WO2010050290A1 - Wafer lens manufacturing method and wafer lens - Google Patents

Wafer lens manufacturing method and wafer lens Download PDF

Info

Publication number
WO2010050290A1
WO2010050290A1 PCT/JP2009/065061 JP2009065061W WO2010050290A1 WO 2010050290 A1 WO2010050290 A1 WO 2010050290A1 JP 2009065061 W JP2009065061 W JP 2009065061W WO 2010050290 A1 WO2010050290 A1 WO 2010050290A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
wafer lens
lens
manufacturing
curable resin
Prior art date
Application number
PCT/JP2009/065061
Other languages
French (fr)
Japanese (ja)
Inventor
正 斎藤
雄一 藤井
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2010050290A1 publication Critical patent/WO2010050290A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • B29C39/006Monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/021Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles by casting in several steps
    • B29C39/025Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles by casting in several steps for making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/12Making multilayered or multicoloured articles
    • B29C39/123Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00298Producing lens arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • B29D11/00442Curing the lens material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to a wafer lens manufacturing method and a wafer lens.
  • the wafer lens manufacturing method in the case of using a photocurable resin as the curable resin will be briefly described.
  • the glass substrate 3 on which the resin 5A sucked and fixed by the vacuum chuck device 70 is dropped.
  • the glass substrate 3 is raised and the resin 5A is pressed against the mold 20 (see arrow).
  • the mold 20 is a light transmissive mold having a cavity 24 and is held and fixed by a stamp holder 80.
  • the resin 5A filled in the cavity 24 is irradiated with light from above the mold 20 to cure the resin 5A. Thereafter, the resin 5 ⁇ / b> A is released from the mold 20 while the glass substrate 3 is lowered. As a result, a wafer lens having a plurality of lens portions (5A) formed on the glass substrate 3 can be manufactured.
  • the resin 5A that has been irradiated with light shrinks when it is cured, causing a sink or an uncured portion inside.
  • the optical performance of the lens deviates from the design value. Such a problem becomes more prominent as the sag amount of the wafer lens increases.
  • An object of the present invention is to provide a wafer lens manufacturing method and a wafer lens capable of forming a wafer lens having a desired optical performance with a large sag amount while preventing a decrease in productivity.
  • a method for producing a wafer lens comprising: curing a curable resin between a substrate and a mold in which a concave cavity is formed, and producing a wafer lens provided with a lens portion on the substrate, After performing at least one tip side molding step of disposing and curing an uncured curable resin on at least the cavity in the mold, An uncured curable resin is disposed between the mold and the substrate, and a proximal-side molding process is performed in which the disposed curable resin is cured while being pressed from above with the substrate.
  • Cure the curable resin between A wafer lens manufacturing method for manufacturing a wafer lens provided with the protruding portion together with the lens portion on the substrate, After performing the front end side molding step of arranging and curing an uncured curable resin on at least the concave portion in the molding die one or more times, An uncured curable resin is disposed between at least the cavity of the molding die and the substrate, and a proximal-side molding step is performed in which the disposed curable resin is cured while being pressed by the substrate.
  • the curable resin is preferably cured after being applied to a uniform thickness by spray coating.
  • the distal end side molding step is performed a plurality of times, it is preferable to use different types of curable resins in at least the steps performed before and after each of the distal end side molding step and the proximal end side molding step.
  • the curable resin is preferably cured in air.
  • the curable resin may be cured in a gas not containing oxygen or in a vacuum.
  • the wafer lens it is manufactured by the method for manufacturing a wafer lens of the present invention.
  • the present invention after performing at least one tip side molding step of disposing and curing an uncured curable resin on at least a cavity (or a recess), between the mold and the substrate (or at least the cavity) An uncured curable resin is disposed between the substrate and the substrate, and a base-end side molding step is performed in which the curable resin is cured while being pressed from above with the substrate. Molded in more than once. Therefore, even when a wafer lens with a large sag amount is molded, it is possible to prevent the occurrence of sink marks during curing and the occurrence of uncured portions.
  • the lens part (or protrusion) can be molded using a single type of mold, so that the optical performance changes due to contamination of the lens part, thus, it is possible to prevent a change in the optical performance of the lens unit due to the displacement of the molds. Therefore, it is possible to form a wafer lens having a desired optical performance with a large sag amount.
  • the distal end side can be molded with resin with the base end side of the lens portion (or projection) open, it is possible to prevent transfer defects on the optical functional surface due to the resin being cured and shrunk. Therefore, a wafer lens having a desired optical performance can be formed more reliably.
  • the lens part can be molded using one type of mold, which saves labor for positioning the mold with high accuracy and reduces productivity. It can be omitted.
  • FIG. 1 It is a perspective view showing a schematic structure of a wafer lens concerning an embodiment. It is drawing which shows schematic structure of the wafer lens manufacturing apparatus concerning embodiment. It is a perspective view which shows schematic structure of the resin type
  • (A) is a figure which shows the front end side shaping
  • (b) is a figure which shows a base end side shaping
  • the wafer lens 1 has a circular glass substrate 3 and a plurality of convex lens portions 5.
  • the glass substrate 3 is an example of a substrate.
  • a plurality of convex lens portions 5 having a sag amount of about 0.3 mm to 1 mm are arranged in an array.
  • the convex lens portion 5 may have a fine structure such as a diffraction groove or a step on the surface of the optical surface.
  • the convex lens portion 5 is made of resin 5A.
  • the resin 5A is a curable resin, and is a photocurable resin, preferably a UV curable resin, in the present embodiment.
  • a photocurable resin for example, an acrylic resin or an allyl ester resin can be used, and these resins can be cured by radical polymerization.
  • an epoxy-based resin can be used, and the resin can be reaction-cured by cationic polymerization.
  • the wafer lens manufacturing apparatus 30 has a base 32.
  • a protruding portion 34 protruding inward is formed on the upper portion of the base 32.
  • a guide 36 is erected between the bottom of the base 32 and the protrusion 34.
  • a stage 40 is provided between the guides 36.
  • a through hole 42 is formed in the stage 40, and the guide 36 passes through the through hole 42.
  • a geared motor 50 is provided on the base 32 and below the stage 40.
  • the geared motor 50 includes a potentiometer 51 (see FIG. 5).
  • a shaft 52 is connected to the geared motor 50, and the tip of the shaft 52 supports the stage 40.
  • the shaft 52 extends and contracts in the vertical direction by the operation of the geared motor 50, and accordingly, the stage 40 can move in the vertical direction while being guided by the guide 36.
  • the recess 40 having a substantially hemispherical shape is formed on the stage 40.
  • a paralleling member 60 is embedded in the recess 46.
  • the paralleling member 60 can swing with respect to the recess 46 like a bowl floating on the water surface.
  • An XY stage 62 and a ⁇ stage 64 are provided on the paralleling member 60.
  • the XY stage 62 is movable on an XY plane (two-dimensional plane) on the stage 40, and the ⁇ stage 64 is rotatable about its central portion as a rotation axis.
  • a vacuum chuck device 70 is installed on the XY stage 62 and the ⁇ stage 64.
  • a concentric communication groove 72 is formed in the vacuum chuck device 70.
  • a suction mechanism (not shown) is connected to the communication groove 72, and air can be sucked from the communication groove 72 by the operation of the suction mechanism, and members on the vacuum chuck device 70 can be sucked and fixed. ing.
  • the resin mold 20 (molding mold) is sucked and fixed by the vacuum chuck device 70.
  • a stamp holder 80 is fixed to the upper part of the base 32, and a vacuum chuck device 110 made of a light transmissive member is fixed to the stamp holder 80.
  • a concentric communication groove 112 is formed in the vacuum chuck device 110.
  • a suction mechanism (not shown) is connected to the communication groove 112, and air can be sucked from the communication groove 112 by the operation of the suction mechanism, and members under the vacuum chuck device 110 can be sucked and fixed. ing.
  • the glass substrate 3 is sucked and fixed by the vacuum chuck device 110.
  • a light source 90 is provided above the vacuum chuck device 110, and when the light source 90 is turned on, the light passes through the vacuum chuck device 110 and the glass substrate 3.
  • the resin mold 20 is mainly composed of a molded part 22 and a base material 26.
  • a plurality of concave cavities 24 are formed in the molding portion 22 in an array.
  • the surface (molding surface) shape of the cavity 24 has a predetermined depth corresponding to the negative shape of the convex lens portion 5 in the wafer lens 1, and is recessed in a substantially hemispherical shape in FIGS. 2 and 3.
  • the molding part 22 is formed of a resin 22A.
  • a resin having good releasability, particularly a transparent resin is preferable. It is excellent in that it can be released without applying a release agent.
  • any of a photocurable resin, a thermosetting resin, and a thermoplastic resin may be used.
  • the strength of the resin mold 20 is increased by attaching the base material 26 to the molding part 22, and can be molded many times. It is a backing material.
  • the base material 26 may be made of a material different from that of the molding part 22 or may be integrally made of the same material as that of the molding part 22.
  • any material having smoothness such as quartz, silicone wafer, metal, glass, resin, ceramics and the like may be used. Constructing the base material 26 integrally with the same material as the molding part 22 means that the resin mold 20 is substantially constituted by only the molding part 22.
  • the resin mold 20 of FIG. 3 is mainly used, but in addition to this, the master 10 of FIG. 4 is also used. That is, the master 10 is a mother mold used when the resin mold 20 is manufactured, and the resin mold 20 is a molding mold used when the wafer lens 1 (convex lens portion 5) is molded.
  • the resin mold 20 is used a plurality of times for mass production of the wafer lens 1, and is different from the master 10 in the purpose of use and the frequency of use.
  • the master 10 has a plurality of convex portions 14 formed in an array with respect to a rectangular parallelepiped base portion 12.
  • the convex portion 14 is a portion corresponding to the convex lens portion 5 of the wafer lens 1 and protrudes in a substantially hemispherical shape.
  • the outer shape of the master 10 may be a quadrangle or a circle as described above.
  • the surface (molding surface) shape of the convex portion 14 is a positive shape corresponding to the optical surface shape of the convex lens portion 5 that is molded and transferred onto the glass substrate 3.
  • metal or metal glass can be used as the material of the master 10.
  • the classification includes ferrous materials and other alloys.
  • the iron system include hot dies, cold dies, plastic dies, high-speed tool steel, general structural rolled steel, carbon steel for mechanical structure, chromium / molybdenum steel, and stainless steel.
  • plastic molds include pre-hardened steel, quenched and tempered steel, and aging treated steel.
  • pre-hardened steel include SC, SCM, and SUS. More specifically, the SC system is PXZ.
  • SCM systems include HPM2, HPM7, PX5, and IMPAX.
  • Examples of the SUS system include HPM38, HPM77, S-STAR, G-STAR, STAVAX, RAMAX-S, and PSL.
  • Examples of iron-based alloys include JP-A-2005-113161 and JP-A-2005-206913.
  • As the non-ferrous alloys copper alloys, aluminum alloys and zinc alloys are well known. Examples include the alloys disclosed in JP-A-10-219373 and JP-A-2000-176970.
  • PdCuSi, PdCuSiNi, etc. are suitable as metallic glass materials because they have high machinability in diamond cutting and less tool wear.
  • Amorphous alloys such as electroless and electrolytic nickel phosphorous plating are also suitable because they have good machinability in diamond cutting.
  • These highly machinable materials may constitute the entire master 10 or may cover only the surface of the optical transfer surface, in particular, by a method such as plating or sputtering.
  • the geared motor 50, potentiometer 51, parallelizing member 60, XY stage 62, ⁇ stage 64, vacuum chuck devices 70 and 110 (suction mechanism), stamp holder 80 (suction mechanism), and light source 90 are control devices. 100.
  • the control device 100 controls the operation of these members. Particularly in the present embodiment, the control device 100 controls the operation (rotation amount) of the geared motor 50 based on the output value of the potentiometer 51.
  • the glass substrate 3 is sucked and fixed to the vacuum chuck device 110, and the resin mold 20 is set to the vacuum chuck device 70 and sucked and fixed.
  • a predetermined amount of uncured resin 5A is disposed on at least each cavity 24 in the resin mold 20.
  • the resin 5A is disposed by applying the resin 5A to a uniform thickness by spray coating.
  • the resin 5A may be disposed by dropping.
  • only a small amount of the resin 5A than the volume of the cavity 24 is disposed only on each cavity 24, but a larger amount of the resin 5A than the volume of the cavity 24 is disposed on the entire upper surface of the resin mold 20. It is also good.
  • the light source 90 is turned on, and the resin 5A is irradiated with light through the light-transmitting vacuum chuck device 110 and the glass substrate 3 to cure the resin 5A.
  • the front end side part of the convex lens part 5 is shape
  • the above-described tip side molding process is performed in a state where the resin 5A is exposed to the air. Thereby, hardening will be inhibited by oxygen on the surface of the resin 5A.
  • an uncured resin 5A is dropped and disposed on at least the cavity 24 between the resin mold 20 and the glass substrate 3.
  • the resin 5 ⁇ / b> A is dropped and disposed at the center of the upper surface of the resin mold 20, but the resin 5 ⁇ / b> A may be disposed on each cavity 24.
  • positioned here is the same as the kind of resin used at the above-mentioned front end side shaping
  • the paralleling member 60, the XY stage 62, and the ⁇ stage 64 are controlled by the control device 100 so that the upper surface of the resin mold 20 and the lower surface of the glass substrate 3 are parallel.
  • the position of the resin mold 20 is controlled, the resin mold 20 is moved to a predetermined position with respect to the glass substrate 3, and the resin mold 20 is held at the predetermined position.
  • the geared motor 50 is operated to extend the shaft 52 upward, and the stage 40 is moved upward.
  • the control device 100 controls the operation of the geared motor 50 based on the output value of the potentiometer 51, and moves the stage 40 to a predetermined height position.
  • the height position of the stage 40 to be moved is preset in the control apparatus 100.
  • the control apparatus 100 has the vacuum chuck apparatus 70 in the reference position S (FIG. 2).
  • the geared motor 50 is operated to a position that reaches (see), and when the vacuum chuck device 70 reaches the reference position S, the operation of the geared motor 50 is stopped.
  • the uncured resin 5A receives pressure from the upper glass substrate 3 and gradually spreads, and fills the base end side (upper side in the drawing) of the cavity 24 in the resin mold 20.
  • the light source 90 is turned on while the stage 40 is held at a position corresponding to the reference position S, and as shown in FIG. 6B, the light transmissive vacuum chuck device 110 (not shown) and the glass substrate 3 are mounted.
  • the resin 5A is irradiated with light to cure the resin 5A.
  • the base end side part of the convex lens part 5 is shape
  • the light source 90 is turned off and the light irradiation to the resin 5A is stopped.
  • the geared motor 50 is operated, the shaft 52 is contracted downward, the stage 40 is moved downward, and the cured resin 5 ⁇ / b> A is released from the resin mold 20 together with the glass substrate 3.
  • the wafer lens 1 in which the plurality of convex lens portions 5 are formed on the glass substrate 3 can be manufactured.
  • At least one end-side molding step of disposing and curing the uncured resin 5A on at least the cavity 24 is performed one or more times, and then the uncured resin 5A is disposed on at least the cavity 24. Since the base end side molding step is performed in which the resin 5A is cured while being pressed by the glass substrate 3 from above, the convex lens portion 5 is molded in two or more steps. Therefore, even when the wafer lens 1 having a large sag amount is molded, it is possible to prevent the occurrence of sink marks during curing and the occurrence of uncured portions.
  • the convex lens portion 5 can be molded using one type of resin mold 20, so that the optical performance due to dust mixed in the convex lens portion 5. And changes in the optical performance of the convex lens portion 5 due to the displacement of the positions of the resin molds 20 can be prevented. Therefore, it is possible to form the wafer lens 1 having a desired optical performance with a large sag amount.
  • the distal end side can be molded with the resin 5A in a state where the proximal end side of the convex lens portion 5 is opened, it is possible to prevent a transfer failure of the optical function surface due to the resin 5A being cured and contracted. Therefore, the wafer lens 1 having a desired optical performance can be formed more reliably.
  • the convex lens portion 5 can be molded using one type of resin mold 20, so that it is troublesome to position the resin mold 20 with high accuracy. Can be eliminated, and productivity can be reduced.
  • the resin 5A is applied to a uniform thickness by spray coating and then cured, so that the interface of the resin layer cured in each molding step can be formed in a predetermined shape. Therefore, it is possible to reliably form the wafer lens 1 having a desired optical performance.
  • the resin 5A is cured in air, and the curing on the surface of the resin 5A is inhibited by oxygen. Therefore, the uncured portion of the surface of the resin 5A disposed in the front end side molding step is It can be cured together with the resin 5A disposed in the subsequent proximal end side molding step. Therefore, the formation of an interface between these resins 5A can be prevented, and the laminated resins 5A can be cured in a continuous state.
  • the resin 5A used in the front end side molding step and the resin 5A used in the base end side molding step have been described as being the same type, but may be different types. In this case, wafer lenses having more various optical performances can be formed.
  • the second embodiment according to the present invention is different from the first embodiment in the following points, and is otherwise the same as the first embodiment.
  • a wafer lens manufacturing apparatus 30A includes a resin mold 20A instead of the resin mold 20, and the molding part 22B of the resin mold 20A has a convex lens part as shown in FIG.
  • a concave cavity (recess) 24 A for transfer-molding the protrusion is provided between the plurality of cavities 24 for transfer-molding the optical function surface 5, a concave cavity (recess) 24 A for transfer-molding the protrusion is provided.
  • the surface is roughened and the mold release process is performed.
  • the depth of the cavity 24 ⁇ / b> A is deeper than the cavity 24.
  • the protrusion formed by the cavity 24A functions as a spacer when laminating the wafer lens, or functions as a positioning member when the wafer lens is disposed in the optical device.
  • the thickness (height) is also increased.
  • the resin 5A is cured at least on the tip side of the cavity 24A in the tip side molding step.
  • resin is filled at least between the cavity 24 and the glass substrate 3, preferably the base end side of the cavity 24A and the inside of the cavity 24, and is cured.
  • the wafer lens 1 is manufactured in the same manner as in the first embodiment.
  • the cavity 24 may be filled and cured in the proximal end molding process.
  • the wafer has various optical performances compared to the case where the same type of resin is used.
  • a lens can be formed.
  • the tip side molding step is described as being performed once, but may be performed a plurality of times.
  • a wafer lens having a desired optical performance with a large sag amount can be reliably formed. Can do.
  • different types of resin 5A may be used in at least the steps performed before and after each of the distal end side molding step and the proximal end side molding step. good. In this case, wafer lenses having more various optical performances can be formed.
  • the resin when different types of resins are used in each molding step, the resin can be easily applied and the transferability of the optical functional surface can be improved by using a resin having a low viscosity in the previous molding step. it can.
  • the throughput can be improved by using a resin having a high curing rate and a large shrinkage in the previous molding step.
  • the resin used in the front end side molding step is excellent in releasability
  • the resin used in the base end side molding step is preferably excellent in adhesiveness with glass.
  • a release agent is added to the former resin, It is conceivable to formulate the latter resin in order to improve the adhesion to glass.
  • an optical boundary surface can be eliminated, so that a decrease in optical performance due to the boundary surface can be prevented.
  • the resin 5A is described as being cured in the air.
  • the resin 5A may be cured in a gas not containing oxygen or in a vacuum.
  • the resin 5A is cured in the subsequent molding process (next distal-end molding process or proximal-end molding process) with the surface of the resin 5A cured.
  • the provided resin 5A can be cured. Therefore, in particular, when dissimilar resins 5A are disposed in the molding process performed before and after each other, it is possible to form the convex lens portion 5 in which the interface is formed.
  • the resin 5A has been described as being cured by the transmitted light of the vacuum chuck device 110 and the glass substrate 3, the resin mold 20 may be made translucent and cured by the transmitted light of the resin mold 20.
  • Wafer lens 3 Glass substrate (substrate) 5 Convex lens part 5A Resin (curable resin) 10 Master 12 Base 14 Convex 20 Resin Mold (Molding Die) 22 Molding part 22A Resin 24 Cavity 24A Cavity (concave) 26 Base material 30 Wafer lens manufacturing apparatus 32 Base 34 Protruding part 36 Guide 40 Stage 42 Through hole 46 Recessed part 50 Geared motor 51 Potentiometer 52 Shaft 60 Paralleling member 62 XY stage 64 ⁇ stage 70 Vacuum chuck device 72 Communication groove 80 Stamp holder 82 Communication groove 90 Light source 100 Control device 110 Vacuum chuck device 112 Communication groove

Abstract

Provided is a wafer lens manufacturing method for manufacturing a wafer lens (1) provided with convex lens portions (5) on a glass substrate (3) by curing resin (5A) between the glass substrate (3) and a resin mold (20) in which concave cavities (24) are formed, in which after a tip side molding step is performed one or more times whereby the uncured resin (5A) is disposed on at least the cavities (24) in the resin mold (20) and cured, a base end side molding step is performed whereby the uncured resin (5A) is disposed between the resin mold (20) and the glass substrate (3) and the disposed resin (5A) is cured while being pressed from above by the glass substrate (3).  Thus, the wafer lens with desired optical performance and a large amount of sag can be formed while a reduction in productivity is prevented.

Description

ウエハレンズの製造方法及びウエハレンズWafer lens manufacturing method and wafer lens
 本発明は、ウエハレンズの製造方法及びウエハレンズに関する。 The present invention relates to a wafer lens manufacturing method and a wafer lens.
 従来、光学レンズの製造分野においては、ガラス基板に対し硬化性樹脂からなるレンズ部を設けることで、耐熱性の高い光学レンズを得る技術が検討されている(例えば、特許文献1参照)。この技術を適用した光学レンズの製造方法の一例として、ガラス基板の表面に硬化性樹脂からなる光学部材を複数設けたいわゆる「ウエハレンズ(マイクロレンズアレイ)」を形成し、その後にレンズ部ごとにガラス基板をカットする方法も提案されている。 Conventionally, in the field of manufacturing optical lenses, a technique for obtaining an optical lens having high heat resistance by providing a lens portion made of a curable resin on a glass substrate has been studied (for example, see Patent Document 1). As an example of a manufacturing method of an optical lens to which this technology is applied, a so-called “wafer lens (microlens array)” in which a plurality of optical members made of a curable resin is provided on the surface of a glass substrate is formed, and thereafter, for each lens portion A method of cutting a glass substrate has also been proposed.
 硬化性樹脂として光硬化性樹脂を用いた場合のウエハレンズの製造方法を簡単に説明すると、図9に示す通り、真空チャック装置70により吸引・固定された樹脂5Aが滴下されたガラス基板3と、成形型20とを上下に対向させて配設した後、ガラス基板3を上昇させ、樹脂5Aを成形型20に押圧する(矢印参照)。成形型20はキャビティ24を有した光透過性の型であり、スタンプホルダ80により保持・固定されている。 The wafer lens manufacturing method in the case of using a photocurable resin as the curable resin will be briefly described. As shown in FIG. 9, the glass substrate 3 on which the resin 5A sucked and fixed by the vacuum chuck device 70 is dropped. Then, after arranging the mold 20 so as to face each other, the glass substrate 3 is raised and the resin 5A is pressed against the mold 20 (see arrow). The mold 20 is a light transmissive mold having a cavity 24 and is held and fixed by a stamp holder 80.
 その後、ガラス基板3の高さ位置をそのまま保持しながら、図10に示す通り、キャビティ24に充填された樹脂5Aに対し成形型20の上方から光照射し、樹脂5Aを光硬化させる。その後、ガラス基板3を降下させながら樹脂5Aを成形型20から離型する。その結果、ガラス基板3上に複数のレンズ部(5A)が形成されたウエハレンズを製造することができる。 Then, while maintaining the height position of the glass substrate 3 as it is, as shown in FIG. 10, the resin 5A filled in the cavity 24 is irradiated with light from above the mold 20 to cure the resin 5A. Thereafter, the resin 5 </ b> A is released from the mold 20 while the glass substrate 3 is lowered. As a result, a wafer lens having a plurality of lens portions (5A) formed on the glass substrate 3 can be manufactured.
 ところで、光照射により樹脂5Aを硬化させる図10の工程においては、光照射を受けた樹脂5Aが硬化する際に収縮してヒケを生じたり、内部に未硬化部分を生じたりする結果、レンズ部の光学性能が設計値からずれてしまう場合がある。そして、このような問題は、ウエハレンズのサグ(sag)量が大きくなる程、顕著になってしまう。 By the way, in the process of FIG. 10 in which the resin 5A is cured by light irradiation, the resin 5A that has been irradiated with light shrinks when it is cured, causing a sink or an uncured portion inside. In some cases, the optical performance of the lens deviates from the design value. Such a problem becomes more prominent as the sag amount of the wafer lens increases.
 一方、近年、このような問題を解決する方法として、複数種類の成形型を用意して、深さの浅い順に使用することにより、ガラス基板の表面側から順に樹脂を積層して硬化させる方法が提案されている(例えば、特許文献2参照)。 On the other hand, in recent years, as a method for solving such a problem, there is a method in which a plurality of types of molds are prepared and used in order of increasing depth to laminate and cure the resin in order from the surface side of the glass substrate. It has been proposed (see, for example, Patent Document 2).
特許第3926380号公報Japanese Patent No. 3926380 欧州特許出願公開第1474851号明細書European Patent Application No. 1474851
 しかしながら、上記特許文献2記載の方法では、複数の成形型を取り替えて成形を行うため、レンズ部にゴミが混入して光学性能が変化してしまう場合がある。また、各成形工程の間で成形型の位置がずれると、レンズ部の形状精度、ひいては光学性能が変化してしまう反面、成形型を高精度に位置決めしようとすると、手間が掛かって生産性が低下してしまう。なお、このような問題は、ウエハレンズにおけるレンズ部のサグ量が大きい場合に限らず、レンズ部とは別個の突起部(例えば、ウエハレンズを積層する際のスペーサや、配設する際の位置決め部材)がガラス基板から突出して設けられる場合にも、同様に生じることとなる。 However, in the method described in Patent Document 2, since molding is performed by replacing a plurality of molding dies, dust may be mixed into the lens portion and the optical performance may change. In addition, if the position of the molding die is shifted between the molding steps, the shape accuracy of the lens part, and consequently the optical performance, will change. On the other hand, if the molding die is to be positioned with high accuracy, it will take time and productivity will be increased. It will decline. Note that such a problem is not limited to the case where the sag amount of the lens portion in the wafer lens is large, but a protruding portion that is separate from the lens portion (for example, a spacer when laminating wafer lenses or a positioning when arranging the wafer lens This also occurs when the member is provided protruding from the glass substrate.
 本発明の目的は、サグ量の大きい所望の光学性能のウエハレンズを、生産性の低下を防止しつつ形成することのできるウエハレンズの製造方法及びウエハレンズを提供することである。 An object of the present invention is to provide a wafer lens manufacturing method and a wafer lens capable of forming a wafer lens having a desired optical performance with a large sag amount while preventing a decrease in productivity.
 本発明の第1の側面によれば、
 基板と、凹状のキャビティが形成された成形型との間で硬化性樹脂を硬化させ、当該基板上にレンズ部の設けられたウエハレンズを製造するウエハレンズの製造方法であって、
 前記成形型における少なくとも前記キャビティ上に未硬化の硬化性樹脂を配設して硬化させる先端側成形工程を1回以上行った後、
 前記成形型と前記基板との間に未硬化の硬化性樹脂を配設し、配設した硬化性樹脂を上方から前記基板で押圧しつつ硬化させる基端側成形工程を行うことを特徴とする。
According to a first aspect of the invention,
A method for producing a wafer lens, comprising: curing a curable resin between a substrate and a mold in which a concave cavity is formed, and producing a wafer lens provided with a lens portion on the substrate,
After performing at least one tip side molding step of disposing and curing an uncured curable resin on at least the cavity in the mold,
An uncured curable resin is disposed between the mold and the substrate, and a proximal-side molding process is performed in which the disposed curable resin is cured while being pressed from above with the substrate. .
 本発明の第2の側面によれば、
 基板と、
 成形されるレンズ部のネガ形状に対応して所定の深さを有する凹状のキャビティ、及び前記レンズ部よりも突出した突起部を形成すべく前記キャビティよりも深く形成された凹部を備えた成形型と、
の間で硬化性樹脂を硬化させ、
 前記基板上に前記レンズ部とともに前記突起部の設けられたウエハレンズを製造するウエハレンズの製造方法であって、
 前記成形型における少なくとも前記凹部上に未硬化の硬化性樹脂を配設して硬化させる先端側成形工程を1回以上行った後、
 前記成形型の少なくとも前記キャビティと前記基板との間に未硬化の硬化性樹脂を配設し、配設した硬化性樹脂を前記基板で押圧しつつ硬化させる基端側成形工程を行うことを特徴とする。
According to a second aspect of the present invention,
A substrate,
Mold with a concave cavity having a predetermined depth corresponding to the negative shape of the lens part to be molded, and a recess formed deeper than the cavity so as to form a protrusion protruding from the lens part When,
Cure the curable resin between,
A wafer lens manufacturing method for manufacturing a wafer lens provided with the protruding portion together with the lens portion on the substrate,
After performing the front end side molding step of arranging and curing an uncured curable resin on at least the concave portion in the molding die one or more times,
An uncured curable resin is disposed between at least the cavity of the molding die and the substrate, and a proximal-side molding step is performed in which the disposed curable resin is cured while being pressed by the substrate. And
 本発明のウエハレンズの製造方法においては、
 前記先端側成形工程では、
 前記硬化性樹脂をスプレーコートによって均一な厚さに塗布した後、硬化させることが好ましい。
In the method for producing a wafer lens of the present invention,
In the tip side molding step,
The curable resin is preferably cured after being applied to a uniform thickness by spray coating.
 また、本発明のウエハレンズの製造方法においては、
 前記先端側成形工程を複数回行う場合、各先端側成形工程と、前記基端側成形工程とのうち、少なくとも互いに前後して行われる工程では、異なる種類の硬化性樹脂を用いることが好ましい。
In the method of manufacturing a wafer lens of the present invention,
When the distal end side molding step is performed a plurality of times, it is preferable to use different types of curable resins in at least the steps performed before and after each of the distal end side molding step and the proximal end side molding step.
 また、本発明のウエハレンズの製造方法においては、
 前記先端側成形工程では、
 前記硬化性樹脂を、空気中で硬化させることが好ましい。
In the method of manufacturing a wafer lens of the present invention,
In the tip side molding step,
The curable resin is preferably cured in air.
 また、本発明のウエハレンズの製造方法においては、
 前記先端側成形工程では、
 前記硬化性樹脂を、酸素を含まない気体中か、或いは真空中で硬化させることとしても良い。
In the method of manufacturing a wafer lens of the present invention,
In the tip side molding step,
The curable resin may be cured in a gas not containing oxygen or in a vacuum.
 また、本発明の第3の側面によれば、ウエハレンズにおいて、
 本発明のウエハレンズの製造方法によって製造されたことを特徴とする。
According to the third aspect of the present invention, in the wafer lens,
It is manufactured by the method for manufacturing a wafer lens of the present invention.
 本発明によれば、少なくともキャビティ(または凹部)上に未硬化の硬化性樹脂を配設して硬化させる先端側成形工程を1回以上行った後、成形型と基板との間(または少なくともキャビティと基板との間)に未硬化の硬化性樹脂を配設し、この硬化性樹脂を上方から基板で押圧しつつ硬化させる基端側成形工程を行うので、レンズ部(または突起部)が2回以上に分けて成形される。従って、サグ量の大きいウエハレンズを成形する場合であっても、硬化の際のヒケを生じたり、未硬化部分を生じたりするのを防止することができる。また、複数種類の成形型を用いる場合と異なり、1種類の成形型を用いてレンズ部(または突起部)を成形することができるため、レンズ部にゴミが混入することによる光学性能の変化や、成形型同士の位置がずれることによるレンズ部の光学性能の変化を防止することができる。従って、サグ量の大きい所望の光学性能のウエハレンズを形成することができる。 According to the present invention, after performing at least one tip side molding step of disposing and curing an uncured curable resin on at least a cavity (or a recess), between the mold and the substrate (or at least the cavity) An uncured curable resin is disposed between the substrate and the substrate, and a base-end side molding step is performed in which the curable resin is cured while being pressed from above with the substrate. Molded in more than once. Therefore, even when a wafer lens with a large sag amount is molded, it is possible to prevent the occurrence of sink marks during curing and the occurrence of uncured portions. In addition, unlike the case of using a plurality of types of molds, the lens part (or protrusion) can be molded using a single type of mold, so that the optical performance changes due to contamination of the lens part, Thus, it is possible to prevent a change in the optical performance of the lens unit due to the displacement of the molds. Therefore, it is possible to form a wafer lens having a desired optical performance with a large sag amount.
 また、レンズ部(または突起部)の基端側が開放された状態で先端側を樹脂で成形することができるため、樹脂が硬化収縮することによる光学機能面の転写不良を防止することができる。従って、より確実に所望の光学性能のウエハレンズを形成することができる。 Also, since the distal end side can be molded with resin with the base end side of the lens portion (or projection) open, it is possible to prevent transfer defects on the optical functional surface due to the resin being cured and shrunk. Therefore, a wafer lens having a desired optical performance can be formed more reliably.
 また、複数種類の成形型を用いる場合と異なり、1種類の成形型を用いてレンズ部を成形することができるため、成形型を高精度に位置決めするための手間を省き、生産性の低下を省くことができる。 In addition, unlike the case of using a plurality of types of molds, the lens part can be molded using one type of mold, which saves labor for positioning the mold with high accuracy and reduces productivity. It can be omitted.
実施形態にかかるウエハレンズの概略構成を示す斜視図である。It is a perspective view showing a schematic structure of a wafer lens concerning an embodiment. 実施形態にかかるウエハレンズ製造装置の概略構成を示す図面である。It is drawing which shows schematic structure of the wafer lens manufacturing apparatus concerning embodiment. 第1の実施形態にかかる樹脂型(成形型)の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the resin type | mold (molding die) concerning 1st Embodiment. 図3の樹脂型のマスター(母型)の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the resin-type master (matrix) of FIG. 実施形態にかかるウエハレンズ製造装置の制御構成を概略的に説明するためのブロック図である。It is a block diagram for demonstrating schematically the control structure of the wafer lens manufacturing apparatus concerning embodiment. (a)は第1の実施形態にかかるレンズ部の先端側成形工程を示す図であり、(b)は基端側成形工程を示す図である。(A) is a figure which shows the front end side shaping | molding process of the lens part concerning 1st Embodiment, (b) is a figure which shows a base end side shaping | molding process. 第1の実施形態にかかるウエハレンズ製造装置の概略構成を示す図面であって、樹脂を成形型(樹脂型)に充填したときの状態を表す図面である。It is drawing which shows schematic structure of the wafer lens manufacturing apparatus concerning 1st Embodiment, Comprising: It is drawing showing the state when resin is filled into the shaping | molding die (resin mold). (a)は第2の実施形態にかかるレンズ部の先端側成形工程を示す図であり、(b)は基端側成形工程を示す図である。(A) is a figure which shows the front end side shaping | molding process of the lens part concerning 2nd Embodiment, (b) is a figure which shows a base end side shaping | molding process. 従来技術を説明するための概略的な図面であって、樹脂を成形型に充填する前の状態を表す図面である。It is a schematic drawing for demonstrating a prior art, Comprising: It is drawing showing the state before filling resin in a shaping | molding die. 従来技術を説明するための概略的な図面であって、樹脂を成形型に充填したときの状態を表す図面である。It is schematic drawing for demonstrating a prior art, Comprising: It is drawing showing a state when resin is filled with the shaping | molding die.
 次に、図面を参照しながら本発明の好ましい実施形態について説明する。 Next, a preferred embodiment of the present invention will be described with reference to the drawings.
 図1に示す通り、ウエハレンズ1は円形状のガラス基板3と、複数の凸レンズ部5とを有している。ガラス基板3は基板の一例である。ガラス基板3の表面には、サグ量0.3mm~1mm程度の複数の凸レンズ部5がアレイ状に配置されている。凸レンズ部5には、光学面の表面に回折溝や段差等の微細構造が形成されていてもよい。 As shown in FIG. 1, the wafer lens 1 has a circular glass substrate 3 and a plurality of convex lens portions 5. The glass substrate 3 is an example of a substrate. On the surface of the glass substrate 3, a plurality of convex lens portions 5 having a sag amount of about 0.3 mm to 1 mm are arranged in an array. The convex lens portion 5 may have a fine structure such as a diffraction groove or a step on the surface of the optical surface.
 凸レンズ部5は樹脂5Aで形成されている。樹脂5Aは硬化性樹脂であり、本実施の形態においては光硬化性樹脂、好ましくはUV硬化性樹脂となっている。光硬化性樹脂としては、例えばアクリル樹脂やアリルエステル樹脂などを用いることができ、これら樹脂はラジカル重合により反応硬化させることができる。その他の光硬化性樹脂としては、例えばエポキシ系の樹脂などを用いることができ、当該樹脂はカチオン重合により反応硬化させることができる。 The convex lens portion 5 is made of resin 5A. The resin 5A is a curable resin, and is a photocurable resin, preferably a UV curable resin, in the present embodiment. As the photocurable resin, for example, an acrylic resin or an allyl ester resin can be used, and these resins can be cured by radical polymerization. As another photocurable resin, for example, an epoxy-based resin can be used, and the resin can be reaction-cured by cationic polymerization.
 次に、ウエハレンズ1を製造する際に使用するウエハレンズ製造装置30について説明する。 Next, the wafer lens manufacturing apparatus 30 used when manufacturing the wafer lens 1 will be described.
 図2に示す通り、ウエハレンズ製造装置30はベース32を有している。ベース32の上部には内側に突出する突出部34が形成されている。ベース32の底部と突出部34との間にはガイド36が立設されている。ガイド36間にはステージ40が設けられている。ステージ40には貫通孔42が形成されており、ガイド36が貫通孔42を貫通している。 As shown in FIG. 2, the wafer lens manufacturing apparatus 30 has a base 32. A protruding portion 34 protruding inward is formed on the upper portion of the base 32. A guide 36 is erected between the bottom of the base 32 and the protrusion 34. A stage 40 is provided between the guides 36. A through hole 42 is formed in the stage 40, and the guide 36 passes through the through hole 42.
 ベース32上であってステージ40の下方にはギヤードモータ50が設けられている。ギヤードモータ50はポテンショメータ51を内蔵している(図5参照)。ギヤードモータ50にはシャフト52が連結されており、シャフト52の先端部はステージ40を支持している。ウエハレンズ製造装置30では、ギヤードモータ50の作動によりシャフト52が上下方向に伸縮するようになっており、これに伴いステージ40がガイド36に案内されながら上下方向に移動可能となっている。 A geared motor 50 is provided on the base 32 and below the stage 40. The geared motor 50 includes a potentiometer 51 (see FIG. 5). A shaft 52 is connected to the geared motor 50, and the tip of the shaft 52 supports the stage 40. In the wafer lens manufacturing apparatus 30, the shaft 52 extends and contracts in the vertical direction by the operation of the geared motor 50, and accordingly, the stage 40 can move in the vertical direction while being guided by the guide 36.
 ステージ40にはほぼ半球形状を呈した凹部46が形成されている。凹部46には平行出し部材60が埋設されている。平行出し部材60は水面に浮かぶお椀のように凹部46に対し揺動可能となっている。平行出し部材60上にはXYステージ62とθステージ64が設けられている。XYステージ62はステージ40上のXY平面(2次元平面)において移動可能となっており、θステージ64はその中心部を回転軸として回動可能となっている。 The recess 40 having a substantially hemispherical shape is formed on the stage 40. A paralleling member 60 is embedded in the recess 46. The paralleling member 60 can swing with respect to the recess 46 like a bowl floating on the water surface. An XY stage 62 and a θ stage 64 are provided on the paralleling member 60. The XY stage 62 is movable on an XY plane (two-dimensional plane) on the stage 40, and the θ stage 64 is rotatable about its central portion as a rotation axis.
 XYステージ62とθステージ64上には真空チャック装置70が設置されている。真空チャック装置70には同心円状の連通溝72が形成されている。連通溝72には吸引機構(図示略)が連結されており、当該吸引機構の作動により連通溝72からエアを吸引し、真空チャック装置70上の部材を吸引・固定することができるようになっている。本実施形態では真空チャック装置70により樹脂型20(成形型)が吸引・固定される。 A vacuum chuck device 70 is installed on the XY stage 62 and the θ stage 64. A concentric communication groove 72 is formed in the vacuum chuck device 70. A suction mechanism (not shown) is connected to the communication groove 72, and air can be sucked from the communication groove 72 by the operation of the suction mechanism, and members on the vacuum chuck device 70 can be sucked and fixed. ing. In the present embodiment, the resin mold 20 (molding mold) is sucked and fixed by the vacuum chuck device 70.
 ベース32の上部にはスタンプホルダ80が固定されており、スタンプホルダ80には、光透過性の部材で構成された真空チャック装置110が固定されている。真空チャック装置110には同心円状の連通溝112が形成されている。連通溝112には吸引機構(図示略)が連結されており、当該吸引機構の作動により連通溝112からエアを吸引し、真空チャック装置110下の部材を吸引・固定することができるようになっている。本実施形態では真空チャック装置110によりガラス基板3が吸引・固定される。真空チャック装置110の上方には光源90が設けられており、光源90が点灯すると、その光は真空チャック装置110及びガラス基板3透過するようになっている。 A stamp holder 80 is fixed to the upper part of the base 32, and a vacuum chuck device 110 made of a light transmissive member is fixed to the stamp holder 80. A concentric communication groove 112 is formed in the vacuum chuck device 110. A suction mechanism (not shown) is connected to the communication groove 112, and air can be sucked from the communication groove 112 by the operation of the suction mechanism, and members under the vacuum chuck device 110 can be sucked and fixed. ing. In the present embodiment, the glass substrate 3 is sucked and fixed by the vacuum chuck device 110. A light source 90 is provided above the vacuum chuck device 110, and when the light source 90 is turned on, the light passes through the vacuum chuck device 110 and the glass substrate 3.
 図2,図3に示す通り、樹脂型20は、主には成形部22と基材26とで構成されている。成形部22には凹状のキャビティ24がアレイ状に複数形成されている。キャビティ24の表面(成形面)形状はウエハレンズ1における凸レンズ部5のネガ形状に対応して所定の深さとなっており、図2、図3では略半球形状に凹んでいる。 2 and 3, the resin mold 20 is mainly composed of a molded part 22 and a base material 26. A plurality of concave cavities 24 are formed in the molding portion 22 in an array. The surface (molding surface) shape of the cavity 24 has a predetermined depth corresponding to the negative shape of the convex lens portion 5 in the wafer lens 1, and is recessed in a substantially hemispherical shape in FIGS. 2 and 3.
 成形部22は、樹脂22Aによって形成されている。樹脂22Aとしては、離型性の良好な樹脂、特に透明樹脂が好ましい。離型剤を塗布しなくても離型できる点で優れる。樹脂22Aとしては、光硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂のいずれでも構わない。 The molding part 22 is formed of a resin 22A. As the resin 22A, a resin having good releasability, particularly a transparent resin is preferable. It is excellent in that it can be released without applying a release agent. As the resin 22A, any of a photocurable resin, a thermosetting resin, and a thermoplastic resin may be used.
 基材26は、樹脂型20の成形部22のみでは強度に劣る場合でも、成形部22に基材26を貼り付けることで樹脂型20の強度が上がり、何回も成形することができるという、裏打ち材のことである。 Even if the base material 26 is inferior in strength only by the molding part 22 of the resin mold 20, the strength of the resin mold 20 is increased by attaching the base material 26 to the molding part 22, and can be molded many times. It is a backing material.
 基材26は、成形部22と異なる材料で構成されてもよいし、成形部22と同一の材料で一体的に構成されてもよい。基材26を成形部22と異なる材料で構成する場合には、例えば石英、シリコーンウェハ、金属、ガラス、樹脂、セラミックス等、平滑性を有するものなら何れでもよい。基材26を成形部22と同一材料で一体的に構成するとは、実質的には成形部22だけで樹脂型20を構成することである。 The base material 26 may be made of a material different from that of the molding part 22 or may be integrally made of the same material as that of the molding part 22. When the base material 26 is made of a material different from that of the molding part 22, any material having smoothness such as quartz, silicone wafer, metal, glass, resin, ceramics and the like may be used. Constructing the base material 26 integrally with the same material as the molding part 22 means that the resin mold 20 is substantially constituted by only the molding part 22.
 なお、ウエハレンズ1の製造(凸レンズ部5の成形)にあたっては、図3の樹脂型20が主に使用されるが、これに加えて図4のマスター10も使用される。すなわち、マスター10は樹脂型20を製造する際に用いる母型であり、樹脂型20はウエハレンズ1(凸レンズ部5)を成形する際に用いる成形型である。樹脂型20はウエハレンズ1を量産するのに複数回にわたり使用され、その使用目的,使用頻度などにおいてマスター10とは異なるものである。 In the manufacture of the wafer lens 1 (molding of the convex lens portion 5), the resin mold 20 of FIG. 3 is mainly used, but in addition to this, the master 10 of FIG. 4 is also used. That is, the master 10 is a mother mold used when the resin mold 20 is manufactured, and the resin mold 20 is a molding mold used when the wafer lens 1 (convex lens portion 5) is molded. The resin mold 20 is used a plurality of times for mass production of the wafer lens 1, and is different from the master 10 in the purpose of use and the frequency of use.
 図4に示す通り、マスター10は直方体状のベース部12に対し複数の凸部14がアレイ状に形成されている。凸部14はウエハレンズ1の凸レンズ部5に対応する部位であり、略半球形状に突出している。なお、マスター10の外形状は、このように四角形であっても良いし円形であっても良い。 As shown in FIG. 4, the master 10 has a plurality of convex portions 14 formed in an array with respect to a rectangular parallelepiped base portion 12. The convex portion 14 is a portion corresponding to the convex lens portion 5 of the wafer lens 1 and protrudes in a substantially hemispherical shape. Note that the outer shape of the master 10 may be a quadrangle or a circle as described above.
 凸部14の表面(成形面)形状は、ガラス基板3上に成形転写する凸レンズ部5の光学面形状に対応するポジ形状となっている。 The surface (molding surface) shape of the convex portion 14 is a positive shape corresponding to the optical surface shape of the convex lens portion 5 that is molded and transferred onto the glass substrate 3.
 マスター10の材料としては、切削や研削などの機械加工によって光学面形状を創製する場合には、金属または金属ガラスを用いることができる。分類としては鉄系の材料とその他合金が挙げられる。鉄系としては、熱間金型、冷間金型、プラスチック金型、高速度工具鋼、一般構造用圧延鋼材、機械構造用炭素鋼、クロム・モリブデン鋼、ステンレス鋼が挙げられる。その内、プラスチック金型としては、プリハードン鋼、焼入れ焼戻し鋼、時効処理鋼がある。プリハードン鋼としては、SC系、SCM系、SUS系が挙げられる。さらに具体的には、SC系はPXZがある。SCM系はHPM2、HPM7、PX5、IMPAXが挙げられる。SUS系は、HPM38、HPM77、S-STAR、G-STAR、STAVAX、RAMAX-S、PSLが挙げられる。また、鉄系の合金としては特開2005-113161や特開2005-206913が挙げられる。非鉄系の合金は主に、銅合金、アルミ合金、亜鉛合金がよく知られている。例としては、特開平10-219373、特開2000-176970に示されている合金が挙げられる。金属ガラスの材料としては、PdCuSiやPdCuSiNiなどがダイヤモンド切削における被削性が高く、工具の磨耗が少ないので適している。また、無電解や電解のニッケル燐メッキなどのアモルファス合金もダイヤモンド切削における被削性が良いので適している。これらの高被削性材料は、マスター10全体を構成しても良いし、メッキやスパッタなどの方法によって特に光学転写面の表面だけを覆っても良い。 As the material of the master 10, when an optical surface shape is created by machining such as cutting or grinding, metal or metal glass can be used. The classification includes ferrous materials and other alloys. Examples of the iron system include hot dies, cold dies, plastic dies, high-speed tool steel, general structural rolled steel, carbon steel for mechanical structure, chromium / molybdenum steel, and stainless steel. Among them, plastic molds include pre-hardened steel, quenched and tempered steel, and aging treated steel. Examples of pre-hardened steel include SC, SCM, and SUS. More specifically, the SC system is PXZ. SCM systems include HPM2, HPM7, PX5, and IMPAX. Examples of the SUS system include HPM38, HPM77, S-STAR, G-STAR, STAVAX, RAMAX-S, and PSL. Examples of iron-based alloys include JP-A-2005-113161 and JP-A-2005-206913. As the non-ferrous alloys, copper alloys, aluminum alloys and zinc alloys are well known. Examples include the alloys disclosed in JP-A-10-219373 and JP-A-2000-176970. PdCuSi, PdCuSiNi, etc. are suitable as metallic glass materials because they have high machinability in diamond cutting and less tool wear. Amorphous alloys such as electroless and electrolytic nickel phosphorous plating are also suitable because they have good machinability in diamond cutting. These highly machinable materials may constitute the entire master 10 or may cover only the surface of the optical transfer surface, in particular, by a method such as plating or sputtering.
 図5に示す通り、ギヤードモータ50,ポテンショメータ51,平行出し部材60,XYステージ62,θステージ64,真空チャック装置70,110(吸引機構),スタンプホルダ80(吸引機構),光源90は制御装置100に接続されている。制御装置100はこれら部材の動作を制御するようになっている。特に本実施形態では、制御装置100はポテンショメータ51の出力値に基づきギヤードモータ50の動作(回転量)を制御するようになっている。 As shown in FIG. 5, the geared motor 50, potentiometer 51, parallelizing member 60, XY stage 62, θ stage 64, vacuum chuck devices 70 and 110 (suction mechanism), stamp holder 80 (suction mechanism), and light source 90 are control devices. 100. The control device 100 controls the operation of these members. Particularly in the present embodiment, the control device 100 controls the operation (rotation amount) of the geared motor 50 based on the output value of the potentiometer 51.
 続いて、ウエハレンズ製造装置30を用いたウエハレンズ1の製造方法について説明する。 Subsequently, a method for manufacturing the wafer lens 1 using the wafer lens manufacturing apparatus 30 will be described.
 図2に示す通り、はじめに、真空チャック装置110に対しガラス基板3を吸引・固定するとともに、真空チャック装置70に対し樹脂型20を設置して吸引・固定する。 As shown in FIG. 2, first, the glass substrate 3 is sucked and fixed to the vacuum chuck device 110, and the resin mold 20 is set to the vacuum chuck device 70 and sucked and fixed.
 次に、図2,図6(a)に示す通り、樹脂型20における少なくとも各キャビティ24上に未硬化の樹脂5Aを所定量だけ配設する。ここで、本実施の形態においては、樹脂5Aをスプレーコートにより均一な厚さに塗布することで、樹脂5Aを配設しているが、滴下することによって配設することとしても良い。また、各キャビティ24上にのみ、キャビティ24の容積よりも少量の樹脂5Aを配設しているが、樹脂型20の上面の全体にキャビティ24の容積よりも多量の樹脂5Aを配設することとしても良い。 Next, as shown in FIG. 2 and FIG. 6A, a predetermined amount of uncured resin 5A is disposed on at least each cavity 24 in the resin mold 20. Here, in the present embodiment, the resin 5A is disposed by applying the resin 5A to a uniform thickness by spray coating. However, the resin 5A may be disposed by dropping. Further, only a small amount of the resin 5A than the volume of the cavity 24 is disposed only on each cavity 24, but a larger amount of the resin 5A than the volume of the cavity 24 is disposed on the entire upper surface of the resin mold 20. It is also good.
 次に、光源90を点灯させ、光透過性の真空チャック装置110及びガラス基板3を介して樹脂5Aに光を照射し、樹脂5Aを硬化させる。これにより、凸レンズ部5の先端側部分が成形される(先端側成形工程)。 Next, the light source 90 is turned on, and the resin 5A is irradiated with light through the light-transmitting vacuum chuck device 110 and the glass substrate 3 to cure the resin 5A. Thereby, the front end side part of the convex lens part 5 is shape | molded (front end side shaping | molding process).
 なお、本実施の形態においては、以上の先端側成形工程を、空気中に樹脂5Aを曝した状態で行っている。これにより、樹脂5Aの表面では酸素によって硬化が阻害されることとなる。 In the present embodiment, the above-described tip side molding process is performed in a state where the resin 5A is exposed to the air. Thereby, hardening will be inhibited by oxygen on the surface of the resin 5A.
 次に、光源90を消灯させて樹脂5Aに対する光照射を停止した後、樹脂型20とガラス基板3との間における少なくともキャビティ24上に未硬化の樹脂5Aを所定量だけ滴下して配設する。ここで、本実施の形態においては、樹脂型20の上面の中央部に樹脂5Aを滴下して配設しているが、各キャビティ24上に樹脂5Aを配設することとしても良い。また、本実施の形態においては、ここで配設される樹脂5Aの種類は、上述の先端側成形工程で用いた樹脂の種類と同じになっている。 Next, after the light source 90 is turned off and the light irradiation to the resin 5A is stopped, an uncured resin 5A is dropped and disposed on at least the cavity 24 between the resin mold 20 and the glass substrate 3. . Here, in the present embodiment, the resin 5 </ b> A is dropped and disposed at the center of the upper surface of the resin mold 20, but the resin 5 </ b> A may be disposed on each cavity 24. Moreover, in this Embodiment, the kind of resin 5A arrange | positioned here is the same as the kind of resin used at the above-mentioned front end side shaping | molding process.
 次に、制御装置100により平行出し部材60,XYステージ62,θステージ64を制御して、樹脂型20の上面とガラス基板3の下面とを平行にする。 Next, the paralleling member 60, the XY stage 62, and the θ stage 64 are controlled by the control device 100 so that the upper surface of the resin mold 20 and the lower surface of the glass substrate 3 are parallel.
 この状態において、図7に示す通り、樹脂型20を位置制御して、ガラス基板3に対し樹脂型20を所定位置まで移動させ、樹脂型20をその所定位置で保持する。 In this state, as shown in FIG. 7, the position of the resin mold 20 is controlled, the resin mold 20 is moved to a predetermined position with respect to the glass substrate 3, and the resin mold 20 is held at the predetermined position.
 詳しくは、ギヤードモータ50を作動させてシャフト52を上方に伸ばし、ステージ40を上方に移動させる。この場合、制御装置100がポテンショメータ51の出力値に基づきギヤードモータ50の作動を制御し、ステージ40を所定の高さ位置まで移動させる。 Specifically, the geared motor 50 is operated to extend the shaft 52 upward, and the stage 40 is moved upward. In this case, the control device 100 controls the operation of the geared motor 50 based on the output value of the potentiometer 51, and moves the stage 40 to a predetermined height position.
 ウエハレンズ製造装置30では、移動させようとするステージ40の高さ位置が制御装置100に予め設定されており、図7に示す通り、制御装置100は真空チャック装置70が基準位置S(図2参照)に到達する位置までギヤードモータ50を作動させ、真空チャック装置70が基準位置Sに到達したらギヤードモータ50の作動を停止させる。 In the wafer lens manufacturing apparatus 30, the height position of the stage 40 to be moved is preset in the control apparatus 100. As shown in FIG. 7, the control apparatus 100 has the vacuum chuck apparatus 70 in the reference position S (FIG. 2). The geared motor 50 is operated to a position that reaches (see), and when the vacuum chuck device 70 reaches the reference position S, the operation of the geared motor 50 is stopped.
 その結果、未硬化の樹脂5Aが上方のガラス基板3から押圧を受けて徐々に広がり、樹脂型20におけるキャビティ24の基端側(図中、上側)に充填される。その後、ステージ40を基準位置Sに対応する位置で保持したまま、光源90を点灯させ、図6(b)に示す通り、光透過性の真空チャック装置110(図示せず)及びガラス基板3を介して樹脂5Aに対し光照射し、樹脂5Aを硬化させる。これにより、凸レンズ部5の基端側部分が成形される(基端側成形工程)。 As a result, the uncured resin 5A receives pressure from the upper glass substrate 3 and gradually spreads, and fills the base end side (upper side in the drawing) of the cavity 24 in the resin mold 20. Thereafter, the light source 90 is turned on while the stage 40 is held at a position corresponding to the reference position S, and as shown in FIG. 6B, the light transmissive vacuum chuck device 110 (not shown) and the glass substrate 3 are mounted. The resin 5A is irradiated with light to cure the resin 5A. Thereby, the base end side part of the convex lens part 5 is shape | molded (base end side shaping | molding process).
 その後、光源90を消灯させて樹脂5Aに対する光照射を停止する。その後、ギヤードモータ50を作動させ、シャフト52を下方に縮ませてステージ40を下方に移動させ、硬化後の樹脂5Aをガラス基板3とともに樹脂型20から離型する。その結果、複数の凸レンズ部5がガラス基板3上に形成されたウエハレンズ1を製造することができる。 Thereafter, the light source 90 is turned off and the light irradiation to the resin 5A is stopped. Thereafter, the geared motor 50 is operated, the shaft 52 is contracted downward, the stage 40 is moved downward, and the cured resin 5 </ b> A is released from the resin mold 20 together with the glass substrate 3. As a result, the wafer lens 1 in which the plurality of convex lens portions 5 are formed on the glass substrate 3 can be manufactured.
 以上の本実施形態によれば、少なくともキャビティ24上に未硬化の樹脂5Aを配設して硬化させる先端側成形工程を1回以上行った後、少なくともキャビティ24上に未硬化の樹脂5Aを配設し、この樹脂5Aを上方からガラス基板3で押圧しつつ硬化させる基端側成形工程を行うので、凸レンズ部5が2回以上に分けて成形される。従って、サグ量の大きいウエハレンズ1を成形する場合であっても、硬化の際のヒケを生じたり、未硬化部分を生じたりするのを防止することができる。また、複数種類の樹脂型(成形型)20を用いる場合と異なり、1種類の樹脂型20を用いて凸レンズ部5を成形することができるため、凸レンズ部5にゴミが混入することによる光学性能の変化や、樹脂型20同士の位置がずれることによる凸レンズ部5の光学性能の変化を防止することができる。従って、サグ量の大きい所望の光学性能のウエハレンズ1を形成することができる。 According to the present embodiment described above, at least one end-side molding step of disposing and curing the uncured resin 5A on at least the cavity 24 is performed one or more times, and then the uncured resin 5A is disposed on at least the cavity 24. Since the base end side molding step is performed in which the resin 5A is cured while being pressed by the glass substrate 3 from above, the convex lens portion 5 is molded in two or more steps. Therefore, even when the wafer lens 1 having a large sag amount is molded, it is possible to prevent the occurrence of sink marks during curing and the occurrence of uncured portions. Unlike the case of using a plurality of types of resin molds (molding molds) 20, the convex lens portion 5 can be molded using one type of resin mold 20, so that the optical performance due to dust mixed in the convex lens portion 5. And changes in the optical performance of the convex lens portion 5 due to the displacement of the positions of the resin molds 20 can be prevented. Therefore, it is possible to form the wafer lens 1 having a desired optical performance with a large sag amount.
 また、凸レンズ部5の基端側が開放された状態で先端側を樹脂5Aで成形することができるため、樹脂5Aが硬化収縮することによる光学機能面の転写不良を防止することができる。従って、より確実に所望の光学性能のウエハレンズ1を形成することができる。 Further, since the distal end side can be molded with the resin 5A in a state where the proximal end side of the convex lens portion 5 is opened, it is possible to prevent a transfer failure of the optical function surface due to the resin 5A being cured and contracted. Therefore, the wafer lens 1 having a desired optical performance can be formed more reliably.
 また、複数種類の樹脂型(成形型)20を用いる場合と異なり、1種類の樹脂型20を用いて凸レンズ部5を成形することができるため、樹脂型20を高精度に位置決めするための手間を省き、生産性の低下を省くことができる。 Further, unlike the case of using a plurality of types of resin molds (molding molds) 20, the convex lens portion 5 can be molded using one type of resin mold 20, so that it is troublesome to position the resin mold 20 with high accuracy. Can be eliminated, and productivity can be reduced.
 また、先端側成形工程では樹脂5Aをスプレーコートによって均一な厚さに塗布した後、硬化させるので、各成形工程で硬化される樹脂層の界面を所定の形状に形成することができる。従って、所望の光学性能のウエハレンズ1を確実に形成することができる。 In the front end side molding step, the resin 5A is applied to a uniform thickness by spray coating and then cured, so that the interface of the resin layer cured in each molding step can be formed in a predetermined shape. Therefore, it is possible to reliably form the wafer lens 1 having a desired optical performance.
 また、先端側成形工程では樹脂5Aを空気中で硬化させ、樹脂5Aの表面での硬化を酸素によって阻害するため、当該先端側成形工程で配設された樹脂5Aの表面の未硬化部分を、後の基端側成形工程で配設される樹脂5Aとともに硬化させることができる。従って、これら樹脂5Aの間での界面の形成を防止し、積層される樹脂5A同士を連続した状態に硬化させることができる。 Further, in the front end side molding step, the resin 5A is cured in air, and the curing on the surface of the resin 5A is inhibited by oxygen. Therefore, the uncured portion of the surface of the resin 5A disposed in the front end side molding step is It can be cured together with the resin 5A disposed in the subsequent proximal end side molding step. Therefore, the formation of an interface between these resins 5A can be prevented, and the laminated resins 5A can be cured in a continuous state.
 なお、上記第1の実施形態においては、先端側成形工程で用いる樹脂5Aと、基端側成形工程で用いる樹脂5Aとを同じ種類とすることとして説明したが、異なる種類としても良い。この場合には、より多様な光学性能のウエハレンズを形成することができる。
[第2の実施形態]
 本発明に係る第2の実施形態は下記の点で第1の実施形態と異なっており、それ以外は第1の実施形態と同様となっている。
In the first embodiment, the resin 5A used in the front end side molding step and the resin 5A used in the base end side molding step have been described as being the same type, but may be different types. In this case, wafer lenses having more various optical performances can be formed.
[Second Embodiment]
The second embodiment according to the present invention is different from the first embodiment in the following points, and is otherwise the same as the first embodiment.
 図2に示すように、本実施形態におけるウエハレンズ製造装置30Aは、樹脂型20の代わりに樹脂型20Aを備えており、樹脂型20Aの成形部22Bは、図8に示すように、凸レンズ部5の光学機能面を転写成形する複数のキャビティ24の間に、突起部を転写成形する凹状のキャビティ(凹部)24Aを有している。また、キャビティ24,24Aの間の遷移部分では、表面が粗く形成されて離型処理がされている。ここで、キャビティ24Aの深さはキャビティ24よりも深くなっている。キャビティ24Aにより成形される突起部は、ウエハレンズを積層する際にスペーサとして機能したり、ウエハレンズを光学装置内に配設する際に位置決め部材として機能したりするものであり、凸レンズ部5よりも厚み(高さ)が大きくなっている。 As shown in FIG. 2, a wafer lens manufacturing apparatus 30A according to the present embodiment includes a resin mold 20A instead of the resin mold 20, and the molding part 22B of the resin mold 20A has a convex lens part as shown in FIG. Between the plurality of cavities 24 for transfer-molding the optical function surface 5, a concave cavity (recess) 24 A for transfer-molding the protrusion is provided. In addition, at the transition portion between the cavities 24 and 24A, the surface is roughened and the mold release process is performed. Here, the depth of the cavity 24 </ b> A is deeper than the cavity 24. The protrusion formed by the cavity 24A functions as a spacer when laminating the wafer lens, or functions as a positioning member when the wafer lens is disposed in the optical device. The thickness (height) is also increased.
 本実施形態にかかるウエハレンズ製造装置30Aを用いてウエハレンズを製造する場合には、図8(a)に示すように、先端側成形工程において少なくともキャビティ24Aの先端側で樹脂5Aを硬化させた後、図8(b)に示すように、基端側成形工程において少なくともキャビティ24とガラス基板3との間、好ましくはキャビティ24Aの基端側及びキャビティ24の内部に樹脂を充填させて硬化させる点を除いて、上記第1の実施形態と同様にしてウエハレンズ1を製造する。但し、先端側成形工程でキャビティ24Aに樹脂5Aを充填、硬化させた後、基端側成形工程でキャビティ24に樹脂を充填、硬化させても良い。この場合、先端側成形工程で用いる樹脂5Aと、基端側成形工程で用いる樹脂5Aとを異なる種類の樹脂とすれば、同一種類の樹脂を用いる場合と比較して、多様な光学性能のウエハレンズを形成することができる。 When a wafer lens is manufactured using the wafer lens manufacturing apparatus 30A according to the present embodiment, as shown in FIG. 8A, the resin 5A is cured at least on the tip side of the cavity 24A in the tip side molding step. Thereafter, as shown in FIG. 8B, in the base end side molding step, resin is filled at least between the cavity 24 and the glass substrate 3, preferably the base end side of the cavity 24A and the inside of the cavity 24, and is cured. Except for this point, the wafer lens 1 is manufactured in the same manner as in the first embodiment. However, after the resin 5A is filled and cured in the cavity 24A in the distal end side molding process, the cavity 24 may be filled and cured in the proximal end molding process. In this case, if the resin 5A used in the front end side molding step and the resin 5A used in the base end side molding step are different types of resins, the wafer has various optical performances compared to the case where the same type of resin is used. A lens can be formed.
 以上の本実施形態によれば、上記第1の実施形態と同様の効果を得ることができる。 According to the present embodiment described above, the same effect as in the first embodiment can be obtained.
 なお、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。 It should be noted that the present invention should not be construed as being limited to the above-described embodiment, and of course can be changed or improved as appropriate.
 例えば、上記第1,第2の実施形態においては、先端側成形工程を1回行うこととして説明したが、複数回行うこととしても良い。この場合には、硬化の際のヒケを生じたり、未硬化部分を生じたりするのをより確実に防止することができるため、サグ量の大きい所望の光学性能のウエハレンズを確実に形成することができる。 For example, in the first and second embodiments described above, the tip side molding step is described as being performed once, but may be performed a plurality of times. In this case, since it is possible to more reliably prevent the occurrence of sink marks or uncured portions during curing, a wafer lens having a desired optical performance with a large sag amount can be reliably formed. Can do.
 更に、先端側成形工程を複数回行う場合には、各先端側成形工程と、基端側成形工程とのうち、少なくとも互いに前後して行われる工程では、異なる種類の樹脂5Aを用いることとしても良い。この場合には、より多様な光学性能のウエハレンズを形成することができる。ここで、各成形工程で異なる種類の樹脂を用いる場合には、先の成形工程で粘度の低い樹脂を用いることにより、樹脂の塗布を容易化するとともに、光学機能面の転写性を高めることができる。また、先の成形工程で硬化速度の高く、収縮の大きい樹脂を用いることにより、スループットを向上させることができる。また、先端側成形工程で用いる樹脂は離型性に優れ、基端側成形工程で用いる樹脂はガラスとの密着性に優れることが望ましく、例えば前者の樹脂に離型剤を添加しておき、後者の樹脂にはガラスとの密着性を高めるため処方を行うことが考えられる。また、各成形工程で屈折率の同じ樹脂を用いることにより、光学的な境界面を無くすことができるため、境界面による光学性能の低下を防止することができる。 Further, when the distal end side molding step is performed a plurality of times, different types of resin 5A may be used in at least the steps performed before and after each of the distal end side molding step and the proximal end side molding step. good. In this case, wafer lenses having more various optical performances can be formed. Here, when different types of resins are used in each molding step, the resin can be easily applied and the transferability of the optical functional surface can be improved by using a resin having a low viscosity in the previous molding step. it can. In addition, the throughput can be improved by using a resin having a high curing rate and a large shrinkage in the previous molding step. In addition, the resin used in the front end side molding step is excellent in releasability, and the resin used in the base end side molding step is preferably excellent in adhesiveness with glass.For example, a release agent is added to the former resin, It is conceivable to formulate the latter resin in order to improve the adhesion to glass. Further, by using a resin having the same refractive index in each molding step, an optical boundary surface can be eliminated, so that a decrease in optical performance due to the boundary surface can be prevented.
 また、先端側成形工程では、空気中で樹脂5Aを硬化させることとして説明したが、酸素を含まない気体中か、或いは真空中で硬化させることとしても良い。この場合には、酸素の存在下で樹脂5Aを硬化させる場合と異なり、樹脂5Aの表面を硬化させた状態で、後の成形工程(次回の先端側成形工程または基端側成形工程)で配設される樹脂5Aを硬化させることができる。従って、特に、互いに前後して行われる成形工程で異種の樹脂5Aを配設する場合に、内部に界面の形成された凸レンズ部5を形成することができる。 In the tip side molding step, the resin 5A is described as being cured in the air. However, the resin 5A may be cured in a gas not containing oxygen or in a vacuum. In this case, unlike the case where the resin 5A is cured in the presence of oxygen, the resin 5A is cured in the subsequent molding process (next distal-end molding process or proximal-end molding process) with the surface of the resin 5A cured. The provided resin 5A can be cured. Therefore, in particular, when dissimilar resins 5A are disposed in the molding process performed before and after each other, it is possible to form the convex lens portion 5 in which the interface is formed.
 また、樹脂型20を上昇させることで樹脂5Aを上方からガラス基板3で押圧することとして説明したが、ガラス基板3を下降させることとしても良いし、ガラス基板3を下降させつつ樹脂型20を上昇させることとしても良い。 Moreover, although it demonstrated as resin 5A being pressed with the glass substrate 3 from the upper direction by raising the resin mold 20, it is good also as lowering | lowering the glass substrate 3, and making the resin mold 20 lowering | lowering the glass substrate 3. FIG. It may be raised.
 また、真空チャック装置110及びガラス基板3の透過光によって樹脂5Aを硬化させることとして説明したが、樹脂型20を透光性としておき、樹脂型20の透過光によって硬化させても良い。 In addition, although the resin 5A has been described as being cured by the transmitted light of the vacuum chuck device 110 and the glass substrate 3, the resin mold 20 may be made translucent and cured by the transmitted light of the resin mold 20.
 1 ウエハレンズ
 3 ガラス基板(基板)
 5 凸レンズ部
 5A 樹脂(硬化性樹脂)
 10 マスター
 12 ベース部
 14 凸部
 20 樹脂型(成形型)
 22 成形部
 22A 樹脂
 24 キャビティ
 24A キャビティ(凹部)
 26 基材
 30 ウエハレンズ製造装置
 32 ベース
 34 突出部
 36 ガイド
 40 ステージ
 42 貫通孔
 46 凹部
 50 ギヤードモータ
 51 ポテンショメータ
 52 シャフト
 60 平行出し部材
 62 XYステージ
 64 θステージ
 70 真空チャック装置
 72 連通溝
 80 スタンプホルダ
 82 連通溝
 90 光源
 100 制御装置
 110 真空チャック装置
 112 連通溝
1 Wafer lens 3 Glass substrate (substrate)
5 Convex lens part 5A Resin (curable resin)
10 Master 12 Base 14 Convex 20 Resin Mold (Molding Die)
22 Molding part 22A Resin 24 Cavity 24A Cavity (concave)
26 Base material 30 Wafer lens manufacturing apparatus 32 Base 34 Protruding part 36 Guide 40 Stage 42 Through hole 46 Recessed part 50 Geared motor 51 Potentiometer 52 Shaft 60 Paralleling member 62 XY stage 64 θ stage 70 Vacuum chuck device 72 Communication groove 80 Stamp holder 82 Communication groove 90 Light source 100 Control device 110 Vacuum chuck device 112 Communication groove

Claims (7)

  1.  基板と、凹状のキャビティが形成された成形型との間で硬化性樹脂を硬化させ、当該基板上にレンズ部の設けられたウエハレンズを製造するウエハレンズの製造方法であって、
     前記成形型における少なくとも前記キャビティ上に未硬化の硬化性樹脂を配設して硬化させる先端側成形工程を1回以上行った後、
     前記成形型と前記基板との間に未硬化の硬化性樹脂を配設し、配設した硬化性樹脂を前記基板で押圧しつつ硬化させる基端側成形工程を行うことを特徴とするウエハレンズの製造方法。
    A method for producing a wafer lens, comprising: curing a curable resin between a substrate and a mold in which a concave cavity is formed, and producing a wafer lens provided with a lens portion on the substrate,
    After performing at least one tip side molding step of disposing and curing an uncured curable resin on at least the cavity in the mold,
    An uncured curable resin is disposed between the mold and the substrate, and a proximal lens forming step is performed in which the disposed curable resin is cured while being pressed by the substrate. Manufacturing method.
  2.  基板と、
     成形されるレンズ部のネガ形状に対応して所定の深さを有する凹状のキャビティ、及び前記レンズ部よりも突出した突起部を形成すべく前記キャビティよりも深く形成された凹部を備えた成形型と、
    の間で硬化性樹脂を硬化させ、
     前記基板上に前記レンズ部とともに前記突起部の設けられたウエハレンズを製造するウエハレンズの製造方法であって、
     前記成形型における少なくとも前記凹部上に未硬化の硬化性樹脂を配設して硬化させる先端側成形工程を1回以上行った後、
     前記成形型の少なくとも前記キャビティと前記基板との間に未硬化の硬化性樹脂を配設し、配設した硬化性樹脂を前記基板で押圧しつつ硬化させる基端側成形工程を行うことを特徴とするウエハレンズの製造方法。
    A substrate,
    A mold having a concave cavity having a predetermined depth corresponding to the negative shape of the lens part to be molded, and a recess formed deeper than the cavity so as to form a protrusion protruding from the lens part. When,
    Cure the curable resin between,
    A wafer lens manufacturing method for manufacturing a wafer lens provided with the protruding portion together with the lens portion on the substrate,
    After performing the front end side molding step of arranging and curing an uncured curable resin on at least the concave portion in the molding die one or more times,
    An uncured curable resin is disposed between at least the cavity of the molding die and the substrate, and a proximal-side molding step is performed in which the disposed curable resin is cured while being pressed by the substrate. A method for manufacturing a wafer lens.
  3.  請求項1または2に記載のウエハレンズの製造方法において、
     前記先端側成形工程では、
     前記硬化性樹脂をスプレーコートによって均一な厚さに塗布した後、硬化させることを特徴とするウエハレンズの製造方法。
    In the manufacturing method of the wafer lens according to claim 1 or 2,
    In the tip side molding step,
    A method for producing a wafer lens, wherein the curable resin is applied to a uniform thickness by spray coating and then cured.
  4.  請求項1~3の何れか一項に記載のウエハレンズの製造方法において、
     前記先端側成形工程を複数回行う場合、各先端側成形工程と、前記基端側成形工程とのうち、少なくとも互いに前後して行われる工程では、異なる種類の硬化性樹脂を用いることを特徴とするウエハレンズの製造方法。
    In the method for manufacturing a wafer lens according to any one of claims 1 to 3,
    When the front end side molding step is performed a plurality of times, a different type of curable resin is used in each of the front end side molding step and the base end side molding step performed at least before and after each other. A method for manufacturing a wafer lens.
  5.  請求項1~4の何れか一項に記載のウエハレンズの製造方法において、
     前記先端側成形工程では、
     前記硬化性樹脂を、空気中で硬化させることを特徴とするウエハレンズの製造方法。
    In the method for manufacturing a wafer lens according to any one of claims 1 to 4,
    In the tip side molding step,
    A method for producing a wafer lens, wherein the curable resin is cured in air.
  6.  請求項1~4の何れか一項に記載のウエハレンズの製造方法において、
     前記先端側成形工程では、
     前記硬化性樹脂を、酸素を含まない気体中か、或いは真空中で硬化させることを特徴とするウエハレンズの製造方法。
    In the method for manufacturing a wafer lens according to any one of claims 1 to 4,
    In the tip side molding step,
    A method for producing a wafer lens, wherein the curable resin is cured in a gas containing no oxygen or in a vacuum.
  7.  請求項1~6の何れか一項に記載のウエハレンズの製造方法によって製造されたことを特徴とするウエハレンズ。 A wafer lens manufactured by the method for manufacturing a wafer lens according to any one of claims 1 to 6.
PCT/JP2009/065061 2008-10-31 2009-08-28 Wafer lens manufacturing method and wafer lens WO2010050290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-281892 2008-10-31
JP2008281892 2008-10-31

Publications (1)

Publication Number Publication Date
WO2010050290A1 true WO2010050290A1 (en) 2010-05-06

Family

ID=42128658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065061 WO2010050290A1 (en) 2008-10-31 2009-08-28 Wafer lens manufacturing method and wafer lens

Country Status (1)

Country Link
WO (1) WO2010050290A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177955A (en) * 2010-02-26 2011-09-15 Toshiba Mach Co Ltd Method for producing lens and lens
NL2012262C2 (en) * 2014-02-13 2015-08-17 Anteryon Wafer Optics B V Method of fabricating a wafer level optical lens assembly.
EP2939053A4 (en) * 2012-12-27 2016-08-31 Heptagon Micro Optics Pte Ltd Fabrication of optical elements and modules incorporating the same
WO2017022190A1 (en) * 2015-07-31 2017-02-09 Sony Semiconductor Solutions Corporation Manufacturing method for lens substrate
WO2017034402A1 (en) 2015-08-21 2017-03-02 Anteryon Wafer Optics B.V. A method of fabricating an array of optical lens elements
NL2015330B1 (en) * 2015-08-21 2017-03-13 Anteryon Wafer Optics B V A method of fabricating an array of optical lens elements
EP3431275A1 (en) * 2017-07-18 2019-01-23 Himax Technologies Limited Method for fabricating high sag lens array and high sag lens array

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254868A (en) * 1993-03-10 1994-09-13 Canon Inc Manufacture of composite precisely molded product
JP2005144717A (en) * 2003-11-12 2005-06-09 Ricoh Opt Ind Co Ltd Resin curing method and manufacturing method of resin molded product or the like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254868A (en) * 1993-03-10 1994-09-13 Canon Inc Manufacture of composite precisely molded product
JP2005144717A (en) * 2003-11-12 2005-06-09 Ricoh Opt Ind Co Ltd Resin curing method and manufacturing method of resin molded product or the like

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177955A (en) * 2010-02-26 2011-09-15 Toshiba Mach Co Ltd Method for producing lens and lens
US10126530B2 (en) 2012-12-27 2018-11-13 Heptagon Micro Optics Pte. Ltd. Fabrication of optical elements and modules incorporating the same
EP2939053A4 (en) * 2012-12-27 2016-08-31 Heptagon Micro Optics Pte Ltd Fabrication of optical elements and modules incorporating the same
US9478681B2 (en) 2012-12-27 2016-10-25 Heptagon Micro Optics Pte. Ltd. Fabrication of optical elements and modules incorporating the same
NL2012262C2 (en) * 2014-02-13 2015-08-17 Anteryon Wafer Optics B V Method of fabricating a wafer level optical lens assembly.
WO2015122769A1 (en) 2014-02-13 2015-08-20 Anteryon Wafer Optics B.V. Method of fabricating a wafer level optical lens assembly
US10386616B2 (en) 2014-02-13 2019-08-20 Anteryon Wafer Optics B.V. Method of fabricating a wafer level optical lens assembly
WO2017022190A1 (en) * 2015-07-31 2017-02-09 Sony Semiconductor Solutions Corporation Manufacturing method for lens substrate
US11130299B2 (en) 2015-07-31 2021-09-28 Sony Semiconductor Solutions Corporation Lens-attached substrate, stacked lens structure, camera module, and manufacturing apparatus and method
WO2017034402A1 (en) 2015-08-21 2017-03-02 Anteryon Wafer Optics B.V. A method of fabricating an array of optical lens elements
CN108367515A (en) * 2015-08-21 2018-08-03 安特尔耀恩晶片光学有限公司 The method for manufacturing optical lens components array
US9649788B2 (en) 2015-08-21 2017-05-16 Anteryon Wafer Optics B.V. Method of fabricating an array of optical lens elements
CN108367515B (en) * 2015-08-21 2019-09-13 安特尔耀恩晶片光学有限公司 The method for manufacturing optical lens components array
NL2015330B1 (en) * 2015-08-21 2017-03-13 Anteryon Wafer Optics B V A method of fabricating an array of optical lens elements
EP3431275A1 (en) * 2017-07-18 2019-01-23 Himax Technologies Limited Method for fabricating high sag lens array and high sag lens array

Similar Documents

Publication Publication Date Title
WO2010050290A1 (en) Wafer lens manufacturing method and wafer lens
WO2010137368A1 (en) Method for producing wafer lens, and method and apparatus for producing wafer lens laminate
KR100624414B1 (en) Manufacturing Method of Diffractive Lens Array and UV Dispenser
JP5725042B2 (en) Mold, wafer lens and optical lens manufacturing method
KR20160135551A (en) High Speed 3D Printer
WO2009069940A1 (en) Device and method for fabricating lens
JP4586940B2 (en) Optical component manufacturing method, optical component manufacturing apparatus, and wafer lens manufacturing method
JP5136648B2 (en) Wafer lens manufacturing apparatus and manufacturing method
KR20160135565A (en) High Speed 3D Printer
JP5349777B2 (en) Optical element manufacturing method
KR100436699B1 (en) Replication mold
JP2010107879A (en) Method of manufacturing wafer lens, wafer lens, and device for manufacturing wafer lens
JP2800898B2 (en) Manufacturing method of aspherical optical element
JP2011224990A (en) Method and apparatus for manufacturing molding
JP2005041164A (en) Resin mold for molding, manufacturing method for resin mold for molding and manufacturing method for lens sheet using resin mold for molding
KR101303514B1 (en) Mold for injection molding with flexible film stamper and molding method using the same
JP4786085B2 (en) Apparatus for molding minute parts and molding method of minute parts
JP2002210745A (en) Method for manufacturing mold and replica master as well as mold
JP2009226631A5 (en)
JP2011051129A (en) Method of manufacturing optical component
JP5015130B2 (en) Optical waveguide manufacturing method and optical waveguide forming mold
JPH1134067A (en) Manufacture of mold, mold release mechanism, and pressurizing device
TW201041712A (en) Mold core, mold apparatus and method for press-molding micro concave lens array
KR20210098721A (en) Method for controlling tilting speed through object shape of layer
KR20100112393A (en) Manufacturing method of light guide for backlight unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP