WO2010044544A2 - 잔류응력 측정을 위한 시료 홀더 및 이를 이용한 결정상 정량분석 방법 - Google Patents

잔류응력 측정을 위한 시료 홀더 및 이를 이용한 결정상 정량분석 방법 Download PDF

Info

Publication number
WO2010044544A2
WO2010044544A2 PCT/KR2009/004991 KR2009004991W WO2010044544A2 WO 2010044544 A2 WO2010044544 A2 WO 2010044544A2 KR 2009004991 W KR2009004991 W KR 2009004991W WO 2010044544 A2 WO2010044544 A2 WO 2010044544A2
Authority
WO
WIPO (PCT)
Prior art keywords
sample
lattice constant
standard
sample holder
unknown
Prior art date
Application number
PCT/KR2009/004991
Other languages
English (en)
French (fr)
Other versions
WO2010044544A3 (ko
Inventor
김용일
이윤희
윤동진
유권상
정인현
윤기봉
Original Assignee
한국표준과학연구원
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원, 중앙대학교 산학협력단 filed Critical 한국표준과학연구원
Publication of WO2010044544A2 publication Critical patent/WO2010044544A2/ko
Publication of WO2010044544A3 publication Critical patent/WO2010044544A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/20025Sample holders or supports therefor

Definitions

  • the present invention relates to a sample holder for use in an X-ray diffraction analysis apparatus, and more particularly, in order to determine the lattice constant of an unknown sample in powder form, a plate-shaped holder main body is formed of a standard material of known lattice constant and the holder Fill the unknown grooves in the form of powder into the settling grooves formed on the upper surface of the main body to obtain a diffraction pattern from the mixed sample mixed with the standard material and the unknown sample.
  • the present invention relates to a standard sample holder for measuring the lattice constant used to determine the lattice constant of the unknown sample by calibrating the interplanar distance of the unknown sample as a reference.
  • X-ray diffraction is initially used to understand the arrangement and mutual distances of atoms in relatively simple crystals and to understand the physical properties of metals, polymers, and other solids. It is also used to reveal the crystal structure of such complex materials.
  • X-ray diffraction uses these features because the X-ray diffraction pattern varies uniquely depending on the arrangement of the atoms in the material and the shape or size of the unit cell.
  • Qualitative analysis such as the identification of a substance to determine whether it is a substance
  • quantitative analysis such as determining the magnitude of residual stress, the size of crystallites, the amount of polyphase samples, and the size of unit cells.
  • the magnitude of the lattice constant which can be determined by the diffraction pattern, is determined from the theoretical density of the material, the determination of the space group, the quantitative analysis of the multiphase, and the change of the lattice constant by the solid atom or the substitution atom. It is absolutely necessary information to determine the amount of (substituted) atom, the coefficient of thermal expansion according to the change of lattice constant according to the temperature change, the prediction of the property according to pressure and the calibration of X-ray equipment Determination of the lattice constant is also the first parameter to be determined in interpreting the crystal structure of the unknown sample.
  • the present invention obtains a diffraction pattern from a mixed sample in which a standard material and an unknown sample are mixed, and then corrects the interplanar distance of the unknown sample based on the interplanar distance of the standard material having a known lattice constant. It is intended to provide a standard sample holder for measuring the lattice constant used to determine the lattice constant.
  • the standard material when performing a test for obtaining a diffraction pattern from a mixed sample mixed with a standard material and an unknown sample, the standard material is used semi-permanently, and the standard sample for measuring the lattice constant which can use the unknown sample again.
  • the standard material is used semi-permanently, and the standard sample for measuring the lattice constant which can use the unknown sample again.
  • the present invention is a sample holder for X-ray diffraction analysis test, wherein the sample holder is formed of a material having a lattice constant defined for measuring the lattice constant of the unknown sample, a plurality of settlements that can be filled with the unknown sample in powder form It relates to a standard sample holder for lattice constant measurement, characterized in that the groove is formed in a plate shape formed on the surface.
  • the standard sample for measuring the lattice constant may be formed of any one of Si, LaB 6 , Cr 2 O 3 , CeO 2 , Al 2 O 3 , TiO 2 , ZnO, Mica, Silicon nitride and Quartz
  • the plurality of settle grooves may be formed in any one of a hemispherical, cylindrical or polygonal shape.
  • the present invention is a sample holder for X-ray diffraction analysis test, wherein the sample holder is formed of a material having a lattice constant defined for measuring the lattice constant of the unknown sample, a plurality of powders of the unknown sample can be filled It relates to a standard sample holder for lattice constant measurement, characterized in that the dog settled through the upper and lower surfaces formed in a plate shape.
  • the present invention is characterized by performing a quantitative analysis of the unknown sample components by adjusting the amount of the unknown sample to be filled in the arthroplasty by creating a calibration curve for the internal standard (internal standard)
  • the present invention relates to a quantitative analysis method using a standard sample holder for measurement.
  • the lattice constant of the unknown sample can be determined by correcting the interplanar distance of the unknown sample.
  • the present invention forms a sample holder in a form in which the standard material is molded or compressed at high pressure or fired when a test for obtaining a diffraction pattern from a mixed sample mixed with a standard material and an unknown sample, and a settling groove formed in the sample holder. Since the diffraction test is performed by filling the unknown sample, it is advantageous to use the reference material semi-permanently and to use the unknown sample again.
  • 1 is a plan view of one embodiment of the present invention.
  • Figure 2 is a plan view of the unknown sample is filled in the settling groove of Figure 1;
  • FIG. 3 is a schematic diagram of a general X-ray diffraction analyzer
  • Figure 4 is a graph of the results of the X-ray diffraction pattern test using an embodiment according to the present invention.
  • the lattice constant needed to determine the crystal structure of the unknown sample is not obtained directly from the X-ray diffraction pattern.
  • the diffraction peak ( ⁇ ) at a specific location is derived from the correlation between the wavelength of the X-ray ( ⁇ ) and the interplannar spacing (d) used to obtain the X-ray diffraction pattern of the target material. Or 2 ⁇ ), and this diffraction peak corresponds to the interplanar distance of the crystal.
  • a is the lattice constant
  • d is the interplanar distance
  • hkl is the surface index
  • the optical system of X-ray used to obtain the X-ray diffraction pattern is generally the optical system of reflection type (Bragg-Brentano or para-focusing geometry). Use on the assumption that it only occurs on the surface.
  • the X-ray diffraction phenomenon causes diffraction by diffusing not only the surface of the sample but also the X-rays to the inside of the sample, resulting in a change in the position of the diffraction line.
  • the unknown sample and the standard sample are mixed in the form of powder, the effect of changing the position of the diffraction line due to the penetration effect cannot be avoided even by the standard sample.
  • the sample when the sample is manufactured by sintering the mixed sample for mixing the X-ray diffraction analysis (mixing the standard sample and the unknown sample) or by molding and compacting at high pressure, the movement of the diffraction peak due to the penetration of the X-ray can be prevented.
  • the unknown sample may also undergo a molding or compression process under high pressure, resulting in a change in the state of the unknown sample. Therefore, when only the powder of the standard material for X-ray diffraction analysis is sintered or molded and compacted at a high pressure, the surface of the standard sample may be filled with various forms of settled grooves.
  • the shape of the settling groove and the interval between the settling groove can be formed in various ways.
  • a certain amount of unknown sample is mixed with a certain amount of standard sample to measure the X-ray intensity (peak height or area) of the unknown sample and the X-ray intensity of the standard sample.
  • the horizontal axis takes the ratio of the strength of the unknown sample to the standard sample, and the vertical axis is the straight line indicated by the amount of the unknown sample.
  • the horizontal line is the calibration line for internal standard by adjusting the amount of unknown sample filled in the settling groove. Since calibration curves can be created, it can be applied to quantitative analysis using X-rays.
  • This method can be applied to inorganic materials, organic materials including polymers, quasi-crystal, crystalline glass, glass with low crystallization,
  • the lattice constant can be precisely measured in the case of a polymer which transmits X-rays well or an organic material, that is, a light element (C, H, O, N, Li, etc.).
  • This method can be used to calibrate the X-ray diffraction equipment used, as well as to determine the lattice constant of unknown samples.
  • Figure 1 is a plan view of an embodiment of the present invention
  • Figure 2 is a plan view of the unknown sample is filled in the settling groove of FIG.
  • the standard sample holder 10 for measuring the lattice constant has a holder body 12.
  • the holder body 12 is formed of a material in which the lattice constant is defined for measuring the lattice constant of the unknown sample. Since the lattice constants of Si, LaB 6 , Cr 2 O 3 , CeO 2 , Al 2 O 3 , TiO 2 , ZnO, Mica, Silicon nitride, and Quartz are precisely defined, the holder body 12 may be formed by using any one of them. ). Of course, other materials with precisely defined lattice constants can be used.
  • the holder body 12 may be formed by sintering the powder of the above-mentioned material or by compacting at a high pressure.
  • the holder body 12 is formed in a plate shape with a flat top surface.
  • a plurality of settling grooves 12-1 are formed on an upper surface of the holder body 12.
  • the settling groove 12-1 is for filling an unknown sample in powder form for determining the lattice constant.
  • Settle groove 12-1 may be formed in any one of a hemispherical, cylindrical or polygonal shape.
  • the settling groove 12-1 is filled with an unknown sample for determining the lattice constant.
  • FIG. 3 is a diagram schematically illustrating a general X-ray diffraction analysis apparatus.
  • a solar light slit 121 for passing only a parallel beam of X-rays generated by the X-ray generator 110;
  • a divergence slit 122 for diverging the parallel beam passed by the light receiving slit 121 to the area of the sample;
  • a scattering slit 124 for passing only the X-rays diffracted by the sample among the X-rays diffracted by the X-rays irradiated toward the sample holder 123;
  • Receiving slit (125) for passing the X-ray diffracted by the sample through the scattering slit (124);
  • a solar slit 126 for passing only a parallel beam of diffracted X-rays entering through the light slit 125;
  • the sample holder 123 on which the sample is seated is seated on a base portion (not shown) of the X-ray diffraction analyzer having a cylindrical shape made of metal.
  • the sample holder 123 shown in FIG. 3 is replaced with a standard sample holder 10 for measuring the lattice constant, which is one example of the present invention.
  • An unknown sample is filled in the settling groove 12-1 of the standard sample holder 10 for measuring the lattice constant, and the X-ray diffraction test is performed by placing an unknown sample on the base portion (not shown) of the X-ray diffraction analyzer.
  • the lattice constant of the sample can be determined.
  • a sample holder on which an unknown sample is seated is formed as a standard sample, and the standard sample is formed by sintering or compacting the powder of the standard material having a lattice constant determined or molding at a high pressure. Formed.
  • the unknown sample in powder form can be used again, and the standard sample can be used semi-permanently as a sample holder.
  • Figure 4 is a graph of the results of the X-ray diffraction pattern test using an embodiment according to the present invention.
  • the material of the holder body is Al 2 O 3 , which is a standard sample, and an X-ray diffraction graph when no unknown sample is filled in the settling groove is shown in FIG. 4A. All diffraction peaks in this case correspond to Al 2 O 3 .
  • Fig. 4 (b) shows a graph in which an uneven sample TiO 2 to which a lattice constant is measured is prepared by placing a settled groove in a standard sample holder for measuring a lattice constant made by sintering a standard sample Al 2 O 3 . It was.
  • the X-ray diffraction graph of FIG. 4 (b) shows the diffraction peaks of Al 2 O 3 used as the material of the settling groove and the diffraction peaks of TiO 2, an unknown sample.
  • the holder body 12 may be formed with a plurality of settling holes (not shown) instead of the plurality of settling grooves 12-1.
  • the settling hole (not shown) is for filling the unknown sample in powder form for determining the lattice constant, similarly to the settling groove 12-1.
  • the settling hole (not shown) may be formed in any one of a hemispherical shape, a cylindrical shape or a polygonal shape.
  • the present invention also relates to a method for quantitative analysis of an unknown sample using the standard sample holder for measuring the lattice constant.
  • the X-ray intensity (peak height or area) of the unknown sample and the X-ray intensity of the standard sample can be measured.
  • the horizontal axis takes the ratio of the intensity of the unknown sample to the standard sample, and the vertical axis is the straight line indicated by the amount of the unknown sample.
  • the horizontal line is the straight line 12-1 or the unknown hole filled in the dental hole (not shown).
  • Quantitative analysis of unknown samples using X-rays can be performed by creating a calibration curve for internal standards by adjusting the amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

본 발명은 엑스선 회절 분석 장치에 사용되는 시료 홀더에 관한 것으로, 더욱 상세하게는 분말형태의 미지(未知)시료의 격자상수를 결정하기 위하여 격자상수가 알려진 표준물질로 판상의 홀더 본체를 형성하고 홀더 본체의 상면에 형성된 안치홈에 분말형태의 미지(未知)시료를 채워 표준물질과 미지(未知)시료가 혼합된 혼합시료로 부터 회절 패턴을 얻은 후 격자상수를 정확하게 알고 있는 표준물질의 면간거리를 기준으로 미지(未知)시료의 면간 거리를 교정하여 미지시료의 격자상수를 결정하는데 사용하는 격자상수 측정용 표준시료 홀더에 관한 것이다.

Description

잔류응력 측정을 위한 시료 홀더 및 이를 이용한 결정상 정량분석 방법
본 발명은 엑스선 회절 분석 장치에 사용되는 시료 홀더에 관한 것으로, 더욱 상세하게는 분말형태의 미지(未知)시료의 격자상수를 결정하기 위하여 격자상수가 알려진 표준물질로 판상의 홀더 본체를 형성하고 홀더 본체의 상면에 형성된 안치홈에 분말형태의 미지(未知)시료를 채워 표준물질과 미지(未知)시료가 혼합된 혼합시료로 부터 회절 패턴을 얻은 후 격자상수를 정확하게 알고 있는 표준물질의 면간거리를 기준으로 미지(未知)시료의 면간 거리를 교정하여 미지시료의 격자상수를 결정하는데 사용하는 격자상수 측정용 표준시료 홀더에 관한 것이다.
X-선 회절은 물질의 내부 미세구조를 밝히는데 매우 유용한 수단 가운데 하나로 1895년 독일의 물리학자 Roentgen에 의해서 발견되었다.
그 후 1912년 독일의 라우에(Laue)에 의한 X-선 회절실험을 통하여 결정(crystal)내에서 면간 거리(interplannar spacing) 정도의 파장을 가진 X-선을 조사하면 회절(diffraction)을 일으킨다는 것을 확인하고, X-선 회절법을 확립하였다.
또한 영국의 브래그(Bragg)는 이를 다른 각도로 해석하여 라우에(Laue)가 사용했던 수식보다 더욱 간단한 수식을 사용하여 회절에 필요한 조건을 밝혀내고, 이를 브래그 법칙(Bragg's law)으로 확립한 뒤 X-선 회절을 이용하여 각종물질의 결정구조를 밝히는데 성공하였다.
X-선 회절법은 초기에 비교적 단순한 형태의 결정 내에 원자들의 배열상태과 상호거리에 관한 정보와 금속, 중합물질 그리고 다른 고체들의 물리적 성질을 이해하는데 많은 사용되고 있으며, 최근에는 단백질, 비타민, 항생물질과 같은 복잡한 물질의 결정구조를 밝히는데도 사용되고 있다.
X-선 회절법은 X-선 회절패턴(diffraction pattern)이 물질을 구성하고 있는 원자들의 배열상태나 단위격자(unit cell)의 형태나 크기에 따라 특유하게 다르게 나타나기 때문에, 이런 특징을 이용하여 어떤 물질인지를 알고자 하는 물질 동정(identification)과 같은 정성분석과 잔류응력의 정도, 결정자의 크기, 다상시료의 양 및 단위격자(unit cell)의 크기 결정과 같은 정량분석을 하는데 사용된다.
회절 패턴으로 구할 수 있는 격자상수(lattice constant)의 크기는 재료의 이론밀도(theoretical density), 공간군(space group) 결정, 다상의 정량분석, 고용원자나 치환원자에 의한 격자상수의 변화로부터 고용(치환)원자의 양, 온도 변화에 따른 격자상수의 변화에 따른 열팽창계수 결정, 압력에 따른 물성 예측 및 X-선 장비의 교정(calibration)하는데 절대적으로 필요한 정보이다. 또한 격자상수의 결정은 미지시료의 결정구조를 해석하는데 가장 첫 번째 결정해야 하는 파라미터이다.
따라서, 미지시료의 격자상수를 결정하기 위한 시도가 있어 왔다.
본 발명은 표준물질과 미지(未知)시료가 혼합된 혼합시료로부터 회절 패턴을 얻은 후 격자상수를 정확하게 알고 있는 표준물질의 면간거리를 기준으로 미지(未知)시료의 면간 거리를 교정하여 미지시료의 격자상수를 결정하는데 사용하는 격자상수 측정용 표준시료 홀더를 제공하고자 한다.
본 발명은 표준물질과 미지(未知)시료가 혼합된 혼합시료로부터 회절 패턴을 얻기 위한 시험을 행하는 경우 표준물질을 반영구적으로 사용하고, 미지(未知)시료를 재차 사용할 수 있는 격자상수 측정용 표준시료 홀더를 제공하고자 한다.
본 발명은 엑스선 회절분석 시험을 위한 시료 홀더에 있어서, 상기 시료 홀더는, 미지시료의 격자상수 측정을 위하여 격자상수가 정의된 물질로 형성되되, 분말형태의 상기 미지시료가 채워질 수 있는 다수개의 안치홈이 표면에 형성된 판형상으로 이루어진 것을 특징으로 하는 격자상수 측정용 표준시료 홀더에 관한 것이다.
본 발명에 있어서, 상기 격자상수 측정용 표준시료는 Si, LaB6, Cr2O3, CeO2, Al2O3, TiO2, ZnO, Mica, Silicon nitride 및 Quartz 중 어느 하나의 물질로 형성될 수 있는데, 상기 다수개의 안치홈은 반구형, 원통 또는 다각통형 중 어느 하나의 형상으로 형성될 수 있다.
한편, 본 발명은 엑스선 회절분석 시험을 위한 시료 홀더에 있어서, 상기 시료 홀더는, 미지시료의 격자상수 측정을 위하여 격자상수가 정의된 물질로 형성되되, 분말형태의 상기 미지시료가 채워질 수 있는 다수개의 안치공이 상하면을 관통하며 형성된 판형상으로 이루어진 것을 특징으로 하는 격자상수 측정용 표준시료 홀더에 관한 것이다.
한편, 본 발명은 상기 안치공에 채워지는 상기 미지시료의 양을 조절하여 내부표준(internal standard)용 교정선(calibration curve)을 작성함으로써 상기 미지시료 성분의 정량 분석을 행하는 것을 특징으로 하는 격자상수 측정용 표준시료 홀더를 이용한 정량 분석 방법에 관한 것이다.
본 발명에 따르면 격자상수를 정확히 알고 있는 표준물질과 격자상수를 결정하고자 하는 미지(未知)시료가 혼합된 혼합시료에 대한 엑스선 회절시험을 행하여 회절 패턴을 얻은 후 격자상수를 정확하게 알고 있는 표준물질의 면간거리를 기준으로 미지(未知)시료의 면간 거리를 교정하여 미지시료의 격자상수를 결정할 수 있는 장점이 있다.
본 발명은 표준물질과 미지(未知)시료가 혼합된 혼합시료로부터 회절 패턴을 얻기 위한 시험을 행하는 경우 표준물질이 높은 압력으로 성형 압축되거나 소성된 형태로 시료 홀더를 이루고, 시료 홀더에 형성된 안치홈에 미지(未知)시료를 채워 회절 시험을 수행하므로 표준물질을 반영구적으로 사용하고, 또한 미지(未知)시료를 재차 사용할 수 있는 장점이 있다.
도1은 본 발명의 일실시예의 평면도.
도2는 도1의 안치홈에 미지시료가 채워진 상태의 평면도.
도3은 일반적인 엑스선 회절분석장치의 개략도
도4 본 발명에 따른 일실시예를 이용한 X-선 회절 패턴 시험의 결과 그래프.
<도면의 주요부분에 대한 부호의 설명>
10:격자상수 측정용 표준시료 홀더
12:홀더 본체 12-1:안치홈
배경기술에서 설명한 바와 같이 미지시료의 결정구조를 파악하는데 필요한 격자상수는 X-선 회절 패턴으로부터 직접 얻어지는 것이 아니다.
브래그의 법칙(Bragg's law)에 따르면 대상 물질의 X-선 회절 패턴을 얻는데 사용되는 X-선의 파장(wavelength: λ)과 면간거리(interplannar spacing: d)와의 상호 관계로부터 특정한 위치에서 회절 피크(θ 또는 2θ)가 나타나게 되는데, 이런 회절 피크는 결정의 면간거리에 해당된다.
브래그 법칙(Bragg's law: λ = 2d sin θ)을 이용하면 특정한 면의 면간 거리(d)를 알 수 있으며, 이 값과 7개의 결정계(crystal system)의 격자상수와 면간거리의 아래에 기술된 관계식으로부터 격자상수(예, 입방체(cubic)의 경우 a=b=c)를 구할 수 있다.
예를 들면, 면심 입방체 구조를 가지고 있는 NaCl 의 경우 Cu Kα 선(λ = 1.54056Å)을 이용하여 X-선 회절 패턴을 측정하면 대략 2θ 가 31.692˚ 부근에서 (200)면에 해당하는 100 피크가 나타난다. 브래그 법칙(Bragg's law: λ = 2d sin θ)을 이용하면 (200)면의 면간 거리(d)를 알 수 있으며(2.821Å), 이 값과 다음 공식을 이용하여 입방체(a=b=c, α=β=γ=90˚)의 격자상수를 알 수 있다.
1 / d2 hkl = (h2+ k2+ l2) / a2
a = dhkl {(h2+ k2+ l2)}1/2 = 2.821 × (4)1/2 = 5.642Å
여기서 a는 격자상수, d는 면간거리, hkl은 면지수를 나타낸다.
X-선 회절 패턴으로부터 격자상수를 구할 때에는 상기한 예에서처럼 하나의 피크만을 이용하는 것이 아니라 여러 개의 피크를 최소자승법 등 수치해석적인 방법으로 결정하게 된다. 격자상수를 정밀하게 결정하기 위해서는 X-선 회절기의 기기오차를 최소화하기 위해 보통 분말 형태로 시판되고 있는 Si, LaB6, Cr2O3, CeO2, Al2O3, TiO2, ZnO, Mica, Silicon nitride 및 Quartz 등 의 격자상수가 정확하게 정의되어 있는 물질을 X-선 회절분석용 표준물질로 사용한다. X-선 회절분석용 표준물질을 측정대상 시료인 미지(未知)시료에 적당량을 균일하게 혼합하여 혼합시료(표준물질+미지시료)를 만든 후, 혼합시료로부터 회절 패턴을 얻은 후 격자상수가 정확하게 정의된 표준물질의 면간거리를 기준으로 미지시료의 면간거리를 교정하여 미지시료의 격자상수를 결정한다.
이러한 과정에서 분말형태로 되어있는 표준물질을 미지시료와 혼합하여 측정을 하게 되므로 미지시료의 재사용이 불가능하여 다른 물성을 얻는 것이 힘들다. 특히 미지시료가 소량으로 얻어지는 분말(특히 나노분말)인 경우에 어려움이 따른다. 마찬가지로 미지시료와 혼합하여 사용되는 표준시료도 재사용이 불가능하다.
그리고 X-선 회절 패턴을 얻는데 사용되는 X-선의 광학계는 일반적으로 반사타입(reflection type or Bragg-Brentano or para-focusing geometry)의 광학계가 주로 사용되며, 이런 광학계에서 X-선 회절 현상은 시료의 표면에서만 일어난다는 가정하에서 사용한다. 그러나 분말형태의 시료의 경우, X-선 회절현상은 시료의 표면뿐만 아니라 X-선이 시료 내부까지 침투하여 회절을 일으키므로 회절선의 위치변화를 가져오게 된다. 미지시료와 표준시료를 분말형태로 혼합하여 사용할 경우 침투효과에 의한 회절선의 위치가 변화되는 효과를 표준시료도 피할 수 없게 된다.
따라서 상기 X-선 회절분석용 혼합시료(표준시료와 미지시료 혼합)를 소성(sintering)하거나 높은 압력으로 성형 압축(compact)하여 시료를 제작하면 X-선의 침투에 의한 회절피크의 이동을 막을 수 있다. 그러나 미지시료도 소성이나 높은 압력으로 성형 압축과정을 같이 거치게 됨으로써 이러한 과정에서 미지시료의 상태 변화를 가져 올 수 있는 위험이 있을 수 있다. 그러므로 상기 X-선 회절분석용 표준물질의 분말만을 소성(sintering)하거나 높은 압력으로 성형 압축(compact)하여 제작한 표준시료의 표면에 미지시료가 채워질 수 다양한 형태의 안치홈을 형성하게 되면, 위에서 언급한 단점(X-선 침투효과에 의한 표준시료의 회절선 이동과 소성이나 높은 압력으로 성형 압축에 의한 미지시료의 변화 위험)들을 제거할 수 있을 뿐만 아니라 반 연구적으로 표준시료를 사용할 수 있고, 또한 미지시료도 다시 사용할 수 있는 장점이 있다. 이때, 상기 안치홈의 형상 및 상기 안치홈간의 간격은 다양하게 형성할 수 있다.
또한 일정량의 미지시료에 일정량의 표준시료를 혼합하여 미지시료의 X-선의 강도(피크의 높이나 면적)와 표준시료의 X-선 강도를 측정한다. 횡축은 미지시료와 표준시료의 강도비를 취하고, 종축은 미지시료의 양으로 표시된 선을 교정선이라고 하는데, 안치홈에 채워지는 미지시료의 양을 조절하여 내부표준(internal standard)용 교정선(calibration curve)을 작성 할 수 있으므로 X-선을 이용한 정량분석에도 적용할 수 있다.
이 방법은 무기재료(inorganic materials), 고분자(polymer)를 포함한 유기재료(organic materials), 준결정(quasi-crystal), 결정화유리(crystalline glass), 결정화가 떨어진 유리(glass)에 적용할 수 있으며, 특히 X-선을 잘 투과시키는 고분자나, 유기물질 즉 가벼운 원소(C, H, O, N, Li 등)으로 포함 하는 물질의 경우에 격자상수를 정밀하게 측정할 수 있다. 그리고 이 방법은 미지시료의 격자상수 결정뿐만 아니라 사용하는 X-선 회절 장비의 교정하는데도 사용할 수 있다.
이하, 도면을 첨부하여 본 발명에 따른 격자상수 측정용 표준시료 홀더에 대하여 설명한다.
도1은 본 발명의 일실시예의 평면도를, 도2는 도1의 안치홈에 미지시료가 채워진 상태의 평면도를 나타낸다.
도1을 참조하면 본 발명에 따른 일실시예인 격자상수 측정용 표준시료 홀더(10)는 홀더 본체(12)를 가진다. 홀더 본체(12)는 미지시료의 격자상수 측정을 위하여 격자상수가 정의된 물질로 형성된다. Si, LaB6, Cr2O3, CeO2, Al2O3, TiO2, ZnO, Mica, Silicon nitride 및 Quartz 등은 격자상수가 정확하게 정의되어 있으므로, 이들 중의 어느 하나를 이용하여 홀더 본체(12)를 제조한다. 물론 격자상수가 정확하게 정의된 기타의 재질을 사용할 수 있다. 홀더 본체(12)는 상기한 재질의 분말을 소성(sintering)하거나 높은 압력으로 성형 압축(compact)함으로써 형성될 수 있다. 홀더 본체(12)는 상면이 평평한 판상으로 형성된다.
도1을 참조하면 홀더 본체(12)의 상면에는 다수개의 안치홈(12-1)이 형성된다. 안치홈(12-1)은 격자상수를 결정하기 위한 분말형태의 미지(未知)시료를 채우기 위한 것이다. 안치홈(12-1)은 반구형, 원통 또는 다각통형 중 어느 하나의 형상으로 형성될 수 있다.
도2를 참조하면 안치홈(12-1)에는 격자상수를 결정하기 위한 미지(未知)시료가 채워진다.
이하, 상기한 일실시예의 작동에 대하여 설명한다.
도3은 일반적인 엑스선 회절분석장치를 개략적으로 도시한 도면으로 엑스선 회절분석정치의 작동에 대해 설명하면, 엑스선이 발생되는 엑스선 발생부(X-Ray source)(110); 상기 엑스선 발생부(110)에서 발생된 엑스선중 페러렐빔(parallel beam)만을 통과시키는 수광슬릿(soller slit)(121); 상기 수광슬릿(121)에 의해 통과된 페러렐빔을 시료의 면적에 맞게 발산시키는 발산슬릿(divergence slit)(122); 상기 발산슬릿(122)에 의해 통과된 엑스선이 조사되도록 시료가 안착되는 시료홀더(sample holder)(123); 상기 시료홀더(123) 측으로 조사된 엑스선에 의해 회절된 엑스선 중 시료에 의해 회절된 엑스선만 통과시키는 산란슬릿(scattering slit)(124); 상기 산란슬릿(124)을 통해 시료에 의해 회절된 엑스선을 통과시키는 수광슬릿(receiving slit)(125); 상기 수광슬릿(125)을 통해 들어오는 회절된 엑스선 중 페러렐빔만을 통과시키는 수광슬릿(soller slit)(126); 상기 수광슬릿(126)에 의해 통과된 엑스선을 단색화시키는 모노크로메터(monochromator)(130); 및 상기 모노크로메터(130)를 통과한 단색 엑스선을 검출하는 검출부(140); 로 이루어진다.
상기 시료가 안착되는 시료홀더(123)는 금속제의 내부가 빈 원통형으로 된 엑스선 회절분석장치의 베이스부(도면 미도시)에 안착된다.
한편, 본 발명의 일실시예를 이용하는 경우 도3에 도시된 시료홀더(123)는 본 발명의 일시예인 격자상수 측정용 표준시료 홀더(10)로 대체된다. 격자상수 측정용 표준시료 홀더(10)의 안치홈(12-1)에 미지(未知)시료가 채워져 상기 엑스선 회절분석장치의 베이스부(도면 미도시)에 안착됨으로써 엑스선 회절시험을 시행하여 미지(未知)시료의 격자상수를 결정할 수 있다.
본 발명에 따른 일실시예는 미지시료가 안착되는 시료홀더가 표준시료로 형성되어 있고, 또한 표준시료가 격자상수가 결정된 표준물질의 분말을 소성(sintering)하거나 높은 압력으로 성형 압축(compact)함으로써 형성되어 있다. 따라서, 분말형태의 미지시료를 다시 사용할 수 있고, 또한 표준시료를 시료홀더로서 반 영구적으로 사용할 수 있다.
도4에 본 발명에 따른 일실시예를 이용한 X-선 회절 패턴 시험의 결과 그래프이다. 홀더 본체의 재질은 표준시료인 Al2O3이고, 안치홈에 미지시료가 채워지지 않은 경우의 X-선 회절 그래프가 도4의 (a)에 도시되어 있다. 이 경우는 나타나는 모든 회절 피-크들은 Al2O3에 해당된다. 표준시료인 Al2O3을 소결하여 만든 격자상수 측정용 표준시료 홀더에 안치홈을 제작하여 안치홈에 격자상수를 측정하고자 하는 미지시료 TiO2가 채워진 경우의 그래프는 도4(b)에 나타내었다. 도4의 (b)의 X-선 회절 그래프는 안치홈의 재료로 사용된 Al2O3의 회절피크와 미지시료인 TiO2의 회절피크들이 함께 나타나 있다.
한편, 본 발명의 다른 일실시예의 경우 홀더 본체(12)에는 다수개의 안치홈(12-1) 대신 다수개의 안치공(도면 미도시) 형성될 수 있다. 상기 안치공(도면 미도시)은 안치홈(12-1)과 마찬가지로 격자상수를 결정하기 위한 분말형태의 미지(未知)시료를 채우기 위한 것이다. 상기 안치공(도면 미도시)은 반구형, 원통 또는 다각통형 중 어느 하나의 형상으로 형성될 수 있다.
한편, 본 발명은 상기한 격자상수 측정용 표준시료 홀더를 이용한 미지시료의 정량 분석 방법에 관한 것이기도 하다.
상기한 바와 같이 일정량의 미지시료에 일정량의 표준시료를 혼합하여 미지시료의 X-선의 강도(피크의 높이나 면적)와 표준시료의 X-선 강도를 측정할 수 있다. 횡축은 미지시료와 표준시료의 강도비를 취하고, 종축은 미지시료의 양으로 표시된 선을 교정선이라고 하는데, 안치홈(12-1) 또는 상기 안치공(도면 미도시)에 채워지는 미지시료의 양을 조절하여 내부표준(internal standard)용 교정선(calibration curve)을 작성함으로써 X-선을 이용한 미지시료의 정량 분석을 수행할 수 있다.

Claims (5)

  1. 엑스선 회절분석 시험을 위한 시료 홀더에 있어서,
    상기 시료 홀더는,
    미지시료의 격자상수 측정을 위하여 격자상수가 정의된 물질로 형성되되, 분말형태의 상기 미지시료가 채워질 수 있는 다수개의 안치홈이 표면에 형성된 판형상으로 이루어진 것을 특징으로 하는 격자상수 측정용 표준시료 홀더.
  2. 제1항에 있어서,
    상기 격자상수 측정용 표준시료는 Si, LaB6, Cr2O3, CeO2, Al2O3, TiO2, ZnO, Mica, Silicon nitride 및 Quartz 중 어느 하나의 물질로 형성되는 것을 특징으로 하는 격자상수 측정용 표준시료 홀더.
  3. 제1항에 있어서,
    상기 다수개의 안치홈은 반구형, 원통 또는 다각통형 중 어느 하나의 형상으로 형성되는 것을 시료을 특징으로 하는 격자상수 측정용 표준시료 홀더.
  4. 엑스선 회절분석 시험을 위한 시료 홀더에 있어서,
    상기 시료 홀더는,
    미지시료의 격자상수 측정을 위하여 격자상수가 정의된 물질로 형성되되, 분말형태의 상기 미지시료가 채워질 수 있는 다수개의 안치공이 상하면을 관통하며 형성된 판형상으로 이루어진 것을 특징으로 하는 격자상수 측정용 표준시료 홀더.
  5. 제1항 내지 제3항 중 어느 한 항의 안치홈 또는 제4항의 안치공에 채워지는 상기 미지시료의 양을 조절하여 내부표준(internal standard)용 교정선(calibration curve)을 작성함으로써 상기 미지시료 성분의 정량 분석을 행하는 것을 특징으로 하는 격자상수 측정용 표준시료 홀더를 이용한 정량 분석 방법.
PCT/KR2009/004991 2008-10-14 2009-09-04 잔류응력 측정을 위한 시료 홀더 및 이를 이용한 결정상 정량분석 방법 WO2010044544A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080100734A KR20100041509A (ko) 2008-10-14 2008-10-14 격자상수 측정용 표준시료 홀더 및 이를 이용한 정량 분석 방법
KR10-2008-0100734 2008-10-14

Publications (2)

Publication Number Publication Date
WO2010044544A2 true WO2010044544A2 (ko) 2010-04-22
WO2010044544A3 WO2010044544A3 (ko) 2010-06-24

Family

ID=42107003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004991 WO2010044544A2 (ko) 2008-10-14 2009-09-04 잔류응력 측정을 위한 시료 홀더 및 이를 이용한 결정상 정량분석 방법

Country Status (2)

Country Link
KR (1) KR20100041509A (ko)
WO (1) WO2010044544A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088749A (zh) * 2020-08-05 2022-02-25 中国石油化工股份有限公司 快速识别页岩中碎屑石英与生物成因石英的方法及装置
CN115112611A (zh) * 2022-06-08 2022-09-27 中国地质科学院郑州矿产综合利用研究所 一种人造石英石用石英砂的透光率检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114858324B (zh) * 2022-07-07 2022-09-30 浙江大学杭州国际科创中心 一种碳化硅晶体的残余应力检测方法和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084910A (en) * 1990-12-17 1992-01-28 Dow Corning Corporation X-ray diffractometer sample holder
US5390230A (en) * 1993-03-30 1995-02-14 Valence Technology, Inc. Controlled atmosphere, variable volume sample holder for x-ray diffractomer
US6806093B2 (en) * 2000-07-18 2004-10-19 Uop Llc Process of parallel sample preparation
EP1466166B2 (en) * 2002-01-15 2013-05-01 Avantium International B.V. Method for performing powder diffraction analysis
JP3883060B2 (ja) * 2002-06-17 2007-02-21 株式会社リガク 結晶評価装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088749A (zh) * 2020-08-05 2022-02-25 中国石油化工股份有限公司 快速识别页岩中碎屑石英与生物成因石英的方法及装置
CN114088749B (zh) * 2020-08-05 2024-04-19 中国石油化工股份有限公司 快速识别页岩中碎屑石英与生物成因石英的方法及装置
CN115112611A (zh) * 2022-06-08 2022-09-27 中国地质科学院郑州矿产综合利用研究所 一种人造石英石用石英砂的透光率检测方法

Also Published As

Publication number Publication date
WO2010044544A3 (ko) 2010-06-24
KR20100041509A (ko) 2010-04-22

Similar Documents

Publication Publication Date Title
Chauhan et al. Powder XRD technique and its applications in science and technology
Kockelmann et al. Non-destructive phase analysis of archaeological ceramics using TOF neutron diffraction
Thomas et al. IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs
Götze et al. Occurrence and distribution of “moganite” in agate/chalcedony: A combined micro-Raman, Rietveld, and cathodoluminescence study
Sammaljärvi et al. Free radical polymerisation of MMA with thermal initiator in brick and Grimsel granodiorite
KR20140135600A (ko) 중성자 산란 길이 밀도의 평가 방법
CN111033246A (zh) 晶相定量分析装置、晶相定量分析方法及晶相定量分析程序
Gilles et al. Silver behenate powder as a possible low-angle calibration standard for small-angle neutron scattering
WO2010044544A2 (ko) 잔류응력 측정을 위한 시료 홀더 및 이를 이용한 결정상 정량분석 방법
CN108226202A (zh) 一种利用xrf荧光光谱仪测定二氧化硅含量的方法
Laita et al. NanoSIMS as an analytical tool for measuring oxygen and hydrogen isotopes in clay minerals from palaeosols: Analytical procedure and preliminary results
CN105938112B (zh) 定量x射线分析-比率校正
Vandenabeele et al. Can the combination of in situ differential impedance spectroscopy and 27Al NMR detect incongruent zeolite crystallization?
Dragoo Standard Reference Materials for X-Ray Diffraction Part I. Overview of Current and Future Standard Reference Materials
Nishiwaki et al. Application of total reflection X-ray fluorescence spectrometry to small glass fragments
Shokr et al. In situ observations of single grain behavior during plastic deformation in polycrystalline Ni using energy dispersive Laue diffraction
Attfield Resonant powder x-ray diffraction applied to mixed valence compounds and the possibility of site-resolved x-ray absorption spectroscopy illustrated for YBa2Cu3O6. 27
Ottinger et al. Analytical evidence of amorphous microdomains within nitridosilicate and nitridoaluminosilicate single crystals
CN116930224A (zh) 一种岩石中玻璃质的测定方法、装置、设备和存储介质
Pérez et al. Quantification of amorphous phases in the silt fraction of Mexican pre-Hispanic adobe earth bricks
Barone et al. Comparison between TOF-ND and XRD quantitative phase analysis of ancient potteries
EP0414562A2 (en) A method of monitoring a process of growing a film of silicon dioxide doped with phosphorus
CN118566273B (zh) X射线衍射谱的标定方法、装置、电子设备及存储介质
Khan et al. Preparation of Indian Reference Material for the calibration of Powder X-ray Diffractometer: α-Alumina
Goudeau et al. Strains, stresses and elastic properties in polycrystalline metallic thin films: in situ deformation combined with x-ray diffraction and simulation experiments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820694

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09820694

Country of ref document: EP

Kind code of ref document: A2