing variable capacitance operation in a wide band is expected. Yes.
 従来、かかる可変容量素子(コンデンサ)としては、例えば、以下の特許文献1や2によっても知られるように、半導体素子であるバラクタダイオードが利用されており、更には、その広帯域化を実現するために、スイッチとキャパシタアレイとの組み合わせた構造が提案されている。 Conventionally, as such a variable capacitance element (capacitor), for example, a varactor diode which is a semiconductor element has been used, as is also known from the following Patent Documents 1 and 2, and further, in order to realize a wider bandwidth. In addition, a structure combining a switch and a capacitor array has been proposed.
 また、以下の特許文献3~5によれば、MEMS技術によって作成される静電駆動型の可変容量素子は既に知られており、かかる容量素子によれば、半導体素子に比べて損失が小さく、Q値を高くできるメリットがあると報告されている。 Further, according to the following Patent Documents 3 to 5, an electrostatic drive type variable capacitance element created by MEMS technology has already been known, and according to such a capacitance element, loss is small compared to a semiconductor element, It is reported that there is a merit that can increase the Q value.
 更には、以下の特許文献6によれば、3層の金属薄膜を積層してなる可動電極を利用した可変容量素子が、そして特許文献7によれば、ゴムの板を利用した可変間隙デバイスとその製造方法が既に知られている。 Furthermore, according to the following Patent Document 6, a variable capacitance element using a movable electrode formed by laminating three metal thin films is disclosed, and according to Patent Document 7, a variable gap device using a rubber plate and The manufacturing method is already known.
 一方、可動電極を駆動するためのアクチュエータとしては、一般に、静電アクチュエータの他に、圧電アクチュエータ、電磁アクチュエータ、高分子アクチュエータなどが既に知られている。加えて、本発明が関る可変容量素子とは異なるが、特に、高分子材料を用いたアクチュエータは、以下の特許文献8により既に知られており、かかるアクチュエータは、印刷プロセスでの作製可能であるため、小型軽量のアクチュエータを安価に作製でき、実用化が期待されている。 On the other hand, as actuators for driving the movable electrodes, generally, in addition to electrostatic actuators, piezoelectric actuators, electromagnetic actuators, polymer actuators, and the like are already known. In addition, although different from the variable capacitance element to which the present invention relates, in particular, an actuator using a polymer material is already known from Patent Document 8 below, and such an actuator can be manufactured by a printing process. Therefore, a small and lightweight actuator can be manufactured at low cost, and practical application is expected.
特開2004-48589号公報JP 2004-48589 A 特開2006-157767号公報JP 2006-157767 A 特開2004-172504号公報JP 2004-172504 A 特開2006-19724号公報JP 2006-19724 A 特開2006-210843号公報Japanese Patent Laid-Open No. 2006-210843 再公表WO2005/027257号公報Republished WO2005 / 027257 特開昭62-501387号公報JP-A-62-501387 特開2006-325335号公報JP 2006-325335 A
 しかしながら、上述した従来技術によれば、以下のような問題点があった。即ち、可変容量素子を半導体素子で構成する場合には、素子数が多くなり、また同一チップ上に形成する場合には占有面積が大きくなってしまうことから、チップサイズを小さくして安価にすることが出来ない。また、これにより得られる可変容量素子は、MEMS技術による可変容量素子よりも損失が大きく、かつ、Q値が低い。 However, according to the prior art described above, there are the following problems. That is, when the variable capacitance element is formed of a semiconductor element, the number of elements increases, and when the variable capacitance element is formed on the same chip, the occupied area increases. I can't. Moreover, the variable capacitance element obtained by this has a loss larger than the variable capacitance element by MEMS technology, and Q value is low.
 また、静電駆動型のMEMS技術による可変容量コンデンサでは、容量調整範囲を大きくするため、チップサイズを大きくしたり、素子数を増やしたりすることが必要であるため、安価に製造することが難しい。加えて、電極間が接近し過ぎて急激に引き付けられてしまう、所謂、「プルダウン現象」が発生するが、かかる現象を回避するためには、高い電圧を制御しなければならず、また、電極間における異物の混入やスティッキング対策のために、気密封止パッケージ内に収納する必要がある。そのため、システム全体を安価に製造することが難しい。 In addition, it is difficult to manufacture a variable capacitor using the electrostatic drive type MEMS technology at a low cost because it is necessary to increase the chip size or the number of elements in order to increase the capacitance adjustment range. . In addition, a so-called “pull-down phenomenon” occurs in which the electrodes are too close to each other and are attracted abruptly. In order to avoid such a phenomenon, a high voltage must be controlled. It is necessary to store in a hermetically sealed package in order to prevent foreign matter and sticking between them. Therefore, it is difficult to manufacture the entire system at low cost.
 そこで、本発明では、有機アクチュエータを採用することにより、安価に作製可能な新規な可変容量素子を提供することを目的とするものである。なお、有機アクチュエータは、素子サイズが大きくなっても安価に作製できるというメリットが期待できるが、しかしながら、ジュール熱に伴う熱膨張により動作するため、任意の変位を維持するためには電流を供給しつづけなければならず、電圧制御型の他のアクチュエータと比べて制御電圧は低くできるものの消費電力は大きくなってしまう。 Therefore, an object of the present invention is to provide a novel variable capacitance element that can be manufactured at low cost by employing an organic actuator. The organic actuator can be expected to be manufactured at a low cost even when the element size is increased. However, since it operates by thermal expansion accompanying Joule heat, a current is supplied to maintain an arbitrary displacement. Although the control voltage can be lowered as compared with other voltage control type actuators, the power consumption is increased.
 そこで、本発明では、かかる有機アクチュエータを採用する際の問題点を解消し、即ち、低消費電力動作が可能で、かつ、信頼性の高い容量可変素子及びその製造方法を提供し、更には、かかる容量可変素子のための静電容量設定方法を提供することをその目的とする。 Therefore, in the present invention, the problem in adopting such an organic actuator is solved, that is, a low-power consumption operation is possible and a highly reliable capacitance variable element and a method for manufacturing the same are provided. It is an object of the present invention to provide a capacitance setting method for such a capacitance variable element.
 本発明では、上述した目的を達成するため、まず、対向する二つの基板と、前記二つの対向する基板の対向する面上にそれぞれ形成された電極と、前記対向する二つの電極の一方の電極の面上に設けられた誘電体層とを備えており、前記対向する二つ電極とその間に配置された前記誘電体層により静電容量を形成する容量素子であって、更に、前記対向する二つの基板との間に、少なくとも、有機アクチュエータ材を層状に形成してなる二つの有機アクチュエータを形成すると共に、当該有機アクチュエータに対して駆動電力を供給するための駆動用電極をそれぞれ設けた可変容量素子が提供される。 In the present invention, in order to achieve the above-described object, first, two opposing substrates, electrodes formed on opposing surfaces of the two opposing substrates, and one of the two opposing electrodes And a dielectric layer provided on the surface of the capacitor, and forming a capacitance with the two opposing electrodes and the dielectric layer disposed between the two electrodes. At least two organic actuators formed by laminating organic actuator materials in layers between two substrates, and variable electrodes provided with driving electrodes for supplying driving power to the organic actuators, respectively A capacitive element is provided.
 また、本発明では、前記に記載した可変容量素子において、前記二つの有機アクチュエータの一方の有機アクチュエータは、前記二つの電極の他方の電極の面上に形成されており、前記二つの有機アクチュエータの他方の有機アクチュエータは、前記対向する二つの基板との間に、前記一方の有機アクチュエータに隣接して設けられていることが好ましく、更には、前記他方の有機アクチュエータは、前記一方の有機アクチュエータを取り囲むように形成されていることが好ましい。 In the present invention, in the variable capacitance element described above, one organic actuator of the two organic actuators is formed on a surface of the other electrode of the two electrodes, and the two organic actuators The other organic actuator is preferably provided adjacent to the one organic actuator between the two opposing substrates, and the other organic actuator further includes the one organic actuator. It is preferable to form so that it may surround.
 また、本発明によれば、やはり上述した目的を達成するため、対向する二つの基板を用意し、前記二つの基板の対向する面上にそれぞれ電極層を形成し、前記二つの基板の一方の基板の対向面上には、有機アクチュエータ材を層状に形成してなる二つの有機アクチュエータを形成すると共に、前記二つの基板の他方の基板の対向面上には、前記形成した電極の面上に誘電体層を形成し、前記二つの基板を、前記他方の基板の対向面上に形成した前記誘電体層が、前記一方の基板の対向面上に形成した電極層に対向するように貼り合わせ、もって、前記対向する二つ電極層とその間に配置された前記誘電体層により形成される静電容量を可変とした可変容量素子を製造する可変容量素子の製造方法が提供される。なお、上記の製造方法において、前記二つの有機アクチュエータの一方の有機アクチュエータは、製膜方法によって形成することが好ましい。 Further, according to the present invention, in order to achieve the above-described object, two opposing substrates are prepared, and electrode layers are respectively formed on the opposing surfaces of the two substrates, and one of the two substrates is formed. On the opposing surface of the substrate, two organic actuators formed by layering organic actuator materials are formed, and on the opposing surface of the other substrate of the two substrates, on the surface of the formed electrode. A dielectric layer is formed, and the two substrates are bonded together so that the dielectric layer formed on the opposite surface of the other substrate faces the electrode layer formed on the opposite surface of the one substrate. Thus, there is provided a method of manufacturing a variable capacitance element that manufactures a variable capacitance element having a variable capacitance formed by the two opposing electrode layers and the dielectric layer disposed therebetween. In the above manufacturing method, one of the two organic actuators is preferably formed by a film forming method.
 加えて、やはり上述した目的を達成するため、本発明によれば、対向する二つの基板と、前記二つの対向する基板の対向する面上にそれぞれ形成された電極と、前記対向する二つの電極の一方の電極の面上に設けられた誘電体層とを備えており、前記対向する二つ電極とその間に配置された前記誘電体層により静電容量を形成する容量素子であって、更に、前記対向する二つの基板との間に、少なくとも、有機アクチュエータ材を層状に形成してなる二つの有機アクチュエータを形成すると共に、当該有機アクチュエータに対して駆動電力を供給するための駆動用電極をそれぞれ設けた可変容量素子の静電容量の設定方法であって、前記二つの有機アクチュエータの双方を駆動して変位させ、前記二つの有機アクチュエータの一方の有機アクチュエータを定常状態にして他方の有機アクチュエータの位置を設定し、その後、前記一方の有機アクチュエータの位置を設定することにより、前記静電容量を可変設定する可変容量素子の静電容量設定方法が提供される。 In addition, in order to achieve the above-mentioned object, according to the present invention, two opposing substrates, electrodes formed on opposing surfaces of the two opposing substrates, and the two opposing electrodes A dielectric layer provided on the surface of one of the electrodes, and forming a capacitance with the two opposing electrodes and the dielectric layer disposed therebetween, further comprising: And at least two organic actuators formed by layering an organic actuator material between the two opposing substrates, and a driving electrode for supplying driving power to the organic actuator. A method for setting the capacitance of each of the variable capacitance elements provided, wherein both of the two organic actuators are driven and displaced, and one of the organic actuators of the two organic actuators is displaced. A capacitance setting method for a variable capacitance element is provided in which the capacitance is variably set by setting the position of the other organic actuator after setting the actuator in a steady state and then setting the position of the one organic actuator. Is done.
 なお、本発明では、前記に記載した静電容量設定方法において、前記他方の有機アクチュエータの位置を設定する際には、前記一方の有機アクチュエータには定常状態を維持するに必要な駆動電力を供給すると同時に、前記前記他方の有機アクチュエータへの駆動電力を停止することが好ましく、更には、前記一方の有機アクチュエータの位置を設定する際には、前記一方の有機アクチュエータへの駆動電力の供給を停止して初期状態に戻すことが好ましい。 In the present invention, in the capacitance setting method described above, when setting the position of the other organic actuator, the driving power necessary to maintain a steady state is supplied to the one organic actuator. At the same time, it is preferable to stop the driving power to the other organic actuator, and furthermore, when setting the position of the one organic actuator, the supply of the driving power to the one organic actuator is stopped. It is preferable to return to the initial state.
 上述したように、本発明によれば、有機アクチュエータを採用しながらも、低消費電力動作が可能で、かつ、信頼性の高い構造の容量可変素子を提供することが可能であり、かつ、その製造方法によれば印刷プロセスによって容易に製造することができる。加えて、上述した容量可変素子のための静電容量設定方法によれば、上述した容量可変素子における有機アクチュエータを駆動してその静電容量を可変に設定することが可能になる。 As described above, according to the present invention, it is possible to provide a variable capacitance element having a highly reliable structure capable of low power consumption operation while adopting an organic actuator, and its According to the manufacturing method, it can manufacture easily by a printing process. In addition, according to the above-described capacitance setting method for the variable capacitance element, it is possible to drive the organic actuator in the variable capacitance element to set the capacitance variably.
 以下、本発明の実施の形態について、添付の図を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 まず、添付の図1~図4には、本発明の第一の実施の形態(実施例1)になる片持ち梁型の可変容量素子の構造が示されており、それぞれ、図1は本発明の可変容量素子の全体構造を示す斜視図であり、図2はその側面図である。更に、添付の図3はその内部構造を分かり易くするためにその一部を切り欠いて示した可変容量素子の斜視図であり、そして、図4は、当該可変容量素子を上方から見た上面図である。 First, FIGS. 1 to 4 of the accompanying drawings show the structure of a cantilever type variable capacitance element according to the first embodiment (Example 1) of the present invention. It is a perspective view which shows the whole structure of the variable capacitance element of invention, FIG. 2 is the side view. Further, FIG. 3 attached hereto is a perspective view of the variable capacitance element shown with a part cut away for easy understanding of the internal structure, and FIG. 4 is a top view of the variable capacitance element viewed from above. FIG.
 これらの図にも明らかなように、本発明になる可変容量素子は、第1の基板(メイン基板)1を備え、その上面には、その長手方向(図の水平方向)における所定の位置に、複数の電極層が形成されている。より具体的には、本例では、特に、添付の図3及び図4に明らかなように、5個の電極が、図の左側から、電極層2、電極層3と電極層4、そして、電極層5と電極層6が形成されている。更に、これらの電極層2、3、4、5及び6の上面には、以下の部材がそれぞれ形成されている。即ち、電極2の上面には、導電性接着材からなる導電接着層13が、電極層3と4の上面には、これら2個の電極層に跨って、以下にも説明する有機材料からなる第1のアクチュエータ層11が、そして、電極層5と6の上面には、やはりこれら2個の電極に跨って、以下にも説明する有機材料からなる第2のアクチュエータ層12が形成されている。 As is apparent from these drawings, the variable capacitance element according to the present invention includes a first substrate (main substrate) 1 and has an upper surface at a predetermined position in the longitudinal direction (horizontal direction in the drawing). A plurality of electrode layers are formed. More specifically, in this example, as clearly shown in the attached FIGS. 3 and 4, five electrodes are formed from the left side of the figure, the electrode layer 2, the electrode layer 3 and the electrode layer 4, and Electrode layer 5 and electrode layer 6 are formed. Furthermore, the following members are respectively formed on the upper surfaces of these electrode layers 2, 3, 4, 5 and 6. That is, the conductive adhesive layer 13 made of a conductive adhesive is formed on the upper surface of the electrode 2, and the upper surfaces of the electrode layers 3 and 4 are made of an organic material that will be described below across the two electrode layers. The first actuator layer 11 is formed on the upper surfaces of the electrode layers 5 and 6, and the second actuator layer 12 made of an organic material, which will also be described below, is formed across these two electrodes. .
 そして、上記第1のアクチュエータ層11の上面には、誘電体層15が形成されると共に、当該誘電体層15の上面と前記導電接着層13との上面に跨って、電極層7が形成され、更には、当該電極層7の上面と上記第2のアクチュエータ層12の上面に跨って、第2の基板(サブ基板)14が取り付けられている。 A dielectric layer 15 is formed on the upper surface of the first actuator layer 11, and an electrode layer 7 is formed across the upper surface of the dielectric layer 15 and the upper surface of the conductive adhesive layer 13. Furthermore, a second substrate (sub-substrate) 14 is attached across the upper surface of the electrode layer 7 and the upper surface of the second actuator layer 12.
 即ち、上述した構成になる可変容量素子は、電極層3の上面に形成されて導電層をなす第1のアクチュエータ層11と電極7と共に、それらの間に形成された誘電体層15により静電容量を形成すると共に、上記第1のアクチュエータ層11と上記第2のアクチュエータ層12によってその静電容量を可変する。 That is, the variable capacitance element configured as described above is electrostatically formed by the dielectric layer 15 formed between the first actuator layer 11 and the electrode 7 which are formed on the upper surface of the electrode layer 3 to form a conductive layer. A capacitance is formed and the capacitance is varied by the first actuator layer 11 and the second actuator layer 12.
 続いて、添付の図5~図15により、本発明の可変容量素子の製造方法について詳細に説明する。なお、図5~図10は、上記可変容量素子の第1の基板(メイン基板)1上に各種の固定電極を形成してなる、固定電極側の製造工程を、そして、図11~図15は、上記可変容量素子の第1の基板(サブ基板)14上に可動電極を形成してなる可動電極側の製造工程をそれぞれ示している。 Subsequently, the manufacturing method of the variable capacitor according to the present invention will be described in detail with reference to FIGS. 5 to 10 show the manufacturing process on the fixed electrode side in which various fixed electrodes are formed on the first substrate (main substrate) 1 of the variable capacitance element, and FIGS. These show manufacturing steps on the movable electrode side in which the movable electrode is formed on the first substrate (sub-substrate) 14 of the variable capacitance element.
 まず、添付の図5に示す斜視図には、電極を形成した直後の第1の基板1の状態が示されており、この図にも示すように、例えば、ガラスエポキシ基板、ポリイミド基板などの有機基板、ガラス基板などの無機基板、又は、セラミック基板など、所謂、絶縁材を板状に形成してなる第1の基板1の上面に、電極層2、3、4、5を形成する。これら電極の形成は、例えば、プリント基板などの配線板と同様に、その表面に金属箔(例えば、銅箔)を貼った絶縁基板を用意してエッチング加工による方法、マスク蒸着、又は、選択めっきなどによる方法を採用することが出来る。即ち、一般的な電極形成方法が利用でき、更には、上記に加えて、例えば、金属ナノ粒子を用いたインクやペーストによる直接塗布描画による形成方法を採用することも可能である。また、添付の図6は、上記の電極層2、3、4、5を形成した直後の上面図であり、上述したように、図の左側から、電極層2、電極層3と電極層4、そして、電極層5と電極層6が形成される。 First, the attached perspective view shown in FIG. 5 shows the state of the first substrate 1 immediately after the electrodes are formed. As shown in this figure, for example, a glass epoxy substrate, a polyimide substrate, etc. Electrode layers 2, 3, 4, and 5 are formed on the upper surface of a first substrate 1 formed by forming a so-called insulating material in a plate shape, such as an organic substrate, an inorganic substrate such as a glass substrate, or a ceramic substrate. For the formation of these electrodes, for example, as in the case of a wiring board such as a printed circuit board, an insulating substrate with a metal foil (for example, copper foil) pasted on its surface is prepared and etching is performed, mask vapor deposition, or selective plating It is possible to adopt a method such as That is, a general electrode forming method can be used, and in addition to the above, for example, a forming method by direct application drawing with an ink or paste using metal nanoparticles can be employed. Also, FIG. 6 attached is a top view immediately after forming the electrode layers 2, 3, 4 and 5, and as described above, the electrode layer 2, the electrode layer 3 and the electrode layer 4 from the left side of the figure. Then, the electrode layer 5 and the electrode layer 6 are formed.
 次に、添付の図7は、上記第1のアクチュエータ11を形成した後の状態を示しており、この図にも示すように、上記の電極3と電極4とをつなぐように、即ち、これらの電極を跨いでアクチュエータ11を形成する。なお、このアクチュエータの材料としては、例えば、本願と同一出願人により平成17年(2005年)5月19日付で出願され、平成18年(2006年)11月30日付で出願公開された特開2006-325335号公報に開示されるように、熱膨張係数の絶対値の大きな高分子材料に導電性微粒子を混合したもの(単に、「有機アクチュエータ材」と言う)を使用する。即ち、導電性フィラとエポキシ樹脂からなるペーストをディスペンサやスクリーン印刷などにより塗布した後、加熱や化学反応により硬化させることによって得られる。また、添付の図8は、上記第1のアクチュエータ11を形成した後の、第1の基板1の上面図である。 Next, FIG. 7 attached shows a state after the first actuator 11 is formed. As shown in this figure, the electrodes 3 and 4 are connected to each other, that is, these The actuator 11 is formed across the electrodes. As a material for this actuator, for example, the same applicant as the present application filed on May 19, 2005 and published on November 30, 2006. As disclosed in Japanese Patent Publication No. 2006-325335, a polymer material having a large absolute value of thermal expansion coefficient mixed with conductive fine particles (simply referred to as “organic actuator material”) is used. That is, it is obtained by applying a paste made of a conductive filler and an epoxy resin by a dispenser, screen printing or the like and then curing it by heating or a chemical reaction. FIG. 8 attached herewith is a top view of the first substrate 1 after the first actuator 11 is formed.
 添付の図9は、上記の第1のアクチュエータ11に加え、更に、第2のアクチュエータ12と、導電接着層13とを形成した後の状態を示している。なお、この第2のアクチュエータ12も、上記第1のアクチュエータ11と同様に、電極5と電極6を跨いで形成されており、導電性フィラとエポキシ樹脂からなるペーストをディスペンサやスクリーン印刷などにより塗布した後、加熱や化学反応により硬化させることによって形成される。また、導電接着層13は、導電性接着材を上記電極2の上面に塗布される。なお、添付の図10は、この時の第1の基板1の上面図である。 FIG. 9 attached shows a state after the second actuator 12 and the conductive adhesive layer 13 are formed in addition to the first actuator 11 described above. The second actuator 12 is also formed across the electrodes 5 and 6 in the same manner as the first actuator 11, and a paste made of a conductive filler and an epoxy resin is applied by a dispenser or screen printing. And then cured by heating or chemical reaction. The conductive adhesive layer 13 is coated with a conductive adhesive on the upper surface of the electrode 2. In addition, attached FIG. 10 is a top view of the 1st board | substrate 1 at this time.
 一方、上述した第1の基板1とは別に、第2の基板14を用意し、その一方の面(図ではその上面)に電極7を形成する。なお、この第2の基板14も、上記第1の基板1と同様に、例えば、ガラスエポキシ基板、ポリイミド基板などの有機基板、ガラス基板などの無機基板、又は、セラミック基板など、所謂、絶縁材を板状に形成したものである。また、電極7も、上記の電極層2、3、4、5と同様に、上記第2の基板14の一方の面に金属箔(例えば、銅箔)を貼った絶縁基板を用意してエッチング加工による方法、マスク蒸着、又は、選択めっきなどによる方法を採用することが出来る。更には、上記に加えて、例えば、金属ナノ粒子を用いたインクやペーストによる直接塗布描画による形成方法を採用することも可能である。即ち、添付の図11は、その上面に電極7を形成した直後の第2の基板14を示しており、添付の図12は、その上面図である。 On the other hand, separately from the first substrate 1 described above, a second substrate 14 is prepared, and an electrode 7 is formed on one surface (the upper surface in the drawing). The second substrate 14 is also a so-called insulating material such as a glass epoxy substrate, an organic substrate such as a polyimide substrate, an inorganic substrate such as a glass substrate, or a ceramic substrate, like the first substrate 1. Is formed in a plate shape. Similarly to the electrode layers 2, 3, 4, and 5, the electrode 7 is etched by preparing an insulating substrate having a metal foil (for example, copper foil) pasted on one surface of the second substrate 14. A method by processing, a method by mask vapor deposition, selective plating, or the like can be employed. Furthermore, in addition to the above, for example, a formation method by direct coating and drawing with an ink or paste using metal nanoparticles may be employed. That is, the attached FIG. 11 shows the second substrate 14 immediately after forming the electrode 7 on the upper surface, and the attached FIG. 12 is a top view thereof.
 続いて、添付の図13にも示すように、形成した電極7上に、電極保護膜として誘電体膜15を形成する。なお、この誘電体膜15を形成する材料としては、強誘電体が好ましく、より具体的には、この強誘電体材料としては、塗布用チタン酸バリウム(BTO)のコンポジット材などがあげられる。また、添付の図14は、上記誘電体層15を形成した後の、上記第2の基板14の上面図である。 Subsequently, as shown in FIG. 13 attached, a dielectric film 15 is formed on the formed electrode 7 as an electrode protective film. The material forming the dielectric film 15 is preferably a ferroelectric. More specifically, the ferroelectric material may be a barium titanate (BTO) composite material for coating. Also, FIG. 14 attached is a top view of the second substrate 14 after the dielectric layer 15 is formed.
 その後、添付の図15にも示すように、上述した電極7や誘電体層15を形成した第2の基板14を、形成した誘電体層15が下方に向くように裏返し(図の矢印を参照)、上記図9及び図10に示した第1の基板1の上面に対向するように貼り合せる。即ち、電極7が導電接着層13に対向し、誘電体層15が第1のアクチュエータ11に対向し、そして、第2の基板14の下面が第2のアクチュエータ12に対向するように貼り合せる。この貼り合せの後、導電接着層13とアクチュエータ12を硬化させる。これにより、第1のアクチュエータ11と、誘電体層15で保護された(覆われた)電極7との間には、静電容量が形成され、即ち、容量を構成することとなる。そして、上記にも述べたが、上記第1のアクチュエータ層11と上記第2のアクチュエータ層12の働きにより、形成された静電容量を変化させることにより、可変容量素子を得ることが出来る。なお、この時の静電容量は、上記電極7と電極2との間が、導電性の接着層13を介して電気的に接続されているため、電極2と電極3の端子間で測定することが(得ることが)出来る。 Thereafter, as shown in FIG. 15 attached, the second substrate 14 on which the electrode 7 and the dielectric layer 15 are formed is turned over so that the formed dielectric layer 15 faces downward (see the arrow in the figure). ), And so as to face the upper surface of the first substrate 1 shown in FIG. 9 and FIG. That is, bonding is performed so that the electrode 7 faces the conductive adhesive layer 13, the dielectric layer 15 faces the first actuator 11, and the lower surface of the second substrate 14 faces the second actuator 12. After this bonding, the conductive adhesive layer 13 and the actuator 12 are cured. As a result, a capacitance is formed between the first actuator 11 and the electrode 7 protected (covered) by the dielectric layer 15, that is, constitutes a capacitance. As described above, a variable capacitance element can be obtained by changing the capacitance formed by the action of the first actuator layer 11 and the second actuator layer 12. The capacitance at this time is measured between the terminals of the electrode 2 and the electrode 3 because the electrode 7 and the electrode 2 are electrically connected through the conductive adhesive layer 13. Can (get).
 次に、以上にその詳細な構造とその製造方法を説明した本発明の可変容量素子について、その動作(原理)と共に、その静電容量の設定方法について、添付の図16~図18を参照しながら詳細に説明する。 Next, with respect to the variable capacitance element of the present invention whose detailed structure and manufacturing method have been described above, the operation (principle) and the capacitance setting method will be described with reference to FIGS. However, it explains in detail.
 まず、添付の図16は、その駆動回路をも含めた本発明の可変容量素子の内部構造を側面から示す側面図であり、この図において、「L1」は、上記第1の基板1の表面から第1のアクチュエータ11の表面までの高さを、「L2」は、上記第1の基板1の表面から第2のアクチュエータ11の表面(又は、第2の基板14の下面)までの高さを示したおり、そして、「D」は、上記第1のアクチュエータ11の表面から誘電体15の下面までの距離を示している。 First, FIG. 16 attached is a side view showing the internal structure of the variable capacitance element of the present invention including its drive circuit from the side, in which “L1” is the surface of the first substrate 1. The height from the surface of the first substrate 1 to the surface of the second actuator 11 (or the lower surface of the second substrate 14) is “L2”. “D” indicates a distance from the surface of the first actuator 11 to the lower surface of the dielectric 15.
 また、図中の符号100は、上記本発明になる可変容量素子を搭載した、例えば、携帯電話など、電子機器の全体の制御を司る駆動制御部を示しており、当該機器の状況により可変容量素子の静電容量を変更する旨の指令や変更すべき静電容量の値などを含めた制御信号を出力する。なお、この駆動制御部は、例えば、メモリ装置を含むCPU等によって構成される。また、図中の符号110は、上述した駆動制御部100からの制御信号に基づき、以下に説明する駆動電力(電流又は電圧:Act1、Act2)を生成して上記第1及び第2のアクチュエータ11、12に供給するための駆動信号生成回路を示している。 Reference numeral 100 in the figure denotes a drive control unit that controls the entire electronic device, such as a mobile phone, on which the variable capacitance element according to the present invention is mounted. A control signal including a command for changing the capacitance of the element and a value of the capacitance to be changed is output. The drive control unit is configured by, for example, a CPU including a memory device. Reference numeral 110 in the drawing generates drive power (current or voltage: Act1, Act2) described below based on the control signal from the drive control unit 100 described above to generate the first and second actuators 11. , 12 shows a drive signal generation circuit for supplying the signal.
 ところで、上述した導電性フィラとエポキシ樹脂からなるペーストを塗布・硬化して形成したアクチュエータ(以降、「有機アクチュエータ」と言う)は、例えば、駆動電流の通電(加熱膨張)により伸張し、その冷却(通電の停止)に伴って元の状態に収縮する性向を有するが、更に、当該有機アクチュエータは、加熱膨張により伸張した後、冷却(通電の停止)によって元の状態に戻ろう(収縮)しようとするが、その途中で拘束されて所定の時間の時間が経過すると、当該状態のまま(拘束された高さ)で安定する(保持される)という特性を有しており、以後、この特徴を「ラッチ機能」又は「ラッチ状態」と言う。 By the way, an actuator (hereinafter referred to as “organic actuator”) formed by applying and curing a paste made of the above-described conductive filler and epoxy resin is expanded by, for example, energization (heating expansion) of a drive current and cooled. The organic actuator has a tendency to shrink to its original state with (stop of energization). Furthermore, after the organic actuator expands by heating and expansion, it will return (shrink) to its original state by cooling (stop of energization). However, it has a characteristic that when it is restrained in the middle and a predetermined time has passed, it remains stable (constrained height) and remains stable (held). Is called “latch function” or “latch state”.
 本発明では、この有機アクチュエータにおける「ラッチ機能」又は「ラッチ状態」を利用することにより、電極間隔を任意に設定可能とし、可変容量素子の容量を、適宜、可変にすると共に、その省電力をも同時に達成せんとするものである。なお、この有機アクチュエータにおける「ラッチ機能」又は「ラッチ状態」は、その後、再び通電加熱することによって元の定常状態に戻すことができる。 In the present invention, by utilizing the “latch function” or “latch state” in the organic actuator, the electrode interval can be arbitrarily set, and the capacitance of the variable capacitance element can be appropriately changed, and the power saving can be reduced. Will also be achieved at the same time. The “latch function” or “latch state” in the organic actuator can be restored to the original steady state by energization heating again.
 添付の図17は、上述した可変容量素子の駆動ダイアグラムを示しており、その縦軸方向には電極位置(高さ)である上記「L1」と「L2」の位置の変化を示すと共に、その横軸方向には、その駆動電流(Act2、Act1)の駆動状態(「ON」、「OFF」)を示している。なお、これらの駆動電流(Act2、Act1)は、それぞれ、上記第1及び第2の有機アクチュエータ11、12の下面に設けられた電極3と電極4、及び、電極3と電極4を介して通電される。 Attached FIG. 17 shows a drive diagram of the above-described variable capacitance element, and in the vertical axis direction, changes in the positions of the above-mentioned “L1” and “L2” which are electrode positions (heights) are shown. In the horizontal axis direction, the driving state ("ON", "OFF") of the driving current (Act2, Act1) is shown. These drive currents (Act 2, Act 1) are energized through the electrodes 3 and 4 and the electrodes 3 and 4 provided on the lower surfaces of the first and second organic actuators 11 and 12, respectively. Is done.
 まず、駆動電流を流さない初期状態においては(Act2=OFF、Act1=OFF)、第1の有機アクチュエータ11の高さは「L1」、そして、第2の有機アクチュエータ12の高さは「L2」となっている。なお、この時の状態を、添付の図18(a)に示す。そして、駆動電流を流すと(Act2=ON、Act1=ON)、両有機アクチュエータ11、12はそれぞれ自己発熱により加熱膨張する。この時の状態を、添付の図18(b)に示す。 First, in an initial state where no drive current is passed (Act2 = OFF, Act1 = OFF), the height of the first organic actuator 11 is “L1”, and the height of the second organic actuator 12 is “L2”. It has become. The state at this time is shown in FIG. When a driving current is passed (Act2 = ON, Act1 = ON), both organic actuators 11 and 12 are heated and expanded by self-heating. The state at this time is shown in attached FIG.
 その後、両有機アクチュエータ11、12が所定の高さになるまで膨張した後、第1の有機アクチュエータ11へ、その定常状態(その高さを維持したままの状態)を維持するのに適度な駆動電流を流し(Act1=ON)、その状態で、第2の有機アクチュエータ12の駆動電流を停止する(Act2=OFF)。これにより、第1の有機アクチュエータ11の高さは定常状態となって所定の高さを維持し、他方、第2の有機アクチュエータ12は冷却収縮し、その高さを低下させる。そして、その途中で、上記定常状態を維持する第1の有機アクチュエータ11の働き(具体的には、誘電体15の下面が第1の有機アクチュエータ11の上面に当接することにより、その収縮を停止し、即ち、拘束された状態となる。この状態を所定の時間継続することにより、第2の有機アクチュエータ12は「ラッチ状態」となり、以後も、その高さを維持(安定)することとなる。この時の状態を、添付の図18(c)に示す。 Then, after both organic actuators 11 and 12 have expanded to a predetermined height, the first organic actuator 11 is driven appropriately to maintain its steady state (a state in which the height is maintained). A current is passed (Act1 = ON), and in this state, the drive current of the second organic actuator 12 is stopped (Act2 = OFF). As a result, the height of the first organic actuator 11 becomes a steady state and maintains a predetermined height, while the second organic actuator 12 cools and contracts to reduce its height. In the middle of this, the function of the first organic actuator 11 that maintains the steady state (specifically, the lower surface of the dielectric 15 abuts on the upper surface of the first organic actuator 11 to stop the contraction). In other words, by continuing this state for a predetermined time, the second organic actuator 12 enters the “latch state” and maintains its height (stable) thereafter. The state at this time is shown in FIG.
 次に、第1の有機アクチュエータ11への通電を停止する(Act1=OFF)。これにより、第1の有機アクチュエータ11は冷却されて収縮し、その後、初期状態に戻って定常状態となる。なお、この時も、上記第2の有機アクチュエータ12は「ラッチ状態」となり、その高さを安定に保っている。この時の状態を、添付の図18(d)に示す。 Next, energization to the first organic actuator 11 is stopped (Act1 = OFF). As a result, the first organic actuator 11 is cooled and contracts, and then returns to the initial state and becomes a steady state. At this time as well, the second organic actuator 12 is in a “latched state” and maintains its height stably. The state at this time is shown in FIG.
 その結果、上記第1のアクチュエータ11の表面から誘電体15の下面までの距離「D」は(図16を参照)、当該第1のアクチュエータ11の高さに加えて、更に、当該誘電体15の高さを決定する第2の有機アクチュエータ12の高さにも依存することとなり、換言すれば、上記距離「D」は、上記第1の有機アクチュエータ11の初期状態(定常状態)での高さと、上記第2の有機アクチュエータ12の「ラッチ状態」での高さによって決定されることとなり、かつ、当該第2の有機アクチュエータ12の「ラッチ状態」での高さは、上記第1の有機アクチュエータ11の加熱定常状態での高さに依存し、可変となる。 As a result, the distance “D” from the surface of the first actuator 11 to the lower surface of the dielectric 15 (see FIG. 16) is not only the height of the first actuator 11 but also the dielectric 15 In other words, the distance “D” is the height of the first organic actuator 11 in the initial state (steady state). And the height of the second organic actuator 12 in the “latch state” is determined by the height of the second organic actuator 12 in the “latch state”. It becomes variable depending on the height of the actuator 11 in the steady heating state.
 即ち、本発明の可変容量素子及びそのための制御方法によれば、上記第1及び第2の有機アクチュエータ11、12への通電パターンにより、上記距離「D」を適宜、任意に設定することが可能となり、もって、比較的簡単な構成により、当該可変容量素子の静電容量を自在に可変とすることが可能となる。 That is, according to the variable capacitance element of the present invention and the control method therefor, the distance “D” can be set arbitrarily and arbitrarily according to the energization pattern to the first and second organic actuators 11 and 12. Thus, the capacitance of the variable capacitance element can be freely changed with a relatively simple configuration.
 なお、上記の図18では、その説明のため、上記第1のアクチュエータ11の表面から誘電体15の下面までの距離「D」を拡大して示した。しかしながら、この距離「D」はミクロン単位であり、また、誘電体15の表面には凹凸が形成されている(粗面)であることから、当該可変容量素子の静電容量の変化は、実際には、当該誘電体15の表面とクチュエータ11の表面との間の接触圧による接触領域を変化によってもたらさせるものである。 In FIG. 18, the distance “D” from the surface of the first actuator 11 to the lower surface of the dielectric 15 is shown enlarged for the purpose of explanation. However, since this distance “D” is in units of microns, and the surface of the dielectric 15 is uneven (rough surface), the change in the capacitance of the variable capacitance element is actually In this case, the contact region between the surface of the dielectric 15 and the surface of the actuator 11 is brought about by a change.
 加えて、上記のようにして静電容量を可変設定した後の状態では、上記両有機アクチュエータ11、12への駆動電流は不要であることから(Act2=OFF、Act1=OFF)、一旦、その静電容量を変更した後には、電力の消費はなく、そのため、本発明の可変容量素子は、省電力化、低消費電力動作においても好適である。更には、上述したように、自己発熱型のアクチュエータである有機アクチュエータ11、12により素子を構成することによって、駆動(容量変更)時における加熱により、随時、脱ガスを実施することとなる。即ち、アクチュエータの加熱により、電極表面に吸着しやすい水分など、吸着物を脱離することができるので、水分吸着などを抑制することが可能となり、それに伴うスティッキングや電極の腐食等のリスクが低減されることとなる。 In addition, in the state after the capacitance is variably set as described above, the drive current to both the organic actuators 11 and 12 is unnecessary (Act2 = OFF, Act1 = OFF). After changing the capacitance, there is no power consumption. Therefore, the variable capacitance element of the present invention is suitable for power saving and low power consumption operation. Furthermore, as described above, the organic actuators 11 and 12 that are self-heating type actuators constitute the element, so that degassing is performed as needed by heating during driving (capacity change). In other words, since the adsorbed material such as moisture that is easily adsorbed on the electrode surface can be desorbed by heating the actuator, it is possible to suppress moisture adsorption and the like, thereby reducing the risk of sticking and electrode corrosion. Will be.
 なお、その後のリセット操作については、再度、第2の有機アクチュエータ12へ通電して加熱膨張を行い(Act2=ON)、その後、駆動電流の通電を停止しして冷却収縮させることにより、定常状態へ戻す。なお、この時、第1の有機アクチュエータ11は既に定常状態となっており、駆動電流の通電は行わない。なお、上述したように、上記第1及び第2の有機アクチュエータ11、12への供給される駆動電流のパターン(その形状や電流値等)は、上記距離「D」を含めて所望される静電容量との関係から、実際に、実験などにより、予め求めておき、これを上述した駆動制御部100のメモリ装置などに格納しておくことによれば、容易に、駆動信号生成回路110により生成することが可能である。あるいは、上記に代えて、各種のパターンを駆動信号生成回路110内に格納し、制御信号の変更すべき静電容量の値に基づいて適宜選択して出力することも可能である。 Regarding the subsequent reset operation, the second organic actuator 12 is energized again to perform thermal expansion (Act2 = ON), and thereafter, the energization of the drive current is stopped to cool and contract, thereby stabilizing the steady state. Return to. At this time, the first organic actuator 11 is already in a steady state, and the drive current is not supplied. As described above, the pattern of the drive current supplied to the first and second organic actuators 11, 12 (its shape, current value, etc.) includes a desired static value including the distance “D”. From the relationship with the electric capacity, it can be easily obtained by the drive signal generation circuit 110 by actually obtaining it in advance by experiments or the like and storing it in the memory device of the drive control unit 100 described above. It is possible to generate. Alternatively, instead of the above, it is also possible to store various patterns in the drive signal generation circuit 110 and appropriately select and output them based on the capacitance value to be changed in the control signal.
 更に加えて、上記の可変容量素子によれば、塗布(印刷)プロセスによって形成される誘電体を備え、かつ、上述したように、電極と誘電体との面接触圧を制御することによって静電容量を可変する構造において、一方の基板上には誘電体層15を形成し、更に、他方の基板上には第1及び第2の有機アクチュエータ11、12を形成することによれば、これらの部材を保護膜(スペーサ)としても利用することができる。かかる構成によれば、特に、比較的大きな基板を利用して多数の可変容量素子を一度に製造する場合、印刷プロセスにより安定して可変容量素子を製造することが可能となる。 In addition, according to the variable capacitance element described above, a dielectric formed by a coating (printing) process is provided, and as described above, electrostatic control is performed by controlling the surface contact pressure between the electrode and the dielectric. In the structure in which the capacitance is variable, the dielectric layer 15 is formed on one substrate, and the first and second organic actuators 11 and 12 are formed on the other substrate. The member can also be used as a protective film (spacer). According to such a configuration, particularly when a large number of variable capacitance elements are manufactured at a time using a relatively large substrate, the variable capacitance elements can be stably manufactured by a printing process.
 以上には、その一例として、片持ち梁型の構造を持つ可変容量素子について述べたが、本発明は、その他の構造の可変容量素子についても適用することが出来、以下には、第1の有機アクチュエータ21の周囲を取り囲んで「コ」字状の第2の有機アクチュエータ22を形成した、本発明の第2の実施例(実施例2)になる可変容量素子について述べる。 The variable capacitance element having a cantilever structure has been described above as an example. However, the present invention can also be applied to variable capacitance elements having other structures. A variable capacitance element according to a second embodiment (embodiment 2) of the present invention in which a second organic actuator 22 having a “U” shape is formed surrounding the periphery of the organic actuator 21 will be described.
 まず、添付の図19及び図20には、実施例2になる可変容量素子の上面図と側面図が示されている。特に、図19からも明らかなように、第1の基板(メイン基板)1の上面には複数の電極層23、24、25、26が形成されており、特に、その中央部に配置された一対の電極23と24とに跨るように第1のアクチュエータ21が形成されており、そして、当該第1のアクチュエータ21の周囲を取り囲むように、「コ」字状の第2のアクチュエータ22が形成されている。一方、特に、図20からも明らかなように、第2の基板(サブ基板)14の下面には、電極層27が形成されると共に、その略中央部には、誘電体層15が形成され、そして、当該第2の基板14は、上記第1の基板1の上面に対向して貼り合されている。 First, FIGS. 19 and 20 attached herewith show a top view and a side view of a variable capacitor according to the second embodiment. In particular, as can be seen from FIG. 19, a plurality of electrode layers 23, 24, 25, and 26 are formed on the upper surface of the first substrate (main substrate) 1, and are arranged in the central portion thereof. The first actuator 21 is formed so as to straddle the pair of electrodes 23 and 24, and the “U” -shaped second actuator 22 is formed so as to surround the periphery of the first actuator 21. Has been. On the other hand, as is apparent from FIG. 20, the electrode layer 27 is formed on the lower surface of the second substrate (sub-substrate) 14, and the dielectric layer 15 is formed at the substantially central portion thereof. The second substrate 14 is bonded so as to face the upper surface of the first substrate 1.
 また、特に、図20に明らかなように、この実施例2になる可変容量素子では、上述した駆動信号生成回路110からのパターン信号、即ち、駆動信号(Act1、Act2)は、上記電極23と電極26に供給される。そして、任意の可変容量は、図からも明らかなように、電極23と電極26の間に得られる(形成される)こととなる。 In particular, as is apparent from FIG. 20, in the variable capacitance element according to the second embodiment, the pattern signal from the drive signal generation circuit 110 described above, that is, the drive signals (Act1, Act2), It is supplied to the electrode 26. An arbitrary variable capacitance is obtained (formed) between the electrode 23 and the electrode 26, as is apparent from the drawing.
 なお、この実施例2になる可変容量素子では、上記実施例1の片持ち梁構造とは異なり、「コ」の字状の第2の有機アクチュエータ22により第2の基板(サブ基板)29と電極27とその下面に設けられた誘電体層15を縦軸方向に変位することにより上記の距離「D」を任意に設定可能とするものではあるが、しかしながら、その他、それにより得られる効果は、上述したとほぼ同様であり、ここではその説明を省略する。 In the variable capacitance element according to the second embodiment, unlike the cantilever structure of the first embodiment, the second substrate (sub-substrate) 29 is connected to the second organic actuator 22 having a “U” shape. The distance “D” can be arbitrarily set by displacing the electrode 27 and the dielectric layer 15 provided on the lower surface thereof in the vertical axis direction. However, other effects obtained thereby are as follows. This is almost the same as described above, and a description thereof is omitted here.
 また、この実施例2になる可変容量素子では、距離「D」を可変にするための第1及び第2の有機アクチュエータを、特に、その第2の有機アクチュエータ22を、第1の有機アクチュエータ21の周囲を取り囲んで「コ」字状にしたこと、所謂、二重構造のアクチュエータとしたことによれば、外側に配置されるアクチュエータを外部シールとしても兼用することが出来、もって、異物混入を防止することが可能となる。 In the variable capacitor according to the second embodiment, the first and second organic actuators for making the distance “D” variable, in particular, the second organic actuator 22, and the first organic actuator 21 are used. The so-called double-structured actuator is used as an external seal, so that foreign matter can be mixed. It becomes possible to prevent.
 加えて、以上のからも明らかなように、この実施例2になる可変容量素子では、第1のアクチュエータ21の外周を取り囲んで、「コ」の字状のアクチュエータ22を配置により、上記実施例1のように導電性接着材を使用することなく、構成することが可能となっている。なお、この実施例2になる可変容量素子でも、これらの部材の材料は、上記の実施例と同様であり、そのため、その詳細な説明はここでは省略する。なお、その詳細な動作についても、以下に示す実施例3と同様であり、ここでは省略する。 In addition, as can be seen from the above, in the variable capacitance element according to the second embodiment, the “U” -shaped actuator 22 is arranged around the outer periphery of the first actuator 21 to arrange the first embodiment. It is possible to configure without using a conductive adhesive as in 1. In the variable capacitance element according to the second embodiment, the materials of these members are the same as those in the above-described embodiment, and therefore detailed description thereof is omitted here. The detailed operation is also the same as that of the third embodiment shown below, and is omitted here.
 続いて、添付の図21~23には、本発明になる第3の実施例(実施例3)になる可変容量素子の製造方法を示す。特に、図21(a)~(d)は、上記第1の基板(メイン基板)1を中心とする固定電極側の製造工程を、図22(a)及び(b)は、上記第2の基板(サブ基板)29を中心とする可動電極側の製造工程を、そして、図23(a)及び(b)は、これら第1の基板1(メイン基板:可動電極側)と第2の基板14(サブ基板:固定電極側)とを貼り合わせて組み立てる製造工程が、それぞれ、図示されている。また、これら図中において、上記実施例1と同じ符号は、当該実施例における同様の構成要素を示す。 Subsequently, attached FIGS. 21 to 23 show a manufacturing method of the variable capacitance element according to the third embodiment (embodiment 3) of the present invention. In particular, FIGS. 21A to 21D show the manufacturing process on the fixed electrode side centering on the first substrate (main substrate) 1, and FIGS. 22A and 22B show the second step. The manufacturing process on the movable electrode side centering on the substrate (sub-substrate) 29, and FIGS. 23A and 23B are the first substrate 1 (main substrate: movable electrode side) and the second substrate. Each of the manufacturing steps for attaching and assembling 14 (sub-substrate: fixed electrode side) is illustrated. In these drawings, the same reference numerals as those in the first embodiment denote the same components in the first embodiment.
 まず、添付の図21(a)にも示すように、上記第1の基板(メイン基板)1を中心とする固定電極側では、第1の基板(メイン基板)1の上面には、複数の電極層33、34、35、36が形成される。なお、この時、電極の形成は、その表面に金属箔(例えば、銅箔)を貼った絶縁基板を用意してエッチング加工による方法、マスク蒸着、又は、選択めっきなどによる方法、更には、金属ナノ粒子を用いたインクやペーストによる直接塗布描画による形成方法を採用する。 First, as shown in the attached FIG. 21A, on the fixed electrode side centering on the first substrate (main substrate) 1, a plurality of surfaces are formed on the upper surface of the first substrate (main substrate) 1. Electrode layers 33, 34, 35, and 36 are formed. At this time, the electrode is formed by preparing an insulating substrate with a metal foil (for example, copper foil) on its surface, etching, mask vapor deposition, selective plating, or the like. A formation method by direct application drawing with ink or paste using nanoparticles is adopted.
 添付の図21(b)に示すように、中央部の電極33、34の一方(前方)の側において、これらを跨ぐように絶縁体を塗布し、これを焼成して絶縁膜37を形成する。その後、図21(c)に示すように、上記中央部の電極33、34の他方(後方)の側において、上述した導電性フィラとエポキシ樹脂からなるペーストをディスペンサやスクリーン印刷などにより塗布・焼成して第1の有機アクチュエータ38を形成する。その後、図21(d)に示すように、上記第1の有機アクチュエータ38の周囲を取り囲むように、上記ペーストを「ロ」の字状に塗布・焼成して第2の有機アクチュエータ39を形成する。これにより、上記第1の基板1を中心とする固定電極側の製造を完了する。 As shown in FIG. 21 (b), an insulator is applied on one (front) side of the electrodes 33 and 34 in the central portion, and the insulating film 37 is formed by baking the insulator. . Thereafter, as shown in FIG. 21 (c), on the other (rear) side of the electrodes 33 and 34 in the central portion, the paste made of the conductive filler and the epoxy resin is applied and baked by a dispenser, screen printing or the like. Thus, the first organic actuator 38 is formed. Thereafter, as shown in FIG. 21D, the paste is applied and baked in a “B” shape so as to surround the first organic actuator 38 to form a second organic actuator 39. . Thereby, the manufacture on the fixed electrode side centering on the first substrate 1 is completed.
 次に、添付の図22(a)にも示すように、上記第2の基板(サブ基板)14を中心とする可動電極側では、その上面に電極40を形成する。なお、この時も上記と同様、その表面に金属箔(例えば、銅箔)を貼った絶縁基板を用意してエッチング加工による方法、マスク蒸着、又は、選択めっきなどによる方法、更には、金属ナノ粒子を用いたインクやペーストによる直接塗布描画による形成方法を採用する。その後、第2の基板14の略中央部において、上記電極40の上面に誘電体を塗布・焼成して誘電体層15を形成する。 Next, as shown in the attached FIG. 22A, on the movable electrode side centering on the second substrate (sub-substrate) 14, the electrode 40 is formed on the upper surface thereof. At this time, in the same manner as described above, an insulating substrate having a metal foil (for example, copper foil) pasted on its surface is prepared and etching method, mask vapor deposition method, selective plating method or the like is used. A forming method by direct coating drawing with ink or paste using particles is employed. After that, a dielectric layer 15 is formed by applying and baking a dielectric on the upper surface of the electrode 40 at a substantially central portion of the second substrate 14.
 その後、添付の図23(a)にも示すように、電極40や誘電体層15を形成した第2の基板(サブ基板)14を、形成した誘電体層15が下方に向くように裏返し(図の矢印を参照)、その後、図23(b)にも示すように、裏返した第2の基板(サブ基板)14を第1の基板(メイン基板)1の上面に対向するように貼り合せて焼成する。 Thereafter, as shown in FIG. 23A, the second substrate (sub-substrate) 14 on which the electrode 40 and the dielectric layer 15 are formed is turned over so that the formed dielectric layer 15 faces downward (see FIG. Then, as shown in FIG. 23B, the second substrate (sub substrate) 14 turned upside down is bonded so as to face the upper surface of the first substrate (main substrate) 1. Bake.
 続いて、添付の図24は、上記可変容量素子の内部構造をその側面から示す側面図であり、この図に示す当該可変容量素子においても、上記実施例1と同様に、上述した駆動信号生成回路110から供給される駆動電力(電流又は電圧:Act1、Act2)に基づいて、その第1の有機アクチュエータ38及び第2の有機アクチュエータ39が駆動されて変位することにより、電極34と電極34との間に形成される静電容量を変化させる。また、この実施例においても、有機アクチュエータにおける「ラッチ機能」又は「ラッチ状態」を利用することにより、電極間隔を任意に設定可能とし、可変容量素子の容量を、適宜、可変にすると共に、その省電力をも同時に達成することは、上記の実施例1と同様である。 Subsequently, FIG. 24 attached is a side view showing the internal structure of the variable capacitance element from its side, and in the variable capacitance element shown in this figure as well as in the first embodiment, the drive signal generation described above is performed. Based on the drive power (current or voltage: Act1, Act2) supplied from the circuit 110, the first organic actuator 38 and the second organic actuator 39 are driven and displaced, whereby the electrodes 34 and 34 The capacitance formed during the period is changed. Also in this embodiment, by utilizing the “latch function” or “latch state” in the organic actuator, the electrode interval can be arbitrarily set, and the capacitance of the variable capacitance element can be appropriately varied. The achievement of power saving at the same time is the same as in the first embodiment.
 そして、添付の図25に示す可変容量素子の駆動ダイアグラムにも示すように、まず、駆動電流を流さない初期状態においては(Act2=OFF、Act1=OFF)、第1の有機アクチュエータ38の高さは「L1」、そして、第2の有機アクチュエータ39の高さは「L2」となっている。そして、駆動電流を流すと(Act2=ON、Act1=ON)、両有機アクチュエータはそれぞれ自己発熱により加熱膨張する。 As shown in the drive diagram of the variable capacitance element shown in FIG. 25, first, in the initial state where no drive current flows (Act2 = OFF, Act1 = OFF), the height of the first organic actuator 38 Is “L1”, and the height of the second organic actuator 39 is “L2”. When a driving current is passed (Act2 = ON, Act1 = ON), both organic actuators are heated and expanded by self-heating.
 その後、両有機アクチュエータ38、39が所定の高さになるまで膨張した後、第1の有機アクチュエータ38へ、定常状態(その高さを維持したままの状態)を維持するのに適度な駆動電流を流し(Act1=ON)、その状態で、第2の有機アクチュエータ39の駆動電流を停止する(Act2=OFF)。これにより、第1の有機アクチュエータ38の高さは定常状態となって所定の高さを維持し、他方、第2の有機アクチュエータ39は冷却収縮し、その高さを低下させる。そして、その途中で、上記定常状態を維持する第1の有機アクチュエータ38の働き(具体的には、誘電体15の下面が第1の有機アクチュエータ38の上面に当接することにより、その収縮を停止し、即ち、拘束された状態となる。この状態を所定の時間継続することにより、第2の有機アクチュエータ39は「ラッチ状態」となり、以後も、その高さを維持(安定)することとなる。 Thereafter, after both organic actuators 38 and 39 have expanded to a predetermined height, the first organic actuator 38 has an appropriate driving current for maintaining a steady state (a state in which the height is maintained). In this state, the driving current of the second organic actuator 39 is stopped (Act2 = OFF). As a result, the height of the first organic actuator 38 is in a steady state and maintains a predetermined height, while the second organic actuator 39 is cooled and contracted to reduce its height. In the middle of this, the action of the first organic actuator 38 that maintains the steady state (specifically, the contraction of the dielectric 15 is stopped when the lower surface of the dielectric 15 contacts the upper surface of the first organic actuator 38). In other words, by continuing this state for a predetermined time, the second organic actuator 39 enters the “latch state” and maintains its height (stable) thereafter. .
 更に、第1の有機アクチュエータ38への通電を停止する(Act1=OFF)。これにより、第1の有機アクチュエータ38は冷却されて収縮し、その後、初期状態に戻って定常状態となる。なお、この時も、上記第2の有機アクチュエータ39は「ラッチ状態」となり、その高さを安定に保っている。 Further, the power supply to the first organic actuator 38 is stopped (Act1 = OFF). As a result, the first organic actuator 38 is cooled and contracted, and then returns to the initial state and becomes a steady state. At this time as well, the second organic actuator 39 is in a “latched state” and maintains its height stably.
 以上のように、本実施例3でも、上述した実施例1及び2と同様に、上記距離「D」は、上記第1の有機アクチュエータ38の初期状態での高さと、上記第2の有機アクチュエータ39の「ラッチ(安定)状態」での高さによって決定されることとなり、かつ、当該第2の有機アクチュエータ39の「ラッチ状態」での高さは、上記第1の有機アクチュエータ38の加熱定常状態での高さに依存し、可変となる。即ち、本実施例の可変容量素子及びそのための制御方法によっても、上記第1及び第2の有機アクチュエータ38、39への通電パターンにより、上記距離「D」を適宜、任意に設定することが可能となり、もって、比較的簡単な構成により、当該可変容量素子の静電容量を自在に可変とすることが可能となる。加えて、静電容量を可変設定した後の状態では、両有機アクチュエータへの駆動電流は不要であることから、一旦、その静電容量を変更した後には、電力の消費はなく、そのため、省電力化、低消費電力動作においても好適である。 As described above, also in the third embodiment, the distance “D” is equal to the height of the first organic actuator 38 in the initial state and the second organic actuator, as in the first and second embodiments. 39 is determined by the height in the “latch (stable) state” of 39, and the height in the “latch state” of the second organic actuator 39 is the heating steady state of the first organic actuator 38. Depends on the height in the state, it becomes variable. That is, the distance “D” can be arbitrarily set arbitrarily according to the energization pattern to the first and second organic actuators 38 and 39 also by the variable capacitance element of the present embodiment and the control method therefor. Thus, the capacitance of the variable capacitance element can be freely changed with a relatively simple configuration. In addition, in the state after the capacitance has been variably set, the drive current to both organic actuators is not required. Therefore, once the capacitance has been changed, there is no power consumption. It is also suitable for power saving and low power consumption operation.
 また、この実施例3になる可変容量素子では、距離「D」を可変にするための第1及び第2の有機アクチュエータを、特に、その第2の有機アクチュエータ39を、第1の有機アクチュエータ38の周囲を取り囲んで「コ」字状にしたこと、所謂、二重構造のアクチュエータとしたことによれば、外側に配置されるアクチュエータを外部シールとしても兼用することが出来、もって、異物混入を防止することが可能となる。 In the variable capacitance element according to the third embodiment, the first and second organic actuators for making the distance “D” variable, in particular, the second organic actuator 39, and the first organic actuator 38 are used. The so-called double-structured actuator is used as an external seal, so that foreign matter can be mixed. It becomes possible to prevent.
 更に加えて、上記の実施例3になる可変容量素子によっても、上記の実施例と同様に、塗布プロセスによって形成される構造において、一方の基板の電極面上に形成された誘電体層15や、他方の基板上に形成された有機アクチュエータを、シール工程において、スペーサ代わりとして利用することによれば、印刷プロセスによって容易に製造することが可能となることは言うまでもなかろう。特に、比較的大きな基板を利用して多数の可変容量素子を一度に製造する場合、印刷プロセスにより安定して可変容量素子を製造することが可能となる。 In addition, the variable capacitance element according to the third embodiment also has a structure formed by a coating process as in the first embodiment, and the dielectric layer 15 formed on the electrode surface of one substrate or the like. Needless to say, when the organic actuator formed on the other substrate is used as a spacer in the sealing process, it can be easily manufactured by a printing process. In particular, when a large number of variable capacitance elements are manufactured at a time using a relatively large substrate, the variable capacitance elements can be stably manufactured by a printing process.
本発明の第一の実施の形態(実施例1)になる片持ち梁型の可変容量素子の全体構造を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an overall structure of a cantilever type variable capacitance element according to a first embodiment (Example 1) of the present invention. 上記片持ち梁型の可変容量素子の内部構造を示すための側面図である。It is a side view for showing the internal structure of the cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の内部構造を分かり易くするためその一部を切り欠いて示した斜視図である。It is the perspective view which notched and showed the internal structure of the said cantilever type variable capacitance element in order to make it intelligible. 上記片持ち梁型の可変容量素子を上方から見た上面図である。It is the top view which looked at the above-mentioned cantilever type variable capacity element from the upper part. 上記片持ち梁型の可変容量素子の第1の基板(メイン基板)の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the 1st board | substrate (main board | substrate) of the said cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の第1の基板(メイン基板)の製造工程を示す上面図である。It is a top view which shows the manufacturing process of the 1st board | substrate (main board | substrate) of the said cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の第1の基板(メイン基板)の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the 1st board | substrate (main board | substrate) of the said cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の第1の基板(メイン基板)の製造工程を示す上面図である。It is a top view which shows the manufacturing process of the 1st board | substrate (main board | substrate) of the said cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の第1の基板(メイン基板)の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the 1st board | substrate (main board | substrate) of the said cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の第1の基板(メイン基板)の製造工程を示す上面図である。It is a top view which shows the manufacturing process of the 1st board | substrate (main board | substrate) of the said cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の第2の基板(サブ基板)の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the 2nd board | substrate (sub board | substrate) of the said cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の第2の基板(サブ基板)の製造工程を示す上面図である。It is a top view which shows the manufacturing process of the 2nd board | substrate (sub board | substrate) of the said cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の第2の基板(サブ基板)の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the 2nd board | substrate (sub board | substrate) of the said cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の第2の基板(サブ基板)の製造工程を示す上面図である。It is a top view which shows the manufacturing process of the 2nd board | substrate (sub board | substrate) of the said cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の第2の基板(サブ基板)の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the 2nd board | substrate (sub board | substrate) of the said cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の静電容量の設定方法を説明するため、駆動回路をも含めた可変容量素子の側面図である。FIG. 4 is a side view of a variable capacitance element including a drive circuit for explaining a method of setting the capacitance of the cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の静電容量の設定方法を説明するための駆動ダイアグラムを示す図である。It is a figure which shows the drive diagram for demonstrating the setting method of the electrostatic capacitance of the said cantilever type variable capacitance element. 上記片持ち梁型の可変容量素子の静電容量の設定方法における各部の状態を示す側面図である。It is a side view which shows the state of each part in the setting method of the electrostatic capacitance of the said cantilever type variable capacitance element. 本発明の第二の実施の形態(実施例2)になる可変容量素子の構造を示す上面図である。It is a top view which shows the structure of the variable capacity element which becomes 2nd embodiment (Example 2) of this invention. 本発明の第二の実施の形態(実施例2)になる可変容量素子の構造を示す側面図である。It is a side view which shows the structure of the variable capacitance element which becomes 2nd embodiment (Example 2) of this invention. 本発明になる第三の実施例(実施例3)になる可変容量素子の、特に、第1の基板(メイン基板)の製造工程を示す図である。It is a figure which shows the manufacturing process of the 1st board | substrate (main board | substrate) especially of the variable capacitance element which becomes 3rd Example (Example 3) which becomes this invention. 本発明になる第三の実施例(実施例3)になる可変容量素子の、特に、第2の基板(サブ基板)の製造工程を示す図である。It is a figure which shows the manufacturing process of the 2nd board | substrate (sub board | substrate) especially of the variable capacitance element which becomes 3rd Example (Example 3) which becomes this invention. 上記実施例3の可変容量素子における第1の基板(可動電極側)と第2の基板(固定電極側)との組み立てる製造工程を示す図である。It is a figure which shows the manufacturing process assembled with the 1st board | substrate (movable electrode side) and the 2nd board | substrate (fixed electrode side) in the variable capacitance element of the said Example 3. FIG. 上記実施例3の可変容量素子の静電容量の設定方法を説明するため、駆動回路をも含めた可変容量素子の側面図である。FIG. 6 is a side view of a variable capacitance element including a drive circuit for explaining a method for setting the capacitance of the variable capacitance element according to the third embodiment. 上記実施例3の可変容量素子の静電容量の設定方法を説明するための駆動ダイアグラムを示す図である。It is a figure which shows the drive diagram for demonstrating the setting method of the electrostatic capacitance of the variable capacitance element of the said Example 3. FIG.
符号の説明Explanation of symbols
 1 第1の基板(メイン基板)
 2、3、4、5、6 電極(層)
 11 第1のアクチュエータ(層)
 12 第2のアクチュエータ(層)
 14 第2の基板(サブ基板)
 15 誘電体層。
1 First board (main board)
2, 3, 4, 5, 6 Electrode (layer)
11 First actuator (layer)
12 Second actuator (layer)
14 Second substrate (sub-substrate)
15 Dielectric layer.

Claims (8)

  1.  対向する二つの基板と、
     前記二つの対向する基板の対向する面上にそれぞれ形成された電極と、
     前記対向する二つの電極の一方の電極の面上に設けられた誘電体層とを備えており、前記対向する二つ電極とその間に配置された前記誘電体層により静電容量を形成する容量素子であって、更に、
     前記対向する二つの基板との間に、少なくとも、有機アクチュエータ材を層状に形成してなる二つの有機アクチュエータを形成すると共に、当該有機アクチュエータに対して駆動電力を供給するための駆動用電極をそれぞれ設けたことを特徴とする可変容量素子。
    Two opposing substrates,
    Electrodes respectively formed on opposing surfaces of the two opposing substrates;
    And a dielectric layer provided on the surface of one of the two opposed electrodes, and a capacitance that forms a capacitance by the two opposed electrodes and the dielectric layer disposed therebetween An element, and
    At least two organic actuators formed by layering an organic actuator material between the two opposing substrates are formed, and driving electrodes for supplying driving power to the organic actuators are respectively provided. A variable capacitance element provided.
  2.  前記請求項1に記載した可変容量素子において、
     前記二つの有機アクチュエータの一方の有機アクチュエータは、前記二つの電極の他方の電極の面上に形成されており、前記二つの有機アクチュエータの他方の有機アクチュエータは、前記対向する二つの基板との間に、前記一方の有機アクチュエータに隣接して設けられていることを特徴とする可変容量素子。
    In the variable capacitance element according to claim 1,
    One organic actuator of the two organic actuators is formed on the surface of the other electrode of the two electrodes, and the other organic actuator of the two organic actuators is between the two opposing substrates. The variable capacitance element is provided adjacent to the one organic actuator.
  3.  前記請求項2に記載した可変容量素子において、前記他方の有機アクチュエータは、前記一方の有機アクチュエータを取り囲むように形成されていることを特徴とする可変容量素子。 3. The variable capacitance element according to claim 2, wherein the other organic actuator is formed so as to surround the one organic actuator.
  4.  対向する二つの基板を用意し、
     前記二つの基板の対向する面上にそれぞれ電極層を形成し、
     前記二つの基板の一方の基板の対向面上には、有機アクチュエータ材を層状に形成してなる二つの有機アクチュエータを形成すると共に、前記二つの基板の他方の基板の対向面上には、前記形成した電極の面上に誘電体層を形成し、
     前記二つの基板を、前記他方の基板の対向面上に形成した前記誘電体層が、前記一方の基板の対向面上に形成した電極層に対向するように貼り合わせ、もって、前記対向する二つ電極層とその間に配置された前記誘電体層により形成される静電容量を可変とした可変容量素子を製造することを特徴とする可変容量素子の製造方法。
    Prepare two opposing substrates,
    Forming electrode layers on opposite surfaces of the two substrates,
    On the opposing surface of one of the two substrates, two organic actuators formed by forming an organic actuator material in layers are formed, and on the opposing surface of the other substrate of the two substrates, Forming a dielectric layer on the surface of the formed electrode;
    The two substrates are bonded together so that the dielectric layer formed on the opposite surface of the other substrate faces the electrode layer formed on the opposite surface of the one substrate. A variable capacitance element manufacturing method, characterized in that a variable capacitance element having a variable capacitance formed by two electrode layers and the dielectric layer disposed therebetween is manufactured.
  5.  前記請求項4に記載した可変容量素子の製造方法において、前記二つの有機アクチュエータの一方の有機アクチュエータは、製膜方法によって形成したことを特徴とする可変容量素子の製造方法。 5. The method of manufacturing a variable capacitance element according to claim 4, wherein one of the two organic actuators is formed by a film forming method.
  6.  対向する二つの基板と、前記二つの対向する基板の対向する面上にそれぞれ形成された電極と、前記対向する二つの電極の一方の電極の面上に設けられた誘電体層とを備えており、前記対向する二つ電極とその間に配置された前記誘電体層により静電容量を形成する容量素子であって、更に、前記対向する二つの基板との間に、少なくとも、有機アクチュエータ材を層状に形成してなる二つの有機アクチュエータを形成すると共に、当該有機アクチュエータに対して駆動電力を供給するための駆動用電極をそれぞれ設けた可変容量素子の静電容量の設定方法であって、
     前記二つの有機アクチュエータの双方を駆動して変位させ、
     前記二つの有機アクチュエータの一方の有機アクチュエータを定常状態にして他方の有機アクチュエータの位置を設定し、その後、
     前記一方の有機アクチュエータの位置を設定するとにより、前記静電容量を可変設定することを特徴とする可変容量素子の静電容量設定方法。
    Two opposing substrates, electrodes formed on opposing surfaces of the two opposing substrates, and a dielectric layer provided on one electrode surface of the two opposing electrodes. A capacitive element that forms a capacitance by the two opposing electrodes and the dielectric layer disposed therebetween, and further includes at least an organic actuator material between the two opposing substrates. A method of setting the capacitance of a variable capacitance element, in which two organic actuators formed in layers are formed and provided with driving electrodes for supplying driving power to the organic actuator,
    Drive and displace both of the two organic actuators,
    One organic actuator of the two organic actuators is set in a steady state to set the position of the other organic actuator,
    A capacitance setting method for a variable capacitance element, wherein the capacitance is variably set by setting a position of the one organic actuator.
  7.  前記請求項6に記載した静電容量設定方法において、前記他方の有機アクチュエータの位置を設定する際には、前記一方の有機アクチュエータには定常状態を維持するに必要な駆動電力を供給すると同時に、前記前記他方の有機アクチュエータへの駆動電力を停止することを特徴とする可変容量素子の静電容量設定方法。 In the capacitance setting method according to claim 6, when setting the position of the other organic actuator, simultaneously supplying driving power necessary for maintaining a steady state to the one organic actuator, A method for setting a capacitance of a variable capacitance element, wherein driving power to the other organic actuator is stopped.
  8.  前記請求項7に記載した静電容量設定方法において、前記一方の有機アクチュエータの位置を設定する際には、前記一方の有機アクチュエータへの駆動電力の供給を停止して初期状態に戻すことを特徴とする可変容量素子の静電容量設定方法。 8. The capacitance setting method according to claim 7, wherein when the position of the one organic actuator is set, the supply of driving power to the one organic actuator is stopped and returned to the initial state. A capacitance setting method for the variable capacitance element.
PCT/JP2008/003293 2008-11-12 2008-11-12 Variable capacitance element and manufacturing method, and capacitance setting method therefor WO2010055545A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010537615A JP5325893B2 (en) 2008-11-12 2008-11-12 Variable capacitance element, manufacturing method thereof, and capacitance setting method thereof
PCT/JP2008/003293 WO2010055545A1 (en) 2008-11-12 2008-11-12 Variable capacitance element and manufacturing method, and capacitance setting method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/003293 WO2010055545A1 (en) 2008-11-12 2008-11-12 Variable capacitance element and manufacturing method, and capacitance setting method therefor

Publications (1)

Publication Number Publication Date
WO2010055545A1 true WO2010055545A1 (en) 2010-05-20

Family

ID=42169695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003293 WO2010055545A1 (en) 2008-11-12 2008-11-12 Variable capacitance element and manufacturing method, and capacitance setting method therefor

Country Status (2)

Country Link
JP (1) JP5325893B2 (en)
WO (1) WO2010055545A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219707A (en) * 2011-04-08 2012-11-12 Ngk Spark Plug Co Ltd Ignition device and ignition system
JP2015529971A (en) * 2012-07-24 2015-10-08 レイセオン カンパニー Capacitor switchable with switch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620874A (en) * 1992-07-03 1994-01-28 Hitachi Metals Ltd Variable capacitor
JP2005259488A (en) * 2004-03-11 2005-09-22 Toshihiro Hirai Electric element using polymer actuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620874A (en) * 1992-07-03 1994-01-28 Hitachi Metals Ltd Variable capacitor
JP2005259488A (en) * 2004-03-11 2005-09-22 Toshihiro Hirai Electric element using polymer actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219707A (en) * 2011-04-08 2012-11-12 Ngk Spark Plug Co Ltd Ignition device and ignition system
JP2015529971A (en) * 2012-07-24 2015-10-08 レイセオン カンパニー Capacitor switchable with switch

Also Published As

Publication number Publication date
JPWO2010055545A1 (en) 2012-04-05
JP5325893B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
US7545081B2 (en) Piezoelectric RF MEMS device and method of fabricating the same
US6909589B2 (en) MEMS-based variable capacitor
TWI466374B (en) Electronic device, variable capacitor, micro switch, method of driving the micro switch and mems type electronic device
US7372191B2 (en) Microswitch and method for manufacturing the same
US8093978B2 (en) Coil component
EP1346828B1 (en) Piezoelectric actuator, liquid jetting head incorporating the same, piezoelectric element, and method of manufacturing the same
CN109119737B (en) Antenna device
JP2009140973A (en) Electronic part and method of producing the same
KR101100448B1 (en) Thin film piezoelectric transformer and manufacturing method thereof
JP5325893B2 (en) Variable capacitance element, manufacturing method thereof, and capacitance setting method thereof
JP4815800B2 (en) Piezoelectric vibration device
US20180061578A1 (en) Stacked passive component structures
US20140125897A1 (en) Electric device having variable capacitance element and its manufacture
JP2010118810A (en) Piezoelectric device
JP2014090337A (en) Variable band filter
JP2010140717A (en) Switch accompanied by mechanical movement
JP5812096B2 (en) MEMS switch
JP4836506B2 (en) Electrical device having a resistive heat generating element
KR100920398B1 (en) Oven controlled crystal oscillator
US9196429B2 (en) Contact structure for electromechanical switch
CN107221396B (en) Thermistor for piezoelectric element and piezoelectric element package including the same
JP2005212016A (en) Electronic part sealing substrate, electronic part sealing substrate for installing a large number and method of manufacturing electronic device
JP5237704B2 (en) Electrical telescopic mechanism, manufacturing method thereof, and actuator
JP2004172093A (en) Switching device, its electric field impression method and switching system
JPH0696957A (en) Chip type variable inductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010537615

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878092

Country of ref document: EP

Kind code of ref document: A1