WO2010053033A1 - Exhaust purifying device for internal combustion engine - Google Patents

Exhaust purifying device for internal combustion engine Download PDF

Info

Publication number
WO2010053033A1
WO2010053033A1 PCT/JP2009/068543 JP2009068543W WO2010053033A1 WO 2010053033 A1 WO2010053033 A1 WO 2010053033A1 JP 2009068543 W JP2009068543 W JP 2009068543W WO 2010053033 A1 WO2010053033 A1 WO 2010053033A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
exhaust gas
exhaust passage
wall surface
internal combustion
Prior art date
Application number
PCT/JP2009/068543
Other languages
French (fr)
Japanese (ja)
Inventor
井上三樹男
辻本健一
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN2009801416100A priority Critical patent/CN102187070A/en
Priority to US13/127,594 priority patent/US20110225958A1/en
Priority to EP09824733A priority patent/EP2343440A4/en
Priority to JP2010536747A priority patent/JP5104960B2/en
Publication of WO2010053033A1 publication Critical patent/WO2010053033A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/18Structure or shape of gas passages, pipes or tubes the axis of inlet or outlet tubes being other than the longitudinal axis of apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine.
  • the exhaust gas discharged from the internal combustion engine contains nitrogen oxides (NO x ) and particulate matter such as soot, and various measures are taken to purify these components.
  • NO X storage reduction catalyst a catalyst or particulate filter having a NO X storage reduction function (hereinafter referred to as “NO X storage reduction catalyst”) is provided in the engine exhaust passage, and the engine is disposed upstream of the exhaust of the catalyst.
  • An exhaust emission control device provided with a reducing agent supply device for supplying a reducing agent into the exhaust passage may be mentioned.
  • an exhaust purification device supplies reducing agent in the engine exhaust passage from the reducing agent supply device when it is much the NO X storage amount to the NO X storage reduction catalyst, leaving the NO X from the NO X storage reduction catalyst In addition, NO X is reduced and purified.
  • NO X is reduced and purified.
  • a withdrawal and reduction of the NO X in the NO X storage reduction catalyst in order to optimally performed to the entire NO X storage reduction catalyst the supplied reducing agent It is necessary to uniformly flow into the NO X storage reduction catalyst. For this reason, various techniques have been proposed to uniformly diffuse the supplied reducing agent into the exhaust gas flowing in the engine exhaust passage.
  • a throttle portion that reduces the cross-sectional area of the exhaust flow is provided in the exhaust pipe between the reducing agent supply device and the exhaust gas purification catalyst.
  • the flow of the exhaust gas is accelerated by the throttle portion to generate a disturbance in the exhaust gas, thereby diffusing the reducing agent supplied from the reducing agent supply device.
  • an exhaust introduction pipe having a closed end and having a plurality of perforations and a partition wall having a plurality of perforations are provided in the catalytic converter upstream of the exhaust purification catalyst. Is provided.
  • a plurality of diffusion plates arranged alternately are provided in the exhaust pipe between the reducing agent supply device and the exhaust gas purification catalyst.
  • the exhaust gas is disturbed by the exhaust introduction pipe, the partition wall, and the diffusion plate, so that the reducing agent supplied from the reducing agent supply device is diffused in the exhaust gas.
  • JP 2002-213233 A JP 2003-184544 A JP 2005-325747 A
  • an object of the present invention is to provide an exhaust purification device for an internal combustion engine capable of diffusing the reducing agent supplied from the reducing agent supply device into the exhaust gas while suppressing an increase in the pressure loss of the exhaust gas. It is in.
  • the present invention provides, as means for solving the above problems, a control device for an internal combustion engine described in each claim.
  • a control device for an internal combustion engine described in each claim In a first aspect of the present invention, an upstream exhaust passage through which exhaust gas discharged from an internal combustion engine flows, and a downstream disposed at an angle with respect to the upstream exhaust passage downstream of the upstream exhaust passage.
  • An exhaust purification device for an internal combustion engine comprising: a side exhaust passage, a reducing agent supply means for supplying a reducing agent into the exhaust gas passing through the upstream exhaust passage, and an exhaust purification means provided in the downstream exhaust passage
  • a flow deflecting portion is provided on a portion of the inner wall surface defining the downstream exhaust passage facing the upstream exhaust passage outlet, the flow deflecting portion being located upstream of the exhaust purification means, It is formed to direct the velocity component in the downstream exhaust passage axial direction of the flow of at least part of the exhaust gas flowing into the flow deflecting portion in the direction opposite to the direction toward the exhaust purification means.
  • the exhaust gas directed in the direction opposite to the direction toward the exhaust gas purification means by the flow deflector formed on the inner wall surface collides with another exhaust gas. Due to such a collision, the exhaust gas is disturbed, and the mixing of the reducing agent and the exhaust gas is promoted. Further, since the flow deflector only changes the direction of the exhaust gas flow, there is substantially no component that serves as a throttle for the exhaust gas flow, and the pressure loss of the exhaust gas hardly increases. Therefore, according to this aspect, it is possible to promote the mixing of the reducing agent and the exhaust gas by causing disturbance in the exhaust gas. Moreover, the component which becomes a restriction
  • the region on the exhaust purification means side of the wall surface defining the flow deflection section is inclined in the direction opposite to the direction toward the exhaust purification means toward the radially outer side of the downstream exhaust passage.
  • An exhaust purification device for an internal combustion engine comprising: a side exhaust passage, a reducing agent supply means for supplying a reducing agent into the exhaust gas passing through the upstream exhaust passage, and an exhaust purification means provided in the downstream exhaust passage ,
  • a flow deflecting portion is provided in a portion of the inner wall surface defining the downstream exhaust passage facing the upstream exhaust passage outlet, and the flow deflecting portion is located upstream of the exhaust purification means,
  • the wall surface of the flow section hits a part of the wall surface of the flow deflecting unit, and at least a part of the exhaust gas whose velocity component in the direction toward the exhaust purification means is increased hits the other part of the wall surface of the flow deflecting unit, Gas velocity component in the same direction It is formed so as to be allowed to decrease.
  • the speed component in the direction toward the purification means is reduced.
  • the collision with the other part of the wall surface such that the velocity component in the direction toward the exhaust gas purification means decreases, so that the exhaust gas is disturbed and the mixing of the reducing agent and the exhaust gas is promoted.
  • the flow deflector since the flow deflector only changes the direction of the exhaust gas flow, there is substantially no component that serves as a throttle for the exhaust gas flow, and the pressure loss of the exhaust gas hardly increases.
  • the region of the wall surface defining the flow deflection portion on the side away from the exhaust purification means is a portion inclined in the direction toward the exhaust purification means toward the radially outer side of the downstream exhaust passage.
  • the flow deflection section includes a protruding portion formed such that the inner wall surface itself defining the downstream exhaust passage protrudes radially outward of the downstream exhaust passage. According to this aspect, even if the reducing agent supplied from the reducing agent supply means is not sufficiently vaporized and flows out from the upstream exhaust passage in the form of droplets, the droplets are received and evaporated in the protrusions. Therefore, it is possible to suppress the reducing agent from flowing into the exhaust purification means in the form of droplets and adhering thereto.
  • the cross section of the projecting portion in the downstream exhaust passage circumferential direction is substantially semi-elliptical.
  • the inlet area of the protruding portion facing the downstream exhaust passage is larger than the cross-sectional area of the upstream exhaust passage.
  • the height of the protruding portion in the axial direction of the downstream exhaust passage is larger than the diameter of the upstream exhaust passage.
  • the protrusion extends in the circumferential direction of the downstream exhaust passage.
  • the depth of the protruding portion in the radial direction of the downstream exhaust passage decreases as the distance from the region facing the upstream exhaust passage outlet increases.
  • the protrusion is formed so that its outer periphery is substantially semi-elliptical.
  • the protruding portion is inclined so as to be positioned closer to the exhaust purification means as it moves away from the region facing the upstream exhaust passage outlet in the circumferential direction of the downstream exhaust passage.
  • the upstream exhaust passage extends in the vicinity of its outlet so that its central axis passes through the protrusion.
  • the upstream exhaust passage extends in an inclined manner with respect to the central axis of the downstream exhaust passage in the vicinity of the outlet thereof.
  • the upstream exhaust passage extends perpendicularly to the central axis of the downstream exhaust passage in the vicinity of the outlet thereof.
  • the upstream exhaust passage extends into the downstream exhaust passage.
  • the upstream side exhaust passage outlet is made to enter the protrusion.
  • the flow deflector includes a protrusion formed by an inner wall surface itself defining the downstream exhaust passage projecting radially outward of the downstream exhaust passage, A cross section in the circumferential direction of the downstream side exhaust passage of the protrusion is substantially rectangular.
  • the flow deflector includes a protrusion protruding from the inner wall surface defining the downstream exhaust passage toward the radially inner side of the downstream exhaust passage.
  • the upstream exhaust passage is defined by an exhaust manifold or an exhaust pipe directly connected to the exhaust manifold, and the downstream exhaust passage is formed in an upstream portion of a catalytic converter that houses exhaust purification means. It is the cone part provided.
  • FIG. 1 is a diagram schematically showing an entire internal combustion engine in which an exhaust emission control device of the present invention is mounted.
  • 2A and 2B are enlarged views of the catalytic converter of the first embodiment shown in FIG. 3A and 3B are enlarged views of the catalytic converter of the second embodiment.
  • 4A and 4B are enlarged views of the catalytic converter of the third embodiment.
  • 5A and 5B are enlarged views of the catalytic converter of the fourth embodiment.
  • 6A and 6B are enlarged views of the catalytic converter of the fifth embodiment.
  • 7A and 7B are enlarged views of the catalytic converter of the sixth embodiment.
  • 8A and 8B are enlarged views of the catalytic converter of the seventh embodiment.
  • 9A and 9B are enlarged views of the catalytic converter of the eighth embodiment.
  • FIG. 1 is a diagram schematically showing an entire internal combustion engine in which an exhaust emission control device of the present invention is mounted.
  • 1 is an engine body
  • 2 is a cylinder block
  • 3 is a piston that reciprocates in the cylinder block
  • 4 is a cylinder head fixed on the cylinder block 2
  • 5 is a piston 3 and a cylinder head 4.
  • a combustion chamber formed therebetween 6 is an intake valve
  • 7 is an intake port
  • 8 is an exhaust valve
  • 9 is an exhaust port.
  • a spark plug 10 is arranged at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is arranged around the inner wall surface of the cylinder head 4.
  • a cavity 12 extending from the lower side of the fuel injection valve 11 to the lower side of the spark plug 10 is formed on the top surface of the piston 3.
  • the intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner (not shown) via an intake duct 15 and an air flow meter 16.
  • a throttle valve 18 driven by a step motor 17 is disposed in the intake duct 15.
  • the exhaust port 9 of each cylinder is connected to an exhaust manifold 19, and this exhaust manifold 19 is NO.
  • any exhaust purification means may be incorporated as long as it requires the supply of a reducing agent for purification of exhaust gas.
  • Examples of such exhaust purification means include an oxidation catalyst, a three-way catalyst, a particulate filter, and the like.
  • the exhaust manifold 19 is provided with a reducing agent supply device 22 that supplies a reducing agent into the exhaust gas flowing through the exhaust manifold 19.
  • the exhaust manifold 19 and the surge tank 14 are connected to each other via a recirculated exhaust gas (hereinafter referred to as EGR gas) conduit 26, and an EGR gas control valve 27 is disposed in the EGR gas conduit 26.
  • EGR gas recirculated exhaust gas
  • 2A and 2B are enlarged views of the catalytic converter 21 shown in FIG. 2A is a sectional side view as seen from line A in FIG. 2B, and FIG. 2B is a sectional plan view as seen from line B in FIG. 2A.
  • the catalytic converter 21 includes a casing 30, and NO inside the casing 30 is NO.
  • the storage reduction catalyst 20 is accommodated.
  • the casing 30 is NO X
  • a catalyst housing part 31 for housing the storage reduction catalyst 20 and a cone part 32 provided on the exhaust upstream side of the catalyst housing part 31 are provided.
  • Each of the catalyst housing portion 31 and the cone portion 32 of the casing 30 defines an exhaust passage (downstream exhaust passage) through which exhaust gas flows.
  • NO X The occlusion reduction catalyst 20 and the casing 30 (catalyst accommodating portion 31 and cone portion 32) are arranged coaxially, and their axis L extends substantially vertically. Therefore, the exhaust passage defined by the casing 30 (that is, the catalyst housing portion 31 and the cone portion 32) also extends substantially vertically.
  • NO X The description will be made with the exhaust upstream side of the storage reduction catalyst 20 as the upper side and the exhaust downstream side as the lower side.
  • the axis L of the storage reduction catalyst 20 and the casing 30 does not necessarily extend substantially vertically, and may be arranged to extend in any direction such as horizontal.
  • NO X The occlusion reduction catalyst 20 and the casing 30 are not necessarily arranged coaxially.
  • the exhaust manifold 19 is connected to the casing 30. Specifically, the exhaust manifold 19 extends through the wall surface of the cone portion 32 in the upper portion of the cone portion 32 of the casing 30. Accordingly, the exhaust manifold 19 enters the cone portion 32. As shown in FIGS.
  • the exhaust manifold 19 is inclined with respect to the axis L at a location that penetrates the wall surface of the cone portion 32. Further, the exhaust manifold 19 is arranged so that a portion near the outlet of the exhaust manifold 19 (hereinafter referred to as “manifold outlet vicinity”) 19a extends perpendicular to the axis L, that is, perpendicular to the wall surface of the cone portion 32. It curves in the cone part 32 so that it may extend. As shown in FIGS. 2A and 2B, the outlet of the exhaust manifold 19 faces a part of the inner wall surface of the cone portion 32.
  • the exhaust manifold 19 configured as described above defines an exhaust passage (upstream exhaust passage) through which exhaust gas discharged from the engine body 1 flows.
  • a protruding portion 35 protruding in the radial direction of the casing 30 is provided on a portion of the inner wall surface of the cone portion 32 that faces the outlet of the exhaust manifold 19. As shown in the side sectional view of FIG. 2A, the upper wall surface 35 a of the protruding portion 35 is inclined downward toward the radially outer side of the casing 30, and the lower wall surface 35 b of the protruding portion 35 is the radial direction of the casing 30. Inclined upward toward the outside.
  • the cross section of the protrusion 35 in the circumferential direction of the casing 30 is substantially semi-elliptical.
  • the projecting portion 35 extends from the region facing the outlet of the exhaust manifold 19 toward both sides in the circumferential direction of the casing 30.
  • the depth D of the protruding portion 35 is As the distance from the region facing the outlet of the exhaust manifold 19 increases in the circumferential direction of the casing 30, the depth becomes shallower.
  • the depth D of the protrusion 35 is the deepest in the region facing the outlet of the exhaust manifold 19 and becomes shallower as it extends in the circumferential direction from here.
  • the outer periphery of the protruding portion 35 is formed to have a substantially semi-elliptical shape. Further, in the present embodiment, the protruding portion 35 extends over a half circumference in the circumferential direction of the casing 30. The flow of the exhaust gas in the exhaust manifold 19 and the casing 30 configured as described above will be described. The arrows in FIGS. 2A and 2B indicate the flow of exhaust gas.
  • the exhaust gas flowing in the exhaust manifold 19 of FIGS. 2A and 2B contains a reducing agent that is not sufficiently mixed with the exhaust gas.
  • the exhaust gas containing the reducing agent that has flowed through the exhaust manifold 19 flows out from the outlet of the exhaust manifold 19 and flows into the protrusion 35.
  • the exhaust gas flowing in the lower part of the manifold outlet vicinity 19 a collides with the lower wall surface 35 b of the protrusion 35. Due to this collision, the flow direction of the exhaust gas is directed upward.
  • the exhaust gas flowing through the upper part of the manifold outlet vicinity 19 a collides with the upper wall surface 35 a of the protrusion 35.
  • This collision causes the exhaust gas to flow downward.
  • the exhaust gas colliding with the lower wall surface 35b of the projection 35 is directed upward
  • the exhaust gas colliding with the upper wall surface 35a of the projection 35 is directed downward. Will collide with each other.
  • the exhaust gas is agitated by the collision of the two exhaust gases, thereby promoting the mixing of the reducing agent contained in the exhaust gas and the exhaust gas.
  • the exhaust gas that collides with the lower wall surface 35b of the protrusion 35 and whose flow direction is directed upward collides with the exhaust gas that collides with the upper wall surface 35a of the protrusion 35 and whose flow direction is directed downward. Even if not, it collides with the upper wall surface 35a of the protrusion 35. Due to the collision with the upper wall surface 35a, the upward velocity component of the exhaust gas is reduced and the exhaust gas is agitated accordingly, and the mixing of the reducing agent and the exhaust gas contained in the exhaust gas is promoted.
  • the exhaust gas that collides with the upper wall surface 35a of the projecting portion 35 and whose flow direction is directed downward collides with the exhaust gas that collides with the lower wall surface 35b of the projecting portion 35 and has the flow direction directed upward. Even if it does not, it collides with the lower side wall surface 35b of the protrusion 35. Due to the collision with the lower wall surface 35b, the downward velocity component of the exhaust gas is reduced, and the exhaust gas is stirred accordingly, and the mixing of the reducing agent contained in the exhaust gas and the exhaust gas is promoted. Is done.
  • the exhaust gas that has flowed into the protrusion 35 collides with the wall surface of the protrusion 35 to change the direction of the flow in the vertical direction, and as indicated by an arrow in FIG.
  • the exhaust gas flows along the wall surface of the protrusion 35. It flows toward both sides in the circumferential direction. As a result, the exhaust gas flowing into the projecting portion 35 spreads uniformly throughout the casing 30. For this reason, the exhaust gas in which the reducing agent is uniformly mixed is NO. X It will flow uniformly into the storage reduction catalyst 20. Therefore, NO X In the storage reduction catalyst 20, the reaction with the reducing agent is NO. X Performed uniformly over the entire storage reduction catalyst 20, for example, NO X NO stored in the storage reduction catalyst 20 X The purification is optimally performed.
  • the exhaust manifold 19 and the casing 30 of the present embodiment in order to promote the mixing of the reducing agent contained in the exhaust gas and the exhaust gas, a member that restricts the flow area of the exhaust gas is provided. Not. For this reason, even if the exhaust gas flows through the exhaust manifold 19 and the casing 30 having the above-described configuration, almost no pressure loss occurs. Therefore, according to the embodiment of the present invention, it is possible to promote the mixing of the reducing agent and the exhaust gas contained in the exhaust gas with almost no pressure loss of the exhaust gas. Further, the reducing agent in the exhaust gas flowing through the exhaust manifold 19 is not sufficiently vaporized at the outlet of the exhaust manifold 19 and may flow out of the exhaust manifold 19 in the form of droplets.
  • the reducing agent flows out of the exhaust manifold 19 in the form of droplets, most of it flows into the protruding portion 35. Furthermore, the droplets that have flowed into the protruding portion 35 are likely to evaporate due to the turbulence of the exhaust gas generated in the protruding portion 35. For this reason, even when the reducing agent flows out of the exhaust manifold 19 in the form of droplets, the reducing agent remains in the state of droplets as NO. X Inflow and adhesion to the storage reduction catalyst 20 are suppressed.
  • the protrusion 35 extends from the region facing the outlet of the exhaust manifold 19 by substantially the same length on both sides in the circumferential direction.
  • the protrusions 35 do not necessarily extend the same length on both sides in the circumferential direction, and may be configured such that one side extends longer than the other side.
  • the protrusion 35 extends in the circumferential direction, that is, on a plane perpendicular to the axis L, from the region facing the outlet of the exhaust manifold 19.
  • the projecting portion 35 may be configured to be inclined with respect to the circumferential direction, that is, to be inclined with respect to a plane perpendicular to the axis L.
  • the projecting portion 35 may be inclined so as to be positioned on the lower side as the distance from the region facing the outlet of the exhaust manifold 19 increases in the circumferential direction.
  • FIGS. 3A and 3B are enlarged views similar to FIGS. 2A and 2B of the catalytic converter 21 of the second embodiment.
  • the configuration of the exhaust purification device of the second embodiment is basically the same as the configuration of the exhaust purification device of the first embodiment.
  • the cross section of the protrusion 35 in the circumferential direction of the casing 30 is substantially semi-elliptical, whereas in the exhaust purification device of the second embodiment, the circumferential direction of the casing 30
  • the cross section of the protrusion 40 in FIG. 3A the protrusion 40 includes a vertical wall surface 40a extending parallel to the axis L, an upper horizontal wall surface 40b connected to an upper portion of the vertical wall surface 40a and extending perpendicularly to the axis L, and a vertical wall surface 40a.
  • a lower horizontal wall surface 40c connected to the lower portion and extending perpendicularly to the axis L is provided.
  • the flow of the exhaust gas in the exhaust manifold 19 and the casing 30 configured as described above will be described.
  • the exhaust gas containing the reducing agent that has flowed through the exhaust manifold 19 flows out from the outlet of the exhaust manifold 19 and flows into the protrusion 40. Since the lower horizontal wall surface 40c of the protrusion 40 extends substantially parallel to the manifold outlet vicinity 19a, the exhaust gas flowing below the manifold outlet vicinity 19a hardly collides with the lower horizontal wall 40c of the protrusion 40. Still, some of them have a downward velocity component and thus collide with the lower horizontal wall surface 40c. Due to this collision, the flow direction of the exhaust gas is upward, and the exhaust gas collides with the exhaust gas flowing into the protrusion 40 from the exhaust manifold 19.
  • the exhaust gas flowing above the manifold outlet vicinity portion 19a hardly collides with the upper horizontal wall surface 40b of the protrusion portion 40. However, some of them still have upward velocity components, and thus collide with the upper horizontal wall surface 40b.
  • the flow direction of the exhaust gas is directed downward, and the exhaust gas collides with the exhaust gas flowing into the protrusion 40 from the exhaust manifold 19.
  • the exhaust gas is agitated, thereby promoting the mixing of the reducing agent and the exhaust gas contained in the exhaust gas.
  • the reducing agent and exhaust contained in the exhaust gas hardly increase the pressure loss of the exhaust gas.
  • Mixing with gas can be promoted.
  • a part of the exhaust gas that collides with the lower horizontal wall surface 40c of the protrusion 40 and whose flow direction is directed upward collides with the upper horizontal wall surface 40b of the protrusion 40. Due to the collision with the upper horizontal wall surface 40b, the upward velocity component of the exhaust gas is reduced, and the exhaust gas is agitated accordingly, and the mixing of the reducing agent and the exhaust gas contained in the exhaust gas is promoted. Is done.
  • FIGS. 4A and 4B are enlarged views similar to FIGS. 2A and 2B of the catalytic converter 21 of the third embodiment.
  • the configuration of the exhaust purification device of the third embodiment is basically the same as the configuration of the exhaust purification device of the first embodiment.
  • the cross section of the protrusion 35 in the circumferential direction of the casing 30 is substantially semi-elliptical
  • the circumferential direction of the casing 30 The cross section of the protrusion 45 is substantially circular.
  • the protruding portion 45 is temporarily inclined upward toward the radially outer side of the casing 30 and then upwardly inclined downward, and once toward the radially outer side of the casing 30.
  • the flow of the exhaust gas in the exhaust manifold 19 and the casing 30 configured as described above will be described.
  • the exhaust gas containing the reducing agent that has flowed through the exhaust manifold 19 flows out from the outlet of the exhaust manifold 19 and flows into the protrusion 45. Since the lower wall surface 45b of the protrusion 45 is inclined downward and then upward, when the exhaust gas flowing through the lower portion of the manifold outlet vicinity 19a flows into the protrusion 45, first, the lower wall surface 45b. It flows along the part inclined downward. Then, it collides with a portion inclined above the lower wall surface 45b of the protrusion 45. Due to this collision, the flow direction of the exhaust gas is directed upward.
  • the upper wall surface 45a of the projecting portion 45 is once inclined upward and then downward, when the exhaust gas flowing through the upper portion of the manifold outlet vicinity portion 19a flows into the projecting portion 45, first, the upper wall surface 45a. It flows along a portion inclined upward. Then, it collides with a portion inclined downward of the upper plane 45a of the protrusion 45. This collision causes the exhaust gas to flow downward. Thereafter, the exhaust gas that collides with the lower wall surface 45b of the protrusion 45 and flows upward and the exhaust gas that collides with the upper wall surface 45a of the protrusion 45 and flows downward collide with each other, and are thus included in the exhaust gas. Mixing of the reducing agent and the exhaust gas is promoted.
  • the exhaust gas that collides with the portion inclined upward of the lower wall surface 45b of the protrusion 45 and flows upward is collided with the portion inclined downward of the upper wall surface 45a of the protrusion 45 and flows. Even if it does not collide with the exhaust gas whose direction is downward, it collides with the upper wall surface 45a of the protrusion 45. Due to the collision with the upper wall surface 45a, the exhaust gas is reduced in the upward speed component, and the exhaust gas is stirred accordingly, and the mixing of the reducing agent and the exhaust gas contained in the exhaust gas is promoted.
  • the exhaust gas that collides with the portion inclined downward of the upper wall surface 45a of the protrusion 45 and the flow direction is directed downward collides with the portion inclined upward of the lower wall surface 45b of the protrusion 45 and flows in the flow direction. Even if it does not collide with the exhaust gas directed upward, it collides with the lower wall surface 45b of the protrusion 45. Due to the collision with the lower wall surface 45b, the downward velocity component of the exhaust gas is lowered, and the exhaust gas is agitated accordingly, and the mixing of the reducing agent contained in the exhaust gas and the exhaust gas is promoted. Is done.
  • the reducing agent and exhaust contained in the exhaust gas hardly increase the pressure loss of the exhaust gas.
  • Mixing with gas can be promoted.
  • mixing of the reducing agent and the exhaust gas can be promoted with almost no increase in the pressure loss of the exhaust gas by any of the protruding portions having the shapes shown in the first to third embodiments.
  • the exhaust gas flowing in the lower part of the manifold outlet vicinity 19a collides with the lower wall surface of the protrusion, and the flow direction is directed upward. This is considered to promote the mixing of the reducing agent and the exhaust gas.
  • the protruding portion may have any shape as long as a part of the wall surface can direct the velocity component in the axial direction of the casing 30 of at least a part of the exhaust gas flowing into the protruding portion. I can say that.
  • the exhaust gas flowing through the upper portion of the manifold outlet vicinity 19a collides with the upper wall surface of the projecting portion, It is considered that the flow direction is directed downward and collides with other exhaust gas that has flowed into the protrusion, thereby promoting the mixing of the reducing agent and the exhaust gas.
  • the protruding portion is formed such that at least a part of the exhaust gas whose downward velocity component is increased by hitting the wall surface collides with the exhaust gas whose downward velocity component is not increased even if it hits the wall surface of the protruding portion. It can be said that any shape can be used. Furthermore, even if any shape of the projecting portion shown in the first to third embodiments is adopted, the exhaust gas flowing in the upper portion of the manifold outlet vicinity 19a collides with the upper wall surface of the projecting portion and The flow direction is made downward, and then the downward velocity component of the exhaust gas is reduced due to the collision with the lower wall surface of the protruding portion, thereby promoting the mixing of the reducing agent and the exhaust gas. .
  • FIGS. 5A and 5B are enlarged views similar to FIGS. 2A and 2B of the catalytic converter 21 of the fourth embodiment.
  • the configuration of the exhaust purification device of the fourth embodiment is basically the same as the configuration of the exhaust purification device of the first embodiment.
  • the manifold outlet vicinity portion 19a extends perpendicular to the axis L, whereas in this embodiment, the manifold outlet vicinity portion 50a is inclined with respect to the axis L. It extends.
  • the exhaust manifold 50 of the present embodiment extends through the wall surface of the cone portion 32 in the upper portion of the cone portion 32 of the casing 30. As shown in FIG.
  • the exhaust manifold 50 is inclined with respect to the axis L of the casing 30 at a location penetrating the wall surface of the cone portion 32. Further, the exhaust manifold 50 extends linearly within the cone portion 32. For this reason, the manifold outlet vicinity portion 50 a also extends with an inclination with respect to the axis L and also extends with an inclination with respect to the wall surface of the cone portion 32. Further, as shown in FIGS. 5A and 5B, the manifold outlet vicinity portion 50 a extends toward the protruding portion 35. In other words, the manifold outlet vicinity portion 50 a extends so that its axis M enters the protruding portion 35.
  • the exhaust gas flowing in the upper part of the manifold outlet vicinity portion 50a flows along the upper wall surface 35a of the protrusion 35 so that its flow direction is directed downward, or collides with the upper wall surface 35a and flows therethrough. Is faced down. In this way, the exhaust gas that collides with the lower wall surface 35b and the flow direction is directed upward and the exhaust gas that collides with the upper wall surface 35a or collides and the flow direction is directed downward collide with each other. Mixing of the reducing agent contained therein and the exhaust gas is promoted.
  • the exhaust gas that collides with the lower wall surface 35b and whose flow direction is directed upward collides with the upper wall surface 35a
  • the exhaust gas that collides with the upper wall surface 35a and whose flow direction is directed downward collides with the lower wall surface 35a.
  • This also promotes mixing of the reducing agent contained in the exhaust gas and the exhaust gas.
  • the reducing agent and the exhaust gas contained in the exhaust gas are hardly increased without substantially increasing the pressure loss of the exhaust gas. Mixing with gas can be promoted.
  • the protruding portion 35 is configured to be inclined with respect to the circumferential direction, that is, to be inclined with respect to a plane perpendicular to the axis L.
  • the projecting portion 35 by inclining the projecting portion 35 so as to be positioned on the lower side as it is away from the region facing the outlet of the exhaust manifold 19 in the circumferential direction, the exhaust gas that has flowed in with respect to the projecting portion 35 is projected. It becomes easy to flow in the circumferential direction in the portion 35.
  • FIGS. 6A and 6B are enlarged views similar to FIGS. 2A and 2B of the catalytic converter 21 of the fifth embodiment.
  • the configuration of the exhaust purification device of the fifth embodiment is basically the same as the configuration of the exhaust purification device of the fourth embodiment.
  • the exhaust manifold 50 extends through the wall surface of the cone portion 32 into the cone portion 32
  • the exhaust manifold 50 55 does not pass through the wall surface of the cone portion 32, and therefore does not extend into the cone portion 32.
  • the exhaust manifold 55 of the present embodiment has an outlet portion directly connected to the cone portion 32 of the casing 30.
  • the exhaust manifold 55 extends while being inclined with respect to the axis L, and is inclined with respect to the wall surface of the cone portion 32. Furthermore, as shown in FIG.
  • the manifold outlet vicinity portion 55 a extends toward the protruding portion 35.
  • the manifold outlet vicinity 55 a extends so that its axis M enters the protruding portion 35.
  • the manifold outlet vicinity portion 55a extends toward the protruding portion 35. Therefore, most of the exhaust gas including the reducing agent flowing through the exhaust manifold 50 is exhausted. It flows out from the outlet of the manifold 55 and flows into the protrusion 35.
  • the exhaust gas flowing in the lower portion of the manifold outlet vicinity portion 50a collides with the lower wall surface 35b of the projection 35, and the flow direction is made upward.
  • the exhaust gas flowing in the upper part of the manifold outlet vicinity portion 50a flows along the upper wall surface 35a of the protrusion 35 or collides with the upper wall surface 35a, and the flow direction is made downward. These exhaust gases collide with each other, thereby promoting the mixing of the reducing agent and the exhaust gas contained in the exhaust gas. Further, since the distance from the outlet of the exhaust manifold 55 to the protruding portion 35 is large, a part of the exhaust gas flowing out from the outlet of the exhaust manifold 55 does not flow into the protruding portion 35 but is left as it is. X It flows into the storage reduction catalyst 20.
  • the exhaust manifold of any shape shown in the first embodiment, the fifth embodiment and the sixth embodiment described above promotes the mixing of the reducing agent and the exhaust gas with almost no increase in the pressure loss of the exhaust gas.
  • the vicinity of the manifold outlet extends toward the protruding portion, that is, its axis M enters the protruding portion.
  • the exhaust manifold may have any shape as long as the axis M in the vicinity of the outlet extends so as to pass through the protruding portion.
  • the configuration of the exhaust purification device of the sixth embodiment is basically the same as the configuration of the exhaust purification device of the first embodiment.
  • the protrusion 35 extends over a half circumference in the circumferential direction of the casing 30, whereas in the present embodiment, the protrusion 60 is in the circumferential direction of the casing 30. It extends less than half a lap. The flow of the exhaust gas in the exhaust manifold 19 and the casing 30 configured as described above will be described.
  • the exhaust gas flowing into the protrusion 60 collides with the wall surface of the protrusion 60 to change the direction of the flow in the vertical direction, and accordingly, the reducing agent and the exhaust gas. Mixing with is promoted.
  • the protrusion 60 has a small width W in the circumferential direction of the casing 30, unlike the protrusion 35 of the first embodiment, the exhaust gas flowing into the protrusion 60 extends along the wall surface of the protrusion 60. Therefore, it is difficult for the casing 30 to flow toward both sides in the circumferential direction.
  • the width W in the circumferential direction of the inlet of the protrusion 60 is reduced, the reducing agent and the exhaust gas can be further mixed.
  • the circumferential width W of the inlet of the protrusion 60 is made too small to be smaller than the diameter d of the outlet of the exhaust manifold 19, the width W of the inlet of the protrusion 60 becomes a throttle, and the exhaust gas Pressure loss will increase.
  • the width W of the inlet of the protrusion 60 is larger than the diameter d of the outlet of the exhaust manifold 19.
  • the vertical height of the inlet of the protrusion 60 (the height in the axial direction of the casing 30) is smaller than the diameter d of the outlet of the exhaust manifold 19, the height h of the inlet of the protrusion 60 is reduced. As a result, the pressure loss of the exhaust gas increases.
  • the height h of the inlet of the protrusion 60 is preferably larger than the diameter d of the outlet of the exhaust manifold 19.
  • the inlet of the projecting portion 60 becomes a constriction because the sectional area X of the inlet of the projecting portion 60 facing the space in the casing 30 (cone portion 32) is larger than the sectional area of the outlet of the exhaust manifold 19. Is also when it is small. Therefore, in order to prevent an increase in exhaust gas pressure loss due to the restriction of the inlet of the protrusion 60, the cross-sectional area X of the inlet of the protrusion 60 is made smaller than the cross-sectional area of the outlet of the exhaust manifold 19. is required.
  • FIGS. 8A and 8B 8A and 8B are enlarged views similar to FIGS.
  • the configuration of the exhaust purification device of the seventh embodiment is basically the same as the configuration of the exhaust purification device of the first embodiment. However, in the exhaust purification device of the first embodiment, the outlet of the exhaust manifold 19 does not enter the protruding portion 35, whereas in the present embodiment, the outlet of the exhaust manifold 19 enters the protruding portion 35. is doing.
  • a part of the reducing agent supplied from the reducing agent supply device 22 may flow in the exhaust manifold 19 as droplets without being scattered in the exhaust gas flowing in the exhaust manifold 19.
  • Such a reducing agent in the droplet state falls in the direction of gravity from the outlet of the exhaust manifold 19, and NO X It will flow into the storage reduction catalyst 20.
  • the reducing agent is not mixed with the exhaust gas and in the droplet state, X If it flows into the storage reduction catalyst 20, the exhaust gas may not be sufficiently purified. For this reason, the reducing agent is in a droplet state and NO. X It is necessary not to flow into the storage reduction catalyst 20.
  • the outlet of the exhaust manifold 19 enters the protruding portion 35. Therefore, even if the reducing agent falls in the direction of gravity from the outlet of the exhaust manifold 19 in the droplet state, the reducing agent is NO.
  • FIGS. 9A and 9B are views similar to FIGS. 2A and 2B of the catalytic converter 21 of the eighth embodiment.
  • the configuration of the exhaust purification device of the eighth embodiment is basically the same as the configuration of the exhaust purification device of the first embodiment.
  • the protruding portion 35 is provided on the inner wall surface portion of the cone portion 32 facing the outlet of the exhaust manifold 19, whereas in the present embodiment, the casing 30 Two projecting members 71 and 72 projecting radially inward are provided. As shown in the side sectional view of FIG.
  • the lower wall surface 71a of the upper protrusion member 71 is inclined downward toward the radially outer side of the casing 30, and the upper wall surface 71b of the upper protrusion member 71 is the casing. 30 is inclined upward in the radial direction.
  • the upper wall surface 72 a of the lower protrusion member 72 is inclined upward toward the radially outer side of the casing 30, and the lower wall surface 72 b of the lower protrusion member 72 is directed toward the radially outer side of the casing 30. Inclined downward.
  • the lower wall surface 71a of the upper protruding member 71 and the upper wall surface 72a of the lower protruding member 72 are curved in a concave shape.
  • these projecting members 71 and 72 extend from the region facing the outlet of the exhaust manifold 19 toward both sides in the circumferential direction of the casing 30.
  • the depth D of the projecting members 71 and 72 is the exhaust manifold. It becomes shallow as it leaves
  • the inner circumferences of the projecting members 71 and 72 are formed to be substantially semi-elliptical.
  • the projecting members 71 and 72 extend over a half circumference in the circumferential direction of the casing 30.
  • the exhaust manifold 19 and the casing 30 configured as described above can achieve the same effects as those of the first embodiment shown in FIGS. 2A and 2B. That is, the exhaust gas containing the reducing agent that has flowed through the exhaust manifold 19 flows out from the outlet of the exhaust manifold 19 and flows into the space between the projecting members 71 and 72. The exhaust gas flowing in the lower part of the manifold outlet vicinity 19 a collides with the upper wall surface 72 a of the lower protrusion member 72. Due to this collision, the flow direction of the exhaust gas is directed upward.
  • the exhaust gas flowing in the upper part of the manifold outlet vicinity 19 a collides with the lower side wall surface 71 a of the upper protruding member 71.
  • This collision causes the exhaust gas to flow downward.
  • the flow direction of the exhaust gas colliding with the upper wall surface 72a of the lower projection member 72 is made upward and the flow direction of the exhaust gas colliding with the lower wall surface 71a of the upper projection member 71 is made downward, these The exhaust gases will collide with each other. In this way, the exhaust gas is agitated by the collision of the two exhaust gases, thereby promoting the mixing of the reducing agent contained in the exhaust gas and the exhaust gas.
  • the exhaust gas that has collided with the upper wall surface 72a of the lower projecting member 72 and whose flow direction has been directed upward is the exhaust gas that has collided with the lower wall surface 71a of the upper projecting member 71 and has its flow direction directed downward. Even if it does not collide with, it collides with the upper wall surface 72a of the lower projection member 72. Due to the collision with the upper wall surface 72a, the upward velocity component of the exhaust gas is reduced and the exhaust gas is agitated accordingly, and the mixing of the reducing agent and the exhaust gas contained in the exhaust gas is promoted. The This also applies to the exhaust gas that collides with the lower wall surface 71a of the upper projecting member 71 and whose flow direction is directed downward.
  • the protruding members 71 and 72 separate from the casing 30 are provided on the inner wall surface of the casing 30, but the inner wall surface of the casing 30 protrudes radially inward of the casing 30.
  • a protruding portion may be provided on the inner wall surface of the casing 30. Therefore, in summary, it can be said that the exhaust emission control device of the present embodiment includes a protrusion that protrudes from the inner wall surface defining the casing 30 toward the radially inner side of the casing 30.
  • the flow deflecting portion (for example, the protrusions 35, 40, 45, provided on the inner wall surface of the casing 30, is provided on a portion of the inner wall surface of the casing 30 facing the exhaust manifold outlet vicinity portion 19 a. 60 and protrusions 71 and 72), and the flow deflector is NO.
  • the speed component in the axial direction of the casing 30 of the flow of at least a part of the exhaust gas flowing into the flow deflector is positioned NO on the upstream side of the storage reduction catalyst 20. X It can be said that it is formed so as to be directed in the direction opposite to the direction toward the storage reduction catalyst 20.
  • a flow deflection portion is provided in a portion of the inner wall surface of the casing 30 that faces the exhaust manifold outlet vicinity portion 19a, and the flow deflection portion is X It is located upstream from the storage reduction catalyst 20, and the wall surface of the flow deflection unit hits a part of the wall surface of the flow deflection unit, so that NO. X It is formed so that at least a part of the exhaust gas whose velocity component in the direction toward the storage reduction catalyst 20 is increased hits the other part of the wall surface of the flow deflector, and the velocity component in the same direction of the exhaust gas is reduced. It can be said.
  • the exhaust manifold 19 connected to the engine body 1 is directly connected to the casing 30 of the catalytic converter 21, but the exhaust pipe connected directly or indirectly to the exhaust manifold 19 is connected to the catalyst. You may make it connect with the casing 30 of the converter 21.
  • FIG. It is also possible to configure the exhaust purification device by combining the above embodiments. For example, by combining the exhaust purification device of the second embodiment and the fourth embodiment, the cross section of the protruding portion in the circumferential direction of the casing 30 is rectangular, and the vicinity of the manifold outlet extends inclined with respect to the axis L. It can be set as an exhaust emission control device.
  • the lower wall surface 71 a of the upper protrusion member 71 and the upper wall surface 72 a of the downstream protrusion member 72 are perpendicular to the axial direction of the casing 30.
  • a simple exhaust purification device

Abstract

An exhaust purifying device for an internal combustion engine is provided with an exhaust manifold (19), a catalytic converter (21) provided at an angle to the exhaust manifold (19) at a position downstream of the exhaust manifold (19) and incorporating a NOx occluding and reducing catalyst (20), and a reducing agent supply device (22) for supplying a reducing agent to exhaust gas passing through the inside of the exhaust manifold.  A projection (35) projecting outward radially of a casing (30) of the catalytic converter is provided to the inner wall surface of the casing (30) at a position facing the exit of the exhaust manifold.  That portion of the wall surface which defines the projection is formed in such a manner that the component, in the direction of the axis of the casing, of the speed of the flow of at least a portion of the exhaust gas flowing into the projection is oriented by the projection in the direction opposite the direction toward the NOx occluding and reducing catalyst.  The exhaust purifying device can minimize an increase in loss of pressure of the exhaust gas and can disperse the reducing agent, which is supplied from the reducing agent supply device, into the exhaust gas.

Description

内燃機関の排気浄化装置Exhaust gas purification device for internal combustion engine
 本発明は、内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust purification device for an internal combustion engine.
 内燃機関から排出される排気ガス中には窒素酸化物(NO)や、煤等の粒子状物質が含まれており、これら成分を浄化するために様々な対策が講じられている。このような構成の一つに、機関排気通路内にNO吸蔵還元機能を有する触媒又はパティキュレートフィルタ(以下、「NO吸蔵還元触媒」という)を設けると共に、この触媒の排気上流側に機関排気通路内に還元剤を供給する還元剤供給装置を設けた排気浄化装置が挙げられる。
 このような排気浄化装置では、NO吸蔵還元触媒へのNO吸蔵量が多くなったときには還元剤供給装置から機関排気通路内に還元剤を供給し、NO吸蔵還元触媒からNOを離脱させると共に、NOを還元浄化させるようにしている。
 ここで、還元剤供給装置から還元剤を供給したとき、NO吸蔵還元触媒でのNOの離脱・還元をNO吸蔵還元触媒全体において最適に行わせるためには、供給された還元剤をNO吸蔵還元触媒内に均一に流入させる必要がある。このため、供給された還元剤を機関排気通路内を流れる排気ガス中に均一に拡散させるべく、様々な技術が提案されている。
 例えば、特許文献1に開示された排気浄化装置では、還元剤供給装置と排気浄化触媒との間の排気管内に、排気流れの断面積を縮小する絞り部が設けられている。この排気浄化装置では、絞り部により排気ガスの流れを加速させて排気ガスに乱れを発生させ、これにより還元剤供給装置から供給された還元剤を拡散させるようにしている。
 また、特許文献2に開示された排気浄化装置では、排気浄化触媒の上流側の触媒コンバータ内に、先端が閉蓋され且つ複数の穿孔を備える排気導入パイプと、複数の穿孔を備える隔壁とが設けられている。さらに、特許文献3に開示された排気浄化装置では、還元剤供給装置と排気浄化触媒との間の排気管内に互い違いに配置された複数の拡散板が設けられている。これら排気浄化装置では、いずれも排気導入パイプ及び隔壁や、拡散板により排気ガスに乱れを発生させ、これにより還元剤供給装置から供給された還元剤を排気ガス中に拡散させるようにしている。
The exhaust gas discharged from the internal combustion engine contains nitrogen oxides (NO x ) and particulate matter such as soot, and various measures are taken to purify these components. In one of such configurations, a catalyst or particulate filter having a NO X storage reduction function (hereinafter referred to as “NO X storage reduction catalyst”) is provided in the engine exhaust passage, and the engine is disposed upstream of the exhaust of the catalyst. An exhaust emission control device provided with a reducing agent supply device for supplying a reducing agent into the exhaust passage may be mentioned.
In such an exhaust purification device supplies reducing agent in the engine exhaust passage from the reducing agent supply device when it is much the NO X storage amount to the NO X storage reduction catalyst, leaving the NO X from the NO X storage reduction catalyst In addition, NO X is reduced and purified.
Here, when supplying reducing agent from the reducing agent supply device, a withdrawal and reduction of the NO X in the NO X storage reduction catalyst in order to optimally performed to the entire NO X storage reduction catalyst the supplied reducing agent It is necessary to uniformly flow into the NO X storage reduction catalyst. For this reason, various techniques have been proposed to uniformly diffuse the supplied reducing agent into the exhaust gas flowing in the engine exhaust passage.
For example, in the exhaust gas purification device disclosed in Patent Document 1, a throttle portion that reduces the cross-sectional area of the exhaust flow is provided in the exhaust pipe between the reducing agent supply device and the exhaust gas purification catalyst. In this exhaust purification device, the flow of the exhaust gas is accelerated by the throttle portion to generate a disturbance in the exhaust gas, thereby diffusing the reducing agent supplied from the reducing agent supply device.
Further, in the exhaust purification device disclosed in Patent Document 2, an exhaust introduction pipe having a closed end and having a plurality of perforations and a partition wall having a plurality of perforations are provided in the catalytic converter upstream of the exhaust purification catalyst. Is provided. Furthermore, in the exhaust gas purification device disclosed in Patent Document 3, a plurality of diffusion plates arranged alternately are provided in the exhaust pipe between the reducing agent supply device and the exhaust gas purification catalyst. In these exhaust purification apparatuses, the exhaust gas is disturbed by the exhaust introduction pipe, the partition wall, and the diffusion plate, so that the reducing agent supplied from the reducing agent supply device is diffused in the exhaust gas.
特開2002−213233号公報JP 2002-213233 A 特開2003−184544号公報JP 2003-184544 A 特開2005−325747号公報JP 2005-325747 A
 ところで、上記特許文献1~3に記載された排気浄化装置で用いられている絞り部、排気導入パイプ及び隔壁、拡散板は、何れも排気ガスの流れを阻害することによって排気ガスに乱れを生じさせている。このため、機関排気通路内にこれら構成要素を設けることよって還元剤を排気ガス中に拡散させることはできるが、これに伴って排気ガスの圧力損失が増大してしまう。このように排気ガスの圧力損失が増大すると、内燃機関の燃焼室から排気ガスが流出しにくくなり、その結果、機関出力の低下や燃費の悪化等を招く虞がある。
 そこで、本発明の目的は、排気ガスの圧力損失の増大を抑制しつつ、還元剤供給装置から供給された還元剤を排気ガス中に拡散させることができる内燃機関の排気浄化装置を提供することにある。
By the way, the throttling portion, the exhaust introduction pipe, the partition wall, and the diffusion plate used in the exhaust gas purification devices described in Patent Documents 1 to 3 all disturb the exhaust gas by disturbing the flow of the exhaust gas. I am letting. For this reason, by providing these components in the engine exhaust passage, the reducing agent can be diffused into the exhaust gas, but the pressure loss of the exhaust gas increases accordingly. When the pressure loss of the exhaust gas increases in this way, the exhaust gas hardly flows out from the combustion chamber of the internal combustion engine, and as a result, there is a risk of causing a decrease in engine output, a deterioration in fuel consumption, and the like.
Accordingly, an object of the present invention is to provide an exhaust purification device for an internal combustion engine capable of diffusing the reducing agent supplied from the reducing agent supply device into the exhaust gas while suppressing an increase in the pressure loss of the exhaust gas. It is in.
 本発明は、上記課題を解決するための手段として、請求の範囲の各請求項に記載された内燃機関の制御装置を提供する。
 本発明の1番目の態様では、内燃機関から排出された排気ガスが流通する上流側排気通路と、該上流側排気通路の下流側に上流側排気通路に対して角度を付けて配置された下流側排気通路と、上流側排気通路内を通過する排気ガス中に還元剤を供給する還元剤供給手段と、下流側排気通路内に設けられた排気浄化手段とを具備する内燃機関の排気浄化装置において、下流側排気通路を画成する内壁面の上流側排気通路出口に対向する部分には流れ偏向部が設けられ、該流れ偏向部は、排気浄化手段よりも上流側に位置すると共に、該流れ偏向部に流入する排気ガスの少なくとも一部の流れの下流側排気通路軸線方向の速度成分を排気浄化手段に向かう方向とは反対向きに方向付けるように形成される。
 本態様によれば、内壁面に形成された流れ偏向部によって排気浄化手段に向かう方向とは反対向きに方向付けされた排気ガスは、他の排気ガスと衝突することになる。このような衝突により排気ガスに乱れが生じ、還元剤と排気ガスの混合が促進される。また、流れ偏向部は排気ガスの流れの方向を変えているだけなので、実質的に排気ガスの流れに対する絞りとなる構成要素が設けられておらず、排気ガスの圧力損失もほとんど増大しない。
 従って、本態様によれば、排気ガスに乱れが生じさせることにより還元剤と排気ガスの混合を促進させることができる。また、実質的に排気ガスの流れに対する絞りとなる構成要素が設けられていない。このため、排気ガスの圧力損失の増大を抑制しつつ、還元剤供給装置から供給された還元剤を排気ガス中に拡散させることができる。
 本発明の2番目の態様では、上記流れ偏向部を画成する壁面の排気浄化手段側の領域は下流側排気通路の径方向外側に向かって排気浄化手段に向かう方向とは反対向きに傾斜した部分を有する。
 本発明の3番目の態様では、内燃機関から排出された排気ガスが流通する上流側排気通路と、該上流側排気通路の下流側に上流側排気通路に対して角度を付けて配置された下流側排気通路と、上流側排気通路内を通過する排気ガス中に還元剤を供給する還元剤供給手段と、下流側排気通路内に設けられた排気浄化手段とを具備する内燃機関の排気浄化装置において、下流側排気通路を画成する内壁面の上流側排気通路出口に対向する部分には流れ偏向部が設けられ、該流れ偏向部は排気浄化手段よりも上流側に位置し、該流れ偏向部の壁面は、該流れ偏向部の壁面の一部に当たって排気浄化手段に向かう方向の速度成分が増大せしめられた排気ガスの少なくとも一部が該流れ偏向部の壁面の他の部分に当たり、該排気ガスの同方向の速度成分が低下せしめられるように形成される。
 本態様によれば、流れ偏向部の壁面の一部により排気浄化手段に向かう方向の速度成分が増大せしめられた排気ガスが流れ偏向部の壁面の他の部分に当たり、これによりこの排気ガスの排気浄化手段に向かう方向の速度成分が低下せしめられる。このように、排気浄化手段に向かう方向の速度成分が低下するように上記壁面の他の部分に衝突することにより、排気ガスに乱れが生じ、還元剤と排気ガスの混合が促進される。また、流れ偏向部は排気ガスの流れの方向を変えているだけなので、実質的に排気ガスの流れに対する絞りとなる構成要素が設けられておらず、排気ガスの圧力損失もほとんど増大しない。
 従って、本態様によれば、排気ガスに乱れが生じさせることにより還元剤と排気ガスの混合を促進させることができる。また、実質的に排気ガスの流れに対する絞りとなる構成要素が設けられていない。このため、排気ガスの圧力損失の増大を抑制しつつ、還元剤供給装置から供給された還元剤を排気ガス中に拡散させることができる。
 本発明の4番目の態様では、上記流れ偏向部を画成する壁面の排気浄化手段から離れた側の領域は下流側排気通路の径方向外側に向かって排気浄化手段に向かう方向に傾斜した部分を有する。
 本発明の5番目の態様では、上記流れ偏向部は、下流側排気通路を画成する内壁面自体が下流側排気通路の径方向外側に向かって突出して形成された突出部を具備する。
 本態様によれば、還元剤供給手段から供給された還元剤が十分に気化されずに液滴の状態で上流側排気通路から流出しても、斯かる液滴を突出部内で受けて蒸発させることができるため、還元剤が液滴の状態で排気浄化手段に流入し、付着するのを抑制することができる。
 本発明の6番目の態様では、上記突出部の下流側排気通路周方向の断面はほぼ半楕円形である。
 本発明の7番目の態様では、上記下流側排気通路に面する上記突出部の入口面積は上流側排気通路の断面積よりも大きい。
 本発明の8番目の態様では、上記突出部の下流側排気通路軸線方向の高さは上流側排気通路の直径よりも大きい。
 本発明の9番目の態様では、上記突出部は上記下流側排気通路周方向に延びる。
 本発明の10番目の態様では、上記突出部の下流側排気通路径方向の深さは、上記上流側排気通路出口に対向する領域から離れるにつれて小さくなる。
 本発明の11番目の態様では、上記突出部は、その外周がほぼ半楕円形となるように形成される。
 本発明の12番目の態様では、上記突出部は、上記上流側排気通路出口に対向する領域から下流側排気通路周方向に離れるにつれて排気浄化手段側に位置するように傾斜している。
 本発明の13番目の態様では、上記上流側排気通路はその出口付近においてその中心軸線が突出部内を通るように延びる。
 本発明の14番目の態様では、上記上流側排気通路はその出口付近において下流側排気通路の中心軸線に対して傾斜して延びる。
 本発明の15番目の態様では、上記上流側排気通路はその出口付近において下流側排気通路の中心軸線に対して垂直に延びる。
 本発明の16番目の態様では、上記上流側排気通路は下流側排気通路内に進入して延びる。
 本発明の17番目の態様では、上記上流側排気通路出口は上記突出部内に進入せしめられる。
 本発明の18番目の態様では、上記流れ偏向部は、下流側排気通路を画成する内壁面自体が下流側排気通路の径方向外側に向かって突出して形成された突出部を具備し、該突出部の下流側排気通路周方向の断面はほぼ矩形である。
 本発明の19番目の態様では、上記流れ偏向部は、下流側排気通路を画成する内壁面から下流側排気通路の径方向内側に向かって突出する突起部を具備する。
 本発明の20番目の態様では、上記上流側排気通路は排気マニホルド又は排気マニホルドに直接連結された排気管によって画成され、上記下流側排気通路は排気浄化手段を収容する触媒コンバータの上流部分に設けられたコーン部である。
 以下、添付図面と本発明の好適な実施形態の記載から、本発明を一層十分に理解できるであろう。
The present invention provides, as means for solving the above problems, a control device for an internal combustion engine described in each claim.
In a first aspect of the present invention, an upstream exhaust passage through which exhaust gas discharged from an internal combustion engine flows, and a downstream disposed at an angle with respect to the upstream exhaust passage downstream of the upstream exhaust passage. An exhaust purification device for an internal combustion engine, comprising: a side exhaust passage, a reducing agent supply means for supplying a reducing agent into the exhaust gas passing through the upstream exhaust passage, and an exhaust purification means provided in the downstream exhaust passage A flow deflecting portion is provided on a portion of the inner wall surface defining the downstream exhaust passage facing the upstream exhaust passage outlet, the flow deflecting portion being located upstream of the exhaust purification means, It is formed to direct the velocity component in the downstream exhaust passage axial direction of the flow of at least part of the exhaust gas flowing into the flow deflecting portion in the direction opposite to the direction toward the exhaust purification means.
According to this aspect, the exhaust gas directed in the direction opposite to the direction toward the exhaust gas purification means by the flow deflector formed on the inner wall surface collides with another exhaust gas. Due to such a collision, the exhaust gas is disturbed, and the mixing of the reducing agent and the exhaust gas is promoted. Further, since the flow deflector only changes the direction of the exhaust gas flow, there is substantially no component that serves as a throttle for the exhaust gas flow, and the pressure loss of the exhaust gas hardly increases.
Therefore, according to this aspect, it is possible to promote the mixing of the reducing agent and the exhaust gas by causing disturbance in the exhaust gas. Moreover, the component which becomes a restriction | limiting with respect to the flow of exhaust gas is not provided substantially. For this reason, it is possible to diffuse the reducing agent supplied from the reducing agent supply device into the exhaust gas while suppressing an increase in the pressure loss of the exhaust gas.
In the second aspect of the present invention, the region on the exhaust purification means side of the wall surface defining the flow deflection section is inclined in the direction opposite to the direction toward the exhaust purification means toward the radially outer side of the downstream exhaust passage. Has a part.
In the third aspect of the present invention, an upstream exhaust passage through which exhaust gas discharged from the internal combustion engine flows, and a downstream disposed at an angle with respect to the upstream exhaust passage on the downstream side of the upstream exhaust passage. An exhaust purification device for an internal combustion engine, comprising: a side exhaust passage, a reducing agent supply means for supplying a reducing agent into the exhaust gas passing through the upstream exhaust passage, and an exhaust purification means provided in the downstream exhaust passage , A flow deflecting portion is provided in a portion of the inner wall surface defining the downstream exhaust passage facing the upstream exhaust passage outlet, and the flow deflecting portion is located upstream of the exhaust purification means, The wall surface of the flow section hits a part of the wall surface of the flow deflecting unit, and at least a part of the exhaust gas whose velocity component in the direction toward the exhaust purification means is increased hits the other part of the wall surface of the flow deflecting unit, Gas velocity component in the same direction It is formed so as to be allowed to decrease.
According to this aspect, the exhaust gas whose velocity component in the direction toward the exhaust gas purification unit is increased by a part of the wall surface of the flow deflection unit hits the other part of the wall surface of the flow deflection unit. The speed component in the direction toward the purification means is reduced. In this way, the collision with the other part of the wall surface such that the velocity component in the direction toward the exhaust gas purification means decreases, so that the exhaust gas is disturbed and the mixing of the reducing agent and the exhaust gas is promoted. Further, since the flow deflector only changes the direction of the exhaust gas flow, there is substantially no component that serves as a throttle for the exhaust gas flow, and the pressure loss of the exhaust gas hardly increases.
Therefore, according to this aspect, it is possible to promote the mixing of the reducing agent and the exhaust gas by causing disturbance in the exhaust gas. Moreover, the component which becomes a restriction | limiting with respect to the flow of exhaust gas is not provided substantially. For this reason, it is possible to diffuse the reducing agent supplied from the reducing agent supply device into the exhaust gas while suppressing an increase in the pressure loss of the exhaust gas.
In the fourth aspect of the present invention, the region of the wall surface defining the flow deflection portion on the side away from the exhaust purification means is a portion inclined in the direction toward the exhaust purification means toward the radially outer side of the downstream exhaust passage. Have
In the fifth aspect of the present invention, the flow deflection section includes a protruding portion formed such that the inner wall surface itself defining the downstream exhaust passage protrudes radially outward of the downstream exhaust passage.
According to this aspect, even if the reducing agent supplied from the reducing agent supply means is not sufficiently vaporized and flows out from the upstream exhaust passage in the form of droplets, the droplets are received and evaporated in the protrusions. Therefore, it is possible to suppress the reducing agent from flowing into the exhaust purification means in the form of droplets and adhering thereto.
In a sixth aspect of the present invention, the cross section of the projecting portion in the downstream exhaust passage circumferential direction is substantially semi-elliptical.
In a seventh aspect of the present invention, the inlet area of the protruding portion facing the downstream exhaust passage is larger than the cross-sectional area of the upstream exhaust passage.
In the eighth aspect of the present invention, the height of the protruding portion in the axial direction of the downstream exhaust passage is larger than the diameter of the upstream exhaust passage.
In the ninth aspect of the present invention, the protrusion extends in the circumferential direction of the downstream exhaust passage.
In the tenth aspect of the present invention, the depth of the protruding portion in the radial direction of the downstream exhaust passage decreases as the distance from the region facing the upstream exhaust passage outlet increases.
In the eleventh aspect of the present invention, the protrusion is formed so that its outer periphery is substantially semi-elliptical.
In a twelfth aspect of the present invention, the protruding portion is inclined so as to be positioned closer to the exhaust purification means as it moves away from the region facing the upstream exhaust passage outlet in the circumferential direction of the downstream exhaust passage.
In the thirteenth aspect of the present invention, the upstream exhaust passage extends in the vicinity of its outlet so that its central axis passes through the protrusion.
In the fourteenth aspect of the present invention, the upstream exhaust passage extends in an inclined manner with respect to the central axis of the downstream exhaust passage in the vicinity of the outlet thereof.
In the fifteenth aspect of the present invention, the upstream exhaust passage extends perpendicularly to the central axis of the downstream exhaust passage in the vicinity of the outlet thereof.
In the sixteenth aspect of the present invention, the upstream exhaust passage extends into the downstream exhaust passage.
In the seventeenth aspect of the present invention, the upstream side exhaust passage outlet is made to enter the protrusion.
In an eighteenth aspect of the present invention, the flow deflector includes a protrusion formed by an inner wall surface itself defining the downstream exhaust passage projecting radially outward of the downstream exhaust passage, A cross section in the circumferential direction of the downstream side exhaust passage of the protrusion is substantially rectangular.
In a nineteenth aspect of the present invention, the flow deflector includes a protrusion protruding from the inner wall surface defining the downstream exhaust passage toward the radially inner side of the downstream exhaust passage.
In a twentieth aspect of the present invention, the upstream exhaust passage is defined by an exhaust manifold or an exhaust pipe directly connected to the exhaust manifold, and the downstream exhaust passage is formed in an upstream portion of a catalytic converter that houses exhaust purification means. It is the cone part provided.
Hereinafter, the present invention will be more fully understood from the accompanying drawings and the description of preferred embodiments of the present invention.
 図1は、本発明の排気浄化装置が搭載される内燃機関の全体を概略的に示す図である。
 図2A及び図2Bは、図1に示した第一実施形態の触媒コンバータの拡大図である。
 図3A及び図3Bは、第二実施形態の触媒コンバータの拡大図である。
 図4A及び図4Bは、第三実施形態の触媒コンバータの拡大図である。
 図5A及び図5Bは、第四実施形態の触媒コンバータの拡大図である。
 図6A及び図6Bは、第五実施形態の触媒コンバータの拡大図である。
 図7A及び図7Bは、第六実施形態の触媒コンバータの拡大図である。
 図8A及び図8Bは、第七実施形態の触媒コンバータの拡大図である。
 図9A及び図9Bは、第八実施形態の触媒コンバータの拡大図である。
FIG. 1 is a diagram schematically showing an entire internal combustion engine in which an exhaust emission control device of the present invention is mounted.
2A and 2B are enlarged views of the catalytic converter of the first embodiment shown in FIG.
3A and 3B are enlarged views of the catalytic converter of the second embodiment.
4A and 4B are enlarged views of the catalytic converter of the third embodiment.
5A and 5B are enlarged views of the catalytic converter of the fourth embodiment.
6A and 6B are enlarged views of the catalytic converter of the fifth embodiment.
7A and 7B are enlarged views of the catalytic converter of the sixth embodiment.
8A and 8B are enlarged views of the catalytic converter of the seventh embodiment.
9A and 9B are enlarged views of the catalytic converter of the eighth embodiment.
 以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。
 図1は、本発明の排気浄化装置が搭載される内燃機関の全体を概略的に示す図である。図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。図1に示したようにシリンダヘッド4の内壁面の中央部には点火栓10が配置され、シリンダヘッド4内壁面周辺部には燃料噴射弁11が配置される。またピストン3の頂面上には燃料噴射弁11の下方から点火栓10の下方まで延びるキャビティ12が形成されている。
 各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気ダクト15およびエアフロメータ16を介してエアクリーナ(図示せず)に連結される。吸気ダクト15内にはステップモータ17によって駆動されるスロットル弁18が配置される。一方、各気筒の排気ポート9は排気マニホルド19に連結され、この排気マニホルド19はNO吸蔵還元触媒20を内蔵した触媒コンバータ21に連結される。なお、本実施形態では、触媒コンバータ21内にNO吸蔵還元触媒20が内蔵されているが、排気ガスの浄化の為に還元剤の供給を必要とするものであれば如何なる排気浄化手段が内蔵されてもよい。このような排気浄化手段としては、例えば、酸化触媒、三元触媒、パティキュレートフィルタ等が挙げられる。
 排気マニホルド19には、排気マニホルド19内を流れる排気ガス中に還元剤を供給する還元剤供給装置22が設けられる。また、排気マニホルド19とサージタンク14とは再循環排気ガス(以下、EGRガスという)導管26を介して互いに連結され、このEGRガス導管26内にはEGRガス制御弁27が配置される。
 図2A及び図2Bは、図1に示した触媒コンバータ21の拡大図である。図2Aは図2BのラインAから見た断面側面図、図2Bは図2AのラインBから見た断面平面図をそれぞれ示している。図2A及び図2Bに示したように、触媒コンバータ21はケーシング30を具備し、このケーシング30内にはNO吸蔵還元触媒20が収容されている。ケーシング30は、NO吸蔵還元触媒20を収容する触媒収容部31と、触媒収容部31よりも排気上流側に設けられたコーン部32とを具備する。これらケーシング30の触媒収容部31及びコーン部32はいずれも排気ガスが流れる排気通路(下流側排気通路)を画成する。
 本実施形態では、NO吸蔵還元触媒20とケーシング30(触媒収容部31及びコーン部32)とは同軸に配置されており、これらの軸線Lはほぼ鉛直に延びる。従って、ケーシング30(すなわち、触媒収容部31及びコーン部32)によって画成される排気通路もほぼ鉛直に延びる。以下の説明では、NO吸蔵還元触媒20の排気上流側を上方、排気下流側を下方として説明する。なお、NO吸蔵還元触媒20及びケーシング30の軸線Lは必ずしもほぼ鉛直に延びる必要はなく、水平等、如何なる方向に延びるように配置されてもよい。また、NO吸蔵還元触媒20とケーシング30とは必ずしも同軸に配置される必要はない。
 図2A及び図2Bに示したように、排気マニホルド19はケーシング30に連結される。具体的には、排気マニホルド19は、ケーシング30のコーン部32の上方部分においてコーン部32の壁面を貫通して延びる。従って、排気マニホルド19はコーン部32内に進入している。図2A及び図2Bに示したように、排気マニホルド19は、コーン部32の壁面を貫通する箇所において、軸線Lに対して傾斜している。また、排気マニホルド19は、排気マニホルド19の出口付近の部分(以下、「マニホルド出口近傍部分」という)19aが軸線Lに対して垂直に延びるように、すなわちコーン部32の壁面に対して垂直に延びるようにコーン部32内で湾曲している。図2A及び図2Bに示したように、排気マニホルド19の出口はコーン部32の内壁面の一部に対面する。このように構成された排気マニホルド19は機関本体1から排出された排気ガスが流れる排気通路(上流側排気通路)を画成する。
 排気マニホルド19の出口と対面するコーン部32の内壁面の部分には、ケーシング30の径方向に向かって突出した突出部35が設けられる。図2Aの側面断面図に示したように、突出部35の上側壁面35aはケーシング30の径方向外側に向かって下方に傾斜しており、突出部35の下側壁面35bはケーシング30の径方向外側に向かって上方に傾斜している。特に、本実施形態では、ケーシング30の周方向における突出部35の断面はほぼ半楕円形となっている。
 また、図2Bに示したように、この突出部35は、排気マニホルド19の出口と対面する領域からケーシング30の周方向両側に向かって延びている。突出部35が無い場合におけるコーン部32の内壁面からケーシング30の径方向に最も突出した突出部の部分までの長さを突出部35の深さDとすると、突出部35の深さDは排気マニホルド19の出口と対面する領域からケーシング30の周方向に離れるにつれて浅くなる。すなわち、突出部35の深さDは排気マニホルド19の出口と対面する領域で最も深く、ここから周方向に広がっていくにつれて浅くなっていく。特に、図2Bに示したように、本実施形態では、突出部35の外周がほぼ半楕円形となるように形成されている。また、本実施形態では、突出部35はケーシング30の周方向において半周以上に亘って延びている。
 このように構成された排気マニホルド19及びケーシング30内での排気ガスの流れについて説明する。図2A及び図2B中の矢印は、排気ガスの流れを示している。排気マニホルド19内には、機関本体1から排出されると共に還元剤供給装置22によって還元剤が供給された排気ガスが流れている。従って、図2A及び図2Bの排気マニホルド19内を流れる排気ガス中には十分に排気ガスと混合されていない還元剤が含まれている。
 排気マニホルド19内を流れてきた還元剤を含む排気ガスは、排気マニホルド19の出口から流出して突出部35内に流入する。マニホルド出口近傍部分19aの下部を流れてきた排気ガスは突出部35の下側壁面35bに衝突する。この衝突により、排気ガスはその流れ方向が上向きにされる。一方、マニホルド出口近傍部分19aの上部を流れてきた排気ガスは突出部35の上側壁面35aに衝突する。この衝突により、排気ガスはその流れ方向が下向きにされる。
 このように突出部35の下側壁面35bに衝突した排気ガスはその流れ方向が上向きに、突出部35の上側壁面35aに衝突した排気ガスはその流れ方向が下向きにされると、これら排気ガスは互いに衝突することになる。このように、両排気ガスが衝突することにより排気ガスが攪拌され、これにより排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。
 また、突出部35の下側壁面35bに衝突してその流れ方向が上向きにされた排気ガスは、たとえ突出部35の上側壁面35aに衝突して流れ方向が下向きにされた排気ガスと衝突しなくても、突出部35の上側壁面35aに衝突する。この上側壁面35aとの衝突により、排気ガスの上向きの速度成分が低下せしめられると共にこれに伴って排気ガスが攪拌され、排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。
 同様に、突出部35の上側壁面35aに衝突してその流れ方向が下向きにされた排気ガスは、たとえ突出部35の下側壁面35bに衝突して流れ方向が上向きにされた排気ガスと衝突しなくても、突出部35の下側壁面35bに衝突する。この下側壁面35bとの衝突により、排気ガスの下向きの速度成分が低下せしめられると共にこれに伴って排気ガスが攪拌され、排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。
 突出部35内に流入した排気ガスは、突出部35の壁面に衝突して上下方向の流れの向きを変えると共に、図2Bに矢印で示したように突出部35の壁面に沿ってケーシング30の周方向両側に向かって流れる。これにより、突出部35内に流入した排気ガスはケーシング30内全体に均一に広がることになる。このため、還元剤が均一に混合された排気ガスは、NO吸蔵還元触媒20に均一に流入することになる。従って、NO吸蔵還元触媒20では還元剤との反応がNO吸蔵還元触媒20全体に亘って均一に行われ、例えばNO吸蔵還元触媒20に吸蔵されたNOの浄化が最適に行われる。
 ここで、本実施形態の排気マニホルド19及びケーシング30によれば、排気ガス中に含まれる還元剤と排気ガスとの混合を促進するにあたって、排気ガスの流路面積を絞るような部材が設けられていない。このため、排気ガスが上述した構成の排気マニホルド19及びケーシング30内を流れてもほとんど圧力損失が生じない。従って、本発明の実施形態によれば、排気ガスの圧力損失をほとんど生じさせることなく排気ガス中に含まれている還元剤と排気ガスとの混合を促進させることができる。
 また、排気マニホルド19内を流れてきた排気ガス中の還元剤は、排気マニホルド19の出口において十分に気化されておらず、液滴の状態で排気マニホルド19から流出する場合がある。しかしながら、本実施形態の排気マニホルド19及びケーシング30では、還元剤が液滴の状態で排気マニホルド19から流出しても、そのほとんどが突出部35内に流入することになる。さらに、突出部35内に流入した液滴は、突出部35内で生じる排気ガスの乱れにより蒸発し易い。このため、還元剤が液滴の状態で排気マニホルド19から流出した場合であっても、そのまま還元剤が液滴の状態でNO吸蔵還元触媒20に流入して付着することが抑制される。
 なお、上記実施形態では、突出部35は排気マニホルド19の出口に対面する領域から周方向両側においてほぼ同じ長さだけ延びている。しかしながら、突出部35は周方向両側において必ずしも同じ長さだけ延びている必要はなく、一方の側の方が他方の側よりも長く延びるように構成されてもよい。
 また、上記実施形態では、突出部35は排気マニホルド19の出口に対面する領域から周方向に、すなわち軸線Lに垂直な平面上で延びている。しかしながら、突出部35は周方向に対して傾斜して、すなわち軸線Lに垂直な平面に対して傾斜して延びるように構成されてもよい。例えば、突出部35は、排気マニホルド19の出口に対面する領域から周方向に離れるにつれて下側に位置するように傾斜してもよい。
 次に、図3A及び図3Bを参照して本発明の第二実施形態について説明する。図3A及び図3Bは、第二実施形態の触媒コンバータ21の、図2A及び図2Bと同様な拡大図である。第二実施形態の排気浄化装置の構成は基本的に第一実施形態の排気浄化装置の構成と同様である。ただし、第一実施形態の排気浄化装置では、ケーシング30周方向における突出部35の断面はほぼ半楕円形となっているのに対して、第二実施形態の排気浄化装置では、ケーシング30周方向における突出部40の断面はほぼ矩形となっている。
 図3Aに示したように、突出部40は、軸線Lと平行に延びる鉛直壁面40aと、この鉛直壁面40aの上部に連結されて軸線Lと垂直に延びる上方水平壁面40bと、鉛直壁面40aの下部に連結されて軸線Lと垂直に延びる下方水平壁面40cとを備える。
 このように構成された排気マニホルド19及びケーシング30内での排気ガスの流れについて説明する。排気マニホルド19内を流れてきた還元剤を含む排気ガスは、排気マニホルド19の出口から流出して突出部40に流入する。突出部40の下方水平壁面40cはマニホルド出口近傍部分19aとほぼ平行に延びるため、マニホルド出口近傍部分19aの下部を流れてきた排気ガスは突出部40の下方水平壁面40cには衝突しにくいが、それでもその一部は下向き速度成分を有しており、よって下方水平壁面40cに衝突する。この衝突により、排気ガスはその流れ方向が上向きにされ、排気マニホルド19から突出部40内に流入してきた排気ガスと衝突することになる。
 一方、突出部40の上方水平壁面40bもマニホルド出口近傍部分19aとほぼ平行に延びるため、マニホルド出口近傍部分19aの上部を流れてきた排気ガスは突出部40の上方水平壁面40bには衝突しにくいが、それでもその一部は上向きの速度成分を有しており、よって上方水平壁面40bに衝突する。この衝突により、排気ガスはその流れ方向が下向きにされ、排気マニホルド19から突出部40内に流入してきた排気ガスと衝突することになる。
 このように排気ガス同士が衝突することにより、排気ガスが攪拌され、これにより排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。また、本実施形態においても排気ガスの流路断面積を絞るような部材が設けられていないことから、排気ガスの圧力損失をほとんど上昇させることなく排気ガス中に含まれている還元剤と排気ガスとの混合を促進させることができる。
 また、上述したように突出部40の下方水平壁面40cに衝突して流れ方向が上向きにされた排気ガスの一部は、突出部40の上方水平壁面40bに衝突する。この上方水平壁面40bとの衝突により、排気ガスの上向きの速度成分が低下せしめられると共にこれに伴って排気ガスが攪拌され、排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。さらに、突出部40の上方水平壁面40bに衝突して流れ方向が下向きにされた排気ガスの一部は、突出部40の下方水平壁面40cに衝突する。この下方水平壁面40cとの衝突により、排気ガスの下向きの速度成分が低下せしめられると共にこれに伴って排気ガスが攪拌され、排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。
 次に、図4A及び図4Bを参照して本発明の第三実施形態について説明する。図4A及び図4Bは、第三実施形態の触媒コンバータ21の、図2A及び図2Bと同様な拡大図である。第三実施形態の排気浄化装置の構成は基本的に第一実施形態の排気浄化装置の構成と同様である。ただし、第二実施形態の排気浄化装置では、ケーシング30周方向における突出部35の断面はほぼ半楕円形となっているのに対して、第三実施形態の排気浄化装置では、ケーシング30周方向における突出部45の断面はほぼ円形となっている。
 図4Aに示したように、突出部45は、ケーシング30の径方向外側に向かって一旦上方に傾斜してから下方に傾斜している上側壁面45aと、ケーシング30の径方向外側に向かって一旦下方に傾斜してから上方に傾斜している下側壁面45bとを備える。
 このように構成された排気マニホルド19及びケーシング30内での排気ガスの流れについて説明する。排気マニホルド19内を流れてきた還元剤を含む排気ガスは、排気マニホルド19の出口から流出して突出部45に流入する。突出部45の下側壁面45bは一旦下方に傾斜してから上方に傾斜しているため、マニホルド出口近傍部分19aの下部を流れてきた排気ガスは突出部45に流入すると、まず下側壁面45bの下方に傾斜した部分に沿って流れる。その後、突出部45の下側壁面45bの上方に傾斜した部分に衝突する。この衝突により、排気ガスはその流れ方向が上向きにされる。
 一方、突出部45の上側壁面45aは一旦上方に傾斜してから下方に傾斜しているため、マニホルド出口近傍部分19aの上部を流れてきた排気ガスは突出部45に流入すると、まず上側壁面45aの上方に傾斜した部分に沿って流れる。その後、突出部45の上側平面45aの下方に傾斜した部分に衝突する。この衝突により、排気ガスはその流れ方向が下向きにされる。
 その後、突出部45の下側壁面45bに衝突して上向きに流れる排気ガスと突出部45の上側壁面45aに衝突して下向きに流れる排気ガスとは互いに衝突し、これにより排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。
 また、突出部45の下側壁面45bの上方に傾斜した部分に衝突して流れ方向が上向きにされた排気ガスは、たとえ突出部45の上側壁面45aの下方に傾斜した部分に衝突して流れ方向が下向きにされた排気ガスと衝突しなくても、突出部45の上側壁面45aに衝突する。この上側壁面45aとの衝突により、排気ガスの上向きに速度成分が低下せしめられると共にこれに伴って排気ガスが攪拌され、排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。
 一方、突出部45の上側壁面45aの下方に傾斜した部分に衝突して流れ方向が下向きにされた排気ガスは、たとえ突出45の下側壁面45bの上方に傾斜した部分に衝突して流れ方向が上向きにされた排気ガスと衝突しなくても、突出部45の下側壁面45bに衝突する。この下側壁面45bとの衝突により、排気ガスの下向きの速度成分が低下せしめられると共にこれに伴って排気ガスが攪拌され、排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。
 また、本実施形態においても排気ガスの流路断面積を絞るような部材が設けられていないことから、排気ガスの圧力損失をほとんど上昇させることなく排気ガス中に含まれている還元剤と排気ガスとの混合を促進させることができる。
 ところで、上述した第一実施形態から第三実施形態で示したいずれの形状の突出部によっても排気ガスの圧力損失をほとんど上昇させることなく還元剤と排気ガスとの混合を促進させることができる。ここで、これらいずれの突出部形状を採用しても、マニホルド出口近傍部分19aの下部を流れてきた排気ガスは突出部の下側壁面に衝突して、その流れ方向が上向きにされており、これにより還元剤と排気ガスとの混合の促進等が行われると考えられる。従って、突出部は、その壁面の一部が突出部に流入する排気ガスの少なくとも一部の流れのケーシング30軸線方向の速度成分を上向きに方向付けることができれば、如何なる形状であってもよいといえる。
 また、第一実施形態から第三実施形態で示したいずれの形状の突出部を採用しても、マニホルド出口近傍部分19aの上部を流れてきた排気ガスは突出部の上側壁面に衝突して、その流れ方向が下向きにされ、突出部に流入してきた他の排気ガスと衝突せしめられており、これにより還元剤と排気ガスとの混合の促進等が行われると考えられる。従って、突出部は、その壁面に当たって下向きの速度成分が増大せしめられた排気ガスの少なくとも一部が、突出部の壁面に当たっても下向きの速度成分が増大せしめられていない排気ガスと衝突するように形成されていれば、如何なる形状であってもよいといえる。
 さらに、第一実施形態から第三実施形態で示したいずれの形状の突出部を採用しても、マニホルド出口近傍部分19aの上部を流れてきた排気ガスは突出部の上側壁面に衝突してその流れ方向が下向きにされ、その後突出部の下側壁面との衝突により、排気ガスの下向きの速度成分が低下せしめられ、これにより還元剤と排気ガスとの混合の促進等が行われると考えられる。同様に、マニホルド出口近傍部分19aの下部を流れてきた排気ガスは突出部の下側壁面に衝突してその流れ方向が上向きにされ、その後突出部の上側壁面との衝突により、排気ガスの上向きの速度成分が低下せしめられ、これにより還元剤と排気ガスとの混合の促進等が行われると考えられる。従って、突出部は、その壁面の一部に当たって排気浄化手段に向かう方向の速度成分が増大せしめられた排気ガスの少なくとも一部が突出部の壁面の他の部分に当たり、この排気ガスの同方向の速度成分が低下せしめられるように形成されていれば、如何なる形状であってもよいといえる。
 次に、図5A及び図5Bを参照して本発明の第四実施形態について説明する。図5A及び図5Bは、第四実施形態の触媒コンバータ21の、図2A及び図2Bと同様な拡大図である。第四実施形態の排気浄化装置の構成は基本的に第一実施形態の排気浄化装置の構成と同様である。ただし、第一実施形態の排気浄化装置では、マニホルド出口近傍部分19aが軸線Lに対して垂直に延びているのに対して、本実施形態ではマニホルド出口近傍部分50aは軸線Lに対して傾斜して延びている。
 図5Aに示したように、本実施形態の排気マニホルド50は、ケーシング30のコーン部32の上方部分においてコーン部32の壁面を貫通して延びている。図5Aに示したように、排気マニホルド50は、コーン部32の壁面を貫通する箇所において、ケーシング30の軸線Lに対して傾斜している。また、排気マニホルド50は、コーン部32内において直線的に延びている。このため、マニホルド出口近傍部分50aも軸線Lに対して傾斜して延びていると共に、コーン部32の壁面に対して傾斜して延びている。
 また、図5A及び図5Bに示したように、マニホルド出口近傍部分50aは、突出部35に向かって延びている。換言すると、マニホルド出口近傍部分50aはその軸線Mが突出部35内に進入するように延びている。
 このように構成された排気マニホルド50及びケーシング30内での排気ガスの流れについて説明する。マニホルド出口近傍部分50aが突出部35に向かって延びているため、排気マニホルド50を流れてきた還元剤を含む排気ガスは、排気マニホルド50の出口から流出して突出部35内に流入する。マニホルド出口近傍部分50aの下部を流れてきた排気ガスは突出部35の下側壁面35bに衝突する。この衝突により、排気ガスはその流れ方向が上向きにされる。一方、マニホルド出口近傍部分50aの上部を流れてきた排気ガスは、突出部35の上側壁面35aにそって流れてその流れ方向が下向きにされるか、又は上側壁面35aに衝突してその流れ方向が下向きにされる。
 このように下側壁面35bに衝突して流れ方向が上向きにされた排気ガスと上側壁面35aに沿って又は衝突して流れ方向が下向きにされた排気ガスとは互いに衝突し、これにより排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。また、下側壁面35bに衝突して流れ方向が上向きにされた排気ガスは上側壁面35aと衝突し、上側壁面35aに衝突して流れ方向が下向きにされた排気ガスは下側壁面35aと衝突し、これによっても排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。さらに、本実施形態においても排気ガスの流路断面積を絞るような部材が設けられていないことから、排気ガスの圧力損失をほとんど上昇させることなく排気ガス中に含まれている還元剤と排気ガスとの混合を促進させることができる。
 なお、本実施形態では、突出部35を周方向に対して傾斜して、すなわち軸線Lに垂直な平面に対して傾斜して延びるように構成するのが好ましい。特に、排気マニホルド19の出口に対面する領域から周方向に離れるにつれて下側に位置するように突出部35を傾斜させることで、突出部35に対して傾斜して流入してきた排気ガスが、突出部35内を周方向に流れ易くなる。
 次に、図6A及び図6Bを参照して本発明の第五実施形態について説明する。図6A及び図6Bは、第五実施形態の触媒コンバータ21の、図2A及び図2Bと同様な拡大図である。第五実施形態の排気浄化装置の構成は基本的に第四実施形態の排気浄化装置の構成と同様である。ただし、第四実施形態の排気浄化装置では、排気マニホルド50がコーン部32の壁面を貫通してコーン部32内まで延びているのに対して、第五実施形態の排気浄化装置では、排気マニホルド55はコーン部32の壁面を貫通しておらず、よってコーン部32内までは延びていない。
 図6Aに示したように、本実施形態の排気マニホルド55は、その出口部分がケーシング30のコーン部32に直接連結される。また、排気マニホルド55は軸線Lに対して傾斜して延びると共に、コーン部32の壁面に対して傾斜して延びている。さらに、図6Aに示したように、マニホルド出口近傍部分55aは、突出部35に向かって延びている。換言すると、マニホルド出口近傍部分55aはその軸線Mが突出部35内に進入するように延びている。
 このように構成された排気マニホルド55及びケーシング30内では、マニホルド出口近傍部分55aが突出部35に向かって延びているため、排気マニホルド50を流れてきた還元剤を含む排気ガスの多くは、排気マニホルド55の出口から流出して突出部35内に流入する。マニホルド出口近傍部分50aの下部を流れてきた排気ガスは突出部35の下側壁面35bに衝突して、その流れ方向が上向きにされる。一方、マニホルド出口近傍部分50aの上部を流れてきた排気ガスは、突出部35の上側壁面35aに沿って流れて又は上側壁面35aに衝突して、その流れ方向が下向きにされる。これら排気ガスは互いに互いに衝突し、これにより排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。
 また、排気マニホルド55の出口から突出部35までの距離が離れているため、排気マニホルド55の出口から流出した排気ガスの一部は突出部35に流入せずにそのままNO吸蔵還元触媒20に流入する。ここで、排気ガスが突出部35に流入すると、排気ガスの流れの方向が急激に変化することから、多少の圧力損失が生じる。これに対して、排気マニホルド55の出口から流出した排気ガスの一部がそのままNO吸蔵還元触媒20に流入することから、突出部35に流入する排気ガスの流量が減少し、これに伴って圧力損失も低減される。また、本実施形態においても排気ガスの流路断面積を絞るような部材が設けられていない。このため、本実施形態では、より排気ガスの圧力損失の上昇を抑制しつつ排気ガス中に含まれている還元剤と排気ガスとの混合を促進させることができる。
 ところで、上述した第一実施形態、第五実施形態及び第六実施形態で示したいずれの形状の排気マニホルドによっても排気ガスの圧力損失をほとんど上昇させることなく還元剤と排気ガスとの混合を促進させることができる。ここで、これら実施形態で示したいずれの形状の排気マニホルドを採用しても、マニホルド出口近傍部分は、突出部に向かって、すなわちその軸線Mが突出部内に進入するように延びており、これにより還元剤と排気ガスとの混合の促進等が行われると考えられる。従って、排気マニホルドは、その出口近傍部分の軸線Mが突出部内を通るように延びていれば、如何なる形状であってもよいといえる。
 次に、図7A及び図7Bを参照して本発明の第六実施形態について説明する。図7A及び図7Bは、第六実施形態の触媒コンバータ21の、図2A及び図2Bと同様な拡大図である。第六実施形態の排気浄化装置の構成は基本的に第一実施形態の排気浄化装置の構成と同様である。ただし、第一実施形態の排気浄化装置では、突出部35がケーシング30の周方向において半周以上に亘って延びているのに対して、本実施形態では、突出部60はケーシング30の周方向において半周以下しか延びていない。
 このように構成された排気マニホルド19及びケーシング30内での排気ガスの流れについて説明する。第一実施形態の突出部35と同様に、突出部60内に流入した排気ガスは突出部60の壁面に衝突して上下方向の流れの向きが変えられ、これに伴って還元剤と排気ガスとの混合が促進せしめられる。
 一方、本実施形態では、突出部60はケーシング30周方向の幅Wが小さいため、第一実施形態の突出部35とは異なり、突出部60に流入した排気ガスは突出部60の壁面に沿ってケーシング30の周方向両側に向かっては流れにくい。このため、突出部60内では、流入した排気ガスが周方向に広がらないため、大きな乱れが生じ、これによっても還元剤と排気ガスとの混合が促進せしめられる。
 このように突出部60の入口の周方向の幅Wを小さくすると、還元剤と排気ガスとをより混合させることができる。ただし、突出部60の入口の周方向の幅Wを小さくしすぎて、排気マニホルド19の出口の直径dよりも小さくすると、突出部60の入口の幅Wが絞りとなってしまい、排気ガスの圧力損失が増大してしまう。このため、突出部60の入口の幅Wは排気マニホルド19の出口の直径dよりも大きくするのが好ましい。
 同様に、突出部60の入口の上下方向の高さ(ケーシング30軸線方向の高さ)も、排気マニホルド19の出口の直径dよりも小さくすると、突出部60の入口の高さhが絞りとなってしまい、排気ガスの圧力損失が増大してしまう。このため、突出部60の入口の高さhは排気マニホルド19の出口の直径dよりも大きくするのが好ましい。
 より正確に言うと、突出部60の入口が絞りとなるのは、ケーシング30(コーン部32)内の空間に面する突出部60の入口の断面積Xが排気マニホルド19の出口の断面積よりも小さいときである。従って、突出部60の入口の絞りによる排気ガスの圧力損失の増大を防止するためには、突出部60の入口の断面積Xが排気マニホルド19の出口の断面積よりも小さくなるようにすることが必要である。
 次に、図8A及び図8Bを参照して本発明の第七実施形態について説明する。図8A及び図8Bは、第七実施形態の触媒コンバータ21の、図2A及び図2Bと同様な拡大図である。第七実施形態の排気浄化装置の構成は基本的に第一実施形態の排気浄化装置の構成と同様である。ただし、第一実施形態の排気浄化装置では、排気マニホルド19の出口が突出部35内には進入していないのに対して、本実施形態では、排気マニホルド19の出口が突出部35内に進入している。
 ここで、還元剤供給装置22から供給された還元剤の一部が排気マニホルド19内を流れる排気ガス中に飛散せずに、液滴として排気マニホルド19内を流れてしまう場合がある。このような液滴状態の還元剤は、排気マニホルド19の出口から重力方向に落下し、NO吸蔵還元触媒20に流入してしまうことになる。このように還元剤が排気ガスと混合せずに液滴状態でNO吸蔵還元触媒20に流入してしまうと、排気ガスの浄化が十分に図れない場合がある。このため、還元剤が液滴状態でNO吸蔵還元触媒20に流入しないようにすることが必要である。
 本実施形態では、上述したように、排気マニホルド19の出口が突出部35内に進入している。このため、排気マニホルド19の出口から液滴状態のまま還元剤が重力方向に落下しても、この還元剤はNO吸蔵還元触媒20上には直接落下せず、突出部35の下側壁面3b上に付着することになる。
 ここで、上述したように、突出部35内では排気ガスの乱れが生じているため、これにより突出部35の下側壁面35b上に付着した液滴状態の還元剤は蒸発せしめられ、その後、排気ガスと混合されることになる。従って、本実施形態によれば、還元剤供給装置22から供給された還元剤の一部が液滴状態のまま排気マニホルド19から流出しても、この還元剤と排気ガスとを適切に混合させることができる。
 次に、図9A及び図9Bを参照して本発明の第八実施形態について説明する。図9A及び図9Bは、第八実施形態の触媒コンバータ21の、図2A及び図2Bと同様な図である。第八実施形態の排気浄化装置の構成は基本的に第一実施形態の排気浄化装置の構成と同様である。ただし、第一実施形態の排気浄化装置では、排気マニホルド19の出口と対面するコーン部32の内壁面の部分には突出部35が設けられているのに対して、本実施形態ではケーシング30の径方向内側に向かって突出した二つの突起部材71、72が設けられる。
 図9Aの側面断面図に示したように、上側突起部材71の下側壁面71aはケーシング30の径方向外側に向かって下方に傾斜しており、また、上側突起部材71の上側壁面71bはケーシング30の径方向外側に向かって上方に傾斜している。一方、下側突起部材72の上側壁面72aはケーシング30の径方向外側に向かって上方に傾斜しており、また、下側突起部材72の下側壁面72bはケーシング30の径方向外側に向かって下方に傾斜している。図示した実施形態では、上側突起部材71の下側壁面71a及び下側突起部材72の上側壁面72aは凹状に湾曲している。
 また、図9Bに示したように、これら突起部材71、72は、排気マニホルド19の出口と対面する領域からケーシング30の周方向両側に向かって延びている。突起部材71、72が無い場合におけるコーン部32の内壁面からケーシング30の径方向に最も突出した突起部材71、72の深さをDとすると、突起部材71、72の深さDは排気マニホルド19の対面する領域からケーシング30の周方向に離れるにつれて浅くなる。特に、図9Bに示したように、本実施形態では、突起部材71、72の内周がほぼ半楕円形となるように形成されている。また、本実施形態では、突起部材71、72はケーシング30の周方向において半周以上に亘って延びている。
 このように構成された排気マニホルド19及びケーシング30についても、図2A及び図2Bに示した第一実施形態と同様な効果を得ることができる。すなわち、排気マニホルド19内を流れてきた還元剤を含む排気ガスは、排気マニホルド19の出口から流出して両突起部材71、72の間の空間内に流入する。マニホルド出口近傍部分19aの下部を流れてきた排気ガスは下側突起部材72の上側壁面72aに衝突する。この衝突により、排気ガスはその流れ方向が上向きにされる。一方、マニホルド出口近傍部分19aの上部を流れてきた排気ガスは上側突起部材71の下側壁面71aに衝突する。この衝突により、排気ガスはその流れ方向が下向きにされる。
 このように下側突起部材72の上側壁面72aに衝突した排気ガスの流れ方向が上向きにされ、上側突起部材71の下側壁面71aに衝突した排気ガスの流れ方向が下向きにされると、これら排気ガスは互いに衝突することになる。このように、両排気ガスが衝突することにより排気ガスが攪拌され、これにより排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。
 また、下側突起部材72の上側壁面72aに衝突してその流れ方向が上向きにされた排気ガスは、たとえ上側突起部材71の下側壁面71aに衝突して流れ方向が下向きにされた排気ガスと衝突しなくても、下側突起部材72の上側壁面72aに衝突する。この上側壁面72aとの衝突により、排気ガスの上向きの速度成分が低下せしめられると共にこれに伴って排気ガスが攪拌され、排気ガス中に含まれている還元剤と排気ガスとの混合が促進される。このことは、上側突起部材71の下側壁面71aに衝突してその流れ方向が下向きにされた排気ガスについても言える。
 なお、上記第八実施形態では、ケーシング30の内壁面にケーシング30とは別体の突起部材71、72が設けられているが、ケーシング30の内壁面自体をケーシング30の径方向内側に突出するように変形させてケーシング30の内壁面に突起部分を設けるようにしてもよい。従って、これらをまとめて、本実施形態の排気浄化装置は、ケーシング30を画成する内壁面からケーシング30の径方向内側に向かって突出する突起部を具備するということができる。
 以上の実施形態をまとめると、ケーシング30の内壁面の排気マニホルド出口近傍部分19aに対向する部分には流れ偏向部(例えば、上記ケーシング30の内壁面に設けられた突出部35、40、45、60及び突起部71、72)が設けられ、流れ偏向部は、NO吸蔵還元触媒20よりも上流側に位置すると共に、流れ偏向部に流入する排気ガスの少なくとも一部の流れのケーシング30軸線方向の速度成分をNO吸蔵還元触媒20に向かう方向とは反対向きに方向付けるように形成されると言うことができる。
 或いは、ケーシング30の内壁面の排気マニホルド出口近傍部分19aに対向する部分には流れ偏向部が設けられ、流れ偏向部は、NO吸蔵還元触媒20よりも上流側に位置すると共に、流れ偏向部の壁面は、流れ偏向部の壁面の一部に当たってNO吸蔵還元触媒20に向かう方向の速度成分が増大せしめられた排気ガスの少なくとも一部が流れ偏向部の壁面の他の部分に当たり、排気ガスの同方向の速度成分が低下せしめられるように形成されるということができる。
 なお、上記実施形態では、機関本体1に連結された排気マニホルド19を直接触媒コンバータ21のケーシング30に連結させているが、排気マニホルド19に直接的に又は間接的に連結された排気管を触媒コンバータ21のケーシング30に連結させるようにしてもよい。
 また、上記各実施形態同士を組み合わせて排気浄化装置を構成することも可能である。例えば、第二実施形態と第四実施形態の排気浄化装置を組み合わせることで、ケーシング30周方向における突出部の断面が矩形であり、マニホルド出口近傍部分が軸線Lに対して傾斜して延びている排気浄化装置とすることができる。また、例えば第二実施形態と第八実施形態の排気浄化装置を組み合わせることで、上側突起部材71の下側壁面71a及び下流側突起部材72の上側壁面72aがケーシング30の軸線方向に対して垂直な排気浄化装置とすることができる。
 なお、本発明について特定の実施形態に基づいて詳述しているが、当業者であれば本発明の請求の範囲及び思想から逸脱することなく、様々な変更、修正等が可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals are assigned to similar components.
FIG. 1 is a diagram schematically showing an entire internal combustion engine in which an exhaust emission control device of the present invention is mounted. Referring to FIG. 1, 1 is an engine body, 2 is a cylinder block, 3 is a piston that reciprocates in the cylinder block 2, 4 is a cylinder head fixed on the cylinder block 2, and 5 is a piston 3 and a cylinder head 4. A combustion chamber formed therebetween, 6 is an intake valve, 7 is an intake port, 8 is an exhaust valve, and 9 is an exhaust port. As shown in FIG. 1, a spark plug 10 is arranged at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is arranged around the inner wall surface of the cylinder head 4. A cavity 12 extending from the lower side of the fuel injection valve 11 to the lower side of the spark plug 10 is formed on the top surface of the piston 3.
The intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner (not shown) via an intake duct 15 and an air flow meter 16. A throttle valve 18 driven by a step motor 17 is disposed in the intake duct 15. On the other hand, the exhaust port 9 of each cylinder is connected to an exhaust manifold 19, and this exhaust manifold 19 is NO. X It is connected to a catalytic converter 21 containing a storage reduction catalyst 20. In the present embodiment, NO in the catalytic converter 21 X Although the occlusion reduction catalyst 20 is incorporated, any exhaust purification means may be incorporated as long as it requires the supply of a reducing agent for purification of exhaust gas. Examples of such exhaust purification means include an oxidation catalyst, a three-way catalyst, a particulate filter, and the like.
The exhaust manifold 19 is provided with a reducing agent supply device 22 that supplies a reducing agent into the exhaust gas flowing through the exhaust manifold 19. The exhaust manifold 19 and the surge tank 14 are connected to each other via a recirculated exhaust gas (hereinafter referred to as EGR gas) conduit 26, and an EGR gas control valve 27 is disposed in the EGR gas conduit 26.
2A and 2B are enlarged views of the catalytic converter 21 shown in FIG. 2A is a sectional side view as seen from line A in FIG. 2B, and FIG. 2B is a sectional plan view as seen from line B in FIG. 2A. As shown in FIGS. 2A and 2B, the catalytic converter 21 includes a casing 30, and NO inside the casing 30 is NO. X The storage reduction catalyst 20 is accommodated. The casing 30 is NO X A catalyst housing part 31 for housing the storage reduction catalyst 20 and a cone part 32 provided on the exhaust upstream side of the catalyst housing part 31 are provided. Each of the catalyst housing portion 31 and the cone portion 32 of the casing 30 defines an exhaust passage (downstream exhaust passage) through which exhaust gas flows.
In this embodiment, NO X The occlusion reduction catalyst 20 and the casing 30 (catalyst accommodating portion 31 and cone portion 32) are arranged coaxially, and their axis L extends substantially vertically. Therefore, the exhaust passage defined by the casing 30 (that is, the catalyst housing portion 31 and the cone portion 32) also extends substantially vertically. In the following description, NO X The description will be made with the exhaust upstream side of the storage reduction catalyst 20 as the upper side and the exhaust downstream side as the lower side. NO X The axis L of the storage reduction catalyst 20 and the casing 30 does not necessarily extend substantially vertically, and may be arranged to extend in any direction such as horizontal. NO X The occlusion reduction catalyst 20 and the casing 30 are not necessarily arranged coaxially.
As shown in FIGS. 2A and 2B, the exhaust manifold 19 is connected to the casing 30. Specifically, the exhaust manifold 19 extends through the wall surface of the cone portion 32 in the upper portion of the cone portion 32 of the casing 30. Accordingly, the exhaust manifold 19 enters the cone portion 32. As shown in FIGS. 2A and 2B, the exhaust manifold 19 is inclined with respect to the axis L at a location that penetrates the wall surface of the cone portion 32. Further, the exhaust manifold 19 is arranged so that a portion near the outlet of the exhaust manifold 19 (hereinafter referred to as “manifold outlet vicinity”) 19a extends perpendicular to the axis L, that is, perpendicular to the wall surface of the cone portion 32. It curves in the cone part 32 so that it may extend. As shown in FIGS. 2A and 2B, the outlet of the exhaust manifold 19 faces a part of the inner wall surface of the cone portion 32. The exhaust manifold 19 configured as described above defines an exhaust passage (upstream exhaust passage) through which exhaust gas discharged from the engine body 1 flows.
A protruding portion 35 protruding in the radial direction of the casing 30 is provided on a portion of the inner wall surface of the cone portion 32 that faces the outlet of the exhaust manifold 19. As shown in the side sectional view of FIG. 2A, the upper wall surface 35 a of the protruding portion 35 is inclined downward toward the radially outer side of the casing 30, and the lower wall surface 35 b of the protruding portion 35 is the radial direction of the casing 30. Inclined upward toward the outside. In particular, in this embodiment, the cross section of the protrusion 35 in the circumferential direction of the casing 30 is substantially semi-elliptical.
Further, as shown in FIG. 2B, the projecting portion 35 extends from the region facing the outlet of the exhaust manifold 19 toward both sides in the circumferential direction of the casing 30. When the length from the inner wall surface of the cone portion 32 to the portion of the protruding portion that protrudes most in the radial direction of the casing 30 when the protruding portion 35 is not present is the depth D of the protruding portion 35, the depth D of the protruding portion 35 is As the distance from the region facing the outlet of the exhaust manifold 19 increases in the circumferential direction of the casing 30, the depth becomes shallower. That is, the depth D of the protrusion 35 is the deepest in the region facing the outlet of the exhaust manifold 19 and becomes shallower as it extends in the circumferential direction from here. In particular, as shown in FIG. 2B, in the present embodiment, the outer periphery of the protruding portion 35 is formed to have a substantially semi-elliptical shape. Further, in the present embodiment, the protruding portion 35 extends over a half circumference in the circumferential direction of the casing 30.
The flow of the exhaust gas in the exhaust manifold 19 and the casing 30 configured as described above will be described. The arrows in FIGS. 2A and 2B indicate the flow of exhaust gas. In the exhaust manifold 19, exhaust gas discharged from the engine body 1 and supplied with a reducing agent by the reducing agent supply device 22 flows. Therefore, the exhaust gas flowing in the exhaust manifold 19 of FIGS. 2A and 2B contains a reducing agent that is not sufficiently mixed with the exhaust gas.
The exhaust gas containing the reducing agent that has flowed through the exhaust manifold 19 flows out from the outlet of the exhaust manifold 19 and flows into the protrusion 35. The exhaust gas flowing in the lower part of the manifold outlet vicinity 19 a collides with the lower wall surface 35 b of the protrusion 35. Due to this collision, the flow direction of the exhaust gas is directed upward. On the other hand, the exhaust gas flowing through the upper part of the manifold outlet vicinity 19 a collides with the upper wall surface 35 a of the protrusion 35. This collision causes the exhaust gas to flow downward.
Thus, when the exhaust gas colliding with the lower wall surface 35b of the projection 35 is directed upward, the exhaust gas colliding with the upper wall surface 35a of the projection 35 is directed downward. Will collide with each other. In this way, the exhaust gas is agitated by the collision of the two exhaust gases, thereby promoting the mixing of the reducing agent contained in the exhaust gas and the exhaust gas.
Further, the exhaust gas that collides with the lower wall surface 35b of the protrusion 35 and whose flow direction is directed upward collides with the exhaust gas that collides with the upper wall surface 35a of the protrusion 35 and whose flow direction is directed downward. Even if not, it collides with the upper wall surface 35a of the protrusion 35. Due to the collision with the upper wall surface 35a, the upward velocity component of the exhaust gas is reduced and the exhaust gas is agitated accordingly, and the mixing of the reducing agent and the exhaust gas contained in the exhaust gas is promoted. The
Similarly, the exhaust gas that collides with the upper wall surface 35a of the projecting portion 35 and whose flow direction is directed downward collides with the exhaust gas that collides with the lower wall surface 35b of the projecting portion 35 and has the flow direction directed upward. Even if it does not, it collides with the lower side wall surface 35b of the protrusion 35. Due to the collision with the lower wall surface 35b, the downward velocity component of the exhaust gas is reduced, and the exhaust gas is stirred accordingly, and the mixing of the reducing agent contained in the exhaust gas and the exhaust gas is promoted. Is done.
The exhaust gas that has flowed into the protrusion 35 collides with the wall surface of the protrusion 35 to change the direction of the flow in the vertical direction, and as indicated by an arrow in FIG. 2B, the exhaust gas flows along the wall surface of the protrusion 35. It flows toward both sides in the circumferential direction. As a result, the exhaust gas flowing into the projecting portion 35 spreads uniformly throughout the casing 30. For this reason, the exhaust gas in which the reducing agent is uniformly mixed is NO. X It will flow uniformly into the storage reduction catalyst 20. Therefore, NO X In the storage reduction catalyst 20, the reaction with the reducing agent is NO. X Performed uniformly over the entire storage reduction catalyst 20, for example, NO X NO stored in the storage reduction catalyst 20 X The purification is optimally performed.
Here, according to the exhaust manifold 19 and the casing 30 of the present embodiment, in order to promote the mixing of the reducing agent contained in the exhaust gas and the exhaust gas, a member that restricts the flow area of the exhaust gas is provided. Not. For this reason, even if the exhaust gas flows through the exhaust manifold 19 and the casing 30 having the above-described configuration, almost no pressure loss occurs. Therefore, according to the embodiment of the present invention, it is possible to promote the mixing of the reducing agent and the exhaust gas contained in the exhaust gas with almost no pressure loss of the exhaust gas.
Further, the reducing agent in the exhaust gas flowing through the exhaust manifold 19 is not sufficiently vaporized at the outlet of the exhaust manifold 19 and may flow out of the exhaust manifold 19 in the form of droplets. However, in the exhaust manifold 19 and the casing 30 of the present embodiment, even if the reducing agent flows out of the exhaust manifold 19 in the form of droplets, most of it flows into the protruding portion 35. Furthermore, the droplets that have flowed into the protruding portion 35 are likely to evaporate due to the turbulence of the exhaust gas generated in the protruding portion 35. For this reason, even when the reducing agent flows out of the exhaust manifold 19 in the form of droplets, the reducing agent remains in the state of droplets as NO. X Inflow and adhesion to the storage reduction catalyst 20 are suppressed.
In the above-described embodiment, the protrusion 35 extends from the region facing the outlet of the exhaust manifold 19 by substantially the same length on both sides in the circumferential direction. However, the protrusions 35 do not necessarily extend the same length on both sides in the circumferential direction, and may be configured such that one side extends longer than the other side.
Further, in the above embodiment, the protrusion 35 extends in the circumferential direction, that is, on a plane perpendicular to the axis L, from the region facing the outlet of the exhaust manifold 19. However, the projecting portion 35 may be configured to be inclined with respect to the circumferential direction, that is, to be inclined with respect to a plane perpendicular to the axis L. For example, the projecting portion 35 may be inclined so as to be positioned on the lower side as the distance from the region facing the outlet of the exhaust manifold 19 increases in the circumferential direction.
Next, a second embodiment of the present invention will be described with reference to FIGS. 3A and 3B. 3A and 3B are enlarged views similar to FIGS. 2A and 2B of the catalytic converter 21 of the second embodiment. The configuration of the exhaust purification device of the second embodiment is basically the same as the configuration of the exhaust purification device of the first embodiment. However, in the exhaust purification device of the first embodiment, the cross section of the protrusion 35 in the circumferential direction of the casing 30 is substantially semi-elliptical, whereas in the exhaust purification device of the second embodiment, the circumferential direction of the casing 30 The cross section of the protrusion 40 in FIG.
As shown in FIG. 3A, the protrusion 40 includes a vertical wall surface 40a extending parallel to the axis L, an upper horizontal wall surface 40b connected to an upper portion of the vertical wall surface 40a and extending perpendicularly to the axis L, and a vertical wall surface 40a. A lower horizontal wall surface 40c connected to the lower portion and extending perpendicularly to the axis L is provided.
The flow of the exhaust gas in the exhaust manifold 19 and the casing 30 configured as described above will be described. The exhaust gas containing the reducing agent that has flowed through the exhaust manifold 19 flows out from the outlet of the exhaust manifold 19 and flows into the protrusion 40. Since the lower horizontal wall surface 40c of the protrusion 40 extends substantially parallel to the manifold outlet vicinity 19a, the exhaust gas flowing below the manifold outlet vicinity 19a hardly collides with the lower horizontal wall 40c of the protrusion 40. Still, some of them have a downward velocity component and thus collide with the lower horizontal wall surface 40c. Due to this collision, the flow direction of the exhaust gas is upward, and the exhaust gas collides with the exhaust gas flowing into the protrusion 40 from the exhaust manifold 19.
On the other hand, since the upper horizontal wall surface 40b of the protrusion 40 also extends substantially parallel to the manifold outlet vicinity portion 19a, the exhaust gas flowing above the manifold outlet vicinity portion 19a hardly collides with the upper horizontal wall surface 40b of the protrusion portion 40. However, some of them still have upward velocity components, and thus collide with the upper horizontal wall surface 40b. By this collision, the flow direction of the exhaust gas is directed downward, and the exhaust gas collides with the exhaust gas flowing into the protrusion 40 from the exhaust manifold 19.
As the exhaust gases collide with each other in this way, the exhaust gas is agitated, thereby promoting the mixing of the reducing agent and the exhaust gas contained in the exhaust gas. Also, in this embodiment, there is no member that restricts the cross-sectional area of the exhaust gas, so that the reducing agent and exhaust contained in the exhaust gas hardly increase the pressure loss of the exhaust gas. Mixing with gas can be promoted.
Further, as described above, a part of the exhaust gas that collides with the lower horizontal wall surface 40c of the protrusion 40 and whose flow direction is directed upward collides with the upper horizontal wall surface 40b of the protrusion 40. Due to the collision with the upper horizontal wall surface 40b, the upward velocity component of the exhaust gas is reduced, and the exhaust gas is agitated accordingly, and the mixing of the reducing agent and the exhaust gas contained in the exhaust gas is promoted. Is done. Furthermore, a part of the exhaust gas that collides with the upper horizontal wall surface 40 b of the protruding portion 40 and whose flow direction is directed downward collides with the lower horizontal wall surface 40 c of the protruding portion 40. Due to the collision with the lower horizontal wall surface 40c, the downward velocity component of the exhaust gas is reduced, and the exhaust gas is stirred accordingly, and the mixing of the reducing agent and the exhaust gas contained in the exhaust gas is promoted. Is done.
Next, a third embodiment of the present invention will be described with reference to FIGS. 4A and 4B. 4A and 4B are enlarged views similar to FIGS. 2A and 2B of the catalytic converter 21 of the third embodiment. The configuration of the exhaust purification device of the third embodiment is basically the same as the configuration of the exhaust purification device of the first embodiment. However, in the exhaust purification apparatus of the second embodiment, the cross section of the protrusion 35 in the circumferential direction of the casing 30 is substantially semi-elliptical, whereas in the exhaust purification apparatus of the third embodiment, the circumferential direction of the casing 30 The cross section of the protrusion 45 is substantially circular.
As shown in FIG. 4A, the protruding portion 45 is temporarily inclined upward toward the radially outer side of the casing 30 and then upwardly inclined downward, and once toward the radially outer side of the casing 30. A lower wall surface 45b inclined downward and then upward.
The flow of the exhaust gas in the exhaust manifold 19 and the casing 30 configured as described above will be described. The exhaust gas containing the reducing agent that has flowed through the exhaust manifold 19 flows out from the outlet of the exhaust manifold 19 and flows into the protrusion 45. Since the lower wall surface 45b of the protrusion 45 is inclined downward and then upward, when the exhaust gas flowing through the lower portion of the manifold outlet vicinity 19a flows into the protrusion 45, first, the lower wall surface 45b. It flows along the part inclined downward. Then, it collides with a portion inclined above the lower wall surface 45b of the protrusion 45. Due to this collision, the flow direction of the exhaust gas is directed upward.
On the other hand, since the upper wall surface 45a of the projecting portion 45 is once inclined upward and then downward, when the exhaust gas flowing through the upper portion of the manifold outlet vicinity portion 19a flows into the projecting portion 45, first, the upper wall surface 45a. It flows along a portion inclined upward. Then, it collides with a portion inclined downward of the upper plane 45a of the protrusion 45. This collision causes the exhaust gas to flow downward.
Thereafter, the exhaust gas that collides with the lower wall surface 45b of the protrusion 45 and flows upward and the exhaust gas that collides with the upper wall surface 45a of the protrusion 45 and flows downward collide with each other, and are thus included in the exhaust gas. Mixing of the reducing agent and the exhaust gas is promoted.
Further, the exhaust gas that collides with the portion inclined upward of the lower wall surface 45b of the protrusion 45 and flows upward is collided with the portion inclined downward of the upper wall surface 45a of the protrusion 45 and flows. Even if it does not collide with the exhaust gas whose direction is downward, it collides with the upper wall surface 45a of the protrusion 45. Due to the collision with the upper wall surface 45a, the exhaust gas is reduced in the upward speed component, and the exhaust gas is stirred accordingly, and the mixing of the reducing agent and the exhaust gas contained in the exhaust gas is promoted. The
On the other hand, the exhaust gas that collides with the portion inclined downward of the upper wall surface 45a of the protrusion 45 and the flow direction is directed downward collides with the portion inclined upward of the lower wall surface 45b of the protrusion 45 and flows in the flow direction. Even if it does not collide with the exhaust gas directed upward, it collides with the lower wall surface 45b of the protrusion 45. Due to the collision with the lower wall surface 45b, the downward velocity component of the exhaust gas is lowered, and the exhaust gas is agitated accordingly, and the mixing of the reducing agent contained in the exhaust gas and the exhaust gas is promoted. Is done.
Also, in this embodiment, there is no member that restricts the cross-sectional area of the exhaust gas, so that the reducing agent and exhaust contained in the exhaust gas hardly increase the pressure loss of the exhaust gas. Mixing with gas can be promoted.
By the way, mixing of the reducing agent and the exhaust gas can be promoted with almost no increase in the pressure loss of the exhaust gas by any of the protruding portions having the shapes shown in the first to third embodiments. Here, regardless of the shape of any of these protrusions, the exhaust gas flowing in the lower part of the manifold outlet vicinity 19a collides with the lower wall surface of the protrusion, and the flow direction is directed upward. This is considered to promote the mixing of the reducing agent and the exhaust gas. Accordingly, the protruding portion may have any shape as long as a part of the wall surface can direct the velocity component in the axial direction of the casing 30 of at least a part of the exhaust gas flowing into the protruding portion. I can say that.
Moreover, even if any shape of the projecting portion shown in the first embodiment to the third embodiment is adopted, the exhaust gas flowing through the upper portion of the manifold outlet vicinity 19a collides with the upper wall surface of the projecting portion, It is considered that the flow direction is directed downward and collides with other exhaust gas that has flowed into the protrusion, thereby promoting the mixing of the reducing agent and the exhaust gas. Therefore, the protruding portion is formed such that at least a part of the exhaust gas whose downward velocity component is increased by hitting the wall surface collides with the exhaust gas whose downward velocity component is not increased even if it hits the wall surface of the protruding portion. It can be said that any shape can be used.
Furthermore, even if any shape of the projecting portion shown in the first to third embodiments is adopted, the exhaust gas flowing in the upper portion of the manifold outlet vicinity 19a collides with the upper wall surface of the projecting portion and The flow direction is made downward, and then the downward velocity component of the exhaust gas is reduced due to the collision with the lower wall surface of the protruding portion, thereby promoting the mixing of the reducing agent and the exhaust gas. . Similarly, the exhaust gas flowing in the lower part of the manifold outlet vicinity portion 19a collides with the lower wall surface of the projecting portion so that the flow direction is directed upward, and then the exhaust gas is directed upward by the collision with the upper wall surface of the projecting portion. It is considered that this speed component is reduced, thereby promoting the mixing of the reducing agent and the exhaust gas. Therefore, at least a part of the exhaust gas in which the velocity component in the direction toward the exhaust gas purifying means hits a part of the wall surface of the projecting part hits another part of the wall surface of the projecting part. It can be said that any shape may be used as long as the speed component is formed to be lowered.
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 5A and 5B. 5A and 5B are enlarged views similar to FIGS. 2A and 2B of the catalytic converter 21 of the fourth embodiment. The configuration of the exhaust purification device of the fourth embodiment is basically the same as the configuration of the exhaust purification device of the first embodiment. However, in the exhaust purification device of the first embodiment, the manifold outlet vicinity portion 19a extends perpendicular to the axis L, whereas in this embodiment, the manifold outlet vicinity portion 50a is inclined with respect to the axis L. It extends.
As shown in FIG. 5A, the exhaust manifold 50 of the present embodiment extends through the wall surface of the cone portion 32 in the upper portion of the cone portion 32 of the casing 30. As shown in FIG. 5A, the exhaust manifold 50 is inclined with respect to the axis L of the casing 30 at a location penetrating the wall surface of the cone portion 32. Further, the exhaust manifold 50 extends linearly within the cone portion 32. For this reason, the manifold outlet vicinity portion 50 a also extends with an inclination with respect to the axis L and also extends with an inclination with respect to the wall surface of the cone portion 32.
Further, as shown in FIGS. 5A and 5B, the manifold outlet vicinity portion 50 a extends toward the protruding portion 35. In other words, the manifold outlet vicinity portion 50 a extends so that its axis M enters the protruding portion 35.
The flow of the exhaust gas in the exhaust manifold 50 and the casing 30 configured as described above will be described. Since the manifold outlet vicinity portion 50 a extends toward the protruding portion 35, the exhaust gas containing the reducing agent flowing through the exhaust manifold 50 flows out from the outlet of the exhaust manifold 50 and flows into the protruding portion 35. The exhaust gas flowing in the lower part of the manifold outlet vicinity portion 50a collides with the lower wall surface 35b of the protrusion 35. Due to this collision, the flow direction of the exhaust gas is directed upward. On the other hand, the exhaust gas flowing in the upper part of the manifold outlet vicinity portion 50a flows along the upper wall surface 35a of the protrusion 35 so that its flow direction is directed downward, or collides with the upper wall surface 35a and flows therethrough. Is faced down.
In this way, the exhaust gas that collides with the lower wall surface 35b and the flow direction is directed upward and the exhaust gas that collides with the upper wall surface 35a or collides and the flow direction is directed downward collide with each other. Mixing of the reducing agent contained therein and the exhaust gas is promoted. Further, the exhaust gas that collides with the lower wall surface 35b and whose flow direction is directed upward collides with the upper wall surface 35a, and the exhaust gas that collides with the upper wall surface 35a and whose flow direction is directed downward collides with the lower wall surface 35a. This also promotes mixing of the reducing agent contained in the exhaust gas and the exhaust gas. Further, in the present embodiment, since there is no member for reducing the flow passage cross-sectional area of the exhaust gas, the reducing agent and the exhaust gas contained in the exhaust gas are hardly increased without substantially increasing the pressure loss of the exhaust gas. Mixing with gas can be promoted.
In the present embodiment, it is preferable that the protruding portion 35 is configured to be inclined with respect to the circumferential direction, that is, to be inclined with respect to a plane perpendicular to the axis L. In particular, by inclining the projecting portion 35 so as to be positioned on the lower side as it is away from the region facing the outlet of the exhaust manifold 19 in the circumferential direction, the exhaust gas that has flowed in with respect to the projecting portion 35 is projected. It becomes easy to flow in the circumferential direction in the portion 35.
Next, a fifth embodiment of the present invention will be described with reference to FIGS. 6A and 6B. 6A and 6B are enlarged views similar to FIGS. 2A and 2B of the catalytic converter 21 of the fifth embodiment. The configuration of the exhaust purification device of the fifth embodiment is basically the same as the configuration of the exhaust purification device of the fourth embodiment. However, in the exhaust purification device of the fourth embodiment, the exhaust manifold 50 extends through the wall surface of the cone portion 32 into the cone portion 32, whereas in the exhaust purification device of the fifth embodiment, the exhaust manifold 50 55 does not pass through the wall surface of the cone portion 32, and therefore does not extend into the cone portion 32.
As shown in FIG. 6A, the exhaust manifold 55 of the present embodiment has an outlet portion directly connected to the cone portion 32 of the casing 30. Further, the exhaust manifold 55 extends while being inclined with respect to the axis L, and is inclined with respect to the wall surface of the cone portion 32. Furthermore, as shown in FIG. 6A, the manifold outlet vicinity portion 55 a extends toward the protruding portion 35. In other words, the manifold outlet vicinity 55 a extends so that its axis M enters the protruding portion 35.
In the exhaust manifold 55 and the casing 30 configured as described above, the manifold outlet vicinity portion 55a extends toward the protruding portion 35. Therefore, most of the exhaust gas including the reducing agent flowing through the exhaust manifold 50 is exhausted. It flows out from the outlet of the manifold 55 and flows into the protrusion 35. The exhaust gas flowing in the lower portion of the manifold outlet vicinity portion 50a collides with the lower wall surface 35b of the projection 35, and the flow direction is made upward. On the other hand, the exhaust gas flowing in the upper part of the manifold outlet vicinity portion 50a flows along the upper wall surface 35a of the protrusion 35 or collides with the upper wall surface 35a, and the flow direction is made downward. These exhaust gases collide with each other, thereby promoting the mixing of the reducing agent and the exhaust gas contained in the exhaust gas.
Further, since the distance from the outlet of the exhaust manifold 55 to the protruding portion 35 is large, a part of the exhaust gas flowing out from the outlet of the exhaust manifold 55 does not flow into the protruding portion 35 but is left as it is. X It flows into the storage reduction catalyst 20. Here, when the exhaust gas flows into the protruding portion 35, the flow direction of the exhaust gas changes abruptly, so that some pressure loss occurs. In contrast, a part of the exhaust gas flowing out from the outlet of the exhaust manifold 55 remains as it is. X Since it flows into the storage reduction catalyst 20, the flow rate of the exhaust gas flowing into the projecting portion 35 is reduced, and the pressure loss is also reduced accordingly. Also in this embodiment, there is no member that restricts the cross-sectional area of the exhaust gas. For this reason, in this embodiment, mixing of the reducing agent contained in the exhaust gas and the exhaust gas can be promoted while suppressing an increase in the pressure loss of the exhaust gas.
By the way, the exhaust manifold of any shape shown in the first embodiment, the fifth embodiment and the sixth embodiment described above promotes the mixing of the reducing agent and the exhaust gas with almost no increase in the pressure loss of the exhaust gas. Can be made. Here, even if the exhaust manifold of any shape shown in these embodiments is employed, the vicinity of the manifold outlet extends toward the protruding portion, that is, its axis M enters the protruding portion. Thus, it is considered that the mixing of the reducing agent and the exhaust gas is promoted. Therefore, the exhaust manifold may have any shape as long as the axis M in the vicinity of the outlet extends so as to pass through the protruding portion.
Next, a sixth embodiment of the present invention will be described with reference to FIGS. 7A and 7B. 7A and 7B are enlarged views similar to FIGS. 2A and 2B of the catalytic converter 21 of the sixth embodiment. The configuration of the exhaust purification device of the sixth embodiment is basically the same as the configuration of the exhaust purification device of the first embodiment. However, in the exhaust purification device of the first embodiment, the protrusion 35 extends over a half circumference in the circumferential direction of the casing 30, whereas in the present embodiment, the protrusion 60 is in the circumferential direction of the casing 30. It extends less than half a lap.
The flow of the exhaust gas in the exhaust manifold 19 and the casing 30 configured as described above will be described. Similarly to the protrusion 35 of the first embodiment, the exhaust gas flowing into the protrusion 60 collides with the wall surface of the protrusion 60 to change the direction of the flow in the vertical direction, and accordingly, the reducing agent and the exhaust gas. Mixing with is promoted.
On the other hand, in this embodiment, since the protrusion 60 has a small width W in the circumferential direction of the casing 30, unlike the protrusion 35 of the first embodiment, the exhaust gas flowing into the protrusion 60 extends along the wall surface of the protrusion 60. Therefore, it is difficult for the casing 30 to flow toward both sides in the circumferential direction. For this reason, in the protrusion part 60, since the exhaust gas which flowed in does not spread in the circumferential direction, a big disorder | damage | disturbance arises and mixing of a reducing agent and exhaust gas is promoted also by this.
Thus, if the width W in the circumferential direction of the inlet of the protrusion 60 is reduced, the reducing agent and the exhaust gas can be further mixed. However, if the circumferential width W of the inlet of the protrusion 60 is made too small to be smaller than the diameter d of the outlet of the exhaust manifold 19, the width W of the inlet of the protrusion 60 becomes a throttle, and the exhaust gas Pressure loss will increase. For this reason, it is preferable that the width W of the inlet of the protrusion 60 is larger than the diameter d of the outlet of the exhaust manifold 19.
Similarly, when the vertical height of the inlet of the protrusion 60 (the height in the axial direction of the casing 30) is smaller than the diameter d of the outlet of the exhaust manifold 19, the height h of the inlet of the protrusion 60 is reduced. As a result, the pressure loss of the exhaust gas increases. For this reason, the height h of the inlet of the protrusion 60 is preferably larger than the diameter d of the outlet of the exhaust manifold 19.
More precisely, the inlet of the projecting portion 60 becomes a constriction because the sectional area X of the inlet of the projecting portion 60 facing the space in the casing 30 (cone portion 32) is larger than the sectional area of the outlet of the exhaust manifold 19. Is also when it is small. Therefore, in order to prevent an increase in exhaust gas pressure loss due to the restriction of the inlet of the protrusion 60, the cross-sectional area X of the inlet of the protrusion 60 is made smaller than the cross-sectional area of the outlet of the exhaust manifold 19. is required.
Next, a seventh embodiment of the present invention will be described with reference to FIGS. 8A and 8B. 8A and 8B are enlarged views similar to FIGS. 2A and 2B of the catalytic converter 21 of the seventh embodiment. The configuration of the exhaust purification device of the seventh embodiment is basically the same as the configuration of the exhaust purification device of the first embodiment. However, in the exhaust purification device of the first embodiment, the outlet of the exhaust manifold 19 does not enter the protruding portion 35, whereas in the present embodiment, the outlet of the exhaust manifold 19 enters the protruding portion 35. is doing.
Here, a part of the reducing agent supplied from the reducing agent supply device 22 may flow in the exhaust manifold 19 as droplets without being scattered in the exhaust gas flowing in the exhaust manifold 19. Such a reducing agent in the droplet state falls in the direction of gravity from the outlet of the exhaust manifold 19, and NO X It will flow into the storage reduction catalyst 20. In this way, the reducing agent is not mixed with the exhaust gas and in the droplet state, X If it flows into the storage reduction catalyst 20, the exhaust gas may not be sufficiently purified. For this reason, the reducing agent is in a droplet state and NO. X It is necessary not to flow into the storage reduction catalyst 20.
In the present embodiment, as described above, the outlet of the exhaust manifold 19 enters the protruding portion 35. Therefore, even if the reducing agent falls in the direction of gravity from the outlet of the exhaust manifold 19 in the droplet state, the reducing agent is NO. X It does not fall directly on the storage reduction catalyst 20, but adheres to the lower side wall surface 3b of the protrusion 35.
Here, as described above, since the turbulence of the exhaust gas is generated in the protrusion 35, the reducing agent in a droplet state attached on the lower wall surface 35b of the protrusion 35 is thereby evaporated, and then It will be mixed with the exhaust gas. Therefore, according to the present embodiment, even if a part of the reducing agent supplied from the reducing agent supply device 22 flows out from the exhaust manifold 19 in a droplet state, the reducing agent and the exhaust gas are appropriately mixed. be able to.
Next, an eighth embodiment of the present invention will be described with reference to FIGS. 9A and 9B. 9A and 9B are views similar to FIGS. 2A and 2B of the catalytic converter 21 of the eighth embodiment. The configuration of the exhaust purification device of the eighth embodiment is basically the same as the configuration of the exhaust purification device of the first embodiment. However, in the exhaust purification device of the first embodiment, the protruding portion 35 is provided on the inner wall surface portion of the cone portion 32 facing the outlet of the exhaust manifold 19, whereas in the present embodiment, the casing 30 Two projecting members 71 and 72 projecting radially inward are provided.
As shown in the side sectional view of FIG. 9A, the lower wall surface 71a of the upper protrusion member 71 is inclined downward toward the radially outer side of the casing 30, and the upper wall surface 71b of the upper protrusion member 71 is the casing. 30 is inclined upward in the radial direction. On the other hand, the upper wall surface 72 a of the lower protrusion member 72 is inclined upward toward the radially outer side of the casing 30, and the lower wall surface 72 b of the lower protrusion member 72 is directed toward the radially outer side of the casing 30. Inclined downward. In the illustrated embodiment, the lower wall surface 71a of the upper protruding member 71 and the upper wall surface 72a of the lower protruding member 72 are curved in a concave shape.
Further, as shown in FIG. 9B, these projecting members 71 and 72 extend from the region facing the outlet of the exhaust manifold 19 toward both sides in the circumferential direction of the casing 30. When the depth of the projecting members 71 and 72 projecting most in the radial direction of the casing 30 from the inner wall surface of the cone portion 32 when there is no projecting member 71 and 72 is D, the depth D of the projecting members 71 and 72 is the exhaust manifold. It becomes shallow as it leaves | separates in the circumferential direction of the casing 30 from the area | region which 19 faces. In particular, as shown in FIG. 9B, in this embodiment, the inner circumferences of the projecting members 71 and 72 are formed to be substantially semi-elliptical. Further, in the present embodiment, the projecting members 71 and 72 extend over a half circumference in the circumferential direction of the casing 30.
The exhaust manifold 19 and the casing 30 configured as described above can achieve the same effects as those of the first embodiment shown in FIGS. 2A and 2B. That is, the exhaust gas containing the reducing agent that has flowed through the exhaust manifold 19 flows out from the outlet of the exhaust manifold 19 and flows into the space between the projecting members 71 and 72. The exhaust gas flowing in the lower part of the manifold outlet vicinity 19 a collides with the upper wall surface 72 a of the lower protrusion member 72. Due to this collision, the flow direction of the exhaust gas is directed upward. On the other hand, the exhaust gas flowing in the upper part of the manifold outlet vicinity 19 a collides with the lower side wall surface 71 a of the upper protruding member 71. This collision causes the exhaust gas to flow downward.
When the flow direction of the exhaust gas colliding with the upper wall surface 72a of the lower projection member 72 is made upward and the flow direction of the exhaust gas colliding with the lower wall surface 71a of the upper projection member 71 is made downward, these The exhaust gases will collide with each other. In this way, the exhaust gas is agitated by the collision of the two exhaust gases, thereby promoting the mixing of the reducing agent contained in the exhaust gas and the exhaust gas.
Further, the exhaust gas that has collided with the upper wall surface 72a of the lower projecting member 72 and whose flow direction has been directed upward is the exhaust gas that has collided with the lower wall surface 71a of the upper projecting member 71 and has its flow direction directed downward. Even if it does not collide with, it collides with the upper wall surface 72a of the lower projection member 72. Due to the collision with the upper wall surface 72a, the upward velocity component of the exhaust gas is reduced and the exhaust gas is agitated accordingly, and the mixing of the reducing agent and the exhaust gas contained in the exhaust gas is promoted. The This also applies to the exhaust gas that collides with the lower wall surface 71a of the upper projecting member 71 and whose flow direction is directed downward.
In the eighth embodiment, the protruding members 71 and 72 separate from the casing 30 are provided on the inner wall surface of the casing 30, but the inner wall surface of the casing 30 protrudes radially inward of the casing 30. In this manner, a protruding portion may be provided on the inner wall surface of the casing 30. Therefore, in summary, it can be said that the exhaust emission control device of the present embodiment includes a protrusion that protrudes from the inner wall surface defining the casing 30 toward the radially inner side of the casing 30.
In summary, the flow deflecting portion (for example, the protrusions 35, 40, 45, provided on the inner wall surface of the casing 30, is provided on a portion of the inner wall surface of the casing 30 facing the exhaust manifold outlet vicinity portion 19 a. 60 and protrusions 71 and 72), and the flow deflector is NO. X The speed component in the axial direction of the casing 30 of the flow of at least a part of the exhaust gas flowing into the flow deflector is positioned NO on the upstream side of the storage reduction catalyst 20. X It can be said that it is formed so as to be directed in the direction opposite to the direction toward the storage reduction catalyst 20.
Alternatively, a flow deflection portion is provided in a portion of the inner wall surface of the casing 30 that faces the exhaust manifold outlet vicinity portion 19a, and the flow deflection portion is X It is located upstream from the storage reduction catalyst 20, and the wall surface of the flow deflection unit hits a part of the wall surface of the flow deflection unit, so that NO. X It is formed so that at least a part of the exhaust gas whose velocity component in the direction toward the storage reduction catalyst 20 is increased hits the other part of the wall surface of the flow deflector, and the velocity component in the same direction of the exhaust gas is reduced. It can be said.
In the above embodiment, the exhaust manifold 19 connected to the engine body 1 is directly connected to the casing 30 of the catalytic converter 21, but the exhaust pipe connected directly or indirectly to the exhaust manifold 19 is connected to the catalyst. You may make it connect with the casing 30 of the converter 21. FIG.
It is also possible to configure the exhaust purification device by combining the above embodiments. For example, by combining the exhaust purification device of the second embodiment and the fourth embodiment, the cross section of the protruding portion in the circumferential direction of the casing 30 is rectangular, and the vicinity of the manifold outlet extends inclined with respect to the axis L. It can be set as an exhaust emission control device. Further, for example, by combining the exhaust purification device of the second embodiment and the eighth embodiment, the lower wall surface 71 a of the upper protrusion member 71 and the upper wall surface 72 a of the downstream protrusion member 72 are perpendicular to the axial direction of the casing 30. A simple exhaust purification device.
Although the present invention has been described in detail based on specific embodiments, those skilled in the art can make various changes and modifications without departing from the scope and spirit of the present invention.
 19、50、55  排気マニホルド
 19a、50a、55a  マニホルド出口近傍部分
 20  NO吸蔵還元触媒
 21  触媒コンバータ
 30  ケーシング
 31  触媒収容部
 32  コーン部
 35、40、45、60  突出部
19, 50, 55 Exhaust manifold 19a, 50a, 55a Manifold outlet vicinity 20 NO X storage reduction catalyst 21 Catalytic converter 30 Casing 31 Catalyst housing part 32 Cone part 35, 40, 45, 60 Projection part

Claims (20)

  1.  内燃機関から排出された排気ガスが流通する上流側排気通路と、該上流側排気通路の下流側に上流側排気通路に対して角度を付けて配置された下流側排気通路と、上流側排気通路内を通過する排気ガス中に還元剤を供給する還元剤供給手段と、下流側排気通路内に設けられた排気浄化手段とを具備する内燃機関の排気浄化装置において、
     下流側排気通路を画成する内壁面の上流側排気通路出口に対向する部分には流れ偏向部が設けられ、該流れ偏向部は、排気浄化手段よりも上流側に位置すると共に、該流れ偏向部に流入する排気ガスの少なくとも一部の流れの下流側排気通路軸線方向の速度成分を排気浄化手段に向かう方向とは反対向きに方向付けるように形成される、内燃機関の排気浄化装置。
    An upstream exhaust passage through which exhaust gas discharged from the internal combustion engine flows, a downstream exhaust passage disposed at an angle with respect to the upstream exhaust passage downstream of the upstream exhaust passage, and an upstream exhaust passage In an exhaust gas purification apparatus for an internal combustion engine comprising a reducing agent supply means for supplying a reducing agent into exhaust gas passing through the exhaust gas, and an exhaust gas purification means provided in a downstream exhaust passage,
    A flow deflecting portion is provided in a portion of the inner wall surface defining the downstream exhaust passage facing the upstream exhaust passage outlet, and the flow deflecting portion is located upstream of the exhaust purification means and the flow deflecting portion. An exhaust gas purification apparatus for an internal combustion engine configured to direct a velocity component in the downstream exhaust passage axial direction of at least a part of the flow of exhaust gas flowing into the section in a direction opposite to a direction toward the exhaust gas purification means.
  2.  上記流れ偏向部を画成する壁面の排気浄化手段側の領域は下流側排気通路の径方向外側に向かって排気浄化手段に向かう方向とは反対向きに傾斜した部分を有する、請求項1に記載の内燃機関の排気浄化装置。 The region on the exhaust purification means side of the wall surface defining the flow deflection section has a portion inclined in the direction opposite to the direction toward the exhaust purification means toward the radially outer side of the downstream exhaust passage. Exhaust gas purification device for internal combustion engine.
  3.  内燃機関から排出された排気ガスが流通する上流側排気通路と、該上流側排気通路の下流側に上流側排気通路に対して角度を付けて配置された下流側排気通路と、上流側排気通路内を通過する排気ガス中に還元剤を供給する還元剤供給手段と、下流側排気通路内に設けられた排気浄化手段とを具備する内燃機関の排気浄化装置において、
     下流側排気通路を画成する内壁面の上流側排気通路出口に対向する部分には流れ偏向部が設けられ、該流れ偏向部は排気浄化手段よりも上流側に位置し、該流れ偏向部の壁面は、該流れ偏向部の壁面の一部に当たって排気浄化手段に向かう方向の速度成分が増大せしめられた排気ガスの少なくとも一部が該流れ偏向部の壁面の他の部分に当たり、該排気ガスの同方向の速度成分が低下せしめられるように形成される、内燃機関の排気浄化装置。
    An upstream exhaust passage through which exhaust gas discharged from the internal combustion engine flows, a downstream exhaust passage disposed at an angle with respect to the upstream exhaust passage downstream of the upstream exhaust passage, and an upstream exhaust passage In an exhaust gas purification apparatus for an internal combustion engine comprising a reducing agent supply means for supplying a reducing agent into exhaust gas passing through the exhaust gas, and an exhaust gas purification means provided in a downstream exhaust passage,
    A flow deflecting portion is provided in a portion of the inner wall surface defining the downstream exhaust passage facing the upstream exhaust passage outlet, and the flow deflecting portion is located upstream of the exhaust purification means. The wall surface hits a part of the wall surface of the flow deflection unit and at least a part of the exhaust gas whose velocity component in the direction toward the exhaust gas purification unit is increased hits the other part of the wall surface of the flow deflection unit. An exhaust purification device for an internal combustion engine, which is formed so as to reduce a speed component in the same direction.
  4.  上記流れ偏向部を画成する壁面の排気浄化手段から離れた側の領域は下流側排気通路の径方向外側に向かって排気浄化手段に向かう方向に傾斜した部分を有する、請求項3に記載の内燃機関の排気浄化装置。 The region on the side of the wall surface defining the flow deflection portion away from the exhaust purification means has a portion inclined in the direction toward the exhaust purification means toward the radially outer side of the downstream exhaust passage. An exhaust purification device for an internal combustion engine.
  5.  上記流れ偏向部は、下流側排気通路を画成する内壁面自体が下流側排気通路の径方向外側に向かって突出して形成された突出部を具備する、請求項1~4のいずれか1項に記載の内燃機関の排気浄化装置。 5. The flow deflecting portion includes a projecting portion in which an inner wall surface itself defining a downstream exhaust passage projects from a radially outer side of the downstream exhaust passage. 2. An exhaust gas purification apparatus for an internal combustion engine according to 1.
  6.  上記突出部の下流側排気通路周方向の断面はほぼ半楕円形である、請求項5に記載の内燃機関の排気浄化装置。 6. The exhaust gas purification apparatus for an internal combustion engine according to claim 5, wherein a cross section in the circumferential direction of the downstream side exhaust passage of the protrusion is substantially semi-elliptical.
  7.  上記下流側排気通路に面する上記突出部の入口面積は上流側排気通路の断面積よりも大きい、請求項5又は6に記載の内燃機関の排気浄化装置。 The exhaust purification device for an internal combustion engine according to claim 5 or 6, wherein an inlet area of the projecting portion facing the downstream exhaust passage is larger than a cross-sectional area of the upstream exhaust passage.
  8.  上記突出部の下流側排気通路軸線方向の高さは上流側排気通路の直径よりも大きい、請求項7に記載の内燃機関の排気浄化装置。 The exhaust gas purification apparatus for an internal combustion engine according to claim 7, wherein the height of the protruding portion in the axial direction of the downstream exhaust passage is larger than the diameter of the upstream exhaust passage.
  9.  上記突出部は上記下流側排気通路周方向に延びる、請求項5~8のいずれか1項に記載の内燃機関の排気浄化装置。 The exhaust purification device for an internal combustion engine according to any one of claims 5 to 8, wherein the protrusion extends in a circumferential direction of the downstream exhaust passage.
  10.  上記突出部の下流側排気通路径方向の深さは、上記上流側排気通路出口に対向する領域から離れるにつれて小さくなる、請求項9に記載の内燃機関の排気浄化装置。 10. The exhaust gas purification apparatus for an internal combustion engine according to claim 9, wherein the depth of the projecting portion in the downstream exhaust passage radial direction decreases as the distance from the region facing the upstream exhaust passage outlet decreases.
  11.  上記突出部は、その外周がほぼ半楕円形となるように形成される、請求項9又は10に記載の内燃機関の排気浄化装置。 The exhaust purification device for an internal combustion engine according to claim 9 or 10, wherein the protrusion is formed so that an outer periphery thereof is substantially semi-elliptical.
  12.  上記突出部は、上記上流側排気通路出口に対向する領域から下流側排気通路周方向に離れるにつれて排気浄化手段側に位置するように傾斜している、請求項9~11のいずれか1項に記載の内燃機関の排気浄化装置。 12. The projection according to any one of claims 9 to 11, wherein the protruding portion is inclined so as to be positioned on the exhaust purification means side as the distance from the region facing the upstream exhaust passage outlet in the circumferential direction of the downstream exhaust passage increases. An exhaust gas purification apparatus for an internal combustion engine as described.
  13.  上記上流側排気通路はその出口付近においてその中心軸線が突出部内を通るように延びる、請求項5~12のいずれか1項に記載の内燃機関の排気浄化装置。 13. The exhaust gas purification apparatus for an internal combustion engine according to claim 5, wherein the upstream exhaust passage extends in a vicinity of an outlet thereof so that a central axis thereof passes through the protruding portion.
  14.  上記上流側排気通路はその出口付近において下流側排気通路の中心軸線に対して傾斜して延びる、請求項5~13のいずれか1項に記載の内燃機関の排気浄化装置。 14. The exhaust gas purification apparatus for an internal combustion engine according to claim 5, wherein the upstream exhaust passage extends in the vicinity of an outlet thereof with an inclination with respect to the central axis of the downstream exhaust passage.
  15.  上記上流側排気通路はその出口付近において下流側排気通路の中心軸線に対して垂直に延びる、請求項5~13のいずれか1項に記載の内燃機関の排気浄化装置。 The exhaust purification device for an internal combustion engine according to any one of claims 5 to 13, wherein the upstream exhaust passage extends perpendicularly to the central axis of the downstream exhaust passage in the vicinity of the outlet thereof.
  16.  上記上流側排気通路は下流側排気通路内に進入して延びる、請求項5~15のいずれか1項に記載の内燃機関の排気浄化装置。 16. The exhaust gas purification apparatus for an internal combustion engine according to claim 5, wherein the upstream exhaust passage enters and extends into the downstream exhaust passage.
  17.  上記上流側排気通路出口は上記突出部内に進入せしめられる、請求項5~16のいずれか1項に記載の内燃機関の排気浄化装置。 The internal combustion engine exhaust gas purification apparatus according to any one of claims 5 to 16, wherein the upstream side exhaust passage outlet is allowed to enter the protrusion.
  18.  上記流れ偏向部は、下流側排気通路を画成する内壁面自体が下流側排気通路の径方向外側に向かって突出して形成された突出部を具備し、該突出部の下流側排気通路周方向の断面はほぼ矩形である、請求項1又は3に記載の内燃機関の排気浄化装置。 The flow deflector includes a protruding portion formed such that an inner wall surface defining the downstream exhaust passage protrudes radially outward of the downstream exhaust passage, and the downstream exhaust passage circumferential direction of the protruding portion The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 3, wherein the cross-section of the internal combustion engine is substantially rectangular.
  19.  上記流れ偏向部は、下流側排気通路を画成する内壁面から下流側排気通路の径方向内側に向かって突出する突起部を具備する、請求項1~18のいずれか1項に記載の内燃機関の排気浄化装置。 The internal combustion engine according to any one of claims 1 to 18, wherein the flow deflection section includes a protrusion that protrudes from an inner wall surface defining a downstream exhaust passage toward a radially inner side of the downstream exhaust passage. Engine exhaust purification system.
  20.  上記上流側排気通路は排気マニホルド又は排気マニホルドに直接連結された排気管によって画成され、上記下流側排気通路は排気浄化手段を収容する触媒コンバータの上流部分に設けられたコーン部である、請求項1~19のいずれか1項に記載の内燃機関の排気浄化装置。 The upstream exhaust passage is defined by an exhaust manifold or an exhaust pipe directly connected to the exhaust manifold, and the downstream exhaust passage is a cone portion provided in an upstream portion of a catalytic converter that houses exhaust purification means. Item 20. An exhaust emission control device for an internal combustion engine according to any one of Items 1 to 19.
PCT/JP2009/068543 2008-11-05 2009-10-22 Exhaust purifying device for internal combustion engine WO2010053033A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801416100A CN102187070A (en) 2008-11-05 2009-10-22 Exhaust purifying device for internal combustion engine
US13/127,594 US20110225958A1 (en) 2008-11-05 2009-10-22 Exhaust purification system of internal combustion engine
EP09824733A EP2343440A4 (en) 2008-11-05 2009-10-22 Exhaust purifying device for internal combustion engine
JP2010536747A JP5104960B2 (en) 2008-11-05 2009-10-22 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-284505 2008-11-05
JP2008284505 2008-11-05

Publications (1)

Publication Number Publication Date
WO2010053033A1 true WO2010053033A1 (en) 2010-05-14

Family

ID=42152842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068543 WO2010053033A1 (en) 2008-11-05 2009-10-22 Exhaust purifying device for internal combustion engine

Country Status (5)

Country Link
US (1) US20110225958A1 (en)
EP (1) EP2343440A4 (en)
JP (1) JP5104960B2 (en)
CN (1) CN102187070A (en)
WO (1) WO2010053033A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500538A1 (en) 2011-03-16 2012-09-19 Peugeot Citroën Automobiles SA Compact elbow unit for exhaust gas post-treatment provided with a boss forming an SCR mixer
EP2546488A1 (en) 2011-07-11 2013-01-16 Peugeot Citroën Automobiles Sa Elbow-shaped exhaust gas purification arrangement of an internal combustion engine comprising an impact reducing agent disperser.

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9273641B2 (en) 2012-08-14 2016-03-01 Volvo Truck Corporation Gas flow unit, a gas treatment device and a combustion engine provided therewith
EP2890876B1 (en) * 2012-08-31 2016-11-23 Volvo Truck Corporation A gas flow unit, a gas treatment device and a combustion engine provided therewith
JP6073659B2 (en) * 2012-11-16 2017-02-01 フタバ産業株式会社 Exhaust gas purification device
JP7087722B2 (en) * 2018-06-26 2022-06-21 マツダ株式会社 Engine exhaust
US20230304432A1 (en) * 2020-10-22 2023-09-28 Cummins Emission Solutions Inc. Exhaust gas aftertreatment system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2345383A1 (en) * 1973-09-08 1975-03-20 Daimler Benz Ag I.C. engine with exhaust gas afterburner - has exhaust system with catalytic gas permeable insets within exhaust ducts
JPS5084954A (en) * 1973-11-26 1975-07-09
JP2002213233A (en) 2001-01-12 2002-07-31 Komatsu Ltd Exhaust emission control structure of engine
JP2002536589A (en) * 1999-02-08 2002-10-29 エミテク・ゲゼルシャフト・フュール・エミシオーンテクノロギー・ミット・ベシュレンクテル・ハフツング Exhaust gas system with at least one guide surface
JP2003184544A (en) 2001-12-20 2003-07-03 Toyota Motor Corp Exhaust emissions control system for internal combustion engine
JP2005325747A (en) 2004-05-13 2005-11-24 Honda Motor Co Ltd Exhaust emission control device
JP2006009793A (en) * 2004-05-28 2006-01-12 Yumex Corp Exhaust pipe structure
JP2006077576A (en) * 2004-09-07 2006-03-23 Meidensha Corp Denitration reactor
JP2007211663A (en) * 2006-02-08 2007-08-23 Honda Motor Co Ltd Exhaust gas catalyst device and multi-cylinder internal combustion engine equipped with the same
US20070234713A1 (en) * 2006-04-03 2007-10-11 Blaisdell Jared D Exhaust flow distribution device
JP2009047091A (en) * 2007-08-21 2009-03-05 Toyota Motor Corp Exhaust system of internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112225B2 (en) * 2001-12-27 2008-07-02 トヨタ自動車株式会社 Exhaust pipe structure
EP2383444B1 (en) * 2004-02-02 2012-12-19 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
DE102006038904A1 (en) * 2006-08-18 2008-02-21 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for adding at least one reactant to an exhaust gas stream and device for processing an exhaust gas stream of an internal combustion engine
DE102006061790A1 (en) * 2006-12-21 2008-06-26 J. Eberspächer GmbH & Co. KG Exhaust system for an internal combustion engine
US7757484B2 (en) * 2007-01-31 2010-07-20 Caterpillar Inc. Exhaust treatment device having flow-promoting end caps
EP2075428B1 (en) * 2007-12-25 2011-11-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Emission control system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2345383A1 (en) * 1973-09-08 1975-03-20 Daimler Benz Ag I.C. engine with exhaust gas afterburner - has exhaust system with catalytic gas permeable insets within exhaust ducts
JPS5084954A (en) * 1973-11-26 1975-07-09
JP2002536589A (en) * 1999-02-08 2002-10-29 エミテク・ゲゼルシャフト・フュール・エミシオーンテクノロギー・ミット・ベシュレンクテル・ハフツング Exhaust gas system with at least one guide surface
JP2002213233A (en) 2001-01-12 2002-07-31 Komatsu Ltd Exhaust emission control structure of engine
JP2003184544A (en) 2001-12-20 2003-07-03 Toyota Motor Corp Exhaust emissions control system for internal combustion engine
JP2005325747A (en) 2004-05-13 2005-11-24 Honda Motor Co Ltd Exhaust emission control device
JP2006009793A (en) * 2004-05-28 2006-01-12 Yumex Corp Exhaust pipe structure
JP2006077576A (en) * 2004-09-07 2006-03-23 Meidensha Corp Denitration reactor
JP2007211663A (en) * 2006-02-08 2007-08-23 Honda Motor Co Ltd Exhaust gas catalyst device and multi-cylinder internal combustion engine equipped with the same
US20070234713A1 (en) * 2006-04-03 2007-10-11 Blaisdell Jared D Exhaust flow distribution device
JP2009047091A (en) * 2007-08-21 2009-03-05 Toyota Motor Corp Exhaust system of internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2343440A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500538A1 (en) 2011-03-16 2012-09-19 Peugeot Citroën Automobiles SA Compact elbow unit for exhaust gas post-treatment provided with a boss forming an SCR mixer
EP2546488A1 (en) 2011-07-11 2013-01-16 Peugeot Citroën Automobiles Sa Elbow-shaped exhaust gas purification arrangement of an internal combustion engine comprising an impact reducing agent disperser.

Also Published As

Publication number Publication date
EP2343440A4 (en) 2012-12-26
CN102187070A (en) 2011-09-14
JPWO2010053033A1 (en) 2012-04-05
US20110225958A1 (en) 2011-09-22
JP5104960B2 (en) 2012-12-19
EP2343440A1 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP5104960B2 (en) Exhaust gas purification device for internal combustion engine
US8209965B2 (en) Additive-agent diffusion plate structure in exhaust passage, and additive-agent diffusion plate in exhaust passage
US9976470B2 (en) Aftertreatment module having replaceable catalyst housing
CN102667080B (en) Exhaust system having an aftertreatment module
JP5610120B2 (en) Engine exhaust purification system
US20110041488A1 (en) Exhaust system of internal combustion engine
JP2009024629A (en) Exhaust emission control system of internal combustion engine
JPWO2006129371A1 (en) EGR gas mixing device
WO2021189795A1 (en) Diesel engine tail gas after treatment apparatus
JP2009156264A5 (en)
US8443595B2 (en) Additive-agent diffusion plate in exhaust passage, structure of additive-agent diffusion plate, and exhaust system including additive-agent diffusion plate
JP2009156077A (en) Exhaust emission control device for internal combustion engine
US20160194995A1 (en) Flow mixing device for an exhaust after-treatment system
JP4662334B2 (en) Exhaust gas purification device for internal combustion engine
JP2009138598A (en) Additive distribution board structure of exhaust passage
JP5578367B2 (en) Engine intake system
US20140369898A1 (en) Cross style (4 port) ammonia gas injector
US9551255B2 (en) Mixing plate as stabilizer for ammonia gas injector
US9174167B2 (en) Mixing plate providing reductant distribution
US9670816B2 (en) Exhaust gas aftertreatment device for a combustion engine
JP2022188363A (en) Exhaust emission control device
JP2009250171A (en) Exhaust emission control system of internal combustion engine
JP2009162122A (en) Exhaust gas passage structure
JP2018091209A (en) Selective reduction catalyst system
US8991159B2 (en) Exhaust gas system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141610.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010536747

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009824733

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13127594

Country of ref document: US