WO2010047198A1 - Highly translucent film material - Google Patents

Highly translucent film material Download PDF

Info

Publication number
WO2010047198A1
WO2010047198A1 PCT/JP2009/066207 JP2009066207W WO2010047198A1 WO 2010047198 A1 WO2010047198 A1 WO 2010047198A1 JP 2009066207 W JP2009066207 W JP 2009066207W WO 2010047198 A1 WO2010047198 A1 WO 2010047198A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
film material
resin layer
parts
resin
Prior art date
Application number
PCT/JP2009/066207
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木博
松下陽子
Original Assignee
平岡織染株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平岡織染株式会社 filed Critical 平岡織染株式会社
Priority to AU2009307557A priority Critical patent/AU2009307557B2/en
Priority to NZ592462A priority patent/NZ592462A/en
Publication of WO2010047198A1 publication Critical patent/WO2010047198A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/06Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with polyvinylchloride or its copolymerisation products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0063Inorganic compounding ingredients, e.g. metals, carbon fibres, Na2CO3, metal layers; Post-treatment with inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2410/00Agriculture-related articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a highly translucent film material having a good daylighting property in addition to a hazardous-ultraviolet-ray-shielding property and an infrared-ray-shielding property suitable for use in film structures such as tents for creating a summer-like environment for swimming pools, greenhouses, compost depots, tent storehouses, medium- and large-sized tents, truck covers, and sun-shade tents.  The film material includes a front-surface infrared-reflecting resin layer and a back-surface thermoplastic resin layer formed on a base fabric composed of a fibrous material.  At least the front-surface infrared-reflecting resin layer contains 0.5 to 5 mass% of interference mica particles and one or both of the front-surface infrared-reflecting resin layer and the back-surface thermoplastic resin layer contain 0.3 to 3 mass% of at least one selected from ultrafine titanium oxide particles and ultrafine zinc oxide particles.  The film material as a whole has a visible light transmittance (Japanese Industrial Standard (JIS) Z8722) of 40% to 80%.

Description

高透光性膜材料High translucent film material
 本発明は高透光性膜材料に関するものである。更に詳しく述べるならば、本発明は、高透光性と優れた紫外線遮蔽性と優れた赤外線遮蔽性とを兼備した、特に、プール用常夏テント、温室、及び堆肥舎などのように十分な透光性が要求される施設、及びテント倉庫、中及び大型テント、トラック幌、及び日除けテント等の膜構造物の構成に好適に用いられる、高透光性膜材料に関するものである。 The present invention relates to a highly translucent film material. More specifically, the present invention has a high transparency, an excellent ultraviolet shielding property, and an excellent infrared shielding property, and is particularly suitable for a pool summer tent, a greenhouse, and a compost house. The present invention relates to a highly light-transmitting film material that is suitably used for the construction of film structures such as facilities requiring light properties and tent warehouses, medium and large tents, truck hoods, and sunshade tents.
 可視光透過率(JIS Z8722)40~80%を有する高透光性膜材料は、プール用常夏テントや温室や堆肥舎等に用いられ、また、最近は一般の膜構造物においても照明の省エネルギーの観点から高透光性を要求される場合が多く、テント倉庫、中・大型テントや、トラック幌、日除けテント等の膜構造物に好適に用いられる。
 しかしながら、従来の高透光性膜材料は、可視光領域(400~780μm)の透過性を優先し、紫外線領域(280~400μm)や赤外線領域(780~2500μm)については殆ど考慮されておらず、このような高透光性膜材料を使用した膜構造物空間は、明るいけれども、暑くて、有害紫外線の遮蔽が不十分な状態になっている。
 具体的には、従来の高透光性膜材料は、可視光領域(400~780μm)の透過性は優れているが、しかし、赤外線領域(780~2500μm)では十分な遮蔽効果がなく、透過性又は吸収性が高く、膜材料の表面側から透過又は吸収された赤外線が膜材の裏面側の空間を直接暖めたり、また吸収された赤外線が膜材の温度を上昇させて輻射熱として膜材裏面側からも放出されるため、遮蔽性が劣り、このような膜材料を使用した膜構造物の内部空間では、明るいけれども特に夏場はどうしても暑くなりやすかった。通常の建築物同様冷房を用いれば内部の温度を下げることも可能であるが、膜材料自体の断熱性が低いため冷房の効率が非常に悪く、エネルギーコストやそれに伴う環境面への負担を考えると、従来の高透光性膜材料を使用した膜構造物により形成された空間は、実用上好ましいものではなかった。
 また、従来の高透光性膜材料は、紫外線領域でも十分な遮蔽効果が認められていなかった。地表に達する紫外線はB波(280~315μm、以下「UV−B」と略す)とA波(315~400μm、以下「UV−A」と略す)に分けられ、UV−Bはオゾン層の増減により地表に到達する量は増減するが、皮膚がんや白内障の原因と言われており、またUV−Aは、大気圏では殆ど吸収されず地表に達し、人間の皮膚への透過性が良く真皮まで浸透し、DNAを傷つけたり皮膚の老化を早めたりする原因となっている。
 UV−Bには、紫外線による樹脂の耐候劣化を引き起こす波長が含まれており、膜材料自体の紫外線による耐候劣化を抑えるために、樹脂中に紫外線吸収剤を添加する場合があり、結果的にはUV−Bを遮蔽している高透光性膜材料もあった。しかし、UV−Aについては、通常の紫外線吸収剤を添加しても殆ど遮蔽効果がなく、また波長が可視光領域に近いこともあり、高透光性膜材料では遮蔽することが難しかった。また、最近はUV−Aの皮膚や網膜への浸透性と有害性が忌避されるようになり、健康志向、美容志向からUV−Aも遮蔽することが強く望まれるようになっている。
 透光性を維持して赤外線を遮蔽する(遮熱性)シートを提供する技術は、例えば、特許文献1及び特許文献2に透明フィルム中に熱線吸収剤としてナフタロシアニン化合物を練り込む方法が開示されているが、この方法では、ナフタロシアニン化合物の耐候性及び熱線遮蔽効果の持続性に問題があった。又、例えば、特許文献3、特許文献4にはフィルム基材表面に、アンチモンがドープされた酸化スズ(以下「ATO」と略す)微粒子、或いはスズがドープされた酸化インジウム(以下「ITO」と略す)微粒子を含む溶液を塗布する方法が開示されている。更に、例えば、特許文献5にはATO微粒子やITO微粒子を熱可塑性樹脂フィルム中に練りこむ方法が開示されている。しかしながら、何れの方法も、ATO微粒子やITO微粒子の価格が非常に高価であり、経済的にも不利になること、又、ATO微粒子やITO微粒子をフィルム基材に塗布する場合においては、塗布された塗膜が基材から剥離し、熱線遮蔽効果が減少するという問題点があった。
 また、例えば、特許文献6及び特許文献7には熱線遮蔽材料として、重量平均粒子径0.6~1.5μmの粗粒酸化チタンを使用し熱可塑性樹脂フィルムや塗膜に含有する方法が開示されている。粗粒酸化チタンを含有した場合は、顔料用酸化チタン(粒子径0.2~0.4μm)を含有した場合に比べ、可視光領域の透光性は向上するものの、膜材料として可視光透過率(JIS Z8722)40~80%を得るには、粗粒酸化チタンの添加量が制限され、結果的に十分な遮熱性は得られなかった。また、優れた遮熱性を得るには、樹脂層に含有する粗粒酸化チタンの量を増やす必要があり、粗粒酸化チタンの含有量が少ない範囲では可視光領域の透光性向上に効果があるが、含有量が多くなると顔料用酸化チタンと同様に樹脂層の隠蔽性が増し膜材料の可視光領域の透光性が低くなるという問題点があった。
 透光性を維持して紫外線(280~400μm)を遮蔽するシートを提供する技術は、一般的には有機系紫外線吸収剤を含有する方法が行われるが、有機系紫外線吸収剤ではUV−A(315~400μm)を吸収することが難しく、また、有機系紫外線吸収剤はシート表面にブリードアウトし易いため、短期間で紫外線吸収性が低下するという問題があった。そこで、例えば、特許文献8、特許文献9及び特許文献10には酸化チタン、酸化亜鉛、アルミナ、酸化マグネシウム、酸化鉄等の超微粒子無機微粉末を含有させる方法が提案されている。これらの超微粒子無機微粉末は有機系紫外線吸収剤に比べ長期安定性に優れ、耐久性は優れるが、超微粒子酸化チタンはUV−B(280~315μm)を効果的に遮蔽するが、UV−A(315~400μm)の遮蔽は不十分であった。また超微粒子酸化亜鉛はUV−A(315~400μm)を超微粒子酸化チタンよりは効率的に遮蔽するもののそれでも十分なレベルではなかった。また、これらのシートは透光性を維持して紫外線を遮蔽するものの、赤外線の遮蔽効果(遮熱性)は殆どなく、このようなシートを使用した膜材料からなる膜構造物空間は、明るいけれども夏場は非常に暑くなりやすいという問題点があった。
 このように、高透光性膜材料において、有害紫外線を十分に遮蔽し、遮熱性に優れる材料は、まだ提供されていない。
Highly translucent membrane material with visible light transmittance (JIS Z8722) of 40-80% is used for summer tents for pools, greenhouses, compost houses, etc. Recently, energy saving of lighting in general membrane structures as well In view of the above, high translucency is often required, and it is suitably used for membrane structures such as tent warehouses, medium and large tents, truck hoods, and sunshade tents.
However, the conventional highly transparent film material gives priority to the transmittance in the visible light region (400 to 780 μm), and the ultraviolet region (280 to 400 μm) and the infrared region (780 to 2500 μm) are hardly considered. The film structure space using such a highly light-transmitting film material is bright, but it is hot and is not sufficiently shielded against harmful ultraviolet rays.
Specifically, the conventional highly translucent film material has excellent transmittance in the visible light region (400 to 780 μm), but there is no sufficient shielding effect in the infrared region (780 to 2500 μm), and transmission is possible. Is highly radiant or absorbable, and infrared rays that are transmitted or absorbed from the front side of the membrane material directly warm the space on the back side of the membrane material, or the absorbed infrared rays raise the temperature of the membrane material to produce radiant heat. Since it is also emitted from the back side, the shielding property is inferior, and the inner space of the membrane structure using such a membrane material is bright but particularly hot in summer. It is possible to lower the internal temperature if cooling is used as in ordinary buildings, but the cooling efficiency is very poor due to the low thermal insulation of the membrane material itself, and energy costs and the associated environmental burden are considered. In addition, the space formed by the film structure using the conventional highly light-transmitting film material is not preferable in practice.
Further, the conventional high light-transmitting film material has not been found to have a sufficient shielding effect even in the ultraviolet region. Ultraviolet rays that reach the earth's surface are divided into B waves (280 to 315 μm, hereinafter abbreviated as “UV-B”) and A waves (315 to 400 μm, hereinafter abbreviated as “UV-A”). The amount reaching the surface of the earth increases and decreases, but it is said to cause skin cancer and cataracts, and UV-A is hardly absorbed in the atmosphere and reaches the ground, and has good permeability to human skin. To the point that it damages DNA and accelerates skin aging.
UV-B includes a wavelength that causes weathering deterioration of the resin due to ultraviolet rays, and in order to suppress the weathering deterioration due to ultraviolet rays of the film material itself, an ultraviolet absorber may be added to the resin. There was also a highly translucent film material that shielded UV-B. However, UV-A has almost no shielding effect even when a normal ultraviolet absorber is added, and the wavelength is close to the visible light region, so that it is difficult to shield with a highly translucent film material. Recently, the penetration and harmfulness of UV-A into the skin and retina have been repelled, and it has been strongly desired to shield UV-A from health and beauty orientation.
For example, Patent Literature 1 and Patent Literature 2 disclose a method for kneading a naphthalocyanine compound as a heat ray absorber in a transparent film in order to provide a sheet that shields infrared rays while maintaining translucency. However, this method has a problem in the weather resistance of the naphthalocyanine compound and the durability of the heat ray shielding effect. Further, for example, in Patent Document 3 and Patent Document 4, tin oxide (hereinafter referred to as “ATO”) fine particles doped with antimony or indium oxide (hereinafter referred to as “ITO”) doped with tin on the surface of a film substrate. (Abbreviated) discloses a method of applying a solution containing fine particles. Furthermore, for example, Patent Document 5 discloses a method of kneading ATO fine particles or ITO fine particles into a thermoplastic resin film. However, in any method, the price of ATO fine particles or ITO fine particles is very expensive, which is economically disadvantageous, and when ATO fine particles or ITO fine particles are applied to a film substrate, it is applied. The coated film peeled off from the base material, and the heat ray shielding effect was reduced.
Further, for example, Patent Document 6 and Patent Document 7 disclose a method of using coarse titanium oxide having a weight average particle diameter of 0.6 to 1.5 μm as a heat ray shielding material and including it in a thermoplastic resin film or coating film. Has been. When the coarse titanium oxide is contained, the translucency in the visible light region is improved compared with the case of containing titanium oxide for pigment (particle diameter 0.2 to 0.4 μm), but visible light transmission is possible as a film material. In order to obtain a rate (JIS Z8722) of 40 to 80%, the amount of coarse titanium oxide added was limited, and as a result, sufficient heat shielding properties could not be obtained. In addition, in order to obtain excellent heat shielding properties, it is necessary to increase the amount of coarse titanium oxide contained in the resin layer, and in the range where the content of coarse titanium oxide is small, it is effective in improving the translucency in the visible light region. However, when the content is increased, there is a problem that the concealability of the resin layer is increased as in the case of titanium oxide for pigment, and the translucency of the visible light region of the film material is lowered.
A technique for providing a sheet that shields ultraviolet rays (280 to 400 μm) while maintaining translucency is generally performed by a method containing an organic ultraviolet absorber, but in an organic ultraviolet absorber, UV-A is used. It is difficult to absorb (315 to 400 μm), and organic ultraviolet absorbers tend to bleed out on the sheet surface, so that there is a problem in that the ultraviolet absorptivity decreases in a short period of time. Thus, for example, Patent Document 8, Patent Document 9, and Patent Document 10 propose a method of containing ultrafine inorganic fine powders such as titanium oxide, zinc oxide, alumina, magnesium oxide, and iron oxide. Although these ultrafine inorganic fine powders are superior in long-term stability and durability compared to organic ultraviolet absorbers, ultrafine titanium oxide effectively shields UV-B (280 to 315 μm). The shielding of A (315 to 400 μm) was insufficient. Although ultrafine zinc oxide shields UV-A (315 to 400 μm) more efficiently than ultrafine titanium oxide, it is still not at a sufficient level. In addition, these sheets maintain translucency and shield ultraviolet rays, but there is almost no infrared shielding effect (heat shielding property), and the film structure space made of the film material using such a sheet is bright. There was a problem that the summer was very hot.
As described above, a material having a high light-transmitting film material that sufficiently shields harmful ultraviolet rays and has excellent heat shielding properties has not yet been provided.
特開2003−265033号公報JP 2003-265033 A 特開2003−265034号公報JP 2003-265034 A 特開平10−250001号公報Japanese Patent Laid-Open No. 10-250001 特開平10−250002号公報Japanese Patent Laid-Open No. 10-250002 特開平9−140275号公報JP-A-9-140275 特開2006−314218号公報JP 2006-314218 A 特開2007−295858号公報JP 2007-295858 A 特開平6−238829号公報Japanese Patent Laid-Open No. 6-238829 特開平7−173303号公報JP 7-173303 A 特開2004−331679号公報JP 2004-331679 A
 本発明は、膜材料において、高透光性と優れた紫外線遮蔽性と優れた赤外線遮蔽性とを兼備していて、特に、プール用常夏テントや温室や堆肥舎などの透光性が要求される施設、及びテント倉庫、中及び大型テント、トラック幌及び日除けテント等の膜構造物に好適に用いられる高透光性膜材料を提供しようとするものである。
 本発明者は、上記の課題を解決するために、鋭意検討の結果、基布と熱可塑性樹脂層からなる膜材料において、特定の干渉雲母粒子と超微粒子酸化チタン及び超微粒子酸化亜鉛から選ばれる少なくとも1種を膜材料を構成する樹脂層中に特定量配合する事により、高透光性と、優れた紫外線遮蔽性と、優れた赤外線遮蔽性とを合わせ持つ高透光性膜材料が得られることを見いだし、本発明を完成するに至った。
 本発明の高透光性膜材料は、繊維材料より形成された基布と、前記基布の表面上に形成されている表面赤外線反射樹脂層と、前記基布の裏面上に形成されている裏面熱可塑性樹脂層とを含み、全体として40~80%の可視光透過率(JIS Z8722により測定)を有する膜材料であって、少なくとも前記表面赤外線反射樹脂層が、干渉雲母粒子を、前記表面赤外線反射樹脂層の組成合計質量に対して、0.5~5質量%の含有率で含有し、前記表面赤外線反射樹脂層、及び前記裏面熱可塑性樹脂層のいずれか一方または両方が、0.01~0.5μmの粒径を有する超微粒子酸化チタン及び0.01~0.5μmの粒径を有する超微粒子酸化亜鉛から選ばれる少なくとも1種を、それぞれの組成合計質量に対して0.3~3質量%の含有率で含有することを特徴とするものである。
 本発明の高透光性膜材料において、前記干渉雲母粒子が、酸化チタン薄膜、もしくは酸化チタン/酸化ケイ素/酸化チタンの3層からなる複層薄膜で被覆されていることが好ましい。
 本発明の高透光性膜材料において、前記超微粒子酸化チタン及び超微粒子酸化亜鉛が、それぞれ酸化アルミニウム、酸化ジルコニウム、酸化ケイ素、ポリシロキサン及びステアリン酸から選ばれた少なくとも一種で表面処理されたものであることが好ましい。
 本発明の高透光性膜材料において、前記表面赤外線反射樹脂層の上に、防汚層がさらに形成されていることが好ましい。
 本発明の高透光性膜材料において、前記防汚層が、粒径0.01~0.5μmの超微粒子酸化チタン及び粒径0.01~0.5μmの超微粒子酸化亜鉛から選ばれる少なくとも1種を、前記防汚層の組成合計質量に対して0.3~3質量%の含有率で含有していることが好ましい。
 本発明の高透光性膜材料は、高透光性と、優れた紫外線遮蔽性と、優れた赤外線遮蔽性とを兼備しており、この高透光性膜材料を、プール用常夏テント、温室及び堆肥舎などのように十分な透光性を要求される施設、及びテント倉庫、中及び大型テント、トラック幌、並びに日除けテント等の膜構造物に使用することにより、「明るくて、有害紫外線を十分に遮蔽し、かつ遮熱性に優れた」快適な空間を提供することが可能となり、特に、夏場の作業環境を改善し、照明、冷房などに費やすエネルギーを削減する事が可能となる。
The present invention is a film material that has both high translucency, excellent ultraviolet shielding properties and excellent infrared shielding properties. In particular, translucency is required for swimming pool summer tents, greenhouses, compost houses, and the like. It is an object of the present invention to provide a highly translucent film material that can be suitably used for film structures such as facilities, tent warehouses, medium and large tents, truck hoods, and awning tents.
In order to solve the above-mentioned problems, the present inventor has selected from specific interference mica particles, ultrafine titanium oxide, and ultrafine zinc oxide in a film material composed of a base fabric and a thermoplastic resin layer as a result of intensive studies. By blending a specific amount of at least one kind in the resin layer constituting the film material, a highly translucent film material having both high translucency, excellent ultraviolet shielding properties and excellent infrared shielding properties is obtained. As a result, the present invention has been completed.
The highly translucent film material of the present invention is formed on a base fabric made of a fiber material, a surface infrared reflective resin layer formed on the surface of the base fabric, and a back surface of the base fabric. A film material having a visible light transmittance (measured in accordance with JIS Z8722) of 40 to 80% as a whole, wherein at least the surface infrared reflective resin layer contains the interference mica particles, It is contained at a content of 0.5 to 5% by mass with respect to the total composition mass of the infrared reflecting resin layer, and either one or both of the front surface infrared reflecting resin layer and the back surface thermoplastic resin layer is 0. At least one selected from ultrafine titanium oxide having a particle size of 01 to 0.5 μm and ultrafine zinc oxide having a particle size of 0.01 to 0.5 μm is used in an amount of 0.3 with respect to the total mass of each composition. Contained at a content of ~ 3% by mass It is characterized by doing.
In the highly translucent film material of the present invention, the interference mica particles are preferably coated with a titanium oxide thin film or a multilayer thin film comprising three layers of titanium oxide / silicon oxide / titanium oxide.
In the highly light-transmissive film material of the present invention, the ultrafine titanium oxide and ultrafine zinc oxide are surface-treated with at least one selected from aluminum oxide, zirconium oxide, silicon oxide, polysiloxane, and stearic acid, respectively. It is preferable that
In the highly translucent film material of the present invention, it is preferable that an antifouling layer is further formed on the surface infrared reflective resin layer.
In the highly light-transmissive film material of the present invention, the antifouling layer is at least selected from ultrafine titanium oxide having a particle size of 0.01 to 0.5 μm and ultrafine zinc oxide having a particle size of 0.01 to 0.5 μm. One type is preferably contained at a content of 0.3 to 3% by mass with respect to the total composition mass of the antifouling layer.
The highly translucent film material of the present invention has both high translucency, excellent ultraviolet shielding properties, and excellent infrared shielding properties. When used in facilities that require sufficient translucency, such as greenhouses and compost houses, and membrane structures such as tent warehouses, medium and large tents, truck hoods, and sunshade tents, it is "bright and harmful. It is possible to provide a comfortable space that sufficiently shields ultraviolet rays and is excellent in heat shielding, and in particular, it is possible to improve the work environment in summer and reduce the energy spent for lighting, cooling, etc. .
 本発明の高透光性膜材料用基布に使用される繊維材料は、ポリプロピレン繊維、ポリエチレン繊維、ポリエステル繊維、ナイロン繊維及びビニロン繊維などの合成繊維、木綿及び麻などの天然繊維、アセテートなどの半合成繊維、並びにガラス繊維、シリカ繊維、アルミナ繊維、及び炭素繊維などの無機繊維が挙げられ、これらは単独で用いられても良く、或はその2種以上を混用しても良く、その形状はマルチフィラメント糸条、短繊維紡績糸条、モノフィラメント糸条、スプリットヤーン糸条、テープヤーン糸条などいずれであってもよい。本発明に使用される基布の構造は、織布、編布、不織布のいずれでもよい。織布を用いる場合、平織、綾織、繻子織、模紗織などいずれの構造をとるものでもよいが、平織織物は、得られる高透光性膜材料の縦緯物性バランスに優れているため本発明に好ましく用いられる。編布を用いるときはラッセル編の緯糸挿入トリコットが好ましく用いられる。これら編織物は、少なくともそれぞれ、糸間間隙をおいて平行に配置された経糸及び緯糸を含む糸条により構成された粗目状の編織物(空隙率は最大80%、好ましくは5~50%)、及び非粗目状編織物(糸条間に実質上間隙が形成されていない編織物)を包含する。不織布としてはスパンボンド不織布などが使用できる。繊維基布には必要に応じて撥水処理、吸水防止処理、接着処理、難燃処理などが施されていてもよい。
 本発明の高透光性膜材料の表面赤外線反射樹脂層と裏面熱可塑性樹脂層とに用いられる樹脂は、熱可塑性樹脂(熱可塑性エラストマーを包含する)であって、塩化ビニル樹脂、塩化ビニル系共重合体樹脂、オレフィン樹脂、オレフィン系共重合体樹脂、ウレタン樹脂、ウレタン系共重合体樹脂、アクリル樹脂、アクリル系共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル系共重合体樹脂、スチレン樹脂、スチレン系共重合体樹脂、ポリエステル樹脂、ポリエステル系共重合体樹脂、およびフッ素含有共重合体樹脂などを、単独で用いてもよく、もしくは、2種以上を併用してもよい。これらの熱可塑性樹脂のなかでは、塩化ビニル樹脂(可塑剤、安定剤等を配合した軟質~半硬質塩化ビニル樹脂を包含する)、オレフィン系共重合体樹脂、ウレタン系共重合体樹脂、ポリエステル系共重合体樹脂、及びフッ素含有共重合体樹脂等を用いることが好ましい。
 上記の塩化ビニル樹脂及び、塩化ビニル系共重合体樹脂とは、具体的に、ポリ塩化ビニル、塩化ビニル−エチレン共重合体樹脂、塩化ビニル−酢酸ビニル共重合体樹脂、塩化ビニル−塩化ビニリデン共重合体樹脂、塩化ビニル−アクリル酸共重合体樹脂、及び塩化ビニル−ウレタン共重合体樹脂などを包含する。
 また上記のオレフィン樹脂、オレフィン系共重合体樹脂は、具体的に、ポリエチレン、ポリプロピレン、エチレン−α−オレフィン共重合体樹脂、エチレン−酢酸ビニル共重合体樹脂、エチレン−アクリル酸共重合体樹脂、エチレン−アクリル酸エステル共重合体樹脂、エチレン−メタアクリル酸共重合体樹脂、エチレン−メタアクリル酸エステル共重合体樹脂、ポリプロピレンとエチレン−プロピレンゴム(EPRゴム)とのリアクター重合樹脂、これらのポリマーアロイ体であるPP−EPR樹脂、ポリプロピレンとエチレン−プロピレン−共役ジエン系ゴム(EPDMゴム)とのリアクター重合樹脂、もしくはこれらのポリマーアロイ体であるPP−EPDM樹脂などを包含する。
 本発明の高透光性膜材料の表面赤外線反射樹脂層と裏面熱可塑性樹脂層は有機顔料、無機顔料による着色が可能であり、必要に応じて可塑剤、安定剤、充填剤、紫外線吸収剤、接着剤、防炎剤、防黴剤、滑剤等を含むことができる。
 特に紫外線吸収剤は、表面赤外線反射樹脂層自体と裏面熱可塑性樹脂層自体の耐候性向上の目的で使用され、例えばベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、トリアジン系化合物、及びアクリルポリマーに紫外線吸収ユニットがグラフト重合した化合物などが使用される。これらの紫外線吸収剤を表面赤外線反射樹脂層や裏面熱可塑性樹脂層に含有させると、膜材料のUV−B(280~315μm)の遮蔽性に効果的に作用する。
 本発明の高透光性膜材料の表面赤外線反射樹脂層に含まれる干渉雲母粒子は、雲母表面が酸化チタン薄膜、もしくは、酸化チタン/酸化ケイ素/酸化チタンの3層からなる複層薄膜で被覆されていることが好ましい。干渉雲母粒子の上記酸化チタン含有薄膜による被覆率は、35~70%であることが好ましく、それが35%未満であると、太陽光からの赤外線遮蔽性が不足することがある一方、それが70%を超えると、膜材料の透明性が低下し、或いは、酸化チタンの有する触媒活性によって膜材料の耐候性が低下する。この被覆率は、45~60%であることがより好ましい。この酸化チタン含有薄膜により被覆された干渉雲母粒子の製造方法には、特に限定はなく、例えば、四塩化チタンの加水分解により雲母表面に水酸化チタンを被覆させ、更に、焼結して酸化チタンを結晶化させる方法が挙げられる。なお、上記酸化チタンの雲母表面への被覆率とは、表面が酸化チタン含有薄膜により被覆された雲母の合計質量に対する薄膜の二酸化チタン換算質量の比率を表したものをいう。
 本発明の高透光性膜材料の表面赤外線反射樹脂層中に含まれる干渉雲母粒子の含有率は、透光性と遮熱性のバランスから前記表面赤外線反射樹脂層の組成合計質量に対して0.5~5質量%であることが好ましい。干渉雲母粒子の含有率が0.5質量%未満の場合は、膜材料の透光性は優れているが、赤外線透過率が大きく十分な遮熱性が得られない。また、干渉雲母粒子の含有率が5質量%を越える場合は、前記表面赤外線反射樹脂層の透光性が低下し、膜材料全体として40~80%の可視光透過率を得られず、また膜材料の表面色及び透光色が虹彩色となり、ギラツキやイラツキが発生する場合がある。
 本発明の高透光性膜材料の表面赤外線反射樹脂層、及び裏面熱可塑性樹脂層、のいずれか一方または両方に含まれる超微粒子酸化チタン及び/又は超微粒子酸化亜鉛は、粒径0.01~0.5μmの酸化チタン及び/又は酸化亜鉛から選ばれたものである。この粒径が0.01μm未満であると、所望のUV−Aの遮蔽効果を得ることが難しくなり、また、粒径が0.5μmを超えると、所望の透明性を得ることができない。
 本発明において用いる超微粒子酸化チタン及び/又は超微粒子酸化亜鉛は、樹脂中への分散性と不活性化性の向上のために、表面処理されたものを用いることが好ましい。表面処理剤としては、例えば酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)酸化ケイ素(SiO)、ポリシロキサン及びステアリン酸などから選ばれる一種以上が用いられる。超微粒子酸化チタン及び/又は超微粒子酸化亜鉛の含有率は、樹脂層の組成合計質量に対して、0.3~3質量%であることが好ましい。超微粒子酸化チタン及び/又は超微粒子酸化亜鉛の含有率が0.3質量%未満の場合は、紫外線(特にUV−A)の十分な遮蔽効果が得られない。また、超微粒子酸化チタン及び/又は超微粒子酸化亜鉛の含有率が3質量%を越える場合は、粒径が0.01~0.5μmであっても、透光性が低下し、膜材料全体として40~80%の可視光透過率を得られない場合がある。また、超微粒子酸化チタンと超微粒子酸化亜鉛とを併用する場合、その質量は、超微粒子酸化チタン:超微粒子酸化亜鉛=1:0.5~2であることが好ましい。このように、膜材料の構成材料として干渉雲母粒子と超微粒子酸化チタン及び/又は超微粒子酸化亜鉛とをそれぞれ特定量併用することによってはじめて、透光性を十分高い水準に維持したままでUV−Aを含めた紫外線の遮蔽性付与することが可能となり、これによって有害紫外線を十分に遮蔽し、更に遮熱性に優れた高透光性膜材料の提供が可能となった。
 本発明の高透光性膜材料において、経時的に発生する汚れの付着による遮熱効果の低下及び、透光性の低下を防止し、且つ美観を維持するために、表面赤外線反射樹脂層上に少なくとも1層の防汚層が設けられていてもよい。防汚層は高透光性膜材料の遮熱性及び透光性を損なわず極度の隠蔽性を伴わないものである限り、その形成方法及び素材に特に限定はない。このような防汚層は例えば、溶剤に可溶化されたアクリル系樹脂もしくはフッ素系樹脂の少なくとも1種以上からなる樹脂溶液を塗布して形成した塗膜層、前記樹脂とともにシリカ微粒子、またはコロイダルシリカを含む塗膜、オルガノシリケート及び/又はその縮合体を含む塗布剤を塗布して形成した親水性被膜層、光触媒性無機材料(例えば光触媒性酸化チタン)と結着剤とを含む塗布剤を塗布して形成した光触媒被膜層或は、少なくとも最外表面がフッ素系樹脂により形成されたフィルムを接着剤もしくは熱溶融加工により積層したフィルム層などから適宜選択することができる。
 また、前記防汚層と前記表面赤外線反射樹脂層との間に、必要に応じて、防汚層と表面赤外線反射樹脂層との接着性を向上させるための接着層、光触媒による表面赤外線反射樹脂中の樹脂の分解を妨げるための保護層、表面赤外線反射樹脂層に含まれる添加剤が防汚層に移行するのを妨げるための添加剤移行防止層、等が形成されていてもよい。また、本発明の高透光性膜材料の、前記防汚層が形成された面とは反対の面に、裏面接着層が形成されそれによって防汚層との高周波加熱融着性及び熱風融着性を付与してもよい。あるいは、高透光性膜材料をロール状に巻き取って保管している間に、裏面側の接着層もしくは熱可塑性樹脂層に含まれる添加剤が、前記防汚層上に移行して防汚性が低下するのを防ぐために、裏面側(防汚層とは反対の面)に、添加剤移行防止層が形成されていてもよい。
 本発明の高透光性膜材料の防汚層において、高透光性膜材料の更なる耐候性向上、及び有害紫外線の遮蔽強化のために、防汚層に粒径0.01~0.5μmの超微粒子酸化チタン及び粒径0.01~0.5μmの超微粒子酸化亜鉛から選ばれる少なくとも1種が含有されていてもよい。超微粒子酸化チタン及び/又は超微粒子酸化亜鉛は、防汚層に対する含有量としては、0.3~3質量%であることが好ましい。含有量が0.3質量%未満の場合は、膜材料の耐候性向上及び有害紫外線遮蔽に十分な効果が得られないことがある。また、超微粒子酸化チタン及び/又は超微粒子酸化亜鉛の含有量が3質量%を越える場合は、粒径が0.01~0.5μmといえども、防汚層に隠蔽性が発現し、膜材料として透光性が低下することがある。また、超微粒子酸化チタンと超微粒子酸化亜鉛とを併用する場合、質量比で超微粒子酸化チタン:超微粒子酸化亜鉛=1:0.5~2であることが好ましい。また、防汚層に含まれる超微粒子酸化チタン及び/又は超微粒子酸化亜鉛は、防汚層中での分散性を向上させるために表面処理されたものを用いることが好ましく、表面処理剤としては、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化ケイ素、ポリシロキサン及びステアリン酸などから選ばれる一種以上が挙げられる。
 本発明の高透光性膜材料は、繊維材料より形成された基布の表面に表面赤外線反射樹脂層を有し、基布の裏面上に裏面熱可塑性樹脂層を有する可撓性膜材であって、その形態は、ターポリン、帆布等の防水性膜材であることが好ましい。このうち帆布の場合は、前記表・裏樹脂層の樹脂成分として有機溶剤に可溶化した熱可塑性樹脂、水中で乳化重合された熱可塑性樹脂エマルジョン(ラテックス)、あるいは熱可塑性樹脂を水中に強制分散させ安定化したディスパージョン樹脂などの水分散樹脂、軟質ポリ塩化ビニル樹脂ペーストゾル、等を用い、塗被方法としてはディッピング加工(繊維布帛への両面加工)、及びコーティング加工(繊維布帛への片面加工、または両面加工)等を用いることができる。ターポリンは、カレンダー成形法、またはTダイス押出法により成形されたフィルム又はシートを、繊維基布の片面または両面に接着層を介在して積層する方法、あるいは繊維布帛の両面に目抜け空隙部を介して熱ラミネート積相する方法により製造することが好ましく、さらにディッピング加工、またはコーティング加工と、フィルム積層の組み合わせ方法によっても実施可能である。
The fiber material used for the base fabric for the highly translucent membrane material of the present invention is made of synthetic fibers such as polypropylene fiber, polyethylene fiber, polyester fiber, nylon fiber and vinylon fiber, natural fibers such as cotton and hemp, acetate, etc. Semi-synthetic fibers, and inorganic fibers such as glass fibers, silica fibers, alumina fibers, and carbon fibers may be used. These may be used alone, or two or more of them may be used in combination. May be any of multifilament yarn, short fiber spun yarn, monofilament yarn, split yarn yarn, tape yarn yarn and the like. The structure of the base fabric used in the present invention may be any of woven fabric, knitted fabric, and non-woven fabric. When a woven fabric is used, it may have any structure such as plain weave, twill weave, satin weave, and patterned weave, but the plain weave fabric is excellent in the balance of physical properties of the obtained highly translucent film material, and thus the present invention. Is preferably used. When using a knitted fabric, a weft insertion tricot of Russell knitting is preferably used. Each of these knitted fabrics is a coarse knitted fabric composed of yarns including warps and wefts arranged in parallel with a gap between yarns (the porosity is 80% at maximum, preferably 5 to 50%) And non-coarse knitted fabric (knitted fabric with substantially no gap formed between yarns). As the nonwoven fabric, a spunbond nonwoven fabric can be used. The fiber base fabric may be subjected to water repellent treatment, water absorption prevention treatment, adhesion treatment, flame retardant treatment, and the like as necessary.
The resin used for the front-surface infrared reflective resin layer and the back thermoplastic resin layer of the highly translucent film material of the present invention is a thermoplastic resin (including a thermoplastic elastomer), which is a vinyl chloride resin or a vinyl chloride resin. Copolymer resin, olefin resin, olefin copolymer resin, urethane resin, urethane copolymer resin, acrylic resin, acrylic copolymer resin, vinyl acetate resin, vinyl acetate copolymer resin, styrene resin, Styrene copolymer resins, polyester resins, polyester copolymer resins, fluorine-containing copolymer resins, and the like may be used alone or in combination of two or more. Among these thermoplastic resins, vinyl chloride resins (including soft to semi-rigid vinyl chloride resins containing plasticizers and stabilizers), olefin copolymer resins, urethane copolymer resins, polyester resins It is preferable to use a copolymer resin, a fluorine-containing copolymer resin, or the like.
Specific examples of the vinyl chloride resin and the vinyl chloride copolymer resin include polyvinyl chloride, vinyl chloride-ethylene copolymer resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-vinylidene chloride copolymer. Polymer resins, vinyl chloride-acrylic acid copolymer resins, vinyl chloride-urethane copolymer resins and the like are included.
The olefin resin and olefin copolymer resin are specifically polyethylene, polypropylene, ethylene-α-olefin copolymer resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, Ethylene-acrylic acid ester copolymer resin, ethylene-methacrylic acid copolymer resin, ethylene-methacrylic acid ester copolymer resin, reactor polymerization resin of polypropylene and ethylene-propylene rubber (EPR rubber), these polymers Examples include PP-EPR resin that is an alloy, reactor polymerization resin of polypropylene and ethylene-propylene-conjugated diene rubber (EPDM rubber), or PP-EPDM resin that is a polymer alloy of these.
The front-surface infrared reflecting resin layer and the back surface thermoplastic resin layer of the highly light-transmissive film material of the present invention can be colored with organic pigments and inorganic pigments, and plasticizers, stabilizers, fillers, UV absorbers as necessary. , Adhesives, flameproofing agents, antifungal agents, lubricants and the like.
In particular, ultraviolet absorbers are used for the purpose of improving the weather resistance of the front-surface infrared reflective resin layer itself and the back surface thermoplastic resin layer itself. For example, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, triazine compounds, and acrylics are used. A compound obtained by graft polymerization of an ultraviolet absorption unit to a polymer is used. When these ultraviolet absorbers are contained in the front-surface infrared reflecting resin layer or the back surface thermoplastic resin layer, they effectively act on the UV-B (280 to 315 μm) shielding properties of the film material.
The interference mica particles contained in the surface infrared reflective resin layer of the highly transparent film material of the present invention are coated with a titanium oxide thin film or a multilayer thin film comprising three layers of titanium oxide / silicon oxide / titanium oxide on the mica surface. It is preferable that The coverage of the interference mica particles with the titanium oxide-containing thin film is preferably 35 to 70%. If it is less than 35%, the infrared shielding property from sunlight may be insufficient. If it exceeds 70%, the transparency of the film material is lowered, or the weather resistance of the film material is lowered due to the catalytic activity of titanium oxide. The coverage is more preferably 45 to 60%. The method for producing the interference mica particles coated with the titanium oxide-containing thin film is not particularly limited. For example, titanium hydroxide is coated on the surface of mica by hydrolysis of titanium tetrachloride, and further sintered and titanium oxide is sintered. And a method of crystallizing. In addition, the coverage of the mica surface of the said titanium oxide means what represented the ratio of the titanium dioxide conversion mass of the thin film with respect to the total mass of the mica by which the surface was coat | covered with the titanium oxide containing thin film.
The content of the interference mica particles contained in the surface infrared reflective resin layer of the highly light transmissive film material of the present invention is 0 with respect to the total composition mass of the surface infrared reflective resin layer from the balance between the light transmitting property and the heat shielding property. It is preferably 5 to 5% by mass. When the content of the interference mica particles is less than 0.5% by mass, the translucency of the film material is excellent, but the infrared transmittance is large and sufficient heat shielding properties cannot be obtained. Further, when the content of the interference mica particles exceeds 5% by mass, the translucency of the surface infrared reflective resin layer is lowered, and the visible light transmittance of 40 to 80% as a whole film material cannot be obtained. The surface color and translucent color of the film material become an iris color, which may cause glare and irritation.
The ultrafine titanium oxide and / or ultrafine zinc oxide contained in either or both of the front-surface infrared reflective resin layer and the back surface thermoplastic resin layer of the highly light-transmissive film material of the present invention has a particle size of 0.01. It is selected from titanium oxide and / or zinc oxide having a thickness of 0.5 μm. When the particle size is less than 0.01 μm, it becomes difficult to obtain a desired UV-A shielding effect, and when the particle size exceeds 0.5 μm, desired transparency cannot be obtained.
The ultrafine titanium oxide and / or ultrafine zinc oxide used in the present invention is preferably surface-treated to improve dispersibility in the resin and inactivation. As the surface treatment agent, for example, one or more selected from aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), silicon oxide (SiO 2 ), polysiloxane, stearic acid, and the like are used. The content of ultrafine titanium oxide and / or ultrafine zinc oxide is preferably 0.3 to 3% by mass with respect to the total composition mass of the resin layer. When the content of ultrafine titanium oxide and / or ultrafine zinc oxide is less than 0.3% by mass, a sufficient shielding effect of ultraviolet rays (particularly UV-A) cannot be obtained. Further, when the content of ultrafine titanium oxide and / or ultrafine zinc oxide exceeds 3% by mass, the translucency is lowered even if the particle size is 0.01 to 0.5 μm, and the entire film material As a result, a visible light transmittance of 40 to 80% may not be obtained. When ultrafine titanium oxide and ultrafine zinc oxide are used in combination, the mass is preferably ultrafine titanium oxide: ultrafine zinc oxide = 1: 0.5-2. As described above, only when specific amounts of interference mica particles and ultrafine titanium oxide and / or ultrafine zinc oxide are used in combination as the constituent materials of the film material, UV- It became possible to provide ultraviolet shielding properties including A, thereby providing a highly transparent film material that sufficiently shielded harmful ultraviolet rays and was further excellent in heat shielding properties.
In the highly translucent film material of the present invention, in order to prevent a decrease in the heat shielding effect due to adhesion of dirt generated with time and a decrease in translucency, and to maintain an aesthetic appearance, on the surface infrared reflective resin layer May be provided with at least one antifouling layer. The antifouling layer is not particularly limited in its formation method and material as long as it does not impair the heat-shielding property and light-transmitting property of the highly light-transmitting film material and does not have extreme concealing properties. Such an antifouling layer is, for example, a coating layer formed by applying a resin solution comprising at least one acrylic resin or fluorine resin solubilized in a solvent, silica fine particles, or colloidal silica together with the resin. A coating film containing a coating film, a hydrophilic coating layer formed by applying a coating agent containing organosilicate and / or its condensate, and a coating agent containing a photocatalytic inorganic material (for example, photocatalytic titanium oxide) and a binder. The photocatalyst coating layer formed as described above, or a film layer obtained by laminating a film having at least the outermost surface formed of a fluorine-based resin by an adhesive or hot melt processing can be appropriately selected.
Further, an adhesive layer for improving the adhesion between the antifouling layer and the surface infrared reflecting resin layer between the antifouling layer and the surface infrared reflecting resin layer, if necessary, a surface infrared reflecting resin by a photocatalyst The protective layer for preventing decomposition | disassembly of resin inside, the additive transfer prevention layer for preventing the additive contained in the surface infrared reflective resin layer from transferring to the antifouling layer, and the like may be formed. Further, the back surface adhesive layer is formed on the surface opposite to the surface on which the antifouling layer is formed of the highly translucent film material of the present invention, whereby high-frequency heat fusion with the antifouling layer and hot air fusion. Wearability may be imparted. Alternatively, while the highly translucent film material is wound up and stored in a roll shape, the additive contained in the adhesive layer or the thermoplastic resin layer on the back side migrates onto the antifouling layer and is antifouling. In order to prevent the deterioration of the property, an additive migration preventing layer may be formed on the back surface side (the surface opposite to the antifouling layer).
In the antifouling layer of the highly translucent film material of the present invention, in order to further improve the weather resistance of the highly translucent film material and enhance the shielding against harmful ultraviolet rays, the antifouling layer has a particle size of 0.01 to 0. At least one selected from ultrafine titanium oxide having a particle size of 5 μm and ultrafine zinc oxide having a particle size of 0.01 to 0.5 μm may be contained. The content of the ultrafine titanium oxide and / or ultrafine zinc oxide is preferably 0.3 to 3% by mass with respect to the antifouling layer. When the content is less than 0.3% by mass, a sufficient effect may not be obtained for improving the weather resistance of the film material and shielding harmful ultraviolet rays. Further, when the content of ultrafine titanium oxide and / or ultrafine zinc oxide exceeds 3% by mass, the antifouling layer exhibits concealing properties even though the particle size is 0.01 to 0.5 μm. As a material, translucency may be lowered. When ultrafine titanium oxide and ultrafine zinc oxide are used in combination, it is preferable that the ultrafine particle titanium oxide: ultrafine zinc oxide is 1: 0.5 to 2 in terms of mass ratio. The ultrafine titanium oxide and / or ultrafine zinc oxide contained in the antifouling layer is preferably surface-treated to improve the dispersibility in the antifouling layer. , Aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), silicon oxide, polysiloxane, stearic acid, and the like.
The highly translucent film material of the present invention is a flexible film material having a surface infrared reflective resin layer on the surface of a base fabric formed from a fiber material and a back thermoplastic resin layer on the back surface of the base fabric. The form is preferably a waterproof membrane material such as tarpaulin or canvas. In the case of canvas, the thermoplastic resin solubilized in organic solvent, the thermoplastic resin emulsion (latex) emulsion-polymerized in water, or the thermoplastic resin is forcibly dispersed in water as the resin component of the front and back resin layers. Coating method (single side to fiber fabric) and dipping process (double-sided processing to fiber fabric), and coating method using water-dispersed resin such as dispersion resin stabilized, soft polyvinyl chloride resin paste sol, etc. Processing or double-sided processing) or the like can be used. Tarpaulin is a method of laminating a film or sheet molded by a calendar molding method or a T-die extrusion method with an adhesive layer interposed on one or both sides of a fiber base fabric, or having voids on both sides of a fiber fabric. It is preferable to manufacture by the method of carrying out a heat lamination phase through, and it can implement also by the combined method of a dipping process or a coating process, and film lamination.
 本発明を下記実施例、および比較例により更に説明する。これらの実施例及び比較例において、初期および屋外曝露1年後の紫外線遮蔽率、可視光透過率、遮熱率測定に用いた試験方法は下記の通りである。
 (1)紫外線遮蔽率
 膜材料の紫外線遮蔽率は、分光光度計V−670型(日本分光(株)製)を使用し、UV−BとUV−Aのそれぞれの波長領域(UV−B:280~315μm、UV−A:315~400μm)の紫外線透過率をJIS R3106の準拠して測定し、式(1)に従って算出した。
 紫外線遮蔽率(%)=100%−紫外線透過率(%)・・・(1)
 更に、紫外線遮蔽率により膜材料の紫外線遮蔽性を下記のように3段階に評価した。
        紫外線遮蔽率       クラス
        95%以上         3
        90%以上95%未満    2
        90%未満         1
 (2)可視光透過率
 膜材料の可視光透過率は、分光側色計CM−3600d(コニカミノルタ(株)製)を使用し、JIS Z8722に従って測定した。更に、可視光透過率により膜材料の透光性を下記のように3段階に評価した。
        可視光透過率       クラス
        40%~80%       3
        30%以上40%未満    2
        30%未満         1
 (3)遮熱率
 膜材料の遮熱率は、太陽光線を想定した赤外線ランプを使用し、膜材料が輻射熱を遮蔽する割合を、以下の試験環境及び試験方法に従って測定した。
 試験環境:内径が、高さ45cm×幅35cm×長さ35cmの外気温遮断性と気密性とを有する箱型構造体の天井部中央に白熱ランプ(100V,500Wのフォトリフレクタランプ:デイライトカラー用:東芝(株))を取り付けて、遮熱性評価の試験環境を構成した。次に、たて・よこともに0.5cmの正方形の断面積を有するアクリル樹脂製角材棒を梁として、外形が、高さ5cm×幅10cm×長さ15cmの箱型フレームを瞬間接着剤で組み立て、箱型フレームの4側面、上面部、及び底面部に、試験膜材を、その表面が外向きとなるように、両面テープで貼り付けて固定し、気密性の試験箱を準備した。また、この試験箱内部の底面部の中央には熱流量計(Shothrm HFM熱流量計:昭和電工(株)製)のセンサーを取り付けて固定した。試験膜材で被覆した試験箱(比較時には試験膜材の装着がないものを使用)を、箱型構造体の底面部の中央に取り付けて、ランプの中心点と試験箱の中心点とを結ぶ直線の方向が鉛直方向に重なるように固定した。この箱型構造体内部におけるランプ先端から試験箱の天井部までの距離は35cmであった。尚、箱形構造体は20℃の恒温室内に設置した。
 試験方法:試験膜材を装着しない試験箱を箱型構造体に入れて密閉状態に置き、ランプを点灯し、熱流量(kcal/mh)を1分ごとに測定し、30分後の熱流量qn(kcal/mh)を測定した。箱型構造体内の温度を恒温室内と同じ20℃まで戻した後、試験膜材を装着した試験箱を箱型構造体に入れて密閉状態に置き、ランプを点灯し、熱流量(kcal/mh)を1分ごとに測定し、30分後の熱流量qc(kcal/mh)を測定し、式(2)に従って算出した。
 遮熱率(%)=〔(qn−qc)/qn〕×100・・・(2)
 更に、遮熱率により膜材料の遮熱性を下記のように3段階に評価した。
     遮熱率          クラス
     30%以上         3
     20%以上30%未満    2
     20%未満         1
 (3)屋外曝露試験
 屋外曝露台上に、試験膜材の表面を上にして南向きに傾斜角30度に設置して屋外曝露試験(1年間)を行った。
 実施例1
 1 下塗り層の形成
 基布として、下記組織のポリエステルマルチフィラメント平織物を用いた。
 (750デニール×750デニール)/(19本/インチ×20本/インチ)
                    目付:125g/m
 この基布を、ペースト塩化ビニル樹脂を含む下記配合1の樹脂組成物の溶剤希釈液中に浸漬して、基布に樹脂液を含浸し、絞り、150℃で1分間乾燥後、185℃で1分間熱処理し、下塗り層を形成した。基布に対する樹脂の付着量は125g/mであった。
     <配合1>下塗り層
     ペースト塩化ビニル樹脂   100質量部
     DOP(可塑剤)       70質量部
     エポキシ化大豆油        4質量部
     炭酸カルシウム        10質量部
     Ba−Zn系安定剤       2質量部
     トルエン(溶剤)       20質量部
 2 表面赤外線反射樹脂層及び裏面熱可塑性樹脂層の形成
 次に、ストレート塩化ビニル樹脂を含む、下記配合2の樹脂組成物からなる表面赤外線反射樹脂フィルム(0.26mm厚)と下記配合3の樹脂組成物からなる裏面熱可塑性樹脂フィルム(0.26mm厚)とをカレンダーで作成し、それぞれ前記下塗り層含浸基布のおもて面及びうら面に貼着して、おもて面に250g/mの赤外線反射樹脂層を形成し、うら面に250g/mの裏面熱可塑性樹脂層を形成し、合計質量750g/mの高透光性膜材料を作製した。
     <配合2>表面赤外線反射樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂              96質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  干渉雲母粒子                  3質量%
  超微粒子酸化亜鉛                1質量%
 〔註〕干渉雲母粒子:粒子径:25~65μm,TiO/SiO/TiOによる複層薄膜被覆構造を有する。薄膜被覆率:45質量%
 超微粒子酸化亜鉛粒子径:0.02μm、酸化アルミニウム(Al)表面処理被覆付き
     <配合3>裏面熱可塑性樹脂層組成(塩ビ系)
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
 この高透光性膜材料を前記試験に供した。試験結果を表1に示す。
 実施例2
 実施例1と同様にして高透光性膜材料を作製した。但し、表面赤外線反射樹脂層組成を下記配合4の樹脂組成に変更した。
     <配合4>表面赤外線反射樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂              96質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  干渉雲母粒子                  3質量%
  超微粒子酸化チタン               1質量%
 〔註〕干渉雲母微粒子の粒子径:25~65μm,TiO/SiO/TiOによる複層薄膜被覆構造を有する。薄膜被覆率45質量%
 超微粒子酸化チタンの粒子径0.02μm、酸化アルミニウム(Al)表面処理被覆付き
 この高透光性膜材料を前記試験に供した。試験結果を表1に示す。
 実施例3
 実施例1と同様にして高透光性膜材料を作製した。但し、表面赤外線反射樹脂層組成を下記配合5の樹脂組成に変更した。
     <配合5>表面赤外線反射樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂              96質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  干渉雲母粒子                  3質量%
  超微粒子酸化亜鉛              0.5質量%
  超微粒子酸化チタン             0.5質量%
 〔註〕干渉雲母粒子の粒子径:25~65μm,TiO/SiO/TiOによる複層薄膜被覆構造を有する。薄膜被覆率:45質量%
 酸化亜鉛の粒子径:0.02μm、酸化アルミニウム(Al)表面処理被覆付き
 酸化チタンの粒子径:0.02μm、酸化アルミニウム(Al)表面処理被覆付き
 この高透光性膜材料を前記試験に供した。試験結果を表1に示す。
 実施例4
 1 下塗り層の形成
 基布として、下記組織のポリエステルフィラメント平織物を用いた。
 (750デニール×750デニール)/(19本/インチ×20本/インチ)
                   質量%:125g/m
 この基布を、ポリウレタン系樹脂を含む下記配合6の樹脂組成物の溶剤希釈液中に浸漬して、基布に樹脂液を含浸し、絞り、150℃で1分間乾燥後、185℃で1分間熱処理し、基布に対し樹脂を125g/m付着させて、下塗り層を形成した。
     <配合6>ポリウレタン系樹脂下塗り層
     ポリカーボネート系ポリウレタン樹脂ディスパージョン
                        100質量部
     環式ホスホン酸エステル化合物       5質量部
     メラミン被覆ポリリン酸アンモニウム
     (重合度n=1000)         10質量部
     メラミンシアヌレート          10質量部
     カルボジイミド化合物(硬化剤)      5質量部
     パラフィン系撥水剤(吸水防止剤)    10質量部
 2 表面赤外線反射樹脂層及び裏面熱可塑性樹脂層(オレフィン系樹脂)の形成
 次に、オレフィン系樹脂を含む、下記配合7の樹脂組成物からなるおもて面の赤外線反射樹脂フィルム(0.26mm厚)と下記配合8の樹脂組成物からなるうら面の樹脂フィルム(0.26mm厚)とをカレンダーで作成し、それぞれ前記下塗り層含浸基布のおもて面及びうら面に貼着して、おもて面に250g/mの赤外線反射樹脂層を形成し、うら面に250g/mの裏面熱可塑性樹脂層を形成し、合計質量750g/mの高透光性膜材料を作製した。
     <配合7>表面赤外線反射樹脂層組成(オレフィン系樹
脂)
  オレフィン系樹脂               96質量%
     ポリプロピレン樹脂        50質量部
     スチレン系共重合体樹脂      25質量部
     エチレン−酢酸ビニル共重合体樹脂 25質量部
     塩基性ヒンダードアミン化合物    1質量部
     熱劣化防止剤          0.2質量部
     メラミン被覆ポリリン酸アンモニウム20質量部
     メラミンシアヌレート       20質量部
  干渉雲母粒子                  3質量%
  超微粒子酸化亜鉛                1質量%
 〔註〕干渉雲母粒子の粒子径:25~65μm,TiO/SiO/TiOによる複層薄膜被覆構造を有する。薄膜被覆率:45質量%
 酸化亜鉛の粒子径:0.02μm、酸化アルミニウム(Al)表面処理被覆付き
     <配合8>裏面熱可塑性樹脂層組成(オレフィン系樹脂

     ポリプロピレン樹脂           50質量部
     スチレン系共重合体樹脂         25質量部
     エチレン−酢酸ビニル共重合体樹脂    25質量部
     塩基性ヒンダードアミン化合物       1質量部
     熱劣化防止剤             0.2質量部
     メラミン被覆ポリリン酸アンモニウム   20質量部
     メラミンシアヌレート          20質量部
 この高透光性膜材料を前記試験に供した。試験結果を表1に示す。
 実施例5
 実施例1と同様にして高透光性膜材料を作製した。但し、表面赤外線反射樹脂層組成を下記配合9の樹脂組成に、裏面熱可塑性樹脂層組成を下記配合10の樹脂組成に変更した。
     <配合9>表面赤外線反射樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂              97質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  干渉雲母粒子                  3質量%
 〔註〕干渉雲母粒子の粒子径:25~65μm,TiO/SiO/TiOによる複層薄膜被覆構造を有する。薄膜被覆率:45質量%
     <配合10>裏面熱可塑性樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂              99質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  超微粒子酸化亜鉛                1質量%
 〔註〕酸化亜鉛の粒子径:0.02μm、酸化アルミニウム(Al)表面処理被覆付き
 この高透光性膜材料を前記試験に供した。試験結果を表1に示す。
 実施例6
 実施例5と同様にして高透光性膜材料を作製した。但し、裏面熱可塑性樹脂層組成を下記配合11の樹脂組成に変更した。
     <配合11>裏面熱可塑性樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂              99質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  超微粒子酸化チタン               1質量%
 〔註〕酸化チタンの粒子径:0.02μm、酸化アルミニウム(Al)表面処理被覆付き
 この高透光性膜材料を前記試験に供した。試験結果を表1に示す。
 実施例7
 実施例5と同様にして高透光性膜材料を作製した。但し、裏面熱可塑性樹脂層組成を下記配合12の樹脂組成に変更した。
     <配合12>裏面熱可塑性樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂              99質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  超微粒子酸化亜鉛              0.5質量%
  超微粒子酸化チタン             0.5質量%
 〔註〕酸化亜鉛の粒子径:0.02μm、酸化アルミニウム(Al)表面処理被覆付き
 この高透光性膜材料を前記試験に供した。試験結果を表1に示す。
 実施例8
 実施例1と同様にして高透光性膜材料を作製した。但し、表面赤外線反射樹脂層の上に次のようにアクリル樹脂防汚層を形成した。
 実施例1で作製した膜材料の表面赤外線反射樹脂層の上に、アクリル樹脂として下記配合13の樹脂組成物の溶剤希釈液を、グラビアコーターを用いて、塗布量が25g/mになるように塗布し、120℃で1分間乾燥後冷却し、5g/mの防汚層を形成した。
     <配合13>アクリル樹脂系防汚処理液組成
     アクリル樹脂              20質量部
     :アクリプレン ペレット HBS001
     (三菱レイヨン(株)製)
     トルエン−MEK(50/50重量比)(溶剤)
                         80質量部
 この高透光性膜材料を前記試験に供した。試験結果を表2に示す。
 実施例9
 実施例8と同様にして高透光性膜材料を作製した。但し、表面赤外線反射樹脂層の上のアクリル樹脂防汚層に粒径0.02μmの超微粒子酸化亜鉛(酸化アルミニウム表面処理被覆)を1質量%添加しアクリル樹脂系防汚処理液組成を下記配合14の液組成に変更した。
     <配合14>アクリル樹脂系防汚処理液組成
     アクリル樹脂/超微粒子酸化亜鉛=99/1
                         20質量部
     アクリル樹脂:アクリプレン ペレット HBS001
     (三菱レイヨン(株)製)
     トルエン−MEK(50/50重量比)(溶剤)
                         80質量部
 この高透光性膜材料を前記試験に供した。試験結果を表2に示す。
 実施例10
 実施例8と同様にして高透光性膜材料を作製した。但し、表面赤外線反射樹脂層の上のアクリル樹脂防汚層に粒径0.02μmの超微粒子酸化チタン(酸化アルミニウム表面処理被覆)を1質量%添加しアクリル樹脂系防汚処理液組成を下記配合15の液組成に変更した。
     <配合15>アクリル樹脂系防汚処理液組成
     アクリル樹脂/超微粒子酸化チタン=99/1
                         20質量部
     アクリル樹脂:アクリプレン ペレット HBS001
     (三菱レイヨン(株)製)
     トルエン−MEK(50/50重量比)(溶剤)
                         80質量部
 この高透光性膜材料を前記試験に供した。試験結果を表2に示す。
 実施例11
 実施例8と同様にして高透光性膜材料を作製した。但し、表面赤外線反射樹脂層の上のアクリル樹脂防汚層に粒径0.02μmの超微粒子酸化亜鉛(酸化アルミニウム表面処理被覆)及び粒径0.02μmの超微粒子酸化チタン(酸化アルミニウム表面処理被覆)をそれぞれ0.5質量%添加しアクリル樹脂系防汚処理液組成を下記配合16の液組成に変更した。
     <配合16>アクリル樹脂系防汚処理液組成
     アクリル樹脂/超微粒子酸化亜鉛/超微粒子酸化チタン
     =99/0.5/0.5         20質量部
     アクリル樹脂:アクリプレン ペレット HBS001
     (三菱レイヨン(株)製)
     トルエン−MEK(50/50重量比)(溶剤)
                         80質量部
 この高透光性膜材料を前記試験に供した。試験結果を表2に示す。
 実施例12
 実施例1と同様にして高透光性膜材料を作製した。但し、表面赤外線反射樹脂層の上に次のように光触媒防汚層を形成した。
 表面赤外線反射樹脂層の上に、光触媒防汚層として下記配合17及び18の樹脂組成物の溶剤希釈液を、それぞれグラビアコーターを用いて、塗布量が15g/mになるように塗布し、100℃で1分間乾燥後冷却し、1.5g/mの接着保護層および光触媒防汚層を形成した。
     <配合17>光触媒防汚層の接着保護層用塗布液組成
     シリコン含有量3mol%のアクリルシリコン樹脂を8
     重量%(固形分)を含有するエタノール−酢酸エチル
     (50/50重量比)溶液       100質量部
     ポリシロキサンとしてメチルシリケートMS51
     (コルコート(株))の20%エタノール溶液
                          8質量部
     シランカップリング剤としてγ−グリシドキシプロピル
     トリメトキシシラン            1質量部
     <配合18>光触媒防汚層用塗布液組成
     酸化チタン含有量10重量%に相当する硝酸酸性酸化チ
     タンゾルを分散させた水−エタノール
     (50/50重量比)溶液        50質量部
     酸化珪素含有量10重量%に相当する硝酸酸性シリカゾ
     ルを分散させた水−エタノール(50/50重量比)溶
     液                   50質量部
 この高透光性膜材料を前記試験に供した。試験結果を表2に示す。
 実施例1~12で得られた膜材料は、UV−A遮蔽率95%以上の優れた紫外線遮蔽性と可視光透過率40%以上の優れた透光性と遮熱率30%以上の優れた遮熱性を示し、有害紫外線を十分に遮蔽し、遮熱性にも優れる高透光性膜材料であった。また、さらに実施例8~12では表面赤外線反射樹脂層の上に更に防汚層が形成されており、防汚層が形成されていない実施例1に比べ屋外曝露1年後も透光性、遮熱性の低下が少なく、初期の紫外線遮蔽製、透光性、遮熱性を維持していた。
 比較例1
 実施例1と同様にして膜材料を作製した。但し、実施例1の表面赤外線反射樹脂層の配合を下記配合19のように変更し、干渉雲母粒子と超微粒子酸化亜鉛を配合せずし、膜材料を作製した。
     <配合19>表面赤外線反射樹脂層組成(塩ビ系)
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
 この膜材料を前記試験に供した。試験結果を表3に示す。
 得られた膜材料は、実施例1で得られた膜材料に比べ、可視光透過率においてはほぼ同一レベルであったが、紫外線遮蔽率(特にUV−A)及び遮熱率において劣り、有害紫外線遮蔽性と遮熱性において不十分なものであった。
 比較例2
 実施例1と同様にして膜材料を作製した。但し、実施例1の表面赤外線反射樹脂層の配合を下記配合20のように変更し、超微粒子酸化亜鉛を配合せずに干渉雲母粒子のみを3質量%配合し、膜材料を作製した。
     <配合20>表面赤外線反射樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂              97質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  干渉雲母粒子                  3質量%
 〔註〕干渉雲母粒子の粒子径:25~65μm,TiO/SiO/TiOによる複層薄膜被覆構造を有する。薄膜被覆率:45質量%
 この膜材料を前記試験に供した。試験結果を表3に示す。
 得られた膜材料は、実施例1で得られた膜材料に比べ、可視光透過率及び遮熱率においてはほぼ同一レベルであるが、紫外線遮蔽率(特にUV−A)において劣り、有害紫外線遮蔽製において不十分なものであった。
 比較例3
 実施例1と同様にして膜材料を作製した。但し、実施例1の表面赤外線反射樹脂層の配合を下記配合21のように変更し干渉雲母粒子を配合せずに超微粒子酸化亜鉛のみを1質量%配合し、膜材料を作製した。
     <配合21>表面赤外線反射樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂              99質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  超微粒子酸化亜鉛                1質量%
 〔註〕酸化亜鉛の粒子径:0.02μm、酸化アルミニウム(Al)表面処理被覆付き
 この膜材料を前記試験に供した。試験結果を表3に示す。
 得られた膜材料は、実施例1で得られた膜材料に比べ、紫外線遮蔽率及び可視光透過率においては同レベルであったが、遮蔽率において劣り、遮蔽性において不十分なものであった。
 比較例4
 実施例1と同様にして膜材料を作製した。但し、実施例1の表面赤外線反射樹脂層の配合を下記配合22のように変更し、干渉雲母粒子の配合量を0.5質量%に下げて膜材料を作製した。
     <配合22>表面赤外線反射樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂            98.5質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  干渉雲母粒子                0.5質量%
  超微粒子酸化亜鉛                1質量%
 〔註〕干渉雲母粒子の粒子径:25~65μm,TiO/SiO/TiOによる複層薄膜被覆構造を有する。薄膜被覆率:45質量%
 酸化亜鉛の粒子径:0.02μm、酸化アルミニウム(Al)表面処理被覆付き
 この膜材料を前記試験に供した。試験結果を表3に示す。
 得られた膜材料は、実施例1で得られた膜材料に比べ、可視光透過率においては同レベルであったが、紫外線遮蔽率(特にUV−A)及び遮熱率においては劣り、有害紫外線遮蔽性と遮熱性において不十分なものであった。
 比較例5
 実施例1と同様にして膜材料を作製した。但し、実施例1の表面赤外線反射樹脂層の配合を下記配合23のように変更し、干渉雲母粒子の配合量を7質量%に増やして膜材料を作製した。
     <配合23>表面赤外線反射樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂              92質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  干渉雲母粒子                  7質量%
  超微粒子酸化亜鉛                1質量%
 〔註〕干渉雲母粒子の粒子径:25~65μm,TiO/SiO/TiOによる複層薄膜被覆構造を有する。薄膜被覆率:45質量%
 酸化亜鉛の粒子径:0.02μm、酸化アルミニウム(Al)表面処理被覆付き
 この膜材料を前記試験に供した。試験結果を表3に示す。
 得られた膜材料は、実施例1で得られた膜材料に比べ、紫外線遮蔽率及び遮熱率においては同レベルであったが、可視光透過率において劣り、透光性において不十分なものであった。
 比較例6
 実施例1と同様にして膜材料を作製した。但し、実施例1の表面赤外線反射樹脂層の配合を下記配合24のように変更し、超微粒子酸化亜鉛の配合量を0.1質量%に減らした。
     <配合24>表面赤外線反射樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂            96.9質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  干渉雲母粒子                  3質量%
  超微粒子酸化亜鉛              0.1質量%
 〔註〕干渉雲母粒子の粒子径:25~65μm,TiO/SiO/TiOによる複層薄膜被覆構造を有する。薄膜被覆率:45質量%
 酸化亜鉛の粒子径:0.02μm、酸化アルミニウム(Al)表面処理被覆付き
 この膜材料を前記試験に供した。試験結果を表3に示す。
 得られた膜材料は、実施例1で得られた膜材料に比べ、可視光透過率及び遮熱率においてはほぼ同レベルであったが、紫外線遮蔽率において劣り、有害紫外線遮蔽性において不十分なものであった。
 比較例7
 実施例1と同様にして膜材料を作製した。但し、実施例1の表面赤外線反射樹脂層の配合を下記配合24のように変更し、超微粒子酸化亜鉛の配合量を5質量%に増やして膜材料を作製した。
     <配合24>表面赤外線反射樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂              92質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  干渉雲母粒子                  3質量%
  超微粒子酸化亜鉛                5質量%
 〔註〕干渉雲母粒子の粒子径:25~65μm,TiO/SiO/TiOによる複層薄膜被覆構造を有する。薄膜被覆率:45質量%
 酸化亜鉛の粒子径:0.02μm、酸化アルミニウム(Al)表面処理被覆付き
 この膜材料を前記試験に供した。試験結果を表3に示す。
 得られた膜材料は、実施例1で得られた膜材料に比べ、紫外線遮蔽率及び遮熱率においては同レベルであったが、可視光透過率において劣り、透光性において不十分なものであった。
 比較例8
 実施例2と同様にして膜材料を作製した。但し、実施例2の超微粒子酸化チタン(粒子径0.02μm)を粗粒酸化チタン(粒子径0.6~1.5μm)に変更し、表面赤外線反射樹脂層の配合を下記配合25のように変更し膜材料を作製した。
     <配合25>表面赤外線反射樹脂層組成(塩ビ系)
  軟質塩化ビニル樹脂              96質量%
     ストレート塩化ビニル樹脂  100質量部
     DOP(可塑剤)       35質量部
     CDP(防炎可塑剤)     25質量部
     エポキシ化大豆油        4質量部
     Ba−Zn系安定剤       2質量部
     ベンゾフェノン系紫外線吸収剤0.5質量部
  干渉雲母粒子                  3質量%
  粗粒酸化チタン                 1質量%
 〔註〕干渉雲母粒子の粒子径:25~65μm,TiO/SiO/TiOによる複層薄膜被覆構造を有する。薄膜被覆率45質量%
 粗粒酸化チタンの粒子径:0.6~1.5μm
 この膜材料を前記試験に供した。試験結果を表3に示す。
 得られた膜材料は、実施例2で得られた膜材料に比べ、紫外線遮蔽率及び遮熱率は同レベルであるが、可視光透過率が劣り、透光性が不十分な膜材料であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
The present invention will be further described with reference to the following examples and comparative examples. In these Examples and Comparative Examples, the test methods used for measuring the ultraviolet shielding rate, visible light transmittance, and heat shielding rate after initial and outdoor exposure one year are as follows.
(1) UV shielding rate
The ultraviolet ray shielding rate of the film material is a spectrophotometer V-670 type (manufactured by JASCO Corporation), and each wavelength region of UV-B and UV-A (UV-B: 280 to 315 μm, UV-B). A: 315 to 400 μm) was measured in accordance with JIS R3106 and calculated according to the formula (1).
UV shielding rate (%) = 100% -UV transmittance (%) (1)
Furthermore, the ultraviolet shielding property of the film material was evaluated in three stages as follows by the ultraviolet shielding rate.
.UV shielding rate class
95% or more 3%
90% or more and less than 95% 2
Less than 90% 1
(2) Visible light transmittance
The visible light transmittance of the film material was measured according to JIS Z8722 using a spectroscopic color meter CM-3600d (manufactured by Konica Minolta Co., Ltd.). Furthermore, the translucency of the film material was evaluated in three stages as follows according to the visible light transmittance.
.Visible light transmittance class
40% -80% 3
30% or more and less than 40% 2
Less than 30% less than 1
(3) Heat shielding rate
The heat shielding rate of the film material was measured according to the following test environment and test method using an infrared lamp assuming solar rays and the ratio of the film material shielding radiant heat.
Test environment: Incandescent lamp (100V, 500W photoreflector lamp: daylight color) at the center of the ceiling of a box-shaped structure having an inside diameter of 45cm x width 35cm x length 35cm. Use: Toshiba Corp.) was attached, and a test environment for thermal insulation evaluation was configured. Next, a box frame of 5cm height x 10cm width x 15cm length is assembled with instant adhesive using a square rod made of acrylic resin having a square cross section of 0.5cm. The test membrane material was affixed to and fixed to the four side surfaces, the upper surface portion, and the bottom surface portion of the box-type frame with a double-sided tape so that the surface thereof would face outward, to prepare an airtight test box. Moreover, a sensor of a heat flow meter (Shotrm HFM heat flow meter: Showa Denko Co., Ltd.) was attached and fixed at the center of the bottom surface inside the test box. Attach a test box coated with a test membrane material (use a test membrane without a test membrane material for comparison) to the center of the bottom of the box-type structure, and connect the center point of the lamp to the center point of the test box The straight line direction was fixed so as to overlap the vertical direction. The distance from the lamp tip to the ceiling of the test box in the box structure was 35 cm. The box-shaped structure was installed in a constant temperature room at 20 ° C.
Test method: Put a test box without a test membrane material in a box structure, put it in a sealed state, turn on the lamp, and heat flow (kcal / m2h) is measured every minute, and the heat flow qn after 30 minutes (kcal / m2h) was measured. After the temperature in the box structure is returned to 20 ° C., which is the same as that in the temperature-controlled room, the test box with the test membrane material is put in the box structure and sealed, the lamp is turned on, and the heat flow (kcal / m2h) is measured every minute, and heat flow qc after 30 minutes (kcal / m2h) was measured and calculated according to equation (2).
Heat shielding rate (%) = [(qn−qc) / qn] × 100 (2)
Further, the heat shielding property of the film material was evaluated in three stages as follows according to the heat shielding rate.
.Thermal barrier class
30% or more 3
20% or more and less than 30% 2
Less than 20% 1
(3) Outdoor exposure test
On the outdoor exposure table, an outdoor exposure test (one year) was conducted by setting the surface of the test membrane material facing upward and installing it at an inclination angle of 30 degrees southward.
*Example 1
1 Formation of undercoat layer
As the base fabric, a polyester multifilament plain fabric having the following structure was used.
(750 denier x 750 denier) / (19 / inch x 20 / inch)
Ss. Per unit weight: 125 g / m2
This base fabric is immersed in a solvent diluted solution of a resin composition of the following formulation 1 containing a paste vinyl chloride resin, the base fabric is impregnated with the resin solution, squeezed, dried at 150 ° C for 1 minute, and then at 185 ° C Heat treatment was performed for 1 minute to form an undercoat layer. The amount of resin attached to the base fabric is 125 g / m.2Met.
<Composition 1> Undercoat layer
Paste vinyl chloride resin 100 parts by mass
70 DOP (plasticizer) 70 parts by mass
Epoxidized soybean oil 4 parts by mass
Calcium carbonate 10 parts by mass
Ba-Zn stabilizer 2 parts by mass
20 parts by mass of toluene (solvent)
2. Formation of front surface infrared reflective resin layer and back surface thermoplastic resin layer
Next, the surface infrared reflective resin film (0.26 mm thickness) which consists of a resin composition of the following mixing | blending 2 containing a straight vinyl chloride resin, and the back surface thermoplastic resin film (0.26 mm thickness) which consists of a resin composition of the following mixing | blending 3 ) With a calender and affixed to the front and back surfaces of the undercoat layer-impregnated base fabric, respectively, and 250 g / m on the front surface.2An infrared reflective resin layer is formed and 250 g / m on the back surface.2The back surface thermoplastic resin layer is formed, and the total mass is 750 g / m.2A highly translucent film material was prepared.
<Composition 2> Surface infrared reflective resin layer composition (vinyl chloride)
Soft vinyl chloride resin 96% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Interference mica particles 3% by mass
Ultrafine zinc oxide 1% by mass
[註] Interferometric mica particles: Particle size: 25 to 65 μm, TiO2/ SiO2/ TiO2It has a multilayer thin film coating structure. Thin film coverage: 45% by mass
Ultrafine zinc oxide particle diameter: 0.02 μm, aluminum oxide (Al2O3) With surface treatment coating
<Composition 3> Back side thermoplastic resin layer composition (PVC)
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
This highly translucent film material was subjected to the above test. The test results are shown in Table 1.
*Example 2
A highly transparent film material was produced in the same manner as in Example 1. However, the surface infrared reflective resin layer composition was changed to the resin composition of the following formulation 4.
<Composition 4> Surface infrared reflective resin layer composition (vinyl chloride)
Soft vinyl chloride resin 96% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Interference mica particles 3% by mass
Ultrafine titanium oxide 1% by mass
[註] Particle size of interference mica fine particles: 25 to 65 μm, TiO2/ SiO2/ TiO2It has a multilayer thin film coating structure. Thin film coverage 45% by mass
Ultrafine particle titanium oxide particle size 0.02μm, aluminum oxide (Al2O3) With surface treatment coating
This highly translucent film material was subjected to the above test. The test results are shown in Table 1.
*Example 3
A highly transparent film material was produced in the same manner as in Example 1. However, the surface infrared reflective resin layer composition was changed to the resin composition of the following formulation 5.
<Formulation 5> Surface infrared reflective resin layer composition (vinyl chloride)
Soft vinyl chloride resin 96% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Interference mica particles 3% by mass
Ultrafine zinc oxide 0.5% by mass
Ultrafine titanium oxide 0.5% by mass
[註] Particle size of interference mica particles: 25 to 65 μm, TiO2/ SiO2/ TiO2It has a multilayer thin film coating structure. Thin film coverage: 45% by mass
Zinc oxide particle size: 0.02 μm, aluminum oxide (Al2O3) With surface treatment coating
Titanium oxide particle size: 0.02 μm, aluminum oxide (Al2O3) With surface treatment coating
This highly translucent film material was subjected to the above test. The test results are shown in Table 1.
*Example 4
1 Formation of undercoat layer
A polyester filament plain fabric having the following structure was used as the base fabric.
(750 denier x 750 denier) / (19 / inch x 20 / inch)
..., "Mass%: 125 g / m"2
This base fabric is dipped in a solvent diluent of a resin composition of the following formulation 6 containing a polyurethane resin, the base fabric is impregnated with the resin solution, squeezed, dried at 150 ° C. for 1 minute, and 1 at 185 ° C. Heat treatment for 1 minute, 125g / m of resin to the base fabric2Adhering to form an undercoat layer.
<Composition 6> Polyurethane resin undercoat
Polycarbonate polyurethane resin dispersion
, 100 parts by mass
Cyclic phosphonate ester compound 5 parts by mass
Melamine-coated ammonium polyphosphate
(Degree of polymerization n = 1000) 10 parts by mass
Melamine cyanurate 10 parts by mass
Carbodiimide compound (curing agent) 5 parts by mass
Paraffin water repellent (water absorption inhibitor) 10 parts by mass
2. Formation of front surface infrared reflecting resin layer and back surface thermoplastic resin layer (olefin resin)
Next, an infrared reflective resin film (0.26 mm thickness) of the front surface made of a resin composition of the following formulation 7 containing an olefin-based resin and a back surface resin film (0 of the resin composition of the following formulation 8) .26 mm thickness) and affixed to the front and back surfaces of the undercoat layer-impregnated base fabric, and 250 g / m on the front surface.2An infrared reflective resin layer is formed and 250 g / m on the back surface.2The back surface thermoplastic resin layer is formed, and the total mass is 750 g / m.2A highly translucent film material was prepared.
<Composition 7> Surface infrared reflective resin layer composition (olefin-based tree)
Fat)
Olefin resin 96% by mass
Polypropylene resin 50 parts by mass
Styrene copolymer resin 25 parts by mass
25 parts by mass of ethylene-vinyl acetate copolymer resin
1 part by weight of basic hindered amine compound
Thermal degradation inhibitor 0.2 parts by mass
20 parts by mass of melamine-coated ammonium polyphosphate
Melamine cyanurate 20 parts by mass
Interference mica particles 3% by mass
Ultrafine zinc oxide 1% by mass
[註] Particle size of interference mica particles: 25 to 65 μm, TiO2/ SiO2/ TiO2It has a multilayer thin film coating structure. Thin film coverage: 45% by mass
Zinc oxide particle size: 0.02 μm, aluminum oxide (Al2O3) With surface treatment coating
<Composition 8> Back side thermoplastic resin layer composition (olefin resin)
)
Polypropylene resin 50 parts by mass
Styrene copolymer resin 25 parts by mass
25 parts by mass of ethylene-vinyl acetate copolymer resin
Basic hindered amine compound 1 part by mass
Heat degradation inhibitor 0.2 parts by mass
20 parts by mass of melamine-coated ammonium polyphosphate
Melamine cyanurate 20 parts by mass
This highly translucent film material was subjected to the above test. The test results are shown in Table 1.
*Example 5
A highly transparent film material was produced in the same manner as in Example 1. However, the surface infrared reflective resin layer composition was changed to the resin composition of the following formulation 9, and the back surface thermoplastic resin layer composition was changed to the resin composition of the following formulation 10.
<Composition 9> Surface infrared reflective resin layer composition (vinyl chloride)
Soft vinyl chloride resin 97% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Interference mica particles 3% by mass
[註] Particle size of interference mica particles: 25 to 65 μm, TiO2/ SiO2/ TiO2It has a multilayer thin film coating structure. Thin film coverage: 45% by mass
<Composition 10> Back side thermoplastic resin layer composition (PVC)
Soft vinyl chloride resin 99% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Ultrafine zinc oxide 1% by mass
[註] Zinc oxide particle size: 0.02 μm, aluminum oxide (Al2O3) With surface treatment coating
This highly translucent film material was subjected to the above test. The test results are shown in Table 1.
*Example 6
In the same manner as in Example 5, a highly translucent film material was produced. However, the back surface thermoplastic resin layer composition was changed to the resin composition of the following formulation 11.
<Composition 11> Backside thermoplastic resin layer composition (PVC)
Soft vinyl chloride resin 99% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Ultrafine titanium oxide 1% by mass
[註] Titanium oxide particle size: 0.02 μm, aluminum oxide (Al2O3) With surface treatment coating
This highly translucent film material was subjected to the above test. The test results are shown in Table 1.
*Example 7
In the same manner as in Example 5, a highly translucent film material was produced. However, the back surface thermoplastic resin layer composition was changed to the resin composition of the following formulation 12.
<Composition 12> Thermoplastic resin layer composition on back side (PVC)
Soft vinyl chloride resin 99% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Ultrafine zinc oxide 0.5% by mass
Ultrafine titanium oxide 0.5% by mass
[註] Zinc oxide particle size: 0.02 μm, aluminum oxide (Al2O3) With surface treatment coating
This highly translucent film material was subjected to the above test. The test results are shown in Table 1.
*Example 8
A highly transparent film material was produced in the same manner as in Example 1. However, an acrylic resin antifouling layer was formed on the surface infrared reflective resin layer as follows.
Example 1 On the surface infrared reflective resin layer of the film material produced in Example 1, a solvent dilution of a resin composition of the following formulation 13 as an acrylic resin was applied using a gravure coater, and the coating amount was 25 g / m.2And dried at 120 ° C. for 1 minute and then cooled to 5 g / m2An antifouling layer was formed.
<Composition 13> Acrylic resin antifouling treatment liquid composition
Acrylic resin 20 parts by mass
: Acryprene pellets HBS001
(Mitsubishi Rayon Co., Ltd.)
Toluene-MEK (50/50 weight ratio) (solvent)
80 parts 80 parts by mass
This highly translucent film material was subjected to the above test. The test results are shown in Table 2.
*Example 9
A highly transparent film material was produced in the same manner as in Example 8. However, 1% by mass of ultrafine zinc oxide (aluminum oxide surface treatment coating) with a particle size of 0.02 μm is added to the acrylic resin antifouling layer on the surface infrared reflective resin layer, and the acrylic resin antifouling treatment liquid composition is blended as follows: The liquid composition was changed to 14.
<Composition 14> Acrylic resin antifouling treatment liquid composition
Acrylic resin / ultrafine zinc oxide = 99/1
20 parts 20 parts by mass
Acryl resin: acrylprene pellets HBS001
(Mitsubishi Rayon Co., Ltd.)
Toluene-MEK (50/50 weight ratio) (solvent)
80 parts 80 parts by mass
This highly translucent film material was subjected to the above test. The test results are shown in Table 2.
*Example 10
A highly transparent film material was produced in the same manner as in Example 8. However, 1% by mass of ultrafine titanium oxide (aluminum oxide surface treatment coating) having a particle size of 0.02 μm is added to the acrylic resin antifouling layer on the surface infrared reflective resin layer, and the acrylic resin antifouling treatment liquid composition is blended as follows: The liquid composition was changed to 15.
<Composition 15> Acrylic resin antifouling treatment liquid composition
Acrylic resin / ultrafine particle titanium oxide = 99/1
20 parts 20 parts by mass
Acryl resin: acrylprene pellets HBS001
(Mitsubishi Rayon Co., Ltd.)
Toluene-MEK (50/50 weight ratio) (solvent)
80 parts 80 parts by mass
This highly translucent film material was subjected to the above test. The test results are shown in Table 2.
*Example 11
A highly transparent film material was produced in the same manner as in Example 8. However, ultrafine zinc oxide (aluminum oxide surface treatment coating) with a particle size of 0.02 μm and ultrafine titanium oxide (aluminum oxide surface treatment coating with a particle size of 0.02 μm) on the acrylic resin antifouling layer on the surface infrared reflective resin layer ) Was added in an amount of 0.5% by mass, and the acrylic resin antifouling treatment liquid composition was changed to a liquid composition of the following formulation 16.
<Composition 16> Acrylic resin antifouling treatment liquid composition
Acrylic resin / Ultrafine zinc oxide / Ultrafine titanium oxide
20/99 parts by mass = 99 / 0.5 / 0.5
Acryl resin: acrylprene pellets HBS001
(Mitsubishi Rayon Co., Ltd.)
Toluene-MEK (50/50 weight ratio) (solvent)
80 parts 80 parts by mass
This highly translucent film material was subjected to the above test. The test results are shown in Table 2.
*Example 12
A highly transparent film material was produced in the same manner as in Example 1. However, a photocatalyst antifouling layer was formed on the surface infrared reflective resin layer as follows.
On the surface infrared reflective resin layer, as a photocatalyst antifouling layer, a solvent diluted solution of the resin composition of the following formulations 17 and 18 was applied using a gravure coater, and the coating amount was 15 g / m.2And dried at 100 ° C. for 1 minute and then cooled to 1.5 g / m2The adhesion protective layer and the photocatalyst antifouling layer were formed.
<Composition 17> Coating solution composition for adhesion protective layer of photocatalytic antifouling layer
8 Acrylic silicon resin with 3 mol% silicon content
Ethanol-ethyl acetate containing wt% (solid content)
100% by weight solution (50/50 weight ratio) solution
Methyl silicate MS51 as polysiloxane
20% ethanol solution of Colcoat Co., Ltd.
, 8 parts by mass
Γ-Glycidoxypropyl as silane coupling agent
Trimethoxysilane 1 part by mass
<Composition 18> Coating solution composition for photocatalytic antifouling layer
Nitric acid acidic oxide equivalent to 10% by weight of titanium oxide content
Water-ethanol with tansol dispersed
50% by weight (50/50 weight ratio) solution
Nitric acid silicic acid equivalent to 10% by weight of silicon oxide
Water-ethanol (50/50 weight ratio) dissolved in water
Liquid liquid 50 parts by mass
This highly translucent film material was subjected to the above test. The test results are shown in Table 2.
The film materials obtained in Examples 1 to 12 have an excellent ultraviolet shielding property with a UV-A shielding rate of 95% or more, an excellent translucency with a visible light transmittance of 40% or more, and an excellent heat shielding rate of 30% or more. It was a highly translucent film material that exhibited excellent heat shielding properties, sufficiently shielded against harmful ultraviolet rays, and was excellent in heat shielding properties. Further, in Examples 8 to 12, a further antifouling layer is formed on the surface infrared reflective resin layer, and the translucency is 1 year after outdoor exposure compared to Example 1 in which the antifouling layer is not formed. There was little decrease in the heat shielding property, and the initial ultraviolet shielding, translucency, and heat shielding properties were maintained.
*Comparative Example 1
A film material was produced in the same manner as in Example 1. However, the composition of the surface infrared reflective resin layer of Example 1 was changed as shown in the following composition 19, and the film material was prepared without blending the interference mica particles and the ultrafine zinc oxide.
<Formulation 19> Surface infrared reflective resin layer composition (vinyl chloride)
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
This membrane material was subjected to the above test. The test results are shown in Table 3.
The obtained film material was almost the same in visible light transmittance as the film material obtained in Example 1, but inferior in ultraviolet shielding rate (particularly UV-A) and heat shielding rate, and harmful. The ultraviolet shielding property and the heat shielding property were insufficient.
*Comparative Example 2
A film material was produced in the same manner as in Example 1. However, the composition of the surface infrared reflective resin layer of Example 1 was changed as shown in the following composition 20, and only 3% by mass of interference mica particles were blended without blending ultrafine zinc oxide to prepare a film material.
<Composition 20> Surface infrared reflective resin layer composition (vinyl chloride)
Soft vinyl chloride resin 97% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Interference mica particles 3% by mass
[註] Particle size of interference mica particles: 25 to 65 μm, TiO2/ SiO2/ TiO2It has a multilayer thin film coating structure. Thin film coverage: 45% by mass
This membrane material was subjected to the above test. The test results are shown in Table 3.
The obtained film material has substantially the same level of visible light transmittance and heat shielding rate as the film material obtained in Example 1, but is inferior in ultraviolet shielding rate (especially UV-A) and harmful ultraviolet rays. It was insufficient in shielding.
*Comparative Example 3
A film material was produced in the same manner as in Example 1. However, the composition of the surface infrared reflective resin layer of Example 1 was changed as shown in Formula 21 below, and only 1% by mass of ultrafine zinc oxide was blended without blending the interference mica particles to prepare a film material.
<Composition 21> Surface infrared reflective resin layer composition (PVC)
Soft vinyl chloride resin 99% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Ultrafine zinc oxide 1% by mass
[註] Zinc oxide particle size: 0.02 μm, aluminum oxide (Al2O3) With surface treatment coating
This membrane material was subjected to the above test. The test results are shown in Table 3.
The obtained film material had the same level of ultraviolet shielding rate and visible light transmittance as compared with the film material obtained in Example 1, but the shielding rate was inferior and the shielding property was insufficient. It was.
*Comparative Example 4
A film material was produced in the same manner as in Example 1. However, the composition of the surface infrared reflective resin layer of Example 1 was changed as shown in the following composition 22, and the amount of interference mica particles was reduced to 0.5% by mass to produce a film material.
<Formulation 22> Surface infrared reflective resin layer composition (PVC)
Soft vinyl chloride resin 98.5% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Interference mica particles 0.5% by mass
Ultrafine zinc oxide 1% by mass
[註] Particle size of interference mica particles: 25 to 65 μm, TiO2/ SiO2/ TiO2It has a multilayer thin film coating structure. Thin film coverage: 45% by mass
Zinc oxide particle size: 0.02 μm, aluminum oxide (Al2O3) With surface treatment coating
This membrane material was subjected to the above test. The test results are shown in Table 3.
The obtained film material had the same level of visible light transmittance as that of the film material obtained in Example 1, but was inferior in ultraviolet shielding rate (particularly UV-A) and heat shielding rate and harmful. The ultraviolet shielding property and the heat shielding property were insufficient.
*Comparative Example 5
A film material was produced in the same manner as in Example 1. However, the composition of the surface infrared reflective resin layer of Example 1 was changed to the following composition 23, and the amount of interference mica particles was increased to 7% by mass to produce a film material.
<Formulation 23> Surface infrared reflective resin layer composition (PVC)
Soft vinyl chloride resin 92% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Interference mica particles 7% by mass
Ultrafine zinc oxide 1% by mass
[註] Particle size of interference mica particles: 25 to 65 μm, TiO2/ SiO2/ TiO2It has a multilayer thin film coating structure. Thin film coverage: 45% by mass
Zinc oxide particle size: 0.02 μm, aluminum oxide (Al2O3) With surface treatment coating
This membrane material was subjected to the above test. The test results are shown in Table 3.
The obtained film material had the same level of ultraviolet shielding rate and heat shielding rate as the film material obtained in Example 1, but was inferior in visible light transmittance and insufficient in translucency. Met.
*Comparative Example 6
A film material was produced in the same manner as in Example 1. However, the formulation of the surface infrared reflective resin layer of Example 1 was changed as shown in the following formulation 24, and the blending amount of ultrafine zinc oxide was reduced to 0.1% by mass.
<Composition 24> Surface infrared reflective resin layer composition (vinyl chloride)
Soft vinyl chloride resin 96.9% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Interference mica particles 3% by mass
Ultrafine zinc oxide 0.1% by mass
[註] Particle size of interference mica particles: 25 to 65 μm, TiO2/ SiO2/ TiO2It has a multilayer thin film coating structure. Thin film coverage: 45% by mass
Zinc oxide particle size: 0.02 μm, aluminum oxide (Al2O3) With surface treatment coating
This membrane material was subjected to the above test. The test results are shown in Table 3.
The obtained film material was almost the same in visible light transmittance and heat shielding rate as compared with the film material obtained in Example 1, but inferior in ultraviolet shielding rate and insufficient in harmful ultraviolet shielding property. It was something.
*Comparative Example 7
A film material was produced in the same manner as in Example 1. However, the composition of the surface infrared reflective resin layer of Example 1 was changed as shown in the following composition 24, and the amount of ultrafine zinc oxide was increased to 5% by mass to produce a film material.
<Composition 24> Surface infrared reflective resin layer composition (vinyl chloride)
Soft vinyl chloride resin 92% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Interference mica particles 3% by mass
Ultrafine zinc oxide 5% by mass
[註] Particle size of interference mica particles: 25 to 65 μm, TiO2/ SiO2/ TiO2It has a multilayer thin film coating structure. Thin film coverage: 45% by mass
Zinc oxide particle size: 0.02 μm, aluminum oxide (Al2O3) With surface treatment coating
This membrane material was subjected to the above test. The test results are shown in Table 3.
The obtained film material had the same level of ultraviolet shielding rate and heat shielding rate as the film material obtained in Example 1, but was inferior in visible light transmittance and insufficient in translucency. Met.
*Comparative Example 8
A film material was produced in the same manner as in Example 2. However, the ultrafine titanium oxide (particle diameter 0.02 μm) of Example 2 was changed to coarse titanium oxide (particle diameter 0.6 to 1.5 μm), and the composition of the surface infrared reflective resin layer was as shown in the following composition 25 The film material was prepared by changing to
<Formulation 25> Surface infrared reflective resin layer composition (vinyl chloride)
Soft vinyl chloride resin 96% by mass
100 straight parts of straight vinyl chloride resin
● 35 parts by mass of DOP (plasticizer)
25 parts by mass of CDP (flameproof plasticizer)
Epoxidized soybean oil 4 parts by mass
Ba-Zn stabilizer 2 parts by mass
0.5 parts by mass of benzophenone UV absorber
Interference mica particles 3% by mass
Coarse-grained titanium oxide 1% by mass
[註] Particle size of interference mica particles: 25 to 65 μm, TiO2/ SiO2/ TiO2It has a multilayer thin film coating structure. Thin film coverage 45% by mass
粗 Coarse titanium oxide particle size: 0.6-1.5μm
This membrane material was subjected to the above test. The test results are shown in Table 3.
The obtained film material is a film material having the same level of ultraviolet shielding rate and heat shielding rate as the film material obtained in Example 2, but inferior in visible light transmittance and insufficient in translucency. there were.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明によって得られる高透光性膜材料は、高い透光性と、優れた紫外線遮蔽性と、優れた赤外線遮蔽性とを合わせ持ち、特にプール用常夏テントや温室や堆肥舎などの透光性が要求される施設、及びテント倉庫、中・大型テントや、トラック幌、日除けテント等の膜構造物空間に使用することにより、「明るくて、有害紫外線を十分に遮蔽し、遮熱性に優れる」快適な空間を提供することが可能となり、特に、夏場の作業環境を改善し、照明、冷房などに費やすエネルギーを削減する事が可能となる。 The highly translucent film material obtained by the present invention has both high translucency, excellent ultraviolet shielding properties, and excellent infrared shielding properties. Especially, the translucency of swimming pools such as summer tents, greenhouses and compost houses. When used in facilities that require safety, and membrane structure spaces such as tent warehouses, medium and large tents, truck hoods, and awning tents, it is `` bright and sufficiently shields harmful ultraviolet rays and has excellent heat shielding properties. It becomes possible to provide a comfortable space, and in particular, it is possible to improve the work environment in summer and reduce the energy spent for lighting and cooling.

Claims (5)

  1. 繊維材料より形成された基布と、前記基布の表面上に形成されている表面赤外線反射樹脂層と、前記基布の裏面上に形成されている裏面熱可塑性樹脂層とを含み、全体として40~80%の可視光透過率(JIS Z8722により測定)を有する膜材料であって、少なくとも前記表面赤外線反射樹脂層が、干渉雲母粒子を、前記表面赤外線反射樹脂層の組成合計質量に対して、0.5~5質量%の含有率で含有し、前記表面赤外線反射樹脂層、及び前記裏面熱可塑性樹脂層のいずれか一方または両方が、0.01~0.5μmの粒径を有する超微粒子酸化チタン及び0.01~0.5μmの粒径を有する超微粒子酸化亜鉛から選ばれる少なくとも1種を、それぞれの組成合計質量に対して0.3~3質量%の含有率で含有することを特徴とする、高透光性膜材料。 Including a base fabric formed of a fiber material, a surface infrared reflective resin layer formed on the surface of the base fabric, and a back surface thermoplastic resin layer formed on the back surface of the base fabric, as a whole A film material having a visible light transmittance of 40 to 80% (measured according to JIS Z8722), wherein at least the surface infrared reflective resin layer contains interference mica particles with respect to the total composition mass of the surface infrared reflective resin layer. , 0.5 to 5% by mass, and either one or both of the surface infrared reflective resin layer and the back thermoplastic resin layer has a particle size of 0.01 to 0.5 μm. Containing at least one selected from fine particle titanium oxide and ultrafine particle zinc oxide having a particle size of 0.01 to 0.5 μm in a content of 0.3 to 3% by mass with respect to the total mass of each composition. Characterized by high Light membrane material.
  2. 前記干渉雲母粒子が、酸化チタン薄膜、もしくは酸化チタン/酸化ケイ素/酸化チタンの3層からなる複層薄膜で被覆されている、請求項1に記載の高透光性膜材料。 The highly translucent film material according to claim 1, wherein the interference mica particles are coated with a titanium oxide thin film or a multilayer thin film composed of three layers of titanium oxide / silicon oxide / titanium oxide.
  3. 前記超微粒子酸化チタン及び超微粒子酸化亜鉛が、それぞれ酸化アルミニウム、酸化ジルコニウム、酸化ケイ素、ポリシロキサン及びステアリン酸から選ばれた少なくとも一種で表面処理されたものである、請求項1に記載の高透光性膜材料。 The high permeability according to claim 1, wherein the ultrafine titanium oxide and the ultrafine zinc oxide are each surface-treated with at least one selected from aluminum oxide, zirconium oxide, silicon oxide, polysiloxane, and stearic acid. Photo film material.
  4. 前記表面赤外線反射樹脂層の上に、防汚層がさらに形成されている、請求項1~3のいずれか1項に記載の高透光性膜材料。 The highly translucent film material according to any one of claims 1 to 3, wherein an antifouling layer is further formed on the surface infrared reflective resin layer.
  5. 前記防汚層が、粒径0.01~0.5μmの超微粒子酸化チタン及び粒径0.01~0.5μmの超微粒子酸化亜鉛から選ばれる少なくとも1種を、前記防汚層の組成合計質量に対して0.3~3質量%の含有率で含有している、請求項4に記載の高透光性膜材料。 The antifouling layer comprises at least one selected from ultrafine titanium oxide having a particle size of 0.01 to 0.5 μm and ultrafine zinc oxide having a particle size of 0.01 to 0.5 μm, and the total composition of the antifouling layer. The highly translucent film material according to claim 4, which is contained at a content of 0.3 to 3% by mass relative to the mass.
PCT/JP2009/066207 2008-10-24 2009-09-10 Highly translucent film material WO2010047198A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2009307557A AU2009307557B2 (en) 2008-10-24 2009-09-10 Highly translucent film material
NZ592462A NZ592462A (en) 2008-10-24 2009-09-10 High light-transmission sheet material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-274298 2008-10-24
JP2008274298A JP5126792B2 (en) 2008-10-24 2008-10-24 High translucent film material

Publications (1)

Publication Number Publication Date
WO2010047198A1 true WO2010047198A1 (en) 2010-04-29

Family

ID=42119244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066207 WO2010047198A1 (en) 2008-10-24 2009-09-10 Highly translucent film material

Country Status (4)

Country Link
JP (1) JP5126792B2 (en)
AU (1) AU2009307557B2 (en)
NZ (1) NZ592462A (en)
WO (1) WO2010047198A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014034604A1 (en) * 2012-08-28 2016-08-08 東レ株式会社 Coated cloth and method for producing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606080B2 (en) * 2010-01-22 2014-10-15 オカモト株式会社 Heat shield sheet
US11142654B2 (en) * 2010-11-03 2021-10-12 Chemetall Gmbh Composition and process for the generation of a clear or translucent emissive coating
JP2015063494A (en) * 2013-09-26 2015-04-09 平岡織染株式会社 Mesh sheet
MX2016004502A (en) * 2013-10-11 2016-12-20 A Schulman Plastics Use of particulate titanium dioxide for reducing the transmission of near-infrared radiation.
JP3202028U (en) * 2015-10-28 2016-01-14 剛司郎 壽山 Shading net
JP6700522B2 (en) * 2016-07-07 2020-05-27 平岡織染株式会社 High heat shield and antifouling film material
KR102000537B1 (en) * 2018-07-27 2019-07-17 송사랑 Manufacturing method for fabricated film using polyethylene flat-yarn and fabricated film manufactured by the same
CN210798400U (en) * 2019-04-22 2020-06-19 贝尔格莱维亚伍德有限公司 Collapsible swimming pool with transparent side wall sections

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238829A (en) * 1993-02-19 1994-08-30 Sun A Chem Ind Co Ltd Surface protective film
JP2001121639A (en) * 1999-10-29 2001-05-08 Toray Ind Inc Laminated sheet
JP2002086641A (en) * 2000-09-18 2002-03-26 Hiraoka & Co Ltd Durable film material
JP2002370319A (en) * 2001-06-14 2002-12-24 Komatsu Seiren Co Ltd Heat ray barrier fiber fabric and method for manufacturing the same
JP2003251728A (en) * 2002-02-28 2003-09-09 Hiraoka & Co Ltd Daylighting heat insulating film material
JP2004004840A (en) * 2002-05-14 2004-01-08 Merck Patent Gmbh Infrared reflective material
JP2004331679A (en) * 2003-04-30 2004-11-25 Idemitsu Petrochem Co Ltd Thermoplastic resin composition and molded product thereof
JP2007055177A (en) * 2005-08-26 2007-03-08 Hiraoka & Co Ltd Lighting film material superior in heat insulation effect retention

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238829A (en) * 1993-02-19 1994-08-30 Sun A Chem Ind Co Ltd Surface protective film
JP2001121639A (en) * 1999-10-29 2001-05-08 Toray Ind Inc Laminated sheet
JP2002086641A (en) * 2000-09-18 2002-03-26 Hiraoka & Co Ltd Durable film material
JP2002370319A (en) * 2001-06-14 2002-12-24 Komatsu Seiren Co Ltd Heat ray barrier fiber fabric and method for manufacturing the same
JP2003251728A (en) * 2002-02-28 2003-09-09 Hiraoka & Co Ltd Daylighting heat insulating film material
JP2004004840A (en) * 2002-05-14 2004-01-08 Merck Patent Gmbh Infrared reflective material
JP2004331679A (en) * 2003-04-30 2004-11-25 Idemitsu Petrochem Co Ltd Thermoplastic resin composition and molded product thereof
JP2007055177A (en) * 2005-08-26 2007-03-08 Hiraoka & Co Ltd Lighting film material superior in heat insulation effect retention

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014034604A1 (en) * 2012-08-28 2016-08-08 東レ株式会社 Coated cloth and method for producing the same

Also Published As

Publication number Publication date
AU2009307557B2 (en) 2012-11-01
JP5126792B2 (en) 2013-01-23
NZ592462A (en) 2012-04-27
JP2010099959A (en) 2010-05-06
AU2009307557A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
JP5126792B2 (en) High translucent film material
JP4517178B2 (en) Daylighting film material with excellent thermal insulation effect
JP5146962B2 (en) Thermal barrier film material
JP5493225B2 (en) Near-infrared shielding sheet and manufacturing method thereof
TWI725533B (en) Radiative cooling material, method for manufacturing the same and application thereof
JP5768253B2 (en) Variable heat shielding daylighting sheet
JP5360656B2 (en) Heat shielding daylighting film material and manufacturing method thereof
JP6944013B2 (en) Radiative cooling fabrics and products
JP2014040035A (en) Heat control sheet
JP5062615B2 (en) Natural fiber-like mesh sheet with excellent heat insulation
JP3994189B2 (en) Daylighting thermal barrier film material
JP5520634B2 (en) Roll screen device
JP6212822B2 (en) Thermal barrier film material with excellent daylighting
JP6368913B2 (en) Highly translucent film material with heat insulation and heat retention
JP2012051113A (en) Heat controllable sheet
JP5760219B2 (en) Solar heat control membrane material
JP2013166313A (en) Heat-shielding sheet for window
JP5422836B2 (en) Exothermic translucent sheet and exothermic translucent membrane roof structure
JP2012140805A (en) Membrane material for solar radiation heat control
JP2011195792A (en) Exothermic light-transmitting sheet and exothermic light-transmitting film roof structure
JP2012140754A (en) Variable lighting-sheet with heat-shielding and heat-releasing properties
WO2008086436A1 (en) Specification insulating sheet
JP2010030203A (en) Thermally insulative film material
JP2003175559A (en) Thermal shielding sheet
JP3129422U (en) Heat shield sheet and screen door using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 592462

Country of ref document: NZ

Ref document number: 2009307557

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009307557

Country of ref document: AU

Date of ref document: 20090910

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09821897

Country of ref document: EP

Kind code of ref document: A1