WO2010047188A1 - Process for producing l- and d-aliphatic amino acid hydroxides - Google Patents

Process for producing l- and d-aliphatic amino acid hydroxides Download PDF

Info

Publication number
WO2010047188A1
WO2010047188A1 PCT/JP2009/065737 JP2009065737W WO2010047188A1 WO 2010047188 A1 WO2010047188 A1 WO 2010047188A1 JP 2009065737 W JP2009065737 W JP 2009065737W WO 2010047188 A1 WO2010047188 A1 WO 2010047188A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
aliphatic amino
protein
seq
acid sequence
Prior art date
Application number
PCT/JP2009/065737
Other languages
French (fr)
Japanese (ja)
Inventor
邦器 木野
良太郎 原
Original Assignee
学校法人 早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 早稲田大学 filed Critical 学校法人 早稲田大学
Publication of WO2010047188A1 publication Critical patent/WO2010047188A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine

Definitions

  • the present invention relates to a method for producing L- and D-aliphatic amino acid hydroxides, and more specifically to a method for producing aliphatic amino acid hydroxides using aliphatic amino acid hydroxylase.
  • 4-hydroxy-L-isoleucine have medicinal properties as therapeutic agents for type 2 diabetes.
  • the most famous of these is 4-hydroxy-L-isoleucine purified from the leguminous plant Trigonella foenum-graecum L. known as the herbal medicine Koroha or the spice fenugreek. (Hereinafter referred to as “4-HI”) (Non-patent Document 1).
  • 4-HI exhibits activity to promote insulin secretion in rat pancreas and human islets. Broca, C.I. Et al., Am. J. et al. Physiol. 277: E617-E623 (1999).
  • 4-HI can be produced using isoleucine hydroxylase in the fenugreek extract (Non-patent Document 2).
  • the enzyme has not been identified, and the enzyme can only be obtained from fenugreek extract and cannot be obtained in large quantities.
  • the enzyme is unstable, the method for producing 4-HI using isoleucine hydroxylase in the fenugreek extract is insufficient as an industrial production method. Haefele et al., Phytochemistry, 44: 563-566 (1997).
  • L-isoleucine 4-hydroxylase isoleucine dioxygenase derived from Bacillus thuringiensis can synthesize 4-HI using L? Isoleucine as a substrate, but this enzyme has strict substrate specificity.
  • Patent Document 3 There is a report (Patent Document 3) that it does not react with amino acids other than L-isoleucine (L-leucine, L-valine, L-glutamic acid, L-lysine and D-isoleucine).
  • ⁇ -hydroxynorvaline and some stereoisomers of ⁇ -hydroxyvaline, compounds having a structure similar to 4-HI, have also been shown to have an activity of promoting insulin secretion in rat islets (non- Patent Document 5).
  • the present invention provides L- and D-aliphatic amino acid dioxygenases.
  • the aliphatic amino acid dioxygenase of the present invention catalyzes the hydroxylation reaction of L- and D-forms of an aliphatic amino acid in the presence of 2-oxoglutarate and divalent iron ions.
  • the L- and D-aliphatic amino acid dioxygenase of the present invention includes (1) a protein comprising the amino acid sequence of SEQ ID NO: 2, 4 or 6, and (2) 1 in the amino acid sequence of SEQ ID NO: 2, 4 or 6.
  • 2-oxoglutarate-dependent dioxygenase activity comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added, and catalyzing the hydroxylation of L- and D-forms of aliphatic amino acids
  • a protein having 2-oxoglutarate-dependent dioxygenase activity and (4) a nucleotide having a homology of 80% or more with the nucleotide sequence of SEQ ID NO: 1, 3, or 5
  • the present invention provides a method for producing a hydroxide of an aliphatic amino acid.
  • the method for producing a hydroxide of an aliphatic amino acid according to the present invention comprises L- and C-catalyzing the hydroxylation reaction of an L-form and a D-form of an aliphatic amino acid in the presence of 2-oxoglutaric acid and divalent iron ions.
  • Preparing a D-aliphatic amino acid dioxygenase and an aliphatic amino acid and allowing the L- and D-aliphatic amino acid dioxygenases to act on the aliphatic amino acid to produce a hydroxide of the aliphatic amino acid.
  • the 2-oxoglutarate-dependent dioxygenase includes (1) a protein comprising any one amino acid sequence of SEQ ID NO: 2, 4, 6 or 8, and (2) of SEQ ID NO: 2, 4, 6 or 8. It consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added to any one of the amino acid sequences described above, and catalyzes the hydroxylation reaction of L- and D-forms of aliphatic amino acids A protein having 2-oxoglutarate-dependent dioxygenase activity, and (3) an amino acid sequence having 80% or more homology with any one of SEQ ID NOs: 2, 4, 6 or 8; A protein having 2-oxoglutarate-dependent dioxygenase activity that catalyzes the hydroxylation reaction of the L-form and D-form of an aliphatic amino acid, and (4) SEQ ID NOs: 1, 3 An amino acid sequence encoded by a polynucleotide consisting of a nucleotide sequence having a homology of
  • the present invention provides a recombinant vector comprising a polynucleotide encoding the L- and D-aliphatic amino acid dioxygenase of the present invention.
  • the present invention provides a transformant containing the recombinant vector of the present invention.
  • the protein of the present invention is produced by expressing a DNA comprising a nucleotide sequence encoding the amino acid sequence of the protein of the present invention in an inanimate expression system or an expression system using a host organism and an expression vector.
  • the host organisms include prokaryotes such as E. coli and Bacillus subtilis and eukaryotes such as yeast, fungi, plants and animals.
  • An expression system using the host organism and expression vector of the present invention may be a part of an organism such as a cell or tissue, or an entire individual of the organism.
  • the protein of the present invention may be prepared by subjecting L- and D of the present invention to a mixture of an inanimate expression system or a host organism and other components of an expression system using an expression vector, provided that it has hydroxylase activity for aliphatic amino acids.
  • -It may be used in a method for producing a hydroxide of an aliphatic amino acid, or may be used in a method for producing a hydroxide of an L- and D-aliphatic amino acid of the present invention in a purified state.
  • dioxygenase or hydroxylase refers to any protein having an enzyme activity that hydroxylates any atom of a substrate molecule (hereinafter referred to as “hydroxylase activity”).
  • the protein having hydroxylase activity for the L- and D-aliphatic amino acids of the present invention may be a protein derived from any species.
  • Proteins having hydroxylase activity for L- and D-aliphatic amino acids of the present invention include genus Greobacter such as Gleobacter violaceus, and Pseudomonas syringae sapiera syringae.
  • Pseudomonas genus such as Phaseolicola, Chromobacterium violaceum such as Chromobacterium violaceum, Bacillus cerium B. ⁇ Bacillis genus (Bacillus licheniformis), Bacillus sphaericus (Bacillus sphaericus), Escherichia coli, other Escherichia ter, It may be derived from any organism including bacteria containing the genus (Arthrobacter), filamentous fungi or fungi containing the genus Aspergillus, archaea, plants and animals.
  • the protein having hydroxylase activity of the present invention includes a protein of GenBank accession number glr2602 (hereinafter referred to as “glr2602 protein”) derived from Gloeobacter violaceus PCC 7421, Pseudomonas syringae pasoba phaseolicola (on-site). pv.
  • phaseolicola 1448A derived from the GenBank accession number PSPPH_3986 of protein (hereinafter referred to as "PSPPH_3986 protein”.) and, Chromobacterium violaceum (Chromobacterium violaceum) NBRC 12614 T derived from the GenBank accession number CV_3308 of protein (hereinafter referred to as "CV And 3308 protein "called.), Bacillus cereus (Bacillus cereus) ATCC14579 of GenBank accession number BC_1061 derived from a protein (hereinafter referred to, including that.) And” BC_1061 protein "is not limited to this.
  • the nucleotide sequence consisting of 654 bases encoding the glr2602 protein is listed in SEQ ID NO: 1, and the amino acid sequence consisting of 217 amino acids of the glr2602 protein is listed in SEQ ID NO: 2.
  • the nucleotide sequence consisting of 720 bases encoding the PSPPH — 3986 protein is listed in SEQ ID NO: 3, and the amino acid sequence consisting of 239 amino acids of the PSPPH — 3986 protein is listed in SEQ ID NO: 4.
  • the nucleotide sequence consisting of 924 bases encoding the CV — 3308 protein is listed in SEQ ID NO: 5, and the amino acid sequence consisting of 307 amino acids of the CV — 3308 protein is listed in SEQ ID NO: 6.
  • the nucleotide sequence consisting of 753 bases encoding the BC — 1061 protein is listed in SEQ ID NO: 7, and the amino acid sequence consisting of 250 amino acids of the BC — 1061 protein is listed in SEQ ID NO:
  • the homology of nucleotide sequences means that the nucleotide sequences of the present invention and the nucleotide sequence to be compared are aligned so that the number of nucleotide sequences that match is the largest. Expressed as a percentage of the quotient divided by the total number of nucleotides of the nucleotide sequence of the present invention.
  • amino acid sequence homology is determined by aligning the amino acid sequences of the present invention and the amino acid sequence to be compared so that the number of amino acid residues having the same sequence is the largest.
  • nucleotide sequence and amino acid sequence of the present invention can be calculated by using the sequence alignment program CLUSTALW well known to those skilled in the art.
  • stringent conditions refers to Sambrook, J. et al. And Russell, D .; W. , Molecular Cloning A Laboratory Manual 3rd Edition, Cold Spring Harbor Laboratory Press (2001), and the Southern blot method described in the following experimental conditions.
  • a polynucleotide having a nucleotide sequence to be compared is band-formed by agarose electrophoresis and then immobilized on a nitrocellulose filter or other solid phase by capillary action or electrophoresis. Pre-wash with a solution consisting of 6x SSC and 0.2% SDS.
  • a hybridization reaction between a probe obtained by labeling a polynucleotide comprising the nucleotide sequence of the present invention with a radioisotope or other labeling substance and a polynucleotide to be compared immobilized on the solid phase is performed with 6 ⁇ SSC and 0.2. % In SDS solution at 65 ° C overnight. Thereafter, the solid phase was washed twice at 65 ° C. for 30 minutes each in a solution consisting of 1 ⁇ SSC and 0.1% SDS, and 65 ° in a solution consisting of 0.2 ⁇ SSC and 0.1% SDS. C. Wash twice for 30 minutes each. Finally, the amount of the probe remaining on the solid phase is determined by quantifying the labeling substance.
  • hybridization under “stringent conditions” means that the amount of the probe remaining on the solid phase immobilized with the polynucleotide consisting of the nucleotide sequence to be compared is equal to the polynucleotide consisting of the nucleotide sequence of the present invention. It refers to at least 25%, preferably at least 50%, more preferably at least 75% or more of the amount of probe remaining in the immobilized solid phase of the positive control experiment.
  • hydroxylase activity refers to the ability to act on a substrate molecule and perform a reaction to hydroxylate any carbon atom of the substrate molecule.
  • aliphatic amino acid refers to an amino acid containing an aliphatic hydrocarbon in the side chain.
  • the aliphatic amino acids in the present specification are included in 20 kinds of L-amino acids used for translation of proteins synthesized from messenger RNA by ribosome in vivo such as L-leucine, L-isoleucine and L-valine.
  • L-amino acids such as L-norvaline and L-norleucine
  • optical isomers thereof such as D-leucine, D-isoleucine, D-valine, D-norvaline and D-norleucine
  • the L- and D-aliphatic amino acid dioxygenases of the present invention are 2-oxoglutarates that catalyze the hydroxylation reaction of L- and D-forms of aliphatic amino acids in the presence of 2-oxoglutarate and divalent iron ions. It is an acid-dependent dioxygenase.
  • the L- and D-aliphatic amino acid dioxygenases of the present invention perform hydroxylation of L- and D-forms of aliphatic amino acids in the presence of 2-oxoglutarate, L-ascorbic acid and divalent iron ions. Preferably it is done.
  • the aliphatic amino acid hydroxide obtained by the production method of the present invention is based on specific adsorption on an ion exchange resin or other carrier, thin layer chromatography, high performance liquid chromatography (HPLC), other chromatography, or organic solvent. It is recovered by methods well known to those skilled in the art such as extraction and crystallization.
  • the peptides are also evaluated for production or purity using analytical techniques well known to those skilled in the art, such as HPLC or mass spectrometry (MS) methods.
  • the chromatogram which shows the HPLC analysis result of the hydroxylation reaction product of D-norleucine by glr2602 protein.
  • the MS chart which shows the MS analysis result of the hydroxylation reaction product of L-valine by glr2602 protein.
  • the MS chart which shows the MS analysis result of the hydroxylation product of L-leucine by glr2602 protein.
  • the MS chart which shows the MS analysis result of the hydroxylation product of L-isoleucine by glr2602 protein.
  • the MS chart which shows the MS analysis result of the hydroxylation product of L-norvaline by glr2602 protein.
  • the MS chart which shows the MS analysis result of the hydroxylation product of L-norleucine by glr2602 protein.
  • the MS chart which shows the MS analysis result of the hydroxylation product of D-valine by glr2602 protein.
  • the MS chart which shows the MS analysis result of the hydroxylation reaction product of D-leucine by glr2602 protein.
  • the MS chart which shows the MS analysis result of the hydroxylation product of D-isoleucine by glr2602 protein.
  • the MS chart which shows the MS analysis result of the hydroxylation reaction product of D-norvaline by glr2602 protein.
  • the MS chart which shows the MS analysis result of the hydroxylation product of D-norleucine by glr2602 protein.
  • Table 1 shows the aliphatic amino acid hydroxylases used in the examples.
  • Amplification of the target L- and D-aliphatic amino acid dioxygenase genes was carried out using Expand High Fidelity PCR System (Roche) with polymerase chain reaction (PCR) using the chromosomal DNA of each microorganism as a template.
  • PCR consists of 1 cycle at 94 ° C for 180 seconds, 15 seconds at 94 ° C, 10 seconds at 50 ° C and 25 seconds at 72 ° C, 25 cycles, and 420 seconds at 72 ° C.
  • the reaction was performed under the reaction conditions (Table 2).
  • Table 3 shows the cloning and expression conditions for each of the aliphatic amino acid hydroxylases.
  • the base sequences of primers used for isolation of the genes of the respective enzymes are listed in SEQ ID NOs: 9-16.
  • E. coli derived from a single colony is cultured in 5 mL of LB-A liquid medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride and 100 ⁇ g / mL ampicillin) at 37 ° C. for 16 hours, and QIAprep Spin Plasmids were extracted using Miniprep Kit (Qiagen). The DNA inserted into the extracted plasmid was analyzed by a DNA sequencer (Applied Biosystems), and it was confirmed that the target aliphatic amino acid hydroxylase gene was inserted.
  • E. coli Rosetta2 (DE3) was transformed with the recombinant plasmid obtained in Example 1.
  • the Escherichia coli was cultured using LB-AC agar medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride, 1.5% agar, 50 ⁇ g / mL ampicillin and 34 ⁇ g / mL chloramphenicol). The culture was stationary overnight at ° C.
  • the cells recovered from the liquid medium by centrifugation at 4 ° C. and 5000 ⁇ g for 10 minutes are suspended in 5 mL of 20 mM HEPES / NaOH buffer (pH 7.5), subjected to ultrasonic disruption for 3 minutes, and then subjected to 4 ° C. And centrifuged at 20000 ⁇ g for 30 minutes.
  • the collected supernatant (cell-free extract) was subjected to affinity chromatography using a His trap HP column (GE Healthcare) to separate aliphatic amino acid hydroxylase. Thereafter, the buffer was exchanged using a PD-10 column (GE Healthcare) to prepare a purified enzyme.
  • Hydroxylation reaction to various amino acids Hydroxylation reaction to various amino acids was performed using the purified enzyme obtained in Example 2. Since the purified enzyme was predicted to be 2-oxoglutarate-dependent dioxygenase, a standard reaction solution containing 1-oxoglutarate (1 mM amino acid, 5 mM 2-oxoglutarate, 1 mM L-ascorbic acid, 0.1 mM sulfuric acid sulfate 1 The enzyme reaction was performed using iron, 50 mM potassium phosphate buffer, 0.5 mg / mL various purified enzymes). The composition of the standard reaction solution is shown in Table 4 below.
  • Standard reaction solutions shown in Table 4 were prepared, and after enzyme addition, the mixture was incubated for 20 hours while stirring at 25 ° C. and 170 rpm. Thereafter, the reaction solution was filtered using a 0.45 ⁇ m filter and subjected to LC / MS analysis. As a negative control test, a 2-oxoglutarate non-addition system test and an enzyme non-addition system test were also performed.
  • HPLC analysis HPLC analysis was performed by a high performance liquid chromatograph L2000 series (Hitachi) using a post-column analysis method.
  • the configuration of the HPLC analyzer is shown in FIG.
  • the HPLC analysis conditions are shown in Table 5.
  • an eluent and a reaction liquid are connected to each of the pump A and the pump B, and the sample injected by the autosampler and the eluent are applied to an analysis column to be separated, and the eluate and the reaction liquid are separated.
  • the reaction was performed by measuring with a fluorescence detector.
  • the composition of the pump A eluent is 20 mM phosphate buffer, 5 mM 1-heptanesulfonic acid, 10% or 20% methanol (pH 2.5), and the composition of the pump B reaction liquid is 22 g / L boric acid, 12 g / L sodium hydroxide, 0.8 g / L orthophthalaldehyde, 2 g / L N-acetylcysteine.
  • the analytical column used was a Cosmo Seal 5C18-MS-II 4.6 mm ⁇ 150 mm analytical column (Nacalai Tesque), and the column temperature was 40 ° C. (Table 5-a).
  • the HPLC analysis pump program was 20 minutes at 0.7 mL / min eluent and 20 minutes at 0.3 mL / min reaction (Table 5-b). Fluorescence was measured at an excitation wavelength of 340 nm and a detection wavelength of 450 nm.
  • FIG. 3-12 is a chromatographic chart showing the HPLC analysis results after the reaction of the reaction solution containing these substrates.
  • the numbers in the figure are the elution time of each substrate peak and the maximum peak elution time of the product.
  • peaks of unknown compounds are detected when L- and D-leucine, L-isoleucine, L- and D-norvaline, and L- and D-norleucine are used as substrates. It was.
  • peaks of unknown compounds were detected when L- and D-leucine, L-isoleucine, L-norvaline, and L- and D-norleucine were used as substrates.
  • MS analysis A sample in which an unknown compound peak was detected in HPLC analysis was purified by a solid-phase extraction column according to the procedure shown in FIG. 2, and MS analysis was performed using LCQ Deca (Thermo Quest). Table 7 shows the MS analysis conditions.
  • the ionization method was an electrospray method, and the sample was directly injected by a syringe.
  • Sheath Gas Flow Rate is 20 arb
  • Aux Gas Flow Rate is 20 arb
  • Spray Voltage is 5 kV
  • Capillary Temp is 200 ° C
  • Capillary Voltage is 17 V
  • Tube Lensoffs is set to 5 Tubes.
  • FIG. 13-22 is an MS chart showing the MS analysis results after the reaction of the reaction solution containing these substrates. The numbers in the figure are the mass-to-charge ratios of the hydroxides of the respective substrates.
  • the aliphatic amino acid dioxygenase of the present invention is unique in that it catalyzes the hydroxylation reaction of not only the L-form of an aliphatic amino acid but also the D-form.
  • the present invention is useful for industrial production of hydroxides of L? And D-aliphatic amino acids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Disclosed are: an aliphatic amino acid hydroxylase having low substrate specificity; and a process for producing a hydroxide of an aliphatic amino acid by using the enzyme, which can produce a hydroxide of any one of various aliphatic amino acids by changing a substrate molecule for the enzyme. Specifically disclosed are: an L- or D-aliphatic amino acid dioxygenase which can catalyze the hydroxylation reaction of an L- or D-form of an aliphatic amino acid in the presence of 2-oxoglutaric acid and a bivalent iron ion; and a process for producing a hydroxide of an L- or D-aliphatic amino acid.  The L- or D-aliphatic amino acid dioxygenase may be a protein comprising an amino acid sequence depicted in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6 or SEQ ID NO:8.  The process for producing a hydroxide of an L- or D-aliphatic amino acid comprises a step of allowing the L- or D-aliphatic amino acid dioxygenase to act on an aliphatic amino acid to produce a hydroxide of the aliphatic amino acid.

Description

L-及びD-脂肪族アミノ酸水酸化物の製造方法Process for producing L- and D-aliphatic amino acid hydroxides
 本発明は、L-及びD-脂肪族アミノ酸水酸化物の製造方法に関し、より具体的には、脂肪族アミノ酸水酸化酵素を利用する、脂肪族アミノ酸水酸化物の製造方法に関する。 The present invention relates to a method for producing L- and D-aliphatic amino acid hydroxides, and more specifically to a method for producing aliphatic amino acid hydroxides using aliphatic amino acid hydroxylase.
 4-ヒドロキシ-L-イソロイシンをはじめとする脂肪族アミノ酸の水酸化物には、2型糖尿病治療薬としての薬効があるものが知られている。これらのうち最も有名なものは生薬胡廬巴(コロハ)又はスパイスのフェヌグリークとして知られるマメ科植物トリゴネラ・フォエナム-グラエクム(Trigonella foenum-graecum L.)から精製された4-ヒドロシキ-L-イソロイシン(以下、「4-HI」という。)である(非特許文献1)。4-HIはラット膵臓及びヒト膵島でインスリン分泌を促進する活性を示す。
Broca、C.ら、Am. J. Physiol. 、277: E617-E623(1999).
It is known that aliphatic amino acid hydroxides such as 4-hydroxy-L-isoleucine have medicinal properties as therapeutic agents for type 2 diabetes. The most famous of these is 4-hydroxy-L-isoleucine purified from the leguminous plant Trigonella foenum-graecum L. known as the herbal medicine Koroha or the spice fenugreek. (Hereinafter referred to as “4-HI”) (Non-patent Document 1). 4-HI exhibits activity to promote insulin secretion in rat pancreas and human islets.
Broca, C.I. Et al., Am. J. et al. Physiol. 277: E617-E623 (1999).
 4-HIは、フェヌグリーク抽出液中のイソロイシン水酸化酵素を用いて製造することができる(非特許文献2)。しかし、当該酵素は同定されておらず、酵素はフェヌグリークの抽出液からしか得られないため、大量に取得できない。また、当該酵素は不安定であるため、フェヌグリーク抽出液中のイソロイシン水酸化酵素を用いる4-HIの製造方法は、工業的生産法としては不十分である。
Haefeleら、Phytochemistry、 44: 563-566 (1997).
4-HI can be produced using isoleucine hydroxylase in the fenugreek extract (Non-patent Document 2). However, the enzyme has not been identified, and the enzyme can only be obtained from fenugreek extract and cannot be obtained in large quantities. In addition, since the enzyme is unstable, the method for producing 4-HI using isoleucine hydroxylase in the fenugreek extract is insufficient as an industrial production method.
Haefele et al., Phytochemistry, 44: 563-566 (1997).
 4-HIの製造方法として報告されているものは、他に、4-ヒドロキシ-3-メチル-2-ケトペンタン酸アルドラーゼと分岐鎖アミノ酸アミノトランスフェラーゼをカップリングさせ、アセトアルデヒドと2-オキソブタン酸から4-ヒドロキシ-3-メチル-2-ケトペンタン酸を経由し、4-HIを合成する方法がある(特許文献1、非特許文献3及び4)。さらに、原料である2-オキソブタン酸をスレオニンデヒドラターゼによって、スレオニンから供給する方法も公開されている(特許文献2)。しかしこれらの酵素は、基質の光学的特異性が低いため、医薬品として有用な4-ヒドロキシイソロイシン:2S,3R,4Sのほかに生理活性がない2S,3R,4R体を副生すること、多段階反応であるため反応効率が低いこと等の課題がある。
特開2008-109924号公報 Ogawa,J.ら、Biosci. Biotechnol. Biochem., 71: 1607-1615 (2007). Smirnov,S.V.ら、FEMS Microbiol.Lett., 273:70-77 (2007) 特開2008-073037号公報
Another method reported for the production of 4-HI is that 4-hydroxy-3-methyl-2-ketopentanoic acid aldolase and a branched chain amino acid aminotransferase are coupled to form 4-HI from 4-acetoaldehyde and 2-oxobutanoic acid. There is a method of synthesizing 4-HI via hydroxy-3-methyl-2-ketopentanoic acid (Patent Document 1, Non-Patent Documents 3 and 4). Furthermore, a method for supplying 2-oxobutanoic acid as a raw material from threonine by threonine dehydratase is also disclosed (Patent Document 2). However, since these enzymes have low optical specificity of the substrate, in addition to 4-hydroxyisoleucine: 2S, 3R, 4S, which is useful as a pharmaceutical, 2S, 3R, 4R, which has no physiological activity, is produced as a by-product. There are problems such as low reaction efficiency due to the step reaction.
JP 2008-109924 A Ogawa, J .; Et al., Biosci. Biotechnol. Biochem. 71: 1607-1615 (2007). Smirnov, S .; V. Et al., FEMS Microbiol. Lett. , 273: 70-77 (2007) JP 2008-073037 A
 バチルス・チューリンジエンシス(Bacillus thuringiensis)由来のL-イソロイシン4-ヒドロキシラーゼ(イソロイシン ジオキシゲナーゼ)はL?イソロイシンを基質として4-HIを合成することができるが、この酵素は基質特異性が厳格で、L?イソロイシン以外のアミノ酸(L?ロイシン、L?バリン、L?グルタミン酸、L?リジン及びD-イソロイシン)と反応しないとの報告(特許文献3)がある。4-HIと類似の構造を有する化合物である、γ-ヒドロキシノルバリン及びγ-ヒドロキシバリンの一部の立体異性体についても、ラット膵島でのインスリン分泌を促進する活性が示されている(非特許文献5)。今後、脂肪族アミノ酸の水酸化物の生物活性を広範に調べるためには、基質特異性の低い脂肪族アミノ酸水酸化酵素を開発し、該酵素を用いて、基質分子を替えるだけでさまざまな脂肪族アミノ酸の水酸化物を製造することができる脂肪族アミノ酸の水酸化物の製造方法を開発する必要がある。
Broca、C.ら、Eur. J. Pharmacol. 、390:339-45(2000). 特開2008-173116号公報
L-isoleucine 4-hydroxylase (isoleucine dioxygenase) derived from Bacillus thuringiensis can synthesize 4-HI using L? Isoleucine as a substrate, but this enzyme has strict substrate specificity. There is a report (Patent Document 3) that it does not react with amino acids other than L-isoleucine (L-leucine, L-valine, L-glutamic acid, L-lysine and D-isoleucine). Γ-hydroxynorvaline and some stereoisomers of γ-hydroxyvaline, compounds having a structure similar to 4-HI, have also been shown to have an activity of promoting insulin secretion in rat islets (non- Patent Document 5). In the future, in order to investigate the biological activities of hydroxides of aliphatic amino acids extensively, we developed an aliphatic amino acid hydroxylase with low substrate specificity and used it to change various fat molecules by simply changing the substrate molecule. It is necessary to develop a method for producing an aliphatic amino acid hydroxide capable of producing an aliphatic amino acid hydroxide.
Broca, C.I. Et al., Eur. J. et al. Pharmacol. 390: 339-45 (2000). JP 2008-173116 A
 本発明はL-及びD-脂肪族アミノ酸ジオキシゲナーゼを提供する。本発明の脂肪族アミノ酸ジオキシゲナーゼは、2-オキソグルタル酸及び2価の鉄イオンの存在下で脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する。 The present invention provides L- and D-aliphatic amino acid dioxygenases. The aliphatic amino acid dioxygenase of the present invention catalyzes the hydroxylation reaction of L- and D-forms of an aliphatic amino acid in the presence of 2-oxoglutarate and divalent iron ions.
 本発明のL-及びD-脂肪族アミノ酸ジオキシゲナーゼは、(1)配列番号2、4又は6のアミノ酸配列からなるタンパク質と、(2)配列番号2、4又は6に記載のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、(3)配列番号2、4又は6のアミノ酸配列と80%以上の相同性を示すアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、(4)配列番号1、3又は5のヌクレオチド配列と80%以上の相同性を示すヌクレオチド配列からなるポリヌクレオチドによってエンコードされるアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、(5)配列番号1、3又は5のヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってエンコードされるアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、(6)特異的結合タグペプチドが前記(1)ないし(5)のいずれかのタンパク質に連結した、融合タンパク質とからなるグループから選択される場合がある。 The L- and D-aliphatic amino acid dioxygenase of the present invention includes (1) a protein comprising the amino acid sequence of SEQ ID NO: 2, 4 or 6, and (2) 1 in the amino acid sequence of SEQ ID NO: 2, 4 or 6. 2-oxoglutarate-dependent dioxygenase activity comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added, and catalyzing the hydroxylation of L- and D-forms of aliphatic amino acids And (3) an amino acid sequence having 80% or more homology with the amino acid sequence of SEQ ID NO: 2, 4 or 6, and catalyzing the hydroxylation of L- and D-forms of aliphatic amino acids A protein having 2-oxoglutarate-dependent dioxygenase activity, and (4) a nucleotide having a homology of 80% or more with the nucleotide sequence of SEQ ID NO: 1, 3, or 5 A protein having an amino acid sequence encoded by a polynucleotide consisting of a sequence and having a 2-oxoglutarate-dependent dioxygenase activity that catalyzes a hydroxylation reaction of L- and D-forms of an aliphatic amino acid; ) Consisting of an amino acid sequence encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 1, 3 or 5 and comprising L- and D-forms of aliphatic amino acids A protein having 2-oxoglutarate-dependent dioxygenase activity that catalyzes a hydroxylation reaction, and (6) a fusion protein in which a specific binding tag peptide is linked to any one of the above-mentioned (1) to (5) May be selected from the group.
 本発明は脂肪族アミノ酸の水酸化物の製造方法を提供する。本発明の脂肪族アミノ酸の水酸化物の製造方法は、2-オキソグルタル酸及び2価の鉄イオンの存在下で脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒するL-及びD-脂肪族アミノ酸ジオキシゲナーゼと、脂肪族アミノ酸とを用意するステップと、前記L-及びD-脂肪族アミノ酸ジオキシゲナーゼを前記脂肪族アミノ酸に対して作用させて、該脂肪族アミノ酸の水酸化物を得るステップとを含む。 The present invention provides a method for producing a hydroxide of an aliphatic amino acid. The method for producing a hydroxide of an aliphatic amino acid according to the present invention comprises L- and C-catalyzing the hydroxylation reaction of an L-form and a D-form of an aliphatic amino acid in the presence of 2-oxoglutaric acid and divalent iron ions. Preparing a D-aliphatic amino acid dioxygenase and an aliphatic amino acid; and allowing the L- and D-aliphatic amino acid dioxygenases to act on the aliphatic amino acid to produce a hydroxide of the aliphatic amino acid. Obtaining a step.
 前記2-オキソグルタル酸依存型ジオキシゲナーゼは、(1)配列番号2、4、6又は8のうちいずれか1つのアミノ酸配列からなるタンパク質と、(2)配列番号2、4、6又は8のうちいずれか1つに記載のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、(3)配列番号2、4、6又は8のうちいずれか1つのアミノ酸配列と80%以上の相同性を示すアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、(4)配列番号1、3、5又は7のうちいずれか1つのヌクレオチド配列と80%以上の相同性を示すヌクレオチド配列からなるポリヌクレオチドによってエンコードされるアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、(5)配列番号1、3、5又は7のうちいずれか1つのヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってエンコードされるアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、(6)特異的結合タグペプチドが前記(1)ないし(5)のいずれかのタンパク質に連結した融合タンパク質とからなるグループから選択される場合がある。 The 2-oxoglutarate-dependent dioxygenase includes (1) a protein comprising any one amino acid sequence of SEQ ID NO: 2, 4, 6 or 8, and (2) of SEQ ID NO: 2, 4, 6 or 8. It consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added to any one of the amino acid sequences described above, and catalyzes the hydroxylation reaction of L- and D-forms of aliphatic amino acids A protein having 2-oxoglutarate-dependent dioxygenase activity, and (3) an amino acid sequence having 80% or more homology with any one of SEQ ID NOs: 2, 4, 6 or 8; A protein having 2-oxoglutarate-dependent dioxygenase activity that catalyzes the hydroxylation reaction of the L-form and D-form of an aliphatic amino acid, and (4) SEQ ID NOs: 1, 3 An amino acid sequence encoded by a polynucleotide consisting of a nucleotide sequence having a homology of 80% or more with any one nucleotide sequence of 5 or 7, and an aliphatic amino acid L-form and D-form water A protein having 2-oxoglutarate-dependent dioxygenase activity that catalyzes an oxidation reaction, and (5) a polynucleotide comprising any one nucleotide sequence of SEQ ID NO: 1, 3, 5 or 7 under stringent conditions A protein having an amino acid sequence encoded by a hybridizing polynucleotide and having a 2-oxoglutarate-dependent dioxygenase activity that catalyzes a hydroxylation reaction of L- and D-forms of an aliphatic amino acid; ) The specific binding tag peptide is the above (1) to (5) It may be selected from the group consisting of a fusion protein linked to the protein of Zureka.
 本発明は、本発明のL-及びD-脂肪族アミノ酸ジオキシゲナーゼをエンコードするポリヌクレオチドを含む組換えベクターを提供する。 The present invention provides a recombinant vector comprising a polynucleotide encoding the L- and D-aliphatic amino acid dioxygenase of the present invention.
 本発明は、本発明の組換えベクターを含む形質転換体を提供する。 The present invention provides a transformant containing the recombinant vector of the present invention.
 本発明のタンパク質は、本発明のタンパク質のアミノ酸配列をエンコードするヌクレオチド配列からなるDNAを、無生物発現系か、宿主生物及び発現ベクターを使用する発現系かで発現させることにより産生される。前記宿主生物は、大腸菌、枯草菌等のような原核生物と、酵母、菌類、植物、動物等のような真核生物とを含む。本発明の宿主生物及び発現ベクターを使用する発現系は、細胞や組織のような生物の一部か、生物の個体全体かの場合がある。本発明のタンパク質は、脂肪族アミノ酸に対するヒドロキシラーゼ活性を有することを条件として、無生物発現系又は宿主生物及び発現ベクターを使用する発現系の他の成分が混在する状態で本発明のL-及びD-脂肪族アミノ酸の水酸化物の製造方法に使用されてもよく、あるいは、精製された状態で本発明のL-及びD-脂肪族アミノ酸の水酸化物の製造方法に使用されてもよい。 The protein of the present invention is produced by expressing a DNA comprising a nucleotide sequence encoding the amino acid sequence of the protein of the present invention in an inanimate expression system or an expression system using a host organism and an expression vector. The host organisms include prokaryotes such as E. coli and Bacillus subtilis and eukaryotes such as yeast, fungi, plants and animals. An expression system using the host organism and expression vector of the present invention may be a part of an organism such as a cell or tissue, or an entire individual of the organism. The protein of the present invention may be prepared by subjecting L- and D of the present invention to a mixture of an inanimate expression system or a host organism and other components of an expression system using an expression vector, provided that it has hydroxylase activity for aliphatic amino acids. -It may be used in a method for producing a hydroxide of an aliphatic amino acid, or may be used in a method for producing a hydroxide of an L- and D-aliphatic amino acid of the present invention in a purified state.
 本明細書において、ジオキシゲナーゼ又はヒドロキシラーゼとは、基質分子のいずれかの原子を水酸化する酵素活性(以下、「ヒドロキシラーゼ活性」という。)を有するいずれかのタンパク質をいう。本発明のL-及びD-脂肪族アミノ酸に対してヒドロキシラーゼ活性を有するタンパク質は、いかなる生物種に由来するタンパク質であってもよい。本発明のL-及びD-脂肪族アミノ酸に対してヒドロキシラーゼ活性を有するタンパク質は、グレオバクター・ビオラセウス(Gloeobacter violaceus)等のグレオバクター(Gloeobacter)属と、シュードモナス・シリンゲ・パソバー・ファセオリコラ(Pseudomonas syringae pv. phaseolicola)等のシュードモナス(Pseudomonas)属と、クロモバクテリウム・ビオラセウム(Chromobacterium violaceum)等のクロモバクテリウム(Chromobacterium)属と、バチルス・セレウス(Bacillus cereus)、バチルス・チューリンジエンシス(Bacillus thuringiensis)、バチルス・リケニフォルミス(Bacillus licheniformis)、バチルス・スフェリクス(Bacillus sphaericus)等のバチルス(Bacillus)属と、大腸菌(Escherichia coli)その他のエシェリシア(Escherichia)属と、コリネバクテリウム(Corynebacterium)属と、アースロバクター(Arthrobacter)属とを含む細菌と、アスペルギルス(Aspergillus)属を含む糸状菌又は菌類と、古細菌と、植物と、動物とを含むいずれかの生物から由来する場合がある。本発明のヒドロキシラーゼ活性を有するタンパク質は、グレオバクター・ビオラセウス(Gloeobacter violaceus)PCC 7421由来のGenBank登録番号glr2602のタンパク質(以下、「glr2602タンパク質」という。)と、シュードモナス・シリンゲ・パソバー・ファセオリコラ(Pseudomonas syringae pv. phaseolicola)1448A由来のGenBank登録番号PSPPH_3986のタンパク質(以下、「PSPPH_3986タンパク質」という。)と、クロモバクテリウム・ビオラセウム(Chromobacterium violaceum)NBRC 12614由来のGenBank登録番号CV_3308のタンパク質(以下、「CV_3308タンパク質」という。)と、バチルス・セレウス(Bacillus cereus)ATCC14579由来のGenBank登録番号BC_1061のタンパク質(以下、「BC_1061タンパク質」という。)とを含むが、これに限られない。 In the present specification, dioxygenase or hydroxylase refers to any protein having an enzyme activity that hydroxylates any atom of a substrate molecule (hereinafter referred to as “hydroxylase activity”). The protein having hydroxylase activity for the L- and D-aliphatic amino acids of the present invention may be a protein derived from any species. Proteins having hydroxylase activity for L- and D-aliphatic amino acids of the present invention include genus Greobacter such as Gleobacter violaceus, and Pseudomonas syringae sapiera syringae. Pseudomonas genus such as Phaseolicola, Chromobacterium violaceum such as Chromobacterium violaceum, Bacillus cerium B.・ Bacillis genus (Bacillus licheniformis), Bacillus sphaericus (Bacillus sphaericus), Escherichia coli, other Escherichia ter, It may be derived from any organism including bacteria containing the genus (Arthrobacter), filamentous fungi or fungi containing the genus Aspergillus, archaea, plants and animals. The protein having hydroxylase activity of the present invention includes a protein of GenBank accession number glr2602 (hereinafter referred to as “glr2602 protein”) derived from Gloeobacter violaceus PCC 7421, Pseudomonas syringae pasoba phaseolicola (on-site). pv. phaseolicola) 1448A derived from the GenBank accession number PSPPH_3986 of protein (hereinafter referred to as "PSPPH_3986 protein".) and, Chromobacterium violaceum (Chromobacterium violaceum) NBRC 12614 T derived from the GenBank accession number CV_3308 of protein (hereinafter referred to as "CV And 3308 protein "called.), Bacillus cereus (Bacillus cereus) ATCC14579 of GenBank accession number BC_1061 derived from a protein (hereinafter referred to, including that.) And" BC_1061 protein "is not limited to this.
 glr2602タンパク質をエンコードする654個の塩基からなるヌクレオチド配列は配列番号1に列挙され、glr2602タンパク質の217個のアミノ酸からなるアミノ酸配列は配列番号2に列挙される。PSPPH_3986タンパク質をエンコードする720個の塩基からなるヌクレオチド配列は配列番号3に列挙され、PSPPH_3986タンパク質の239個のアミノ酸からなるアミノ酸配列は配列番号4に列挙される。CV_3308タンパク質をエンコードする924個の塩基からなるヌクレオチド配列は配列番号5に列挙され、CV_3308タンパク質の307個のアミノ酸からなるアミノ酸配列は配列番号6に列挙される。BC_1061タンパク質をエンコードする753個の塩基からなるヌクレオチド配列は配列番号7に列挙され、BC_1061タンパク質の250個のアミノ酸からなるアミノ酸配列は配列番号8に列挙される。 The nucleotide sequence consisting of 654 bases encoding the glr2602 protein is listed in SEQ ID NO: 1, and the amino acid sequence consisting of 217 amino acids of the glr2602 protein is listed in SEQ ID NO: 2. The nucleotide sequence consisting of 720 bases encoding the PSPPH — 3986 protein is listed in SEQ ID NO: 3, and the amino acid sequence consisting of 239 amino acids of the PSPPH — 3986 protein is listed in SEQ ID NO: 4. The nucleotide sequence consisting of 924 bases encoding the CV — 3308 protein is listed in SEQ ID NO: 5, and the amino acid sequence consisting of 307 amino acids of the CV — 3308 protein is listed in SEQ ID NO: 6. The nucleotide sequence consisting of 753 bases encoding the BC — 1061 protein is listed in SEQ ID NO: 7, and the amino acid sequence consisting of 250 amino acids of the BC — 1061 protein is listed in SEQ ID NO: 8.
 本明細書においてヌクレオチド配列の相同性は、本発明のヌクレオチド配列と、比較対象のヌクレオチド配列との間でヌクレオチド配列が一致する部分が最も多くなるように整列させて、ヌクレオチド配列が一致する部分のヌクレオチドの数を本発明のヌクレオチド配列のヌクレオチドの総数で割った商の百分率で表される。同様に、本明細書においてアミノ酸配列の相同性は、本発明のアミノ酸配列と、比較対象のアミノ酸配列との間で配列が一致するアミノ酸残基の数が最も多くなるように整列させて、配列が一致するアミノ酸残基の数の合計を本発明のアミノ酸配列のアミノ酸残基の総数で割った商の百分率で表される。本発明のヌクレオチド配列及びアミノ酸配列の相同性は、当業者に周知の配列整列プログラムCLUSTALWを使用することにより算出することができる。 In the present specification, the homology of nucleotide sequences means that the nucleotide sequences of the present invention and the nucleotide sequence to be compared are aligned so that the number of nucleotide sequences that match is the largest. Expressed as a percentage of the quotient divided by the total number of nucleotides of the nucleotide sequence of the present invention. Similarly, in the present specification, amino acid sequence homology is determined by aligning the amino acid sequences of the present invention and the amino acid sequence to be compared so that the number of amino acid residues having the same sequence is the largest. Is expressed as a percentage of the quotient obtained by dividing the sum of the number of amino acid residues that match by the total number of amino acid residues of the amino acid sequence of the present invention. The homology of the nucleotide sequence and amino acid sequence of the present invention can be calculated by using the sequence alignment program CLUSTALW well known to those skilled in the art.
 本明細書において「ストリンジェントな条件」とは、Sambrook、J.及びRussell、D.W.、Molecular Cloning A Laboratory Manual 3rd Edition,Cold Spring Harbor Laboratory Press(2001)に説明されるサザンブロット法で以下の実験条件で行うことを指す。比較対象のヌクレオチド配列からなるポリヌクレオチドをアガロース電気泳動によりバンドを形成させた上で毛管現象又は電気泳動によりニトロセルロースフィルターその他の固相に不動化する。6× SSC及び0.2% SDSからなる溶液で前洗浄する。本発明のヌクレオチド配列からなるポリヌクレオチドを放射性同位元素その他の標識物質で標識したプローブと前記固相に不動化された比較対象のポリヌクレオチドとの間のハイブリダイゼーション反応を6× SSC及び0.2% SDSからなる溶液中で65°C、終夜行う。その後前記固相を1× SSC及び0.1% SDSからなる溶液中で65°C、各30分ずつ2回洗浄し、0.2× SSC及び0.1% SDSからなる溶液中で65°C、各30分ずつ2回洗浄する。最後に前記固相に残存するプローブの量を前記標識物質の定量により決定する。本明細書において「ストリンジェントな条件」でハイブリダイゼーションをするとは、比較対象のヌクレオチド配列からなるポリヌクレオチドを不動化した固相に残存するプローブの量が、本発明のヌクレオチド配列からなるポリヌクレオチドを不動化した陽性対照実験の固相に残存するプローブの量の少なくとも25%、好ましくは少なくとも50%、より好ましくは少なくとも75%以上であることを指す。 In this specification, “stringent conditions” refers to Sambrook, J. et al. And Russell, D .; W. , Molecular Cloning A Laboratory Manual 3rd Edition, Cold Spring Harbor Laboratory Press (2001), and the Southern blot method described in the following experimental conditions. A polynucleotide having a nucleotide sequence to be compared is band-formed by agarose electrophoresis and then immobilized on a nitrocellulose filter or other solid phase by capillary action or electrophoresis. Pre-wash with a solution consisting of 6x SSC and 0.2% SDS. A hybridization reaction between a probe obtained by labeling a polynucleotide comprising the nucleotide sequence of the present invention with a radioisotope or other labeling substance and a polynucleotide to be compared immobilized on the solid phase is performed with 6 × SSC and 0.2. % In SDS solution at 65 ° C overnight. Thereafter, the solid phase was washed twice at 65 ° C. for 30 minutes each in a solution consisting of 1 × SSC and 0.1% SDS, and 65 ° in a solution consisting of 0.2 × SSC and 0.1% SDS. C. Wash twice for 30 minutes each. Finally, the amount of the probe remaining on the solid phase is determined by quantifying the labeling substance. In the present specification, hybridization under “stringent conditions” means that the amount of the probe remaining on the solid phase immobilized with the polynucleotide consisting of the nucleotide sequence to be compared is equal to the polynucleotide consisting of the nucleotide sequence of the present invention. It refers to at least 25%, preferably at least 50%, more preferably at least 75% or more of the amount of probe remaining in the immobilized solid phase of the positive control experiment.
 本明細書において「ヒドロキシラーゼ活性」とは、基質分子に作用し、該基質分子のいずれかの炭素原子を水酸化する反応を行う能力をいう。 As used herein, “hydroxylase activity” refers to the ability to act on a substrate molecule and perform a reaction to hydroxylate any carbon atom of the substrate molecule.
 本明細書において「脂肪族アミノ酸」とは、側鎖に脂肪族炭化水素を含むアミノ酸をいう。本明細書における脂肪族アミノ酸は、L-ロイシン、L-イソロイシン、L-バリンのように、生体内でメッセンジャーRNAからリボゾームで合成されるタンパク質の翻訳に用いられる20種類のL-アミノ酸に含まれる脂肪族アミノ酸と、L-ノルバリン、L-ノルロイシンのようなL-アミノ酸と、これらの光学異性体である、D-ロイシン、D-イソロイシン、D-バリン、D-ノルバリン及びD-ノルロイシンとを含むが、これらに限定されない。 As used herein, “aliphatic amino acid” refers to an amino acid containing an aliphatic hydrocarbon in the side chain. The aliphatic amino acids in the present specification are included in 20 kinds of L-amino acids used for translation of proteins synthesized from messenger RNA by ribosome in vivo such as L-leucine, L-isoleucine and L-valine. Including aliphatic amino acids, L-amino acids such as L-norvaline and L-norleucine, and optical isomers thereof such as D-leucine, D-isoleucine, D-valine, D-norvaline and D-norleucine However, it is not limited to these.
 本発明のL-及びD-脂肪族アミノ酸ジオキシゲナーゼは、2-オキソグルタル酸及び2価の鉄イオンの存在下で脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼである。本発明のL-及びD-脂肪族アミノ酸ジオキシゲナーゼは、2-オキソグルタル酸、L-アスコルビン酸及び2価の鉄イオンの存在下で脂肪族アミノ酸のL-体及びD-体の水酸化反応を行うことが好ましい。 The L- and D-aliphatic amino acid dioxygenases of the present invention are 2-oxoglutarates that catalyze the hydroxylation reaction of L- and D-forms of aliphatic amino acids in the presence of 2-oxoglutarate and divalent iron ions. It is an acid-dependent dioxygenase. The L- and D-aliphatic amino acid dioxygenases of the present invention perform hydroxylation of L- and D-forms of aliphatic amino acids in the presence of 2-oxoglutarate, L-ascorbic acid and divalent iron ions. Preferably it is done.
 本発明の製造方法により取得される脂肪族アミノ酸の水酸化物は、イオン交換樹脂その他の担体への特異的吸着、薄層クロマトグラフィ法、高速液体クロマトグラフィ(HPLC)法その他のクロマトグラフィ法、有機溶媒による抽出、結晶化等の当業者に周知の方法により回収される。また、前記ペプチドは、HPLC又は質量分析(MS)法のような当業者に周知の分析技術を使用して生産量又は純度が評価される。 The aliphatic amino acid hydroxide obtained by the production method of the present invention is based on specific adsorption on an ion exchange resin or other carrier, thin layer chromatography, high performance liquid chromatography (HPLC), other chromatography, or organic solvent. It is recovered by methods well known to those skilled in the art such as extraction and crystallization. The peptides are also evaluated for production or purity using analytical techniques well known to those skilled in the art, such as HPLC or mass spectrometry (MS) methods.
HPLC構成の模式図。Schematic diagram of the HPLC configuration. イオン交換カラムによるサンプル精製手順を示す模式図。The schematic diagram which shows the sample refinement | purification procedure by an ion exchange column. glr2602タンパク質によるL-バリンの水酸化反応産物のHPLC分析結果を示すクロマトチャート。The chromatogram which shows the HPLC analysis result of the hydroxylation reaction product of L-valine by glr2602 protein. glr2602タンパク質によるL-ロイシンの水酸化反応産物のHPLC分析結果を示すクロマトチャート。The chromato chart which shows the HPLC analysis result of the hydroxylation reaction product of L-leucine by glr2602 protein. glr2602タンパク質によるL-イソロイシンの水酸化反応産物のHPLC分析結果を示すクロマトチャート。The chromatogram which shows the HPLC analysis result of the hydroxylation reaction product of L-isoleucine by glr2602 protein. glr2602タンパク質によるL-ノルバリンの水酸化反応産物のHPLC分析結果を示すクロマトチャート。The chromatogram which shows the HPLC analysis result of the hydroxylation reaction product of L-norvaline by glr2602 protein. glr2602タンパク質によるL-ノルロイシンの水酸化反応産物のHPLC分析結果を示すクロマトチャート。The chromatogram which shows the HPLC analysis result of the hydroxylation reaction product of L-norleucine by glr2602 protein. glr2602タンパク質によるD-バリンの水酸化反応産物のHPLC分析結果を示すクロマトチャート。The chromatogram which shows the HPLC analysis result of the hydroxylation reaction product of D-valine by glr2602 protein. glr2602タンパク質によるD-ロイシンの水酸化反応産物のHPLC分析結果を示すクロマトチャート。The chromatogram which shows the HPLC analysis result of the hydroxylation reaction product of D-leucine by glr2602 protein. glr2602タンパク質によるD-イソロイシンの水酸化反応産物のHPLC分析結果を示すクロマトチャート。The chromatogram which shows the HPLC analysis result of the hydroxylation reaction product of D-isoleucine by glr2602 protein. glr2602タンパク質によるD-ノルバリンの水酸化反応産物のHPLC分析結果を示すクロマトチャート。The chromato chart which shows the HPLC analysis result of the hydroxylation reaction product of D-norvaline by glr2602 protein. glr2602タンパク質によるD-ノルロイシンの水酸化反応産物のHPLC分析結果を示すクロマトチャート。The chromatogram which shows the HPLC analysis result of the hydroxylation reaction product of D-norleucine by glr2602 protein. glr2602タンパク質によるL-バリンの水酸化反応産物のMS分析結果を示すMSチャート。The MS chart which shows the MS analysis result of the hydroxylation reaction product of L-valine by glr2602 protein. glr2602タンパク質によるL-ロイシンの水酸化反応産物のMS分析結果を示すMSチャート。The MS chart which shows the MS analysis result of the hydroxylation product of L-leucine by glr2602 protein. glr2602タンパク質によるL-イソロイシンの水酸化反応産物のMS分析結果を示すMSチャート。The MS chart which shows the MS analysis result of the hydroxylation product of L-isoleucine by glr2602 protein. glr2602タンパク質によるL-ノルバリンの水酸化反応産物のMS分析結果を示すMSチャート。The MS chart which shows the MS analysis result of the hydroxylation product of L-norvaline by glr2602 protein. glr2602タンパク質によるL-ノルロイシンの水酸化反応産物のMS分析結果を示すMSチャート。The MS chart which shows the MS analysis result of the hydroxylation product of L-norleucine by glr2602 protein. glr2602タンパク質によるD-バリンの水酸化反応産物のMS分析結果を示すMSチャート。The MS chart which shows the MS analysis result of the hydroxylation product of D-valine by glr2602 protein. glr2602タンパク質によるD-ロイシンの水酸化反応産物のMS分析結果を示すMSチャート。The MS chart which shows the MS analysis result of the hydroxylation reaction product of D-leucine by glr2602 protein. glr2602タンパク質によるD-イソロイシンの水酸化反応産物のMS分析結果を示すMSチャート。The MS chart which shows the MS analysis result of the hydroxylation product of D-isoleucine by glr2602 protein. glr2602タンパク質によるD-ノルバリンの水酸化反応産物のMS分析結果を示すMSチャート。The MS chart which shows the MS analysis result of the hydroxylation reaction product of D-norvaline by glr2602 protein. glr2602タンパク質によるD-ノルロイシンの水酸化反応産物のMS分析結果を示すMSチャート。The MS chart which shows the MS analysis result of the hydroxylation product of D-norleucine by glr2602 protein.
 以下の実施例によって本発明について詳細な説明を行なうが、本発明はこれらの実施例により何ら制限されるものではない。 The present invention will be described in detail with reference to the following examples, but the present invention is not limited to these examples.
 脂肪族アミノ酸水酸化酵素をエンコードする遺伝子のクローニング
 実施例に用いた脂肪族アミノ酸水酸化酵素を表1に示す。
Cloning of Gene Encoding Aliphatic Amino Acid Hydroxylase Table 1 shows the aliphatic amino acid hydroxylases used in the examples.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 目的とするL-及びD-脂肪族アミノ酸ジオキシゲナーゼの遺伝子の増幅は、それぞれの微生物の染色体DNAを鋳型としたポリメラーゼ連鎖反応(PCR)をExpand High Fidelity PCR System(ロシュ)を用いて行った。PCRは、94°Cで180秒を1サイクルと、94°Cで15秒、50°Cで10秒及び72°Cで50秒を25サイクルと、72°Cで420秒を1サイクルとの反応条件で行なった(表2)。 Amplification of the target L- and D-aliphatic amino acid dioxygenase genes was carried out using Expand High Fidelity PCR System (Roche) with polymerase chain reaction (PCR) using the chromosomal DNA of each microorganism as a template. PCR consists of 1 cycle at 94 ° C for 180 seconds, 15 seconds at 94 ° C, 10 seconds at 50 ° C and 25 seconds at 72 ° C, 25 cycles, and 420 seconds at 72 ° C. The reaction was performed under the reaction conditions (Table 2).
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 以下の表3に脂肪族アミノ酸水酸化酵素のそれぞれのクローニング及び発現の条件を示す。それぞれの酵素の遺伝子の単離に使うプライマーの塩基配列は配列番号9-16に列挙される。 Table 3 below shows the cloning and expression conditions for each of the aliphatic amino acid hydroxylases. The base sequences of primers used for isolation of the genes of the respective enzymes are listed in SEQ ID NOs: 9-16.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 目的とする脂肪族アミノ酸水酸化酵素の遺伝子のPCR増幅DNA 1μgと、ベクターであるpET-21a(+) 1μgとが、ともに制限酵素NdeI及びXhoIで37°C、16時間消化された。その後、GFX PCR Purification Kit(GEヘルスケア)で精製された前記DNAは、DNA Ligation Kit <Mighty Mix>(タカラ)で16°C、3時間反応することによって連結され、大腸菌JM109株に導入された。前記大腸菌は、LB-A寒天培地(1% トリプトン、0.5% イーストエクストラクト、1% 塩化ナトリウム、1.5% アガー及び100μg/mL アンピシリン)上で37°C、16時間静置培養され、組換えプラスミドを保持した大腸菌の単一コロニーが単離された。単一コロニー由来の大腸菌は、LB-A液体培地(1% トリプトン、0.5% イーストエクストラクト、1% 塩化ナトリウム及び100μg/mL アンピシリン)5mL中で37°C、16時間培養され、QIAprep Spin Miniprep Kit(キアゲン)を用いてプラスミドが抽出された。抽出されたプラスミドに挿入されたDNAは、DNAシークエンサー(アプライドバイオシステムズ)で解析され、目的とする脂肪族アミノ酸水酸化酵素の遺伝子が挿入されていることが確認された。 1 μg of PCR-amplified DNA of the gene for the desired aliphatic amino acid hydroxylase and 1 μg of the vector pET-21a (+) were digested with restriction enzymes NdeI and XhoI at 37 ° C. for 16 hours. Thereafter, the DNA purified by GFX PCR Purification Kit (GE Healthcare) was ligated by reacting with DNA Ligation Kit <Mighty Mix> (Takara) at 16 ° C for 3 hours and introduced into E. coli strain JM109. . The Escherichia coli is cultured at 37 ° C. for 16 hours on LB-A agar medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride, 1.5% agar and 100 μg / mL ampicillin). A single colony of E. coli harboring the recombinant plasmid was isolated. E. coli derived from a single colony is cultured in 5 mL of LB-A liquid medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride and 100 μg / mL ampicillin) at 37 ° C. for 16 hours, and QIAprep Spin Plasmids were extracted using Miniprep Kit (Qiagen). The DNA inserted into the extracted plasmid was analyzed by a DNA sequencer (Applied Biosystems), and it was confirmed that the target aliphatic amino acid hydroxylase gene was inserted.
 脂肪族アミノ酸水酸化酵素の発現及び精製
 実施例1で得られた組換えプラスミドで大腸菌Rosetta2(DE3)が形質転換された。前記大腸菌は、LB-AC寒天培地(1% トリプトン、0.5% イーストエクストラクト、1% 塩化ナトリウム、1.5% アガー、50μg/mL アンピシリン及び34μg/mL クロラムフェニコール)を用いて37°Cで一晩静置培養された。生育した単一コロニーは、LB-AC液体培地(1% トリプトン、0.5% イーストエクストラクト、1% 塩化ナトリウム、100μg/mL アンピシリン及び34μg/mL クロラムフェニコール)5mLに接種され、37°C、200rpmで16時間振盪培養を行った。その後前記液体培地1mLが100mLの新鮮なLB-AC液体培地に接種され、37°C、200rpmで振盪培養された。O.D.660が0.5に達した時点で、終濃度が0.1mMとなるようにイソプロピル-β-d-チオガラクトピラノシド(IPTG)が添加され、25°C及び100rpmで9時間の振盪培養により遺伝子発現が誘導された。前記液体培地から4°C及び5000×gで10分間遠心分離して回収した菌体を、20mM HEPES・NaOHバッファー(pH7.5)5mLに懸濁し、3分間の超音波破砕後、4°C及び20000×gで30分間遠心分離した。回収した上清(無細胞抽出液)はHis trap HPカラム(GEヘルスケア)を用いたアフィニティークロマトグラフィーに供され脂肪族アミノ酸水酸化酵素が分離された。その後、PD-10カラム(GEヘルスケア)により緩衝液の交換を行って、精製酵素が調製された。
Expression and Purification of Aliphatic Amino Acid Hydroxylase E. coli Rosetta2 (DE3) was transformed with the recombinant plasmid obtained in Example 1. The Escherichia coli was cultured using LB-AC agar medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride, 1.5% agar, 50 μg / mL ampicillin and 34 μg / mL chloramphenicol). The culture was stationary overnight at ° C. Growing single colonies are inoculated into 5 mL of LB-AC liquid medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride, 100 μg / mL ampicillin and 34 μg / mL chloramphenicol), 37 ° C, shaking culture was performed at 200 rpm for 16 hours. Thereafter, 1 mL of the liquid medium was inoculated into 100 mL of fresh LB-AC liquid medium and cultured with shaking at 37 ° C. and 200 rpm. O. D. When 660 reaches 0.5, isopropyl-β-d-thiogalactopyranoside (IPTG) is added to a final concentration of 0.1 mM, and shaking culture is performed at 25 ° C. and 100 rpm for 9 hours. Induced gene expression. The cells recovered from the liquid medium by centrifugation at 4 ° C. and 5000 × g for 10 minutes are suspended in 5 mL of 20 mM HEPES / NaOH buffer (pH 7.5), subjected to ultrasonic disruption for 3 minutes, and then subjected to 4 ° C. And centrifuged at 20000 × g for 30 minutes. The collected supernatant (cell-free extract) was subjected to affinity chromatography using a His trap HP column (GE Healthcare) to separate aliphatic amino acid hydroxylase. Thereafter, the buffer was exchanged using a PD-10 column (GE Healthcare) to prepare a purified enzyme.
 各種アミノ酸に対する水酸化反応
 実施例2で得られた精製酵素を用いて各種アミノ酸に対する水酸化反応が実施された。前記精製酵素は2-オキソグルタル酸依存型ジオキシゲナーゼであると予測されたため、2-オキソグルタル酸を含む標準反応液(1mM アミノ酸、5mM 2-オキソグルタル酸、1mM L-アスコルビン酸、0.1mM 硫酸第一鉄、50mM リン酸カリウム緩衝液、0.5 mg/mL 各種精製酵素)を用いて酵素反応は行われた。前記標準反応液の組成は以下の表4に示す。
Hydroxylation reaction to various amino acids Hydroxylation reaction to various amino acids was performed using the purified enzyme obtained in Example 2. Since the purified enzyme was predicted to be 2-oxoglutarate-dependent dioxygenase, a standard reaction solution containing 1-oxoglutarate (1 mM amino acid, 5 mM 2-oxoglutarate, 1 mM L-ascorbic acid, 0.1 mM sulfuric acid sulfate 1 The enzyme reaction was performed using iron, 50 mM potassium phosphate buffer, 0.5 mg / mL various purified enzymes). The composition of the standard reaction solution is shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 表4に示す標準反応液を調製し、酵素添加後、25°C、170 rpmで攪拌しながら20時間インキュベーションした。その後、前記反応液は0.45μmフィルターを用いてろ過され、LC/MS分析に供された。なお、陰性対照試験として2-オキソグルタル酸非添加系試験及び酵素非添加系試験も併せて行った。 Standard reaction solutions shown in Table 4 were prepared, and after enzyme addition, the mixture was incubated for 20 hours while stirring at 25 ° C. and 170 rpm. Thereafter, the reaction solution was filtered using a 0.45 μm filter and subjected to LC / MS analysis. As a negative control test, a 2-oxoglutarate non-addition system test and an enzyme non-addition system test were also performed.
 HPLC分析
 HPLC分析は、高速液体クロマトグラフ L2000シリーズ(日立製作所)により、ポストカラム分析法を用いて実施された。HPLC分析装置の構成を図1に示す。また、HPLC分析条件を表5に示す。
HPLC analysis HPLC analysis was performed by a high performance liquid chromatograph L2000 series (Hitachi) using a post-column analysis method. The configuration of the HPLC analyzer is shown in FIG. The HPLC analysis conditions are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 HPLC分析は、ポンプA及びポンプBのそれぞれに溶離液及び反応液を接続し、オートサンプラーで注入された試料と前記溶離液とを分析カラムに適用して分離し、溶出液と前記反応液とを反応させてから蛍光検出器で測定することによって実行された。ポンプA溶離液の組成は、20mM リン酸バッファー、5mM 1-ヘプタンスルホン酸、10%又は20%メタノール(pH2.5)であり、ポンプB反応液の組成は、22g/L ホウ酸、12g/L 水酸化ナトリウム、0.8g/L オルトフタルアルデヒド、2g/L N-アセチルシステインであった。分析カラムはコスモシール 5C18-MS-II 4.6mm×150mm 分析カラム(ナカライテスク)が用いられ、カラム温度は40°Cであった(表5-a)。HPLC分析のポンププログラムは、溶離液が0.7mL/分で20分間、反応液が0.3mL/分で20分間とした(表5-b)。蛍光は、励起波長340nm、検出波長450nmで測定された。 In the HPLC analysis, an eluent and a reaction liquid are connected to each of the pump A and the pump B, and the sample injected by the autosampler and the eluent are applied to an analysis column to be separated, and the eluate and the reaction liquid are separated. The reaction was performed by measuring with a fluorescence detector. The composition of the pump A eluent is 20 mM phosphate buffer, 5 mM 1-heptanesulfonic acid, 10% or 20% methanol (pH 2.5), and the composition of the pump B reaction liquid is 22 g / L boric acid, 12 g / L sodium hydroxide, 0.8 g / L orthophthalaldehyde, 2 g / L N-acetylcysteine. The analytical column used was a Cosmo Seal 5C18-MS-II 4.6 mm × 150 mm analytical column (Nacalai Tesque), and the column temperature was 40 ° C. (Table 5-a). The HPLC analysis pump program was 20 minutes at 0.7 mL / min eluent and 20 minutes at 0.3 mL / min reaction (Table 5-b). Fluorescence was measured at an excitation wavelength of 340 nm and a detection wavelength of 450 nm.
 反応液のHPLC分析をおこなった結果、陰性対照との比較により基質アミノ酸、2-オキソグルタル酸、L-アスコルビン酸、硫酸第一鉄、精製酵素などの全てを反応系に含む場合にのみ検出されたピークを生成物のピークと判断した。glr2602タンパク質による酵素反応系においては、L-及びD-バリンと、L-及びD-ロイシンと、L-及びD-イソロイシンと、L-及びD-ノルバリンと、L-及びD-ノルロイシンとを基質とした場合に生成物が検出された。図3-12は、これらの基質を含む反応液の反応後のHPLC分析結果を示すクロマトチャートである。図の中の数値は、それぞれの基質のピークの溶出時間と、生成物の最大ピークの溶出時間とである。PSPPH_3986タンパク質による酵素反応系においては、L-及びD-ロイシンと、L-イソロイシンと、L-及びD-ノルバリンと、L-及びD-ノルロイシンとを基質とした場合に未知化合物のピークが検出された。CV_3308タンパク質による酵素反応系においては、L-及びD-ロイシンと、L-イソロイシンと、L-ノルバリンと、L-及びD-ノルロイシンとを基質とした場合に未知化合物のピークが検出された。BC_1061タンパク質による酵素反応系においては、L-ロイシンと、L-イソロイシンと、L-ノルバリンと、L-及びD-ノルロイシンとを基質とした場合に未知化合物のピークが検出された。4種類のタンパク質について検出された未知化合物の最大ピークの溶出時間を表6にまとめた。 As a result of HPLC analysis of the reaction solution, it was detected only when the reaction system contained all of the substrate amino acid, 2-oxoglutaric acid, L-ascorbic acid, ferrous sulfate, purified enzyme and the like by comparison with the negative control. The peak was judged as the product peak. In the enzyme reaction system using glr2602 protein, L- and D-valine, L- and D-leucine, L- and D-isoleucine, L- and D-norvaline, and L- and D-norleucine are used as substrates. Product was detected. FIG. 3-12 is a chromatographic chart showing the HPLC analysis results after the reaction of the reaction solution containing these substrates. The numbers in the figure are the elution time of each substrate peak and the maximum peak elution time of the product. In the enzyme reaction system using PSPPH_3986 protein, peaks of unknown compounds are detected when L- and D-leucine, L-isoleucine, L- and D-norvaline, and L- and D-norleucine are used as substrates. It was. In the enzyme reaction system using CV_3308 protein, peaks of unknown compounds were detected when L- and D-leucine, L-isoleucine, L-norvaline, and L- and D-norleucine were used as substrates. In the enzyme reaction system using BC — 1061 protein, peaks of unknown compounds were detected when L-leucine, L-isoleucine, L-norvaline, and L- and D-norleucine were used as substrates. Table 6 summarizes the elution times of the maximum peaks of unknown compounds detected for the four types of proteins.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 MS分析
 HPLC分析において未知化合物のピークが検出されたサンプルを図2に示す手順に従って固相抽出カラムにより精製し、LCQ Deca(Thermo Quest)を用いてMS分析を実施した。MS分析条件を表7に示す。
MS analysis A sample in which an unknown compound peak was detected in HPLC analysis was purified by a solid-phase extraction column according to the procedure shown in FIG. 2, and MS analysis was performed using LCQ Deca (Thermo Quest). Table 7 shows the MS analysis conditions.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 イオン化法はエレクトロスプレー法を用い、サンプルはシリンジによって直接注入した。Sheath Gas Flow Rateは20 arb、Aux Gas Flow Rateは20 arb、Spray Voltageは5kV、Capillary Tempは200°C、Capillary Voltageは17V、Tube Lens offsetは5Vの設定で分析された。 The ionization method was an electrospray method, and the sample was directly injected by a syringe. Sheath Gas Flow Rate is 20 arb, Aux Gas Flow Rate is 20 arb, Spray Voltage is 5 kV, Capillary Temp is 200 ° C, Capillary Voltage is 17 V, and Tube Lensoffs is set to 5 Tubes.
 MS分析の結果、glr2602タンパク質による酵素反応系で、L-及びD-バリンと、L-及びD-ロイシンと、L-及びD-イソロイシンと、L-及びD-ノルバリンと、L-及びD-ノルロイシンとを基質とした場合に質量数が16大きいプロトン付加イオンが検出された。図13-22は、これらの基質を含む反応液の反応後のMS分析結果を示すMSチャートである。図の中の数値は、それぞれの基質の水酸化物の質量電荷比である。同様に、PSPPH_3986タンパク質による酵素反応系においては、L-及びD-ロイシンと、L-イソロイシンと、L-及びD-ノルバリンと、L-及びD-ノルロイシンとを基質とした場合に、CV_3308タンパク質による酵素反応系においては、L-及びD-ロイシンと、L-イソロイシンと、L-ノルバリンと、L-及びD-ノルロイシンとを基質とした場合に、BC_1061タンパク質による酵素反応系においては、L-ロイシンと、L-イソロイシンと、L-ノルバリンと、L-及びD-ノルロイシンとを基質とした場合に、それぞれ質量数が16大きいプロトン付加イオンが検出された。検出された生成物のプロトン付加イオンの質量電荷比を表8にまとめた。この結果から、HPLC分析で同定された未知化合物は基質に水酸基が導入された化合物といえる。 As a result of MS analysis, in an enzyme reaction system using glr2602 protein, L- and D-valine, L- and D-leucine, L- and D-isoleucine, L- and D-norvaline, L- and D- When norleucine was used as a substrate, proton addition ions having a mass number of 16 were detected. FIG. 13-22 is an MS chart showing the MS analysis results after the reaction of the reaction solution containing these substrates. The numbers in the figure are the mass-to-charge ratios of the hydroxides of the respective substrates. Similarly, in the enzyme reaction system using PSPPH_3986 protein, when L- and D-leucine, L-isoleucine, L- and D-norvaline, and L- and D-norleucine are used as substrates, CV_3308 protein is used. In the enzyme reaction system, when L- and D-leucine, L-isoleucine, L-norvaline, and L- and D-norleucine are used as substrates, L_leucine is used in the enzyme reaction system using BC_1061 protein. When L-isoleucine, L-norvaline, and L- and D-norleucine were used as substrates, proton-added ions each having a mass number of 16 were detected. Table 8 summarizes the mass-to-charge ratios of the detected protonated ions of the product. From this result, it can be said that the unknown compound identified by HPLC analysis is a compound in which a hydroxyl group is introduced into the substrate.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 L-イソロイシンからの4-HIの合成は、市販の4-HI試薬と反応産物とのクロマトチャート及びMSチャートを比較して評価された。その結果、実施例2で得られた精製酵素によってL?イソロイシンから得られる反応産物は4-HIであるとの結論に達した。 The synthesis of 4-HI from L-isoleucine was evaluated by comparing chromatographic charts and MS charts of commercially available 4-HI reagents and reaction products. As a result, it was concluded that the reaction product obtained from L-isoleucine by the purified enzyme obtained in Example 2 was 4-HI.
 本発明の脂肪族アミノ酸ジオキシゲナーゼは脂肪族アミノ酸のL?体だけでなくD?体の水酸化反応を触媒する点で他に例がない。したがって、本発明はL?及びD-脂肪族アミノ酸の水酸化物の工業生産にとって有用である。 The aliphatic amino acid dioxygenase of the present invention is unique in that it catalyzes the hydroxylation reaction of not only the L-form of an aliphatic amino acid but also the D-form. Thus, the present invention is useful for industrial production of hydroxides of L? And D-aliphatic amino acids.

Claims (6)

  1.  2-オキソグルタル酸及び2価の鉄イオンの存在下で脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒することを特徴とする、L-及びD-脂肪族アミノ酸ジオキシゲナーゼ。 L- and D-aliphatic amino acid dioxygenase, which catalyzes the hydroxylation reaction of L- and D-forms of aliphatic amino acids in the presence of 2-oxoglutarate and divalent iron ions.
  2.  前記L-及びD-脂肪族アミノ酸ジオキシゲナーゼは、
    (1)配列番号2、4又は6のアミノ酸配列からなるタンパク質と、
    (2)配列番号2、4又は6に記載のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、
    (3)配列番号2、4又は6のアミノ酸配列と80%以上の相同性を示すアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、
    (4)配列番号1、3又は5のヌクレオチド配列と80%以上の相同性を示すヌクレオチド配列からなるポリヌクレオチドによってエンコードされるアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、
    (5)配列番号1、3又は5のヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってエンコードされるアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、
    (6)特異的結合タグペプチドが前記(1)ないし(5)のいずれかのタンパク質に連結した、融合タンパク質とからなるグループから選択されることを特徴とする、請求項1に記載のL-及びD-脂肪族アミノ酸ジオキシゲナーゼ。
    The L- and D-aliphatic amino acid dioxygenases are:
    (1) a protein consisting of the amino acid sequence of SEQ ID NO: 2, 4 or 6,
    (2) It consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added to the amino acid sequence shown in SEQ ID NO: 2, 4 or 6, and an L-form and D-form of an aliphatic amino acid. A protein having 2-oxoglutarate-dependent dioxygenase activity that catalyzes the hydroxylation reaction of
    (3) 2-oxoglutar comprising an amino acid sequence having 80% or more homology with the amino acid sequence of SEQ ID NO: 2, 4 or 6, and catalyzing the hydroxylation reaction of L- and D-forms of aliphatic amino acids A protein having acid-dependent dioxygenase activity;
    (4) An amino acid sequence encoded by a polynucleotide consisting of a nucleotide sequence of SEQ ID NO: 1, 3, or 5 and having a nucleotide sequence showing 80% or more homology, and an L-form and a D-form of an aliphatic amino acid A protein having 2-oxoglutarate-dependent dioxygenase activity that catalyzes the hydroxylation reaction of
    (5) an amino acid sequence encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 3 or 5, and an L-form and D- A protein having 2-oxoglutarate-dependent dioxygenase activity that catalyzes the hydroxylation of the body,
    (6) The L- of claim 1, wherein the specific binding tag peptide is selected from the group consisting of a fusion protein linked to any one of the proteins (1) to (5). And D-aliphatic amino acid dioxygenase.
  3.  2-オキソグルタル酸及び2価の鉄イオンの存在下で脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒するL-及びD-脂肪族アミノ酸ジオキシゲナーゼと、脂肪族アミノ酸とを用意するステップと、
     前記L-及びD-脂肪族アミノ酸ジオキシゲナーゼを前記脂肪族アミノ酸に対して作用させて、該脂肪族アミノ酸の水酸化物を得るステップとを含むことを特徴とする、L-及びD-脂肪族アミノ酸の水酸化物の製造方法。
    L- and D-aliphatic amino acid dioxygenases catalyzing the hydroxylation of L- and D-forms of aliphatic amino acids in the presence of 2-oxoglutaric acid and divalent iron ions, and aliphatic amino acids are prepared And steps to
    And reacting the L- and D-aliphatic amino acid dioxygenase with the aliphatic amino acid to obtain a hydroxide of the aliphatic amino acid. A method for producing a hydroxide of an amino acid.
  4.  前記L-及びD-脂肪族アミノ酸ジオキシゲナーゼは、
    (1)配列番号2、4、6又は8のうちいずれか1つのアミノ酸配列からなるタンパク質と、
    (2)配列番号2、4、6又は8のうちいずれか1つに記載のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、
    (3)配列番号2、4、6又は8のうちいずれか1つのアミノ酸配列と80%以上の相同性を示すアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、
    (4)配列番号1、3、5又は7のうちいずれか1つのヌクレオチド配列と80%以上の相同性を示すヌクレオチド配列からなるポリヌクレオチドによってエンコードされるアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、
    (5)配列番号1、3、5又は7のうちいずれか1つのヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってエンコードされるアミノ酸配列からなり、かつ、脂肪族アミノ酸のL-体及びD-体の水酸化反応を触媒する2-オキソグルタル酸依存型ジオキシゲナーゼ活性を有するタンパク質と、
    (6)特異的結合タグペプチドが前記(1)ないし(5)のいずれかのタンパク質に連結した、融合タンパク質とからなるグループから選択されることを特徴とする、請求項3に記載のL-及びD-脂肪族アミノ酸の水酸化物の製造方法。
    The L- and D-aliphatic amino acid dioxygenases are:
    (1) a protein consisting of any one amino acid sequence of SEQ ID NOs: 2, 4, 6 or 8;
    (2) consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added to the amino acid sequence of any one of SEQ ID NOs: 2, 4, 6 or 8, and an aliphatic amino acid A protein having 2-oxoglutarate-dependent dioxygenase activity that catalyzes the hydroxylation reaction of L-form and D-form of
    (3) It consists of an amino acid sequence showing 80% or more homology with any one amino acid sequence of SEQ ID NOs: 2, 4, 6 or 8, and the hydroxylated L- and D-forms of aliphatic amino acids A protein having 2-oxoglutarate-dependent dioxygenase activity that catalyzes the reaction;
    (4) consisting of an amino acid sequence encoded by a polynucleotide consisting of a nucleotide sequence having a homology of 80% or more with any one nucleotide sequence of SEQ ID NOs: 1, 3, 5 or 7, and an aliphatic amino acid A protein having 2-oxoglutarate-dependent dioxygenase activity that catalyzes the hydroxylation reaction of L-form and D-form;
    (5) an aliphatic amino acid comprising an amino acid sequence encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising any one nucleotide sequence of SEQ ID NOs: 1, 3, 5 or 7; A protein having 2-oxoglutarate-dependent dioxygenase activity that catalyzes the hydroxylation reaction of L-form and D-form of
    (6) The L- of claim 3, wherein the specific binding tag peptide is selected from the group consisting of a fusion protein linked to any one of the proteins (1) to (5). And a method for producing a hydroxide of a D-aliphatic amino acid.
  5.  請求項1に記載のL-及びD-脂肪族アミノ酸ジオキシゲナーゼをエンコードするポリヌクレオチドを含むことを特徴とする、組換えベクター。 A recombinant vector comprising a polynucleotide encoding the L- and D-aliphatic amino acid dioxygenase according to claim 1.
  6.  請求項5に記載の組換えベクターを含むことを特徴とする、形質転換体。
     
    A transformant comprising the recombinant vector according to claim 5.
PCT/JP2009/065737 2008-10-22 2009-09-09 Process for producing l- and d-aliphatic amino acid hydroxides WO2010047188A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008271675A JP2010098975A (en) 2008-10-22 2008-10-22 Method for producing l- and d-aliphatic amino acid hydroxide
JP2008-271675 2008-10-22

Publications (1)

Publication Number Publication Date
WO2010047188A1 true WO2010047188A1 (en) 2010-04-29

Family

ID=42119235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065737 WO2010047188A1 (en) 2008-10-22 2009-09-09 Process for producing l- and d-aliphatic amino acid hydroxides

Country Status (2)

Country Link
JP (1) JP2010098975A (en)
WO (1) WO2010047188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105566136A (en) * 2016-01-19 2016-05-11 天津科技大学 Method for separating and extracting 4-hydroxyisoleucine from fermentation liquor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111503A1 (en) * 2019-12-02 2021-06-10 花王株式会社 Light-absorbing layer and method for manufacturing same, liquid dispersion, photoelectric conversion element, and solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173116A (en) * 2006-09-28 2008-07-31 Ajinomoto Co Inc Method for producing 4-hydroxy-l-isoleucine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173116A (en) * 2006-09-28 2008-07-31 Ajinomoto Co Inc Method for producing 4-hydroxy-l-isoleucine

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BROCA, C. ET AL.: "4-Hydroxyisoleucine: experimental evidence of its insulinotropic and antidiabetic properties", AM.J.PHYSIOL., vol. 277, no. 4, 1999, pages E617 - 23 *
HAEFELE, C. ET AL.: "Characterization of a dioxygenase from Trigonella foenum-graecum involved in 4-hydroxyisoleucine biosynthesis", PHYTOCHEMISTRY, vol. 44, no. 4, 1997, pages 563 - 6 *
JOARDAR, V. ET AL.: "Accession: YP-276119 [gi: 71735316], Definition: conserved hypothetical protein [Pseudomonas syringae pv. phaseolicola 1448A].", NCBI PROTEIN, 3 August 2005 (2005-08-03), Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/sviewer/viewer.fcgi?71735316:OLD04:12068379> [retrieved on 20091007] *
KANEKO, T.: "Accession: NP-925548 [gi: 37522171], Definition: hypothetical protein glr2602 [Gloeobacter violaceus].", NCBI PROTEIN, 6 October 2003 (2003-10-06), Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/sviewer/viewer.fcgi?37522171:OLD03:4842335> [retrieved on 20091007] *
VASCONCELOS, A.T.R. ET AL.: "Accession: NP- 902978 [gi: 34498763], Definition: conserved hypothetical protein [Chromobacterium violaceum ATCC 12472].", NCBI PROTEIN, 8 September 2003 (2003-09-08), Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/sviewer/viewer.fcgi?34498763:OLD03:4736031> [retrieved on 20091007] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105566136A (en) * 2016-01-19 2016-05-11 天津科技大学 Method for separating and extracting 4-hydroxyisoleucine from fermentation liquor

Also Published As

Publication number Publication date
JP2010098975A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5246639B2 (en) Process for producing 4-hydroxy-L-isoleucine
JP5429170B2 (en) Bacteria producing a product of a reaction catalyzed by a protein having 2-oxoglutarate-dependent enzyme activity, and a method for producing the product
Ogawa et al. A novel L-isoleucine metabolism in Bacillus thuringiensis generating (2 S, 3 R, 4 S)-4-hydroxyisoleucine, a potential insulinotropic and anti-obesity amino acid
Hibi et al. L-Leucine 5-hydroxylase of Nostoc punctiforme is a novel type of Fe (II)/α-ketoglutarate-dependent dioxygenase that is useful as a biocatalyst
WO2006093322A2 (en) Method for manufacturing 4-hydroxy-l-isoleucine or a salt thereof
US8883459B2 (en) Process for production of cis-4-hydroxy-L-proline
Chen et al. Enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase
Hara et al. Discovery of lysine hydroxylases in the clavaminic acid synthase-like superfamily for efficient hydroxylysine bioproduction
CN108220259B (en) L-proline-4-hydroxylase
CN111485008A (en) Biological preparation method of cis-5-hydroxy-L-hexahydropicolinic acid
WO2010047188A1 (en) Process for producing l- and d-aliphatic amino acid hydroxides
Hara et al. Development of a multi-enzymatic cascade reaction for the synthesis of trans-3-hydroxy-l-proline from l-arginine
Wu et al. Adenylation domains of nonribosomal peptide synthetase: A potential biocatalyst for synthesis of dipeptides and their derivatives
JPWO2005093056A1 (en) Dipeptide production method
JP4516712B2 (en) Biological production method of L-pipecolic acid
WO2011021717A2 (en) Method for producing hydroxylated amino acids
JP5697327B2 (en) Method for producing cis-hydroxy-L-proline
JP6996714B2 (en) Method for Producing N-Succinyl-Hydroxy-D-Amino Acid and / or Hydroxy-D-Amino Acid
RU2468085C1 (en) Method of obtaining hydroxylated l-leucine and bacterium, transformed with dioxygenase-encoding dna
Du et al. Chiral resolution of N-methyl-d, l-aspartic acid using a predicted N-demethylase from Chloroflexi bacterium 54-19
KR20230044012A (en) Method for Enzymatic Oxidation of Sulfinic Acid to Sulfonic Acid
KR20230137443A (en) Construction and application of flipped ω-transaminase mutants with enantioselectivity.
CN112280756A (en) Isoleucine hydroxylase mutant and application thereof in synthesis of (2S,3R,4S) -4-hydroxyisoleucine
EP4217474A1 (en) Bacterial unspecific peroxygenases (bupo&#39;s) and methods and uses thereof
Serrano Characterization of the activities of trans-3-chloroacrylic acid dehalogenase and cis-3-chloroacrylic acid dehalogenase and malonate semialdehyde decarboxylase homologues: Mechanism and evolutionary implications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821887

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821887

Country of ref document: EP

Kind code of ref document: A1