WO2010046948A1 - Plasma display - Google Patents

Plasma display Download PDF

Info

Publication number
WO2010046948A1
WO2010046948A1 PCT/JP2008/002991 JP2008002991W WO2010046948A1 WO 2010046948 A1 WO2010046948 A1 WO 2010046948A1 JP 2008002991 W JP2008002991 W JP 2008002991W WO 2010046948 A1 WO2010046948 A1 WO 2010046948A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma display
electrode
display device
wiring board
scanning
Prior art date
Application number
PCT/JP2008/002991
Other languages
French (fr)
Japanese (ja)
Inventor
雄二 稲場
Original Assignee
日立プラズマディスプレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラズマディスプレイ株式会社 filed Critical 日立プラズマディスプレイ株式会社
Priority to PCT/JP2008/002991 priority Critical patent/WO2010046948A1/en
Publication of WO2010046948A1 publication Critical patent/WO2010046948A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20954Modifications to facilitate cooling, ventilating, or heating for display panels
    • H05K7/20963Heat transfer by conduction from internal heat source to heat radiating structure

Definitions

  • the present invention relates to a display device, and more particularly to a plasma display device capable of partially reducing the thickness of the display device.
  • the plasma display device includes a plasma display panel, a front panel disposed on the front surface of the plasma display panel, a drive circuit disposed on the back surface of the plasma display panel, and a frame for housing them.
  • the plasma display panel is composed of a front substrate and a rear substrate, and a drive circuit, a control circuit, a power circuit, etc. are arranged on the rear substrate side.
  • a drive circuit, a control circuit, a power circuit, etc. are arranged on the rear substrate side.
  • one frame is divided into a plurality of subframes, and lighting or non-lighting of each pixel is controlled in each subframe. For this reason, it is necessary to control lighting and non-lighting of each pixel at high speed.
  • the control signal for each pixel is sent via a scan electrode, a discharge sustain electrode, an address electrode, and the like. Therefore, the drive circuit for controlling these electrodes, particularly the IC, generates heat, and heat dissipation from the IC becomes a problem.
  • Patent Document 1 in order to more efficiently dissipate heat from the drive circuit, the drive IC is not placed on the circuit board, but is placed on a metal plate placed on the lower side of the circuit board. The configuration is described.
  • a heat sink having fins is used as a method of placing an IC on a circuit board and cooling the IC.
  • a heat sink having fins requires a height of fins, the number of fins, a distance between fins, and the like in order to obtain a predetermined heat dissipation effect, and therefore the height of the heat sink increases. This causes a problem that the overall thickness of the plasma display device increases.
  • Patent Document 1 The technique described in “Patent Document 1” is characterized in that a heat generating component is arranged on a metal flat plate without arranging a heat sink having fins on the circuit board. According to this configuration, since there are no fins on the circuit board, a good effect can be obtained with respect to the thickness of the plasma display device.
  • Patent Document 1 it is necessary to establish electrical connection between the circuit board and the heat generating component. Further, in order to obtain a sufficient heat dissipation effect, the metal flat plate needs a predetermined thickness or area. When there are a lot of heat dissipating parts, the weight of the metal flat plate increases, and as a result, the weight of the plasma display device increases.
  • a heat dissipation plate having fins is excellent in heat dissipation effect if the fin height, the number of fins, and the spacing between the fins can be taken as required. However, if the height of the fins, the number of fins, and the spacing between the fins are sufficiently taken, the thickness of the entire plasma display device increases.
  • the heat generated from the scanning driver formed by an IC is particularly large.
  • the subject of this invention is using the heat sink which has a fin with respect to the heat
  • the present invention solves the above-described problems, and specific means are as follows.
  • a plasma display panel having a substrate, a back substrate having address electrodes extending in a second direction and arranged in the first direction, and a circuit substrate disposed on the back of the plasma display panel.
  • a scan driver connected to the scan electrode is disposed on the front substrate, the scan driver is connected to a circuit formed on the circuit board by a flexible wiring board, and the scan driver is a metallic heat dissipation plate.
  • the plasma display device is characterized by being bonded to each other by an adhesive.
  • a plasma display panel having a substrate, a back substrate in which address electrodes extend in a second direction and arranged in the first direction, and a chassis made of metal on the back surface of the plasma display panel are disposed, and the chassis Is a plasma display device in which a scanning wiring circuit is disposed on the printed wiring board, and a scanning electrode is disposed on the front substrate.
  • the scanning driver is connected to a circuit formed on the circuit board by a flexible wiring board, and the scanning driver is connected to a metal heat sink.
  • a plasma display apparatus characterized by being bonded by Chakuzai.
  • the scan driver formed of IC is arranged on the front substrate of the plasma display panel, and the heat radiating plate formed of metal is bonded to the scan driver by the adhesive, so that the heat dissipation of the scan driver is achieved.
  • the increase in the thickness of the plasma display device can be suppressed even if a heat sink having a high fin is used as the heat sink.
  • connection with the circuit board disposed on the back surface of the plasma display panel and having the scanning drive circuit is performed by the TCP having the wiring formed on the front substrate side. An increase in the outer shape can be prevented.
  • FIG. 7 is a schematic diagram of a plasma display device having a conventional configuration.
  • the plasma display panel 200 is arranged with the display area facing downward.
  • the plasma display panel 200 is configured by bonding a front substrate 1 and a rear substrate 2 via a seal portion 3.
  • a chassis 50 made of metal is attached via an adhesive.
  • a post 55 is formed on the chassis 50, and a printed wiring board 60 (PCB) is fixed to the post 55.
  • a scanning driver 70 On the printed wiring board 60, a scanning driver 70, a scanning driving circuit (hereinafter also referred to as Y driving circuit 26), a discharge sustaining driving circuit (hereinafter also referred to as X driving circuit 16), a power supply circuit 40, a control circuit 45, and the like are formed. Yes.
  • the scanning electrode 20 extends from the inside of the plasma display panel 200 at the end of the front substrate 1 to form a scanning electrode terminal 130.
  • a flexible wiring board 90 is connected to the scanning electrode terminal 130, and is connected to a scanning driver 70 disposed on the printed wiring board 60 via the flexible wiring board 90.
  • a connector 110 is disposed at the tip of the flexible wiring board 90 and is connected to the scanning driver 70.
  • the term “scan driver 70” refers to a chip of the scan driver 70 formed of an IC, or a block of the scan driver 70 in which a plurality of scan drivers 70 formed of an IC are collected. is there.
  • An adhesive 71 is formed so as to cover the scanning driver 70 formed of IC, and a heat radiating plate 80 having fins is disposed via the adhesive 71.
  • the heat sink 80 has a bottom surface of 15 mm ⁇ 15 mm and a height of about 20 mm in order to provide a sufficient heat dissipation effect. Note that a plurality of, for example, about 10 scanning drivers 70 are arranged in the direction perpendicular to the paper surface in FIG. Therefore, about 10 fins for cooling the scanning driver 70 are also arranged.
  • FIG. 8 is a detailed view of the vicinity shown by the arrow B in FIG. The configuration is as described in FIG. In FIG. 8, the sealing material is omitted.
  • a flexible wiring substrate 90 is connected to the scan electrode 20 extending from the inside of the plasma display panel 200 via an anisotropic conductive film 120 (Anisotropic Conductive Film, ASC).
  • a scanning driver 70 formed of an IC is disposed on a printed wiring board 60, an adhesive 71 is formed so as to cover the scanning driver 70, and a heat radiating plate 80 having fins is bonded to the adhesive 71.
  • a silicon resin having good thermal conductivity is used for the adhesive 71. Since the heat sink 80 having fins has a height of about 20 mm, the overall thickness is increased by about 20 mm in the configuration of FIG.
  • the present invention suppresses the increase in the thickness of the plasma display device while using the heat dissipation plate 80 having fins with high heat dissipation efficiency for cooling the scanning driver 70. I can do it.
  • FIG. 1 is a side view of a plasma display device to which the present invention is applied
  • FIG. 2 is a detailed view of a portion indicated by an arrow A in FIG.
  • FIG. 1 is a side view of the plasma display device as viewed from the long side.
  • the front substrate 1 and the rear substrate 2 of the plasma display panel 200 are bonded via a seal portion 3.
  • the internal structure of the plasma display panel 200 will be described later.
  • the chassis 50 is attached to the back side of the back substrate 2 of the plasma display panel 200 via an adhesive 51, and the printed wiring board 60 is fixed by the support 55 formed on the chassis 50 according to the prior art. This is the same as FIG.
  • the chassis 50 is made of Fe or Al.
  • the front substrate 1 of the plasma display panel 200 is formed to be larger than the rear substrate 2.
  • the front substrate 1 is formed larger than the rear substrate 2 than on the right side surface in FIG. 1.
  • the scan driver 70 is formed on one side of the plasma display panel 200, and the present invention is characterized by a configuration for cooling the scan driver 70.
  • the scanning driver 70 is formed of an IC, and specifically has a feature in a configuration for cooling the IC driver.
  • a scanning driver 70 is mounted on a TCP 100 (tape carrier packaging), unlike FIG.
  • the wiring of the TCP 100 is formed on the lower surface and can be directly connected to the terminal of the front substrate 1.
  • the TCP 100 extends over the printed wiring board 60 and is connected to the Y drive circuit 26 and the like disposed on the printed wiring board 60 via the connector 110.
  • FIG. 2 is a detailed view of a portion indicated by an arrow A in FIG.
  • the scan driver 70 is mounted on the TCP 100, and the TCP 100 is connected to the scan electrode 20 formed on the front substrate 1 of the plasma display panel 200 via the ASC.
  • Scan electrode 20 and TCP 100 are connected by anisotropic conductive film 120.
  • the TCP 100 has a wiring whose lower surface is connected to a terminal of the scanning electrode 20 of the front substrate 1. Therefore, as shown in FIG. 8, a configuration in which the film protrudes to the side surface of the plasma display panel 200 can be avoided.
  • An adhesive 71 is formed so as to cover the scanning driver 70 and the TCP 100.
  • a silicon adhesive 71 having a good thermal conductivity is used.
  • an epoxy resin is used for the adhesive 71.
  • a heat radiating plate 80 having fins is arranged via an adhesive 71.
  • the area of the bottom surface is 15 mm ⁇ 15 mm and the height is about 20 mm, as in the conventional example.
  • the heat sink 80 having fins since the heat sink 80 having fins is disposed on the front substrate 1, the heat sink 80 having fins causes the plasma display device.
  • the thickness does not increase.
  • each part is as follows, for example.
  • the thickness of the back substrate 2 is 2.8 mm to 1.8 mm
  • the thickness of the chassis 50 is 1.2 mm to 0.8 mm
  • the height of the support 55 is 20 mm
  • the printed wiring board 60 is about 1.2 mm.
  • the total thickness of these members is about 25.2 mm to 23.8 mm. Therefore, the apex of the heat sink 80 having fins is at a position lower than the height of the printed wiring board 60. That is, the heat sink 80 having fins for cooling the scan driver 70 does not affect the thickness of the plasma display device.
  • the cooling efficiency can be increased accordingly.
  • about 10 scanning drivers 70 are arranged in the direction perpendicular to the paper surface.
  • about 10 heat sinks 80 having fins are also arranged corresponding to the scanning driver 70 and arranged in the direction perpendicular to the paper surface. ing.
  • Al whose surface is blackened is used.
  • the heat sink 80 having fins with good cooling efficiency can be used for cooling the scanning driver 70, and the increase in the thickness of the plasma display device can be suppressed. I can do it.
  • the scanning driver 70 and the printed wiring board 60 are connected by the TCP 100, but the connection between the scanning driver 70 and the printed wiring board 60 is not limited to the TCP 100. Any flexible wiring board may be used as long as the wiring faces downward and is directly connected to the scanning electrode 20 of the front substrate 1.
  • FIG. 3 is an exploded perspective view of the display area of the plasma display panel 200.
  • the plasma display panel 200 is composed of two glass substrates, a front substrate 1 and a back substrate 2. On the front substrate 1, scanning electrodes 20 and discharge sustaining electrodes 10 that generate discharge for image formation are arranged in parallel.
  • the scan electrode 20 further includes a scan discharge electrode 21 formed of ITO (Indium Tin Oxide) that actually becomes a discharge electrode, and a scan bus electrode 22 that supplies a voltage from a terminal portion.
  • the scan bus electrode 22 is also referred to as a Y bus electrode
  • the scan discharge electrode 21 is also referred to as a Y discharge electrode.
  • the Y electrode includes a Y bus electrode and a Y discharge electrode.
  • the discharge sustaining electrode 10 further includes a discharge sustaining discharge electrode 11 formed of ITO (Indium Tin Oxide) that actually becomes a discharge electrode, and a discharge sustaining bus electrode 12 that supplies a voltage from the terminal portion.
  • the sustaining bus electrode 12 is also referred to as an X bus electrode
  • the sustaining discharge electrode 11 is also referred to as an X discharge electrode.
  • the X electrode includes an X bus electrode and an X discharge electrode.
  • Both the X bus electrode and the Y bus electrode have a metal laminated structure, and have a laminated structure of chromium, copper, and chromium from the front substrate 1 side.
  • Chromium formed on the front substrate 1 has excellent adhesion to glass, and has a black surface, which has an effect of improving contrast. Copper is used to reduce the resistance of the bus electrode. Copper is further coated on the copper, and this chromium is used to prevent the copper surface from being oxidized and changing its resistance.
  • the chromium on the front glass may further have a laminated structure of chromium oxide and chromium. Since the chromium oxide is black and has a smaller reflectance than the chromium, the contrast of the image can be further improved. Chromium oxide also has excellent adhesion to glass. Moreover, since the contact surface with copper is chromium, copper is not oxidized.
  • the discharge electrode uses ITO, which is a transparent conductive film
  • the bus electrode uses a metal laminated film with low resistance. This is because when the transparent conductive film is used, more light emitted from the phosphor 8 can be extracted outside.
  • the discharge electrode may be formed of the same metal as the bus electrode. In this case, the process is completed once and the manufacturing cost is greatly reduced.
  • the dielectric layer 5 is formed so as to cover the X electrode and the Y electrode.
  • a low-melting glass having a softening point of about 500 ° C. is used for the dielectric layer 5.
  • a protective film 6 is formed thereon.
  • the protective film 6 is mainly made of magnesium oxide (MgO) and is formed by sputtering or vapor deposition.
  • the address electrode 30 is formed on the rear substrate 2 so as to be orthogonal to the X bus electrode or the Y bus electrode.
  • the structure of the address electrode 30 is the same as that of the X bus electrode or the Y bus electrode, and is a laminated structure of chromium, copper, and chromium.
  • the dielectric layer 5 covers the address electrode 30. Generally, the same material as that of the dielectric layer 5 formed on the front substrate 1 is used for the dielectric layer 5 formed on the rear substrate 2.
  • the partition wall 7 is formed to extend in the same direction as the address electrode 30 so as to sandwich the address electrode 30.
  • the partition walls 7 are also formed in a direction perpendicular to the address electrodes 30 to form a space for generating BOX-like plasma in each subpixel.
  • a phosphor 8 is applied to the inside of the partition wall 7. The phosphor 8 is applied in parallel with the recesses formed by the partition walls 7 of FIG.
  • a space surrounded by the front substrate 1, the rear substrate 2, and the partition walls 7 is a discharge space for enclosing a discharge gas.
  • a space between the pair of bus wirings and the partition wall 7 corresponds to one display cell (subpixel), and in the case of color display, three subpixels correspond to three primary colors (R, B, G), and one pixel (R, B, G). Pixel).
  • the principle of light emission of the plasma display panel 200 is as follows. First, a voltage (discharge start voltage) of about 100 to 200 V is applied between the address electrode 30 corresponding to the cell to emit light and the scan electrode 20 corresponding to the cell. Since the address electrode 30 and the bus wiring are orthogonal to each other, a single cell at the intersection can be selected. In the selected cell, a weak discharge is generated between the discharge electrode to which voltage is applied (in this case, the Y electrode) and the address electrode 30, and charges are formed on the protective film 6 on the dielectric layer 5 on the front substrate 1 side. (Wall charge) is accumulated. In this way, writing by charges is performed on all cells in the display area. This period is a writing period, and no image is formed.
  • a sustain discharge is performed by applying a high frequency pulse between the X electrode and the Y electrode in the sustain period.
  • the sustain discharge is generated only in the cells in which the wall charges are accumulated.
  • Ultraviolet rays are generated by the sustain discharge, and the phosphor 8 emits light by the ultraviolet rays. Visible light emitted from the phosphor 8 is emitted from the front substrate 1 and is visually recognized by a human. Since the phosphor 8 emits light only in the cells in which charges are accumulated during the writing period, an image is formed.
  • FIG. 4 is a plan view of the plasma display panel 200.
  • the back substrate 2 is disposed under the front substrate 1 with a sealing material 3 interposed therebetween.
  • address electrodes 30 indicated by dotted lines extend in the vertical direction and are arranged in the horizontal direction.
  • the address electrode 30 extends to the end portion of the back substrate 2 to become an address electrode terminal 140, and an address signal is supplied from this portion.
  • the address electrode 30 is connected to the address driver 35 at the end portion of the rear substrate 2 by reducing the inter-electrode pitch to become the address electrode terminal 140.
  • a discharge sustaining electrode 10 and a scanning electrode 20 extend in the lateral direction on the front substrate 1.
  • the sustaining electrode 10 is supplied with a sustaining pulse from the left side of the front substrate 1 during the sustaining period, but is not shown in FIG.
  • a scanning signal is supplied to the scanning electrode 20 from the terminal portion 130 of the right front substrate 1 in the writing period, and a discharge sustaining pulse is supplied in the discharge sustaining period.
  • the terminal portion 130 and the Y electrode are connected by a Y bus electrode lead line. Since the pitch of the terminal portion 110 is smaller than the pitch of the Y bus electrode, the Y bus electrode lead line has an inclined portion outside the display area.
  • FIG. 5 is a schematic diagram showing a driving system of the plasma display device.
  • the discharge sustaining electrode 10 extends to the right side from the X driving circuit 16 existing on the left side.
  • the scanning electrode 20 extends from the scanning driver 70 existing on the right side to the left side.
  • the scanning driver 70 is further connected to the Y drive circuit 26 arranged on the right side.
  • the scan driver 70 is collectively shown in FIG. 5, it is actually formed by about 10 ICs.
  • the heat sink 80 which has a fin for every IC is arrange
  • address electrodes 30 extend upward from an address driver 35 existing on the lower side.
  • the address driver 35 is connected to the address drive circuit 36.
  • a subpixel is formed at the intersection of the address electrode 30, the scan electrode 20, and the discharge sustaining electrode 10.
  • the address driving circuit 36 exists only on the lower side of the plasma display panel 200. However, in this embodiment, the address driving circuit 36 exists above and below the plasma display panel 200 as shown in FIG. Yes.
  • the scan electrode 20 is supplied with a scan signal from the scan driver 70 in the writing period and supplied with a discharge sustain pulse in the discharge sustain period.
  • a sustaining pulse is supplied to the sustaining electrode 10 during the sustaining period.
  • an address signal is supplied to the address electrode 30 in the writing period, and the position of the sub-pixel to be lit is determined together with the scanning signal of the scanning electrode 20.
  • the control circuit 45 in FIG. 5 causes the X drive circuit 16, the Y drive circuit 26, the address drive circuit 36, and the like to perform the above-described operation.
  • the scanning driver 70 in the present invention is disposed on the front substrate 1 of the plasma display panel 200.
  • the scanning driver 70 is formed on the printed wiring board 60 disposed on the back surface of the plasma display panel 200.
  • the heat sink 80 having fins for cooling the scanning driver 70 is disposed on the front substrate 1, it is possible to prevent the thickness of the plasma display device from increasing.
  • FIG. 6 is a schematic back view of the plasma display device of the present invention. Since the plasma display device is viewed from the back side in FIG. 6, the positions of the X drive circuit 16 and the Y drive circuit 26 are reversed left and right as compared with FIG. 5.
  • the printed circuit board 60 has a Y drive circuit 26 on the left side and an X drive circuit 16 on the right side. From the X driving circuit 16, a discharge sustaining pulse for maintaining the discharge is supplied to the sustaining electrode 10 during the sustaining period. Further, the Y drive circuit 26 supplies a discharge sustain pulse for maintaining the discharge to the scan electrode 20 in the discharge sustain period.
  • the scanning driver 70 that supplies a scanning signal to the scanning electrode 20 during the writing period does not exist on the printed wiring board 60 side, but exists on the front substrate 1 of the plasma display panel 200 (not shown). On the other hand, in the conventional example, the scan driver 70 exists on the Y drive circuit 26 side.
  • the address drive circuit 36 is arranged above and below the Y drive circuit 26 and the X drive circuit 16.
  • the address drive circuit 36 exists only on the lower side, but also exists on the upper side in FIG. Whether the address driving circuit 36 is arranged on the upper side and the lower side, or only on the lower side or the upper side can be determined by the pitch of the address electrodes 30, the layout requirements of the entire printed wiring board 60, and the like.
  • a plurality of address drivers 35 are arranged on the upper and lower sides of the address drive circuit 36, respectively.
  • the address driver 35 and the address electrode 30 are connected by an address driver wiring film 37.
  • a control circuit 45 for controlling the X drive circuit 16, the Y drive circuit 26, the drive circuit, and the like is disposed in the center of the printed wiring board 60.
  • a power supply circuit 40 is disposed adjacent to the control circuit 45.
  • the scan driver 70 since the scan driver 70 is arranged on the front substrate 1 of the plasma display panel 200, the scan driver 70 does not exist on the printed wiring board 60 side, and the scan driver 70 is cooled. Since the heat sink 80 having the fins does not exist in the printed wiring board 60, the thickness of the plasma display device in this portion can be reduced.
  • the heat radiating plate 80 has been described as the heat radiating plate 80 having fins.
  • the heat radiating plate 80 is not limited thereto, and has no fins, for example, on a block or a plate-shaped heat radiating plate 80. Can also be used.
  • FIG. 2 is a detailed view of part A in FIG. 1. It is a disassembled perspective view of the display area of a plasma display panel. It is a top view of a plasma display panel. It is a block diagram of the drive circuit of a plasma display apparatus. It is a rear view of a plasma display apparatus. It is a side view of the plasma display apparatus in a prior art example.
  • FIG. 8 is a detailed view of part B in FIG. 7.
  • Chassis 51 ... Adhesive material 55 ... Stand 60 ... Printed circuit board 70 ... Scanning driver 71 ... Adhesive 80 ... Radiating plate, 90 ... Flexible wiring board, 10 DESCRIPTION OF SYMBOLS 0 ... TCP, 110 ... Connector, 120 ... Anisotropic conductive film, 130 ... Scan electrode terminal, 140 ... Address electrode terminal, 200 ... Plasma display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A plasma display which is made thin while maintaining the cooling effect of a scanning driver (70) in the display. The scanning driver (70) mounted on a TCP (100) is arranged at the end on the backside of a front substrate (1). The scanning driver (70) is connected with a scanning electrode extending to the end of the front substrate (1). A heat dissipation plate (80) having fins is arranged on the scanning driver (70) through adhesive (71) in order to dissipate to the outside heat generated from the scanning driver (70) formed of an IC. Since the heat dissipation plate (80) is arranged on the front substrate (1), upper portion of the heat dissipation plate (80) is lower than the circuit board (60) and the thickness of the plasma display is not increased by the heat dissipation plate (80).

Description

プラズマディスプレイ装置Plasma display device
 本発明は表示装置に係り、特に表示装置に厚みを部分的に小さくすることが出来るプラズマディスプレイ装置に関する。 The present invention relates to a display device, and more particularly to a plasma display device capable of partially reducing the thickness of the display device.
 プラズマディスプレイパネル(PDP)を用いたプラズマディスプレイ装置は、薄型で特に大画面の表示が可能なディスプレイとして需要が拡大している。プラズマディスプレイ装置は、プラズマディスプレイパネル、プラズマディスプレイパネルの前面に配置された前面パネル、プラズマディスプレイパネルの背面に配置された駆動回路、およびこれらを収容するフレーム等から構成されている。 Demand for plasma display devices using a plasma display panel (PDP) is increasing as a thin display capable of displaying a particularly large screen. The plasma display device includes a plasma display panel, a front panel disposed on the front surface of the plasma display panel, a drive circuit disposed on the back surface of the plasma display panel, and a frame for housing them.
 プラズマディスプレイパネルは前面基板と背面基板から構成され、背面基板側に駆動回路、制御回路、電源回路等が配置されている。プラズマディスプレイ装置では階調表示を行うために、1フレームを複数のサブフレームに分け、各サブフレームにおいて各画素の点灯または非点灯を制御している。このために、各画素の点灯、非点灯を高速で制御する必要がある。 The plasma display panel is composed of a front substrate and a rear substrate, and a drive circuit, a control circuit, a power circuit, etc. are arranged on the rear substrate side. In the plasma display device, in order to perform gradation display, one frame is divided into a plurality of subframes, and lighting or non-lighting of each pixel is controlled in each subframe. For this reason, it is necessary to control lighting and non-lighting of each pixel at high speed.
 各画素に対する制御信号は走査電極、放電維持電極、アドレス電極等を介して行われる。したがって、これらの電極を制御する駆動回路、特にICが発熱し、ICからの熱放散が問題となる。「特許文献1」には、駆動回路からの熱放散をより効率的におこなうために、駆動ICを回路基板に設置するのでなく、回路基板の下側に配置された金属板の上に配置する構成が記載されている。 The control signal for each pixel is sent via a scan electrode, a discharge sustain electrode, an address electrode, and the like. Therefore, the drive circuit for controlling these electrodes, particularly the IC, generates heat, and heat dissipation from the IC becomes a problem. In “Patent Document 1”, in order to more efficiently dissipate heat from the drive circuit, the drive IC is not placed on the circuit board, but is placed on a metal plate placed on the lower side of the circuit board. The configuration is described.
特開2006-308622号公報JP 2006-308622 A
 回路基板にICを配置して、このICを冷却する方法としてフィンを有する放熱板を使用することが多い。フィンを有する放熱板は、所定の放熱効果を得るためには、フィンの高さ、フィンの枚数、フィンの間隔等が必要なために、放熱板の高さが高くなる。そうすると、プラズマディスプレイ装置の全体的な厚さが大きくなってしまうという問題が生ずる。 In many cases, a heat sink having fins is used as a method of placing an IC on a circuit board and cooling the IC. A heat sink having fins requires a height of fins, the number of fins, a distance between fins, and the like in order to obtain a predetermined heat dissipation effect, and therefore the height of the heat sink increases. This causes a problem that the overall thickness of the plasma display device increases.
 「特許文献1」に記載の技術は、回路基板の上にフィンを有する放熱板を配置することなく、金属平板の上に発熱部品を配置することに特徴がある。この構成によれば、回路基板の上にフィンが存在しないので、プラズマディスプレイ装置の厚さについても良い効果が得られる。 The technique described in “Patent Document 1” is characterized in that a heat generating component is arranged on a metal flat plate without arranging a heat sink having fins on the circuit board. According to this configuration, since there are no fins on the circuit board, a good effect can be obtained with respect to the thickness of the plasma display device.
 しかし、「特許文献1」の構成では、回路基板と発熱部品との電気的な接続をとる必要がある。また、十分な放熱効果を得るためには、金属平板は所定の厚さ、あるいは面積が必要となる。放熱部品が多いような場合は、金属平板の重量が大きくなり、ひいては、プラズマディスプレイ装置の重量が大きくなってしまう。 However, in the configuration of “Patent Document 1”, it is necessary to establish electrical connection between the circuit board and the heat generating component. Further, in order to obtain a sufficient heat dissipation effect, the metal flat plate needs a predetermined thickness or area. When there are a lot of heat dissipating parts, the weight of the metal flat plate increases, and as a result, the weight of the plasma display device increases.
 一方、フィンを有する放熱板は、フィンの高さ、フィンの枚数、フィンの間の間隔を必要な量とることが出来れば、放熱効果は優れている。しかし、フィンの高さ、フィンの枚数、フィンの間の間隔を十分に取ろうとすると、プラズマディスプレイ装置全体の厚さが大きくなる。 On the other hand, a heat dissipation plate having fins is excellent in heat dissipation effect if the fin height, the number of fins, and the spacing between the fins can be taken as required. However, if the height of the fins, the number of fins, and the spacing between the fins are sufficiently taken, the thickness of the entire plasma display device increases.
 プラズマディスプレイ装置では、1フレームを複数のサブフレームに分割して駆動するので、特に、ICで形成される走査ドライバからの発熱が大きい。本発明の課題は、ICで形成される走査ドライバからの発熱に対して、フィンを有する放熱板を用い、かつ、プラズマディスプレイ装置の厚さが厚くなることを抑制することである。 Since the plasma display device is driven by dividing one frame into a plurality of sub-frames, the heat generated from the scanning driver formed by an IC is particularly large. The subject of this invention is using the heat sink which has a fin with respect to the heat | fever from the scanning driver formed with IC, and suppressing that the thickness of a plasma display apparatus becomes thick.
 本発明は以上のような課題を解決するものであり、具体的な手段は次のとおりである。 The present invention solves the above-described problems, and specific means are as follows.
 (1)走査電極が特定ピッチで第1の方向に延在して第2の方向に配列し、放電維持電極が特定ピッチで第1の方向に延在して第2の方向に配列した前面基板と、アドレス電極が第2の方向に延在して第1の方向に配列した背面基板を有するプラズマディスプレイパネルと、前記プラズマディスプレイパネルの背面に配置された回路基板を有するプラズマディスプレイ装置であって、前記前面基板には、前記走査電極と接続する走査ドライバが配置され、前記走査ドライバは前記回路基板に形成された回路とフレキシブルな配線基板によって接続し、前記走査ドライバは金属性の放熱板と接着材によって接着していることを特徴とするプラズマディスプレイ装置。 (1) Front surface in which scan electrodes extend in the first direction at a specific pitch and arranged in the second direction, and discharge sustain electrodes extend in the first direction at a specific pitch and arranged in the second direction A plasma display panel having a substrate, a back substrate having address electrodes extending in a second direction and arranged in the first direction, and a circuit substrate disposed on the back of the plasma display panel. A scan driver connected to the scan electrode is disposed on the front substrate, the scan driver is connected to a circuit formed on the circuit board by a flexible wiring board, and the scan driver is a metallic heat dissipation plate The plasma display device is characterized by being bonded to each other by an adhesive.
 (2)前記フレキシブルな配線基板はテープキャリアパッケージングであることを特徴とする(1)に記載のプラズマディスプレイ装置。 (2) The plasma display device according to (1), wherein the flexible wiring board is tape carrier packaging.
 (3)前記フレキシブルな配線基板は前記回路基板に配置された走査駆動回路と接続していることを特徴とする(1)に記載のプラズマディスプレイ装置。 (3) The plasma display device according to (1), wherein the flexible wiring board is connected to a scanning drive circuit disposed on the circuit board.
 (4)前記放熱板はフィンを有する放熱板であることを特徴とする(1)に記載のプラズマディスプレイ装置。 (4) The plasma display device according to (1), wherein the heat dissipation plate is a heat dissipation plate having fins.
 (5)走査電極が特定ピッチで第1の方向に延在して第2の方向に配列し、放電維持電極が特定ピッチで第1の方向に延在して第2の方向に配列した前面基板と、アドレス電極が第2の方向に延在して第1の方向に配列した背面基板を有するプラズマディスプレイパネルと、前記プラズマディスプレイパネルの背面に金属で形成されたシャシが配置され、前記シャシには支柱が形成され、前記支柱にはプリント配線基板が固定されており、前記プリント配線基板には走査駆動回路が配置されているプラズマディスプレイ装置であって、前記前面基板には、前記走査電極と接続する走査ドライバが配置され、前記走査ドライバは前記回路基板に形成された回路とフレキシブルな配線基板によって接続し、前記走査ドライバは金属性の放熱板と接着材によって接着していることを特徴とするプラズマディスプレイ装置。 (5) Front surface in which scan electrodes extend in the first direction at a specific pitch and arranged in the second direction, and discharge sustain electrodes extend in the first direction at a specific pitch and arranged in the second direction A plasma display panel having a substrate, a back substrate in which address electrodes extend in a second direction and arranged in the first direction, and a chassis made of metal on the back surface of the plasma display panel are disposed, and the chassis Is a plasma display device in which a scanning wiring circuit is disposed on the printed wiring board, and a scanning electrode is disposed on the front substrate. The scanning driver is connected to a circuit formed on the circuit board by a flexible wiring board, and the scanning driver is connected to a metal heat sink. A plasma display apparatus characterized by being bonded by Chakuzai.
 (6)前記フレキシブルな配線基板はテープキャリアパッケージングであることを特徴とする(5)に記載のプラズマディスプレイ装置。 (6) The plasma display device according to (5), wherein the flexible wiring board is tape carrier packaging.
 (7)前記放熱板はフィンを有する放熱板であることを特徴とする(5)に記載のプラズマディスプレイ装置。 (7) The plasma display device according to (5), wherein the heat dissipation plate is a heat dissipation plate having fins.
 本発明によれば、ICで形成された走査ドライバをプラズマディスプレイパネルの前面基板に配置し、かつ、金属で形成された放熱板を走査ドライバと接着材によって接着しているので、走査ドライバの放熱を効果的に行うとともに、放熱板として、高さの高いフィンを有する放熱板を使用しても、プラズマディスプレイ装置の厚さの増加を抑えることが出来る。 According to the present invention, the scan driver formed of IC is arranged on the front substrate of the plasma display panel, and the heat radiating plate formed of metal is bonded to the scan driver by the adhesive, so that the heat dissipation of the scan driver is achieved. In addition, the increase in the thickness of the plasma display device can be suppressed even if a heat sink having a high fin is used as the heat sink.
 また、本発明によれば、プラズマディスプレイパネルの背面に配置され、走査駆動回路を有する回路基板との接続を配線が前面基板側に形成されているTCPによって行うので、接続ケーブルによるプラズマディスプレイ装置の外形が大きくなることを防止することが出来る。 In addition, according to the present invention, the connection with the circuit board disposed on the back surface of the plasma display panel and having the scanning drive circuit is performed by the TCP having the wiring formed on the front substrate side. An increase in the outer shape can be prevented.
 本発明の具体的な実施例を説明する前に、従来技術の問題点について図を用いて詳しく説明する。図7は従来の構成におけるプラズマディスプレイ装置の概略模式図である。図7において、プラズマディスプレイパネル200が表示領域を下向きにして配置されている。プラズマディスプレイパネル200は前面基板1と背面基板2がシール部3を介して接着して構成されている。背面基板2の裏側には、金属で形成されたシャシ50が粘着剤を介して貼り付けられている。 DETAILED DESCRIPTION Before describing specific embodiments of the present invention, problems of the prior art will be described in detail with reference to the drawings. FIG. 7 is a schematic diagram of a plasma display device having a conventional configuration. In FIG. 7, the plasma display panel 200 is arranged with the display area facing downward. The plasma display panel 200 is configured by bonding a front substrate 1 and a rear substrate 2 via a seal portion 3. On the back side of the back substrate 2, a chassis 50 made of metal is attached via an adhesive.
 シャシ50には支柱55が形成され、この支柱55にはプリント配線基板60(PCB)が固定されている。プリント配線基板60には、走査ドライバ70、走査駆動回路(以後Y駆動回路26とも呼ぶ)、放電維持駆動回路(以後X駆動回路16とも呼ぶ)、電源回路40、制御回路45等が形成されている。 A post 55 is formed on the chassis 50, and a printed wiring board 60 (PCB) is fixed to the post 55. On the printed wiring board 60, a scanning driver 70, a scanning driving circuit (hereinafter also referred to as Y driving circuit 26), a discharge sustaining driving circuit (hereinafter also referred to as X driving circuit 16), a power supply circuit 40, a control circuit 45, and the like are formed. Yes.
 図7において、前面基板1の端部には、プラズマディスプレイパネル200の内部から走査電極20が延在し、走査電極端子130を形成している。走査電極端子130にはフレキシブル配線基板90が接続し、フレキシブル配線基板90を介してプリント配線基板60に配置された走査ドライバ70と接続している。フレキシブル配線基板90の先端にはコネクタ110が配置され、走査ドライバ70と接続する。なお、本明細書で走査ドライバ70という場合は、ICで形成された走査ドライバ70のチップをいう場合と、ICで形成された走査ドライバ70が複数集まった走査ドライバ70のブロックをいう場合とがある。 In FIG. 7, the scanning electrode 20 extends from the inside of the plasma display panel 200 at the end of the front substrate 1 to form a scanning electrode terminal 130. A flexible wiring board 90 is connected to the scanning electrode terminal 130, and is connected to a scanning driver 70 disposed on the printed wiring board 60 via the flexible wiring board 90. A connector 110 is disposed at the tip of the flexible wiring board 90 and is connected to the scanning driver 70. In this specification, the term “scan driver 70” refers to a chip of the scan driver 70 formed of an IC, or a block of the scan driver 70 in which a plurality of scan drivers 70 formed of an IC are collected. is there.
 ICで形成された走査ドライバ70を覆って接着材71が形成され、接着材71を介してフィンを有する放熱板80が配置されている。放熱板80は十分な放熱効果を持たせるために、底面は15mm×15mm、高さは20mm程度である。なお、走査ドライバ70は図7における紙面垂直方向に複数、例えば、10個程度配置されている。したがって、走査ドライバ70を冷却するためのフィンも10個程度配置されている。 An adhesive 71 is formed so as to cover the scanning driver 70 formed of IC, and a heat radiating plate 80 having fins is disposed via the adhesive 71. The heat sink 80 has a bottom surface of 15 mm × 15 mm and a height of about 20 mm in order to provide a sufficient heat dissipation effect. Note that a plurality of, for example, about 10 scanning drivers 70 are arranged in the direction perpendicular to the paper surface in FIG. Therefore, about 10 fins for cooling the scanning driver 70 are also arranged.
 図8は図7において矢印Bによって示す付近の詳細図である。構成は図7で説明したとおりである。図8では、シール材は省略されている。プラズマディスプレイパネル200の内部から延在してきた走査電極20に異方性導電膜120(Anisotorpic Conductive Film、ASC)を介してフレキシブル配線基板90が接続している。 FIG. 8 is a detailed view of the vicinity shown by the arrow B in FIG. The configuration is as described in FIG. In FIG. 8, the sealing material is omitted. A flexible wiring substrate 90 is connected to the scan electrode 20 extending from the inside of the plasma display panel 200 via an anisotropic conductive film 120 (Anisotropic Conductive Film, ASC).
 図8において、プリント配線基板60にはICで形成された走査ドライバ70が配置され、走査ドライバ70を覆って接着材71が形成され、接着材71にフィンを有する放熱板80が接着している。接着材71には熱伝導の良いシリコン樹脂が使用される。フィンを有する放熱板80の高さが20mm程度あるので、図8の構成では、全体の厚さが20mm程度大きくなる。本発明は、以下の実施例で説明するように、走査ドライバ70の冷却に、熱放散効率の大きい、フィンを有する放熱板80を使用しつつ、プラズマディスプレイ装置の厚さが大きくなることを抑えることが出来る。 In FIG. 8, a scanning driver 70 formed of an IC is disposed on a printed wiring board 60, an adhesive 71 is formed so as to cover the scanning driver 70, and a heat radiating plate 80 having fins is bonded to the adhesive 71. . For the adhesive 71, a silicon resin having good thermal conductivity is used. Since the heat sink 80 having fins has a height of about 20 mm, the overall thickness is increased by about 20 mm in the configuration of FIG. As will be described in the following embodiments, the present invention suppresses the increase in the thickness of the plasma display device while using the heat dissipation plate 80 having fins with high heat dissipation efficiency for cooling the scanning driver 70. I can do it.
 図1は本発明を適用したプラズマディスプレイ装置の側面図であり、図2は、図1の矢印Aで示す部分の詳細図である。図1はプラズマディスプレイ装置を長辺側から見た側面図である。図1において、プラズマディスプレイパネル200の前面基板1と背面基板2とがシール部3を介して接着している。プラズマディスプレイパネル200の内部構造は後で説明する。 FIG. 1 is a side view of a plasma display device to which the present invention is applied, and FIG. 2 is a detailed view of a portion indicated by an arrow A in FIG. FIG. 1 is a side view of the plasma display device as viewed from the long side. In FIG. 1, the front substrate 1 and the rear substrate 2 of the plasma display panel 200 are bonded via a seal portion 3. The internal structure of the plasma display panel 200 will be described later.
 プラズマディスプレイパネル200の背面基板2の裏側には粘着材51を介してシャシ50が貼り付けられており、シャシ50に形成された支柱55によってプリント配線基板60が固定されていることは従来技術である図7と同様である。なお、シャシ50には、FeあるいはAlが使用される。 The chassis 50 is attached to the back side of the back substrate 2 of the plasma display panel 200 via an adhesive 51, and the printed wiring board 60 is fixed by the support 55 formed on the chassis 50 according to the prior art. This is the same as FIG. The chassis 50 is made of Fe or Al.
 図1に示す側面においては、プラズマディスプレイパネル200の前面基板1は背面基板2よりも大きく形成されている。特に図1の左側の側面では、図1の右側の側面よりも前面基板1が背面基板2よりも大きく形成されている。後で説明するように、走査ドライバ70は、プラズマディスプレイパネル200の片側に形成されており、本発明は、この走査ドライバ70を冷却する構成に特徴がある。走査ドライバ70はICで形成されており、具体的にはこのICドライバを冷却する構成に特徴がある。 1, the front substrate 1 of the plasma display panel 200 is formed to be larger than the rear substrate 2. In particular, on the left side surface in FIG. 1, the front substrate 1 is formed larger than the rear substrate 2 than on the right side surface in FIG. 1. As will be described later, the scan driver 70 is formed on one side of the plasma display panel 200, and the present invention is characterized by a configuration for cooling the scan driver 70. The scanning driver 70 is formed of an IC, and specifically has a feature in a configuration for cooling the IC driver.
 図1において、走査ドライバ70は図7等と異なり、TCP100(テープキャリアパッケージング、Tape Carrier Packaging)に搭載されている。TCP100の配線は下面に形成されており、前面基板1の端子に直接接続することが出来る。TCP100はプリント配線基板60の上まで延在し、コネクタ110を介してプリント配線基板60に配置しているY駆動回路26等と接続する。 In FIG. 1, a scanning driver 70 is mounted on a TCP 100 (tape carrier packaging), unlike FIG. The wiring of the TCP 100 is formed on the lower surface and can be directly connected to the terminal of the front substrate 1. The TCP 100 extends over the printed wiring board 60 and is connected to the Y drive circuit 26 and the like disposed on the printed wiring board 60 via the connector 110.
 図2は、図1の矢印Aで示す部分の詳細図である。図2において、走査ドライバ70はTCP100に搭載され、TCP100はASCを介してプラズマディスプレイパネル200の前面基板1に形成された走査電極20と接続する。走査電極20とTCP100とは異方性導電膜120によって接続している。TCP100は下面が前面基板1の走査電極20の端子と接続するような配線となっている。したがって、図8に示すように、フィルムがプラズマディスプレイパネル200の側面に飛び出すような構成は避けることが出来る。 FIG. 2 is a detailed view of a portion indicated by an arrow A in FIG. In FIG. 2, the scan driver 70 is mounted on the TCP 100, and the TCP 100 is connected to the scan electrode 20 formed on the front substrate 1 of the plasma display panel 200 via the ASC. Scan electrode 20 and TCP 100 are connected by anisotropic conductive film 120. The TCP 100 has a wiring whose lower surface is connected to a terminal of the scanning electrode 20 of the front substrate 1. Therefore, as shown in FIG. 8, a configuration in which the film protrudes to the side surface of the plasma display panel 200 can be avoided.
 走査ドライバ70およびTCP100を覆って接着材71が形成されている。接着材71には熱伝導特性の良いシリコン接着材71が使用される。接着力を重視する場合は、接着材71にエポキシ樹脂が使用される。接着材71を介してフィンを有する放熱板80が配置されている。フィンを有する放熱板80のサイズは、従来例と同様に、底面の面積が15mm×15mm、高さが20mm程度である。 An adhesive 71 is formed so as to cover the scanning driver 70 and the TCP 100. As the adhesive 71, a silicon adhesive 71 having a good thermal conductivity is used. When importance is attached to the adhesive force, an epoxy resin is used for the adhesive 71. A heat radiating plate 80 having fins is arranged via an adhesive 71. As for the size of the heat sink 80 having fins, the area of the bottom surface is 15 mm × 15 mm and the height is about 20 mm, as in the conventional example.
 このように、フィンを有する放熱板80の高さが高くとも、本発明においては、フィンを有する放熱板80が前面基板1に配置されているので、フィンを有する放熱板80によってプラズマディスプレイ装置の厚さが大きくなることは無い。 Thus, even if the height of the heat sink 80 having fins is high, in the present invention, since the heat sink 80 having fins is disposed on the front substrate 1, the heat sink 80 having fins causes the plasma display device. The thickness does not increase.
 各部品の厚さは例えば次のとおりである。背面基板2の厚さは2.8mm~1.8mm、シャシ50の厚さは1.2mm~0.8mm、支柱55の高さは20mm、プリント配線基板60は1.2mm程度である。これらの部材の総厚は25.2mm~23.8mm程度となる。したがって、フィンを有する放熱板80の頂点はプリント配線基板60の高さよりも低い位置にある。つまり、走査ドライバ70を冷却するためのフィンを有する放熱板80はプラズマディスプレイ装置の厚さに対して影響を与えることは無くなる。 The thickness of each part is as follows, for example. The thickness of the back substrate 2 is 2.8 mm to 1.8 mm, the thickness of the chassis 50 is 1.2 mm to 0.8 mm, the height of the support 55 is 20 mm, and the printed wiring board 60 is about 1.2 mm. The total thickness of these members is about 25.2 mm to 23.8 mm. Therefore, the apex of the heat sink 80 having fins is at a position lower than the height of the printed wiring board 60. That is, the heat sink 80 having fins for cooling the scan driver 70 does not affect the thickness of the plasma display device.
 逆に言えば、フィンを有する放熱板80の高さは、必要に応じて25.2mm~23.8mm程度まで大きくすることができるので、その分、冷却効率を上げることが出来る。なお、図2において、走査ドライバ70は紙面垂直の方向に10個程度配置されているが、フィンを有する放熱板80も走査ドライバ70に対応して配置され、紙面垂直方向に10個程度配置されている。なお、フィンを有する放熱板80には、表面を黒化したAlが使用される。 In other words, since the height of the heat sink 80 having fins can be increased to about 25.2 mm to 23.8 mm as necessary, the cooling efficiency can be increased accordingly. In FIG. 2, about 10 scanning drivers 70 are arranged in the direction perpendicular to the paper surface. However, about 10 heat sinks 80 having fins are also arranged corresponding to the scanning driver 70 and arranged in the direction perpendicular to the paper surface. ing. For the heat sink 80 having fins, Al whose surface is blackened is used.
 このように、本発明によれば、走査ドライバ70の冷却に冷却効率の良いフィンを有する放熱板80を使用することが出来、かつ、プラズマディスプレイ装置の厚さが厚くなることを抑制することが出来る。 Thus, according to the present invention, the heat sink 80 having fins with good cooling efficiency can be used for cooling the scanning driver 70, and the increase in the thickness of the plasma display device can be suppressed. I can do it.
 以上の説明では、走査ドライバ70とプリント配線基板60とはTCP100によって接続しているが、走査ドライバ70とプリント配線基板60との接続は、TCP100に限定されるものではない。配線が下向きで、前面基板1の走査電極20と直接接続するようなフレキシブルな配線基板であれば良い。 In the above description, the scanning driver 70 and the printed wiring board 60 are connected by the TCP 100, but the connection between the scanning driver 70 and the printed wiring board 60 is not limited to the TCP 100. Any flexible wiring board may be used as long as the wiring faces downward and is directly connected to the scanning electrode 20 of the front substrate 1.
 以下に、本発明が適用されるプラズマディスプレイパネル200の構造を説明する。図3は、プラズマディスプレイパネル200の表示領域の分解斜視図である。プラズマディスプレイパネル200は,前面基板1と背面基板2の2枚のガラス基板から構成されている。前面基板1には、画像形成のための放電を生じさせる走査電極20と放電維持電極10が平行に配置されている。 Hereinafter, the structure of the plasma display panel 200 to which the present invention is applied will be described. FIG. 3 is an exploded perspective view of the display area of the plasma display panel 200. The plasma display panel 200 is composed of two glass substrates, a front substrate 1 and a back substrate 2. On the front substrate 1, scanning electrodes 20 and discharge sustaining electrodes 10 that generate discharge for image formation are arranged in parallel.
 走査電極20は、さらに実際に放電電極となるITO(Indium Tin Oxide)によって形成された走査放電電極21と、端子部から電圧を供給する走査バス電極22から構成される。以後、走査バス電極22をYバス電極とも呼び、走査放電電極21をY放電電極とも呼ぶ。また、Y電極という場合は、Yバス電極とY放電電極を含むものとする。 The scan electrode 20 further includes a scan discharge electrode 21 formed of ITO (Indium Tin Oxide) that actually becomes a discharge electrode, and a scan bus electrode 22 that supplies a voltage from a terminal portion. Hereinafter, the scan bus electrode 22 is also referred to as a Y bus electrode, and the scan discharge electrode 21 is also referred to as a Y discharge electrode. The Y electrode includes a Y bus electrode and a Y discharge electrode.
 放電維持電極10は、さらに実際に放電電極となるITO(Indium Tin Oxide)によって形成された放電維持放電電極11と、端子部から電圧を供給する放電維持バス電極12から構成される。以後、放電維持バス電極12をXバス電極とも呼び、放電維持放電電極11をX放電電極とも呼ぶ。また、X電極という場合は、Xバス電極とX放電電極を含むものとする。 The discharge sustaining electrode 10 further includes a discharge sustaining discharge electrode 11 formed of ITO (Indium Tin Oxide) that actually becomes a discharge electrode, and a discharge sustaining bus electrode 12 that supplies a voltage from the terminal portion. Hereinafter, the sustaining bus electrode 12 is also referred to as an X bus electrode, and the sustaining discharge electrode 11 is also referred to as an X discharge electrode. The X electrode includes an X bus electrode and an X discharge electrode.
 Xバス電極、Yバス電極はいずれも金属の積層構造となっており、前面基板1の側からクロム、銅、クロムの積層構造となっている。前面基板1上に形成されたクロムは、ガラスとの接着性が優れており、かつ、クロムの表面が黒いので、コントラストの向上のための効果を有する。銅はバス電極の抵抗を小さくするために使用される。銅の上をさらにクロムが被覆しているが、このクロムは、銅の表面が酸化されて抵抗が変化することを防止するために使用される。 Both the X bus electrode and the Y bus electrode have a metal laminated structure, and have a laminated structure of chromium, copper, and chromium from the front substrate 1 side. Chromium formed on the front substrate 1 has excellent adhesion to glass, and has a black surface, which has an effect of improving contrast. Copper is used to reduce the resistance of the bus electrode. Copper is further coated on the copper, and this chromium is used to prevent the copper surface from being oxidized and changing its resistance.
 前面ガラス上のクロムはさらに、酸化クロムとクロムの積層構造となる場合もある。酸化クロムは黒色で、反射率がクロムよりも小さいので、画像のコントラストをさらに向上させることが出来る。酸化クロムもガラスとの接着性は優れている。また、銅との接触面はクロムなので、銅が酸化されることも無い。 The chromium on the front glass may further have a laminated structure of chromium oxide and chromium. Since the chromium oxide is black and has a smaller reflectance than the chromium, the contrast of the image can be further improved. Chromium oxide also has excellent adhesion to glass. Moreover, since the contact surface with copper is chromium, copper is not oxidized.
 図3においては、放電電極は透明導電膜であるITOを使用し、バス電極には抵抗の小さい金属積層膜を使用している。透明導電膜を使用すると、蛍光体8からの発光を外部により多く取り出すことが出来るからである。一方、放電電極をバス電極と同じ金属によって形成する場合もある。この場合は、プロセスが一回で済み、製造コストの大幅な低減になる。 In FIG. 3, the discharge electrode uses ITO, which is a transparent conductive film, and the bus electrode uses a metal laminated film with low resistance. This is because when the transparent conductive film is used, more light emitted from the phosphor 8 can be extracted outside. On the other hand, the discharge electrode may be formed of the same metal as the bus electrode. In this case, the process is completed once and the manufacturing cost is greatly reduced.
 X電極およびY電極を覆うように誘電体層5が形成される。誘電体層5には軟化点が500℃程度の低融点ガラスが使用される。その上に保護膜6が形成される。保護膜6としては,酸化マグネシウム(MgO)が主に使用され,スパッタ法または蒸着法によって形成される。 The dielectric layer 5 is formed so as to cover the X electrode and the Y electrode. For the dielectric layer 5, a low-melting glass having a softening point of about 500 ° C. is used. A protective film 6 is formed thereon. The protective film 6 is mainly made of magnesium oxide (MgO) and is formed by sputtering or vapor deposition.
 背面基板2には,アドレス電極30が,Xバス電極あるいはYバス電極と直交して形成される。アドレス電極30の構造もXバス電極あるいはYバス電極と同様の構造であり、クロム、銅、クロムの積層構造となっている。アドレス電極30の上を誘電体層5が被覆している。一般的には背面基板2に形成された誘電体層5も前面基板1に形成された誘電体層5と同じ材料が使用される。 The address electrode 30 is formed on the rear substrate 2 so as to be orthogonal to the X bus electrode or the Y bus electrode. The structure of the address electrode 30 is the same as that of the X bus electrode or the Y bus electrode, and is a laminated structure of chromium, copper, and chromium. The dielectric layer 5 covers the address electrode 30. Generally, the same material as that of the dielectric layer 5 formed on the front substrate 1 is used for the dielectric layer 5 formed on the rear substrate 2.
 背面基板2の誘電体層5の上には、隔壁7がアドレス電極30を挟むように、アドレス電極30と同じ方向に延在させて形成されている。本実施例において、隔壁7はアドレス電極30と直角方向にも形成されており、各サブピクセルにBOX状のプラズマを発生させる空間を形成している。隔壁7の内側には蛍光体8が塗布されている。蛍光体8は、赤、緑、青の蛍光体8が図1の隔壁7によって形成された凹部に並列して塗布されている。 On the dielectric layer 5 of the rear substrate 2, the partition wall 7 is formed to extend in the same direction as the address electrode 30 so as to sandwich the address electrode 30. In this embodiment, the partition walls 7 are also formed in a direction perpendicular to the address electrodes 30 to form a space for generating BOX-like plasma in each subpixel. A phosphor 8 is applied to the inside of the partition wall 7. The phosphor 8 is applied in parallel with the recesses formed by the partition walls 7 of FIG.
 前面基板1と背面基板2及び隔壁7に囲まれた空間が放電ガスを封入する放電空間となっている。一対のバス配線と隔壁7の間がひとつの表示セル(サブピクセル)に対応し,カラー表示の場合、3つのサブピクセルがおのおの3原色(R,B,G)に対応してひとつの画素(ピクセル)を形成する。 A space surrounded by the front substrate 1, the rear substrate 2, and the partition walls 7 is a discharge space for enclosing a discharge gas. A space between the pair of bus wirings and the partition wall 7 corresponds to one display cell (subpixel), and in the case of color display, three subpixels correspond to three primary colors (R, B, G), and one pixel (R, B, G). Pixel).
 プラズマディスプレイパネル200の発光の原理は以下のようになっている。まず、発光させたいセルに対応するアドレス電極30と、同じく当該セルに対応する走査電極20との間に100-200V程度の電圧(放電開始電圧)をかける。アドレス電極30とバス配線は直交しているため,その交点にある単独のセルを選択することができる。選択されたセルでは電圧をかけた放電電極(この場合はY電極)と,アドレス電極30の間で微弱放電が発生し,前面基板1側の誘電体層5の上の保護膜6上に電荷(壁電荷)が蓄積される。このようにして、表示領域の全セルに電荷による書き込みを行う。この期間は書き込み期間であり、画像は形成されない。 The principle of light emission of the plasma display panel 200 is as follows. First, a voltage (discharge start voltage) of about 100 to 200 V is applied between the address electrode 30 corresponding to the cell to emit light and the scan electrode 20 corresponding to the cell. Since the address electrode 30 and the bus wiring are orthogonal to each other, a single cell at the intersection can be selected. In the selected cell, a weak discharge is generated between the discharge electrode to which voltage is applied (in this case, the Y electrode) and the address electrode 30, and charges are formed on the protective film 6 on the dielectric layer 5 on the front substrate 1 side. (Wall charge) is accumulated. In this way, writing by charges is performed on all cells in the display area. This period is a writing period, and no image is formed.
 続いて、サステイン期間において、X電極とY電極との間に高周波パルスを印加して維持放電を行う。このとき、壁電荷が蓄積されているセルのみでサステイン放電が発生する。このサステイン放電によって紫外線が発生し、この紫外線によって蛍光体8が発光する。蛍光体8から放射された可視光は前面基板1から放出され、人間が視認する。書き込み期間に電荷が蓄積されたセルのみで蛍光体8が発光するので、画像が形成されることになる。 Subsequently, a sustain discharge is performed by applying a high frequency pulse between the X electrode and the Y electrode in the sustain period. At this time, the sustain discharge is generated only in the cells in which the wall charges are accumulated. Ultraviolet rays are generated by the sustain discharge, and the phosphor 8 emits light by the ultraviolet rays. Visible light emitted from the phosphor 8 is emitted from the front substrate 1 and is visually recognized by a human. Since the phosphor 8 emits light only in the cells in which charges are accumulated during the writing period, an image is formed.
 図4はプラズマディスプレイパネル200の平面図である。図4において、前面基板1の下に、シール材3を介して背面基板2が配置されている。背面基板2には、点線で示すアドレス電極30が縦方向に延在し、横方向に配列している。アドレス電極30は背面基板2の端部まで延在してアドレス電極端子140となり、この部分からアドレス信号が供給される。アドレス電極30は背面基板2の端部において、電極間ピッチが小さくなってアドレス電極端子140となり、アドレスドライバ35と接続する。 FIG. 4 is a plan view of the plasma display panel 200. In FIG. 4, the back substrate 2 is disposed under the front substrate 1 with a sealing material 3 interposed therebetween. On the rear substrate 2, address electrodes 30 indicated by dotted lines extend in the vertical direction and are arranged in the horizontal direction. The address electrode 30 extends to the end portion of the back substrate 2 to become an address electrode terminal 140, and an address signal is supplied from this portion. The address electrode 30 is connected to the address driver 35 at the end portion of the rear substrate 2 by reducing the inter-electrode pitch to become the address electrode terminal 140.
 図4において、前面基板1には横方向に放電維持電極10と走査電極20が延在している。放電維持電極10には、放電維持期間において、前面基板1の左側から放電維持パルスが供給されるが、図4では図示していない。走査電極20には、右側の前面基板1の端子部130から、書き込み期間においては走査信号が、放電維持期間においては放電維持パルスが供給される。端子部130とY電極の間は、Yバス電極引出し線によって接続されている。端子部110のピッチはYバス電極のピッチよりも小さいために、表示領域外において、Yバス電極引出し線は傾斜部を有している。 In FIG. 4, a discharge sustaining electrode 10 and a scanning electrode 20 extend in the lateral direction on the front substrate 1. The sustaining electrode 10 is supplied with a sustaining pulse from the left side of the front substrate 1 during the sustaining period, but is not shown in FIG. A scanning signal is supplied to the scanning electrode 20 from the terminal portion 130 of the right front substrate 1 in the writing period, and a discharge sustaining pulse is supplied in the discharge sustaining period. The terminal portion 130 and the Y electrode are connected by a Y bus electrode lead line. Since the pitch of the terminal portion 110 is smaller than the pitch of the Y bus electrode, the Y bus electrode lead line has an inclined portion outside the display area.
 図5は、プラズマディスプレイ装置の駆動システムを示す模式図である。図5において、プラズマディスプレイパネル200に放電維持電極10が左側に存在するX駆動回路16から右側に延在している。また、プラズマディスプレイパネル200には、右側に存在する走査ドライバ70から走査電極20が左側に延在している。走査ドライバ70はさらに右側に配置しているY駆動回路26と接続している。走査ドライバ70は図5では、纏めて記載されているが、実際は10個程度のICによって形成されている。そして、各IC毎にフィンを有する放熱板80が対応して配置される。 FIG. 5 is a schematic diagram showing a driving system of the plasma display device. In FIG. 5, in the plasma display panel 200, the discharge sustaining electrode 10 extends to the right side from the X driving circuit 16 existing on the left side. Further, in the plasma display panel 200, the scanning electrode 20 extends from the scanning driver 70 existing on the right side to the left side. The scanning driver 70 is further connected to the Y drive circuit 26 arranged on the right side. Although the scan driver 70 is collectively shown in FIG. 5, it is actually formed by about 10 ICs. And the heat sink 80 which has a fin for every IC is arrange | positioned correspondingly.
 図5において、プラズマディスプレイパネル200には、下側に存在するアドレスドライバ35からアドレス電極30が上側に延在している。アドレスドライバ35はアドレス駆動回路36と接続している。アドレス電極30と走査電極20および放電維持電極10の交点にサブピクセルが形成される。なお、図5においては、アドレス駆動回路36はプラズマディスプレイパネル200の下側にのみ存在しているが、本実施例では、図6等に示すように、プラズマディスプレイパネル200の上下に存在している。 In FIG. 5, in the plasma display panel 200, address electrodes 30 extend upward from an address driver 35 existing on the lower side. The address driver 35 is connected to the address drive circuit 36. A subpixel is formed at the intersection of the address electrode 30, the scan electrode 20, and the discharge sustaining electrode 10. In FIG. 5, the address driving circuit 36 exists only on the lower side of the plasma display panel 200. However, in this embodiment, the address driving circuit 36 exists above and below the plasma display panel 200 as shown in FIG. Yes.
 図5において、走査電極20には、書き込み期間においては走査ドライバ70から走査信号が供給され、放電維持期間においては放電維持パルスが供給される。一方、放電維持電極10には放電維持期間においては放電維持パルスが供給される。また、アドレス電極30には書き込み期間において、アドレス信号が供給され、走査電極20の走査信号とともに、点灯するサブピクセルの位置が決定される。図5の制御回路45は以上のような動作をX駆動回路16、Y駆動回路26、アドレス駆動回路36等に行わせる。 In FIG. 5, the scan electrode 20 is supplied with a scan signal from the scan driver 70 in the writing period and supplied with a discharge sustain pulse in the discharge sustain period. On the other hand, a sustaining pulse is supplied to the sustaining electrode 10 during the sustaining period. Further, an address signal is supplied to the address electrode 30 in the writing period, and the position of the sub-pixel to be lit is determined together with the scanning signal of the scanning electrode 20. The control circuit 45 in FIG. 5 causes the X drive circuit 16, the Y drive circuit 26, the address drive circuit 36, and the like to perform the above-described operation.
 本発明における走査ドライバ70はプラズマディスプレイパネル200の前面基板1に配置される。一方、従来例においては、走査ドライバ70はプラズマディスプレイパネル200の背面に配置されたプリント配線基板60上に形成される。本発明においては、走査ドライバ70を冷却するフィンを有する放熱板80は前面基板1に配置されるので、プラズマディスプレイ装置の厚さが増大することを防止することが出来る。 The scanning driver 70 in the present invention is disposed on the front substrate 1 of the plasma display panel 200. On the other hand, in the conventional example, the scanning driver 70 is formed on the printed wiring board 60 disposed on the back surface of the plasma display panel 200. In the present invention, since the heat sink 80 having fins for cooling the scanning driver 70 is disposed on the front substrate 1, it is possible to prevent the thickness of the plasma display device from increasing.
 図6は本発明のプラズマディスプレイ装置の背面模式図である。図6はプラズマディスプレイ装置を裏側から見ているので、X駆動回路16、Y駆動回路26の位置が図5と比較して左右逆転している。図6において、プリント配線基板60には、左側にY駆動回路26が、右側にはX駆動回路16が存在している。X駆動回路16からは、放電維持電極10に対して、放電維持期間において、放電を維持させるための放電維持パルスが供給される。また、Y駆動回路26からは、走査電極20に対して、放電維持期間において、放電を維持させるための放電維持パルスが供給される。 FIG. 6 is a schematic back view of the plasma display device of the present invention. Since the plasma display device is viewed from the back side in FIG. 6, the positions of the X drive circuit 16 and the Y drive circuit 26 are reversed left and right as compared with FIG. 5. In FIG. 6, the printed circuit board 60 has a Y drive circuit 26 on the left side and an X drive circuit 16 on the right side. From the X driving circuit 16, a discharge sustaining pulse for maintaining the discharge is supplied to the sustaining electrode 10 during the sustaining period. Further, the Y drive circuit 26 supplies a discharge sustain pulse for maintaining the discharge to the scan electrode 20 in the discharge sustain period.
 書き込み期間に走査電極20に対して走査信号を供給する走査ドライバ70はプリント配線基板60側には、存在せず、図示しないプラズマディスプレイパネル200の前面基板1に存在している。一方、従来例においては、走査ドライバ70はY駆動回路26側に存在することになる。 The scanning driver 70 that supplies a scanning signal to the scanning electrode 20 during the writing period does not exist on the printed wiring board 60 side, but exists on the front substrate 1 of the plasma display panel 200 (not shown). On the other hand, in the conventional example, the scan driver 70 exists on the Y drive circuit 26 side.
 図6において、アドレス駆動回路36がY駆動回路26およびX駆動回路16の上下に配置されている。図5では、アドレス駆動回路36は下側のみに存在しているが、図6では上側にも存在している。アドレス駆動回路36を上側および下側に配置するか、下側あるいは上側のみに配置するかはアドレス電極30のピッチ、プリント配線基板60全体のレイアウトの要請等によって決めることが出来る。 6, the address drive circuit 36 is arranged above and below the Y drive circuit 26 and the X drive circuit 16. In FIG. 5, the address drive circuit 36 exists only on the lower side, but also exists on the upper side in FIG. Whether the address driving circuit 36 is arranged on the upper side and the lower side, or only on the lower side or the upper side can be determined by the pitch of the address electrodes 30, the layout requirements of the entire printed wiring board 60, and the like.
 図6において、アドレス駆動回路36のさらに外側上下には、各々複数のアドレスドライバ35が配置されている。アドレスドライバ35とアドレス電極30とは、アドレスドライバ用配線フィルム37によって接続されている。 In FIG. 6, a plurality of address drivers 35 are arranged on the upper and lower sides of the address drive circuit 36, respectively. The address driver 35 and the address electrode 30 are connected by an address driver wiring film 37.
 プリント配線基板60の中央部には、X駆動回路16、Y駆動回路26、駆動回路等を制御する制御回路45が配置されている。また、制御回路45と隣接して電源回路40が配置されている。 A control circuit 45 for controlling the X drive circuit 16, the Y drive circuit 26, the drive circuit, and the like is disposed in the center of the printed wiring board 60. A power supply circuit 40 is disposed adjacent to the control circuit 45.
 このように、本発明においては、走査ドライバ70をプラズマディスプレイパネル200の前面基板1に配置しているので、プリント配線基板60側には走査ドライバ70は存在せず、走査ドライバ70を冷却するためのフィンを有する放熱板80もプリント配線基板60に存在しないので、この部分におけるプラズマディスプレイ装置の厚さを小さくすることが出来る。 Thus, in the present invention, since the scan driver 70 is arranged on the front substrate 1 of the plasma display panel 200, the scan driver 70 does not exist on the printed wiring board 60 side, and the scan driver 70 is cooled. Since the heat sink 80 having the fins does not exist in the printed wiring board 60, the thickness of the plasma display device in this portion can be reduced.
 なお、以上の説明では、放熱板80としては、フィンを有する放熱板80について説明したが、放熱板80はこれに限らず、フィンを持たない、例えば、ブロック上、あるいは板状の放熱板80を使用することも出来る。 In the above description, the heat radiating plate 80 has been described as the heat radiating plate 80 having fins. However, the heat radiating plate 80 is not limited thereto, and has no fins, for example, on a block or a plate-shaped heat radiating plate 80. Can also be used.
本発明におけるプラズマディスプレイ装置の側面図である。It is a side view of the plasma display apparatus in this invention. 図1のA部詳細図である。FIG. 2 is a detailed view of part A in FIG. 1. プラズマディスプレイパネルの表示領域の分解斜視図である。It is a disassembled perspective view of the display area of a plasma display panel. プラズマディスプレイパネルの平面図である。It is a top view of a plasma display panel. プラズマディスプレイ装置の駆動回路のブロック図である。It is a block diagram of the drive circuit of a plasma display apparatus. プラズマディスプレイ装置の背面図である。It is a rear view of a plasma display apparatus. 従来例におけるプラズマディスプレイ装置の側面図である。It is a side view of the plasma display apparatus in a prior art example. 図7のB部詳細図である。FIG. 8 is a detailed view of part B in FIG. 7.
符号の説明Explanation of symbols
 1・・・前面基板、 2・・・背面基板、 3・・・シール部、 5・・・誘電体層、 6・・・保護膜、 7・・・隔壁、 8・・・蛍光体、10・・・放電維持電極、 11・・・放電維持放電電極、 12・・・放電維持バス電極、 16・・・X駆動回路、 20・・・走査電極、 21・・・走査放電電極、 22・・・走査バス電極、 26・・・Y駆動回路、 30・・・アドレス電極、 35・・・アドレスドライバ、 36・・・アドレス駆動回路、 37・・・アドレスドライバ用配線フィルム、 40・・・電源回路、 45・・・制御回路、 50・・・シャシ、 51・・・粘着材、 55・・・支柱、 60・・・プリント配線基板、 70・・・走査ドライバ、 71・・・接着材、 80・・・放熱板、 90・・・フレキシブル配線基板、 100・・・TCP、 110・・・コネクタ、 120・・・異方性導電膜、 130・・・走査電極端子、 140・・・アドレス電極端子、 200・・・プラズマディスプレイパネル。
 
DESCRIPTION OF SYMBOLS 1 ... Front substrate, 2 ... Back substrate, 3 ... Seal part, 5 ... Dielectric layer, 6 ... Protective film, 7 ... Partition, 8 ... Phosphor, 10・ ・ ・ Discharge sustain electrode, 11 ・ ・ ・ Discharge sustain discharge electrode, 12 ・ ・ ・ Discharge sustain bus electrode, 16 ・ ・ ・ X drive circuit, 20 ・ ・ ・ Scan electrode, 21 ・ ・ ・ Scan discharge electrode, 22. ..Scanning bus electrode, 26 ... Y drive circuit, 30 ... address electrode, 35 ... address driver, 36 ... address drive circuit, 37 ... wiring film for address driver, 40 ... Power circuit 45 ... Control circuit 50 ... Chassis 51 ... Adhesive material 55 ... Stand 60 ... Printed circuit board 70 ... Scanning driver 71 ... Adhesive 80 ... Radiating plate, 90 ... Flexible wiring board, 10 DESCRIPTION OF SYMBOLS 0 ... TCP, 110 ... Connector, 120 ... Anisotropic conductive film, 130 ... Scan electrode terminal, 140 ... Address electrode terminal, 200 ... Plasma display panel.

Claims (7)

  1.  走査電極が特定ピッチで第1の方向に延在して第2の方向に配列し、放電維持電極が特定ピッチで第1の方向に延在して第2の方向に配列した前面基板と、アドレス電極が第2の方向に延在して第1の方向に配列した背面基板を有するプラズマディスプレイパネルと、
     前記プラズマディスプレイパネルの背面に配置された回路基板を有するプラズマディスプレイ装置であって、
     前記前面基板には、前記走査電極と接続する走査ドライバが配置され、前記走査ドライバは前記回路基板に形成された回路とフレキシブルな配線基板によって接続し、
     前記走査ドライバは金属性の放熱板と接着材によって接着していることを特徴とするプラズマディスプレイ装置。
    A front substrate having scan electrodes extending in a first direction at a specific pitch and arranged in a second direction, and discharge sustaining electrodes extending in a first direction at a specific pitch and arranged in a second direction; A plasma display panel having a back substrate with address electrodes extending in a second direction and arranged in the first direction;
    A plasma display device having a circuit board disposed on the back surface of the plasma display panel,
    The front substrate is provided with a scan driver connected to the scan electrode, and the scan driver is connected to a circuit formed on the circuit board by a flexible wiring board,
    The plasma display device, wherein the scanning driver is bonded to a metallic heat sink by an adhesive.
  2.  前記フレキシブルな配線基板はテープキャリアパッケージングであることを特徴とする請求項1に記載のプラズマディスプレイ装置。 2. The plasma display device according to claim 1, wherein the flexible wiring board is tape carrier packaging.
  3.  前記フレキシブルな配線基板は前記回路基板に配置された走査駆動回路と接続していることを特徴とする請求項1に記載のプラズマディスプレイ装置。 2. The plasma display device according to claim 1, wherein the flexible wiring board is connected to a scanning drive circuit disposed on the circuit board.
  4.  前記放熱板はフィンを有する放熱板であることを特徴とする請求項1に記載のプラズマディスプレイ装置。 2. The plasma display device according to claim 1, wherein the heat radiating plate is a heat radiating plate having fins.
  5.  走査電極が特定ピッチで第1の方向に延在して第2の方向に配列し、放電維持電極が特定ピッチで第1の方向に延在して第2の方向に配列した前面基板と、アドレス電極が第2の方向に延在して第1の方向に配列した背面基板を有するプラズマディスプレイパネルと、
     前記プラズマディスプレイパネルの背面に金属で形成されたシャシが配置され、前記シャシには支柱が形成され、前記支柱にはプリント配線基板が固定されており、前記プリント配線基板には走査駆動回路が配置されているプラズマディスプレイ装置であって、
     前記前面基板には、前記走査電極と接続する走査ドライバが配置され、前記走査ドライバは前記回路基板に形成された回路とフレキシブルな配線基板によって接続し、
     前記走査ドライバは金属性の放熱板と接着材によって接着していることを特徴とするプラズマディスプレイ装置。
    A front substrate having scan electrodes extending in a first direction at a specific pitch and arranged in a second direction, and discharge sustaining electrodes extending in a first direction at a specific pitch and arranged in a second direction; A plasma display panel having a back substrate with address electrodes extending in a second direction and arranged in the first direction;
    A chassis made of metal is disposed on the back surface of the plasma display panel, a support is formed on the chassis, a printed wiring board is fixed to the support, and a scanning drive circuit is disposed on the printed wiring board. A plasma display device,
    The front substrate is provided with a scan driver connected to the scan electrode, and the scan driver is connected to a circuit formed on the circuit board by a flexible wiring board,
    The plasma display device, wherein the scanning driver is bonded to a metallic heat sink by an adhesive.
  6.  前記フレキシブルな配線基板はテープキャリアパッケージングであることを特徴とする請求項5に記載のプラズマディスプレイ装置。 6. The plasma display device according to claim 5, wherein the flexible wiring board is tape carrier packaging.
  7.  前記放熱板はフィンを有する放熱板であることを特徴とする請求項5に記載のプラズマディスプレイ装置。
     
    6. The plasma display apparatus according to claim 5, wherein the heat radiating plate is a heat radiating plate having fins.
PCT/JP2008/002991 2008-10-22 2008-10-22 Plasma display WO2010046948A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002991 WO2010046948A1 (en) 2008-10-22 2008-10-22 Plasma display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002991 WO2010046948A1 (en) 2008-10-22 2008-10-22 Plasma display

Publications (1)

Publication Number Publication Date
WO2010046948A1 true WO2010046948A1 (en) 2010-04-29

Family

ID=42119007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/002991 WO2010046948A1 (en) 2008-10-22 2008-10-22 Plasma display

Country Status (1)

Country Link
WO (1) WO2010046948A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078611A (en) * 2012-10-11 2014-05-01 Nippon Seiki Co Ltd Organic el panel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310224A (en) * 1989-06-07 1991-01-17 Sharp Corp Display device
JPH03186887A (en) * 1989-12-15 1991-08-14 Sharp Corp Display device
JP2000172191A (en) * 1998-12-04 2000-06-23 Fujitsu Ltd Planar display device
JP2000268735A (en) * 1999-03-18 2000-09-29 Nec Corp Flat-panel display device
JP2000305469A (en) * 1999-04-19 2000-11-02 Hitachi Ltd Display device
JP2001296542A (en) * 2000-04-11 2001-10-26 Citizen Watch Co Ltd Liquid crystal display device
JP2003309237A (en) * 2002-04-17 2003-10-31 Canon Inc Heat radiating structure of electric component
JP2006171299A (en) * 2004-12-15 2006-06-29 Sony Corp Liquid crystal display and light-shielding device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310224A (en) * 1989-06-07 1991-01-17 Sharp Corp Display device
JPH03186887A (en) * 1989-12-15 1991-08-14 Sharp Corp Display device
JP2000172191A (en) * 1998-12-04 2000-06-23 Fujitsu Ltd Planar display device
JP2000268735A (en) * 1999-03-18 2000-09-29 Nec Corp Flat-panel display device
JP2000305469A (en) * 1999-04-19 2000-11-02 Hitachi Ltd Display device
JP2001296542A (en) * 2000-04-11 2001-10-26 Citizen Watch Co Ltd Liquid crystal display device
JP2003309237A (en) * 2002-04-17 2003-10-31 Canon Inc Heat radiating structure of electric component
JP2006171299A (en) * 2004-12-15 2006-06-29 Sony Corp Liquid crystal display and light-shielding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078611A (en) * 2012-10-11 2014-05-01 Nippon Seiki Co Ltd Organic el panel

Similar Documents

Publication Publication Date Title
US7561427B2 (en) Plasma display panel
KR20100007470A (en) Plasma display device
WO2010046948A1 (en) Plasma display
WO2010046950A1 (en) Plasma display
US8077448B2 (en) Plasma display apparatus
KR100488149B1 (en) Plasma display panel
US20080012496A1 (en) Plasma display apparatus
KR101651482B1 (en) Plasma display panel device
KR100634693B1 (en) Heat Sink Assembly of TCP for Plasma Display Panel
KR20090031073A (en) Plasma display panel device
KR100761297B1 (en) Plasma display panel device
KR100741090B1 (en) Plasma display apparatus
JP2005340131A (en) Plasma display device
KR100705274B1 (en) Plasma Display Apparatus
KR100751367B1 (en) Plasma display apparatus
KR100543589B1 (en) Plasma Display Panel Capable of Improving Discharge Characteristic
KR100765529B1 (en) Plasma Display Apparatus
KR20080050051A (en) Plasma display device
KR20090030609A (en) Plasma display panel device
KR20070038387A (en) Plasma display apparatus
KR20080009949A (en) Plasma display panel device
KR20070046674A (en) Plasma display apparatus
KR20080042623A (en) Plasma display apparatus
WO2012164942A1 (en) Image display device
JP2005332742A (en) Plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP