WO2010054541A1 - 同步调度方法和装置 - Google Patents

同步调度方法和装置 Download PDF

Info

Publication number
WO2010054541A1
WO2010054541A1 PCT/CN2009/071114 CN2009071114W WO2010054541A1 WO 2010054541 A1 WO2010054541 A1 WO 2010054541A1 CN 2009071114 W CN2009071114 W CN 2009071114W WO 2010054541 A1 WO2010054541 A1 WO 2010054541A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
layer network
synchronization sequence
transmission time
synchronization
Prior art date
Application number
PCT/CN2009/071114
Other languages
English (en)
French (fr)
Inventor
艾建勋
翟恒星
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2011535858A priority Critical patent/JP5212956B2/ja
Priority to EP09825716.5A priority patent/EP2348778B1/en
Priority to RU2011118128/07A priority patent/RU2508613C2/ru
Priority to BRPI0915254-7A priority patent/BRPI0915254B1/pt
Priority to US13/128,918 priority patent/US8654757B2/en
Publication of WO2010054541A1 publication Critical patent/WO2010054541A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present invention relates to the field of communications, and in particular, to a synchronization scheduling method and apparatus.
  • BACKGROUND With the development of the Internet network, a large number of multimedia services emerge, and the demand for mobile communication is no longer satisfied with the telephone and message services.
  • the application service is introduced in the multimedia service, and the application service is characterized by multiple users. Receive the same data at the same time, for example, video on demand, TV broadcast, video conferencing, online education, interactive games, etc.
  • MBMS Multimedia Broadcast Multicast Service
  • MBMS is a point-to-multipoint service in which data is sent to multiple users by a data source.
  • FIG. 1 is a flowchart of a method for processing MBMS service synchronization of multiple network elements in the prior art, including the following processing.
  • Step S102 The upper layer network element sends the MBMS service data packet to each of the lower layer network elements, where the service data packet carries the service data, and carries the timestamp information, the data packet sequence number information, the accumulated service data length information, and the like, and the upper layer network element pair One or more consecutive service data packets identify the same timestamp information. These data packets marked with the same timestamp form a data burst or a synchronization sequence 'J&A'.
  • upper layer The network element label i only has one data burst or synchronization sequence for each service data packet. At this time, each data burst or synchronization sequence only includes one service data packet.
  • Step S104 the lower layer network element is in the same synchronization sequence.
  • the service data carried by the service data packet needs to be subjected to RLC (Radio Link Control) protocol layer concatenation processing, and the service data packets of different synchronization sequences are not subjected to RLC concatenation processing.
  • RLC Radio Link Control
  • the service data packet is processed by the RLC protocol layer
  • the first data packet of each synchronization sequence is opened.
  • the RLC sequence number of the RLC protocol layer is reset. That is, starting with the first RLC PDU of the first packet of each synchronization sequence (the ten-party data unit), the RLC sequence number is assigned starting from a fixed or configured fixed value.
  • the advantage of this is that in the process of transmission of the upper layer network element to the lower layer network element, when multiple consecutive data packets are lost, the lower layer network element cannot judge that the lost data packet is occupied by the RLC processing according to the prior art.
  • the length of the RLC PDU is such that the network element that loses the packet cannot maintain the consistency of subsequent RLC processing with other network elements. Resetting the RLC sequence number at the beginning of each synchronization sequence avoids the above problem, ensuring that the RLC sequence number of each network element is consistent at the beginning of each synchronization sequence.
  • Step S106 The lower layer network element sends the service data packet to the radio interface in sequence according to the transmission timing of the service data packet in the same synchronization sequence, and the upper layer network element sends the service data packet to each lower layer network.
  • the above information of the element is completely consistent, and each lower layer network element can perform completely consistent processing, so that the MBMS service is synchronously transmitted between cells of each lower layer network element.
  • the timestamp information of each packet can be set in the following two ways.
  • Manner 1 The timestamp is identified by the upper-layer network element according to the time of the service data packet received by the upper-layer network element, and the service data packet received in a certain length of time interval is identified by the same timestamp, where the specific length of time The interval is called the synchronization sequence length, or the scheduling period.
  • the RLC protocol layer of the upper-layer network element virtual lower-layer network element is processed, and the same timestamp is identified for the service data packet that needs to be subjected to the RLC concatenation process according to the result of the virtual RLC processing. Due to the above two setting methods, the timestamp information depends on the time when the service data packet arrives at the upper layer network element, so the timestamp interval of the service data packet is uncertain.
  • the service data stream received by the upper layer network element is based on the service QoS shaping data stream, that is, the bandwidth of the service data stream does not exceed the maximum bandwidth defined by the service QoS parameter in any period of time, and the JU interface is set in the wireless interface.
  • the channel resources and QoS parameters in the above time period are matched.
  • An MBMS service can be transmitted on a radio interface by using Time Division Multiplex (TDM).
  • TDM configuration includes the following parameters: TDM period, TDM offset, and TDM repetition length.
  • the TDM repetition period is up to 9, and the length of the TTI that can be used by the MBMS service is It is 40 or 80ms.
  • a service can only be sent on the wireless interface during the available transmission time configured during the TDM cycle.
  • FIG. 3 is a schematic diagram of resource allocation inconsistency corresponding to different synchronization sequence lengths. As shown in FIG.
  • the wireless channel resources are discontinuous, they are available in the same time period of different locations.
  • the radio resources are different, in which case the prior art scheduling algorithm will produce erroneous results.
  • the prior art scheduling algorithm assumes that a service data packet that can be sent in a certain period of time may not be transmitted on the wireless interface, and an overflow situation occurs, which may result in loss of service data and severely deteriorate service reception quality.
  • SUMMARY OF THE INVENTION The present invention has been made in view of the fact that the current scheduling method existing in the related art causes loss of service data and serious damage to the quality of service reception.
  • the main object of the present invention is to provide an improved synchronization scheduling scheme, Solve the above problem.
  • a synchronization scheduling method includes: the lower layer network element acquires a plurality of synchronization sequences of the specified service from the upper layer network element to which it belongs, wherein the upper layer network element processes the data packet of the specified service according to the length of the synchronization sequence, and sends multiple synchronizations.
  • the lower layer network element determines the scheduling transmission time interval according to the length of the synchronization sequence and the time division multiplexing period of the specified service, where the scheduling transmission time interval A time-division multiplexing period and a common multiple of the synchronization sequence length, and the time division multiplexing period of the specified service is one of integer multiples of the frame period of the wireless interface connection; the synchronization sequence of the timestamp information located in the current scheduled transmission time interval, the lower layer network The element is sent within the available transmission time of the specified scheduled transmission interval.
  • a synchronization scheduling apparatus configured to locate the timestamp
  • FIG. 1 is a flowchart of an MBMS service synchronization processing method of multiple network elements according to the prior art
  • FIG. 2 is a schematic diagram of an example of synchronization sequence length and TDM period mismatch according to the prior art
  • 3 is a schematic diagram of an example of resource allocation inconsistency corresponding to different synchronization sequence lengths according to the prior art
  • FIG. 4 is a flowchart of a synchronization scheduling method according to an embodiment of the method of the present invention
  • FIG. 5 is an upper layer network according to the present invention.
  • FIG. 6 is a schematic diagram 1 showing the relationship between the TDM period, the synchronization sequence length, and the scheduled transmission time interval according to the present invention
  • Figure 2 is a schematic diagram showing the relationship between the TDM period, the synchronization sequence length, and the scheduled transmission time interval according to the present invention
  • Figure 8 is a block diagram showing the structure of a synchronization scheduling apparatus according to an embodiment of the apparatus of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic idea of the present invention is: Since the wireless channel resources are currently discontinuous in the TDM configuration mode, the available radio resources are different in the same time period at different locations. In this case, the prior art scheduling algorithm may generate an erroneous result.
  • the present invention provides a synchronization scheduling method, by setting a scheduling transmission time interval, which is a time division multiplexing period and a synchronization sequence length.
  • the common multiple, and the received synchronization sequence is transmitted within the specified scheduled transmission time interval to solve the above problem.
  • Step S402 The lower layer network element acquires an upper layer network from its home network.
  • Step S404 the lower layer network element determines the scheduling transmission time interval according to the length of the synchronization sequence and the time division multiplexing period of the designated service, where the scheduling transmission time interval is a time division multiplexing period and a synchronization sequence a common multiple of the length of the column, and the time division multiplexing period of the specified service is one of integer multiples of the frame period of the wireless interface connection;
  • Step S406 the synchronization time sequence of the timestamp information is located in the current scheduled transmission time interval, and the lower layer network element is in the specified scheduling The transmission is performed within the available transmission time of the time division multiplexing period of the transmission time interval.
  • the specified scheduling transmission time interval includes one of the following: a current scheduled transmission time interval, a next scheduled transmission time interval; an available transmission time is a time period of a wireless interface resource used for sending a data packet; and the lower layer network element may be acquired.
  • the timestamp information corresponding to the first synchronization sequence is determined as the starting time of the first scheduled transmission time interval.
  • the lower layer network element may perform RLC concatenation processing on the data packet of the synchronization sequence whose timestamp information is located within the synchronization sequence length of the current scheduled transmission time interval.
  • the lower layer network element needs to obtain the synchronization sequence length of the upper layer network element in advance.
  • the length of the synchronization sequence can be obtained in two ways: First, the lower layer network element obtains the length of the synchronization sequence by using the system configuration; second, the upper layer network element notifies the lower layer network element of the length of the synchronization sequence. In addition, when the first data packet of the first synchronization sequence is received in each scheduling transmission time interval, the lower layer network element needs to reset the RLC sequence number of the designated service. In order to avoid the uneven distribution of radio resources in the transmission scheduling period in the method, because the TDM period length is not one of the integer multiple of the system frame number CFN period, the lower layer network element needs to set the TDM period of the service to be an integer multiple of the CFN period. One of the points.
  • the current time division multiplexing period (TDM period) of the MBMS service takes a value from 2 to 9, that is, the length of 2 TTIs to 9 TTIs.
  • the wireless interface connection frame number (CFN) takes 256 10 milliseconds.
  • the length of the TTI is 4 10 milliseconds, then the period of one CFN contains 64 TTIs.
  • the number of MIMO periods included in the TDM period is not one of the integer multiples of 1024, the number of TDM periods included in one CFN period is not an integer multiple, that is, it may occur in a CFN period.
  • the tail has only a part of the TDM period, which leads to the inconsistency of resources and other periods that the service can use during this part of the cycle time.
  • the upper layer network element assumes that the radio interface resources allocated by the lower layer network element are uniformly distributed. This assumption is not true if the TDM period is not one of integer multiples of the CFN period length.
  • the service data is processed according to the scheduling sequence interval determined by the synchronization sequence length and the time division multiplexing period of the service, and the wireless device can be avoided because of the TDM configuration.
  • the resource allocation is uneven due to the discontinuous distribution of interface resources, thus preventing the service synchronization sequence from overflowing and avoiding the loss of service data.
  • the upper layer network element is configured to complete the scheduling of the received MBMS service data packet. Specifically, the upper layer network element marks the timestamp information of each service data packet, and refers to the service data packet marked with the same timestamp information as a synchronization sequence. , or a synchronization sequence, after which the timestamp information packet is sent to one or more lower layer network elements belonging to the upper layer network element.
  • the lower layer network element is configured to receive each service data packet sent by the upper layer network element, and calculate a start time for starting to send a synchronization sequence according to timestamp information of each service data packet, and process the same synchronization sequence when processing by the RLC protocol layer.
  • the data packet is subjected to RLC concatenation processing, and the service data packet processed by the radio network layer user plane protocol is sent on the radio interface.
  • the lower layer network element performs an RLC reset at the beginning of each synchronization sequence, and the RLC ten-layer negotiation layer sequence is restarted.
  • FIG. 5 is a logical structural diagram of an upper layer network element and a lower layer network element. As shown in FIG.
  • an upper layer network element is connected to multiple lower layer network elements for signaling interaction.
  • an upper layer network element and one or more lower layer network elements belonging to the upper layer network element may be the same network element or different network elements.
  • the upper layer network element and the lower layer network element are only logically divided, that is, several identical or different physical network elements are divided into an upper layer network element and several lower layers according to logical functions.
  • the network element, these network elements cooperate to implement the MBMS service sent by the multi-cell combination mode between the cells of the lower layer network element.
  • the upper layer network element and the lower layer network element may be a combination of the following network elements, but are not limited to the following combinations: Combination one, in the MBMS service synchronization networking of the universal terrestrial radio access network (UTRAN) system, the upper layer network element For the upper layer RNC, the lower layer network element is the lower layer RNC, and the interface between the upper layer network element and the lower layer network element is an Iur interface. In this combination, the upper layer network element and the lower layer network element are the same network element with the same physical function.
  • Combination 2 MBMS Service Synchronization Group in Enhanced High Speed Packet Access System (HSPA+)
  • the upper layer network element is a GGSN, an SGSN, or a BMSC.
  • the lower-layer network element is the RNC or the node plus (NB+) doctrine combination 3.
  • the upper-layer network element is a multimedia gateway (MBMS Gateway, referred to as MGW for short).
  • MGW multimedia gateway
  • MCE multi-cell/multicast Coordination Entity
  • the lower-layer network element is E-UTRAN NodeB.loch
  • the present invention provides a synchronization method. Synchronous transmission between multiple network elements for services that configure radio interface resources in a time division multiplexing (TDM) manner.
  • TDM time division multiplexing
  • the instance upper-layer network element can schedule the data packet by setting the timestamp information of each data packet in the following manner:
  • the time-stamp information is identified by the upper-layer network element according to the time of the service data packet received by the upper-layer network element, and is in a certain
  • the service data packet received within a specific length interval identifies the same timestamp, where the specific length time interval is called the synchronization sequence length, or the scheduling period.
  • the synchronization sequence of the specified service sent by the lower-layer network element to the upper-layer network element can calculate a scheduled transmission time interval, and schedule the transmission time interval.
  • the length is a common multiple of the length of the TDM period and the length of the synchronization sequence of the upper layer network element.
  • the method for obtaining the scheduling information of the upper layer network element by the lower layer network element may be as follows: Mode 1: Through the management configuration, the lower layer network element obtains the upper layer network element for the specified service configuration. Synchronization sequence length; mode 2: The upper layer network element sends a signaling message to the lower layer network element to notify the lower layer network element of the synchronization sequence length of the specified service.
  • the lower layer network element starts from the start time of the next or current scheduled transmission time interval, and sequentially in the next or current scheduled transmission time.
  • a packet of one or more synchronization sequences is transmitted among the available radio resources corresponding to the interval.
  • the lower layer network element starts transmitting the first data packet of the service in the radio resource corresponding to the scheduled transmission time interval, first resets the next RLC sequence number of the service, and then sends one of the next RLC sequence time intervals.
  • the TDM period of the service is set to be an integer multiple of the CFN period, so that the number of TDM periods allocated by the service is an integer value in one CFN period.
  • FIG. 6 is a schematic diagram of a relationship between a TDM period, a synchronization sequence length, and a scheduled transmission time interval according to the present invention.
  • the TDM period of the service is 2 TTIs
  • the synchronization sequence length of the service is 3 TTIs, according to The TDM period and the length of the synchronization sequence can be calculated that the scheduled transmission time interval of the service can be a common multiple of 2 and 3.
  • the least common multiple 6 of the two may be taken, and the scheduled transmission time interval of the service is 6 TTIs.
  • the service data packets received in the current 6 frames can be sent in the available transmission time of the current 6 TDM cycles, or the available transmission time in the next 6 TDM cycles. Send within.
  • FIG. 7 is a schematic diagram of a relationship between a TDM period, a synchronization sequence length, and a scheduled transmission time interval according to the present invention. As shown in FIG. 2, the TDM period of the service is 4, and the synchronization sequence length of the service is 2, according to The TDM period and the length of the synchronization sequence can be calculated.
  • the scheduled transmission interval of the service can be a common multiple of 4 and 2, and the least common multiple of the two can be taken, and the scheduled transmission interval of the service is 8 ⁇ .
  • the service data packets received in the current 8 ⁇ can be sent in the available transmission time of the current 8 T TDM periods, or the available transmission time in the next 8 T TDM periods. Send within.
  • a synchronization scheduling apparatus is provided, which is preferably used to implement the method provided in the foregoing method embodiments.
  • FIG. 8 is a structural block diagram of a synchronization scheduling apparatus according to an embodiment of the present invention. The apparatus is located on a lower layer network element side. As shown in FIG.
  • the apparatus includes an ear module 10, a determining module 20, and a transmitting module 30.
  • Each module is described in detail below.
  • the obtaining module 10 is configured to acquire a plurality of synchronization sequences of the specified service from the upper-layer network element to which the home network belongs, wherein the upper-layer network element processes the data packet of the specified service according to the length of the synchronization sequence, and sends multiple synchronization sequences to the lower-layer network element.
  • the synchronization sequence here is a group of data packets having the same timestamp information;
  • the determining module 20 is connected to the obtaining module 10, and configured to determine a scheduling transmission time interval according to the synchronization sequence length and the time division multiplexing period of the specified service, where the scheduling The transmission time interval is a common multiple of the time division multiplexing period and the synchronization sequence length, and the time division multiplexing period of the designated service is a wireless interface connection.
  • the sending module 30 is connected to the obtaining module 10 and the determining module 20, and is configured to synchronize the timestamp information in the current scheduled transmission time interval, and divide the time interval in the specified scheduling transmission time interval.
  • the transmission is performed in a period of available transmission time, where the specified scheduling transmission time interval includes one of the following: a current scheduled transmission time interval, and a next scheduled transmission time interval.
  • the service data is processed by the scheduling transmission time interval determined according to the synchronization sequence length of the service and the time division multiplexing period, and the radio interface resource in the TDM configuration situation can be avoided compared to the prior art.
  • the resource allocation unevenness caused by the discontinuous distribution prevents the service synchronization sequence from overflowing and avoids the loss of service data.
  • the service data is processed by the scheduling transmission time interval determined according to the synchronization sequence length of the service and the time division multiplexing period, compared to the prior art.
  • the resource allocation unevenness caused by the discontinuous distribution of the radio interface resources in the case of the TDM configuration can be avoided, thereby preventing the service synchronization sequence from overflowing, and the synchronization sequence of the upper layer network element scheduling is inconsistent in the corresponding radio interface time, thereby transmitting data. Discarded situation.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Description

同步调度方法和装置
技术领域 本发明涉及通信领域, 尤其涉及一种同步调度方法和装置。 背景技术 随着 Internet网络的发展, 大量多媒体业务涌现出来, 人们对移动通信 的需求已不再满足于电话和消息业务, 目前, 多媒体业务中引入了应用业务, 应用业务的特点是多个用户能同时接收相同的数据, 例如, 视频点播、 电视 广播、 视频会议、 网上教育、 互动游戏等。 为了有效地利用移动网络资源, 提出 了多媒体广播组播业务 ( Multimedia Broadcast Multicast Service, 简称为 MBMS ) 技术, MBMS为 一个数据源向多个用户发送数据的点到多点业务, 通过该业务, 能够实现网 络资源共享, 包括移动核心网和接入网的资源共享, 尤其是空口资源的共享, JL 3GPP中的 MBMS不仅能够实现纯文本氏速率的消息类组播和广播,而且 能够实现高速率的多媒体业务组播和广播。 由于 MBMS业务是面向全网的月良务,同一个 MBMS业务可能建立在不 同的下层网元节点上。 图 1是现有技术的多个网元的 MBMS业务同步处理 方法的流程图, 包括以下处理。 步骤 S102, 上层网元发送 MBMS业务数据包到各个下层网元, 该业务 数据包承载了业务数据, 并携带时间戳信息、 数据包序列号信息、 累计的业 务数据长度信息等, 上层网元对一个或多个连续业务数据包标识相同的时间 戳信息, 这些标记了相同时间戳的数据包组成一个数据突发( data burst ) 或 者称为同步序歹 'J ( synchronization Sequence )„ 特殊地, 上层网元标 i只每个业 务数据包为一个数据突发或者同步序列, 此时, 每个数据突发或者同步序列 只包含一个业务数据包。 步骤 S104 , 下层网元对同一个同步序列中的业务数据包所携带的业务 数据需要进行 RLC ( Radio Link Control, 无线链路控制) 协议层串接处理, 不同的同步序列的业务数据包不进行 RLC串接处理。 并且, 在对一个同步序 列的业务数据包进行 RLC协议层处理时,从每个同步序列的第一个数据包开 始, 对 RLC协议层的 RLC序列号进行复位处理。 也就是说, 从每个同步序 列的第一个数据包的第一个 RLC PDU (十办议数据单元 ) 开始, RLC序列号 从某个约定或者配置的固定值开始分配。 这样做的好处是为了在出现上层网 元到下层网元的传输过程中, 出现多个连续数据包的丢失时, 下层网元根据 现有技术不能判断丢失的数据包在进行 RLC处理时占用的 RLC PDU的长 度, 从而导致丢包的网元不能和其它网元保持后续 RLC处理的一致的问题。 在每个同步序列的开始复位 RLC序列号可以避免上述问题,保证在每个同步 序列开始, 每个网元的 RLC序列号都是一致的。 步骤 S106 , 下层网元对同一个同步序列中的业务数据包所携带的业务 数据在其标识的时间戳对应的发送时机开始在无线接口依次发送业务数据 包, 由于上层网元发送到各个下层网元的上述信息完全一致, 各个下层网元 可以进行完全一致的处理, 这样就实现了 MBMS 业务在各个下层网元的小 区间同步发送。 目前, 可以通过下述两种方式设置每个数据包的时间戳信息。 方式一, 在上层网元根据其接收到的业务数据包的时刻来标识时间戳, 并对在某个特定长度时间间隔内接收到的业务数据包, 标识相同的时间戳, 其中, 特定长度时间间隔称为同步序列长度 ( synchronization sequence length ), 或者调度周期。 方式二, 上层网元虚拟下层网元的 RLC协议层处理, 才艮据虚拟 RLC处 理的结果, 对需要进行 RLC串接处理的业务数据包标识相同的时间戳。 由于上述两种设置方法,时间戳信息取决于业务数据包到达上层网元的 时间, 所以业务数据包的时间戳间隔都是不确定的。 假设上层网元接收到的 业务数据流是根据业务 QoS整形后的数据流, 也就是在任意一段时间内, 业 务数据流的带宽不超过业务 QoS参数定义的最大带宽,并 JU艮设无线接口在 上述的时间段内的信道资源和 QoS参数匹配。 一个 MBMS业务可以采用时分复用 ( Time Division Multiplex, 简称为 TDM ) 的方式在无线接口进行发送, TDM配置包含如下参数: TDM周期、 TDM偏移和 TDM重复长度, 一个业务可用的 TDM资源可以如下表示: (系 统帧号 CFN整除 TTI(传输时间间隔)包含 10ms无线帧个数)取模运算( TDM 周期) =TDM偏移 +i, i=0、 1 ( TDM周期— 1 )。 具体地, 一个 MBMS 业务在其分配的 TDM周期内, 从第 TDM偏移个 TTI开始的, 连续 TDM重 复长度个调度传输时间间隔 (TTI ) 内进行发送, TDM重复周期最大为 9, MBMS业务可以使用的 TTI的长度为 40或者 80ms。 一个业务只有在 TDM 周期内配置的可用发送时间内才能在无线接口发送。 采用了 TDM方式发送数据时, 由于一个 MBMS业务在无线接口的发 送时机是不连续的, 而是按照 TDM的配置周期性循环出现, 由于目前的调 度方法, 时间戳具有不确定性, 因而时间戳信息可能不能直接对应于无线接 口可以发送该 MBMS 业务的起始时间。 也就是说, 时间戳和无线接口发送 时机(可用发送时间)不能——对应,例如,图 2所示的同步序列长度与 TDM 周期不相匹配的情况。 图 3是不同同步序列长度对应的资源分配不一致的示意图,如图 3所示, 在 TDM配置方式中, 由于其无线信道资源是不连续的, 因此, 在不同位置 的相同时间段内, 其可用的无线资源是不一样的, 在这种情况下, 现有技术 的调度算法会产生错误的结果。 现有技术的调度算法假设在某个时间段内能 发送的业务数据包在无线接口可能不能发送, 而出现溢出的情况, 这样会导 致业务数据丢失, 严重的损坏业务接收质量。 发明内容 考虑到相关技术中存在的目前的调度方法导致业务数据丢失,严重的损 坏业务接收质量的问题而提出本发明, 为此, 本发明的主要目的在于提供一 种改进的同步调度方案, 以解决上述问题。 为了实现上述目的, 才艮据本发明的一个方面, 提供一种同步调度方法。 根据本发明的同步调度方法包括:下层网元获取来自其归属的上层网元 的指定业务的多个同步序列, 其中, 上层网元按照同步序列长度处理指定业 务的数据包, 并发送多个同步序列到下层网元, 其中, 同步序列为具有相同 时间戳信息的一组数据包; 下层网元根据同步序列长度和指定业务的时分复 用周期, 确定调度传输时间间隔, 其中, 调度传输时间间隔为时分复用周期 和同步序列长度的公倍数, 且指定业务的时分复用周期为无线接口连接帧号 周期的整数倍分之一; 对于时间戳信息位于当前调度传输时间间隔的同步序 列, 下层网元在指定调度传输时间间隔的可用发送时间内进行发送。 才艮据本发明的另一个方面, 提供一种同步调度装置, 该装置位于下层网 元倒。 根据本发明的同步调度装置包括: 获取模块, 用于获取来自其归属的上 层网元的指定业务的多个同步序列, 其中, 上层网元按照同步序列长度处理 指定业务的数据包, 并发送多个同步序列到下层网元, 其中, 同步序列为具 有相同时间戳信息的一组数据包; 确定模块, 用于根据同步序列长度和指定 业务的时分复用周期, 确定调度传输时间间隔, 其中, 调度传输时间间隔为 时分复用周期和同步序列长度的公倍数, 且指定业务的时分复用周期为无线 接口连接帧号周期的整数倍分之一; 发送模块, 用于对时间戳信息位于当前 调度传输时间间隔的同步序列, 在指定调度传输时间间隔的时分复用周期的 可用发送时间内进行发送, 其中, 指定调度传输时间间隔包括以下之一: 当 前调度传输时间间隔、 下一调度传输时间间隔。 通过本发明提供的方法,通过才艮据业务的同步序列长度和时分复用周期 确定的调度传输时间间隔, 对业务数据进行处理, 相比于现有技术, 可以避 免因为 TDM配置情况下无线接口资源不连续分布导致的资源分配不均匀情 况, 从而防止业务同步序列出现溢出, 避免业务数据的丢失。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1是根据现有技术的多个网元的 MBMS业务同步处理方法的流程图; 图 2 是才艮据现有技术的同步序列长度和 TDM 周期不匹配的实例示意 图; 图 3 是根据现有技术的不同同步序列长度对应的资源分配不一致的实 例示意图; 图 4是才艮据本发明方法实施例的同步调度方法的流程图; 图 5是才艮据本发明的上层网元和下层网元的逻辑结构框架图; 图 6是才艮据本发明的 TDM周期、 同步序列长度、 调度传输时间间隔的 关系示意图一; 图 Ί是才艮据本发明的 TDM周期、 同步序列长度、 调度传输时间间隔的 关系示意图二; 图 8是根据本发明装置实施例的同步调度装置的结构框图。 具体实施方式 功能相克述 本发明的基本思路是: 由于目前在 TDM配置方式中, 无线信道资源是 不连续的, 因此, 在不同位置的相同时间段内, 可用的无线资源是不一样的, 在这种情况下, 现有技术的调度算法会产生错误的结果, 基于此, 本发明提 供一种同步调度方法, 通过设置调度传输时间间隔, 该调度传输时间间隔为 时分复用周期和同步序列长度的公倍数, 并在指定的调度传输时间间隔内来 发送接收到的同步序列, 来解决上述问题。 下面将结合附图详细描述本发明。 需要说明的是, 如果不沖突, 本申请 中的实施例以及实施例中的特征可以相互组合。 方法实施例 才艮据本发明实施例, 提供了一种同步调度方法。 需要说明的是, 为了便于描述, 在下文中以步骤的形式示出并描述了本 发明的方法实施例的技术方案, 在下文中所示出的步骤可以在诸如一组计算 机可执行指令的计算机系统中执行。 虽然在相关的附图中示出了逻辑顺序, 但是在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 图 4是才艮据本发明实施例的同步调度方法的流程图, 如图 4所示, 该方 法包括以下步骤 (步骤 S402至步骤 S406 ): 步骤 S402 , 下层网元获取来自其归属的上层网元的指定业务的多个同 步序列, 其中, 上层网元按照同步序列长度处理指定业务的数据包, 并发送 多个同步序列到下层网元, 其中, 同步序列为具有相同时间戳信息的一组数 据包; 步骤 S404 , 下层网元才艮据同步序列长度和指定业务的时分复用周期, 确定调度传输时间间隔, 其中, 调度传输时间间隔为时分复用周期和同步序 列长度的公倍数, 且指定业务的时分复用周期为无线接口连接帧号周期的整 数倍分之一; 步骤 S406 , 对于时间戳信息位于当前调度传输时间间隔的同步序列, 下层网元在指定调度传输时间间隔的时分复用周期的可用发送时间内进行发 送。 其中, 指定调度传输时间间隔包括以下之一: 当前调度传输时间间隔、 下一调度传输时间间隔; 可用发送时间为用于发送数据包的无线接口资源的 时间段; 并可以将下层网元获取的第一同步序列对应的时间戳信息确定为第 一个调度传输时间间隔的起始时刻。 在步骤 S402中, 下层网元获取指定业务的多个同步序列之后, 下层网 元可以对于时间戳信息位于当前调度传输时间间隔的同步序列长度内的同步 序列的数据包进行 RLC串接处理。 在步骤 S404中, 下层网元需要预先获取上层网元的同步序列长度。 其 中, 可以通过两种方式获取该同步序列长度: 一是下层网元通过系统配置获 取同步序列长度; 二是上层网元将同步序列长度通知给下层网元。 另外,在每个调度传输时间间隔内接收到第一个同步序列的第一个数据 包时, 下层网元需要对指定业务的 RLC序列号进行复位。 为了避免因为 TDM周期长度不是系统帧号 CFN周期整数倍分之一, 导致的本方法中传输调度周期内无线资源分布不均匀的情况, 下层网元需要 设置业务的 TDM周期为 CFN周期的整数倍分之一。 这是因为, 目前 MBMS 业务的时分复用周期 ( TDM周期)取值为 2到 9中的一个值, 也就是 2个 TTI到 9个 TTI的长度。 无线接口连接帧号 ( CFN )取值为 256个 10毫秒。 殳设 TTI长度为 4个 10毫秒, 那么一个 CFN的周期包含了 64个 TTI。 而考 虑到 TDM周期取值范围, 如果 TDM周期包含的 ΤΤΙ个数不是 1024的整数 倍分之一, 则一个 CFN周期包含的 TDM周期个数不是整数倍, 也就是说, 可能出现在一个 CFN周期的尾部只有部分 TDM周期, 从而导致在这个部分 周期时间长度内, 业务所能用的资源和其它周期不一致的情况。 在本发明实 施例中, 上层网元假设了下层网元分配的无线接口资源是均匀分布的, 在 TDM周期如果不是 CFN周期长度整数倍分之一的情况下, 这个假设是不成 立的。 通过本发明实施例提供的技术方案,通过根据业务的同步序列长度和时 分复用周期确定的调度传输时间间隔, 对业务数据进行处理, 相比于现有技 术, 可以避免因为 TDM配置情况下无线接口资源不连续分布导致的资源分 配不均匀情况, 从而防止业务同步序列出现溢出, 避免业务数据的丢失。 在进一步说明本发明实施例之前, 首先对上层网元和下层网元进行描 述。 上层网元用于完成对接收到的 MBMS业务数据包的调度, 具体地, 上 层网元对各业务数据包标记时间戳信息, 并将标记了相同时间戳信息的业务 数据包称为一个同步序列, 或称为一个同步序列, 此后, 将标记了时间戳信 息数据包发送给归属于该上层网元的一个或多个下层网元。 下层网元用于接收上层网元发送的各业务数据包,并根据各业务数据包 的时间戳信息, 计算开始发送一个同步序列的起始时间, 在 RLC协议层处理 时,对同一个同步序列的数据包进行 RLC串接处理, 并将经过了无线网络层 用户面协议处理后的业务数据包在无线接口发送。 为了提高在无线接口丢包 情况下的同步恢复,下层网元在每个同步序列的开始进行 RLC复位,将 RLC 十办议层序列重新开始分配。 图 5是上层网元和下层网元的逻辑结构框架图, 如图 5所示,一个上层 网元与多个下层网元相连接, 进行信令交互。 需要说明的是, 一个上层网元 和归属于该上层网元的一个或多个下层网元在物理功能上可以是相同的网 元, 也可以是不同的网元。 为了协作完成业务同步这样一个功能, 上层网元 和下层网元只是逻辑上的划分, 即, 若干个相同或不同的物理网元才艮据逻辑 上的功能划分为一个上层网元和若干个下层网元, 这些网元协同合作, 在下 层网元的小区间, 实现以多小区合并方式发送的 MBMS业务。 其中, 上层网元和下层网元可以是下列网元的组合方式, 但是不限于下 列的组合: 组合一, 在通用陆地无线接入网 ( UTRAN ) 系统的 MBMS业务同步组 网中, 上层网元为上层 RNC , 下层网元为下层 RNC, 其中, 上层网元和下 层网元间的接口为 Iur接口, 在该组合中, 上层网元和下层网元为物理功能 目同的网元。 组合二, 在增强的高速分组接入系统( HSPA + )的 MBMS业务同步组 网中, 上层网元为 GGSN、 SGSN或者 BMSC。 下层网元为 RNC或者节点加 ( NB+ )„ 组合三,在长期演进系统(Long-Term Evolution,简称为 LTE )的 MBMS 业务同步组网中, 上层网元为多媒体网关( MBMS Gateway, 简称为 MGW ) 或者多小区多播十办调实体 ( Multi-cell/multicast Coordination Entity , 简称为 MCE ), 下层网元为演进节点 B ( E-UTRAN NodeB )„ 在上述技术的基础上,本发明提供同步方法,实现对以时分复用( TDM ) 方式配置无线接口资源的业务的多网元间同步发送。 实例 上层网元可以通过下述方式对数据包进行调度,来设置每个数据包的时 间戳信息: 在上层网元根据其接收到的业务数据包的时刻来标识时间戳, 并 对在某个特定长度时间间隔内接收到的业务数据包, 标识相同的时间戳, 其 中, 特定长度时间间隔称为同步序列长度 ( synchronization sequence length ) , 或者调度周期。 下层网元对上层网元发送的指定业务的同步序列,才艮据该指定业务配置 的 TDM周期长度和上层网元的同步序列长度信息, 可以计算得到一个调度 传输时间间隔, 调度传输时间间隔的长度为 TDM周期长度和上层网元同步 序列长度的公倍数, 其中, 下层网元获得上层网元调度信息的方法可以有: 方式一、 通过管理配置, 下层网元获得上层网元为指定业务配置的同步 序列长度; 方式二、 上层网元通过向下层网元发送信令消息, 通知下层网元该指定 业务的同步序列长度。 在具体实施过程中,对于时间戳信息位于一个调度传输时间间隔的一个 或者多个同步序列, 下层网元从下一个或者当前调度传输时间间隔的起始时 间开始, 依次在下一个或者当前调度传输时间间隔对应的可用无线资源中发 送一个或者多个同步序列的数据包。 下层网元在一个调度传输时间间隔对应的无线资源中开始发送的该业 务的第一个数据包时, 首先复位该业务的下一个 RLC序列号, 然后对在同一 个调度传输时间间隔发送的一个或者多个同步序列的数据包进行 RLC 串接 处理。 同时, 设置业务的 TDM周期为 CFN周期的整数倍分之一, 这样保证 在一个 CFN周期内, 该业务所分配的 TDM周期的个数为一个整数值。 例如, 图 6是根据本发明的 TDM周期、 同步序列长度、 调度传输时间 间隔的关系示意图, 如图 6所示, 业务的 TDM周期为 2个 TTI, 业务的同 步序列长度为 3个 TTI , 根据该 TDM周期和同步序列长度, 可以计算出该 业务的调度传输时间间隔可以为 2和 3的公倍数。 优选地, 可以取二者的最 小公倍数 6 , 则该业务的调度传输时间间隔为 6个 TTI。 在映射过程中, 在 当前的 6个 ΤΤΙ内接收到的业务数据包, 可以在当前的 6个 ΤΤΙ的 TDM周 期的可用发送时间内发送, 也可以在下个 6个 ΤΤΙ的 TDM周期的可用发送 时间内发送。 例如, 图 7是根据本发明的 TDM周期、 同步序列长度、 调度传输时间 间隔的关系示意图, 如图 Ί所示, 业务的 TDM周期为 4个 ΤΤΙ, 业务的同 步序列长度为 2个 ΤΤΙ , 根据该 TDM周期和同步序列长度, 可以计算出该 业务的调度传输时间间隔可以为 4和 2的公倍数, 可以取二者的最小公倍数 8 , 则该业务的调度传输时间间隔为 8个 ΤΤΙ。 在映射过程中, 在当前的 8个 ΤΤΙ内接收到的业务数据包, 可以在当前的 8个 ΤΤΙ的 TDM周期的可用发 送时间内发送,也可以在下个 8个 ΤΤΙ的 TDM周期的可用发送时间内发送。 装置实施例 根据本发明实施例, 提供一种同步调度装置, 优选的用于实现上述方法 实施例中提供的方法。 图 8是根据本发明实施例的同步调度装置的结构框图,该装置位于下层 网元侧, 如图 8所示, 该装置包括获耳 4莫块 10、 确定模块 20和发送模块 30。 以下对各模块进行详细的描述。 获取模块 10 , 用于获取来自其归属的上层网元的指定业务的多个同步 序列, 其中, 上层网元按照同步序列长度处理指定业务的数据包, 并发送多 个同步序列到下层网元, 这里的同步序列为具有相同时间戳信息的一组数据 包; 确定模块 20 , 连接至获取模块 10 , 用于根据同步序列长度和指定业务 的时分复用周期, 确定调度传输时间间隔, 其中, 调度传输时间间隔为时分 复用周期和同步序列长度的公倍数, 指定业务的时分复用周期为无线接口连 接帧号周期的整数倍分之一; 发送模块 30 , 连接至获取模块 10和确定模块 20, 用于对时间戳信息位于当前调度传输时间间隔的同步序列, 在指定调度 传输时间间隔的时分复用周期的可用发送时间内进行发送, 其中, 指定调度 传输时间间隔包括以下之一: 当前调度传输时间间隔、 下一调度传输时间间 隔。 通过本发明提供的上述装置,通过根据业务的同步序列长度和时分复用 周期确定的调度传输时间间隔, 对业务数据进行处理, 相比于现有技术, 可 以避免因为 TDM配置情况下无线接口资源不连续分布导致的资源分配不均 匀情况, 从而防止业务同步序列出现溢出, 避免业务数据的丢失。 如上所述, 借助于本发明提供的同步调度方法和 /或装置, 通过根据业 务的同步序列长度和时分复用周期确定的调度传输时间间隔, 对业务数据进 行处理, 相比于现有技术, 可以避免因为 TDM配置情况下无线接口资源不 连续分布导致的资源分配不均匀情况, 从而防止业务同步序列出现溢出, 上 层网元调度的同步序列在其对应的无线接口时间内资源不一致, 从而发送数 据丢弃的情况。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^^申和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种同步调度方法, 其特征在于, 包括:
下层网元获取来自其归属的上层网元的指定业务的多个同步序列, 其中, 所述上层网元按照同步序列长度处理所述指定业务的数据包, 并 发送多个同步序列到所述下层网元, 其中, 所述同步序列为具有相同时 间戳信息的一组数据包;
所述下层网元才艮据所述同步序列长度和所述指定业务的时分复用 周期, 确定调度传输时间间隔, 其中, 所述调度传输时间间隔为所述时 分复用周期和所述同步序列长度的公倍数, 且所述指定业务的时分复用 周期为无线接口连接帧号周期的整数倍分之一;
对于时间戳信息位于当前调度传输时间间隔的同步序列,所述下层 网元在指定调度传输时间间隔的可用发送时间内进行发送。
2. 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括:
所述下层网元预先获取所述上层网元的同步序列长度。
3. 才艮据权利要求 2所述的方法, 其特征在于, 所述下层网元预先获取所述 上层网元的同步序列长度包括:
所述下层网元通过系统配置获取所述同步序列长度; 或者 所述上层网元将所述同步序列长度通知给所述下层网元。
4. 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括:
将所述下层网元获取的第一同步序列对应的时间戳信息确定为第 一个调度传输时间间隔的起始时刻。
5. 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述指定调度 传输时间间隔包括以下之一: 所述当前调度传输时间间隔、 下一调度传 输时间间隔。
6. 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述下层网元 获取所述指定业务的多个同步序列之后, 所述方法还包括: 对于时间戳信息位于当前调度传输时间间隔的同步序列长度内的 同步序列, 所述下层网元对其包括的多个数据包进行 RLC串接处理。
7. 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述方法还包 括:
在每个调度传输时间间隔内接收到的第一个同步序列的第一个数 据包时, 所述下层网元对所述指定业务的 RLC序列号进行复位。
8. 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述可用发送 时间为用于发送数据包的无线接口资源的时间段。
9. 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述同步序列 中的数据包还携带有数据包的序列号和累计数据长度。
10. 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述上层网元 按照同步序列长度处理所述指定业务的数据包包括:
所述上层网元按照所述同步序列长度对所述指定业务的数据包标 记时间戳信息。
11. 根据权利 1至 4中任一项所述的方法, 其特征在于, 所述同步序列长度 为调度周期。
12. 一种同步调度装置, 位于下层网元侧, 其特征在于, 包括:
获取模块 ,用于获取来自其归属的上层网元的指定业务的多个同步 序列, 其中, 所述上层网元按照同步序列长度处理所述指定业务的数据 包, 并发送多个同步序列到所述下层网元, 其中, 所述同步序列为具有 相同时间戳信息的一组数据包;
确定模块,用于才艮据所述同步序列长度和所述指定业务的时分复用 周期, 确定调度传输时间间隔, 其中, 所述调度传输时间间隔为所述时 分复用周期和所述同步序列长度的公倍数, 且所述指定业务的时分复用 周期为无线接口连接帧号周期的整数倍分之一;
发送模块,用于对时间戳信息位于当前调度传输时间间隔的同步序 列, 在指定调度传输时间间隔的时分复用周期的可用发送时间内进行发 送, 其中, 所述指定调度传输时间间隔包括以下之一: 所述当前调度传 输时间间隔、 下一调度传输时间间隔。
PCT/CN2009/071114 2008-11-12 2009-03-31 同步调度方法和装置 WO2010054541A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011535858A JP5212956B2 (ja) 2008-11-12 2009-03-31 同期スケジューリング方法および装置
EP09825716.5A EP2348778B1 (en) 2008-11-12 2009-03-31 Method and device of synchronization scheduling
RU2011118128/07A RU2508613C2 (ru) 2008-11-12 2009-03-31 Способ и устройство для планирования синхронизации
BRPI0915254-7A BRPI0915254B1 (pt) 2008-11-12 2009-03-31 Método e aparelho para agendamento de sincronização
US13/128,918 US8654757B2 (en) 2008-11-12 2009-03-31 Method and apparatus of synchronization scheduling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101777267A CN101741701B (zh) 2008-11-12 2008-11-12 同步调度方法和装置
CN200810177726.7 2008-11-12

Publications (1)

Publication Number Publication Date
WO2010054541A1 true WO2010054541A1 (zh) 2010-05-20

Family

ID=42169609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071114 WO2010054541A1 (zh) 2008-11-12 2009-03-31 同步调度方法和装置

Country Status (7)

Country Link
US (1) US8654757B2 (zh)
EP (1) EP2348778B1 (zh)
JP (1) JP5212956B2 (zh)
CN (1) CN101741701B (zh)
BR (1) BRPI0915254B1 (zh)
RU (1) RU2508613C2 (zh)
WO (1) WO2010054541A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101658204B1 (ko) * 2010-12-17 2016-09-30 한국전자통신연구원 타임스탬프 예측 장치 및 방법
JP5257466B2 (ja) * 2011-01-26 2013-08-07 ブラザー工業株式会社 通信装置、通信システム、通信方法、及び通信プログラム
CN102130954A (zh) * 2011-03-17 2011-07-20 华为技术有限公司 数据资源传输的方法和设备
US9516524B2 (en) 2011-10-25 2016-12-06 Mediatek, Inc. Transmitter assisted quality of service measurement
JP5685313B2 (ja) * 2012-06-08 2015-03-18 ▲華▼▲為▼終端有限公司Huawei Device Co., Ltd. ハートビート動作を同期させる方法及び装置
CN104158755B (zh) * 2014-07-30 2017-12-05 华为技术有限公司 传输报文的方法、装置和系统
EP3229390B1 (en) * 2014-12-31 2020-09-09 Huawei Technologies Co., Ltd. Device, system, and method for signal transmission and detection
CN105101446B (zh) * 2015-06-30 2017-12-15 宇龙计算机通信科技(深圳)有限公司 一种用于非授权频段的冲突避免方法及装置
US10015640B2 (en) 2015-08-12 2018-07-03 At&T Intellectual Property I, L.P. Network device selection for broadcast content
US9979604B2 (en) 2015-08-12 2018-05-22 At&T Intellectual Property I, L.P. Network management for content broadcast
CN107592668B (zh) * 2016-07-07 2021-01-12 华为技术有限公司 传输信号的方法和装置
CN110337679B (zh) * 2017-02-17 2021-12-31 日本电信电话株式会社 感测系统及时间戳校正方法
CN107888315B (zh) * 2017-12-04 2019-06-18 清华大学 一种时间同步方法
CN112448896B (zh) * 2019-08-30 2024-04-30 华为技术有限公司 确定性网络中的发送周期的确定方法和装置
CN112752227B (zh) * 2019-10-30 2023-06-27 华为技术有限公司 一种通信方法及装置
US11580396B2 (en) 2020-10-13 2023-02-14 Aira Technologies, Inc. Systems and methods for artificial intelligence discovered codes
US11088784B1 (en) 2020-12-24 2021-08-10 Aira Technologies, Inc. Systems and methods for utilizing dynamic codes with neural networks
US11368251B1 (en) 2020-12-28 2022-06-21 Aira Technologies, Inc. Convergent multi-bit feedback system
US11477308B2 (en) 2020-12-28 2022-10-18 Aira Technologies, Inc. Adaptive payload extraction in wireless communications involving multi-access address packets
US11575469B2 (en) 2020-12-28 2023-02-07 Aira Technologies, Inc. Multi-bit feedback protocol systems and methods
US11483109B2 (en) 2020-12-28 2022-10-25 Aira Technologies, Inc. Systems and methods for multi-device communication
US11191049B1 (en) * 2020-12-28 2021-11-30 Aira Technologies, Inc. Systems and methods for improving wireless performance
US11489624B2 (en) 2021-03-09 2022-11-01 Aira Technologies, Inc. Error correction in network packets using lookup tables
US11496242B2 (en) 2021-03-15 2022-11-08 Aira Technologies, Inc. Fast cyclic redundancy check: utilizing linearity of cyclic redundancy check for accelerating correction of corrupted network packets
US11489623B2 (en) 2021-03-15 2022-11-01 Aira Technologies, Inc. Error correction in network packets

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852265A (zh) * 2006-05-30 2006-10-25 杭州华为三康技术有限公司 一种同步帧在ip网络上传输的方法及用于传输的网络设备
CN101039175A (zh) * 2007-03-27 2007-09-19 中兴通讯股份有限公司 Rlc在无线网络控制器间同步的方法及系统
CN101043265A (zh) * 2007-04-27 2007-09-26 华为技术有限公司 一种实现多媒体广播和组播业务数据同步发送的方法
CN101123611A (zh) * 2007-09-25 2008-02-13 中兴通讯股份有限公司 一种流媒体数据的发送方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909447A (en) * 1996-10-29 1999-06-01 Stanford Telecommunications, Inc. Class of low cross correlation palindromic synchronization sequences for time tracking in synchronous multiple access communication systems
US6654375B1 (en) * 1998-12-24 2003-11-25 At&T Corp. Method and apparatus for time-profiling T-carrier framed service
US7173899B1 (en) * 2000-08-28 2007-02-06 Lucent Technologies Inc. Training and synchronization sequences for wireless systems with multiple transmit and receive antennas used in CDMA or TDMA systems
EP1468580A1 (en) * 2002-01-21 2004-10-20 Siemens Mobile Communications S.p.A. Method and mobile station to perform the initial cell search in time slotted systems
KR100917042B1 (ko) * 2002-08-14 2009-09-10 엘지전자 주식회사 무선 이동통신 시스템의 방송 및 멀티캐스트 데이터의전송 방법
US20060146745A1 (en) * 2005-01-05 2006-07-06 Zhijun Cai Method and apparatus for scheduling and synchronizing a multimedia broadcast/multicast service
EP1919235B1 (en) * 2006-10-31 2020-04-15 Alcatel Lucent A base station, a mobile communication network and a method for synchronising the delivery of broadcast data in a single frequency mobile communication network
US8144589B2 (en) * 2007-05-07 2012-03-27 Qualcomm Incorporated Learning-based semi-persistent scheduling in wireless communications
CN101321368B (zh) * 2007-06-08 2012-05-09 中兴通讯股份有限公司 一种多媒体广播组播业务中时分复用机制的实现方法
CN101198096A (zh) * 2007-12-29 2008-06-11 中国移动通信集团湖北有限公司 用于移动网络的多进程同步调度方法及其系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852265A (zh) * 2006-05-30 2006-10-25 杭州华为三康技术有限公司 一种同步帧在ip网络上传输的方法及用于传输的网络设备
CN101039175A (zh) * 2007-03-27 2007-09-19 中兴通讯股份有限公司 Rlc在无线网络控制器间同步的方法及系统
CN101043265A (zh) * 2007-04-27 2007-09-26 华为技术有限公司 一种实现多媒体广播和组播业务数据同步发送的方法
CN101123611A (zh) * 2007-09-25 2008-02-13 中兴通讯股份有限公司 一种流媒体数据的发送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2348778A4 *

Also Published As

Publication number Publication date
EP2348778B1 (en) 2018-04-25
CN101741701B (zh) 2012-01-11
US20110216787A1 (en) 2011-09-08
US8654757B2 (en) 2014-02-18
JP5212956B2 (ja) 2013-06-19
BRPI0915254A2 (pt) 2016-02-16
RU2508613C2 (ru) 2014-02-27
EP2348778A1 (en) 2011-07-27
CN101741701A (zh) 2010-06-16
EP2348778A4 (en) 2014-11-19
RU2011118128A (ru) 2012-12-20
JP2012508534A (ja) 2012-04-05
BRPI0915254B1 (pt) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2010054541A1 (zh) 同步调度方法和装置
EP2357770B1 (en) Synchronization scheduling method
KR101030678B1 (ko) 단일 주파수 모바일 통신 네트워크에서 브로드캐스트 데이터의 전달을 동기화하기 위한 방법
US8873537B2 (en) Synchronization method and system of control sequence numbers
EP2320599B1 (en) Method and apparatus for recovery processing of synchronously transmitted service data
WO2010054545A1 (zh) 同步调度方法
WO2009039777A1 (fr) Procédé, système et appareil destinés à organiser des données
US9386598B2 (en) Method and apparatus for synchronization processing
CN101651488A (zh) 一种多媒体广播组播业务网元间的协同方法
CN114125724B (zh) 时间同步方法及装置
WO2011020403A1 (zh) 多媒体广播组播业务中多调度周期联合调度的方法及装置
PANDI et al. Implementation of Network-Coded Cooperation for Energy Efficient Content Distribution in 5G Mobile Small Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3451/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011535858

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13128918

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009825716

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011118128

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0915254

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110510