WO2010053116A1 - Spark plug and manufacturing method therefor - Google Patents

Spark plug and manufacturing method therefor Download PDF

Info

Publication number
WO2010053116A1
WO2010053116A1 PCT/JP2009/068894 JP2009068894W WO2010053116A1 WO 2010053116 A1 WO2010053116 A1 WO 2010053116A1 JP 2009068894 W JP2009068894 W JP 2009068894W WO 2010053116 A1 WO2010053116 A1 WO 2010053116A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
tip
electrode
ground electrode
metal tip
Prior art date
Application number
PCT/JP2009/068894
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 隆博
加藤 友聡
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP2010515151A priority Critical patent/JP5331111B2/en
Priority to CN200980143560.XA priority patent/CN102204043B/en
Priority to US13/127,196 priority patent/US8344605B2/en
Priority to EP09824815.6A priority patent/EP2346125B1/en
Publication of WO2010053116A1 publication Critical patent/WO2010053116A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs

Definitions

  • the present invention relates to a spark plug used for an internal combustion engine such as an automobile engine and a method for manufacturing the same.
  • a spark plug used in an internal combustion engine such as an automobile engine generates a spark discharge in a spark discharge gap between a center electrode and a ground electrode, thereby generating an air-fuel mixture supplied to a combustion chamber of the internal combustion engine. It is configured to ignite.
  • a convex part is formed by welding a precious metal tip such as an iridium alloy or a platinum alloy that is excellent in spark wear resistance and oxidation wear resistance,
  • a precious metal tip such as an iridium alloy or a platinum alloy that is excellent in spark wear resistance and oxidation wear resistance
  • a projection is formed by processing the electrode base material itself of the ground electrode (see, for example, Patent Document 1).
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a spark plug capable of suppressing the occurrence of blow-off and the like and improving the ignitability, and a method for manufacturing the same.
  • the spark plug of this configuration has a center electrode that extends in the axial direction, an insulator that holds the center electrode, a metal shell that holds the insulator, and a base end of the metal shell that is joined to the tip of the metal shell.
  • a ground electrode that is bent and fixed so that an inner surface of its own tip faces the tip of the center electrode, and a noble metal tip bonded to the inner surface of the ground electrode, the center electrode and the A spark plug in which a spark discharge gap is formed between the noble metal tip of the ground electrode,
  • the inner surface of the ground electrode is formed of a columnar convex portion made of an electrode base material of the ground electrode mainly composed of nickel and projecting along the axial direction,
  • the noble metal tip having a cross-sectional area smaller than the area of the tip surface of the convex portion is joined to the tip surface of the convex portion, and at least part of the periphery of the noble metal tip from the electrode base material of the ground electrode A discharge permissible surface is formed,
  • An interval of the spark discharge gap which is a distance from the discharge surface of the central electrode in the axial direction to the discharge surface of the noble metal tip of the ground electrode, is 0.8 mm or more;
  • the protruding dimension of the noble metal tip of the ground electrode which
  • the noble metal tip mainly constituting the discharge surface is joined to the front end surface of the convex portion formed on the ground electrode, and the electrode matrix mainly composed of nickel is disposed around the noble metal tip.
  • a discharge allowable surface made of a material is formed.
  • the discharge is normally performed between the center electrode and the noble metal tip of the ground electrode, but when a spark is caused by the influence of swirl or the like, the discharge permissible surface (nickel) around the noble metal tip
  • the base material portion functions as a discharge surface, and discharge is maintained.
  • Nickel alloys that serve as electrode base materials are more likely to oxidize than noble metals such as iridium and platinum constituting noble metal tips. For this reason, as the spark plug is used, an oxide film is formed on the surface of the electrode base material by being exposed to a high temperature atmosphere in the combustion chamber.
  • metal oxides have a smaller work function than noble metals such as iridium and platinum, so when discharge occurs in the electrode base material where the oxide film is formed, the discharge is likely to be maintained. It is done.
  • the discharge surface of the center electrode and the discharge surface of the noble metal tip of the ground electrode are projected on a plane orthogonal to the axial direction, the discharge surface of the center electrode is outside the region of the projected image of the discharge surface of the noble metal tip of the ground electrode.
  • a spark tends to fly to the discharge permissible surface (nickel base material portion), and the durability may be reduced. That is, the meaning of providing a noble metal tip for improving durability is reduced.
  • main component refers to the component having the highest mass ratio in the material (hereinafter the same).
  • a welding sag is formed around the noble metal tip so that the surface of the electrode base material is pushed away by the noble metal tip during the welding. Since it has the same component composition as that of the electrode base material, it may be included in the “discharge allowable surface made of the electrode base material of the ground electrode”.
  • the spark plug of this configuration is the above-described configuration 1, A chamfered portion is formed at an edge of the discharge allowable surface.
  • Examples of the chamfered portion include a curved R chamfered portion and a tapered C chamfered portion.
  • the edge of the discharge permissible surface that is, the corner formed by the tip surface and the side surface of the convex portion is chamfered, and the chamfered portion is formed, so that the blow-off at the corner is prevented. Occurrence can be suppressed. As a result, the effect of the said structure 1 can be improved more.
  • the spark plug of this configuration is any one of the above configurations 1 to 3,
  • the minimum distance between the outer periphery of the convex portion and the outer periphery of the noble metal tip is 0.1 mm or more and 0.5 mm or less.
  • the spark plug of this configuration is any one of the above configurations 1 to 4,
  • the protruding dimension of the noble metal tip from the front end surface of the convex portion in the axial direction is 0 mm or more and 0.2 mm or less.
  • the protruding dimension of the noble metal tip is less than 0 mm, that is, when the noble metal tip is recessed from the tip surface of the convex portion, the distance between the center electrode and the discharge permissible surface around the noble metal tip is the distance between the center electrode and the noble metal tip. Since the distance is smaller than the distance, it is easy for the spark to fly to the discharge permissible surface, and the durability may be reduced. That is, the meaning of providing a noble metal tip for improving durability is reduced. In addition, when the protruding dimension becomes larger than 0.2 mm, the risk of blown out increases as in the conventional case.
  • the spark plug of this configuration is any one of the above configurations 1 to 5, A hole is formed at a position corresponding to the convex portion on the outer surface opposite to the inner surface of the ground electrode with respect to the axial direction.
  • the spark plug manufacturing method of the present configuration includes a center electrode extending in the axial direction, an insulator holding the center electrode, a metal shell holding the insulator, and a base end portion of the metal shell at the distal end of the metal shell Are joined, bent, and fixed so that the inner surface of the tip portion thereof faces the tip portion of the center electrode, a columnar protrusion provided on the inner surface of the ground electrode, and the protrusion A spark plug gap is formed between the center electrode and the noble metal tip of the ground electrode and the tip end surface of the convex portion.
  • the welding process is relatively easy by welding the noble metal tip before forming the convex portion. Furthermore, it becomes easy to ensure the desired protrusion amount of a convex part by forming a convex part by an extrusion process.
  • FIG. 1 is a partially cutaway front view showing a spark plug 1.
  • the axis C1 direction of the spark plug 1 is defined as the vertical direction in the drawing, the lower side is described as the front end side of the spark plug 1, and the upper side is described as the rear end side.
  • the spark plug 1 is composed of an insulator 2 as an elongated insulator, a cylindrical metal shell 3 that holds the insulator 2, and the like.
  • a shaft hole 4 is formed through the insulator 2 along the axis C1.
  • a center electrode 5 is inserted and fixed on the front end side of the shaft hole 4, and a terminal electrode 6 is inserted and fixed on the rear end side.
  • a resistor 7 is disposed between the center electrode 5 and the terminal electrode 6 in the shaft hole 4, and both ends of the resistor 7 are connected to the center electrode via conductive glass seal layers 8 and 9. 5 and the terminal electrode 6 are electrically connected to each other.
  • the center electrode 5 protrudes from the tip of the insulator 2 and the terminal electrode 6 is fixed in a state of protruding from the rear end of the insulator 2.
  • the insulator 2 is formed by firing alumina or the like, as is well known, and has a flange-shaped large-diameter portion 11 that protrudes radially outward at a substantially central portion in the direction of the axis C1 in its outer shape. And an inner body portion 12 having a smaller diameter on the distal end side than the large diameter portion 11, and an inner body portion 12 having a smaller diameter on the distal end side than the intermediate body portion 12, and an internal combustion engine (engine). And a leg length portion 13 exposed to the combustion chamber.
  • the distal end side including the large-diameter portion 11, the middle trunk portion 12, and the leg long portion 13 is accommodated in a metal shell 3 formed in a cylindrical shape.
  • a step portion 14 is formed at the connecting portion between the leg long portion 13 and the middle trunk portion 12, and the insulator 2 is locked to the metal shell 3 at the step portion 14.
  • the metal shell 3 is formed in a cylindrical shape from a metal such as low carbon steel, and a screw portion (male screw portion) 15 for attaching the spark plug 1 to the engine head is formed on the outer peripheral surface thereof.
  • a seat portion 16 is formed on the outer peripheral surface on the rear end side of the screw portion 15, and a ring-shaped gasket 18 is fitted on the screw neck 17 on the rear end of the screw portion 15.
  • a tool engaging portion 19 having a hexagonal cross section for engaging a tool such as a wrench when the metal shell 3 is attached to the engine head is provided.
  • a caulking portion 20 for holding the insulator 2 is provided.
  • a step portion 21 for locking the insulator 2 is provided on the inner peripheral surface of the metal shell 3.
  • the insulator 2 is inserted from the rear end side to the front end side of the metal shell 3, and the rear end of the metal shell 3 is engaged with the step portion 14 of the metal shell 3. It is fixed by caulking the opening on the side radially inward, that is, by forming the caulking portion 20.
  • An annular plate packing 22 is interposed between the step portions 14 and 21 of both the insulator 2 and the metal shell 3. Thereby, the airtightness in the combustion chamber is maintained, and the fuel air entering the gap between the leg long portion 13 of the insulator 2 exposed to the combustion chamber and the inner peripheral surface of the metal shell 3 is prevented from leaking outside.
  • annular ring members 23 and 24 are interposed between the metal shell 3 and the insulator 2 on the rear end side of the metal shell 3, and the ring member 23 , 24 is filled with powder of talc (talc) 25. That is, the metal shell 3 holds the insulator 2 via the plate packing 22, the ring members 23 and 24, and the talc 25.
  • a ground electrode 27 having a substantially L shape is joined to the front end surface 26 of the metal shell 3. That is, the ground electrode 27 is disposed so that the base end portion thereof is welded to the front end surface 26 of the metal shell 3, the front end side is bent back, and the inner side surface thereof faces the front end portion of the center electrode 5. Has been.
  • FIG. 2 is a partially broken enlarged view in which a main part in the vicinity of the tip part (the center electrode 5 and the ground electrode 27) of the spark plug 1 is enlarged.
  • the electrode base material of the center electrode 5 and the ground electrode 27 is made of a nickel (Ni) alloy containing nickel as a main component.
  • a conductive core made of copper or a copper alloy is embedded in the center electrode 5 in order to increase thermal conductivity.
  • the center electrode 5 consists of the inner layer 5A which consists of copper or a copper alloy, and the outer layer 5B which consists of Ni alloy.
  • the center electrode 5 has a rod-like shape as a whole, and its tip side is reduced in diameter.
  • a columnar noble metal tip 31 is joined to the tip of the center electrode 5 by resistance welding, laser welding, or the like.
  • a convex portion 28 is formed on the inner side surface 27 a of the ground electrode 27 facing this so as to face the noble metal tip 31.
  • the convex portion 28 protrudes from the inner side surface 27a of the ground electrode 27 toward the center electrode 5 side along the axis C1 direction, and the cross-sectional shape along the radial direction (left and right direction in FIG. 2) orthogonal to the axis C1 direction is substantially circular. It has a cylindrical shape.
  • the convex portion 28 is formed by extrusion from the outer surface 27b of the ground electrode 27, as will be described later. Therefore, a bottomed hole portion 29 formed at the time of extrusion is opened on the outer surface 27 b of the ground electrode 27.
  • a cylindrical noble metal tip 32 is joined to the tip surface of the convex portion 28 by laser welding.
  • the noble metal tip 32 is formed of a noble metal alloy mainly containing a noble metal such as iridium or platinum.
  • the cross-sectional area of the noble metal tip 32 is set smaller than the area of the tip surface of the convex portion 28.
  • the front end surface of the convex portion 28 is provided with a noble metal tip 32 in the center, and adjacent to the periphery of the noble metal tip 32, an annular molten portion 33 formed during laser welding, and an annular shape on the outer peripheral side thereof.
  • the electrode base material surface 28a constitutes a discharge permissible surface in the present embodiment.
  • the electrode base material surface 28a in the present embodiment is formed over the entire circumference of the noble metal tip 32, and the radial width of the convex portion 28 (the outer periphery of the convex portion 28, the area including the noble metal tip 32 and the melting portion 33). Is set to be 0.1 mm or more and 0.5 mm or less.
  • the noble metal tip 32 is flush with the electrode base material surface 28a of the convex portion 28 or joined so as to protrude from the electrode base material surface 28a.
  • the distance from the electrode base material surface 28a of the convex portion 28 to the discharge surface 32a of the noble metal tip 32 (the surface facing the noble metal tip 31 of the center electrode 5) in the direction of the axis C1 that is, the projected dimension of the noble metal tip 32.
  • Y is set to be 0 mm or more and 0.2 mm or less.
  • a spark discharge gap 35 as a spark discharge gap is formed between the center electrode 5 and the convex portion 28. In a normal state, discharge is mainly performed between the noble metal tips 31 and 32. On the other hand, when a spark flows due to the influence of swirl or the like, the electrode base material surface 28a around the noble metal tip 32 functions as a discharge surface. Then, the discharge is maintained.
  • the spark plug 1 having the above-described configuration, it is possible to suppress the occurrence of blow-off and the like and to improve the ignitability while suppressing a decrease in the durability of the ground electrode 27.
  • the metal shell 3 is processed in advance. That is, a cylindrical metal material (for example, an iron-based material such as S17C or S25C or a stainless steel material) is formed by forming a through-hole by cold forging to produce a rough shape. Thereafter, the outer shape is adjusted by cutting to obtain a metal shell intermediate.
  • a cylindrical metal material for example, an iron-based material such as S17C or S25C or a stainless steel material
  • a ground electrode 27 base is fabricated. More specifically, first, Ni alloy is cast and annealed to produce the ground electrode 27 base. For example, using a vacuum melting furnace, a Ni alloy melt is prepared, and after the ingot is prepared from each melt by vacuum casting or the like, the ingot is subjected to hot working, drawing, etc., to a predetermined dimension. And it processes to a shape and produces the ground electrode 27 original material.
  • the ground electrode 27 base material formed in this way is resistance-welded to the front end surface of the metal shell intermediate body.
  • the threaded portion 15 is formed by rolling at a predetermined portion of the metal shell intermediate.
  • the metal shell 3 to which the ground electrode 27 base material is welded is obtained.
  • the metal shell 3 to which the ground electrode 27 base material is welded is plated with zinc or nickel.
  • the insulator 2 is molded.
  • a raw material powder mainly composed of alumina and containing a binder or the like a green granulated material for molding is prepared, and rubber press molding is used to obtain a cylindrical molded body.
  • the obtained molded body is ground and shaped. Then, the shaped one is put into a firing furnace and fired.
  • the insulator 2 is obtained by performing various grinding
  • the center electrode 5 is manufactured separately from the metal shell 3 and the insulator 2.
  • the outer layer 5B made of a Ni alloy is forged, and an inner layer 5A made of copper or a copper alloy is provided at the center thereof.
  • a noble metal tip 31 is joined to the tip portion by resistance welding, laser welding or the like.
  • the glass seal layers 8 and 9 are generally prepared by mixing borosilicate glass and metal powder, and the prepared material is injected into the shaft hole 4 of the insulator 2 with the resistor 7 interposed therebetween. Then, after the terminal electrode 6 is pressed from the rear, it is baked and hardened in a firing furnace.
  • the insulator 2 including the center electrode 5 and the terminal electrode 6 respectively manufactured as described above and the metal shell 3 including the ground electrode 27 base body are assembled. More specifically, it is fixed by caulking the opening on the rear end side of the metal shell 3 formed relatively thin inward in the radial direction, that is, by forming the caulking portion 20.
  • a noble metal tip 32 is joined by laser welding to a predetermined portion of the ground electrode 27 base body in the metal shell 3 to which the insulator 2 is assembled. This process corresponds to the welding process in this embodiment.
  • the noble metal tip 32 When laser welding the noble metal tip 32, for example, the noble metal tip 32 is resistance-welded in advance to a predetermined portion of the ground electrode 27 base body, and laser light is irradiated around the resistance-welded noble metal tip 32. Thus, the noble metal tip 32 and the ground electrode 27 base are laser welded. For this reason, around the noble metal tip 32, a molten portion 33 is formed by melting the Ni alloy that is the electrode base material of the ground electrode 27 and the noble metal alloy that is a component of the noble metal tip 32 during the welding.
  • the welded portion of the noble metal tip 32 is extruded from the opposite side of the ground electrode 27 base, and the convex portion 28 and the hole portion 29 are formed. This process corresponds to the extrusion process in this embodiment.
  • ground electrode 27 base material In order to produce such a ground electrode 27 base material, a method using a known extruder equipped with a punching tool capable of forming a hole can be employed.
  • the extrusion machine for example, a punch tool, a plate-like presser mold having a through-hole through which the punch tool passes, a groove-shaped storage section that stores the ground electrode 27 base body, and a storage section provided in the storage section are provided.
  • An extruder or the like provided with a receiving die having a through hole and a presser die placed on the upper surface, and a receiving pin inserted into the through hole of the receiving die.
  • the presser die is overlaid and fixed on the upper surface of the receiving mold in which the ground electrode 27 base material is accommodated in the accommodating portion.
  • a punching tool is pressed from the through hole to the ground electrode 27 base, whereby the convex portion 28 when the receiving electrode is used as the ground electrode 27 is pushed out while being received by the receiving pin.
  • the shape and size of the hole 29 can be adjusted by adjusting the shape and size of the punch tool, and the shape and size of the through hole of the receiving mold and / or the receiving pin can be adjusted.
  • the shape and size of the convex portion 28 can be adjusted.
  • the ground electrode 27 is bent so that the ground electrode 27 has a final shape, and a spark discharge gap 35 is formed.
  • This process corresponds to the bending process in the present embodiment.
  • the gap is adjusted between the noble metal tip 31 at the tip of the center electrode 5 and the tip surface of the convex portion 28 including the noble metal tip 32 on the ground electrode 27 side.
  • the spark plug 1 having the above-described configuration is manufactured through a series of steps.
  • the width X of the electrode base material surface 28a (hereinafter simply referred to as the electrode base material width X) and the protruding dimension Y (hereinafter simply referred to as the noble metal tip 32) are described.
  • the electrode base material width X the electrode base material width X
  • the protruding dimension Y hereinafter simply referred to as the noble metal tip 32
  • Samples having electrode base material widths X set to 0 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, and 0.7 mm are group A to A, respectively.
  • Group H with respect to groups B to H, the tip protruding dimension Y is -0.1 mm (the discharge surface 32a of the noble metal tip 32 is recessed from the electrode base material surface 28a of the projection 28), 0 mm, 0.
  • Samples set to 1 mm, 0.2 mm, 0.3 mm, and 0.4 mm were produced as Samples 1 to 6, respectively.
  • a spark flying performance test As a desktop spark discharge test, two types of tests were conducted: a spark flying performance test and a spark flying position confirmation test.
  • each sample was mounted in a chamber set in an atmospheric atmosphere of 0.4 MPa, and an air flow at a flow rate of 5.0 m / sec was applied between the spark discharge gaps 35, and 100 times each. A spark discharge was performed. And about each sample, the frequency
  • the blow-off occurrence rate is 28%, and the blow-off occurrence rate is extremely high compared to the other groups B to H. I understand.
  • the electrode base material width X is 0 mm, that is, the group A (see FIG. 7) that does not have the electrode base material surface 28a (discharge allowable surface) around the noble metal tip 32, it is irrelevant to the chip protruding dimension Y. In this spark flying performance test, only a sample having a noble metal tip 32 thickness of 0.3 mm (corresponding to a tip protruding dimension Y of 0.3 mm) was tested.
  • samples 5 and 6 having a tip protruding dimension Y of 0.3 mm or more have a high blow-off occurrence rate. It turns out that it becomes. This is considered because the gap of the spark discharge gap 35 from the center electrode 5 to the electrode base material surface 28a of the convex portion 28 is substantially increased.
  • the electrode base material width X is preferably set to 0.1 mm or more, and the tip protruding dimension Y is preferably set to 0.2 mm or less. Further, in the groups G and H in which the electrode base material width X is 0.6 mm or more, there is almost no difference between the samples 1 to 6 in the group F and the blowout occurrence rate. With respect to the upper limit, it is preferable that the upper limit is 0.5 mm or less in consideration of a decrease in ignitability and workability.
  • each sample was mounted in a chamber set in an atmospheric atmosphere of 0.4 MPa, and spark discharge was performed 100 times without applying an air flow. Then, for each sample, the spark spark position on the ground electrode 27 side was confirmed by a video image, and the spark rate on the discharge surface 32a of the noble metal tip 32 was verified.
  • Table 2, Table 3, and Table 4 only the samples 1 to 4 of the groups B, D, F, and H are shown for convenience.
  • Table 2 shows the evaluation results of the samples in which the diameter ⁇ 1 (see FIG. 5) of the noble metal tip 31 of the center electrode 5 is set to 0.8 mm and the diameter ⁇ 2 (see FIG. 5) of the noble metal tip 32 of the ground electrode 27 is set to 0.8 mm. Is shown.
  • Table 3 shows the evaluation results of the samples in which the diameter ⁇ 1 of the noble metal tip 31 of the center electrode 5 is set to 0.8 mm and the diameter ⁇ 2 of the noble metal tip 32 of the ground electrode 27 is set to 0.7 mm.
  • Table 4 shows the evaluation results of samples in which the diameter ⁇ 1 of the noble metal tip 31 of the center electrode 5 is set to 0.8 mm and the diameter ⁇ 2 of the noble metal tip 32 of the ground electrode 27 is set to 0.9 mm.
  • the firing rate to the discharge surface 32a of the noble metal tip 32 is another sample. Extremely low compared to 2-4. That is, the flying ratio of the convex portion 28 to the electrode base material surface 28a is high. This is because if the discharge surface 32a of the noble metal tip 32 is in a position recessed from the electrode base material surface 28a of the convex portion 28, the center electrode 5 (noble metal tip 31) and the noble metal tip can be used even in a situation where there is no influence of swirl or the like.
  • the Ni alloy as the electrode base material of the ground electrode 27 has lower durability than the noble metal tip 32, it is preferable to improve the durability by setting the tip protruding dimension Y to 0 mm or more. .
  • a spark plug that does not have the electrode base material surface 28a (discharge permissible surface) around the noble metal tip 32 as shown in FIG.
  • Various samples with different G hereinafter, simply referred to as gap interval G
  • the evaluation results are shown in Table 5.
  • the blow-off occurrence rate is less than 20% in all the samples 1 to 5 having different chip protrusion dimensions Z. It can be seen that the occurrence rate of blow-out is low as compared with the other groups L, M, and N. That is, it can be seen that in a configuration where the gap interval G is less than 0.8 mm, it is difficult for blowout to occur.
  • the gap gap G is 0.8 mm or more and the chip protruding dimension Z is 0.5 mm or more.
  • Various functions and effects of this embodiment will be more effective.
  • the width X of the electrode base material surface 28a of the convex portion 28 is set to be 0.1 mm or more and 0.5 mm or less.
  • at least the cross-sectional area of the noble metal tip 32 is set smaller than the area of the front end surface of the convex portion 28, and the electrode base material surface 28 a is formed around the noble metal tip 32 at the front end surface of the convex portion 28. It suffices if the configuration is as follows. However, as can be seen from the verification results, the width X of the electrode base material surface 28a is more preferably 0.1 mm or more and 0.5 mm or less.
  • the protruding dimension Y of the noble metal tip 32 is set to be 0 mm or more and 0.2 mm or less, but the protruding dimension Y is not limited to this. However, as can be seen from the verification results, it is more preferable that the projected dimension Y is 0 mm or more and 0.2 mm or less.
  • the noble metal tips 31 and 32 in the above embodiment are formed of an iridium alloy or a platinum alloy.
  • the present invention is not limited to this, and the noble metal tips 31 and 32 may be formed of a noble metal alloy mainly composed of other noble metals. Good. Further, the noble metal tip 31 on the center electrode 5 side may be omitted, but it is preferable to provide the noble metal tip 31 also on the center electrode 5 side in terms of durability improvement.
  • the noble metal tip 32 is joined to the ground electrode 27 by laser welding.
  • the present invention is not limited thereto, and may be joined by other methods such as resistance welding.
  • resistance welding since the melted portion 33 is not formed, most of the portion excluding the noble metal tip 32 becomes the electrode base material surface 28a.
  • the convex portion 28 and the noble metal tip 32 are not limited to the circular shape (cylindrical shape or cross-sectional circular tip) of the above-described embodiment, but are of different shapes, for example, a polygonal shape (a prismatic shape or a square tip). A thing may be adopted. For example, as shown in FIGS. 8 and 9, a quadrangular prism-shaped convex portion 28 that protrudes in the direction of the axis C1 (vertical direction in FIG. 9) along the distal end surface of the ground electrode 27 is formed at the distal end portion of the ground electrode 27.
  • the noble metal tip 32 having a quadrangular (rectangular) cross-sectional shape along the direction orthogonal to the direction of the axis C1 (the left-right direction in FIGS. 8 and 9) is provided on the tip surface of the convex portion 28 (upper side in FIG. 9). It is good also as a structure arrange
  • the electrode base material surface 28a is formed over the entire circumference of the noble metal tip 32.
  • the present invention is not limited to this, and as shown in FIGS.
  • the electrode base material surface 28a may be formed in the part. However, if the electrode base material surface 28a is formed over the entire circumference of the noble metal tip 32, the discharge is reliably maintained regardless of the direction in which the spark is caused to flow by the swirl or the like. preferable.
  • the edge of the electrode base material surface 28a may be chamfered to provide a chamfered portion 28b.
  • a curved R chamfered portion is illustrated as the chamfered portion 28b.
  • the present invention is not limited to this, and a tapered C chamfered portion may be employed.

Abstract

Disclosed are a spark plug with which the occurrence of blow-outs and the like can be suppressed and the ignition ability can be improved; and a manufacturing method therefor. A convex part (28) which opposes a center electrode (5) is formed in the contact electrode (27) of a spark plug. A precious metal chip (32) is provided in the center of the tip face of the convex part (28), and a ring-shaped fusion part (33) is provided abutting the perimeter of the precious metal chip (32); in addition, on the outer perimeter thereof a ring-shaped electrode parent material surface is provided. In addition, a spark discharge gap (35) is formed in the interval between the central electrode (5) and the tip of the convex part (28) containing the precious metal chip (32).

Description

スパークプラグ及びその製造方法Spark plug and manufacturing method thereof
 本発明は、自動車エンジン等の内燃機関に使用されるスパークプラグ及びその製造方法に関するものである。 The present invention relates to a spark plug used for an internal combustion engine such as an automobile engine and a method for manufacturing the same.
 一般的に自動車エンジン等の内燃機関に使用されるスパークプラグは、中心電極と接地電極との間の火花放電ギャップにおいて火花放電を生じさせることにより、内燃機関の燃焼室に供給される混合気に点火する構成となっている。 In general, a spark plug used in an internal combustion engine such as an automobile engine generates a spark discharge in a spark discharge gap between a center electrode and a ground electrode, thereby generating an air-fuel mixture supplied to a combustion chamber of the internal combustion engine. It is configured to ignite.
 近年では、排ガス規制への対応や燃費向上の観点から、リーンバーンエンジンや、直噴エンジン、低排ガスエンジン等の内燃機関の開発が積極的に行われている。このような内燃機関においては、混合気に点火するために、従来よりも着火性の高いスパークプラグが要求される。 In recent years, internal combustion engines such as lean burn engines, direct injection engines, and low exhaust gas engines have been actively developed from the viewpoint of complying with exhaust gas regulations and improving fuel efficiency. In such an internal combustion engine, in order to ignite the air-fuel mixture, a spark plug having higher ignitability than before is required.
 着火性を高めたスパークプラグとしては、接地電極側において凸部を備えたものが知られている。 As a spark plug with improved ignitability, one having a convex portion on the ground electrode side is known.
 例えば、ニッケル合金等により形成される接地電極の電極母材に対し、耐火花消耗性や耐酸化消耗性に優れるイリジウム合金や白金合金等の貴金属チップを溶接して凸部を形成したものや、貴金属チップの代わりに、接地電極の電極母材自体を加工して凸部を形成したものなどが知られている(例えば、特許文献1参照。)。 For example, with respect to the electrode base material of the ground electrode formed of a nickel alloy or the like, a convex part is formed by welding a precious metal tip such as an iridium alloy or a platinum alloy that is excellent in spark wear resistance and oxidation wear resistance, Instead of the noble metal tip, there is known one in which a projection is formed by processing the electrode base material itself of the ground electrode (see, for example, Patent Document 1).
特開2006-286469号公報JP 2006-286469 A
 しかしながら、内燃機関側でも、着火性を向上させるため、燃焼室内における混合気の流速を速くした高スワールのものが増えてきている。このような内燃機関では、火花放電ギャップにおいて発生した火花が吹き流されて失火する、いわゆる吹き消え等の不具合が発生するおそれが高くなる。 However, on the internal combustion engine side, in order to improve ignitability, a high swirl type in which the flow rate of the air-fuel mixture in the combustion chamber is increased is increasing. In such an internal combustion engine, there is a high risk of occurrence of problems such as so-called blow-off, in which a spark generated in the spark discharge gap is blown away and misfires.
 本発明は上記事情に鑑みてなされたものであり、その目的は、吹き消え等の発生を抑制し、着火性の向上を図ることのできるスパークプラグ及びその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a spark plug capable of suppressing the occurrence of blow-off and the like and improving the ignitability, and a method for manufacturing the same.
 以下、上記課題等を解決するのに適した各構成を項分けして説明する。なお、必要に応じて対応する構成に特有の作用効果等を付記する。 Hereafter, each configuration suitable for solving the above-mentioned problems will be described in terms of items. In addition, the effect etc. peculiar to the structure which respond | corresponds as needed are added.
 構成1.本構成のスパークプラグは、軸線方向に延びる中心電極と、当該中心電極を保持する絶縁体と、当該絶縁体を保持する主体金具と、当該主体金具の先端部に自身の基端部が接合され、屈曲して自身の先端部の内側面が前記中心電極の先端部を臨むように固定される接地電極と、前記接地電極の内側面に接合された貴金属チップとを備え、前記中心電極と前記接地電極の貴金属チップとの間に火花放電間隙が形成されるスパークプラグであって、
 前記接地電極の内側面には、ニッケルを主成分とした当該接地電極の電極母材からなりかつ前記軸線方向に沿って突出した柱状の凸部が形成され、
 前記凸部の先端面には、当該凸部の先端面の面積よりも断面積の小さい前記貴金属チップが接合されるとともに、当該貴金属チップの周囲の少なくとも一部において前記接地電極の電極母材からなる放電許容面が形成され、
 前記軸線方向における前記中心電極の放電面から前記接地電極の貴金属チップの放電面までの距離である前記火花放電間隙の間隔が0.8mm以上であり、
 前記軸線方向における前記接地電極の貴金属チップの放電面から前記接地電極の内側面までの距離である前記接地電極の貴金属チップの突き出し寸法が0.5mm以上であり、
 前記軸線方向と直交する平面に前記中心電極の放電面と前記接地電極の貴金属チップの放電面とを投影したとき、前記接地電極の貴金属チップの放電面の投影像の領域外に前記中心電極の放電面の投影像がはみ出さないことを特徴とする。
Configuration 1. The spark plug of this configuration has a center electrode that extends in the axial direction, an insulator that holds the center electrode, a metal shell that holds the insulator, and a base end of the metal shell that is joined to the tip of the metal shell. A ground electrode that is bent and fixed so that an inner surface of its own tip faces the tip of the center electrode, and a noble metal tip bonded to the inner surface of the ground electrode, the center electrode and the A spark plug in which a spark discharge gap is formed between the noble metal tip of the ground electrode,
The inner surface of the ground electrode is formed of a columnar convex portion made of an electrode base material of the ground electrode mainly composed of nickel and projecting along the axial direction,
The noble metal tip having a cross-sectional area smaller than the area of the tip surface of the convex portion is joined to the tip surface of the convex portion, and at least part of the periphery of the noble metal tip from the electrode base material of the ground electrode A discharge permissible surface is formed,
An interval of the spark discharge gap, which is a distance from the discharge surface of the central electrode in the axial direction to the discharge surface of the noble metal tip of the ground electrode, is 0.8 mm or more;
The protruding dimension of the noble metal tip of the ground electrode, which is the distance from the discharge surface of the noble metal tip of the ground electrode in the axial direction to the inner surface of the ground electrode, is 0.5 mm or more,
When the discharge surface of the center electrode and the discharge surface of the noble metal tip of the ground electrode are projected on a plane perpendicular to the axial direction, the center electrode is outside the region of the projected image of the discharge surface of the noble metal tip of the ground electrode. The projected image of the discharge surface does not protrude.
 上記構成1によれば、接地電極に形成された凸部の先端面には、主として放電面を構成する貴金属チップが接合されるとともに、当該貴金属チップの周囲に、ニッケルを主成分とした電極母材からなる放電許容面が形成されている。 According to the above configuration 1, the noble metal tip mainly constituting the discharge surface is joined to the front end surface of the convex portion formed on the ground electrode, and the electrode matrix mainly composed of nickel is disposed around the noble metal tip. A discharge allowable surface made of a material is formed.
 これにより、通常時には、中心電極と接地電極の貴金属チップとの間で放電が行われるのに対し、スワール等の影響により火花が流された場合には、貴金属チップの周囲の放電許容面(ニッケル母材部分)が放電面として機能し、放電が維持される。 As a result, the discharge is normally performed between the center electrode and the noble metal tip of the ground electrode, but when a spark is caused by the influence of swirl or the like, the discharge permissible surface (nickel) around the noble metal tip The base material portion) functions as a discharge surface, and discharge is maintained.
 電極母材となるニッケル合金は、貴金属チップを構成するイリジウムや白金等の貴金属に比べて酸化しやすい。このため、スパークプラグの使用を進めるうちに、燃焼室内で高温の雰囲気に晒されることで、電極母材表面には酸化膜が形成される。一般的に金属酸化物はイリジウムや白金等の貴金属に比べて、仕事関数が小さくなることから、酸化膜が形成された電極母材部分において放電が起こる場合には、放電が維持されやすいと考えられる。 Nickel alloys that serve as electrode base materials are more likely to oxidize than noble metals such as iridium and platinum constituting noble metal tips. For this reason, as the spark plug is used, an oxide film is formed on the surface of the electrode base material by being exposed to a high temperature atmosphere in the combustion chamber. In general, metal oxides have a smaller work function than noble metals such as iridium and platinum, so when discharge occurs in the electrode base material where the oxide film is formed, the discharge is likely to be maintained. It is done.
 結果として、貴金属チップを用いて電極の耐久性低下を抑制しつつも、吹き消え等の発生を抑制し、着火性の向上を図ることができる。 As a result, it is possible to improve the ignitability by suppressing the occurrence of blowout while suppressing the decrease in the durability of the electrode using the noble metal tip.
 但し、軸線方向と直交する平面に中心電極の放電面と接地電極の貴金属チップの放電面とを投影したとき、接地電極の貴金属チップの放電面の投影像の領域外に中心電極の放電面の投影像がはみ出すような構成では、放電許容面(ニッケル母材部分)に火花が飛びやすくなってしまい、耐久性が低下するおそれがある。つまり、耐久性向上のために貴金属チップを設ける意味が薄れる。 However, when the discharge surface of the center electrode and the discharge surface of the noble metal tip of the ground electrode are projected on a plane orthogonal to the axial direction, the discharge surface of the center electrode is outside the region of the projected image of the discharge surface of the noble metal tip of the ground electrode. In the configuration in which the projected image protrudes, a spark tends to fly to the discharge permissible surface (nickel base material portion), and the durability may be reduced. That is, the meaning of providing a noble metal tip for improving durability is reduced.
 これに対し、本構成1のように、接地電極の貴金属チップの放電面の投影像の領域外に中心電極の放電面の投影像がはみ出さない構成とすれば、スワール等の影響がない状況下においては中心電極と接地電極の貴金属チップとの間において放電が行われ、スワール等によって火花が流された際には、放電許容面で放電が維持される。結果として、放電許容面への飛火を抑え、耐久性低下を抑制することができる。 On the other hand, when the configuration in which the projection image of the discharge surface of the center electrode does not protrude outside the region of the projection image of the discharge surface of the noble metal tip of the ground electrode as in the present configuration 1, there is no influence of swirl or the like. Below, a discharge is performed between the center electrode and the noble metal tip of the ground electrode, and when a spark is caused by a swirl or the like, the discharge is maintained on the discharge permissible surface. As a result, it is possible to suppress flying to the discharge permissible surface and suppress a decrease in durability.
 また、火花放電間隙の間隔が0.8mmを下回る構成や、接地電極の貴金属チップの突き出し寸法が0.5mmを下回る構成のスパークプラグにおいては、そもそも吹き消えなど上記不具合は発生し難い。従って、上述した本構成1の作用効果は、火花放電間隙の間隔が0.8mm以上で、かつ、貴金属チップの突き出し寸法が0.5mm以上のスパークプラグにおいて、より奏効することとなる。 Also, in a spark plug having a configuration in which the spark discharge gap interval is less than 0.8 mm or a configuration in which the protruding dimension of the noble metal tip of the ground electrode is less than 0.5 mm, the above-mentioned problems such as blow-off are unlikely to occur. Therefore, the above-described operational effect of Configuration 1 is more effective in the spark plug in which the spark discharge gap interval is 0.8 mm or more and the protruding dimension of the noble metal tip is 0.5 mm or more.
 ここで、「主成分」とあるのは、材料中、最も質量比の高い成分を指すものである(以下、同様とする)。 Here, “main component” refers to the component having the highest mass ratio in the material (hereinafter the same).
 尚、貴金属チップを凸部にレーザ溶接した場合には、貴金属チップの周囲に溶融部が形成されるが、この溶融部は接地電極の電極母材と貴金属チップとが溶け合ってできたものであるため、「接地電極の電極母材からなる放電許容面」には含まれない。 When the noble metal tip is laser welded to the convex portion, a melted portion is formed around the noble metal tip. This melted portion is formed by melting the electrode base material of the ground electrode and the noble metal tip. Therefore, it is not included in the “discharge allowable surface made of the electrode base material of the ground electrode”.
 一方、貴金属チップを凸部に抵抗溶接した場合には、当該溶接に際し貴金属チップによって電極母材表面が押し退けられるようにして当該貴金属チップの周囲に溶接ダレが形成されるが、この溶接ダレは、電極母材と同様の成分組成となっているため、「接地電極の電極母材からなる放電許容面」に含まれることとしてもよい。 On the other hand, when the noble metal tip is resistance-welded to the convex portion, a welding sag is formed around the noble metal tip so that the surface of the electrode base material is pushed away by the noble metal tip during the welding. Since it has the same component composition as that of the electrode base material, it may be included in the “discharge allowable surface made of the electrode base material of the ground electrode”.
 構成2.本構成のスパークプラグは、上記構成1において、
 前記放電許容面の端縁に面取り部を形成したことを特徴とする。
Configuration 2. The spark plug of this configuration is the above-described configuration 1,
A chamfered portion is formed at an edge of the discharge allowable surface.
 面取り部としては、例えば、湾曲形状のR面取り部や、テーパ形状のC面取り部などが挙げられる。 Examples of the chamfered portion include a curved R chamfered portion and a tapered C chamfered portion.
 上記構成2によれば、放電許容面の端縁、すなわち凸部の先端面と側面とがなす角部に面取り加工が施され、面取り部が形成されることにより、角部での吹き消えの発生を抑制することができる。結果として、上記構成1の作用効果をより高めることができる。 According to the configuration 2, the edge of the discharge permissible surface, that is, the corner formed by the tip surface and the side surface of the convex portion is chamfered, and the chamfered portion is formed, so that the blow-off at the corner is prevented. Occurrence can be suppressed. As a result, the effect of the said structure 1 can be improved more.
 構成3.本構成のスパークプラグは、上記構成1又は2において、
 前記放電許容面は前記貴金属チップの周囲全周にわたって形成されていることを特徴とする。
Configuration 3. The spark plug of this configuration is the above configuration 1 or 2,
The discharge allowable surface is formed over the entire circumference of the noble metal tip.
 上記構成3によれば、貴金属チップの周囲全周にわたって放電許容面が形成されているため、スワール等によって火花が如何なる方向に流された際でも、確実に放電が維持されることとなる。 According to the above-described configuration 3, since the discharge permissible surface is formed around the entire periphery of the noble metal tip, the discharge is reliably maintained regardless of the direction in which the spark is caused to flow by a swirl or the like.
 構成4.本構成のスパークプラグは、上記構成1乃至3のいずれかにおいて、
 前記凸部の外周と前記貴金属チップの外周との最小距離を0.1mm以上、0.5mm以下としたことを特徴とする。
Configuration 4. The spark plug of this configuration is any one of the above configurations 1 to 3,
The minimum distance between the outer periphery of the convex portion and the outer periphery of the noble metal tip is 0.1 mm or more and 0.5 mm or less.
 凸部の先端面の面積よりも貴金属チップの断面積を小さく設定したとしても、両者の外周の最小距離が0.1mmを下回って放電許容面の面積が小さい場合には、上記構成1の作用効果を得ることが難しくなるおそれがある。また、両者の外周の最小距離が0.5mmを上回って放電許容面の面積が大きくなってしまうと、着火性や加工性の低下を招くおそれがある。これに鑑み、上記構成4を採用することで、このような不具合の発生を防ぐとともに、上記構成1の作用効果がより確実に奏されることとなる。 Even if the cross-sectional area of the noble metal tip is set smaller than the area of the tip end surface of the convex portion, when the minimum distance between the outer circumferences of both is less than 0.1 mm and the area of the discharge permissible surface is small, the operation of the above configuration 1 It may be difficult to obtain an effect. Further, if the minimum distance between the outer peripheries of both exceeds 0.5 mm and the area of the discharge permissible surface becomes large, the ignitability and workability may be reduced. In view of this, by adopting the above-described configuration 4, it is possible to prevent the occurrence of such inconveniences and more reliably achieve the operational effects of the above-described configuration 1.
 構成5.本構成のスパークプラグは、上記構成1乃至4のいずれかにおいて、
 前記軸線方向における前記凸部の先端面からの前記貴金属チップの出寸法を0mm以上、0.2mm以下としたことを特徴とする。
Configuration 5. The spark plug of this configuration is any one of the above configurations 1 to 4,
The protruding dimension of the noble metal tip from the front end surface of the convex portion in the axial direction is 0 mm or more and 0.2 mm or less.
 貴金属チップの出寸法が0mmを下回る場合、すなわち貴金属チップが凸部の先端面よりも凹んでいる場合には、中心電極と貴金属チップ周囲の放電許容面との距離が中心電極と貴金属チップとの距離よりも小さくなるため、放電許容面に火花が飛びやすくなってしまい、耐久性が低下するおそれがある。つまり、耐久性向上のために貴金属チップを設ける意味が薄れる。また、出寸法が0.2mmを上回るくらいに大きくなると、従来同様に吹き消えが発生するおそれが高まる。これに鑑み、通常時は貴金属チップにおいて放電を行い、スワール等によって火花が流された際には、放電許容面で放電が維持されるようにするためには、上記構成5とすることが好ましい。この結果、上記構成1の作用効果がより確実に奏されることとなる。 When the protruding dimension of the noble metal tip is less than 0 mm, that is, when the noble metal tip is recessed from the tip surface of the convex portion, the distance between the center electrode and the discharge permissible surface around the noble metal tip is the distance between the center electrode and the noble metal tip. Since the distance is smaller than the distance, it is easy for the spark to fly to the discharge permissible surface, and the durability may be reduced. That is, the meaning of providing a noble metal tip for improving durability is reduced. In addition, when the protruding dimension becomes larger than 0.2 mm, the risk of blown out increases as in the conventional case. In view of this, it is preferable to use the above-described configuration 5 in order to maintain discharge on the discharge permissible surface when discharge is normally performed on the noble metal tip and a spark is caused by swirl or the like. . As a result, the effect of the said structure 1 is show | played more reliably.
 構成6.本構成のスパークプラグは、上記構成1乃至5のいずれかにおいて、
 前記軸線方向に対して前記接地電極の内側面とは反対にあたる外側面において、前記凸部に対応する位置に穴部が形成されていることを特徴とする。
Configuration 6. The spark plug of this configuration is any one of the above configurations 1 to 5,
A hole is formed at a position corresponding to the convex portion on the outer surface opposite to the inner surface of the ground electrode with respect to the axial direction.
 構成7.本構成のスパークプラグの製造方法は、軸線方向に延びる中心電極と、当該中心電極を保持する絶縁体と、当該絶縁体を保持する主体金具と、当該主体金具の先端部に自身の基端部が接合され、屈曲して自身の先端部の内側面が前記中心電極の先端部を臨むように固定される接地電極と、前記接地電極の内側面に設けられた柱状の凸部と、前記凸部の先端面に接合された貴金属チップとを備え、前記中心電極と前記接地電極の貴金属チップ及び前記凸部の先端面との間に火花放電間隙が形成されるスパークプラグの製造方法であって、
 略直棒状に形成された前記接地電極の原体に対し前記貴金属チップを溶接する溶接工程と、
 前記接地電極の原体のうち少なくとも前記貴金属チップの含まれる範囲を前記貴金属チップを溶接した側とは反対側から押出加工して前記凸部を成形する押出工程と、
 前記接地電極の原体を屈曲加工して、前記貴金属チップを含む前記凸部の先端面を前記中心電極の先端部に臨ませるようにして前記火花放電間隙を形成する屈曲工程とを備えたことを特徴とする。
Configuration 7. The spark plug manufacturing method of the present configuration includes a center electrode extending in the axial direction, an insulator holding the center electrode, a metal shell holding the insulator, and a base end portion of the metal shell at the distal end of the metal shell Are joined, bent, and fixed so that the inner surface of the tip portion thereof faces the tip portion of the center electrode, a columnar protrusion provided on the inner surface of the ground electrode, and the protrusion A spark plug gap is formed between the center electrode and the noble metal tip of the ground electrode and the tip end surface of the convex portion. ,
A welding step of welding the noble metal tip to the base of the ground electrode formed in a substantially straight rod shape;
An extruding step of forming the convex portion by extruding from a side opposite to the side where the noble metal tip is welded to a range in which at least the noble metal tip is included in the base of the ground electrode;
A bending step of forming the spark discharge gap by bending the base of the ground electrode so that the tip surface of the convex portion including the noble metal tip faces the tip of the center electrode. It is characterized by.
 上記構成7によれば、凸部を形成する前に貴金属チップの溶接を行うことで、溶接工程が比較的容易となる。さらに、押出加工により凸部を形成することで、凸部の所望の突出量を確保しやくなる。 According to the configuration 7, the welding process is relatively easy by welding the noble metal tip before forming the convex portion. Furthermore, it becomes easy to ensure the desired protrusion amount of a convex part by forming a convex part by an extrusion process.
本実施形態のスパークプラグの全体を示す一部破断正面図である。It is a partially broken front view which shows the whole spark plug of this embodiment. スパークプラグの先端部(中心電極及び接地電極)付近の要部を拡大した一部破断拡大図である。It is the partially broken enlarged view which expanded the principal part near the front-end | tip part (a center electrode and a ground electrode) of a spark plug. 接地電極の凸部を中心電極側から軸線方向に見た模式図である。It is the schematic diagram which looked at the convex part of the ground electrode from the center electrode side to the axial direction. 接地電極の凸部付近を示す断面模式図である。It is a cross-sectional schematic diagram which shows the convex part vicinity of a ground electrode. 中心電極及び接地電極付近の要部を拡大した一部破断拡大図である。It is the partially broken enlarged view which expanded the principal part vicinity of a center electrode and a ground electrode. 軸線方向と直交する平面に投影された中心電極の貴金属チップと接地電極の貴金属チップの投影像を示す模式図である。It is a schematic diagram which shows the projection image of the noble metal tip of a center electrode and the noble metal tip of a ground electrode projected on the plane orthogonal to an axial direction. 従来の中心電極及び接地電極付近の要部を拡大した一部破断拡大図である。It is the partially broken enlarged view which expanded the principal part of the conventional center electrode and ground electrode vicinity. 別の実施形態における接地電極の凸部を中心電極側から軸線方向に見た模式図である。It is the schematic diagram which looked at the convex part of the ground electrode in another embodiment from the center electrode side in the axial direction. 別の実施形態における接地電極の凸部付近を示す断面模式図である。It is a cross-sectional schematic diagram which shows the convex part vicinity of the ground electrode in another embodiment. 別の実施形態における接地電極の凸部付近を示す断面模式図である。It is a cross-sectional schematic diagram which shows the convex part vicinity of the ground electrode in another embodiment.
 以下に、一実施形態について図面を参照して説明する。図1は、スパークプラグ1を示す一部破断正面図である。なお、図1では、スパークプラグ1の軸線C1方向を図面における上下方向とし、下側をスパークプラグ1の先端側、上側を後端側として説明する。 Hereinafter, an embodiment will be described with reference to the drawings. FIG. 1 is a partially cutaway front view showing a spark plug 1. In FIG. 1, the axis C1 direction of the spark plug 1 is defined as the vertical direction in the drawing, the lower side is described as the front end side of the spark plug 1, and the upper side is described as the rear end side.
 スパークプラグ1は、長尺状をなす絶縁体としての絶縁碍子2、これを保持する筒状の主体金具3などから構成されるものである。 The spark plug 1 is composed of an insulator 2 as an elongated insulator, a cylindrical metal shell 3 that holds the insulator 2, and the like.
 絶縁碍子2には、軸線C1に沿って軸孔4が貫通形成されている。そして、軸孔4の先端部側には中心電極5が挿入・固定され、後端部側には端子電極6が挿入・固定されている。軸孔4内における中心電極5と端子電極6との間には、抵抗体7が配置されており、この抵抗体7の両端部は導電性のガラスシール層8,9を介して、中心電極5と端子電極6とにそれぞれ電気的に接続されている。 A shaft hole 4 is formed through the insulator 2 along the axis C1. A center electrode 5 is inserted and fixed on the front end side of the shaft hole 4, and a terminal electrode 6 is inserted and fixed on the rear end side. A resistor 7 is disposed between the center electrode 5 and the terminal electrode 6 in the shaft hole 4, and both ends of the resistor 7 are connected to the center electrode via conductive glass seal layers 8 and 9. 5 and the terminal electrode 6 are electrically connected to each other.
 中心電極5は、絶縁碍子2の先端から突出し、端子電極6は絶縁碍子2の後端から突出した状態でそれぞれ固定されている。 The center electrode 5 protrudes from the tip of the insulator 2 and the terminal electrode 6 is fixed in a state of protruding from the rear end of the insulator 2.
 一方、絶縁碍子2は、周知のようにアルミナ等を焼成して形成されており、その外形部において、軸線C1方向略中央部において径方向外向きに突出形成されたフランジ状の大径部11と、当該大径部11よりも先端側においてこれよりも細径に形成された中胴部12と、当該中胴部12よりも先端側においてこれより細径に形成され、内燃機関(エンジン)の燃焼室に晒される脚長部13とを備えている。絶縁碍子2のうち、大径部11、中胴部12、脚長部13を含む先端側は、筒状に形成された主体金具3の内部に収容されている。そして、脚長部13と中胴部12との連接部には段部14が形成されており、当該段部14にて絶縁碍子2が主体金具3に係止されている。 On the other hand, the insulator 2 is formed by firing alumina or the like, as is well known, and has a flange-shaped large-diameter portion 11 that protrudes radially outward at a substantially central portion in the direction of the axis C1 in its outer shape. And an inner body portion 12 having a smaller diameter on the distal end side than the large diameter portion 11, and an inner body portion 12 having a smaller diameter on the distal end side than the intermediate body portion 12, and an internal combustion engine (engine). And a leg length portion 13 exposed to the combustion chamber. Of the insulator 2, the distal end side including the large-diameter portion 11, the middle trunk portion 12, and the leg long portion 13 is accommodated in a metal shell 3 formed in a cylindrical shape. A step portion 14 is formed at the connecting portion between the leg long portion 13 and the middle trunk portion 12, and the insulator 2 is locked to the metal shell 3 at the step portion 14.
 主体金具3は、低炭素鋼等の金属により筒状に形成されており、その外周面にはスパークプラグ1をエンジンヘッドに取付けるためのねじ部(雄ねじ部)15が形成されている。ねじ部15の後端側の外周面には座部16が形成され、ねじ部15後端のねじ首17にはリング状のガスケット18が嵌め込まれている。さらに、主体金具3の後端側には、主体金具3をエンジンヘッドに取付ける際にレンチ等の工具を係合させるための断面六角形状の工具係合部19が設けられるとともに、後端部において絶縁碍子2を保持するための加締め部20が設けられている。 The metal shell 3 is formed in a cylindrical shape from a metal such as low carbon steel, and a screw portion (male screw portion) 15 for attaching the spark plug 1 to the engine head is formed on the outer peripheral surface thereof. A seat portion 16 is formed on the outer peripheral surface on the rear end side of the screw portion 15, and a ring-shaped gasket 18 is fitted on the screw neck 17 on the rear end of the screw portion 15. Further, on the rear end side of the metal shell 3, a tool engaging portion 19 having a hexagonal cross section for engaging a tool such as a wrench when the metal shell 3 is attached to the engine head is provided. A caulking portion 20 for holding the insulator 2 is provided.
 また、主体金具3の内周面には、絶縁碍子2を係止するための段部21が設けられている。そして、絶縁碍子2は、主体金具3の後端側から先端側に向かって挿入され、自身の段部14が主体金具3の段部21に係止された状態で、主体金具3の後端側の開口部を径方向内側に加締めること、つまり上記加締め部20を形成することによって固定される。なお、絶縁碍子2及び主体金具3双方の段部14,21間には、円環状の板パッキン22が介在されている。これにより、燃焼室内の気密性を保持し、燃焼室内に晒される絶縁碍子2の脚長部13と主体金具3の内周面との隙間に入り込む燃料空気が外部に漏れないようにしている。 Further, a step portion 21 for locking the insulator 2 is provided on the inner peripheral surface of the metal shell 3. The insulator 2 is inserted from the rear end side to the front end side of the metal shell 3, and the rear end of the metal shell 3 is engaged with the step portion 14 of the metal shell 3. It is fixed by caulking the opening on the side radially inward, that is, by forming the caulking portion 20. An annular plate packing 22 is interposed between the step portions 14 and 21 of both the insulator 2 and the metal shell 3. Thereby, the airtightness in the combustion chamber is maintained, and the fuel air entering the gap between the leg long portion 13 of the insulator 2 exposed to the combustion chamber and the inner peripheral surface of the metal shell 3 is prevented from leaking outside.
 さらに、加締めによる密閉をより完全なものとするため、主体金具3の後端側においては、主体金具3と絶縁碍子2との間に環状のリング部材23,24が介在され、リング部材23,24間にはタルク(滑石)25の粉末が充填されている。すなわち、主体金具3は、板パッキン22、リング部材23,24及びタルク25を介して絶縁碍子2を保持している。 Further, in order to make the sealing by caulking more complete, annular ring members 23 and 24 are interposed between the metal shell 3 and the insulator 2 on the rear end side of the metal shell 3, and the ring member 23 , 24 is filled with powder of talc (talc) 25. That is, the metal shell 3 holds the insulator 2 via the plate packing 22, the ring members 23 and 24, and the talc 25.
 主体金具3の先端面26には、略L字状をなす接地電極27が接合されている。すなわち、接地電極27は、前記主体金具3の先端面26に対しその基端部が溶接されるとともに、先端側が曲げ返されて、その内側面が中心電極5の先端部と対向するように配置されている。 A ground electrode 27 having a substantially L shape is joined to the front end surface 26 of the metal shell 3. That is, the ground electrode 27 is disposed so that the base end portion thereof is welded to the front end surface 26 of the metal shell 3, the front end side is bent back, and the inner side surface thereof faces the front end portion of the center electrode 5. Has been.
 ここで、中心電極5及び接地電極27の構成について図2を参照して詳しく説明する。図2は、スパークプラグ1の先端部(中心電極5及び接地電極27)付近の要部を拡大した一部破断拡大図である。 Here, the configuration of the center electrode 5 and the ground electrode 27 will be described in detail with reference to FIG. FIG. 2 is a partially broken enlarged view in which a main part in the vicinity of the tip part (the center electrode 5 and the ground electrode 27) of the spark plug 1 is enlarged.
 中心電極5及び接地電極27の電極母材は、ニッケルを主成分とするニッケル(Ni)合金からなる。但し、中心電極5の内部には、熱伝導性を高めるため、銅又は銅合金からなる伝導芯が埋め込まれている。これにより、中心電極5は、銅又は銅合金からなる内層5A及びNi合金からなる外層5Bからなる。 The electrode base material of the center electrode 5 and the ground electrode 27 is made of a nickel (Ni) alloy containing nickel as a main component. However, a conductive core made of copper or a copper alloy is embedded in the center electrode 5 in order to increase thermal conductivity. Thereby, the center electrode 5 consists of the inner layer 5A which consists of copper or a copper alloy, and the outer layer 5B which consists of Ni alloy.
 中心電極5は、全体として棒状をなすとともに、その先端側が縮径されている。中心電極5の先端には、円柱状をなす貴金属チップ31が抵抗溶接やレーザ溶接等により接合されている。 The center electrode 5 has a rod-like shape as a whole, and its tip side is reduced in diameter. A columnar noble metal tip 31 is joined to the tip of the center electrode 5 by resistance welding, laser welding, or the like.
 また、これに対向する接地電極27の内側面27aには、貴金属チップ31に対向して凸部28が形成されている。凸部28は、軸線C1方向に沿って、接地電極27の内側面27aから中心電極5側に向け突出し、軸線C1方向と直交する径方向(図2左右方向)に沿った断面形状が略円形の円柱状をなす。凸部28は、後述するように、接地電極27の外側面27bから押出し加工により形成される。そのため、接地電極27の外側面27bには、押出し加工の際に形成された有底の穴部29が開口している。 Further, a convex portion 28 is formed on the inner side surface 27 a of the ground electrode 27 facing this so as to face the noble metal tip 31. The convex portion 28 protrudes from the inner side surface 27a of the ground electrode 27 toward the center electrode 5 side along the axis C1 direction, and the cross-sectional shape along the radial direction (left and right direction in FIG. 2) orthogonal to the axis C1 direction is substantially circular. It has a cylindrical shape. The convex portion 28 is formed by extrusion from the outer surface 27b of the ground electrode 27, as will be described later. Therefore, a bottomed hole portion 29 formed at the time of extrusion is opened on the outer surface 27 b of the ground electrode 27.
 凸部28の先端面には、円柱状の貴金属チップ32がレーザ溶接により接合されている。貴金属チップ32は、イリジウムや白金等の貴金属を主成分とする貴金属合金により形成されている。 A cylindrical noble metal tip 32 is joined to the tip surface of the convex portion 28 by laser welding. The noble metal tip 32 is formed of a noble metal alloy mainly containing a noble metal such as iridium or platinum.
 図3,4に示すように、貴金属チップ32の断面積は、凸部28の先端面の面積よりも小さく設定されている。このため、凸部28の先端面は、中央に貴金属チップ32を備えるとともに、当該貴金属チップ32の周囲に隣接して、レーザ溶接に際し形成された環状の溶融部33と、さらにその外周側において環状の電極母材面28aとを有した構成となっている。当該電極母材面28aが本実施形態における放電許容面を構成する。本実施形態における電極母材面28aは、貴金属チップ32の周囲全周にわたって形成されており、凸部28の径方向における幅(凸部28の外周と、貴金属チップ32及び溶融部33を含むエリアの外周との最小距離)Xが0.1mm以上、0.5mm以下となるように設定されている。 As shown in FIGS. 3 and 4, the cross-sectional area of the noble metal tip 32 is set smaller than the area of the tip surface of the convex portion 28. For this reason, the front end surface of the convex portion 28 is provided with a noble metal tip 32 in the center, and adjacent to the periphery of the noble metal tip 32, an annular molten portion 33 formed during laser welding, and an annular shape on the outer peripheral side thereof. And the electrode base material surface 28a. The electrode base material surface 28a constitutes a discharge permissible surface in the present embodiment. The electrode base material surface 28a in the present embodiment is formed over the entire circumference of the noble metal tip 32, and the radial width of the convex portion 28 (the outer periphery of the convex portion 28, the area including the noble metal tip 32 and the melting portion 33). Is set to be 0.1 mm or more and 0.5 mm or less.
 また、図4に示すように、貴金属チップ32は、凸部28の電極母材面28aと面一又は当該電極母材面28aから突出するように接合されている。本実施形態では、凸部28の電極母材面28aから貴金属チップ32の放電面(中心電極5の貴金属チップ31と対向する面)32aまでの軸線C1方向に対する距離、すなわち貴金属チップ32の出寸法Yが0mm以上、0.2mm以下となるように設定されている。 Further, as shown in FIG. 4, the noble metal tip 32 is flush with the electrode base material surface 28a of the convex portion 28 or joined so as to protrude from the electrode base material surface 28a. In the present embodiment, the distance from the electrode base material surface 28a of the convex portion 28 to the discharge surface 32a of the noble metal tip 32 (the surface facing the noble metal tip 31 of the center electrode 5) in the direction of the axis C1, that is, the projected dimension of the noble metal tip 32. Y is set to be 0 mm or more and 0.2 mm or less.
 上記構成の下、中心電極5と凸部28との間に火花放電間隙としての火花放電ギャップ35が形成される。そして、通常時は、主として上記貴金属チップ31,32間において放電が行われる一方、スワール等の影響により火花が流れた場合には、貴金属チップ32の周囲の電極母材面28aが放電面として機能し、放電が維持されることとなる。 Under the above configuration, a spark discharge gap 35 as a spark discharge gap is formed between the center electrode 5 and the convex portion 28. In a normal state, discharge is mainly performed between the noble metal tips 31 and 32. On the other hand, when a spark flows due to the influence of swirl or the like, the electrode base material surface 28a around the noble metal tip 32 functions as a discharge surface. Then, the discharge is maintained.
 結果として、上記構成のスパークプラグ1によれば、接地電極27の耐久性低下を抑制しつつも、吹き消え等の発生を抑制できかつ着火性の向上を図ることができる。 As a result, according to the spark plug 1 having the above-described configuration, it is possible to suppress the occurrence of blow-off and the like and to improve the ignitability while suppressing a decrease in the durability of the ground electrode 27.
 次に、上記のように構成されてなるスパークプラグ1の製造方法について説明する。まず、主体金具3を予め加工しておく。すなわち、円柱状の金属素材(例えばS17CやS25Cといった鉄系素材やステンレス素材)を冷間鍛造加工により貫通孔を形成し、概形を製造する。その後、切削加工を施すことで外形を整え、主体金具中間体を得る。 Next, a method for manufacturing the spark plug 1 configured as described above will be described. First, the metal shell 3 is processed in advance. That is, a cylindrical metal material (for example, an iron-based material such as S17C or S25C or a stainless steel material) is formed by forming a through-hole by cold forging to produce a rough shape. Thereafter, the outer shape is adjusted by cutting to obtain a metal shell intermediate.
 続いて、接地電極27原体を作製する。より詳しくは、先ずNi合金を鋳造・焼鈍して接地電極27原体を作製する。例えば、真空溶解炉を用いて、Ni合金の溶湯を調製し、真空鋳造等にて各溶湯から鋳塊を調製した後、この鋳塊を、熱間加工、線引き加工等して、所定の寸法及び形状に加工して、接地電極27原体を作製する。 Subsequently, a ground electrode 27 base is fabricated. More specifically, first, Ni alloy is cast and annealed to produce the ground electrode 27 base. For example, using a vacuum melting furnace, a Ni alloy melt is prepared, and after the ingot is prepared from each melt by vacuum casting or the like, the ingot is subjected to hot working, drawing, etc., to a predetermined dimension. And it processes to a shape and produces the ground electrode 27 original material.
 続いて、このように形成された接地電極27原体を主体金具中間体の先端面に抵抗溶接する。その後、主体金具中間体の所定部位にねじ部15が転造によって形成される。これにより、接地電極27原体の溶接された主体金具3が得られる。接地電極27原体が溶接された主体金具3には、亜鉛メッキ或いはニッケルメッキ等が施される。 Subsequently, the ground electrode 27 base material formed in this way is resistance-welded to the front end surface of the metal shell intermediate body. Thereafter, the threaded portion 15 is formed by rolling at a predetermined portion of the metal shell intermediate. Thereby, the metal shell 3 to which the ground electrode 27 base material is welded is obtained. The metal shell 3 to which the ground electrode 27 base material is welded is plated with zinc or nickel.
 一方、前記主体金具3とは別に、絶縁碍子2を成形加工しておく。例えば、アルミナを主体としバインダ等を含む原料粉末を用い、成型用素地造粒物を調製し、これを用いてラバープレス成形を行うことで、筒状の成形体が得られる。得られた成形体に対し、研削加工が施され整形される。そして、整形されたものが焼成炉へ投入され焼成される。焼成後、種々の研磨加工を施すことで、絶縁碍子2が得られる。 On the other hand, separately from the metal shell 3, the insulator 2 is molded. For example, by using a raw material powder mainly composed of alumina and containing a binder or the like, a green granulated material for molding is prepared, and rubber press molding is used to obtain a cylindrical molded body. The obtained molded body is ground and shaped. Then, the shaped one is put into a firing furnace and fired. The insulator 2 is obtained by performing various grinding | polishing processes after baking.
 また、前記主体金具3、絶縁碍子2とは別に、中心電極5を製造しておく。ここでは、Ni合金からなる外層5Bが鍛造加工され、その中央部には銅又は銅合金からなる内層5Aが設けられる。さらに、その先端部には、貴金属チップ31が抵抗溶接やレーザ溶接等により接合される。 In addition, the center electrode 5 is manufactured separately from the metal shell 3 and the insulator 2. Here, the outer layer 5B made of a Ni alloy is forged, and an inner layer 5A made of copper or a copper alloy is provided at the center thereof. Further, a noble metal tip 31 is joined to the tip portion by resistance welding, laser welding or the like.
 そして、上記のようにして得られた絶縁碍子2及び中心電極5と、抵抗体7と、端子電極6とが、ガラスシール層8,9によって封着固定される。ガラスシール層8,9としては、一般的にホウ珪酸ガラスと金属粉末とが混合されて調製されており、当該調製されたものが抵抗体7を挟むようにして絶縁碍子2の軸孔4内に注入された後、後方から端子電極6が押圧された状態とした上で、焼成炉内にて焼き固められる。 Then, the insulator 2 and the center electrode 5, the resistor 7, and the terminal electrode 6 obtained as described above are sealed and fixed by the glass seal layers 8 and 9. The glass seal layers 8 and 9 are generally prepared by mixing borosilicate glass and metal powder, and the prepared material is injected into the shaft hole 4 of the insulator 2 with the resistor 7 interposed therebetween. Then, after the terminal electrode 6 is pressed from the rear, it is baked and hardened in a firing furnace.
 その後、上記のようにそれぞれ作製された中心電極5及び端子電極6を備える絶縁碍子2と、接地電極27原体を備える主体金具3とが組付けられる。より詳しくは、比較的薄肉に形成された主体金具3の後端側の開口部を径方向内側に加締めること、つまり上記加締め部20を形成することによって固定される。 Thereafter, the insulator 2 including the center electrode 5 and the terminal electrode 6 respectively manufactured as described above and the metal shell 3 including the ground electrode 27 base body are assembled. More specifically, it is fixed by caulking the opening on the rear end side of the metal shell 3 formed relatively thin inward in the radial direction, that is, by forming the caulking portion 20.
 続いて、絶縁碍子2を組み付けた主体金具3における接地電極27原体の所定部位に、貴金属チップ32をレーザ溶接により接合する。当該工程が本実施形態における溶接工程に相当する。 Subsequently, a noble metal tip 32 is joined by laser welding to a predetermined portion of the ground electrode 27 base body in the metal shell 3 to which the insulator 2 is assembled. This process corresponds to the welding process in this embodiment.
 なお、貴金属チップ32をレーザ溶接する場合には、例えば接地電極27原体の所定部位に貴金属チップ32を予め抵抗溶接しておき、この抵抗溶接された貴金属チップ32の周囲にレーザ光を照射することによって貴金属チップ32と接地電極27原体とをレーザ溶接する。このため、貴金属チップ32の周囲には、当該溶接に際して、接地電極27の電極母材であるNi合金と、貴金属チップ32の成分である貴金属合金とが溶け合ってできる溶融部33が形成される。 When laser welding the noble metal tip 32, for example, the noble metal tip 32 is resistance-welded in advance to a predetermined portion of the ground electrode 27 base body, and laser light is irradiated around the resistance-welded noble metal tip 32. Thus, the noble metal tip 32 and the ground electrode 27 base are laser welded. For this reason, around the noble metal tip 32, a molten portion 33 is formed by melting the Ni alloy that is the electrode base material of the ground electrode 27 and the noble metal alloy that is a component of the noble metal tip 32 during the welding.
 そして、貴金属チップ32の溶接箇所を接地電極27原体の反対側から押出し加工して、凸部28及び穴部29を形成する。当該工程が本実施形態における押出工程に相当する。 Then, the welded portion of the noble metal tip 32 is extruded from the opposite side of the ground electrode 27 base, and the convex portion 28 and the hole portion 29 are formed. This process corresponds to the extrusion process in this embodiment.
 このような接地電極27原体を作製するには、穴部を形成することのできるパンチ具を備えた公知の押出加工機を用いる方法等を採用することができる。 In order to produce such a ground electrode 27 base material, a method using a known extruder equipped with a punching tool capable of forming a hole can be employed.
 押出加工機としては、例えば、パンチ具と、当該パンチ具が貫通する貫通孔を有する板状の押え型と、接地電極27原体を収容する溝状の収容部及びこの収容部内に設けられた貫通孔を有し、押え型が上面に配置される受け型と、当該受け型の貫通孔に挿入される受けピンとを備えた押出加工機等が挙げられる。 As the extrusion machine, for example, a punch tool, a plate-like presser mold having a through-hole through which the punch tool passes, a groove-shaped storage section that stores the ground electrode 27 base body, and a storage section provided in the storage section are provided. An extruder or the like provided with a receiving die having a through hole and a presser die placed on the upper surface, and a receiving pin inserted into the through hole of the receiving die.
 この押出加工機を用いて接地電極27原体に対して押出し加工を行うには、接地電極27原体を収容部に収容した受け型の上面に押え型を重ね合わせて固定し、押え型の貫通孔から接地電極27原体にパンチ具を押圧し、これによって、受け型の貫通孔から接地電極27としたときの凸部28が受けピンで受けつつ押し出される。このとき、パンチ具の形状及び寸法を調整することによって穴部29の形状及び寸法を調整することができ、また、前記受け型の貫通孔及び/又は前記受けピンの形状及び寸法を調整することによって凸部28の形状及び寸法を調整することができる。 In order to extrude the ground electrode 27 base material using this extrusion processing machine, the presser die is overlaid and fixed on the upper surface of the receiving mold in which the ground electrode 27 base material is accommodated in the accommodating portion. A punching tool is pressed from the through hole to the ground electrode 27 base, whereby the convex portion 28 when the receiving electrode is used as the ground electrode 27 is pushed out while being received by the receiving pin. At this time, the shape and size of the hole 29 can be adjusted by adjusting the shape and size of the punch tool, and the shape and size of the through hole of the receiving mold and / or the receiving pin can be adjusted. Thus, the shape and size of the convex portion 28 can be adjusted.
 そして、最後に、接地電極27原体を屈曲させることで接地電極27を最終形状とし、火花放電ギャップ35を形成する。当該工程が本実施形態における屈曲工程に相当する。この際、中心電極5先端の貴金属チップ31と接地電極27側の貴金属チップ32を含む凸部28の先端面との間のギャップ調整が行われる。 Finally, the ground electrode 27 is bent so that the ground electrode 27 has a final shape, and a spark discharge gap 35 is formed. This process corresponds to the bending process in the present embodiment. At this time, the gap is adjusted between the noble metal tip 31 at the tip of the center electrode 5 and the tip surface of the convex portion 28 including the noble metal tip 32 on the ground electrode 27 side.
 このように一連の工程を経ることで、上述した構成を有するスパークプラグ1が製造される。 Thus, the spark plug 1 having the above-described configuration is manufactured through a series of steps.
 次に、本実施形態によって奏される作用効果を確認するべく、上述した電極母材面28aの幅X(以下、単に電極母材幅Xという)及び貴金属チップ32の出寸法Y(以下、単にチップ出寸法Yという)の異なる各種サンプルをそれぞれ1本ずつ作製し、机上火花放電試験を行い、種々の評価を試みた。その実験結果を以下に記す。 Next, in order to confirm the effects achieved by the present embodiment, the width X of the electrode base material surface 28a (hereinafter simply referred to as the electrode base material width X) and the protruding dimension Y (hereinafter simply referred to as the noble metal tip 32) are described. Various samples with different chip protrusion dimensions Y) were prepared one by one, and a desktop spark discharge test was performed to perform various evaluations. The experimental results are described below.
 なお、サンプルとしては、電極母材幅Xを0mm、0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mmに設定したものをそれぞれグループA~グループHとし、グループB~Hに対して、チップ出寸法Yを-0.1mm(貴金属チップ32の放電面32aが凸部28の電極母材面28aよりも凹んだもの)、0mm、0.1mm、0.2mm、0.3mm、0.4mmに設定したものをそれぞれサンプル1~6として作製した。 Samples having electrode base material widths X set to 0 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, and 0.7 mm are group A to A, respectively. Group H, with respect to groups B to H, the tip protruding dimension Y is -0.1 mm (the discharge surface 32a of the noble metal tip 32 is recessed from the electrode base material surface 28a of the projection 28), 0 mm, 0. Samples set to 1 mm, 0.2 mm, 0.3 mm, and 0.4 mm were produced as Samples 1 to 6, respectively.
 そして、机上火花放電試験として、火花飛火性能試験及び火花飛火位置確認試験の2種類の試験を行った。 And, as a desktop spark discharge test, two types of tests were conducted: a spark flying performance test and a spark flying position confirmation test.
 火花飛火性能試験では、0.4MPaの大気雰囲気下に設定されたチャンバー内に各サンプルを取付け、火花放電ギャップ35間に流速5.0m/secのエア流を与えた状態で、それぞれ100回の火花放電を行った。そして、各サンプルについて、吹き消え(放電の途切れ)の発生回数をビデオ映像及び放電波形の測定にて確認し、吹き消え発生率について検証した。その評価結果を表1に示す。 In the spark flying performance test, each sample was mounted in a chamber set in an atmospheric atmosphere of 0.4 MPa, and an air flow at a flow rate of 5.0 m / sec was applied between the spark discharge gaps 35, and 100 times each. A spark discharge was performed. And about each sample, the frequency | count of generation | occurrence | production of the blow-off (disconnection of discharge) was confirmed by the measurement of a video image and a discharge waveform, and the blow-off occurrence rate was verified. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1では、吹き消え発生率が10%未満にあるものを、火花飛火性能に特に優れるとして「◎」の評価を下し、吹き消え発生率が10%以上20%未満にあるものを、火花飛火性能に優れるとして「○」の評価を下すこととした。一方、吹き消え発生率が20%以上のものについては、火花飛火性能に問題があるとして「×」の評価を下すこととした。但し、表1で示す評価は、本試験における相対評価を示すものであり、判定が不可(×)であったとしても必ずしも製品として使用できないことを示すものではない。
Figure JPOXMLDOC01-appb-T000001
In Table 1, a case where the blow-off occurrence rate is less than 10% is rated as “◎” as being particularly excellent in the spark flying performance, and a case where the blow-off occurrence rate is 10% or more and less than 20% It was decided to give a rating of “◯” as being excellent in flying performance. On the other hand, those with a blowout occurrence rate of 20% or more were evaluated as “x” because there was a problem with the sparking performance. However, the evaluation shown in Table 1 shows a relative evaluation in this test, and even if the determination is impossible (x), it does not necessarily indicate that the product cannot be used.
 表1から判るように、電極母材幅Xを0mmとしたグループAに関しては、吹き消え発生率が28%となり、他のグループB~Hと比較して極端に吹き消え発生率が高いことが判る。なお、電極母材幅Xが0mm、すなわち貴金属チップ32の周囲に電極母材面28a(放電許容面)を有しないグループA(図7参照)に関しては、チップ出寸法Yと無関係であるため、この火花飛火性能試験においては、貴金属チップ32の厚みが0.3mmのサンプル(チップ出寸法Yが0.3mmのものに相当)のみ試験を行った。 As can be seen from Table 1, with regard to Group A in which the electrode base material width X is 0 mm, the blow-off occurrence rate is 28%, and the blow-off occurrence rate is extremely high compared to the other groups B to H. I understand. In addition, since the electrode base material width X is 0 mm, that is, the group A (see FIG. 7) that does not have the electrode base material surface 28a (discharge allowable surface) around the noble metal tip 32, it is irrelevant to the chip protruding dimension Y. In this spark flying performance test, only a sample having a noble metal tip 32 thickness of 0.3 mm (corresponding to a tip protruding dimension Y of 0.3 mm) was tested.
 また、グループB~Hに関しては、サンプル1~4と、サンプル5,6とを比較して判るように、チップ出寸法Yが0.3mm以上のサンプル5,6では、吹き消え発生率が高くなることが判る。これは、中心電極5から凸部28の電極母材面28aまでの火花放電ギャップ35の間隔が実質的に長くなるためと考えられる。 As for groups B to H, as can be seen by comparing samples 1 to 4 with samples 5 and 6, samples 5 and 6 having a tip protruding dimension Y of 0.3 mm or more have a high blow-off occurrence rate. It turns out that it becomes. This is considered because the gap of the spark discharge gap 35 from the center electrode 5 to the electrode base material surface 28a of the convex portion 28 is substantially increased.
 上記結果を踏まえて判断すると、電極母材幅Xに関しては0.1mm以上に設定するのが好ましく、チップ出寸法Yに関しては0.2mm以下に設定するのが好ましいことが判る。さらに、電極母材幅Xが0.6mm以上となるグループG,Hでは各サンプル1~6とも、グループFのものと吹き消え発生率にほとんど差が見られないことから、電極母材幅Xの上限に関しては、着火性や加工性の低下などを考慮して、0.5mm以下とすることが好ましい。 Judging from the above results, it can be seen that the electrode base material width X is preferably set to 0.1 mm or more, and the tip protruding dimension Y is preferably set to 0.2 mm or less. Further, in the groups G and H in which the electrode base material width X is 0.6 mm or more, there is almost no difference between the samples 1 to 6 in the group F and the blowout occurrence rate. With respect to the upper limit, it is preferable that the upper limit is 0.5 mm or less in consideration of a decrease in ignitability and workability.
 また、火花飛火位置確認試験では、0.4MPaの大気雰囲気下に設定されたチャンバー内に各サンプルを取付けた上で、エア流を与えることなく、それぞれ100回の火花放電を行った。そして、各サンプルについて、接地電極27側の火花飛火位置をビデオ映像にて確認し、貴金属チップ32の放電面32aへの飛火率について検証した。その評価結果を表2,表3,表4に示す。なお、表2,表3,表4には、便宜上、グループB,D,F,Hのサンプル1~4についてのみ示す。 Further, in the spark flying position confirmation test, each sample was mounted in a chamber set in an atmospheric atmosphere of 0.4 MPa, and spark discharge was performed 100 times without applying an air flow. Then, for each sample, the spark spark position on the ground electrode 27 side was confirmed by a video image, and the spark rate on the discharge surface 32a of the noble metal tip 32 was verified. The evaluation results are shown in Table 2, Table 3, and Table 4. In Table 2, Table 3, and Table 4, only the samples 1 to 4 of the groups B, D, F, and H are shown for convenience.
Figure JPOXMLDOC01-appb-T000002
 表2は、中心電極5の貴金属チップ31の径φ1(図5参照)を0.8mm、接地電極27の貴金属チップ32の径φ2(図5参照)を0.8mmに設定したサンプルの評価結果を示したものである。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the evaluation results of the samples in which the diameter φ1 (see FIG. 5) of the noble metal tip 31 of the center electrode 5 is set to 0.8 mm and the diameter φ2 (see FIG. 5) of the noble metal tip 32 of the ground electrode 27 is set to 0.8 mm. Is shown.
Figure JPOXMLDOC01-appb-T000003
 表3は、中心電極5の貴金属チップ31の径φ1を0.8mm、接地電極27の貴金属チップ32の径φ2を0.7mmに設定したサンプルの評価結果を示したものである。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the evaluation results of the samples in which the diameter φ1 of the noble metal tip 31 of the center electrode 5 is set to 0.8 mm and the diameter φ2 of the noble metal tip 32 of the ground electrode 27 is set to 0.7 mm.
Figure JPOXMLDOC01-appb-T000004
 表4は、中心電極5の貴金属チップ31の径φ1を0.8mm、接地電極27の貴金属チップ32の径φ2を0.9mmに設定したサンプルの評価結果を示したものである。
Figure JPOXMLDOC01-appb-T000004
Table 4 shows the evaluation results of samples in which the diameter φ1 of the noble metal tip 31 of the center electrode 5 is set to 0.8 mm and the diameter φ2 of the noble metal tip 32 of the ground electrode 27 is set to 0.9 mm.
 表2から判るように、チップ出寸法Yを-0.1mmに設定したサンプル1については、各グループB,D,F,Hとも、貴金属チップ32の放電面32aへの飛火率が他のサンプル2~4と比較して極端に低い。つまり、凸部28の電極母材面28aへの飛火率が高い。これは、貴金属チップ32の放電面32aが凸部28の電極母材面28aよりも凹んだ位置にあると、スワール等の影響がない状況においても、中心電極5(貴金属チップ31)と貴金属チップ32の周囲の電極母材面28aとの距離が中心電極5(貴金属チップ31)と貴金属チップ32の放電面32aとの距離よりも小さくなるため、凸部28の電極母材面28aに火花が飛びやすい状態となるためと考えられる。 As can be seen from Table 2, with respect to sample 1 in which the chip protruding dimension Y is set to −0.1 mm, in each of the groups B, D, F, and H, the firing rate to the discharge surface 32a of the noble metal tip 32 is another sample. Extremely low compared to 2-4. That is, the flying ratio of the convex portion 28 to the electrode base material surface 28a is high. This is because if the discharge surface 32a of the noble metal tip 32 is in a position recessed from the electrode base material surface 28a of the convex portion 28, the center electrode 5 (noble metal tip 31) and the noble metal tip can be used even in a situation where there is no influence of swirl or the like. Since the distance from the electrode base material surface 28a around 32 is smaller than the distance between the center electrode 5 (the noble metal tip 31) and the discharge surface 32a of the noble metal tip 32, a spark is generated on the electrode base material surface 28a of the convex portion 28. This is thought to be easy to fly.
 従って、接地電極27の電極母材であるNi合金が貴金属チップ32よりも耐久性が低いことを考慮すれば、チップ出寸法Yを0mm以上に設定して、耐久性の向上を図ることが好ましい。 Therefore, considering that the Ni alloy as the electrode base material of the ground electrode 27 has lower durability than the noble metal tip 32, it is preferable to improve the durability by setting the tip protruding dimension Y to 0 mm or more. .
 表2と表3に示した結果を比較して判るように、中心電極5の貴金属チップ31の径φ1よりも、接地電極27の貴金属チップ32の径φ2が小さい場合には、各グループB,D,F,Hの各サンプルとも、貴金属チップ32の放電面32aへの飛火率が極端に低い。つまり、凸部28の電極母材面28aへの飛火率が高い。これは、中心電極5の貴金属チップ31の放電面31a(図5参照)と軸線C1方向に対向する凸部28の電極母材面28aの面積が多いためと考えられる。 As can be seen by comparing the results shown in Table 2 and Table 3, when the diameter φ2 of the noble metal tip 32 of the ground electrode 27 is smaller than the diameter φ1 of the noble metal tip 31 of the center electrode 5, each group B, In each of the D, F, and H samples, the rate of fire on the discharge surface 32a of the noble metal tip 32 is extremely low. That is, the flying ratio of the convex portion 28 to the electrode base material surface 28a is high. This is probably because the area of the electrode base material surface 28a of the convex portion 28 facing the discharge surface 31a (see FIG. 5) of the noble metal tip 31 of the center electrode 5 in the direction of the axis C1 is large.
 一方、表2と表4に示した結果を比較して判るように、中心電極5の貴金属チップ31の径φ1よりも、接地電極27の貴金属チップ32の径φ2が大きい場合には、両貴金属チップ31,32の径φ1,φ2が同一の場合と同様に、各グループB,D,F,Hの各サンプルとも、貴金属チップ32の放電面32aへの飛火率が高い。また、中心電極5の貴金属チップ31の径φ1よりも、接地電極27の貴金属チップ32の径φ2が大きい場合と、両貴金属チップ31,32の径φ1,φ2が同一の場合とでは、吹き消え発生率にほとんど差も見られない。 On the other hand, when the diameter φ2 of the noble metal tip 32 of the ground electrode 27 is larger than the diameter φ1 of the noble metal tip 31 of the center electrode 5, as can be seen by comparing the results shown in Table 2 and Table 4, both noble metals As in the case where the diameters φ1 and φ2 of the chips 31 and 32 are the same, the samples of each group B, D, F, and H have a high rate of fire on the discharge surface 32a of the noble metal tip 32. In addition, when the diameter φ2 of the noble metal tip 32 of the ground electrode 27 is larger than the diameter φ1 of the noble metal tip 31 of the center electrode 5, and when the diameters φ1 and φ2 of both the noble metal tips 31 and 32 are the same, they blow out. There is almost no difference in the incidence.
 以上の結果から、図6に示すように、軸線C1方向と直交する平面に中心電極5の貴金属チップ31の放電面31aと接地電極27の貴金属チップ32の放電面32aとを投影したとき、接地電極27の貴金属チップ32の放電面32aの投影像32xの領域外に中心電極5の貴金属チップ31の放電面31aの投影像31xがはみ出さない構成とすることがより好ましいことが判る。 From the above results, as shown in FIG. 6, when the discharge surface 31a of the noble metal tip 31 of the center electrode 5 and the discharge surface 32a of the noble metal tip 32 of the ground electrode 27 are projected on a plane orthogonal to the direction of the axis C1, It can be seen that it is more preferable that the projected image 31x of the discharge surface 31a of the noble metal tip 31 of the center electrode 5 does not protrude outside the region of the projected image 32x of the discharge surface 32a of the noble metal tip 32 of the electrode 27.
 次に、本実施形態によって奏される作用効果を確認するべく、比較例として、図7に示すような貴金属チップ32の周囲に電極母材面28a(放電許容面)を有しないスパークプラグに関し、接地電極27の内側面27aから貴金属チップ32の放電面32aまでの軸線C1方向に対する距離、すなわち貴金属チップ32の突き出し寸法Z(以下、単にチップ突き出し寸法Zという)、及び、火花放電ギャップ35の間隔G(以下、単にギャップ間隔Gという)を異ならせた各種サンプルをそれぞれ1本ずつ作製し、上記火花飛火性能試験と同条件下で同試験を行い、吹き消え発生率について検証した。その評価結果を表5に示す。 Next, as a comparative example, in order to confirm the effects achieved by the present embodiment, a spark plug that does not have the electrode base material surface 28a (discharge permissible surface) around the noble metal tip 32 as shown in FIG. The distance from the inner surface 27a of the ground electrode 27 to the discharge surface 32a of the noble metal tip 32 in the direction of the axis C1, that is, the protrusion dimension Z of the noble metal tip 32 (hereinafter simply referred to as the chip protrusion dimension Z), and the distance between the spark discharge gaps 35 Various samples with different G (hereinafter, simply referred to as gap interval G) were produced one by one, and the same test was performed under the same conditions as the above-mentioned spark flying performance test, and the blow-off occurrence rate was verified. The evaluation results are shown in Table 5.
 サンプルとしては、ギャップ間隔Gを0.6mm、0.7mm、0.8mm、0.9mm、1.1mmに設定したものをそれぞれグループJ~グループMとし、当該各グループ毎に、チップ突き出し寸法Zを0.3mm、0.4mm、0.5mm、0.6mm、0.8mmに設定したものをそれぞれサンプル1~5として作製した。なお、各サンプルとも、中心電極5の貴金属チップ31の径φ1は0.8mm、接地電極27の貴金属チップ32の径φ2は0.8mmに設定されている。 As samples, those having gap intervals G set to 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, and 1.1 mm are group J to group M, respectively, and the chip protrusion dimension Z is set for each group. Were prepared as Samples 1 to 5, respectively, having a thickness of 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, and 0.8 mm. In each sample, the diameter φ1 of the noble metal tip 31 of the center electrode 5 is set to 0.8 mm, and the diameter φ2 of the noble metal tip 32 of the ground electrode 27 is set to 0.8 mm.
Figure JPOXMLDOC01-appb-T000005
 表5では、吹き消え発生率が20%未満にあるものを、火花飛火性能に優れるとして「○」の評価を下すこととした。一方、吹き消え発生率が20%以上のものについては、火花飛火性能に問題があるとして「×」の評価を下すこととした。但し、表5で示す評価は、本試験における相対評価を示すものであり、判定が不可(×)であったとしても必ずしも製品として使用できないことを示すものではない。
Figure JPOXMLDOC01-appb-T000005
In Table 5, the case where the blow-off occurrence rate was less than 20% was evaluated as “◯” because it was excellent in sparking performance. On the other hand, those with a blowout occurrence rate of 20% or more were evaluated as “x” because there was a problem with the sparking performance. However, the evaluation shown in Table 5 shows a relative evaluation in this test, and even if the determination is impossible (x), it does not necessarily indicate that the product cannot be used.
 表5から判るように、ギャップ間隔Gを0.6mm,0.7mmとしたグループJ,Kに関しては、チップ突き出し寸法Zが異なるすべてのサンプル1~5において、吹き消え発生率が20%未満となり、他のグループL,M,Nと比較して吹き消え発生率が低いことが判る。つまり、ギャップ間隔Gが0.8mmを下回るような構成においては、そもそも吹き消え等が発生し難いことが判る。 As can be seen from Table 5, regarding the groups J and K with the gap interval G being 0.6 mm and 0.7 mm, the blow-off occurrence rate is less than 20% in all the samples 1 to 5 having different chip protrusion dimensions Z. It can be seen that the occurrence rate of blow-out is low as compared with the other groups L, M, and N. That is, it can be seen that in a configuration where the gap interval G is less than 0.8 mm, it is difficult for blowout to occur.
 また、グループL,M,Nに関しては、サンプル1,2と、サンプル3~5とを比較して判るように、サンプル1,2では、吹き消え発生率が20%未満となり、チップ突き出し寸法Zが0.5mm以上のサンプル3~5と比較して吹き消え発生率が低いことが判る。つまり、チップ突き出し寸法Zが0.5mmを下回るような構成においては、そもそも吹き消え等が発生し難いことが判る。 For groups L, M, and N, as can be seen by comparing samples 1 and 2 with samples 3 to 5, in samples 1 and 2, the blow-off occurrence rate is less than 20%, and the chip protrusion dimension Z It can be seen that the occurrence rate of blow-off is lower than that of samples 3 to 5 having a thickness of 0.5 mm or more. In other words, it can be seen that in a configuration in which the chip protruding dimension Z is less than 0.5 mm, it is difficult for blowout to occur in the first place.
 上記結果を踏まえて判断すると、ギャップ間隔Gが0.8mm以上でかつチップ突き出し寸法Zが0.5mm以上となるものにおいては、吹き消え等が発生する状況となりやすいと考えられるため、上述してきた本実施形態の種々の作用効果がより奏効することとなる。 Judging from the above results, the gap gap G is 0.8 mm or more and the chip protruding dimension Z is 0.5 mm or more. Various functions and effects of this embodiment will be more effective.
 なお、上述した実施形態の記載内容に限定されず、例えば次のように実施してもよい。 In addition, it is not limited to the description content of embodiment mentioned above, For example, you may implement as follows.
 (a)上記実施形態では、凸部28の電極母材面28aの幅Xが0.1mm以上、0.5mm以下となるように設定されている。これに限らず、少なくとも貴金属チップ32の断面積が凸部28の先端面の面積よりも小さく設定され、凸部28の先端面にて、貴金属チップ32の周囲に電極母材面28aが形成される構成となっていればよい。但し、上記検証結果からも判るとおり、電極母材面28aの幅Xが0.1mm以上、0.5mm以下となることがより好ましい。 (A) In the above embodiment, the width X of the electrode base material surface 28a of the convex portion 28 is set to be 0.1 mm or more and 0.5 mm or less. Not limited to this, at least the cross-sectional area of the noble metal tip 32 is set smaller than the area of the front end surface of the convex portion 28, and the electrode base material surface 28 a is formed around the noble metal tip 32 at the front end surface of the convex portion 28. It suffices if the configuration is as follows. However, as can be seen from the verification results, the width X of the electrode base material surface 28a is more preferably 0.1 mm or more and 0.5 mm or less.
 (b)上記実施形態では、貴金属チップ32の出寸法Yが0mm以上、0.2mm以下となるように設定されているが、出寸法Yはこれに限定されるものではない。但し、上記検証結果からも判るとおり、出寸法Yが0mm以上、0.2mm以下となることがより好ましい。 (B) In the above embodiment, the protruding dimension Y of the noble metal tip 32 is set to be 0 mm or more and 0.2 mm or less, but the protruding dimension Y is not limited to this. However, as can be seen from the verification results, it is more preferable that the projected dimension Y is 0 mm or more and 0.2 mm or less.
 (c)上記実施形態における貴金属チップ31,32は、イリジウム合金や白金合金により形成されているが、これに限らず、他の貴金属を主成分とする貴金属合金により形成されたものであってもよい。また、中心電極5側の貴金属チップ31が省略された構成としてもよいが、耐久性向上の面からすれば、中心電極5側にも貴金属チップ31を備えることが好ましい。 (C) The noble metal tips 31 and 32 in the above embodiment are formed of an iridium alloy or a platinum alloy. However, the present invention is not limited to this, and the noble metal tips 31 and 32 may be formed of a noble metal alloy mainly composed of other noble metals. Good. Further, the noble metal tip 31 on the center electrode 5 side may be omitted, but it is preferable to provide the noble metal tip 31 also on the center electrode 5 side in terms of durability improvement.
 (d)上記実施形態では、貴金属チップ32をレーザ溶接により接地電極27に接合しているが、これに限らず、抵抗溶接など他の方法により接合する構成としてもよい。抵抗溶接の場合には溶融部33が形成されないため、貴金属チップ32を除く大部分が電極母材面28aとなる。 (D) In the above embodiment, the noble metal tip 32 is joined to the ground electrode 27 by laser welding. However, the present invention is not limited thereto, and may be joined by other methods such as resistance welding. In the case of resistance welding, since the melted portion 33 is not formed, most of the portion excluding the noble metal tip 32 becomes the electrode base material surface 28a.
 (e)凸部28や貴金属チップ32としては、上記実施形態の円形状(円柱形状や断面円形チップ)のものに限定されず、異なる形状のもの、例えば多角形状(角柱形状や角チップ)のものを採用してもよい。例えば、図8,9に示すように、接地電極27の先端部に、当該接地電極27の先端面に沿って軸線C1方向(図9上下方向)に突出する四角柱形状の凸部28を形成するとともに、当該凸部28の先端面(図9上側)において、軸線C1方向と直交する方向(図8,9左右方向)に沿った断面形状が四角形状(長方形状)となる貴金属チップ32を接地電極27の先端面に沿って配設した構成としてもよい。 (E) The convex portion 28 and the noble metal tip 32 are not limited to the circular shape (cylindrical shape or cross-sectional circular tip) of the above-described embodiment, but are of different shapes, for example, a polygonal shape (a prismatic shape or a square tip). A thing may be adopted. For example, as shown in FIGS. 8 and 9, a quadrangular prism-shaped convex portion 28 that protrudes in the direction of the axis C1 (vertical direction in FIG. 9) along the distal end surface of the ground electrode 27 is formed at the distal end portion of the ground electrode 27. At the same time, the noble metal tip 32 having a quadrangular (rectangular) cross-sectional shape along the direction orthogonal to the direction of the axis C1 (the left-right direction in FIGS. 8 and 9) is provided on the tip surface of the convex portion 28 (upper side in FIG. 9). It is good also as a structure arrange | positioned along the front end surface of the ground electrode 27. FIG.
 (f)上記実施形態では、電極母材面28aが貴金属チップ32の周囲全周にわたって形成されているが、これに限らず、図8,9に示すように、貴金属チップ32の周囲の少なくとも一部に電極母材面28aが形成された構成としてもよい。但し、貴金属チップ32の周囲全周にわたって電極母材面28aが形成されている方が、スワール等によって火花が如何なる方向に流された際でも、確実に放電が維持されることとなるため、より好ましい。 (F) In the above embodiment, the electrode base material surface 28a is formed over the entire circumference of the noble metal tip 32. However, the present invention is not limited to this, and as shown in FIGS. The electrode base material surface 28a may be formed in the part. However, if the electrode base material surface 28a is formed over the entire circumference of the noble metal tip 32, the discharge is reliably maintained regardless of the direction in which the spark is caused to flow by the swirl or the like. preferable.
 (g)上記実施形態に限らず、図10に示すように、電極母材面28aの端縁に面取り加工を施し、面取り部28bを設けた構成としてもよい。また、図10では、面取り部28bとして、湾曲形状のR面取り部が例示されているが、これに限らず、テーパ形状のC面取り部などを採用してもよい。 (G) Not limited to the above embodiment, as shown in FIG. 10, the edge of the electrode base material surface 28a may be chamfered to provide a chamfered portion 28b. Further, in FIG. 10, a curved R chamfered portion is illustrated as the chamfered portion 28b. However, the present invention is not limited to this, and a tapered C chamfered portion may be employed.
 ここで、電極母材幅X及びチップ出寸法Yを異ならせた上記グループA~グループHのサンプル1~6に関し、それぞれ電極母材面28aの端縁に面取り部28bを設けた場合の吹き消え発生率と、面取り部28bを設けない場合の吹き消え発生率について比較検証する。各サンプルについて、上記実施形態の火花飛火性能試験と同条件下で同試験を行った結果を以下の表6に示す。 Here, with respect to the samples 1 to 6 of the groups A to H in which the electrode base material width X and the chip protruding dimension Y are different, the blow-off in the case where the chamfered portion 28b is provided at the edge of the electrode base material surface 28a, respectively. The verification is performed for the occurrence rate and the blow-out occurrence rate when the chamfered portion 28b is not provided. Table 6 below shows the results of the same test performed for each sample under the same conditions as the spark performance test of the above embodiment.
Figure JPOXMLDOC01-appb-T000006
 表6では、吹き消え発生率が10%未満にあるものを、火花飛火性能に特に優れるとして「◎」の評価を下し、吹き消え発生率が10%以上20%未満にあるものを、火花飛火性能に優れるとして「○」の評価を下すこととした。なお、表6には、便宜上、グループB,D,F,G,Hのサンプル4~6についてのみ示す。
Figure JPOXMLDOC01-appb-T000006
In Table 6, a case where the blow-off occurrence rate is less than 10% is evaluated as “◎” as being particularly excellent in the spark flying performance, and a case where the blow-off occurrence rate is 10% or more and less than 20% It was decided to give a rating of “◯” as being excellent in flying performance. Table 6 shows only samples 4 to 6 of groups B, D, F, G, and H for convenience.
 表6から判るように、すべてのサンプルにおいて、電極母材面28aの端縁に面取り部28bを設けた場合の方が、設けない場合よりも、吹き消え発生率を低減できることが判る。これは、面取り部28aが形成されることにより、飛火可能な放電許容面の面積が実質的に増えるためと考えられる。 As can be seen from Table 6, in all the samples, it is found that the occurrence rate of blow-off can be reduced when the chamfered portion 28b is provided at the edge of the electrode base material surface 28a than when the chamfered portion 28b is not provided. This is considered to be due to the fact that the area of the discharge-acceptable surface capable of flying is substantially increased by forming the chamfered portion 28a.
 1…スパークプラグ、2…絶縁碍子、3…主体金具、5…中心電極、27…接地電極、28…凸部、28a…電極母材面、29…穴部、31,32…貴金属チップ、33…溶融部、35…火花放電ギャップ、C1…軸線、X…電極母材幅、Y…チップ出寸法。 DESCRIPTION OF SYMBOLS 1 ... Spark plug, 2 ... Insulator, 3 ... Main metal fitting, 5 ... Center electrode, 27 ... Ground electrode, 28 ... Convex part, 28a ... Electrode base material surface, 29 ... Hole part, 31, 32 ... Precious metal tip, 33 ... melted part, 35 ... spark discharge gap, C1 ... axis, X ... electrode base material width, Y ... chip protruding dimension.

Claims (7)

  1.  軸線方向に延びる中心電極と、当該中心電極を保持する絶縁体と、当該絶縁体を保持する主体金具と、当該主体金具の先端部に自身の基端部が接合され、屈曲して自身の先端部の内側面が前記中心電極の先端部を臨むように固定される接地電極と、前記接地電極の内側面に接合された貴金属チップとを備え、前記中心電極と前記接地電極の貴金属チップとの間に火花放電間隙が形成されるスパークプラグであって、
     前記接地電極の内側面には、ニッケルを主成分とした当該接地電極の電極母材からなりかつ前記軸線方向に沿って突出した柱状の凸部が形成され、
     前記凸部の先端面には、当該凸部の先端面の面積よりも断面積の小さい前記貴金属チップが接合されるとともに、当該貴金属チップの周囲の少なくとも一部において前記接地電極の電極母材からなる放電許容面が形成され、
     前記軸線方向における前記中心電極の放電面から前記接地電極の貴金属チップの放電面までの距離である前記火花放電間隙の間隔が0.8mm以上であり、
     前記軸線方向における前記接地電極の貴金属チップの放電面から前記接地電極の内側面までの距離である前記接地電極の貴金属チップの突き出し寸法が0.5mm以上であり、
     前記軸線方向と直交する平面に前記中心電極の放電面と前記接地電極の貴金属チップの放電面とを投影したとき、前記接地電極の貴金属チップの放電面の投影像の領域外に前記中心電極の放電面の投影像がはみ出さないことを特徴とするスパークプラグ。
    A center electrode extending in the axial direction, an insulator that holds the center electrode, a metal shell that holds the insulator, and a base end portion of the metal shell that is joined to the distal end of the metal shell and bends A ground electrode fixed so that the inner side surface of the portion faces the tip of the center electrode, and a noble metal tip joined to the inner side surface of the ground electrode, and the center electrode and the noble metal tip of the ground electrode A spark plug in which a spark discharge gap is formed,
    The inner surface of the ground electrode is formed of a columnar convex portion made of an electrode base material of the ground electrode mainly composed of nickel and projecting along the axial direction,
    The noble metal tip having a cross-sectional area smaller than the area of the tip surface of the convex portion is joined to the tip surface of the convex portion, and at least part of the periphery of the noble metal tip from the electrode base material of the ground electrode A discharge permissible surface is formed,
    An interval of the spark discharge gap, which is a distance from the discharge surface of the central electrode in the axial direction to the discharge surface of the noble metal tip of the ground electrode, is 0.8 mm or more;
    The protruding dimension of the noble metal tip of the ground electrode, which is the distance from the discharge surface of the noble metal tip of the ground electrode in the axial direction to the inner surface of the ground electrode, is 0.5 mm or more,
    When the discharge surface of the center electrode and the discharge surface of the noble metal tip of the ground electrode are projected on a plane orthogonal to the axial direction, the center electrode is outside the region of the projected image of the discharge surface of the noble metal tip of the ground electrode. A spark plug characterized in that a projected image of a discharge surface does not protrude.
  2.  前記放電許容面の端縁に面取り部を形成したことを特徴とする請求項1に記載のスパークプラグ。 The spark plug according to claim 1, wherein a chamfered portion is formed at an edge of the discharge permissible surface.
  3.  前記放電許容面は前記貴金属チップの周囲全周にわたって形成されていることを特徴とする請求項1又は2に記載のスパークプラグ。 The spark plug according to claim 1 or 2, wherein the discharge permissible surface is formed over the entire circumference of the noble metal tip.
  4.  前記凸部の外周と前記貴金属チップの外周との最小距離を0.1mm以上、0.5mm以下としたことを特徴とする請求項1乃至3のいずれかに記載のスパークプラグ。 The spark plug according to any one of claims 1 to 3, wherein a minimum distance between an outer periphery of the convex portion and an outer periphery of the noble metal tip is 0.1 mm or more and 0.5 mm or less.
  5.  前記軸線方向における前記凸部の先端面からの前記貴金属チップの出寸法を0mm以上、0.2mm以下としたことを特徴とする請求項1乃至4のいずれかに記載のスパークプラグ。 The spark plug according to any one of claims 1 to 4, wherein a protruding dimension of the noble metal tip from a tip surface of the convex portion in the axial direction is set to 0 mm or more and 0.2 mm or less.
  6.  前記軸線方向に対して前記接地電極の内側面とは反対にあたる外側面において、前記凸部に対応する位置に穴部が形成されていることを特徴とする請求項1乃至5のいずれかに記載のスパークプラグ。 6. A hole is formed at a position corresponding to the convex portion on an outer surface opposite to an inner surface of the ground electrode with respect to the axial direction. Spark plug.
  7.  軸線方向に延びる中心電極と、当該中心電極を保持する絶縁体と、当該絶縁体を保持する主体金具と、当該主体金具の先端部に自身の基端部が接合され、屈曲して自身の先端部の内側面が前記中心電極の先端部を臨むように固定される接地電極と、前記接地電極の内側面に設けられた柱状の凸部と、前記凸部の先端面に接合された貴金属チップとを備え、前記中心電極と前記接地電極の貴金属チップ及び前記凸部の先端面との間に火花放電間隙が形成されるスパークプラグの製造方法であって、
     略直棒状に形成された前記接地電極の原体に対し前記貴金属チップを溶接する溶接工程と、
     前記接地電極の原体のうち少なくとも前記貴金属チップの含まれる範囲を前記貴金属チップを溶接した側とは反対側から押出加工して前記凸部を成形する押出工程と、
     前記接地電極の原体を屈曲加工して、前記貴金属チップを含む前記凸部の先端面を前記中心電極の先端部に臨ませるようにして前記火花放電間隙を形成する屈曲工程とを備えたことを特徴とするスパークプラグの製造方法。
    A center electrode extending in the axial direction, an insulator that holds the center electrode, a metal shell that holds the insulator, and a base end portion of the metal shell that is joined to the front end of the metal shell and bent to have its tip A ground electrode fixed so that the inner surface of the portion faces the tip of the center electrode, a columnar protrusion provided on the inner surface of the ground electrode, and a noble metal tip bonded to the tip of the protrusion A spark plug manufacturing method in which a spark discharge gap is formed between the center electrode and the noble metal tip of the ground electrode and the tip surface of the convex part,
    A welding step of welding the noble metal tip to the base of the ground electrode formed in a substantially straight rod shape;
    An extruding step of forming the convex portion by extruding a range including at least the noble metal tip out of the ground electrode base material from a side opposite to the side where the noble metal tip is welded;
    A bending step of forming the spark discharge gap by bending the base of the ground electrode so that the tip surface of the convex portion including the noble metal tip faces the tip of the center electrode. A method of manufacturing a spark plug characterized by
PCT/JP2009/068894 2008-11-06 2009-11-05 Spark plug and manufacturing method therefor WO2010053116A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010515151A JP5331111B2 (en) 2008-11-06 2009-11-05 Spark plug
CN200980143560.XA CN102204043B (en) 2008-11-06 2009-11-05 Spark plug and manufacturing method thereof
US13/127,196 US8344605B2 (en) 2008-11-06 2009-11-05 Spark plug and manufacturing method therefor
EP09824815.6A EP2346125B1 (en) 2008-11-06 2009-11-05 Spark plug and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008284932 2008-11-06
JP2008-284932 2008-11-06

Publications (1)

Publication Number Publication Date
WO2010053116A1 true WO2010053116A1 (en) 2010-05-14

Family

ID=42152924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068894 WO2010053116A1 (en) 2008-11-06 2009-11-05 Spark plug and manufacturing method therefor

Country Status (6)

Country Link
US (1) US8344605B2 (en)
EP (1) EP2346125B1 (en)
JP (1) JP5331111B2 (en)
KR (1) KR20110093767A (en)
CN (1) CN102204043B (en)
WO (1) WO2010053116A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134921A (en) * 2016-01-26 2017-08-03 日本特殊陶業株式会社 Spark plug
JP2017182995A (en) * 2016-03-29 2017-10-05 株式会社デンソー Ignition plug for internal combustion engine and manufacturing method thereof
JP2018063818A (en) * 2016-10-12 2018-04-19 株式会社デンソー Spark plug
WO2018070129A1 (en) * 2016-10-12 2018-04-19 株式会社デンソー Spark plug and manufacturing method thereof
WO2018164261A1 (en) * 2017-03-09 2018-09-13 株式会社デンソー Internal combustion engine spark plug
JP2020009752A (en) * 2018-07-02 2020-01-16 デンソー インターナショナル アメリカ インコーポレーテッド Spark plug, ground electrode assembly, and manufacturing method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013001321B4 (en) * 2012-03-06 2019-12-05 Fram Group Ip Llc Ground electrode, spark plug and method of forming a ground electrode
US9306374B2 (en) * 2012-08-09 2016-04-05 Ngk Spark Plug Co., Ltd. Spark plug
US9698573B2 (en) * 2012-11-21 2017-07-04 Federal-Mogul Ignition Company Extruded insulator for spark plug and method of making the same
CN103457162B (en) * 2013-08-09 2017-03-08 株洲湘火炬火花塞有限责任公司 A kind of lateral electrode ignition electrode of stub pin type and its manufacture method
JP5905056B2 (en) * 2013-11-12 2016-04-20 日本特殊陶業株式会社 Spark plug and method of manufacturing spark plug
JP2015133243A (en) * 2014-01-14 2015-07-23 日本特殊陶業株式会社 spark plug
JP6313673B2 (en) * 2014-06-27 2018-04-18 日本特殊陶業株式会社 Fitting manufacturing method, spark plug manufacturing method, and sensor manufacturing method
DE102014223792A1 (en) * 2014-11-21 2016-05-25 Robert Bosch Gmbh Spark plug electrode, process for its manufacture and spark plug
JP6634927B2 (en) * 2016-03-30 2020-01-22 株式会社デンソー Spark plug and method of manufacturing spark plug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129089U (en) * 1984-02-09 1985-08-29 日本特殊陶業株式会社 spark plug
DE3820552A1 (en) * 1988-06-16 1989-12-21 Champion Spark Plug Europ Spark plug for an internal combustion engine
JPH05275157A (en) * 1992-03-24 1993-10-22 Ngk Spark Plug Co Ltd Spark plug
JPH11204233A (en) * 1998-01-19 1999-07-30 Ngk Spark Plug Co Ltd Spark plug
JP2006286469A (en) 2005-04-01 2006-10-19 Denso Corp Spark plug for internal combustion engine
JP2007242588A (en) * 2006-02-13 2007-09-20 Denso Corp Spark plug for internal combustion engine
WO2008123344A1 (en) * 2007-03-29 2008-10-16 Ngk Spark Plug Co., Ltd. Spark plug manufacturing method, and spark plug

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331899A (en) * 1979-03-09 1982-05-25 Nippon Soken, Inc. Spark plug
DE60302012T2 (en) * 2002-06-21 2006-07-13 NGK Spark Plug Co., Ltd., Nagoya Spark plug and its manufacturing process
JP3902756B2 (en) * 2002-10-31 2007-04-11 日本特殊陶業株式会社 Spark plug
CN101861686B (en) * 2007-11-15 2012-12-26 日本特殊陶业株式会社 Spark plug

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129089U (en) * 1984-02-09 1985-08-29 日本特殊陶業株式会社 spark plug
DE3820552A1 (en) * 1988-06-16 1989-12-21 Champion Spark Plug Europ Spark plug for an internal combustion engine
JPH05275157A (en) * 1992-03-24 1993-10-22 Ngk Spark Plug Co Ltd Spark plug
JPH11204233A (en) * 1998-01-19 1999-07-30 Ngk Spark Plug Co Ltd Spark plug
JP2006286469A (en) 2005-04-01 2006-10-19 Denso Corp Spark plug for internal combustion engine
JP2007242588A (en) * 2006-02-13 2007-09-20 Denso Corp Spark plug for internal combustion engine
WO2008123344A1 (en) * 2007-03-29 2008-10-16 Ngk Spark Plug Co., Ltd. Spark plug manufacturing method, and spark plug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2346125A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134921A (en) * 2016-01-26 2017-08-03 日本特殊陶業株式会社 Spark plug
US10218153B2 (en) 2016-01-26 2019-02-26 Ngk Spark Plug Co., Ltd. Spark plug
JP2017182995A (en) * 2016-03-29 2017-10-05 株式会社デンソー Ignition plug for internal combustion engine and manufacturing method thereof
WO2017170273A1 (en) * 2016-03-29 2017-10-05 株式会社デンソー Spark plug for internal combustion engines and method for producing same
JP2018063818A (en) * 2016-10-12 2018-04-19 株式会社デンソー Spark plug
WO2018070130A1 (en) * 2016-10-12 2018-04-19 株式会社デンソー Spark plug and manufacturing method thereof
WO2018070129A1 (en) * 2016-10-12 2018-04-19 株式会社デンソー Spark plug and manufacturing method thereof
WO2018164261A1 (en) * 2017-03-09 2018-09-13 株式会社デンソー Internal combustion engine spark plug
JP2018147862A (en) * 2017-03-09 2018-09-20 株式会社Soken Spark plug of internal combustion engine
JP2020009752A (en) * 2018-07-02 2020-01-16 デンソー インターナショナル アメリカ インコーポレーテッド Spark plug, ground electrode assembly, and manufacturing method thereof

Also Published As

Publication number Publication date
EP2346125B1 (en) 2017-01-04
US8344605B2 (en) 2013-01-01
JP5331111B2 (en) 2013-10-30
EP2346125A1 (en) 2011-07-20
KR20110093767A (en) 2011-08-18
EP2346125A4 (en) 2013-03-27
US20110210659A1 (en) 2011-09-01
JPWO2010053116A1 (en) 2012-04-05
CN102204043B (en) 2014-02-19
CN102204043A (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP5331111B2 (en) Spark plug
US8120235B2 (en) Spark plug for internal combustion engine and method for manufacturing spark plug
US9027524B2 (en) Spark plug for internal combustion engine and method of manufacturing the same
US8324791B2 (en) Spark plug for internal combustion engine
JP4692588B2 (en) Spark plug for internal combustion engine and method for manufacturing the same
US8344604B2 (en) Spark plug for internal combustion engine
JP4775447B2 (en) Spark plug for internal combustion engine
KR101442877B1 (en) Spark plug for internal combustion engine
EP2020713B1 (en) Spark plug for internal combustion engine and method of manufacturing the same
US20050200255A1 (en) Spark plug and method for manufacturing the same
EP2028736B1 (en) Spark plug for internal combustion engine
JP5001963B2 (en) Spark plug for internal combustion engines.
KR101998536B1 (en) spark plug
JP4426614B2 (en) Spark plug for internal combustion engine
JP5816126B2 (en) Spark plug

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143560.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010515151

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824815

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009824815

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009824815

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117009537

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13127196

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE