WO2010047424A1 - Electromagnetic clutch for compressor - Google Patents

Electromagnetic clutch for compressor Download PDF

Info

Publication number
WO2010047424A1
WO2010047424A1 PCT/JP2009/068737 JP2009068737W WO2010047424A1 WO 2010047424 A1 WO2010047424 A1 WO 2010047424A1 JP 2009068737 W JP2009068737 W JP 2009068737W WO 2010047424 A1 WO2010047424 A1 WO 2010047424A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
friction plate
rotor
side friction
compressor
Prior art date
Application number
PCT/JP2009/068737
Other languages
French (fr)
Japanese (ja)
Inventor
有基 坂本
和彦 高井
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2010047424A1 publication Critical patent/WO2010047424A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/004Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with permanent magnets combined with electromagnets

Definitions

  • the present invention relates to an electromagnetic clutch for a compressor, and more particularly to an electromagnetic clutch for a compressor that can achieve a small size, high transmission torque, and power saving.
  • a compressor electromagnetic clutch for example, a compressor used in a vehicle air conditioner
  • an electromagnetic is applied to the power input side of the compressor.
  • a clutch is often incorporated.
  • This electromagnetic clutch generally includes a rotor connected to the power source side, an armature connected to the compressor drive shaft side, and a friction plate of both members that generates a magnetic force and attracts the armature to the rotor by the magnetic force. And an electromagnetic coil that enables power transmission between them.
  • This electromagnetic clutch requires an electromagnetic coil having a high magnetomotive force in order to ensure a high torque required for the compressor. In order to ensure a high magnetomotive force, it is usually necessary to expand the coil space or reduce the coil electrical resistance.
  • is a coefficient of friction between the friction plates
  • P is a pressing force of the friction plate due to an electromagnetic adsorption force
  • r is a radius of the friction plate. That is, the transmission torque can be improved by increasing any one of ⁇ , P, and r.
  • proposals have been made to change the shape of the leaf spring of the armature or increase the pressing force of the armature against the rotor by adding a cam (for example, Patent Document 1). JP 7-332394 A
  • the mechanical pushing force augmentation structure by adding a cam can greatly increase the pushing force of the armature on the rotor and greatly increase the transmission torque, but the cam can amplify the pushing force of the armature on the rotor. Since the reaction force is received on the side connected to the drive shaft of the compressor, a reaction force equivalent to the amplified pressing force is applied as a pulling force on the drive shaft side of the compressor. There is concern about compressor damage due to pull-out force.
  • an object of the present invention is to focus on the fact that the transmission torque can be significantly increased by mechanically amplifying the pressing force of the armature against the rotor, and at the same time, driving the compressor that has become a problem.
  • the generation of pull-out force on the shaft side can be prevented, and the pressing force against the armature rotor sufficient for high torque transmission can be reliably obtained with a simple and small mechanism without causing problems.
  • an electromagnetic clutch for a compressor generates a magnetic force by a rotor connected to a power source side, an armature connected to a compressor drive shaft side, and the magnetic force.
  • An electromagnetic coil for adsorbing the armature to the rotor to enable power transmission between both members, and a pressing force amplifying means for mechanically amplifying the pressing force of the armature against the rotor in order to increase power transmission capability
  • the rotor includes a first rotor-side friction plate and a second rotor-side that are disposed to face each other with a predetermined gap.
  • the first armature side friction having a friction plate, the armature being disposed in the gap and being capable of contacting the first rotor side friction plate And a second armature-side friction plate that can come into contact with the second rotor-side friction plate, and the distance between the first armature-side friction plate and the second armature-side friction plate in accordance with power transmission. It is characterized by having a mechanism for increasing the distance between friction plates that increases mechanically in the axial direction.
  • the rotor has a first rotor-side friction plate and a second rotor-side friction plate arranged to face each other.
  • the first and second armature-side friction plates that can contact the first and second rotor-side friction plates are disposed between the rotor-side friction plates, and the first,
  • the distance between the second armature side friction plates is mechanically increased in the axial direction along with the power transmission.
  • the first and second armature side friction plates are brought into contact with and pressed against the first and second rotor side friction plates, respectively, and the first rotor side friction plate and the first armature Power is transmitted by two sets of friction plates, a side friction plate, a second rotor side friction plate, and a second armature side friction plate. Therefore, the transmission power is greatly increased as compared with a conventional electromagnetic clutch that basically transmits power by a set of friction plates.
  • the two sets of friction plates are in contact with each other between the first rotor-side friction plate and the second rotor-side friction plate arranged opposite to each other, in other words, the first rotor-side friction plate. And the direction of the pressing force of the first armature side friction plate against the first rotor side friction plate and the second armature side friction plate. Since the direction of the pressing force against the second rotor-side friction plate is completely opposite to the direction of the pressing force, both the pressing forces are canceled in the rotor.
  • the generation of the pulling force on the compressor drive shaft which was a problem with the conventional pressing force increasing mechanism that mechanically amplifies the pressing force of the armature side friction plate in the power transmission by a pair of friction plates Is efficiently prevented, and the concern about compressor damage associated with the generation of the pulling force is completely eliminated.
  • the size of the electromagnetic coil that generates a magnetomotive force for attracting the first armature side friction plate to the first rotor side friction plate is reduced by greatly increasing the transmission power and preventing the generation of the pulling force.
  • an electromagnetic coil with low power consumption is sufficient, and the electromagnetic coil can be reduced in size, weight, and power consumption can be reduced.
  • the mechanism for increasing the distance between the friction plates is based on a relative twist between the first armature-side friction plate and the second armature-side friction plate accompanying power transmission. It can be composed of a mechanism that mechanically converts to directional displacement. That is, when the first armature-side friction plate is attracted to the first rotor-side friction plate by the excitation of the electromagnetic coil, power (torque) transmission is started. At this time, the power transmission side member is compressed. In the armature connected to the machine drive shaft side, relative torsion occurs between the first armature side friction plate and the second armature side friction plate.
  • This relative twist is mechanically converted into an axial displacement in a direction that increases the distance between the first armature side friction plate and the second armature side friction plate by the friction plate distance increasing mechanism.
  • the two armature side friction plates are pressed against the second rotor side friction plate immediately after being attracted by the electromagnetic force, and the power transmission state by the two sets of friction plates is automatically achieved. Further, as shown in an embodiment described later, such a friction plate distance increasing mechanism is engaged with the first armature side friction plate and the second armature side friction plate, and between the two friction plates.
  • a plurality of cams provided so as to be deformable in the direction in which the distance between the friction plates is increased and the direction in which the distance between the friction plates is reduced can be constituted by a plurality of mechanisms arranged in the circumferential direction of the friction plate. These cams are deformed in a direction that increases the distance between the two friction plates when power is transmitted, and are deformed in a direction that decreases the distance between the two friction plates when power transmission is interrupted.
  • the friction plate distance increasing mechanism having such a cam is, for example, capable of elastically deforming a plurality of cams in a direction to increase the distance between the two friction plates, and the plurality of cams increasing the distance between the two friction plates.
  • cam deformation assisting means can be configured as a mechanism using rubber elasticity and elastic restoring force, or a mechanism using a spring incorporated therein and using the elasticity and elastic restoring force of the incorporated spring. Further, in the electromagnetic clutch for a compressor according to the present invention, the connection state between the armature side and the rotor side can be changed according to the magnitude of the required transmission power.
  • Such an electromagnetic clutch for a compressor according to the present invention is particularly suitable when incorporated in a variable capacity compressor.
  • the required drive torque varies greatly depending on the compression capacity required at that time, but by using the compressor electromagnetic clutch according to the present invention, from low torque transmission to high torque transmission. Stable power transmission performance can be obtained over the entire range.
  • the electromagnetic clutch for a compressor according to the present invention is particularly suitable for being incorporated in a compressor used in a vehicle air conditioner. By using the electromagnetic clutch for a compressor according to the present invention, it is possible to reduce the size and weight of the electromagnetic clutch unit by reducing the coil size and the weight, thereby reducing the size and weight of the electromagnetic clutch built-in compressor as a whole.
  • the electromagnetic clutch for a compressor according to the present invention, two sets of friction plates are arranged between the rotor and the armature, and the distance between the friction plates of the armature can be increased mechanically.
  • Each of the friction plate parts increases the pressing force of the armature side friction plate to the rotor side friction plate, and the pressing force of the armature side friction plate acting on the two friction plate parts to the rotor side friction plate, respectively.
  • the electromagnetic clutch can have a desired large power transmission performance with a small-sized electromagnetic coil having a low magnetomotive force. And since an electromagnetic coil can be reduced in size, the electromagnetic clutch part and by extension, the whole compressor can be reduced in size and weight, and power consumption can be reduced.
  • FIG. 1 is a longitudinal sectional view (A) and a front view (B) of an electromagnetic clutch for a compressor according to an embodiment of the present invention.
  • FIG. 2 is a partial longitudinal sectional view of the compressor electromagnetic clutch shown in FIG.
  • FIG. 3 is an enlarged partial plan view of the cam and its peripheral portion of the compressor electromagnetic clutch of FIG.
  • FIG. 4 is a schematic configuration diagram for explaining the operation of the part shown in FIG.
  • FIG. 5 is a schematic configuration diagram for explaining the operation of the cam shown in FIG.
  • FIG. 6 is a schematic configuration diagram showing an example of a friction plate distance increasing mechanism of an electromagnetic clutch for a compressor according to an embodiment different from FIG.
  • FIG. 7 is a schematic configuration diagram showing an example of a friction plate distance increasing mechanism of an electromagnetic clutch for a compressor according to another embodiment different from FIG.
  • an electromagnetic clutch 1 for a compressor includes a rotor 2 connected to a power source (for example, a vehicle engine, not shown), an armature 4 connected to a compressor drive shaft 3 side, and a magnetic force. And an electromagnetic coil 5 that allows the armature 4 to be attracted to the rotor 2 by the magnetic force to enable power transmission between the two members.
  • the electromagnetic clutch 1 for the compressor mechanically amplifies the pressing force of the armature 4 (the friction plate of the armature 4) against the rotor 2 (the friction plate of the rotor 2) in order to increase the power transmission capability.
  • Means 6 are provided.
  • the pressing force amplifying means 6 is configured as follows.
  • the rotor 2 has a first rotor-side friction plate 7 and a second rotor-side friction plate 8 that are arranged to face each other with a predetermined gap G.
  • the second rotor-side friction plate 8 is fixed to the first rotor-side friction plate 7 with a fixed gap G set in advance via a fixing bolt 9.
  • the armature 4 is disposed within the range of the gap G, and the first armature-side friction plate 10 and the second rotor-side friction plate 8 that can come into contact with the first rotor-side friction plate 7. It has the 2nd armature side friction board 11 which can contact
  • the armature 4 uses the distance D (for example, the distance between the outer surfaces) between the first armature side friction plate 10 and the second armature side friction plate 11 as the power is transmitted between the rotor 2 and the armature 4.
  • the friction plate distance increasing mechanism 13 is mechanically increased in the direction (compressor shaft direction 12).
  • a friction liner 14 is provided on the second rotor-side friction plate 8 disposed opposite to the second armature-side friction plate 11.
  • the friction liner 14 may be provided on the second armature side friction plate 11 side.
  • the friction plate distance increasing mechanism 13 mechanically converts relative torsion in the rotational direction between the first armature side friction plate 10 and the second armature side friction plate 11 due to power transmission into displacement in the axial direction 12. It consists of a mechanism to convert to. More specifically, as shown in FIGS. 3 and 4, the first armature side friction plate 10 and the second armature side friction plate 11 are engaged with each other, and both the friction plates 10 and 11 are both engaged.
  • a cam 15 is provided so as to be deformable in a direction in which a distance D (for example, a distance between outer surfaces) between the friction plates 10 and 11 is increased and a direction in which the distance D is reduced.
  • the inclination angle of the cam 15 with respect to the first armature side friction plate 10 and the second armature side friction plate 11 changes from ⁇ 1 to ⁇ 2 with the relative twist (the inclination angle changes in the direction in which the cam 15 rises). ),
  • the distance D between the friction plates 10 and 11 is increased.
  • a plurality of cams 15 are arranged at a predetermined interval in the circumferential direction of the friction plate, and these cams 15 are deformed in a direction to increase the distance D between the friction plates 10 and 11 during power transmission, and both frictions when power transmission is cut off.
  • the distance D between the plates 10 and 11 is deformed in a decreasing direction.
  • the plurality of cams 15 can be elastically deformed in a direction that increases the distance D between the friction plates 10, 11, and the plurality of cams 15 have the distance D between the friction plates 10, 11.
  • Rubber 16 as cam deformation assisting means that can be elastically restored in the shrinking direction is provided between adjacent cams 15, and the rubber 16 is provided with a slit 17 for weight reduction.
  • the second armature side friction plate 11 is formed of an annular member having an L-shaped cross section, and is connected to a hub 19 fastened and fixed to an end portion of the drive shaft 3 via an elastically deformable annular rubber member 18. ing. Therefore, power for rotational drive is transmitted from the second armature side friction plate 11 to the compressor drive shaft 3 via the rubber member 18 and the hub 19.
  • the pressing force amplifying means 6 having the friction plate distance increasing mechanism 13 allows the power transmission capability to be as follows, although the electromagnetic coil 5 is small and light. Will be increased.
  • the inclination angle ⁇ of the cam 15 interposed between the first and second armature-side friction plates 10 and 11 and engaged with both the friction plates 10 and 11 is determined by the power. Changes from the initial ⁇ 1 to ⁇ 2 (shown in FIG. 4) due to the relative displacement (relative torsion) between the friction plates 10 and 11 due to the load on the compressor (compressor drive shaft) side accompanying (torque) transmission.
  • the pressing force of the first and second armature-side friction plates 10 and 11 against the first and second rotor-side friction plates 7 and 8 is amplified, and the pressing forces in the opposite directions are increased. They cancel each other out within the range of the rotor 2.
  • the inclination angle ⁇ of the cam 15 needs to be set to be less than 90 degrees at the maximum. Further, it is necessary that the relationship of torque by electromagnetic adsorption force + amplified torque> compressor load torque be established.
  • Fa Compressor load
  • Fb Pushing force (amplification)
  • friction coefficient.
  • the cam compression force Fc is Fa / cos ⁇
  • the pressing force Fb is Fa ⁇ tan ⁇ .
  • the first rotor side friction plate 7 and the first armature side friction plate 10 and the second rotor side friction plate 8 and the second armature side friction in a state where the pressing force is amplified by the amplification of the pressing force against 8 The power transmission is performed by the two sets of friction plates of the plate 11, and the transmission power is greatly increased compared to the conventional electromagnetic clutch in which the power transmission is basically performed by one set of friction plates.
  • the pressing force of the first and second armature side friction plates 10 and 11 against the first and second rotor side friction plates 7 and 8 is as follows: Since they act as forces in opposite directions, they are canceled within the range of the rotor 2, and the conventional pressing that mechanically amplifies the pressing force of the armature side friction plate in the power transmission by a pair of friction plates Generation of the pulling force applied to the compressor drive shaft, which has been a problem with the force increasing mechanism, is efficiently prevented, and the concern about the compressor damage accompanying the generation of the pulling force is completely eliminated.
  • the electromagnetic coil 5 generates a magnetomotive force for attracting the first armature side friction plate 10 to the first rotor side friction plate 7.
  • the size is small, and the electromagnetic coil 5 with low power consumption is sufficient. Therefore, the electromagnetic coil 5 can be reduced in size, weight, and power consumption.
  • the first rotor is solely based on the electromagnetic adsorption force of the electromagnetic coil 5 without exhibiting the effect of amplifying the pressing force of the friction plates 10 and 11 via the cam 15. Power can be transmitted by pressure-bonding the first armature side friction plate 10 to the side friction plate 7.
  • the friction liner 14 is interposed between the second armature side friction plate 11 and the second rotor side friction plate 8 disposed opposite thereto, for example, at the time of half clutch It is possible to prevent burn-in and the like, thereby preventing the occurrence of defects in this portion and improving durability.
  • the rubber 16 is provided as the cam deformation assisting means, an elastic restoring function for returning the cam 15 to the original tilt angle state can be secured by the rubber 16, and the cam 15 is sealed by the rubber 16. By doing so, it becomes possible to take a dust-proof measure and a rust-proof measure for the cam 15. Further, by forming a slit 17 having an appropriate size in the rubber 16, the weight can be reduced.
  • the specific structure of the pressing force amplifying means 6 having the friction plate distance increasing mechanism 13 is not limited to the structure using the cam 15 in the above embodiment, and various structures can be adopted.
  • the stationary state power cut-off state
  • one cam member 31 arranged on one armature side friction plate side that can be relatively twisted with each other, or one armature side friction plate itself is integrally formed, and the other Cam mechanism with tapered surfaces 33 and 34 which are arranged on the armature side friction plate side or engaged with and slidably contact each other with the other cam member 32 which is integrally formed with the other armature side friction plate. 35 is formed, and a structure is provided in which a compression spring 36 that allows relative torsion between the cam members 31 and 32 and elastic recovery thereof is interposed. Even in such a structure, when the stationary state (power cut-off state) shown in FIG. 7A shifts to the operation state (power transmission state) shown in FIG.
  • the cam mechanism 35 acts in a direction that increases the distance between the cam members 21 and 22 in the direction indicated by the arrow 37 in FIG. 7B, whereby the armature side friction plate in the opposite direction is rotated on the rotor side.
  • the pressing force against the friction plate is amplified.
  • the spring 36 is compressed by the relative torsion between the cam members 31 and 32, but the relative positional relationship between the cam members 31 and 32 is determined by the elastic restoring force of the compressed spring 36 when the power transmission is interrupted. It will naturally return to the original positional relationship.
  • the electromagnetic clutch for a compressor according to the present invention can be applied to any compressor using a friction plate electromagnetic clutch, and is particularly suitable for a variable capacity compressor and further a compressor for a vehicle air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

An electromagnetic clutch for a compressor comprising a rotor coupled to the power source side, an armature coupled to the compressor drive shaft side, an electromagnetic coil for attracting the armature to the rotor by a magnetic force, and a means for mechanically amplifying the pushing force of the armature to the rotor, characterized in that, in order to configure the pushing force amplifying means, the rotor has first and second rotor side friction boards arranged opposite to each other across a gap, and the armature is arranged in the gap, has a first armature-side friction board which can abut on the first rotor-side friction board and a second armature-side friction board which can abut on the second rotor-side friction board, and has a mechanism for mechanically increasing the distance between the first and second armature-side friction boards in the axial direction as power is transmitted.  The electromagnetic clutch for compressor, which can provide positively the pushing force of the armature to the rotor that is sufficient for transmitting a high torque by preventing the generation of a drawing force on the drive shaft side of the compressor, can reduce the size and weight of the electromagnetic coil, and can achieve power saving, can thereby be provided.

Description

圧縮機用電磁クラッチElectromagnetic clutch for compressor
 本発明は、圧縮機用電磁クラッチに関し、とくに、小型で高伝達トルク化、省電力化を達成可能な圧縮機用電磁クラッチに関する。 The present invention relates to an electromagnetic clutch for a compressor, and more particularly to an electromagnetic clutch for a compressor that can achieve a small size, high transmission torque, and power saving.
 圧縮機用電磁クラッチ、例えば、車両用空調装置に使用されている圧縮機においては、動力源側から圧縮機駆動軸側への動力の伝達を制御するために、圧縮機の動力入力側に電磁クラッチが組み込まれることが多い。この電磁クラッチは、一般に、動力源側へと連結されるロータと、圧縮機駆動軸側へと連結されるアーマチュアと、磁力を発生し該磁力によりアーマチュアをロータに吸着させて両部材の摩擦板間での動力伝達を可能ならしめる電磁コイルとを備えている。この電磁クラッチは、圧縮機に要求される高トルクを確保するため、高い起磁力を持った電磁コイルを必要としている。高起磁力を確保するためには、通常、コイルスペースの拡大、またはコイル電気抵抗の低減が必要である。そのため、高トルク伝達可能な電磁クラッチは、通常、コイルサイズの大きなもの、または消費電力の大きなものになる傾向がある。
 電磁クラッチのトルクTはT=μPrとして表すことができる。ここで、μ:摩擦板間の摩擦係数、P:電磁吸着力による摩擦板の押し付け力、r:摩擦板の半径、である。つまり、上記μ、P、r、の何れかを大きくすることで伝達トルクの向上が可能となる。これまでも、Pを大きくするための手段として、アーマチュアの板ばねの形状変更や、カム追加によるアーマチュアのロータへの押し付け力増強(例えば、特許文献1)の提案が行われている。
特開平7−332394号公報
In a compressor electromagnetic clutch, for example, a compressor used in a vehicle air conditioner, in order to control the transmission of power from the power source side to the compressor drive shaft side, an electromagnetic is applied to the power input side of the compressor. A clutch is often incorporated. This electromagnetic clutch generally includes a rotor connected to the power source side, an armature connected to the compressor drive shaft side, and a friction plate of both members that generates a magnetic force and attracts the armature to the rotor by the magnetic force. And an electromagnetic coil that enables power transmission between them. This electromagnetic clutch requires an electromagnetic coil having a high magnetomotive force in order to ensure a high torque required for the compressor. In order to ensure a high magnetomotive force, it is usually necessary to expand the coil space or reduce the coil electrical resistance. For this reason, electromagnetic clutches capable of transmitting high torque usually tend to be large in coil size or large in power consumption.
The torque T of the electromagnetic clutch can be expressed as T = μPr. Here, μ is a coefficient of friction between the friction plates, P is a pressing force of the friction plate due to an electromagnetic adsorption force, and r is a radius of the friction plate. That is, the transmission torque can be improved by increasing any one of μ, P, and r. So far, as means for increasing P, proposals have been made to change the shape of the leaf spring of the armature or increase the pressing force of the armature against the rotor by adding a cam (for example, Patent Document 1).
JP 7-332394 A
 しかしながら、アーマチュアの板ばね形状変更による押し付け力変更は、ばね材料強度の関係上十分な押し付け力増強効果が得られない。また、カム追加による機械的な押し付け力増強構造では、アーマチュアのロータへの押し付け力を大幅に増幅して伝達トルクの大幅な増大が可能であるが、カムでアーマチュアのロータへの押し付け力を増幅するとともにその反力を圧縮機の駆動軸への連結側で受ける構造となっているため、増幅した押し付け力と同等の反力が圧縮機の駆動軸側に引き抜き力としてかかることになり、その引き抜き力に起因して圧縮機の損傷が懸念されている。
 そこで本発明の課題は、アーマチュアのロータへの押し付け力を機械的に増幅することにより伝達トルクの大幅な増大が可能であることに着目しつつ、その際に問題となっていた圧縮機の駆動軸側での引き抜き力の発生を防止し、高トルク伝達に十分なアーマチュアのロータへの押し付け力を、問題を発生させることなく簡素で小型の機構にて確実に得ることができ、電磁コイルの小型化、軽量化とともに省電力化を確実に達成できるようにした圧縮機用電磁クラッチの構造を提供することにある。
However, when the pressing force is changed by changing the shape of the leaf spring of the armature, a sufficient pressing force enhancement effect cannot be obtained due to the strength of the spring material. In addition, the mechanical pushing force augmentation structure by adding a cam can greatly increase the pushing force of the armature on the rotor and greatly increase the transmission torque, but the cam can amplify the pushing force of the armature on the rotor. Since the reaction force is received on the side connected to the drive shaft of the compressor, a reaction force equivalent to the amplified pressing force is applied as a pulling force on the drive shaft side of the compressor. There is concern about compressor damage due to pull-out force.
Accordingly, an object of the present invention is to focus on the fact that the transmission torque can be significantly increased by mechanically amplifying the pressing force of the armature against the rotor, and at the same time, driving the compressor that has become a problem. The generation of pull-out force on the shaft side can be prevented, and the pressing force against the armature rotor sufficient for high torque transmission can be reliably obtained with a simple and small mechanism without causing problems. It is an object of the present invention to provide a structure of an electromagnetic clutch for a compressor that can surely achieve power saving as well as reduction in size and weight.
 上記課題を解決するために、本発明に係る圧縮機用電磁クラッチは、動力源側へと連結されるロータと、圧縮機駆動軸側へと連結されるアーマチュアと、磁力を発生し該磁力により前記アーマチュアを前記ロータに吸着させて両部材間での動力伝達を可能ならしめる電磁コイルと、動力伝達能力を増大させるために前記アーマチュアの前記ロータに対する押し付け力を機械的に増幅する押し付け力増幅手段とを備えた圧縮機用電磁クラッチにおいて、前記押し付け力増幅手段を構成するために、前記ロータは、予め定められた間隙をもって互いに対向配置された第1のロータ側摩擦板と第2のロータ側摩擦板を有し、前記アーマチュアは、前記間隙内に配置されるとともに、前記第1のロータ側摩擦板に当接可能な第1のアーマチュア側摩擦板と前記第2のロータ側摩擦板に当接可能な第2のアーマチュア側摩擦板を有するとともに、動力伝達に伴って前記第1のアーマチュア側摩擦板と第2のアーマチュア側摩擦板との距離を軸方向に機械的に増大させる摩擦板間距離増大機構を有することを特徴とするものからなる。
 このような本発明に係る圧縮機用電磁クラッチにおいては、ロータが、互いに対向配置された第1のロータ側摩擦板と第2のロータ側摩擦板を有しており、これら第1、第2のロータ側摩擦板間に、該第1、第2のロータ側摩擦板に当接可能な第1、第2のアーマチュア側摩擦板が配置され、摩擦板間距離増大機構によって、これら第1、第2のアーマチュア側摩擦板間距離が、動力伝達に伴って軸方向に機械的に増大される。この摩擦板間距離増大により、第1、第2のアーマチュア側摩擦板はそれぞれ第1、第2のロータ側摩擦板に当接されて押し付けられ、第1のロータ側摩擦板と第1のアーマチュア側摩擦板および第2のロータ側摩擦板と第2のアーマチュア側摩擦板の二組の摩擦板により動力伝達が行われる。したがって、従来一般の、基本的に一組の摩擦板により動力伝達が行われる電磁クラッチに比べ、伝達動力が大幅に増大される。また、これら二組の摩擦板同士の当接は、互いに対向配置された第1のロータ側摩擦板と第2のロータ側摩擦板との間で、換言すれば、第1のロータ側摩擦板と第2のロータ側摩擦板を有するロータの範囲内で行われることになり、第1のアーマチュア側摩擦板の第1のロータ側摩擦板に対する押し付け力の方向と第2のアーマチュア側摩擦板の第2のロータ側摩擦板に対する押し付け力の方向とは完全に相反する方向となるので、これら両押し付け力はロータ内で相殺されることになる。その結果、一組の摩擦板による動力伝達においてアーマチュア側摩擦板の押し付け力を機械的に増幅させていた従来の押し付け力増大機構で問題となっていた、圧縮機駆動軸にかかる引き抜き力の発生が効率よく防止され、該引き抜き力発生に伴う圧縮機損傷の懸念も完全に除去される。そして、これら伝達動力の大幅な増大と、引き抜き力の発生防止とにより、第1のロータ側摩擦板に第1のアーマチュア側摩擦板を吸着させるための起磁力を発生させる電磁コイルのサイズは小さくて済み、また、消費電力の少ない電磁コイルで済むことになり、電磁コイルの小型化、軽量化、消費電力の低減が可能になる。
 上記本発明に係る圧縮機用電磁クラッチにおいては、上記摩擦板間距離増大機構は、動力伝達に伴う上記第1のアーマチュア側摩擦板と第2のアーマチュア側摩擦板との間の相対捩れを軸方向変位に機械的に変換する機構から構成することができる。すなわち、電磁コイルの励磁により第1のアーマチュア側摩擦板が第1のロータ側摩擦板に吸着されると、動力(トルク)伝達が開始されるが、このとき、被動力伝達側部材である圧縮機駆動軸側に連結されているアーマチュア内において、第1のアーマチュア側摩擦板と第2のアーマチュア側摩擦板との間に相対捩れが発生する。この相対捩れが、摩擦板間距離増大機構により機械的に第1のアーマチュア側摩擦板と第2のアーマチュア側摩擦板との間の距離を増大させる方向の軸方向変位に変換されるので、第2のアーマチュア側摩擦板は、上記電磁力による吸着直後に、第2のロータ側摩擦板に押し付けられることになり、上述した二組の摩擦板による動力伝達状態が自動的に達成される。
 また、このような摩擦板間距離増大機構は、後述の実施の形態に示すように、上記第1のアーマチュア側摩擦板と第2のアーマチュア側摩擦板とに係合し、該両摩擦板間に両摩擦板間の距離を増大する方向と縮小する方向とに変形可能に設けられたカムが、摩擦板周方向に複数配置された機構から構成できる。これらカムは、動力伝達時には両摩擦板間の距離を増大する方向に変形され、動力伝達遮断時には両摩擦板間の距離を縮小する方向に変形される。
 このようなカムを備えた摩擦板間距離増大機構は、例えば、複数のカムが両摩擦板間の距離を増大する方向に弾性変形可能で、かつ、複数のカムが両摩擦板間の距離を縮小する方向に弾性復元可能なカム変形助勢手段を備えている機構から構成できる。このカム変形助勢手段は、ゴム弾性、弾性復元力を利用した機構や、内部にばねを組み込み、組み込まれたばねの弾性、弾性復元力を利用した機構に構成可能である。
 また、本発明に係る圧縮機用電磁クラッチにおいては、要求伝達動力の大小に応じて、アーマチュア側とロータ側の連結状態を変化させることも可能である。すなわち、要求伝達動力が小さいときには、上記電磁コイル側に位置する上記第1のロータ側摩擦板と上記第1のアーマチュア側摩擦板の一組の摩擦板により動力伝達を行い(つまり、従来一般の電磁クラッチにおける動力伝達方式)、要求伝達動力が大きいときには、上記第1のロータ側摩擦板と上記第1のアーマチュア側摩擦板および上記第2のロータ側摩擦板と上記第2のアーマチュア側摩擦板の二組の摩擦板により動力伝達(つまり、本発明特有の動力伝達方式)を行うようにすることも可能である。このようにすれば、高トルク伝達時に対して効率よく電磁コイルの小型化、軽量化とともに消費電力の低減を達成でき、低トルク伝達時に対してはトルク伝達のための迅速な作動を確保可能となる。
 このような本発明に係る圧縮機用電磁クラッチは、とくに可変容量圧縮機に組み込まれて好適なものである。可変容量圧縮機では、そのときに要求される圧縮容量に応じて必要駆動トルクは大きく変化するが、本発明に係る圧縮機用電磁クラッチを使用することにより、低トルク伝達時から高トルク伝達時の全範囲にわたって、安定した動力伝達性能が得られる。
 また、本発明に係る圧縮機用電磁クラッチは、とくに車両用空調装置に使用される圧縮機に組み込まれて好適なものである。本発明に係る圧縮機用電磁クラッチを使用することにより、コイルサイズの小型化、軽量化による電磁クラッチ部の小型化、軽量化、ひいては電磁クラッチ組み込み圧縮機全体としての小型化、軽量化が可能になり、車両への搭載性向上が可能になるとともに車両の燃費改善に貢献でき、消費電力の低減により、結果的にさらなる車両の燃費改善に貢献できるとともに、他の電力を必要とする機器への供給電力に余裕をもたせることが可能となる。
In order to solve the above problems, an electromagnetic clutch for a compressor according to the present invention generates a magnetic force by a rotor connected to a power source side, an armature connected to a compressor drive shaft side, and the magnetic force. An electromagnetic coil for adsorbing the armature to the rotor to enable power transmission between both members, and a pressing force amplifying means for mechanically amplifying the pressing force of the armature against the rotor in order to increase power transmission capability In the electromagnetic clutch for a compressor, the rotor includes a first rotor-side friction plate and a second rotor-side that are disposed to face each other with a predetermined gap. The first armature side friction having a friction plate, the armature being disposed in the gap and being capable of contacting the first rotor side friction plate And a second armature-side friction plate that can come into contact with the second rotor-side friction plate, and the distance between the first armature-side friction plate and the second armature-side friction plate in accordance with power transmission. It is characterized by having a mechanism for increasing the distance between friction plates that increases mechanically in the axial direction.
In such an electromagnetic clutch for a compressor according to the present invention, the rotor has a first rotor-side friction plate and a second rotor-side friction plate arranged to face each other. The first and second armature-side friction plates that can contact the first and second rotor-side friction plates are disposed between the rotor-side friction plates, and the first, The distance between the second armature side friction plates is mechanically increased in the axial direction along with the power transmission. By increasing the distance between the friction plates, the first and second armature side friction plates are brought into contact with and pressed against the first and second rotor side friction plates, respectively, and the first rotor side friction plate and the first armature Power is transmitted by two sets of friction plates, a side friction plate, a second rotor side friction plate, and a second armature side friction plate. Therefore, the transmission power is greatly increased as compared with a conventional electromagnetic clutch that basically transmits power by a set of friction plates. The two sets of friction plates are in contact with each other between the first rotor-side friction plate and the second rotor-side friction plate arranged opposite to each other, in other words, the first rotor-side friction plate. And the direction of the pressing force of the first armature side friction plate against the first rotor side friction plate and the second armature side friction plate. Since the direction of the pressing force against the second rotor-side friction plate is completely opposite to the direction of the pressing force, both the pressing forces are canceled in the rotor. As a result, the generation of the pulling force on the compressor drive shaft, which was a problem with the conventional pressing force increasing mechanism that mechanically amplifies the pressing force of the armature side friction plate in the power transmission by a pair of friction plates Is efficiently prevented, and the concern about compressor damage associated with the generation of the pulling force is completely eliminated. The size of the electromagnetic coil that generates a magnetomotive force for attracting the first armature side friction plate to the first rotor side friction plate is reduced by greatly increasing the transmission power and preventing the generation of the pulling force. Thus, an electromagnetic coil with low power consumption is sufficient, and the electromagnetic coil can be reduced in size, weight, and power consumption can be reduced.
In the electromagnetic clutch for a compressor according to the present invention, the mechanism for increasing the distance between the friction plates is based on a relative twist between the first armature-side friction plate and the second armature-side friction plate accompanying power transmission. It can be composed of a mechanism that mechanically converts to directional displacement. That is, when the first armature-side friction plate is attracted to the first rotor-side friction plate by the excitation of the electromagnetic coil, power (torque) transmission is started. At this time, the power transmission side member is compressed. In the armature connected to the machine drive shaft side, relative torsion occurs between the first armature side friction plate and the second armature side friction plate. This relative twist is mechanically converted into an axial displacement in a direction that increases the distance between the first armature side friction plate and the second armature side friction plate by the friction plate distance increasing mechanism. The two armature side friction plates are pressed against the second rotor side friction plate immediately after being attracted by the electromagnetic force, and the power transmission state by the two sets of friction plates is automatically achieved.
Further, as shown in an embodiment described later, such a friction plate distance increasing mechanism is engaged with the first armature side friction plate and the second armature side friction plate, and between the two friction plates. Further, a plurality of cams provided so as to be deformable in the direction in which the distance between the friction plates is increased and the direction in which the distance between the friction plates is reduced can be constituted by a plurality of mechanisms arranged in the circumferential direction of the friction plate. These cams are deformed in a direction that increases the distance between the two friction plates when power is transmitted, and are deformed in a direction that decreases the distance between the two friction plates when power transmission is interrupted.
The friction plate distance increasing mechanism having such a cam is, for example, capable of elastically deforming a plurality of cams in a direction to increase the distance between the two friction plates, and the plurality of cams increasing the distance between the two friction plates. It can be composed of a mechanism provided with cam deformation assisting means that can be elastically restored in the shrinking direction. This cam deformation assisting means can be configured as a mechanism using rubber elasticity and elastic restoring force, or a mechanism using a spring incorporated therein and using the elasticity and elastic restoring force of the incorporated spring.
Further, in the electromagnetic clutch for a compressor according to the present invention, the connection state between the armature side and the rotor side can be changed according to the magnitude of the required transmission power. That is, when the required transmission power is small, power transmission is performed by a set of friction plates of the first rotor side friction plate and the first armature side friction plate located on the electromagnetic coil side (that is, the conventional general Power transmission system in an electromagnetic clutch), when the required transmission power is large, the first rotor-side friction plate, the first armature-side friction plate, the second rotor-side friction plate, and the second armature-side friction plate It is also possible to perform power transmission (that is, a power transmission system unique to the present invention) by the two friction plates. In this way, it is possible to efficiently reduce the size and weight of the electromagnetic coil and reduce power consumption when high torque is transmitted, and to ensure quick operation for torque transmission when transmitting low torque. Become.
Such an electromagnetic clutch for a compressor according to the present invention is particularly suitable when incorporated in a variable capacity compressor. In variable displacement compressors, the required drive torque varies greatly depending on the compression capacity required at that time, but by using the compressor electromagnetic clutch according to the present invention, from low torque transmission to high torque transmission. Stable power transmission performance can be obtained over the entire range.
The electromagnetic clutch for a compressor according to the present invention is particularly suitable for being incorporated in a compressor used in a vehicle air conditioner. By using the electromagnetic clutch for a compressor according to the present invention, it is possible to reduce the size and weight of the electromagnetic clutch unit by reducing the coil size and the weight, thereby reducing the size and weight of the electromagnetic clutch built-in compressor as a whole. As a result, it is possible to improve the mountability to the vehicle and contribute to the improvement of the fuel consumption of the vehicle. By reducing the power consumption, it is possible to contribute to the further improvement of the fuel consumption of the vehicle and to the equipment that requires other electric power. It is possible to provide a margin for the supplied power.
 このように、本発明に係る圧縮機用電磁クラッチによれば、ロータとアーマチュアの間に二組の摩擦板を配置するとともに、アーマチュアの摩擦板間距離を機械的に増大できるようにして二組の摩擦板部それぞれにてアーマチュア側摩擦板のロータ側摩擦板への押し付け力を増大させ、かつ、二組の摩擦板部でそれぞれ作用するアーマチュア側摩擦板のロータ側摩擦板への押し付け力をロータの範囲内で互いに相殺できるようにしたので、押し付け力の機械的な増幅による伝達動力の大幅な増大を達成しつつ、従来機構で問題となっていた圧縮機の駆動軸側にかかる引き抜き力の発生を防止することができ、小型で低起磁力の電磁コイルにて電磁クラッチに所望の大きな動力伝達性能を持たせることができる。そして、電磁コイルが小型化できることから、電磁クラッチ部、ひいては圧縮機全体の小型、軽量化を達成でき、かつ、消費電力の低減を実現できる。 Thus, according to the electromagnetic clutch for a compressor according to the present invention, two sets of friction plates are arranged between the rotor and the armature, and the distance between the friction plates of the armature can be increased mechanically. Each of the friction plate parts increases the pressing force of the armature side friction plate to the rotor side friction plate, and the pressing force of the armature side friction plate acting on the two friction plate parts to the rotor side friction plate, respectively. Since they can cancel each other within the range of the rotor, the pulling force on the drive shaft side of the compressor, which has been a problem with conventional mechanisms, while achieving a significant increase in transmission power due to mechanical amplification of the pressing force Therefore, the electromagnetic clutch can have a desired large power transmission performance with a small-sized electromagnetic coil having a low magnetomotive force. And since an electromagnetic coil can be reduced in size, the electromagnetic clutch part and by extension, the whole compressor can be reduced in size and weight, and power consumption can be reduced.
 図1は本発明の一実施態様に係る圧縮機用電磁クラッチの縦断面図(A)および正面図(B)である。
 図2は図1の圧縮機用電磁クラッチの部分縦断面図である。
 図3は図1の圧縮機用電磁クラッチのカムおよびその周囲部の拡大部分平面図である。
 図4は図3に示した部位の動作を説明するための概略構成図である。
 図5は図3に示したカムの動作を説明するための概略構成図である。
 図6は図3とは別の実施態様に係る圧縮機用電磁クラッチの摩擦板間距離増大機構の例を示す概略構成図である。
 図7は図3とはさらに別の実施態様に係る圧縮機用電磁クラッチの摩擦板間距離増大機構の例を示す概略構成図である。
FIG. 1 is a longitudinal sectional view (A) and a front view (B) of an electromagnetic clutch for a compressor according to an embodiment of the present invention.
FIG. 2 is a partial longitudinal sectional view of the compressor electromagnetic clutch shown in FIG.
FIG. 3 is an enlarged partial plan view of the cam and its peripheral portion of the compressor electromagnetic clutch of FIG.
FIG. 4 is a schematic configuration diagram for explaining the operation of the part shown in FIG.
FIG. 5 is a schematic configuration diagram for explaining the operation of the cam shown in FIG.
FIG. 6 is a schematic configuration diagram showing an example of a friction plate distance increasing mechanism of an electromagnetic clutch for a compressor according to an embodiment different from FIG.
FIG. 7 is a schematic configuration diagram showing an example of a friction plate distance increasing mechanism of an electromagnetic clutch for a compressor according to another embodiment different from FIG.
1 圧縮機用電磁クラッチ
2 ロータ
3 圧縮機駆動軸
4 アーマチュア
5 電磁コイル
6 押し付け力増幅手段
7 第1のロータ側摩擦板
8 第2のロータ側摩擦板
9 固定ボルト
10 第1のアーマチュア側摩擦板
11 第2のアーマチュア側摩擦板
12 圧縮機軸方向
13 摩擦板間距離増大機構
14 摩擦ライナー
15 カム
16 カム変形助勢手段としてのゴム
17 スリット
18 環状のゴム部材
19 ハブ
21、22、31、32 カム部材
23、24 凹部
25 ボール
26 空間
27、36 圧縮ばね
28、37 両カム部材間の距離増大方向
33、34 テーパ面
35 カム機構
DESCRIPTION OF SYMBOLS 1 Compressor electromagnetic clutch 2 Rotor 3 Compressor drive shaft 4 Armature 5 Electromagnetic coil 6 Pushing force amplifying means 7 First rotor side friction plate 8 Second rotor side friction plate 9 Fixing bolt 10 First armature side friction plate 11 Second armature side friction plate 12 Compressor axial direction 13 Friction plate distance increasing mechanism 14 Friction liner 15 Cam 16 Rubber 17 as cam deformation assisting means Slit 18 Annular rubber member 19 Hubs 21, 22, 31, 32 Cam member 23, 24 Recess 25 Ball 26 Space 27, 36 Compression springs 28, 37 Distance increasing direction 33, 34 between both cam members Taper surface 35 Cam mechanism
 以下に、本発明の望ましい実施の形態を、図面を参照して説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 図1~図5は、本発明の一実施態様に係る圧縮機用電磁クラッチを示している。図1において、圧縮機用電磁クラッチ1は、動力源(例えば、車両のエンジン、図示略)側へと連結されるロータ2と、圧縮機駆動軸3側へと連結されるアーマチュア4と、磁力を発生し該磁力によりアーマチュア4をロータ2に吸着させて両部材間での動力伝達を可能ならしめる電磁コイル5とを有している。また、圧縮機用電磁クラッチ1は、動力伝達能力を増大させるために、アーマチュア4(アーマチュア4の摩擦板)のロータ2(ロータ2の摩擦板)に対する押し付け力を機械的に増幅する押し付け力増幅手段6を備えている。
 押し付け力増幅手段6は次のように構成されている。図2も参照して説明するに、ロータ2は、予め定められた間隙Gをもって互いに対向配置された第1のロータ側摩擦板7と第2のロータ側摩擦板8を有しており、第2のロータ側摩擦板8は、本実施態様では、第1のロータ側摩擦板7に対し、固定ボルト9を介して、予め設定された一定の間隙Gをもって固定されている。アーマチュア4は、上記間隙Gの範囲内に配置されているとともに、上記第1のロータ側摩擦板7に当接可能な第1のアーマチュア側摩擦板10と上記第2のロータ側摩擦板8に当接可能な第2のアーマチュア側摩擦板11を有している。また、このアーマチュア4は、ロータ2とアーマチュア4間の動力伝達に伴って上記第1のアーマチュア側摩擦板10と第2のアーマチュア側摩擦板11との距離D(例えば、外面間距離)を軸方向(圧縮機軸方向12)に機械的に増大させる摩擦板間距離増大機構13を有している。なお、本実施態様では、第2のアーマチュア側摩擦板11と対向配置されている第2のロータ側摩擦板8上に、動力伝達性能向上および動力伝達遮断時の摩擦板同士の干渉防止(例えば、半クラッチ時の焼き付き防止)のために、摩擦ライナー14が設けられている。この摩擦ライナー14は第2のアーマチュア側摩擦板11側に設けることもできる。
 上記摩擦板間距離増大機構13は、動力伝達に伴う上記第1のアーマチュア側摩擦板10と第2のアーマチュア側摩擦板11との間の回転方向における相対捩れを軸方向12の変位に機械的に変換する機構から構成されている。より具体的には、図3、図4にも示すように、第1のアーマチュア側摩擦板10と第2のアーマチュア側摩擦板11とに係合し、該両摩擦板10、11間に両摩擦板10、11間の距離D(例えば、外面間距離)を増大する方向と縮小する方向とに変形可能にカム15が設けられており、本実施態様では、両摩擦板10、11間の相対捩れに伴ってカム15の第1のアーマチュア側摩擦板10と第2のアーマチュア側摩擦板11に対する傾斜角がθ1からθ2に変化することにより(カム15が起き上がる方向に傾斜角が変化することにより)、両摩擦板10、11間の距離Dが増大されるようになっている。カム15は、摩擦板周方向に所定間隔をもって複数配置されており、これらカム15は、動力伝達時には両摩擦板10、11間の距離Dを増大する方向に変形され、動力伝達遮断時には両摩擦板10、11間の距離Dを縮小する方向に変形される。各カム15間には、複数のカム15が両摩擦板10、11間の距離Dを増大する方向に弾性変形可能で、かつ、複数のカム15が両摩擦板10、11間の距離Dを縮小する方向に弾性復元可能なカム変形助勢手段としてのゴム16が隣接カム15間に充填されるように設けられており、ゴム16には重量低減のためのスリット17が設けられている。
 上記第2のアーマチュア側摩擦板11は、断面L字形の環状部材からなり、弾性変形可能な環状のゴム部材18を介して、駆動軸3の端部に締結固定されたハブ19へと接続されている。したがって、第2のアーマチュア側摩擦板11からは、ゴム部材18、ハブ19を介して圧縮機駆動軸3に回転駆動のための動力が伝達される。
 上記のように構成された圧縮機用電磁クラッチ1においては、摩擦板間距離増大機構13を有する押し付け力増幅手段6により、小型、軽量の電磁コイル5でありながら、動力伝達能力が次のように増大される。原理的には、図5に示すように、第1、第2のアーマチュア側摩擦板10、11間に介在され、両摩擦板10、11に係合されたカム15の傾斜角θが、動力(トルク)伝達に伴う圧縮機(圧縮機駆動軸)側の負荷による両摩擦板10、11間の相対変位(相対捩れ)により、初期のθ1からθ2(図4に図示)に立ち上がる方向に変化され、それに伴って、第1、第2のアーマチュア側摩擦板10、11の第1、第2のロータ側摩擦板7、8に対する押し付け力が増幅されるとともに、これら相反する方向の押し付け力がロータ2の範囲内で互いに相殺される。この相殺により、従来構造で問題であった圧縮機駆動軸側に働く軸引き抜き力の発生は防止される。
 このとき、上記カム15の傾斜角θは、最大でも90度未満になるように設定されている必要がある。また、電磁吸着力によるトルク+上記増幅トルク>圧縮機負荷トルクの関係が成立することが必要である。つまり、
Fd・μ・r+Fb・μ・r・2>Fa・r
の関係が成立することが必要である。ここで、
Fa:圧縮機負荷
Fb:押し付け力(増幅分)
Fd:電磁クラッチ吸着力
r:カム配置半径
μ:摩擦係数
である。カム圧縮力Fcは、Fa/cosθとなり、押し付け力Fbは、Fa×tanθとなる。ちなみに、従来構造におけるアーマチュアの板ばね角度変更で一方向にのみ伝達力増大を狙った場合には、その倍力効果は高々10%程度しか得られないが、上記のように相殺可能な相反する両方向への押し付け力を増大させる構造では、はるかに大きな伝達力増幅効果が得られる。
 このような摩擦板間距離増大機構13を有する押し付け力増幅手段6による、カム15を介した第1、第2のアーマチュア側摩擦板10、11の第1、第2のロータ側摩擦板7、8に対する押し付け力の増幅により、押し付け力が増幅された状態で、第1のロータ側摩擦板7と第1のアーマチュア側摩擦板10および第2のロータ側摩擦板8と第2のアーマチュア側摩擦板11の二組の摩擦板により動力伝達が行われ、基本的に一組の摩擦板により動力伝達が行われる従来の電磁クラッチに比べ、伝達動力が大幅に増大される。また、これら二組の摩擦板同士の当接は、換言すれば、第1、第2のアーマチュア側摩擦板10、11の第1、第2のロータ側摩擦板7、8に対する押し付け力は、互いに反対方向の力として作用するので、ロータ2の範囲内で相殺されることになり、一組の摩擦板による動力伝達においてアーマチュア側摩擦板の押し付け力を機械的に増幅させていた従来の押し付け力増大機構で問題となっていた、圧縮機駆動軸にかかる引き抜き力の発生が効率よく防止され、該引き抜き力発生に伴う圧縮機損傷の懸念も完全に除去される。さらに、カム15を介した各摩擦板10、11の押し付け力増大により、第1のロータ側摩擦板7に第1のアーマチュア側摩擦板10を吸着させるための起磁力を発生させる電磁コイル5のサイズは小さくて済むことになり、消費電力の少ない電磁コイル5で済むことになる。したがって、電磁コイル5の小型化、軽量化、消費電力の低減が可能になる。なお、要求される伝達動力が小さい場合には、カム15を介した各摩擦板10、11の押し付け力増幅効果は発揮させずに、専ら、電磁コイル5による電磁吸着力のみによる第1のロータ側摩擦板7への第1のアーマチュア側摩擦板10の圧着によって動力を伝達させることが可能である。
 また、上記実施態様では、第2のアーマチュア側摩擦板11とそれに対向配置されている第2のロータ側摩擦板8との間に摩擦ライナー14を介在させているので、例えば、半クラッチ時の焼き付き防止等を可能にしてこの部分の不具合発生防止、耐久性の向上をはかることができる。
 さらに、上記実施態様では、カム変形助勢手段としてのゴム16を設けたので、このゴム16によりカム15を元の傾斜角状態に戻す弾性復元機能を確保できるとともに、ゴム16によってカム15を封止することで、カム15に対する防塵対策や防錆対策を施すことも可能となる。また、このゴム16に適当なサイズのスリット17を形成しておくことで、重量低減をはかることもできる。
 摩擦板間距離増大機構13を有する押し付け力増幅手段6の具体的な構造としては、上記実施態様におけるカム15を使用した構造には限定されず、各種の構造を採用できる。
1 to 5 show an electromagnetic clutch for a compressor according to an embodiment of the present invention. In FIG. 1, an electromagnetic clutch 1 for a compressor includes a rotor 2 connected to a power source (for example, a vehicle engine, not shown), an armature 4 connected to a compressor drive shaft 3 side, and a magnetic force. And an electromagnetic coil 5 that allows the armature 4 to be attracted to the rotor 2 by the magnetic force to enable power transmission between the two members. The electromagnetic clutch 1 for the compressor mechanically amplifies the pressing force of the armature 4 (the friction plate of the armature 4) against the rotor 2 (the friction plate of the rotor 2) in order to increase the power transmission capability. Means 6 are provided.
The pressing force amplifying means 6 is configured as follows. 2, the rotor 2 has a first rotor-side friction plate 7 and a second rotor-side friction plate 8 that are arranged to face each other with a predetermined gap G. In this embodiment, the second rotor-side friction plate 8 is fixed to the first rotor-side friction plate 7 with a fixed gap G set in advance via a fixing bolt 9. The armature 4 is disposed within the range of the gap G, and the first armature-side friction plate 10 and the second rotor-side friction plate 8 that can come into contact with the first rotor-side friction plate 7. It has the 2nd armature side friction board 11 which can contact | abut. In addition, the armature 4 uses the distance D (for example, the distance between the outer surfaces) between the first armature side friction plate 10 and the second armature side friction plate 11 as the power is transmitted between the rotor 2 and the armature 4. The friction plate distance increasing mechanism 13 is mechanically increased in the direction (compressor shaft direction 12). In this embodiment, on the second rotor-side friction plate 8 disposed opposite to the second armature-side friction plate 11, improvement of power transmission performance and prevention of interference between the friction plates when power transmission is interrupted (for example, In order to prevent seizure during half-clutch), a friction liner 14 is provided. The friction liner 14 may be provided on the second armature side friction plate 11 side.
The friction plate distance increasing mechanism 13 mechanically converts relative torsion in the rotational direction between the first armature side friction plate 10 and the second armature side friction plate 11 due to power transmission into displacement in the axial direction 12. It consists of a mechanism to convert to. More specifically, as shown in FIGS. 3 and 4, the first armature side friction plate 10 and the second armature side friction plate 11 are engaged with each other, and both the friction plates 10 and 11 are both engaged. A cam 15 is provided so as to be deformable in a direction in which a distance D (for example, a distance between outer surfaces) between the friction plates 10 and 11 is increased and a direction in which the distance D is reduced. The inclination angle of the cam 15 with respect to the first armature side friction plate 10 and the second armature side friction plate 11 changes from θ1 to θ2 with the relative twist (the inclination angle changes in the direction in which the cam 15 rises). ), The distance D between the friction plates 10 and 11 is increased. A plurality of cams 15 are arranged at a predetermined interval in the circumferential direction of the friction plate, and these cams 15 are deformed in a direction to increase the distance D between the friction plates 10 and 11 during power transmission, and both frictions when power transmission is cut off. The distance D between the plates 10 and 11 is deformed in a decreasing direction. Between the cams 15, the plurality of cams 15 can be elastically deformed in a direction that increases the distance D between the friction plates 10, 11, and the plurality of cams 15 have the distance D between the friction plates 10, 11. Rubber 16 as cam deformation assisting means that can be elastically restored in the shrinking direction is provided between adjacent cams 15, and the rubber 16 is provided with a slit 17 for weight reduction.
The second armature side friction plate 11 is formed of an annular member having an L-shaped cross section, and is connected to a hub 19 fastened and fixed to an end portion of the drive shaft 3 via an elastically deformable annular rubber member 18. ing. Therefore, power for rotational drive is transmitted from the second armature side friction plate 11 to the compressor drive shaft 3 via the rubber member 18 and the hub 19.
In the compressor electromagnetic clutch 1 configured as described above, the pressing force amplifying means 6 having the friction plate distance increasing mechanism 13 allows the power transmission capability to be as follows, although the electromagnetic coil 5 is small and light. Will be increased. In principle, as shown in FIG. 5, the inclination angle θ of the cam 15 interposed between the first and second armature- side friction plates 10 and 11 and engaged with both the friction plates 10 and 11 is determined by the power. Changes from the initial θ1 to θ2 (shown in FIG. 4) due to the relative displacement (relative torsion) between the friction plates 10 and 11 due to the load on the compressor (compressor drive shaft) side accompanying (torque) transmission. Accordingly, the pressing force of the first and second armature- side friction plates 10 and 11 against the first and second rotor- side friction plates 7 and 8 is amplified, and the pressing forces in the opposite directions are increased. They cancel each other out within the range of the rotor 2. By this cancellation, generation of the shaft pulling force acting on the compressor drive shaft side, which is a problem in the conventional structure, is prevented.
At this time, the inclination angle θ of the cam 15 needs to be set to be less than 90 degrees at the maximum. Further, it is necessary that the relationship of torque by electromagnetic adsorption force + amplified torque> compressor load torque be established. That means
Fd · μ · r + Fb · μ · r · 2> Fa · r
It is necessary to establish the relationship. here,
Fa: Compressor load Fb: Pushing force (amplification)
Fd: electromagnetic clutch attractive force r: cam arrangement radius μ: friction coefficient. The cam compression force Fc is Fa / cos θ, and the pressing force Fb is Fa × tan θ. By the way, if the armature plate spring angle in the conventional structure is aimed to increase the transmission force only in one direction, the boosting effect can be obtained only about 10% at most, but it can be canceled as described above. In a structure that increases the pressing force in both directions, a much larger transmission force amplification effect can be obtained.
The first and second rotor side friction plates 7 of the first and second armature side friction plates 10 and 11 via the cam 15 by the pressing force amplifying means 6 having such a friction plate distance increasing mechanism 13. The first rotor side friction plate 7 and the first armature side friction plate 10 and the second rotor side friction plate 8 and the second armature side friction in a state where the pressing force is amplified by the amplification of the pressing force against 8 The power transmission is performed by the two sets of friction plates of the plate 11, and the transmission power is greatly increased compared to the conventional electromagnetic clutch in which the power transmission is basically performed by one set of friction plates. Further, the abutment between these two sets of friction plates, in other words, the pressing force of the first and second armature side friction plates 10 and 11 against the first and second rotor side friction plates 7 and 8 is as follows: Since they act as forces in opposite directions, they are canceled within the range of the rotor 2, and the conventional pressing that mechanically amplifies the pressing force of the armature side friction plate in the power transmission by a pair of friction plates Generation of the pulling force applied to the compressor drive shaft, which has been a problem with the force increasing mechanism, is efficiently prevented, and the concern about the compressor damage accompanying the generation of the pulling force is completely eliminated. Further, by increasing the pressing force of each friction plate 10, 11 through the cam 15, the electromagnetic coil 5 generates a magnetomotive force for attracting the first armature side friction plate 10 to the first rotor side friction plate 7. The size is small, and the electromagnetic coil 5 with low power consumption is sufficient. Therefore, the electromagnetic coil 5 can be reduced in size, weight, and power consumption. In the case where the required transmission power is small, the first rotor is solely based on the electromagnetic adsorption force of the electromagnetic coil 5 without exhibiting the effect of amplifying the pressing force of the friction plates 10 and 11 via the cam 15. Power can be transmitted by pressure-bonding the first armature side friction plate 10 to the side friction plate 7.
Further, in the above embodiment, since the friction liner 14 is interposed between the second armature side friction plate 11 and the second rotor side friction plate 8 disposed opposite thereto, for example, at the time of half clutch It is possible to prevent burn-in and the like, thereby preventing the occurrence of defects in this portion and improving durability.
Further, in the above embodiment, since the rubber 16 is provided as the cam deformation assisting means, an elastic restoring function for returning the cam 15 to the original tilt angle state can be secured by the rubber 16, and the cam 15 is sealed by the rubber 16. By doing so, it becomes possible to take a dust-proof measure and a rust-proof measure for the cam 15. Further, by forming a slit 17 having an appropriate size in the rubber 16, the weight can be reduced.
The specific structure of the pressing force amplifying means 6 having the friction plate distance increasing mechanism 13 is not limited to the structure using the cam 15 in the above embodiment, and various structures can be adopted.
 図6に示すように、互いに相対捩れが可能な、一方のアーマチュア側摩擦板側に配置された、あるいは、一方のアーマチュア側摩擦板自体を一体に形成した、一方のカム部材21と、他方のアーマチュア側摩擦板側に配置された、あるいは、他方のアーマチュア側摩擦板自体を一体に形成した、他方のカム部材22との間に、断面球面状あるいは円弧状の凹部23、24により内部にボール25あるいは円筒体を保持可能な空間26を形成するとともに、両カム部材21、22間の相対捩れおよびその弾性復元を可能にする圧縮ばね27を介装した構造を採用できる。この構造においては、図6(A)に示す静止状態(動力遮断状態)から、図6(B)に示す動作状態(動力伝達状態)に移行すると、両カム部材21、22間の相対捩れに伴って、空間26のボール25が両球面状凹部23、24の凹面に沿って転動し、それに伴って、両カム部材21、22間の距離が図6(B)の矢印方向28に増大される。これによって、相反する方向のアーマチュア側摩擦板のロータ側摩擦板に対する押し付け力が増幅されることになる。このとき、上記両カム部材21、22間の相対捩れによりばね27は圧縮されるが、動力伝達遮断時にはこの圧縮されたばね27の弾性復元力によって、両カム部材21、22間の相対位置関係は元の位置関係に自然に戻される。 As shown in FIG. 6, one cam member 21, which can be relatively twisted with each other, is disposed on one armature side friction plate side, or one armature side friction plate itself is integrally formed, and the other Balls are formed inside by spherical recesses 23 and 24 having a spherical cross section or an arc shape between the cam member 22 and the other arm member side friction plate which is disposed on the armature side friction plate side or integrally formed with the other armature side friction plate. 25 or a space 26 that can hold a cylindrical body, and a structure that includes a compression spring 27 that enables relative torsion between the cam members 21 and 22 and elastic recovery thereof can be employed. In this structure, when the stationary state (power cut-off state) shown in FIG. 6 (A) shifts to the operation state (power transmission state) shown in FIG. 6 (B), relative torsion between the cam members 21 and 22 occurs. Along with this, the ball 25 in the space 26 rolls along the concave surfaces of both spherical recesses 23 and 24, and accordingly, the distance between the cam members 21 and 22 increases in the arrow direction 28 in FIG. Is done. As a result, the pressing force of the armature-side friction plate against the rotor-side friction plate in the opposite direction is amplified. At this time, the spring 27 is compressed by the relative torsion between the cam members 21 and 22, but the relative positional relationship between the cam members 21 and 22 is determined by the elastic restoring force of the compressed spring 27 when the power transmission is interrupted. It is naturally returned to the original positional relationship.
 図7に示す形態では、互いに相対捩れが可能な、一方のアーマチュア側摩擦板側に配置された、あるいは、一方のアーマチュア側摩擦板自体を一体に形成した、一方のカム部材31と、他方のアーマチュア側摩擦板側に配置された、あるいは、他方のアーマチュア側摩擦板自体を一体に形成した、他方のカム部材32との間に、互いに係合、摺接し合うテーパ面33、34によるカム機構35が形成され、両カム部材31、32間の相対捩れおよびその弾性復元を可能にする圧縮ばね36を介装した構造とされている。このような構造においても、図7(A)に示す静止状態(動力遮断状態)から、図7(B)に示す動作状態(動力伝達状態)に移行すると、両カム部材21、22間の相対捩れに伴って、カム機構35が両カム部材21、22間の距離を図7(B)の矢印方向37に増大する方向に作用し、それによって、相反する方向のアーマチュア側摩擦板のロータ側摩擦板に対する押し付け力が増幅されることになる。このとき、上記両カム部材31、32間の相対捩れによりばね36は圧縮されるが、動力伝達遮断時にはこの圧縮されたばね36の弾性復元力によって、両カム部材31、32間の相対位置関係は元の位置関係に自然に戻されることになる。 In the form shown in FIG. 7, one cam member 31 arranged on one armature side friction plate side that can be relatively twisted with each other, or one armature side friction plate itself is integrally formed, and the other Cam mechanism with tapered surfaces 33 and 34 which are arranged on the armature side friction plate side or engaged with and slidably contact each other with the other cam member 32 which is integrally formed with the other armature side friction plate. 35 is formed, and a structure is provided in which a compression spring 36 that allows relative torsion between the cam members 31 and 32 and elastic recovery thereof is interposed. Even in such a structure, when the stationary state (power cut-off state) shown in FIG. 7A shifts to the operation state (power transmission state) shown in FIG. As the twisting occurs, the cam mechanism 35 acts in a direction that increases the distance between the cam members 21 and 22 in the direction indicated by the arrow 37 in FIG. 7B, whereby the armature side friction plate in the opposite direction is rotated on the rotor side. The pressing force against the friction plate is amplified. At this time, the spring 36 is compressed by the relative torsion between the cam members 31 and 32, but the relative positional relationship between the cam members 31 and 32 is determined by the elastic restoring force of the compressed spring 36 when the power transmission is interrupted. It will naturally return to the original positional relationship.
 本発明に係る圧縮機用電磁クラッチは、摩擦板電磁クラッチを用いるあらゆる圧縮機に適用可能であり、とくに、可変容量圧縮機、さらには車両空調装置用圧縮機に好適なものである。 The electromagnetic clutch for a compressor according to the present invention can be applied to any compressor using a friction plate electromagnetic clutch, and is particularly suitable for a variable capacity compressor and further a compressor for a vehicle air conditioner.

Claims (7)

  1. 動力源側へと連結されるロータと、圧縮機駆動軸側へと連結されるアーマチュアと、磁力を発生し該磁力により前記アーマチュアを前記ロータに吸着させて両部材間での動力伝達を可能ならしめる電磁コイルと、動力伝達能力を増大させるために前記アーマチュアの前記ロータに対する押し付け力を機械的に増幅する押し付け力増幅手段とを備えた圧縮機用電磁クラッチにおいて、前記押し付け力増幅手段を構成するために、前記ロータは、予め定められた間隙をもって互いに対向配置された第1のロータ側摩擦板と第2のロータ側摩擦板を有し、前記アーマチュアは、前記間隙内に配置されるとともに、前記第1のロータ側摩擦板に当接可能な第1のアーマチュア側摩擦板と前記第2のロータ側摩擦板に当接可能な第2のアーマチュア側摩擦板を有するとともに、動力伝達に伴って前記第1のアーマチュア側摩擦板と第2のアーマチュア側摩擦板との距離を軸方向に機械的に増大させる摩擦板間距離増大機構を有することを特徴とする圧縮機用電磁クラッチ。 If a rotor connected to the power source side, an armature connected to the compressor drive shaft side, and a magnetic force is generated and the armature is attracted to the rotor by the magnetic force, and power transmission between both members is possible. In the electromagnetic clutch for a compressor, comprising: an electromagnetic coil for tightening; and a pressing force amplifying means for mechanically amplifying the pressing force of the armature against the rotor in order to increase power transmission capability. For this purpose, the rotor has a first rotor side friction plate and a second rotor side friction plate arranged to face each other with a predetermined gap, and the armature is arranged in the gap, A first armature-side friction plate capable of contacting the first rotor-side friction plate and a second armature-side friction capable of contacting the second rotor-side friction plate; And a friction plate distance increasing mechanism that mechanically increases the distance between the first armature side friction plate and the second armature side friction plate in the axial direction along with power transmission. Compressor electromagnetic clutch.
  2. 前記摩擦板間距離増大機構は、動力伝達に伴う前記第1のアーマチュア側摩擦板と第2のアーマチュア側摩擦板との間の相対捩れを軸方向変位に機械的に変換する機構からなる、請求項1に記載の圧縮機用電磁クラッチ。 The friction plate distance increasing mechanism includes a mechanism that mechanically converts relative torsion between the first armature side friction plate and the second armature side friction plate due to power transmission into axial displacement. Item 2. An electromagnetic clutch for a compressor according to Item 1.
  3. 前記摩擦板間距離増大機構は、前記第1のアーマチュア側摩擦板と第2のアーマチュア側摩擦板とに係合し、該両摩擦板間に両摩擦板間の距離を増大する方向と縮小する方向とに変形可能に設けられたカムが、摩擦板周方向に複数配置された機構からなる、請求項2に記載の圧縮機用電磁クラッチ。 The mechanism for increasing the distance between the friction plates engages with the first armature-side friction plate and the second armature-side friction plate, and reduces the distance between the friction plates in the direction of increasing the distance between the friction plates. The electromagnetic clutch for a compressor according to claim 2, comprising a plurality of mechanisms arranged in the circumferential direction of the friction plate.
  4. 前記摩擦板間距離増大機構は、前記複数のカムが両摩擦板間の距離を増大する方向に弾性変形可で、かつ、前記複数のカムが両摩擦板間の距離を縮小する方向に弾性復元可能なカム変形助勢手段を備えている、請求項3に記載の圧縮機用電磁クラッチ。 The friction plate distance increasing mechanism is elastically deformable in a direction in which the plurality of cams increase the distance between the two friction plates, and elastically restored in a direction in which the plurality of cams reduce the distance between the two friction plates. The electromagnetic clutch for a compressor according to claim 3, further comprising a cam deformation assisting means that can be used.
  5. 要求伝達動力が小さいときには、前記電磁コイル側に位置する前記第1のロータ側摩擦板と前記第1のアーマチュア側摩擦板の一組の摩擦板により動力伝達を行い、要求伝達動力が大きいときには、前記第1のロータ側摩擦板と前記第1のアーマチュア側摩擦板および前記第2のロータ側摩擦板と前記第2のアーマチュア側摩擦板の二組の摩擦板により動力伝達を行う、請求項1~4のいずれかに記載の圧縮機用電磁クラッチ。 When the required transmission power is small, power transmission is performed by a set of friction plates of the first rotor side friction plate and the first armature side friction plate located on the electromagnetic coil side, and when the required transmission power is large, The power is transmitted by two sets of friction plates, the first rotor-side friction plate, the first armature-side friction plate, and the second rotor-side friction plate and the second armature-side friction plate. The electromagnetic clutch for a compressor according to any one of ~ 4.
  6. 可変容量圧縮機に組み込まれている、請求項1~5のいずれかに記載の圧縮機用電磁クラッチ。 6. The electromagnetic clutch for a compressor according to any one of claims 1 to 5, which is incorporated in a variable capacity compressor.
  7. 車両用空調装置に使用される圧縮機に組み込まれている、請求項1~6のいずれかに記載の圧縮機用電磁クラッチ。 The electromagnetic clutch for a compressor according to any one of claims 1 to 6, which is incorporated in a compressor used in a vehicle air conditioner.
PCT/JP2009/068737 2008-10-24 2009-10-26 Electromagnetic clutch for compressor WO2010047424A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-274144 2008-10-24
JP2008274144A JP2010101441A (en) 2008-10-24 2008-10-24 Electromagnetic clutch for compressor

Publications (1)

Publication Number Publication Date
WO2010047424A1 true WO2010047424A1 (en) 2010-04-29

Family

ID=42119451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068737 WO2010047424A1 (en) 2008-10-24 2009-10-26 Electromagnetic clutch for compressor

Country Status (2)

Country Link
JP (1) JP2010101441A (en)
WO (1) WO2010047424A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105370754A (en) * 2014-08-08 2016-03-02 法雷奥日本株式会社 Electromagnetic clutch

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013020211A1 (en) * 2011-07-27 2013-02-14 Magna Powertrain Of America, Inc. Switchable water pump with dual friction plate actuation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332394A (en) * 1994-06-07 1995-12-22 Tochigi Fuji Ind Co Ltd Electromagnetic clutch
JP2007032682A (en) * 2005-07-26 2007-02-08 Ntn Corp Rotation transmission device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332394A (en) * 1994-06-07 1995-12-22 Tochigi Fuji Ind Co Ltd Electromagnetic clutch
JP2007032682A (en) * 2005-07-26 2007-02-08 Ntn Corp Rotation transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105370754A (en) * 2014-08-08 2016-03-02 法雷奥日本株式会社 Electromagnetic clutch

Also Published As

Publication number Publication date
JP2010101441A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
US7721863B2 (en) Electromagnetic clutch for compressor
JP2006275178A (en) Electromagnetic clutch
JP2014114947A (en) Pulley structure
US8568243B2 (en) Flywheel assembly
US11168748B2 (en) Electromagnetic jaw clutch
CN101737440A (en) Torque transmission device
EP3336380B1 (en) Torque fluctuation absorbing apparatus
WO2010047424A1 (en) Electromagnetic clutch for compressor
US8303423B2 (en) Power transmission
US8608577B2 (en) Damper device
JP2006275229A (en) Electromagnetic clutch
JP2011231789A (en) Electromagnetic clutch for compressor and compressor integrated with the clutch
CN107002772B (en) For from internal combustion engine to the device of auxiliary device transmitting torque
WO2010113621A1 (en) Clutch cover assembly
CN107642555B (en) Clutch and clutch pressure plate
US7178653B2 (en) Electromagnetic clutch
JP2010014139A (en) Electromagnetic connecting device
KR101360129B1 (en) disc & hub assembly of electromagnetic clutch
JP2005042892A (en) Ball bearing
KR101824437B1 (en) disk and hub assembly of electromagnetic clutch for compressor
JP2014159854A (en) Damper mechanism for torque transmission device
KR101058569B1 (en) Clutch strap buckling prevention structure
JP4512943B2 (en) Spring clutch
EP2952776A2 (en) Dual mass damper with torque limiter function
JP2009058025A (en) Braking device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09822115

Country of ref document: EP

Kind code of ref document: A1