WO2010044266A1 - Progressive power lens and progressive power lens series - Google Patents

Progressive power lens and progressive power lens series Download PDF

Info

Publication number
WO2010044266A1
WO2010044266A1 PCT/JP2009/005371 JP2009005371W WO2010044266A1 WO 2010044266 A1 WO2010044266 A1 WO 2010044266A1 JP 2009005371 W JP2009005371 W JP 2009005371W WO 2010044266 A1 WO2010044266 A1 WO 2010044266A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
progressive
lens
distance
addition
Prior art date
Application number
PCT/JP2009/005371
Other languages
French (fr)
Japanese (ja)
Inventor
矢成光弘
水野正朝
内山幸昌
Original Assignee
株式会社ニコン・エシロール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008265631A external-priority patent/JP5135159B2/en
Priority claimed from JP2008265630A external-priority patent/JP5135158B2/en
Application filed by 株式会社ニコン・エシロール filed Critical 株式会社ニコン・エシロール
Publication of WO2010044266A1 publication Critical patent/WO2010044266A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters

Definitions

  • the present invention relates to a progressive-power lens used as an aid to eye accommodation, and more particularly to a progressive-power lens and a progressive-power lens series in which both the outer surface and the inner surface of the lens are aspherical.
  • a progressive power lens having a progressive portion which is a connected area.
  • Progressive-power lenses do not need to be exchanged or detached when viewing at a distance or near vision, and the lens has no clear borders and is excellent in appearance. It is like that.
  • progressive-power lenses have used semi-finished lenses with progressive-reflecting surfaces pre-processed on the outer surface because of the need for manufacturing simplicity and cost reduction.
  • the same semi-finished product within a certain prescription power range The lens is shared.
  • an inner surface progressive addition lens in which a progressive surface is arranged on the inner surface as a prescription surface and a progressive addition lens in which both the outer surface and the inner surface are aspherical have been commercialized.
  • a double-sided progressive-power lens that progressively forms the outer surface and inner surface has the potential to improve optical performance and generate progressive-power lenses with new optical performance that were difficult with conventional single-sided progressive-power lenses. Therefore, it is attracting attention as an important technology.
  • Patent Document 1 astigmatism is improved as compared with a conventional progressive-power lens, and the magnification difference due to the difference in refractive power between the distance portion and the near portion is improved.
  • an inner surface progressive addition lens with a progressive surface on the inner surface and a progressive surface with a surface addition of negative or positive value on the outer surface are arranged to increase the positive addition on the inner surface.
  • a technique of a double-sided progressive-power lens in which a progressive surface having the same is arranged is disclosed.
  • Patent Document 2 as a double-sided progressive addition lens in which progressive surfaces are arranged on both the outer surface and the inner surface, one of the surfaces is a progressive surface having a positive addition and the other has a negative addition.
  • a technique has been disclosed in which a progressive surface is used to cancel the astigmatism generated on the progressive surface with the astigmatism generated on the progressive surface, thereby reducing the aberration of light transmitted through the lens.
  • the conventional progressive-power lens has been evaluated mainly by the optical performance of the surface refractive power of the progressive surface such as the distribution of surface astigmatism on the progressive surface and the distribution of surface average refractive power.
  • optical performance of the refractive power of the progressive surface (hereinafter referred to as “optical performance of the refractive surface”) and the light beam equivalent to the line of sight when the wearer uses the progressive power lens.
  • optical performance of transmitted light is almost the same.
  • the optical performance of the refracting surface and the optical performance of the transmitted light are almost equal for light incident at an angle close to perpendicular to the lens surface.
  • the optical performance of the refracting surface and the optical performance of the transmitted light do not match. Such a tendency increases as the incident angle of the light ray on the lens surface increases, and the various aberrations occur on the outer surface and the inner surface of the lens, respectively.
  • This discrepancy between the optical performance of the refracting surface and the optical performance of the transmitted light is due to prescription values such as spherical power, astigmatism power, addition power, prism prescription, and lens usage conditions such as frame shape and object distance.
  • prescription values such as spherical power, astigmatism power, addition power, prism prescription, and lens usage conditions such as frame shape and object distance.
  • the optical performance of the progressive power lens when it is actually worn depends on the outer surface because it varies depending on the combination of various conditions such as lens shape conditions such as base curve and progressive surface addition. It is difficult to simply evaluate the optical performance of the refracting surface of the progressive surface set on the inner surface.
  • the optical performance of the transmitted light in consideration of the prescription and usage of the wearer, not the optical performance of the refracting surface of the progressive surface as in the past, is the target progressive refractive power. It is necessary to optimize the optical performance of so-called transmitted light (hereinafter simply referred to as “optimization”) to improve the lens so that it is closer to the optical performance of the lens, and to determine the shape of the correction surface of the progressive-power lens. is there.
  • the purpose of the aspect of the present invention is to optimize the optical performance of transmitted light in consideration of the wearer's prescription and usage conditions, etc. It is an object of the present invention to provide a progressive power lens and a progressive power lens series which are equal to a specified value and can keep the optical performance of transmitted light good.
  • a progressive-power lens has an outer surface that is a refractive surface on the object side in a worn state and an inner surface that is a refractive surface on the eyeball side in a worn state, and at least of the outer surface and the inner surface One is provided at the upper position of the lens in the wearing state and is relatively suitable for far vision, and the near part is provided at the lower position of the lens in the wearing state and relatively suitable for near vision;
  • One of these is a reference surface having a predetermined surface shape, the other is a correction surface, the distance power specified by the prescription value is S, the astigmatism power specified by the prescription value is C, and the addition power specified by the prescription value Is the add, and the surface average refractive power at the near reference point of the reference surface and the reference surface
  • the surface addition of the reference surface which is the difference from the
  • Progressive-power lenses have the advantage that the greater the add power, the less the adjustment power required for near vision, but the various aberrations that occur in the entire lens occur almost in proportion to the value of the add power. Therefore, the larger the wearing addition, the more aberration and image distortion occur.
  • the sum of the surface addition ADDb (S, C, add) on the reference surface and the surface addition ADDc (S, C, add) on the correction surface is used as the addition of the entire lens. It was found that, when set equal to the addition add designated by the prescription, the wearing addition ADD in the transmitted light when the lens is actually worn becomes larger than the prescription addition add.
  • the addition add in which the sum of the surface addition ADDb (S, C, add) on the reference surface and the surface addition ADDc (S, C, add) on the correction surface is designated by the prescription value.
  • the plurality of progressive-power lenses can be formed such that the surface addition of each of the reference surfaces has a constant value and the surface addition of each of the correction surfaces becomes a variable. .
  • the surface addition on one side is kept constant and the sum of the surface additions on both sides is adjusted while changing the surface addition on the other side. Since it becomes easy to adjust the sum of the degrees, it becomes easy to make the wearing addition ADD of the lens equal to the prescription addition add.
  • the plurality of progressive-power lenses have a constant surface average refractive power at the distance reference point of each of the reference surfaces, and the surface average power at the distance reference point of each of the correction surfaces. It can be configured to be a variable.
  • the surface average refractive power of the distance reference point on one surface is made constant, and the surface average of the distance reference point on both surfaces is changed while changing the surface average refractive power of the distance reference point on the other surface.
  • the progressive-power lens according to the aspect of the present invention is a progressive-power lens included in a progressive-power lens series corresponding to a plurality of different prescriptions, and includes an outer surface serving as a refractive surface on the object side in a worn state, and a worn state And an inner surface which is a refractive surface on the eyeball side, and at least one of the outer surface and the inner surface is provided at a position above the lens in a wearing state, Provided in the lower position of the lens in a state, relatively suitable for near vision, provided between the distance portion and the near portion, between the distance portion and the near portion A progressive portion whose surface refractive power changes progressively, and one of the outer surface and the inner surface is a reference surface having a predetermined surface shape, and the other is a correction surface, and is for distance use specified by a prescription value
  • the power is C (S)
  • the addition power specified by the prescription value is add (S)
  • Sp is the distance power when the addition power ADDc (S) of the correction surface takes the maximum value
  • a first progressive-power lens whose power is the first distance power Sl, and the distance power Is selected as the second progressive power lens having the second distance power Sh larger than the first distance power S1, the astigmatism power C (Sl) and the addition power in the first progressive power lens are selected.
  • the progressive addition lens has an advantage that the greater the addition, the less adjustment power necessary for near vision is required, but various aberrations occurring in the entire lens are almost equal to the addition value. Since they occur proportionally, the larger the wearing addition, the greater the aberrations and image distortion that occur.
  • the wearing power of all progressive power lenses included in the progressive power lens series set so that the optical effects on the lens wear and the basic specifications of the lenses are equal is necessary for the wearer. It is necessary to set it equal to the addition specified by the prescription.
  • the astigmatic power C specified by the prescription value is equal between the first progressive power lens and the second progressive power lens among the plurality of progressive power lenses, and the prescription value
  • the specified addition add is equal and the surface addition ADDb of the reference surface is equal
  • the surface addition ADDc of each correction surface decreases as the distance power S increases
  • Sp ⁇ Sh the surface addition ADDc of each correction surface is set to decrease as the distance power S decreases.
  • the optical performance of the transmitted light in consideration of the wearer's prescription and usage conditions so as to satisfy the above relationship when comparing any two of the plurality of progressive-power lenses It is possible to improve the addition power, which is an important specification in the progressive power lens, to be equal to the value specified in the prescription value and to make the optical performance of the transmitted light closer to the optical performance of the target progressive power lens. It has become possible. As a result, the optical effects on lens wearing and the basic specifications of the lens can be made equal in the lens series. In addition, it is preferable to optimize the optical performance of the transmitted light in the present invention in consideration of the influence of the rotational movement of the eye due to the law of listing. In the above conditional expression, the unit of refractive power is represented by diopter (D) unless otherwise specified.
  • D diopter
  • the progressive-power lens according to the aspect of the present invention is a progressive-power lens included in a progressive-power lens series corresponding to a plurality of different prescriptions, and includes an outer surface serving as a refractive surface on the object side in a worn state, and a worn state And an inner surface which is a refractive surface on the eyeball side, and at least one of the outer surface and the inner surface is provided at a position above the lens in a wearing state, Provided in the lower position of the lens in a state, relatively suitable for near vision, provided between the distance portion and the near portion, between the distance portion and the near portion A progressive portion whose surface refractive power changes progressively, and one of the outer surface and the inner surface is a reference surface having a predetermined surface shape, and the other is a correction surface, and is for distance use specified by a prescription value
  • the power is C (S)
  • the addition power specified by the prescription value is add (S)
  • the astigmatic power C specified by the prescription value is equal between the first progressive power lens and the second progressive power lens among the plurality of progressive power lenses, and the prescription value
  • the specified addition add is equal and the surface addition ADDb of the reference surface is equal
  • the surface addition ADDc of the correction surface is set to decrease as the distance power S increases. It was.
  • the optical performance of the transmitted light in consideration of the wearer's prescription and usage conditions so as to satisfy the above relationship when comparing any two of the plurality of progressive-power lenses It is possible to improve the addition power, which is an important specification in the progressive power lens, to be equal to the value specified in the prescription value and to make the optical performance of the transmitted light closer to the optical performance of the target progressive power lens. It has become possible. As a result, the optical effects on lens wearing and the basic specifications of the lens can be made equal in the lens series.
  • the optimization of the optical performance of the transmitted light in the above aspect of the present invention is preferably performed in consideration of the influence of the rotational movement of the eye due to the law of listing. Also in the above conditional expression, the unit of refractive power is represented by diopter (D) unless otherwise specified.
  • the optical power of the transmitted light is optimized in consideration of the wearer's prescription and usage conditions, and the addition, which is an important specification in the progressive power lens, is determined by the prescription value. It is possible to make the optical performance of the transmitted light closer to the optical performance of the target progressive-power lens by making it equal to the specified value.
  • the unit of refractive power is represented by diopter (D) unless otherwise specified.
  • the glasses are used when the progressive power lens is processed for spectacles. It is based on the positional relationship of the lenses when worn. Also in the following drawings, the positional relationship (up / down / left / right) of the lens is the same as the positional relationship (up / down / left / right) with respect to the paper surface.
  • the object side surface is referred to as an “outer surface” and the eyeball side surface is referred to as an “inner surface”.
  • FIG. 1 is a diagram showing an outline of region division in the progressive-power lens according to the present embodiment.
  • the progressive addition lens LS is in a state before processing the lens according to the shape of the spectacle frame (a state before lashing processing), and is formed in a circular shape in plan view. .
  • the progressive-power lens LS is arranged on the upper side in the figure when worn, and the lower side in the figure is arranged on the lower side when worn.
  • the progressive addition lens LS has a distance portion F, a near portion N, and a progressive portion P.
  • the progressive power lens series according to this embodiment is configured by combining a plurality of such progressive power lenses LS.
  • the distance portion F is disposed above the progressive addition lens LS, and after the progressive addition lens LS is processed for spectacles, it becomes a portion suitable for relatively far vision.
  • the near portion N is disposed below the progressive power lens LS, and becomes a portion suitable for near vision after the progressive power lens LS is processed for spectacles.
  • the progressive portion P is disposed between the distance portion F and the near portion N in the progressive power lens LS, and the surface refractive power between the distance portion F and the near portion N is progressively changed. It is a part to be made.
  • the progressive power lens LS has a plurality of reference points.
  • a reference point examples include an eye point (also called a fitting point) EP, an optical center point OG, a distance reference point OF, and a near reference point ON, as shown in FIG.
  • the eye point EP is a reference point when the wearer wears the lens.
  • the optical center point OG is the center point of the optical characteristics of the lens.
  • the distance reference point OF is a measurement reference point for measuring the distance power of the lens in the distance portion F.
  • the near reference point ON is a measurement reference point for measuring the near power of the lens in the near portion N.
  • the surface average refractive power at the distance reference point OF or the surface average power at the near reference point ON is set based on the distance power or near power specified by the prescription value, respectively.
  • a value obtained by subtracting the surface average refractive power of the near reference point OF from the surface average refractive power of the near reference point ON measured by the progressive addition lens LS is expressed as “surface addition power”.
  • the addition specified by the prescription value is “prescription addition”, and the average refractive power DN of the transmitted light LN passing through the near reference point ON of the lens to the average of the transmitted light LF passing through the distance reference point OF.
  • a value obtained by subtracting the refractive power DF is referred to as “wear addition power”.
  • the progressive addition lens LS has a main gaze MM 'that passes through the distance reference point OF and the near reference point ON and divides the refractive surface of the progressive surface into a nose side region and an ear side region.
  • the main gazing line MM ' is also called a main meridian and is used as an important reference line in designing a progressive surface.
  • the main gazing line is defined as a curve curved to the nose side from the distance portion F to the near portion N in consideration of the convergence at the near vision in the progressive power lens of the asymmetric design, and the progressive power lens of the symmetric design. Is defined as a straight line passing through the distance reference point OF and the near reference point ON.
  • FIG. 2 is a schematic diagram showing how light rays of the progressive-power lens LS pass in the wearing state.
  • an arbitrary light beam L corresponding to the line of sight of the wearer passes through a point O1 on the lens surface M1 that is the outer surface, a point O2 on the lens surface M2 that is the inner surface, and the rotation point RC of the eyeball.
  • An image is formed at a point OR on R.
  • the light ray passes through the point O1 and the point O2, it is refracted according to the incident angle with respect to each point.
  • the light beam LF passing through the distance reference point corresponding to the line of sight of the wearer passes through the distance reference point OF1 on the lens surface M1 which is the outer surface and the distance reference point OF2 on the lens surface M2 which is the inner surface. Further, an image is formed at a point ORf on the retina R of the eyeball through the rotation point RC of the eyeball.
  • the light ray passes through the point OF1 and the point OF2, it is refracted according to the incident angle with respect to each point.
  • the light beam LN passing through the near reference point corresponding to the line of sight of the wearer passes through the near reference point ON1 on the lens surface M1 that is the outer surface and the near reference point ON2 on the lens surface M2 that is the inner surface.
  • An image is formed at a point ORn on the retina R of the eyeball through the rotation point RC of the eyeball.
  • the lens surface M1 that is an outer surface is used as a reference surface
  • the lens surface M2 that is an inner surface is described as a correction surface formed in an aspherical shape in order to correct the optical performance of transmitted light.
  • the light beam L corresponding to the line of sight of the wearer hardly enters the lens surface perpendicularly except for the light beam passing through the vicinity of the optical axis OA of the lens, and the position where the light beam enters the lens surface is the position of the lens.
  • the incident angle on the lens surface tends to increase. In other words, various aberrations are caused by light rays passing through the periphery of the lens surface.
  • the distance reference point OF1 and the near reference point ON1 on the lens surface M1 and the distance reference point OF2 and the near reference point ON2 on the lens surface M2 are usually lens surfaces through which the optical axis OA of the lens passes.
  • the positions are set apart from the optical center OG1 on M1 and the optical center OG2 on the lens surface M2. That is, the light beam LF and the light beam LN do not enter the lens surface perpendicularly, and aberration occurs even in light beams passing through the distance reference point and the near reference point.
  • the lens surface M1 that is the outer surface is used as the reference surface
  • the lens surface M2 that is the inner surface is used as the correction surface
  • the distance power specified by the prescription value is S and is specified by the prescription value.
  • the astigmatism power is C and the prescription addition power is add
  • the surface addition power of the reference surface M1, which is the difference is ADDb (S, C, add)
  • the addition power of the correction surface M2 which is the difference from the average refractive power
  • the progressive addition lens LS is formed so as to satisfy the following conditional expression (1).
  • the progressive addition lens LS is preferably formed so as to satisfy the following conditional expression (2), and satisfies the following conditional expression (3). More preferably, it is formed. Furthermore, it is more preferable that it is formed so as to satisfy the following conditional expression (4).
  • the surface addition ADDb (S, C, (add) is a constant value
  • the surface addition ADDc (S, C, add) of the correction surface M2 can be used as a variable.
  • the surface average refractive power of the reference surface M1 at the distance reference point OF1 is PFb (S, C, add), and the surface average refractive power of the correction surface M2 at the distance reference point OF2 is PFc.
  • the progressive addition lens LS is formed so that the following conditional expression (5) is satisfied when S ⁇ 0, and the following conditional expression (6) is satisfied when S ⁇ 0. It is preferable that
  • the surface average refractive power at the distance reference point OF1 on the reference surface M1 as in the conventional progressive power lens is made equal to the distance power S.
  • the average refractive power DF of the transmitted light beam LF passing through the distance reference points OF1 and OF2 takes a value larger than the distance power S (DF ⁇ S> 0). Therefore, in order to make the average refractive power DF equal to the distance power S, it is necessary to make the sum of the surface average power PFb and the surface average power PFc smaller than the distance power S. It becomes.
  • the progressive addition lens LS is formed so that the conditional expression (7) below is satisfied when S> 0, and the conditional expression (8) below is satisfied when S ⁇ 0. Is preferred.
  • the value of the conditional expression is considered when taking into account the lens tolerance May be zero or a value that can be considered zero.
  • the surface average refractive power PFb (S, C, add) of the distance reference point OF1 is a constant value
  • the surface average refractive power PFc (S, C, add) of the distance reference point OF2 on the correction surface M2 is a variable. Can be adjusted. In this way, the surface average refractive power of the distance reference point OF on one surface is made constant, and the distance reference point OF on both surfaces is changed while changing the surface average power of the distance reference point OF on the other surface.
  • the sum of the surface addition ADDb (S, C, add) on the reference surface and the surface addition ADDc (S, C, add) on the correction surface is designated by the prescription value.
  • the diopter power is an important specification for progressive power lenses. It has become possible to make the addition power equal to the value specified by the prescription value and improve the optical performance of the transmitted light so as to be closer to the optical performance of the target progressive-power lens.
  • the outer surface M1 of the outer surface M1 and the inner surface M2 is the reference surface and the inner surface M2 is the correction surface.
  • the present invention is not limited to this.
  • the inner surface M2 is the reference surface
  • the outer surface M1 is Even in the configuration of the correction surface, the range of the above formulas (1) to (8) can be applied.
  • Table 1 shows the refractive index n of the progressive-power lens, the distance power S specified by the prescription value, the astigmatism power C indicated by the prescription value, the prescription addition add, and the surface addition ADDb (S, C at the reference surface).
  • Add surface addition ADDc (S, C, add) on the correction surface
  • value ADDb (S, C, add) obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface add) + ADDc (S, C, add) ⁇ add, surface average refractive power PFb (S, C, add) at the distance reference point on the reference surface, surface average power PFc (S, C) at the distance reference point on the correction surface C, add), a value obtained by subtracting the distance power S from the sum of the surface average refractive power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface PFb (S, C, add) + PFc (S, C, add)
  • progressive power lenses shown in Examples 1 to 13 were manufactured.
  • the progressive-power lenses shown in Examples 1 to 10 are common in that the optical refractive index n is 1.67 and the astigmatism power C is 0.00.
  • Example 1 In Example 1, the distance power S is 5.00, the prescription addition add is 3.50, the surface addition ADDb (S, C, add) on the reference surface is 4.00, and the surface addition ADDc ( S, C, add) is -1.02, surface average refractive power PFb (S, C, add) at the reference point for distance on the reference surface is 6.27, surface average power PFc at the reference point for distance on the correction surface (S, C, add) was set to ⁇ 1.62.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .52.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was -0.35.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the distance diopter S designated by the prescription value.
  • Example 2 In Example 2, the distance power S is 3.00, the prescription addition add is 1.00, the surface addition ADDb (S, C, add) on the reference surface is 1.50, and the surface addition ADDc ( S, C, add) is ⁇ 0.59, the surface average refractive power PFb (S, C, add) at the reference point for distance on the reference surface is 6.27, and the surface average power PFc at the reference point for distance on the correction surface (S, C, add) was set to -3.44.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .09.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was -0.17.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the distance diopter S designated by the prescription value.
  • Example 3 In Example 3, the distance power S is 2.00, the prescription addition add is 0.75, the surface addition ADDb (S, C, add) on the reference plane is 1.50, and the surface addition ADDc ( S, C, add) is ⁇ 0.88, the surface average refractive power PFb (S, C, add) at the distance reference point of the reference surface is 4.39, and the surface average power PFc at the distance reference point of the correction surface (S, C, add) was set to -2.50.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .13.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was -0.11.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the distance diopter S designated by the prescription value.
  • Example 4 In Example 4, the distance power S is 0.00, the prescription addition add is 2.00, the surface addition ADDb (S, C, add) on the reference surface is 2.50, and the surface addition ADDc ( S, C, add) is ⁇ 0.66, the surface average refractive power PFb (S, C, add) at the distance reference point on the reference surface is 4.39, and the surface average power PFc at the distance reference point on the correction surface is (S, C, add) was set to -4.42.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .16.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was -0.03.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the distance diopter S designated by the prescription value.
  • Example 5 In Example 5, the distance power S is -1.00, the prescription addition add is 3.50, the surface addition ADDb (S, C, add) on the reference surface is 4.00, and the surface addition ADDc on the correction surface. (S, C, add) is -0.83, the surface average refractive power PFb (S, C, add) at the distance reference point of the reference surface is 2.51, and the surface average power at the distance reference point of the correction surface PFc (S, C, add) was set to -3.47.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .33.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.04.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the distance diopter S designated by the prescription value.
  • Example 6 In Example 6, the distance power S is ⁇ 3.00, the prescription addition add 2.00, the surface addition ADDb (S, C, add) on the reference surface is 2.50, and the surface addition ADDc on the correction surface. (S, C, add) is -0.70, surface average refractive power PFb (S, C, add) at the reference point for distance on the reference surface is 2.51, surface average refractive power at the reference point for distance on the correction surface PFc (S, C, add) was set to ⁇ 5.42.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .20.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.09.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the distance diopter S designated by the prescription value.
  • Example 7 In Example 7, the distance diopter S is -5.00, the prescription addition add is 1.00, the surface addition ADDb (S, C, add) on the reference surface is 1.50, and the surface addition ADDc on the correction surface. (S, C, add) is -0.68, surface average refractive power PFb (S, C, add) at the reference point for distance on the reference surface is 2.51, surface average refractive power at the reference point for distance on the correction surface PFc (S, C, add) was set to ⁇ 7.40.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .18.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.11.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the distance diopter S designated by the prescription value.
  • Example 8 In Example 8, the distance power S is ⁇ 6.00, the prescription addition add is 0.75, the surface addition ADDb (S, C, add) on the reference surface is 1.50, and the surface addition ADDc on the correction surface. (S, C, add) is ⁇ 0.91, surface average refractive power PFb (S, C, add) at the reference point for distance on the reference surface is 1.25, surface average refractive power at the reference point for distance on the correction surface PFc (S, C, add) was set to ⁇ 7.08.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .16.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.17.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the distance diopter S designated by the prescription value.
  • Example 9 In Example 9, the distance diopter S is ⁇ 8.00, the prescription addition add is 1.75, the surface addition ADDb (S, C, add) on the reference surface is 2.50, and the surface addition ADDc on the correction surface. (S, C, add) is -1.17, surface average refractive power PFb (S, C, add) at the reference point for distance on the reference surface is 1.25, surface average refractive power at the reference point for distance on the correction surface PFc (S, C, add) was set to ⁇ 9.09.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .42.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.16.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the distance diopter S designated by the prescription value.
  • Example 10 In Example 10, the diopter power S is ⁇ 10.00, the prescription addition add is 3.25, the surface addition ADDb (S, C, add) on the reference plane is 4.00, and the surface addition ADDc on the correction plane. (S, C, add) is -1.51, surface average refractive power PFb (S, C, add) at the distance reference point of the reference surface is 1.25, surface average power at the distance reference point of the correction surface PFc (S, C, add) was set to -11.13.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .76.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.12.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the refractive index n is 1.60
  • the distance diopter S is ⁇ 10.00
  • the prescription addition add is 3.25
  • the surface addition ADDb (S, C, add) at the reference plane is 4.00.
  • the surface addition ADDc (S, C, add) on the correction surface is -1.59
  • the surface average refractive power PFb (S, C, add) at the distance reference point on the reference surface is 1.13
  • the distance on the correction surface is
  • the surface average refractive power PFc (S, C, add) at the reference point for use was set to -11.04.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .84.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.09.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the distance diopter S designated by the prescription value.
  • Example 12 In Example 12, the refractive index n is 1.74, the distance diopter S is ⁇ 10.00, the prescription addition add is 3.25, and the surface addition ADDb (S, C, add) at the reference plane is 4.00.
  • the surface addition ADDc (S, C, add) on the correction surface is -1.44, the surface average refractive power PFb (S, C, add) at the distance reference point on the reference surface is 1.38, the distance on the correction surface is The surface average refractive power PFc (S, C, add) at the reference point for use was set to -11.23.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .69.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.15.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the distance diopter S designated by the prescription value.
  • Example 13 In Example 13, the refractive index n is 1.74, the distance diopter S is ⁇ 12.00, the prescription addition add is 3.25, and the surface addition ADDb (S, C, add) at the reference plane is 4.00.
  • the surface addition ADDc (S, C, add) on the correction surface is ⁇ 1.69, the surface average refractive power PFb (S, C, add) at the distance reference point on the reference surface is 1.38, and the distance on the correction surface is The surface average refractive power PFc (S, C, add) at the reference point for use was set to -13.28.
  • a value ADDb (S, C, add) + ADDc (S, C, add) ⁇ add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is ⁇ 0. .94.
  • a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.10.
  • the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value.
  • the distance diopter S designated by the prescription value.
  • the surface average refractive power PFc (S, C, add) at the reference point OF it is possible to make the distance power and addition, which are the most important specifications of the progressive power lens, equal to the values specified in the prescription.
  • the optical performance of transmitted light can be kept good.
  • Example 1 Example 5, and Example 10
  • Example 2 Example 3, Example 7, and Example 8
  • Example 4 Example 6
  • the surface addition ADDb (S, C, add) on the reference surface is equal, and only the surface addition ADDc (S, C, add) on the correction surface is different.
  • the surface addition ADDb (S, C, add) on the reference surface is set to a constant value, and the surface addition ADDc (S, C, add) on the correction surface is used as a variable, and ADDb (S, C, add). It is also possible to adjust the value of + ADDc (S, C, add) ⁇ add.
  • Example 1 and Example 2 between Example 3 and Example 4, between Example 5, Example 6 and Example 7, Example 8, Example 9 and Example 10.
  • the surface average refractive power PFb (S, C, add) at the distance reference point of the reference surface is equal, and the surface average power PFc (S, C, add) at the distance reference point of the correction surface is the same. only add) is different.
  • the surface average refractive power PFb (S, C, add) at the distance reference point on the reference surface is set to a constant value, and the surface average power PFc (S, C, add) at the distance reference point on the correction surface is set. It is also possible to adjust the value of PFb (S, C, add) + PFc (S, C, add) ⁇ S, using as a variable. Adjusting the sum of the surface average refractive powers at the distance reference points on both sides while changing the surface average power at the distance reference point on the other surface while keeping the surface average power at one distance reference point constant. Thus, the sum of the surface average refractive powers at the distance reference points on both surfaces can be easily adjusted, and can be adjusted to a more preferable value.
  • an arbitrary light beam L corresponding to the line of sight of the wearer has a point O1 on the lens surface M1 that is the outer surface, a point O2 on the lens surface M2 that is the inner surface, and the rotation point RC of the eyeball. It forms an image at a point OR on the retina R of the eyeball.
  • the light beam LF passing through the distance reference point corresponding to the line of sight of the wearer passes through the distance reference point OF1 on the lens surface M1 which is the outer surface and the distance reference point OF2 on the lens surface M2 which is the inner surface.
  • an image is formed at a point ORf on the retina R of the eyeball through the rotation point RC of the eyeball.
  • the light beam LN passing through the near reference point corresponding to the line of sight of the wearer passes through the near reference point ON1 on the lens surface M1 that is the outer surface and the near reference point ON2 on the lens surface M2 that is the inner surface.
  • An image is formed at a point ORn on the retina R of the eyeball through the rotation point RC of the eyeball.
  • the lens surface M1 that is an outer surface is used as a reference surface
  • the lens surface M2 that is an inner surface is described as a correction surface formed in an aspherical shape in order to correct the optical performance of transmitted light.
  • the light beam L corresponding to the line of sight of the wearer hardly enters the lens surface perpendicularly except for the light beam passing through the vicinity of the optical axis OA of the lens, and the position where the light beam enters the lens surface is the position of the lens.
  • the incident angle on the lens surface tends to increase. In other words, various aberrations are caused by light rays passing through the periphery of the lens surface.
  • the distance reference point OF1 and the near reference point ON1 on the lens surface M1 and the distance reference point OF2 and the near reference point ON2 on the lens surface M2 are usually lens surfaces through which the optical axis OA of the lens passes.
  • the positions are set apart from the optical center OG1 on M1 and the optical center OG2 on the lens surface M2. That is, the light beam LF and the light beam LN do not enter the lens surface perpendicularly, and aberration occurs even in light beams passing through the distance reference point and the near reference point.
  • the lens surface M1 which is the outer surface
  • the lens surface M2 which is the inner surface
  • the distance power specified by the prescription value is S.
  • the astigmatic power specified by the prescription value is C (S)
  • the addition power specified by the prescription value is add (S)
  • the surface addition power of the reference surface M1, which is the difference between the surface average refractive power and the surface average refractive power at the distance reference point OF1 of the reference surface M1 is ADDb (S)
  • the surface of the correction surface M2 at the near reference point ON2 is the astigmatism included in the progressive power lens series, where ADDc (S) is the addition power of the correction surface M2, which is the difference between the average refractive power and the surface average refractive power at the distance reference point OF1 of the correction surface M2.
  • the value of ADDc (S) varies depending on the distance power S according to the set condition, and takes a maximum value at a predetermined distance power Sp.
  • the Sp value when taking the maximum value ADDc (Sp) is exactly one when the distance power S continuously changes, but the distance power S as in a normal progressive-power lens. Is set at a fixed interval and takes a discrete value, the value of Sp may be two. In such a case, out of the two Sps, assuming that the greater distance power is Sph and the smaller distance power is Sp1, the above conditional expression (9) is satisfied when Sph ⁇ Sl, It is desirable that the progressive addition lens LS be formed so as to satisfy the conditional expression (10) when Spl ⁇ Sh.
  • conditional expression (15) is further satisfied within the range indicated by the expression (13).
  • the lens surface M1 which is the outer surface
  • the lens surface M2 which is the inner surface
  • the distance power specified by the prescription value is S.
  • the astigmatic power specified by the prescription value is C (S)
  • the addition power specified by the prescription value is add (S)
  • the surface addition power of the reference surface M1, which is the difference between the surface average refractive power and the surface average refractive power at the distance reference point OF1 of the reference surface M1 is ADDb (S)
  • the addition power of the correction surface M2, which is the difference between the average refractive power and the surface average refractive power at the distance reference point OF2 of the correction surface M2, is ADDc (S).
  • a first progressive-power lens whose power is the first distance power S1;
  • the second progressive power lens Sh having the second distance power Sh larger than the distance power S1 is selected, the astigmatism power C (Sl), the add power add (Sl), and the reference in the first progressive power lens
  • C (Sh) C (Sl)
  • add (Sh) add (Sl)
  • ADDb (Sh) ADDb (Sl)
  • 0 ⁇ Sl it is preferable that the following conditional expression (18) is satisfied.
  • conditional expression (19) is further satisfied within the range indicated by the expression (18). Furthermore, it is preferable that the following conditional expression (20) is satisfied.
  • conditional expression (21) is further satisfied within the range indicated by the expression (20).
  • the astigmatic power C specified by the prescription value is equal between the first progressive power lens and the second progressive power lens among the plurality of progressive power lenses LS.
  • the addition add specified by the prescription value is equal and the surface addition ADDb of the reference surface is equal
  • the surface addition ADDc of each correction surface decreases as the distance power S increases.
  • Sp ⁇ Sh the surface addition ADDc of each correction surface is set to decrease as the distance power S decreases.
  • the astigmatism power C specified by the prescription value is equal between the first progressive power lens and the second progressive power lens among the plurality of progressive power lenses, and the prescription value
  • the specified addition add is equal and the surface addition ADDb of the reference surface is equal
  • the surface addition ADDc of the correction surface is set to decrease as the distance power S increases. It was.
  • the outer surface M1 of the outer surface M1 and the inner surface M2 is the reference surface and the inner surface M2 is the correction surface.
  • the present invention is not limited to this.
  • the inner surface M2 is the reference surface
  • the outer surface M1 is The conditional expressions (9) to (21) can be applied even with the configuration of the correction surface.
  • Example 14 of the present invention will be described with reference to Table 2.
  • Table 2 shows the distance power designated by the prescription value for the first progressive-power lens, the surface addition ADDc (Sl) on the correction surface, and the distance-use designated by the prescription value for the second progressive-power lens.
  • the power Sh, the surface addition ADDc (Sh) on the correction surface, the surface addition ADDc (Sh) on the correction surface of the second progressive-power lens, and the surface addition ADDc (Sl) on the correction surface of the first progressive-power lens Is divided by the difference between the distance power Sh specified by the prescription value for the second progressive power lens and the distance power Sl specified by the prescription value for the first progressive power lens (ADDc ( Sh) -ADDc (Sl)) / (Sh-Sl), wearing addition ADD (Sl) of the first progressive addition lens, and wearing addition ADD (Sh) of the second progressive addition lens are shown.
  • the progressive-power lens series according to Example 14 has five progressive-power lenses with a distance power of 5.00, 4.00, 3.00, 2.00, and 1.00.
  • the progressive-power lens series according to Example 14 has a refractive index n of 1.67, an astigmatism power C of 0.00, and a distance reference point on the reference surface M1.
  • the surface average refractive power at OF is PFb 6.27, prescription addition add 2.00, and surface addition ADDb at the reference plane is 2.50.
  • the surface average refractive power PFb at the distance reference point of the reference surface was set to the same value as 6.27. Also, the astigmatic power specified by the prescription value is 0.00, the addition power specified by the prescription value is 2.00, and the surface addition power at the reference plane is 2.50, which is the same value among the five lenses. did.
  • the distance between the surface addition on the correction surface of the second progressive-power lens and the surface addition on the correction surface of the first progressive-power lens is the distance specified by the prescription value for the second progressive-power lens.
  • the value (ADDc (Sh) ⁇ ADDc (Sl)) / (Sh ⁇ Sl) divided by the difference between the power Sh and the distance power S1 designated by the prescription value for the first progressive-power lens is the above (1 ) In the case of (2), -0.07 in the case of (2), -0.04 in the case of (3), and in the case of (4) above. -0.03.
  • Example 15 Next, Example 15 will be described with reference to Table 3.
  • Table 3 is the same as Table 2 above, but the distance power S1 specified by the prescription value for the first progressive-power lens, the surface addition ADDc (Sl) on the correction surface, and the prescription value for the second progressive-power lens Distance addition power Sh specified by the above, surface addition ADDc (Sh) on the correction surface, surface addition ADDc (Sh) on the correction surface of the second progressive power lens and surface addition on the correction surface of the first progressive power lens
  • the difference from the power ADDc (Sl) is the difference between the distance power Sh specified by the prescription value for the second progressive power lens and the distance power Sl specified by the prescription value for the first progressive power lens.
  • the progressive-power lens series according to Example 15 has five progressive-power lenses having a distance power of 4.00, 3.00, 2.00, 1.00, and 0.00.
  • the progressive-power lens series according to Example 15 has a refractive index n of 1.67, and has a surface average refractive power of the reference surface M1 at the distance reference point OF1.
  • the PFb is 4.39
  • the astigmatic power C specified in the prescription is 0.00
  • the prescription addition add is 3.50
  • the surface addition ADDb on the reference plane is 4.00.
  • the relationship between the two progressive-power lenses when the lens is a first progressive-power lens (Sl 0.00) is shown.
  • the surface average refractive power PFb at the distance reference point of the reference surface was set to the same value as 4.39.
  • the astigmatic power specified by the prescription value is 0.00
  • the addition power specified by the prescription value is 3.50
  • the surface addition power at the reference plane is 4.00, which is the same value among the five lenses. did.
  • the distance between the surface addition on the correction surface of the second progressive-power lens and the surface addition on the correction surface of the first progressive-power lens is the distance specified by the prescription value for the second progressive-power lens.
  • the value (ADDc (Sh) ⁇ ADDc (Sl)) / (Sh ⁇ Sl) divided by the difference between the power Sh and the distance power S1 designated by the prescription value for the first progressive-power lens is the above (1 ) In the case of (2), -0.08 in the case of (2), -0.07 in the case of (3), and in the case of (4) above. -0.04.
  • Example 16 Next, Example 16 will be described with reference to Table 4.
  • Table 4 is the same as Table 2 and Table 3 above, regarding the distance diopter S1 specified by the prescription value for the first progressive addition lens, the surface addition ADDc (S1) on the correction surface, and the second progressive addition lens.
  • the distance dioptric power Sh specified by the prescription value, the surface addition ADDc (Sh) on the correction surface, the surface addition ADDc (Sh) on the correction surface of the second progressive addition lens, and the correction surface of the first progressive addition lens The difference between the surface addition power ADDc (Sl) at the distance and the distance power Sh designated by the prescription value for the second progressive power lens and the distance power Sl designated by the prescription value for the first progressive power lens (ADDc (Sh) ⁇ ADDc (Sl)) / (Sh ⁇ Sl) divided by the difference between the first progressive addition lens ADD (Sl) and second addition ADD lens addition ADD (Sh) It is.
  • the progressive addition lens series according to Example 16 has a distance power of 0.00, -1.00, -2.00, -3.00, -4.00, -5.00, -6.00, It has 10 progressive power lenses of ⁇ 7.00, ⁇ 8.00, and ⁇ 9.00.
  • the progressive-power lens series according to Example 16 has a refractive index n of 1.67, and a surface average refractive power at the distance reference point OF1 of the reference surface M1.
  • PFb is 2.51
  • astigmatism power C specified by prescription is 0.00
  • prescription addition add is 0.75
  • surface addition ADDb at the reference plane is 1.50.
  • -0.86 for a progressive power lens with a distance power of 0.00 -0.84 for a progressive power lens with a distance power of -1.00
  • -0.84 for a progressive power lens with a power of -2.00 -0.86 for a progressive power lens with a power of -3.00
  • a progressive power of -4.00 for a distance power -0.89 for lenses -0.94 for progressive-power lenses with a distance power of -5.00, -1.00 for progressive-power lenses with a distance power of -6.00, distance use -1.08 for a progressive power lens with a power of -7.00, -1.17 for a progressive power lens with a power of -8.00, and a progressive power of -9.00 for a distance power
  • the lens was set to -1.28.
  • the distance between the surface addition on the correction surface of the second progressive-power lens and the surface addition on the correction surface of the first progressive-power lens is the distance specified by the prescription value for the second progressive-power lens.
  • the value (ADDc (Sh) ⁇ ADDc (Sl)) / (Sh ⁇ Sl) divided by the difference between the power Sh and the distance power S1 designated by the prescription value for the first progressive-power lens is the above (1 ) In the case of (2) above, 0.02 in the case of (3) above, 0.02 in the case of (4) above. 03, 0.05 in the case of (5), 0.06 in the case of (6), 0.08 in the case of (7), and (8) In the case of (9), it was 0.09, and in the case of (9), it was 0.11.
  • the distance power Sp when the surface addition ADDc (S) of the correction surface M2 takes the maximum value was ⁇ 1.00 and ⁇ 2.00.
  • the maximum value ADDc (Sp) of the addition of the correction surface M2 was ⁇ 0.84.
  • the difference (PFb ⁇ Sp) between the surface average refractive power of the reference surface M1 at the distance reference point OF1 and PFb and the distance power Sp was 3.51 and 4.51.
  • Example 17 Next, Example 17 will be described with reference to Table 5.
  • Table 5 shows the distance power S1 specified by the prescription value for the first progressive-power lens, the surface addition ADDc (Sl) on the correction surface, and the second progressive-power lens, as in Tables 2 to 4 above.
  • the distance dioptric power Sh specified by the prescription value, the surface addition ADDc (Sh) on the correction surface, the surface addition ADDc (Sh) on the correction surface of the second progressive addition lens, and the correction surface of the first progressive addition lens The difference between the surface addition power ADDc (Sl) at the distance and the distance power Sh designated by the prescription value for the second progressive power lens and the distance power Sl designated by the prescription value for the first progressive power lens (ADDc (Sh) ⁇ ADDc (Sl)) / (Sh ⁇ Sl) divided by the difference between the first progressive addition lens ADD (Sl) and second addition ADD lens addition ADD (Sh) respectively To have.
  • the progressive-power lens series according to Example 17 has a distance power of -2.00, -3.00, -4.00, -5.00, -6.00
  • the progressive-power lens series according to Example 17 has a refractive index n of 1.67, and has a surface average refractive power of the reference surface M1 at the distance reference point OF1.
  • PFb is 1.25
  • prescription-specified astigmatism power C is 0.00
  • prescription addition power add is 2.00
  • surface addition power ADDb at the reference plane is 2.50.
  • the distance between the surface addition on the correction surface of the second progressive-power lens and the surface addition on the correction surface of the first progressive-power lens is the distance specified by the prescription value for the second progressive-power lens.
  • the value (ADDc (Sh) ⁇ ADDc (Sl)) / (Sh ⁇ Sl) divided by the difference between the power Sh and the distance power S1 designated by the prescription value for the first progressive-power lens is the above (1 ) In the case of (2) above, 0.01 in the case of (3) above, 0.03 in the case of (4) above. 04, 0.06 in the case of (5), 0.07 in the case of (6), 0.09 in the case of (7), and (8) In this case, it was 0.10.
  • the distance dioptric power Sp when the surface addition ADDc (S) of the correction surface M2 takes the maximum value was ⁇ 3.00.
  • the maximum value ADDc (Sp) of the addition of the correction surface M2 was ⁇ 0.69.
  • the difference (PFb ⁇ Sp) between the surface average refractive power of the reference surface M1 at the distance reference point OF1 and the distance power Sp (PFb ⁇ Sp) was 4.25.

Abstract

Optimization of the optical properties of transmission light rays is performed in consideration of the prescription for a wearer, the use condition, and the like so that the sum of the surface addition power (ADDb) (S, C, add) at a reference surface and the surface addition power (ADDc) (S, C, add) at a correction surface may be smaller than the addition power (add) specified by the prescription.  It is thereby possible to make the distance power and the addition power, which are important specifications for a progressive power lens, equal to the value specified by the prescription value and improve the optical properties of the transmission light rays to be closer to the target optical properties of the progressive power lens.

Description

累進屈折力レンズ及び累進屈折力レンズシリーズProgressive power lens and progressive power lens series
 本発明は、眼の調節力の補助として使用する累進屈折力レンズにおいて、特にレンズの外面及び内面の両面を非球面形状とした累進屈折力レンズ及び累進屈折力レンズシリーズに関する。
 本願は、2008年10月14日に出願された特願2008-265630号及び特願2008-265631号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a progressive-power lens used as an aid to eye accommodation, and more particularly to a progressive-power lens and a progressive-power lens series in which both the outer surface and the inner surface of the lens are aspherical.
This application claims priority based on Japanese Patent Application No. 2008-265630 and Japanese Patent Application No. 2008-265631 filed on Oct. 14, 2008, the contents of which are incorporated herein by reference.
 老視による調節力の衰えを補う為の矯正用眼鏡レンズとして、装用状態において、レンズの上方に位置する比較的遠方視に適した領域である遠用部と、レンズの下方に位置し遠用部よりも比較的近方視に適した領域である近用部と、この遠用部と近用部の中間に位置し、遠用部と近用部の面屈折力を連続的に変化して接続する領域である累進部とを備えた累進屈折力レンズが知られている。 As a corrective spectacle lens to compensate for the decline in the adjustment power due to presbyopia, in the wearing state, a distance portion that is a relatively suitable region for far vision located above the lens, and a distance-use portion located below the lens It is located in the middle of the near part and the near part, which is a relatively suitable area for near vision than the part, and the surface refractive power of the far part and the near part is continuously changed. There is known a progressive power lens having a progressive portion which is a connected area.
 累進屈折力レンズは、遠方視時と近方視時において眼鏡の掛け替えや掛け外しを必要としない上、レンズ全体に明確な境目が無く外観的にも優れていることから、近年では多く用いられるようになっている。 Progressive-power lenses do not need to be exchanged or detached when viewing at a distance or near vision, and the lens has no clear borders and is excellent in appearance. It is like that.
 これまで累進屈折力レンズでは、製造上の簡略化とコストダウンの必要性から、外面に予め累進屈折面が加工された半製品レンズが使用されていた。即ち、半製品レンズの内面にある処方面を、眼鏡装用者の球面度数や乱視度数に合わせて球面又はトーリック面に加工して眼鏡レンズを作成する際に、一定の処方度数範囲で同じ半製品レンズを共用するものである。半製品レンズを用いることにより、加工コストや在庫を低減することが可能となり、コストダウンに大きな役割を果たしている。 Until now, progressive-power lenses have used semi-finished lenses with progressive-reflecting surfaces pre-processed on the outer surface because of the need for manufacturing simplicity and cost reduction. In other words, when creating a spectacle lens by processing the prescription surface on the inner surface of the semifinished lens into a spherical or toric surface according to the spherical power or astigmatism power of the spectacle wearer, the same semi-finished product within a certain prescription power range The lens is shared. By using a semi-finished product lens, it is possible to reduce processing costs and inventory, which plays a major role in cost reduction.
 従来、ある特定の処方度数で光学性能を設定した累進面形状を異なる処方度数でも共用するため、設計の段階で半製品レンズの光学性能が設定された基準となる処方度数以外では、光学性能が劣化する場合があった。近年では、非球面加工技術が発達したことから、非球面、特に自由曲面のような複雑な非球面を短時間の内に自由に加工することが可能となった。その結果、従来は球面或いはトーリック面であった処方面を、レンズ毎に装用者の処方やレンズ形状等を考慮した非球面形状や累進面形状に加工することが可能となった。 Conventionally, progressive surface shapes with optical performance set at a specific prescription power are shared with different prescription powers, so the optical performance is not limited to the prescription power that is the standard for setting the optical performance of semi-finished lenses at the design stage. There was a case where it deteriorated. In recent years, with the development of aspherical processing technology, it has become possible to process aspherical surfaces, particularly complex aspherical surfaces such as free-form surfaces, in a short time. As a result, it has become possible to process a prescription surface, which has been a spherical surface or a toric surface, into an aspherical shape or a progressive surface shape that takes into account the wearer's prescription and lens shape for each lens.
 このため最近では、処方面である内面に累進面が配置されている内面累進屈折力レンズや、更には外面及び内面の両面を非球面化した累進屈折力レンズが製品化されるようになった。中でも特に外面と内面を累進面化する両面累進屈折力レンズは、光学性能の改善や、従来の片面累進屈折力レンズでは困難であった新しい光学性能を持つ累進屈折力レンズを生成する可能性が有ることから、重要な技術として注目されている。 Therefore, recently, an inner surface progressive addition lens in which a progressive surface is arranged on the inner surface as a prescription surface and a progressive addition lens in which both the outer surface and the inner surface are aspherical have been commercialized. . In particular, a double-sided progressive-power lens that progressively forms the outer surface and inner surface has the potential to improve optical performance and generate progressive-power lenses with new optical performance that were difficult with conventional single-sided progressive-power lenses. Therefore, it is attracting attention as an important technology.
 例えば、特許文献1では、従来の累進屈折力レンズよりも非点収差を改善し、遠用部と近用部の屈折力の違いによる倍率差を改善し、更には前記倍率差伴う像の揺れや歪みを低減するために、内面に累進面を配置した内面累進屈折力レンズや、外面に負または正の値となる面加入度を持った累進面を配置し、内面に正の加入度を持った累進面を配置した両面累進屈折力レンズの技術が開示されている。 For example, in Patent Document 1, astigmatism is improved as compared with a conventional progressive-power lens, and the magnification difference due to the difference in refractive power between the distance portion and the near portion is improved. In order to reduce distortion, an inner surface progressive addition lens with a progressive surface on the inner surface and a progressive surface with a surface addition of negative or positive value on the outer surface are arranged to increase the positive addition on the inner surface. A technique of a double-sided progressive-power lens in which a progressive surface having the same is arranged is disclosed.
 また、特許文献2では、外面及び内面の両面に累進面を配置した両面累進屈折力レンズとして、どちらか一方の面を正の加入度を持つプログレッシブ面とし、もう一方を負の加入度を持つリグレッシブ面とすることにより、プログレッシブ面で発生した非点収差をリグレッシブ面で発生する非点収差で相殺し、レンズを透過する光線の収差を軽減する技術が開示されている。 In Patent Document 2, as a double-sided progressive addition lens in which progressive surfaces are arranged on both the outer surface and the inner surface, one of the surfaces is a progressive surface having a positive addition and the other has a negative addition. A technique has been disclosed in which a progressive surface is used to cancel the astigmatism generated on the progressive surface with the astigmatism generated on the progressive surface, thereby reducing the aberration of light transmitted through the lens.
特許第3800629号公報Japanese Patent No. 3800629 特開2000-249992号公報JP 2000-249992 A
 従来の累進屈折力レンズでは、主に累進面における面非点隔差の分布や、面平均屈折力の分布などの累進面の面屈折力の光学性能で評価されていた。 The conventional progressive-power lens has been evaluated mainly by the optical performance of the surface refractive power of the progressive surface such as the distribution of surface astigmatism on the progressive surface and the distribution of surface average refractive power.
 しかしながら累進屈折力レンズでは、累進面の面屈折力の光学性能(以下、「屈折面の光学性能」と表記する)と、装用者が累進屈折力レンズを使用した時の視線に相当する光線での光学性能(以下、「透過光線の光学性能」と表記する)とでは一致することはほとんど無い。 However, with a progressive power lens, the optical performance of the surface refractive power of the progressive surface (hereinafter referred to as “optical performance of the refractive surface”) and the light beam equivalent to the line of sight when the wearer uses the progressive power lens. The optical performance (hereinafter referred to as “optical performance of transmitted light”) is almost the same.
 すなわち屈折面の光学性能と透過光線の光学性能は、レンズ面に対して垂直に近い角度で入射する光線ではほぼ等しいと考えることが出来る。しかしながら、レンズ面の法線に対して角度を持って入射する光線の場合では、例えレンズ面が球面であっても、光線がレンズ面を通過する際には非点収差や平均屈折力誤差などの収差が発生するため、屈折面の光学性能と透過光線の光学性能は一致しなくなる。このような傾向はレンズ面への光線のレンズ面への入射角が大きくなるに従って増加し、前記各種収差はレンズの外面及び内面においてそれぞれ発生する。 That is, it can be considered that the optical performance of the refracting surface and the optical performance of the transmitted light are almost equal for light incident at an angle close to perpendicular to the lens surface. However, in the case of light rays that are incident at an angle with respect to the normal of the lens surface, even if the lens surface is spherical, astigmatism, average refractive power error, etc. when the light rays pass through the lens surface Therefore, the optical performance of the refracting surface and the optical performance of the transmitted light do not match. Such a tendency increases as the incident angle of the light ray on the lens surface increases, and the various aberrations occur on the outer surface and the inner surface of the lens, respectively.
 このような屈折面の光学性能と透過光線の光学性能の不一致は、眼鏡レンズにおいては球面度数や乱視度数、加入度、プリズム処方と言った処方値や、フレーム形状や物体距離といったレンズの使用条件、更にはベースカーブや累進面の加入度といったレンズ形状の条件など、様々な条件の組み合わせによって傾向や程度が異なって発生するため、実際に装用した時の累進屈折力レンズの光学性能は、外面や内面に設定された累進面の屈折面の光学性能では単純に評価することは難しい。 This discrepancy between the optical performance of the refracting surface and the optical performance of the transmitted light is due to prescription values such as spherical power, astigmatism power, addition power, prism prescription, and lens usage conditions such as frame shape and object distance. In addition, the optical performance of the progressive power lens when it is actually worn depends on the outer surface because it varies depending on the combination of various conditions such as lens shape conditions such as base curve and progressive surface addition. It is difficult to simply evaluate the optical performance of the refracting surface of the progressive surface set on the inner surface.
 このような問題を解決するためには、従来のような累進面の屈折面の光学性能ではなく、装用者の処方や使用状況等を考慮した透過光線の光学性能を、目標となる累進屈折力レンズの光学性能により近づけるように改善する、いわゆる透過光線の光学性能の最適化(以下、単に「最適化」とする)を行い、累進屈折力レンズの補正面の形状を決定することが必要である。 In order to solve such problems, the optical performance of the transmitted light in consideration of the prescription and usage of the wearer, not the optical performance of the refracting surface of the progressive surface as in the past, is the target progressive refractive power. It is necessary to optimize the optical performance of so-called transmitted light (hereinafter simply referred to as “optimization”) to improve the lens so that it is closer to the optical performance of the lens, and to determine the shape of the correction surface of the progressive-power lens. is there.
 本発明の態様における目的は、装用者の処方や使用状況等を考慮して透過光線の光学性能の最適化を行うことによって、累進屈折力レンズで重要な仕様である加入度を、処方値で指定された値と等しくし、透過光線の光学性能を良好に保つことが可能な累進屈折力レンズ及び累進屈折力レンズシリーズを提供することにある。 The purpose of the aspect of the present invention is to optimize the optical performance of transmitted light in consideration of the wearer's prescription and usage conditions, etc. It is an object of the present invention to provide a progressive power lens and a progressive power lens series which are equal to a specified value and can keep the optical performance of transmitted light good.
 本発明の態様に係る累進屈折力レンズは、装用状態で物体側の屈折面となる外面と、装用状態で眼球側の屈折面となる内面と、を有し、前記外面及び前記内面のうち少なくとも一方は、装用状態でレンズの上方位置に設けられ、比較的遠方視に適した遠用部と、装用状態でレンズの下方位置に設けられ、比較的近方視に適した近用部と、前記遠用部と前記近用部の間に設けられ、前記遠用部と前記近用部の間で面屈折力が累進的に変化する累進部と、を有し、前記外面及び内面のうちの一方を所定の面形状を有する基準面とし、他方を補正面とし、処方値で指定された遠用度数をS、処方値で指定された乱視度数をC、処方値で指定された加入度をaddとした場合において、前記基準面の前記近用基準点での前記面平均屈折力と前記基準面の前記遠用基準点での前記面平均屈折力との差である前記基準面の面加入度をADDb(S,C,add)とし、前記補正面の前記近用基準点での前記面平均屈折力と前記補正面の前記遠用基準点での前記面平均屈折力との差である前記補正面の面加入度をADDc(S,C,add)とすると、
Figure JPOXMLDOC01-appb-M000001
 の条件式を満足することを特徴とする。
A progressive-power lens according to an aspect of the present invention has an outer surface that is a refractive surface on the object side in a worn state and an inner surface that is a refractive surface on the eyeball side in a worn state, and at least of the outer surface and the inner surface One is provided at the upper position of the lens in the wearing state and is relatively suitable for far vision, and the near part is provided at the lower position of the lens in the wearing state and relatively suitable for near vision; A progressive portion that is provided between the distance portion and the near portion, and whose surface refractive power changes progressively between the distance portion and the near portion, of the outer surface and the inner surface One of these is a reference surface having a predetermined surface shape, the other is a correction surface, the distance power specified by the prescription value is S, the astigmatism power specified by the prescription value is C, and the addition power specified by the prescription value Is the add, and the surface average refractive power at the near reference point of the reference surface and the reference surface The surface addition of the reference surface, which is the difference from the surface average refractive power at the distance reference point, is ADDb (S, C, add), and the surface average refraction at the near reference point of the correction surface. When the addition power of the correction surface, which is the difference between the force and the surface average refractive power at the distance reference point of the correction surface, is ADDc (S, C, add),
Figure JPOXMLDOC01-appb-M000001
It satisfies the following conditional expression.
 累進屈折力レンズでは、加入度が大きい程、近方視に必要な調節力が少なくて済むという利点が有る反面、レンズ全体に発生する各種の収差は加入度の値にほぼ比例して発生するため、装用加入度が大きくなればなるほど、より大きな収差や像の歪みが発生する。 Progressive-power lenses have the advantage that the greater the add power, the less the adjustment power required for near vision, but the various aberrations that occur in the entire lens occur almost in proportion to the value of the add power. Therefore, the larger the wearing addition, the more aberration and image distortion occur.
 これは透過光線の光学性能の最適化を行う場合でも同様で、レンズの装用加入度が処方値により指定された加入度よりも大きければ、本来の望ましい装用加入度で最適化を行ったレンズよりも、非点収差や像の歪み等の透過光線の光学性能が劣ったものとなる。したがって累進屈折力レンズの装用加入度は、装用者に必要な処方により指定された加入度と等しく設定することが必要である。 This is also the case when optimizing the optical performance of transmitted light. If the addition of the lens is greater than the addition specified by the prescription value, then the lens optimized with the original desired addition is used. However, the optical performance of transmitted light such as astigmatism and image distortion is inferior. Therefore, it is necessary to set the addition power of the progressive-power lens equal to the addition power specified by the prescription required for the wearer.
 ところが、従来の累進屈折力レンズのように、基準面の面加入度ADDb(S,C,add)と補正面における面加入度ADDc(S,C,add)の和をレンズ全体の加入度として、処方により指定される加入度addと等しく設定すると、実際にレンズを装用した際の透過光線のおける装用加入度ADDは、処方加入度addよりも大きくなることが判明した。 However, as in the conventional progressive addition lens, the sum of the surface addition ADDb (S, C, add) on the reference surface and the surface addition ADDc (S, C, add) on the correction surface is used as the addition of the entire lens. It was found that, when set equal to the addition add designated by the prescription, the wearing addition ADD in the transmitted light when the lens is actually worn becomes larger than the prescription addition add.
 したがって本発明の上記態様では、基準面における面加入度ADDb(S,C,add)と補正面における面加入度ADDc(S,C,add)との和が処方値により指定される加入度addよりも小さくなるように、装用者の処方や使用状況等を考慮して透過光線の光学性能の最適化を行うことによって、累進屈折力レンズで重要な仕様である遠用度数と加入度を、処方値で指定された値と等しくし、透過光線の光学性能を目標とする累進屈折力レンズの光学性能により近づけるように改善することが可能となる。なお、本発明の上記態様における透過光線の光学性能の最適化は、リスティングの法則による眼の回旋運動の影響を考慮して行うことが好ましい。また、上記条件式において、屈折力の単位は、特に言及しない場合にはディオプター(D)によって表される。 Therefore, in the above aspect of the present invention, the addition add in which the sum of the surface addition ADDb (S, C, add) on the reference surface and the surface addition ADDc (S, C, add) on the correction surface is designated by the prescription value. By optimizing the optical performance of the transmitted light in consideration of the wearer's prescription and usage situation, the diopter power and addition power, which are important specifications in the progressive power lens, It is possible to make the optical performance of the transmitted light closer to the optical performance of the target progressive-power lens by making it equal to the value specified by the prescription value. Note that the optimization of the optical performance of the transmitted light in the above aspect of the present invention is preferably performed in consideration of the influence of the rotational movement of the eye due to the law of listing. In the above conditional expression, the unit of refractive power is represented by diopter (D) unless otherwise specified.
 上記態様において、複数の前記累進屈折力レンズは、それぞれの前記基準面の面加入度が一定の値となり、それぞれの前記補正面の面加入度が変数となるように形成されていることができる。 In the above aspect, the plurality of progressive-power lenses can be formed such that the surface addition of each of the reference surfaces has a constant value and the surface addition of each of the correction surfaces becomes a variable. .
 この場合、一方の面の面加入度を一定にして、他方の面の面加入度を変化させながら両面の面加入度の和を調節することにより、コストダウンをはかりつつ、当該両面の面加入度の和を調整しやすくなるため、レンズの装用加入度ADDと処方加入度addを等しくすることが容易になる。 In this case, the surface addition on one side is kept constant and the sum of the surface additions on both sides is adjusted while changing the surface addition on the other side. Since it becomes easy to adjust the sum of the degrees, it becomes easy to make the wearing addition ADD of the lens equal to the prescription addition add.
 上記態様において、複数の前記累進屈折力レンズは、それぞれの前記基準面の遠用基準点における面平均屈折力が一定の値となり、それぞれの前記補正面の遠用基準点における面平均屈折力が変数となるように形成されていることができる。 In the above aspect, the plurality of progressive-power lenses have a constant surface average refractive power at the distance reference point of each of the reference surfaces, and the surface average power at the distance reference point of each of the correction surfaces. It can be configured to be a variable.
 この場合、一方の面での遠用基準点の面平均屈折力を一定にして、他方の面での遠用基準点の面平均屈折力を変化させながら両面での遠用基準点の面平均屈折力の和を調節することにより、コストダウンをはかりつつ、当該両面の遠用基準点の面平均屈折力の和が調整しやすくなるため、遠用基準点を通る透過光線の平均屈折力を処方値で指定された遠用度数と等しくすることが容易になる。 In this case, the surface average refractive power of the distance reference point on one surface is made constant, and the surface average of the distance reference point on both surfaces is changed while changing the surface average refractive power of the distance reference point on the other surface. By adjusting the sum of the refractive powers, it is easy to adjust the sum of the surface average refractive powers of the distance reference points on both surfaces while reducing the cost. It becomes easy to make it equal to the distance power specified by the prescription value.
 本発明の態様に係る累進屈折力レンズは、複数の異なる処方に対応した累進屈折力レンズシリーズに含まれる累進屈折力レンズであって、装用状態で物体側の屈折面となる外面と、装用状態で眼球側の屈折面となる内面と、を有し、前記外面及び前記内面のうち少なくとも一方は、装用状態でレンズの上方位置に設けられ、比較的遠方視に適した遠用部と、装用状態でレンズの下方位置に設けられ、比較的近方視に適した近用部と、前記遠用部と前記近用部の間に設けられ、前記遠用部と前記近用部の間の面屈折力が累進的に変化する累進部と、を有し、前記外面及び内面のうちの一方を所定の面形状を有する基準面とし、他方を補正面とし、処方値で指定された遠用度数をSとし、前記遠用度数がSのときにそれぞれ処方値で指定された乱視度数をC(S)、処方値で指定された加入度をadd(S)、前記基準面の近用基準点での面平均屈折力と前記基準面の遠用基準点での面平均屈折力との差である前記基準面の面加入度をADDb(S)、前記補正面の近用基準点での面平均屈折力と前記補正面の遠用基準点での面平均屈折力との差である前記補正面の面加入度をADDc(S)とし、前記累進屈折力レンズシリーズに含まれる、前記乱視度数C(S)および、前記加入度add(S)および、前記基準面の面加入度ADDb(S)が等しい累進屈折力レンズにおいて、前記補正面の面加入度ADDc(S)が最大値をとるときの遠用度数をSpとし、前記累進屈折力レンズシリーズの中から、前記遠用度数が第1遠用度数Slである第1累進屈折力レンズと、前記遠用度数が前記第1遠用度数Slよりも大きい第2遠用度数Shである第2累進屈折力レンズとを選択した場合、前記第1累進屈折力レンズにおける前記乱視度数C(Sl)、前記加入度add(Sl)、前記基準面の面加入度ADDb(Sl)及び前記補正面の面加入度ADDc(Sl)のそれぞれと、前記第2累進屈折力レンズにおける前記乱視度数C(Sh)、前記加入度add(Sh)、前記基準面の面加入度ADDb(Sh)及び前記補正面の面加入度ADDc(Sh)のそれぞれとについて、
 C(Sh)=C(Sl)、
 add(Sh)=add(Sl)、
 ADDb(Sh)=ADDb(Sl)
 であるときに、
Sp≦Slのとき、
Figure JPOXMLDOC01-appb-M000002
 の条件式を満足し、
Sp≧Shのとき、
Figure JPOXMLDOC01-appb-M000003
 の条件式を満足する
 ことを特徴とする。
The progressive-power lens according to the aspect of the present invention is a progressive-power lens included in a progressive-power lens series corresponding to a plurality of different prescriptions, and includes an outer surface serving as a refractive surface on the object side in a worn state, and a worn state And an inner surface which is a refractive surface on the eyeball side, and at least one of the outer surface and the inner surface is provided at a position above the lens in a wearing state, Provided in the lower position of the lens in a state, relatively suitable for near vision, provided between the distance portion and the near portion, between the distance portion and the near portion A progressive portion whose surface refractive power changes progressively, and one of the outer surface and the inner surface is a reference surface having a predetermined surface shape, and the other is a correction surface, and is for distance use specified by a prescription value When the frequency is S, and the distance power is S, The power is C (S), the addition power specified by the prescription value is add (S), the surface average power at the near reference point of the reference surface and the surface average power at the distance reference point of the reference surface The surface addition power of the reference surface, which is the difference between the correction surface, and ADDb (S), the difference between the surface average refractive power at the near reference point of the correction surface and the surface average refractive power at the distance reference point of the correction surface The surface addition of the correction surface is ADDc (S), and the astigmatism power C (S), the addition add (S), and the surface addition of the reference surface are included in the progressive power lens series. In a progressive-power lens having the same power ADDb (S), Sp is the distance power when the addition power ADDc (S) of the correction surface takes the maximum value, and from the progressive-power lens series, A first progressive-power lens whose power is the first distance power Sl, and the distance power Is selected as the second progressive power lens having the second distance power Sh larger than the first distance power S1, the astigmatism power C (Sl) and the addition power in the first progressive power lens are selected. add (Sl), surface addition ADDb (Sl) of the reference surface and surface addition ADDc (Sl) of the correction surface, and the astigmatism power C (Sh) and addition of the second progressive addition lens Degree add (Sh), surface addition ADDb (Sh) of the reference surface, and surface addition ADDc (Sh) of the correction surface,
C (Sh) = C (Sl),
add (Sh) = add (Sl),
ADDb (Sh) = ADDb (Sl)
When
When Sp ≦ Sl,
Figure JPOXMLDOC01-appb-M000002
Is satisfied,
When Sp ≧ Sh,
Figure JPOXMLDOC01-appb-M000003
It satisfies the following conditional expression.
 上述したように、累進屈折力レンズでは、加入度が大きい程、近方視に必要な調節力が少なくて済むという利点が有る反面、レンズ全体に発生する各種の収差は加入度の値にほぼ比例して発生するため、装用加入度が大きくなればなるほど、より大きな収差や像の歪みが発生する。 As described above, the progressive addition lens has an advantage that the greater the addition, the less adjustment power necessary for near vision is required, but various aberrations occurring in the entire lens are almost equal to the addition value. Since they occur proportionally, the larger the wearing addition, the greater the aberrations and image distortion that occur.
 これは透過光線の光学性能の最適化を行う場合でも同様で、レンズの装用加入度が処方値により指定された加入度よりも大きければ、本来の望ましい装用加入度で最適化を行ったレンズよりも、非点収差や像の歪み等の透過光線の光学性能が劣ったものとなる。 This is also the case when optimizing the optical performance of transmitted light. If the addition of the lens is greater than the addition specified by the prescription value, then the lens optimized with the original desired addition is used. However, the optical performance of transmitted light such as astigmatism and image distortion is inferior.
 反対に加入度が小さい場合には、透過光線の光学性能は比較的良くなるが、近方視に必要なレンズの近用部の屈折力が不足するため、累進屈折力レンズとしての本来の機能を満足しなくなる。 On the other hand, when the addition is small, the optical performance of the transmitted light is relatively good, but the original function as a progressive power lens is insufficient because the refractive power of the near part of the lens necessary for near vision is insufficient. Will not be satisfied.
 したがってレンズの装用上における光学的な効果及びレンズの基本的な仕様が等しくなるように設定された累進屈折力レンズシリーズに含まれる全ての累進屈折力レンズの装用加入度は、装用者に必要な処方により指定された加入度と等しく設定することが必要である。 Therefore, the wearing power of all progressive power lenses included in the progressive power lens series set so that the optical effects on the lens wear and the basic specifications of the lenses are equal is necessary for the wearer. It is necessary to set it equal to the addition specified by the prescription.
 本発明の上記態様によれば、複数の累進屈折力レンズのうち第1累進屈折力レンズと第2累進屈折力レンズとの間において、処方値により指定される乱視度数Cが等しく、処方値により指定される加入度addが等しく、基準面の面加入度ADDbが等しい場合、Sp≦Slのときには遠用度数Sが増加するにしたがってそれぞれの補正面の面加入度ADDcが減少し、Sp≧Shのときには遠用度数Sが減少するにしたがってそれぞれの補正面の面加入度ADDcが減少するように設定することとした。このように複数の累進屈折力レンズのうち任意の2つについて比較した場合に上記関係を満たすように装用者の処方や使用状況等を考慮して透過光線の光学性能の最適化を行うことによって、累進屈折力レンズで重要な仕様である加入度を、処方値で指定された値と等しくし、透過光線の光学性能を目標とする累進屈折力レンズの光学性能により近づけるように改善することが可能となった。その結果、レンズの装用上における光学的な効果及びレンズの基本的な仕様をレンズシリーズにおいて等しくすることが可能となる。なお、本発明における透過光線の光学性能の最適化は、リスティングの法則による眼の回旋運動の影響を考慮して行うことが好ましい。また、上記条件式において、屈折力の単位は、特に言及しない場合にはディオプター(D)によって表される。 According to the above aspect of the present invention, the astigmatic power C specified by the prescription value is equal between the first progressive power lens and the second progressive power lens among the plurality of progressive power lenses, and the prescription value When the specified addition add is equal and the surface addition ADDb of the reference surface is equal, when Sp ≦ Sl, the surface addition ADDc of each correction surface decreases as the distance power S increases, and Sp ≧ Sh In this case, the surface addition ADDc of each correction surface is set to decrease as the distance power S decreases. In this way, by optimizing the optical performance of the transmitted light in consideration of the wearer's prescription and usage conditions so as to satisfy the above relationship when comparing any two of the plurality of progressive-power lenses It is possible to improve the addition power, which is an important specification in the progressive power lens, to be equal to the value specified in the prescription value and to make the optical performance of the transmitted light closer to the optical performance of the target progressive power lens. It has become possible. As a result, the optical effects on lens wearing and the basic specifications of the lens can be made equal in the lens series. In addition, it is preferable to optimize the optical performance of the transmitted light in the present invention in consideration of the influence of the rotational movement of the eye due to the law of listing. In the above conditional expression, the unit of refractive power is represented by diopter (D) unless otherwise specified.
 本発明の態様に係る累進屈折力レンズは、複数の異なる処方に対応した累進屈折力レンズシリーズに含まれる累進屈折力レンズであって、装用状態で物体側の屈折面となる外面と、装用状態で眼球側の屈折面となる内面と、を有し、前記外面及び前記内面のうち少なくとも一方は、装用状態でレンズの上方位置に設けられ、比較的遠方視に適した遠用部と、装用状態でレンズの下方位置に設けられ、比較的近方視に適した近用部と、前記遠用部と前記近用部の間に設けられ、前記遠用部と前記近用部の間の面屈折力が累進的に変化する累進部と、を有し、前記外面及び内面のうちの一方を所定の面形状を有する基準面とし、他方を補正面とし、処方値で指定された遠用度数をSとし、前記遠用度数がSのときにそれぞれ処方値で指定された乱視度数をC(S)、処方値で指定された加入度をadd(S)、前記基準面の近用基準点での面平均屈折力と前記基準面の遠用基準点での面平均屈折力との差である前記基準面の面加入度をADDb(S)、前記補正面の近用基準点での面平均屈折力と前記補正面の遠用基準点での面平均屈折力との差である前記補正面の面加入度をADDc(S)とし、前記累進屈折力レンズシリーズの中から、前記遠用度数が第1遠用度数Slである第1累進屈折力レンズと、前記遠用度数が前記第1遠用度数Slよりも大きい第2遠用度数Shである第2累進屈折力レンズとを選択した場合、前記第1累進屈折力レンズにおける前記乱視度数C(Sl)、前記加入度add(Sl)、前記基準面の面加入度ADDb(Sl)及び前記補正面の面加入度ADDc(Sl)のそれぞれと、前記第2累進屈折力レンズにおける前記乱視度数C(Sh)、前記加入度add(Sh)、前記基準面の面加入度ADDb(Sh)及び前記補正面の面加入度ADDc(Sh)のそれぞれとについて、
 C(Sh)=C(Sl)、
 add(Sh)=add(Sl)、
 ADDb(Sh)=ADDb(Sl)、
 であり、かつ、
 0≦Sl
 であるときに、
Figure JPOXMLDOC01-appb-M000004
 の条件式を満足することを特徴とする。
The progressive-power lens according to the aspect of the present invention is a progressive-power lens included in a progressive-power lens series corresponding to a plurality of different prescriptions, and includes an outer surface serving as a refractive surface on the object side in a worn state, and a worn state And an inner surface which is a refractive surface on the eyeball side, and at least one of the outer surface and the inner surface is provided at a position above the lens in a wearing state, Provided in the lower position of the lens in a state, relatively suitable for near vision, provided between the distance portion and the near portion, between the distance portion and the near portion A progressive portion whose surface refractive power changes progressively, and one of the outer surface and the inner surface is a reference surface having a predetermined surface shape, and the other is a correction surface, and is for distance use specified by a prescription value When the frequency is S, and the distance power is S, The power is C (S), the addition power specified by the prescription value is add (S), the surface average power at the near reference point of the reference surface and the surface average power at the distance reference point of the reference surface The surface addition power of the reference surface, which is the difference between the correction surface, and ADDb (S), the difference between the surface average refractive power at the near reference point of the correction surface and the surface average refractive power at the distance reference point of the correction surface The addition power of the correction surface is ADDc (S), and from the progressive power lens series, the first progressive power lens whose distance power is the first distance power Sl, and the distance use When the second progressive power lens whose power is the second distance power Sh larger than the first distance power S1 is selected, the astigmatism power C (Sl) in the first progressive power lens, the addition Degree add (Sl), surface addition ADDb (Sl) of the reference surface, and surface addition A of the correction surface Each of Dc (Sl), the astigmatism power C (Sh), the addition power add (Sh), the surface addition power ADDb (Sh) of the reference surface and the surface addition of the correction surface in the second progressive addition lens. For each of the degrees ADDc (Sh)
C (Sh) = C (Sl),
add (Sh) = add (Sl),
ADDb (Sh) = ADDb (Sl),
And
0 ≦ Sl
When
Figure JPOXMLDOC01-appb-M000004
It satisfies the following conditional expression.
 本発明の上記態様によれば、複数の累進屈折力レンズのうち第1累進屈折力レンズと第2累進屈折力レンズとの間において、処方値により指定される乱視度数Cが等しく、処方値により指定される加入度addが等しく、基準面の面加入度ADDbが等しい場合、0≦Slのときには遠用度数Sが増加するにしたがってそれぞれ補正面の面加入度ADDcが減少するように設定することとした。このように複数の累進屈折力レンズのうち任意の2つについて比較した場合に上記関係を満たすように装用者の処方や使用状況等を考慮して透過光線の光学性能の最適化を行うことによって、累進屈折力レンズで重要な仕様である加入度を、処方値で指定された値と等しくし、透過光線の光学性能を目標とする累進屈折力レンズの光学性能により近づけるように改善することが可能となった。その結果、レンズの装用上における光学的な効果及びレンズの基本的な仕様をレンズシリーズにおいて等しくすることが可能となる。なお、本発明の上記態様における透過光線の光学性能の最適化は、リスティングの法則による眼の回旋運動の影響を考慮して行うことが好ましい。また、上記条件式においても、屈折力の単位は、特に言及しない場合にはディオプター(D)によって表される。 According to the above aspect of the present invention, the astigmatic power C specified by the prescription value is equal between the first progressive power lens and the second progressive power lens among the plurality of progressive power lenses, and the prescription value When the specified addition add is equal and the surface addition ADDb of the reference surface is equal, when 0 ≦ S1, the surface addition ADDc of the correction surface is set to decrease as the distance power S increases. It was. In this way, by optimizing the optical performance of the transmitted light in consideration of the wearer's prescription and usage conditions so as to satisfy the above relationship when comparing any two of the plurality of progressive-power lenses It is possible to improve the addition power, which is an important specification in the progressive power lens, to be equal to the value specified in the prescription value and to make the optical performance of the transmitted light closer to the optical performance of the target progressive power lens. It has become possible. As a result, the optical effects on lens wearing and the basic specifications of the lens can be made equal in the lens series. Note that the optimization of the optical performance of the transmitted light in the above aspect of the present invention is preferably performed in consideration of the influence of the rotational movement of the eye due to the law of listing. Also in the above conditional expression, the unit of refractive power is represented by diopter (D) unless otherwise specified.
 本発明の態様によれば、装用者の処方や使用状況等を考慮して透過光線の光学性能の最適化を行うことによって、累進屈折力レンズで重要な仕様である加入度を、処方値で指定された値と等しくし、透過光線の光学性能を目標とする累進屈折力レンズの光学性能により近づけるように改善することが可能となる。 According to the aspect of the present invention, the optical power of the transmitted light is optimized in consideration of the wearer's prescription and usage conditions, and the addition, which is an important specification in the progressive power lens, is determined by the prescription value. It is possible to make the optical performance of the transmitted light closer to the optical performance of the target progressive-power lens by making it equal to the specified value.
本発明の実施形態に係る累進屈折力レンズにおける領域区分の概要を示す図。The figure which shows the outline | summary of the area | region division in the progressive-power lens which concerns on embodiment of this invention. 装用状態における眼鏡レンズの光線の通り方を示した模式図。The schematic diagram which showed the way of the light ray of the spectacles lens in a wearing state.
 本発明の実施の形態を説明する。以下の記載において、屈折力の単位は、特に言及しない場合にはディオプター(D)によって表されるものとする。また、以下の説明において、累進屈折力レンズの「上方」、「下方」、「上部」、「下部」等と表記する場合は、当該累進屈折力レンズが眼鏡用に加工される場合において眼鏡を装用したときのレンズの位置関係に基づくものとする。以下の各図面においても、レンズの位置関係(上下左右)は、紙面に対する位置関係(上下左右)と一致するものとする。また、レンズを構成する2つの屈折面のうち、物体側の面を「外面」とし、眼球側の面を「内面」として表すものとする。 Embodiments of the present invention will be described. In the following description, the unit of refractive power is represented by diopter (D) unless otherwise specified. Further, in the following description, when the progressive power lens is described as “upper”, “lower”, “upper”, “lower”, etc., the glasses are used when the progressive power lens is processed for spectacles. It is based on the positional relationship of the lenses when worn. Also in the following drawings, the positional relationship (up / down / left / right) of the lens is the same as the positional relationship (up / down / left / right) with respect to the paper surface. Of the two refracting surfaces constituting the lens, the object side surface is referred to as an “outer surface” and the eyeball side surface is referred to as an “inner surface”.
 図1は本実施形態に係る累進屈折力レンズにおける領域区分の概要を示す図である。
 図1に示すように、累進屈折力レンズLSは、眼鏡フレームの形状に合わせてレンズを加工する前の状態(玉摺り加工前の状態)になっており、平面視で円形に形成されている。累進屈折力レンズLSは、図中上側が装用時において上方に配置されることとなり、図中下側が装用時において下方に配置されることとなる。累進屈折力レンズLSは、遠用部Fと、近用部Nと、累進部Pとを有している。本実施形態に係る累進屈折力レンズシリーズは、このような累進屈折力レンズLSを複数組み合わせて構成されたものである。
FIG. 1 is a diagram showing an outline of region division in the progressive-power lens according to the present embodiment.
As shown in FIG. 1, the progressive addition lens LS is in a state before processing the lens according to the shape of the spectacle frame (a state before lashing processing), and is formed in a circular shape in plan view. . The progressive-power lens LS is arranged on the upper side in the figure when worn, and the lower side in the figure is arranged on the lower side when worn. The progressive addition lens LS has a distance portion F, a near portion N, and a progressive portion P. The progressive power lens series according to this embodiment is configured by combining a plurality of such progressive power lenses LS.
 遠用部Fは、累進屈折力レンズLSの上方に配置されており、当該累進屈折力レンズLSが眼鏡用に加工された後には比較的遠方視に適した部分となる。近用部Nは、累進屈折力レンズLSの下部に配置されており、当該累進屈折力レンズLSが眼鏡用に加工された後には比較的近方視に適した部分となる。累進部Pは、累進屈折力レンズLSのうち遠用部Fと近用部Nの中間に配置されており、遠用部Fと近用部Nとの間の面屈折力を累進的に変化させる部分である。 The distance portion F is disposed above the progressive addition lens LS, and after the progressive addition lens LS is processed for spectacles, it becomes a portion suitable for relatively far vision. The near portion N is disposed below the progressive power lens LS, and becomes a portion suitable for near vision after the progressive power lens LS is processed for spectacles. The progressive portion P is disposed between the distance portion F and the near portion N in the progressive power lens LS, and the surface refractive power between the distance portion F and the near portion N is progressively changed. It is a part to be made.
 累進屈折力レンズLSは、複数の基準点を有している。このような基準点として、例えば、図1に示すように、アイポイント(フィッティングポイントとも呼ばれる)EP、光学中心点OG、遠用基準点OF、近用基準点ONなどが挙げられる。アイポイントEPは、装用者がレンズ装用する時の基準点となる。光学中心点OGは、レンズの光学的特性の中心点となる。 The progressive power lens LS has a plurality of reference points. Examples of such a reference point include an eye point (also called a fitting point) EP, an optical center point OG, a distance reference point OF, and a near reference point ON, as shown in FIG. The eye point EP is a reference point when the wearer wears the lens. The optical center point OG is the center point of the optical characteristics of the lens.
 遠用基準点OFは、遠用部Fにおいてレンズの遠用度数を測定する測定基準点となる。近用基準点ONは、近用部Nにおいてレンズの近用度数を測定する測定基準点となる。遠用基準点OFでの面平均屈折力又は近用基準点ONでの面平均屈折力は、それぞれ処方値で指定された遠用度数又は近用度数に基づいて設定されることになる。 The distance reference point OF is a measurement reference point for measuring the distance power of the lens in the distance portion F. The near reference point ON is a measurement reference point for measuring the near power of the lens in the near portion N. The surface average refractive power at the distance reference point OF or the surface average power at the near reference point ON is set based on the distance power or near power specified by the prescription value, respectively.
 また、本実施形態では、累進屈折力レンズLSで測定される近用基準点ONの面平均屈折力から遠用基準点OFの面平均屈折力を引いた値を「面加入度」と表記する。これに対して、処方値で指定される加入度を「処方加入度」、レンズの近用基準点ONを通る透過光線LNの平均屈折力DNから遠用基準点OFを通る透過光線LFの平均屈折力DFを引いた値を「装用加入度」と表記する。 In the present embodiment, a value obtained by subtracting the surface average refractive power of the near reference point OF from the surface average refractive power of the near reference point ON measured by the progressive addition lens LS is expressed as “surface addition power”. . On the other hand, the addition specified by the prescription value is “prescription addition”, and the average refractive power DN of the transmitted light LN passing through the near reference point ON of the lens to the average of the transmitted light LF passing through the distance reference point OF. A value obtained by subtracting the refractive power DF is referred to as “wear addition power”.
 累進屈折力レンズLSは、遠用基準点OF及び近用基準点ONを通り、累進面の屈折面上を鼻側領域と耳側領域とに分割する主注視線MM’を有する。主注視線MM’は主子午線とも呼ばれ、累進面の設計を行う上では重要な基準線として用いられる。主注視線は、非対称設計の累進屈折力レンズでは近方視時の輻輳を考慮して遠用部Fから近用部Nにかけて鼻側に湾曲した曲線として定義され、対称設計の累進屈折力レンズでは遠用基準点OF及び近用基準点ONを通る直線として定義される。 The progressive addition lens LS has a main gaze MM 'that passes through the distance reference point OF and the near reference point ON and divides the refractive surface of the progressive surface into a nose side region and an ear side region. The main gazing line MM 'is also called a main meridian and is used as an important reference line in designing a progressive surface. The main gazing line is defined as a curve curved to the nose side from the distance portion F to the near portion N in consideration of the convergence at the near vision in the progressive power lens of the asymmetric design, and the progressive power lens of the symmetric design. Is defined as a straight line passing through the distance reference point OF and the near reference point ON.
 図2は装用状態における累進屈折力レンズLSの光線の通り方を示した模式図である。
 図2において、装用者の視線に相当する任意の光線Lは、外面であるレンズ面M1上の点O1と内面であるレンズ面M2上の点O2、眼球の回旋点RCを通って眼球の網膜R上の点ORに結像する。光線は点O1及び点O2を通る際に、それぞれの点に対する入射角に応じて屈折する。同様に、装用者の視線に相当する遠用基準点を通る光線LFは、外面であるレンズ面M1上の遠用基準点OF1と内面であるレンズ面M2上の遠用基準点OF2を通り、更に眼球の回旋点RCを通って眼球の網膜R上の点ORfに結像する。光線は点OF1及び点OF2を通る際に、それぞれの点に対する入射角に応じて屈折する。
FIG. 2 is a schematic diagram showing how light rays of the progressive-power lens LS pass in the wearing state.
In FIG. 2, an arbitrary light beam L corresponding to the line of sight of the wearer passes through a point O1 on the lens surface M1 that is the outer surface, a point O2 on the lens surface M2 that is the inner surface, and the rotation point RC of the eyeball. An image is formed at a point OR on R. When the light ray passes through the point O1 and the point O2, it is refracted according to the incident angle with respect to each point. Similarly, the light beam LF passing through the distance reference point corresponding to the line of sight of the wearer passes through the distance reference point OF1 on the lens surface M1 which is the outer surface and the distance reference point OF2 on the lens surface M2 which is the inner surface. Further, an image is formed at a point ORf on the retina R of the eyeball through the rotation point RC of the eyeball. When the light ray passes through the point OF1 and the point OF2, it is refracted according to the incident angle with respect to each point.
 また、装用者の視線に相当する近用基準点を通る光線LNは、外面であるレンズ面M1上の近用基準点ON1と内面であるレンズ面M2上の近用基準点ON2を通り、更に眼球の回旋点RCを通って眼球の網膜R上の点ORnに結像する。光線は点ON1及び点ON2を通る際に、それぞれの点に対する入射角に応じて屈折する。本実施形態では、外面であるレンズ面M1を基準面とし、内面であるレンズ面M2を透過光線の光学性能を補正するために非球面形状に形成される補正面として説明する。 The light beam LN passing through the near reference point corresponding to the line of sight of the wearer passes through the near reference point ON1 on the lens surface M1 that is the outer surface and the near reference point ON2 on the lens surface M2 that is the inner surface. An image is formed at a point ORn on the retina R of the eyeball through the rotation point RC of the eyeball. When the light beam passes through the points ON1 and ON2, it is refracted according to the incident angle with respect to each point. In this embodiment, the lens surface M1 that is an outer surface is used as a reference surface, and the lens surface M2 that is an inner surface is described as a correction surface formed in an aspherical shape in order to correct the optical performance of transmitted light.
 装用者の視線に相当する光線Lは、レンズの光軸OAの近傍を通る光線を除けば、レンズ面に対して垂直に入射することは殆ど無く、光線がレンズ面に入射する位置がレンズの光軸から離れるに従ってレンズ面への入射角が大きくなる傾向がある。つまり各種収差は、レンズ面の周辺を通る光線でより大きな収差が発生することになる。 The light beam L corresponding to the line of sight of the wearer hardly enters the lens surface perpendicularly except for the light beam passing through the vicinity of the optical axis OA of the lens, and the position where the light beam enters the lens surface is the position of the lens. As the distance from the optical axis increases, the incident angle on the lens surface tends to increase. In other words, various aberrations are caused by light rays passing through the periphery of the lens surface.
 また、レンズ面M1上の遠用基準点OF1及び近用基準点ON1、レンズ面M2上の遠用基準点OF2及び近用基準点ON2も、通常はそれぞれがレンズの光軸OAが通るレンズ面M1上の光学中心OG1及びレンズ面M2上の光学中心OG2から離れた位置に設定される。つまり前記光線LF及び光線LNも、レンズ面に対して垂直に入射することは無く、例え遠用基準点と近用基準点を通る光線においても収差が発生することになる。 Further, the distance reference point OF1 and the near reference point ON1 on the lens surface M1, and the distance reference point OF2 and the near reference point ON2 on the lens surface M2 are usually lens surfaces through which the optical axis OA of the lens passes. The positions are set apart from the optical center OG1 on M1 and the optical center OG2 on the lens surface M2. That is, the light beam LF and the light beam LN do not enter the lens surface perpendicularly, and aberration occurs even in light beams passing through the distance reference point and the near reference point.
 本実施形態では、上記のように外面であるレンズ面M1を基準面とし、内面であるレンズ面M2を補正面とすると共に、処方値で指定された遠用度数をS、処方値で指定された乱視度数をC、処方加入度をaddとした場合において、基準面M1の近用基準点ON1での面平均屈折力と当該基準面M1の遠用基準点OF1での面平均屈折力との差である基準面M1の面加入度をADDb(S,C,add)とし、補正面M2の近用基準点ON2での面平均屈折力と当該補正面M2の遠用基準点OF2での面平均屈折力との差である補正面M2の面加入度をADDc(S,C,add)とすると、下記の条件式(1)を満足するように累進屈折力レンズLSが形成されている。 In the present embodiment, as described above, the lens surface M1 that is the outer surface is used as the reference surface, the lens surface M2 that is the inner surface is used as the correction surface, and the distance power specified by the prescription value is S and is specified by the prescription value. When the astigmatism power is C and the prescription addition power is add, the surface average refractive power of the reference surface M1 at the near reference point ON1 and the surface average refractive power of the reference surface M1 at the distance reference point OF1 The surface addition power of the reference surface M1, which is the difference, is ADDb (S, C, add), and the surface average refractive power at the near reference point ON2 of the correction surface M2 and the surface at the distance reference point OF2 of the correction surface M2 When the addition power of the correction surface M2, which is the difference from the average refractive power, is ADDc (S, C, add), the progressive addition lens LS is formed so as to satisfy the following conditional expression (1).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 この式(1)に示される範囲においては、累進屈折力レンズLSが下記の条件式(2)を満足するように形成されていることが好ましく、下記の条件式(3)を満足するように形成されていることがより好ましい。更に、下記の条件式(4)を満足するように形成されていると一層好ましい。 In the range indicated by the expression (1), the progressive addition lens LS is preferably formed so as to satisfy the following conditional expression (2), and satisfies the following conditional expression (3). More preferably, it is formed. Furthermore, it is more preferable that it is formed so as to satisfy the following conditional expression (4).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 本実施形態では、このような累進屈折力レンズLSを複数組み合わせて累進屈折力レンズシリーズとすることが可能である。このような場合、上記式(1)~(4)に示される条件式を満足させるように累進屈折力レンズLSを形成する際には、例えば基準面M1の面加入度ADDb(S,C,add)を一定の値とし、補正面M2の面加入度ADDc(S,C,add)を変数として設計することができる。一方の面の面加入度を一定にして、他方の面の面加入度を変化させながら両面の面加入度の和を調節することにより、コストダウンをはかりつつ、当該両面の面加入度の和を調整しやすくなるため、レンズの装用加入度ADDと処方加入度addを等しくすることが容易になる。 In the present embodiment, it is possible to make a progressive power lens series by combining a plurality of such progressive power lenses LS. In such a case, when forming the progressive addition lens LS so as to satisfy the conditional expressions shown in the above formulas (1) to (4), for example, the surface addition ADDb (S, C, (add) is a constant value, and the surface addition ADDc (S, C, add) of the correction surface M2 can be used as a variable. By adjusting the sum of the surface additions of both surfaces while keeping the surface addition of one surface constant and changing the surface addition of the other surface, the sum of the surface additions of the both surfaces can be reduced while reducing costs. Therefore, it is easy to make the lens addition ADD and the prescription addition add equal.
 また、上記の場合において、基準面M1の遠用基準点OF1での面平均屈折力をPFb(S,C,add)とし、補正面M2の遠用基準点OF2での面平均屈折力をPFc(S,C,add)とすると、S≧0の時には下記の条件式(5)を満足し、S<0の時には下記の条件式(6)を満足するように累進屈折力レンズLSが形成されていることが好ましい。 In the above case, the surface average refractive power of the reference surface M1 at the distance reference point OF1 is PFb (S, C, add), and the surface average refractive power of the correction surface M2 at the distance reference point OF2 is PFc. Assuming that (S, C, add), the progressive addition lens LS is formed so that the following conditional expression (5) is satisfied when S ≧ 0, and the following conditional expression (6) is satisfied when S <0. It is preferable that
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式(5)について、処方値で指定された遠用度数Sが正の値を取る場合、従来の累進屈折力レンズのように、基準面M1上の遠用基準点OF1での面平均屈折力PFb(S,C,add)と基準面M2上の遠用基準点OF2での面平均屈折力PFc(S,C,add)との和を、前記遠用度数Sと等しくしてしまうと、前記遠用基準点OF1及びOF2を通る透過光線LFの平均屈折力DFは、前記遠用度数Sよりも大きい値を取ってしまう(DF-S>0)。従って前記平均屈折力DFを前記遠用度数Sと等しくするためには、前記面平均屈折力PFbと前記面平均屈折力PFcとの和の値を、前記遠用度数Sより小さくすることが必要となる。 When the distance dioptric power S specified by the prescription value takes a positive value in the formula (5), the surface average refractive power at the distance reference point OF1 on the reference surface M1 as in the conventional progressive power lens. If the sum of PFb (S, C, add) and the surface average refractive power PFc (S, C, add) at the distance reference point OF2 on the reference surface M2 is made equal to the distance power S, The average refractive power DF of the transmitted light beam LF passing through the distance reference points OF1 and OF2 takes a value larger than the distance power S (DF−S> 0). Therefore, in order to make the average refractive power DF equal to the distance power S, it is necessary to make the sum of the surface average power PFb and the surface average power PFc smaller than the distance power S. It becomes.
 また、式(6)について、前記遠用度数Sが負の値を取る場合は、従来の累進屈折力レンズのように、前記面平均屈折力PFb(S,C,add)と前記面平均屈折力PFc(S,C,add)との和を、前記遠用度数Sと等しくしてしまうと、前記平均屈折力DFは、処方値で指定された遠用度数Sよりも小さい値を取ってしまう(DF-S<0)。従って前記平均屈折力DFを前記遠用度数Sと等しくするためには、前記面平均屈折力PFbと前記面平均屈折力PFcとの和の値を、前記遠用度数Sより大きくすることが必要となる。 In the expression (6), when the distance diopter S takes a negative value, the surface average refractive power PFb (S, C, add) and the surface average refraction as in the conventional progressive-power lens. If the sum of the force PFc (S, C, add) is made equal to the distance power S, the average refractive power DF takes a value smaller than the distance power S specified by the prescription value. (DF-S <0). Therefore, in order to make the average refractive power DF equal to the distance power S, the sum of the surface average power PFb and the surface average power PFc needs to be larger than the distance power S. It becomes.
 更にこの場合、S>0の時には下記式(7)の条件式を満足し、S<0の時には下記式(8)の条件式を満足するように累進屈折力レンズLSが形成されていることが好ましい。 Further, in this case, the progressive addition lens LS is formed so that the conditional expression (7) below is satisfied when S> 0, and the conditional expression (8) below is satisfied when S <0. Is preferred.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 前記遠用基準点OF1及びOF2が、それぞれ前記光学中心OG1及びOG2に比較的近い位置に設定され、前記遠用度数S=0の場合には、レンズの公差を考慮した場合、条件式の値がゼロ又はゼロとみなすことが可能となる値となる場合がある。この点を考慮し、式(7)の条件として、(式8)ではS≧0と設定している部分をS>0とゼロを含まない範囲に設定することが好ましい。 When the distance reference points OF1 and OF2 are set at positions relatively close to the optical centers OG1 and OG2, respectively, and the distance power S = 0, the value of the conditional expression is considered when taking into account the lens tolerance May be zero or a value that can be considered zero. In consideration of this point, as a condition of Expression (7), it is preferable to set a portion where S ≧ 0 in (Expression 8) to a range that does not include S> 0 and zero.
 また、累進屈折力レンズLSを複数組み合わせて累進屈折力レンズシリーズとする場合であって、上記の式(5)~(8)に示される範囲を調節する際には、例えば基準面M1での遠用基準点OF1の面平均屈折力PFb(S,C,add)を一定の値とし、補正面M2での遠用基準点OF2の面平均屈折力PFc(S,C,add)を変数として調節することができる。このように一方の面での遠用基準点OFの面平均屈折力を一定にして、他方の面での遠用基準点OFの面平均屈折力を変化させながら両面での遠用基準点OFの面平均屈折力の和を調節することにより、コストダウンをはかりつつ、当該両面の遠用基準点OFの面平均屈折力の和が調整しやすくなるため、遠用基準点OFを通る透過光線Lの平均屈折力DFを処方値で指定された遠用度数Sと等しくすることが容易になる。 Further, when a plurality of progressive addition lenses LS are combined to form a progressive addition lens series, when adjusting the range shown in the above equations (5) to (8), for example, on the reference plane M1 The surface average refractive power PFb (S, C, add) of the distance reference point OF1 is a constant value, and the surface average refractive power PFc (S, C, add) of the distance reference point OF2 on the correction surface M2 is a variable. Can be adjusted. In this way, the surface average refractive power of the distance reference point OF on one surface is made constant, and the distance reference point OF on both surfaces is changed while changing the surface average power of the distance reference point OF on the other surface. By adjusting the sum of the surface average refracting powers, it is easy to adjust the sum of the surface average refracting powers of the distance reference points OF on both surfaces while reducing the cost. It becomes easy to make the average refractive power DF of L equal to the distance power S designated by the prescription value.
 以上のように、本実施形態によれば、基準面における面加入度ADDb(S,C,add)と補正面における面加入度ADDc(S,C,add)との和を処方値により指定される加入度addよりも小さくなるように、装用者の処方や使用状況等を考慮して透過光線の光学性能の最適化を行うことによって、累進屈折力レンズで重要な仕様である遠用度数と加入度を、処方値で指定された値と等しくし、透過光線の光学性能を目標とする累進屈折力レンズの光学性能により近づけるように改善することが可能となった。 As described above, according to the present embodiment, the sum of the surface addition ADDb (S, C, add) on the reference surface and the surface addition ADDc (S, C, add) on the correction surface is designated by the prescription value. By optimizing the optical performance of the transmitted light in consideration of the wearer's prescription and usage conditions, the diopter power is an important specification for progressive power lenses. It has become possible to make the addition power equal to the value specified by the prescription value and improve the optical performance of the transmitted light so as to be closer to the optical performance of the target progressive-power lens.
 本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。
 例えば、本実施形態では、外面M1及び内面M2のうちの外面M1を基準面とし、内面M2を補正面としたが、これに限られることは無く、例えば内面M2を基準面とし、外面M1を補正面とする構成であっても上記式(1)~(8)の範囲の適用が可能となる。
The technical scope of the present invention is not limited to the above-described embodiment, and appropriate modifications can be made without departing from the spirit of the present invention.
For example, in the present embodiment, the outer surface M1 of the outer surface M1 and the inner surface M2 is the reference surface and the inner surface M2 is the correction surface. However, the present invention is not limited to this. For example, the inner surface M2 is the reference surface, and the outer surface M1 is Even in the configuration of the correction surface, the range of the above formulas (1) to (8) can be applied.
 表1を参照して、本発明の実施例を説明する。 An example of the present invention will be described with reference to Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、累進屈折力レンズの屈折率n、処方値で指定された遠用度数S、処方値で示された乱視度数C、処方加入度add、基準面における面加入度ADDb(S,C,add)、補正面における面加入度ADDc(S,C,add)、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-add、基準面の遠用基準点における面平均屈折力PFb(S,C,add)、補正面の遠用基準点における面平均屈折力PFc(S,C,add)、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-S、レンズの装用加入度ADD、遠用基準点を通る透過光線の平均屈折力DFをそれぞれ示している。 Table 1 shows the refractive index n of the progressive-power lens, the distance power S specified by the prescription value, the astigmatism power C indicated by the prescription value, the prescription addition add, and the surface addition ADDb (S, C at the reference surface). , Add), surface addition ADDc (S, C, add) on the correction surface, and value ADDb (S, C, add) obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface add) + ADDc (S, C, add) −add, surface average refractive power PFb (S, C, add) at the distance reference point on the reference surface, surface average power PFc (S, C) at the distance reference point on the correction surface C, add), a value obtained by subtracting the distance power S from the sum of the surface average refractive power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface PFb (S, C, add) + PFc (S, C, add) -S, lens wearing addition A D, and shows an average refractive power DF of transmitted light passing through a far vision reference point, respectively.
 本実施例では、表1に示すとおり、実施例1~実施例13に示す累進屈折力レンズを作製した。実施例1~実施例10に示す累進屈折力レンズは、光屈折率nが1.67であり、乱視度数Cが0.00である点は共通している。 In this example, as shown in Table 1, progressive power lenses shown in Examples 1 to 13 were manufactured. The progressive-power lenses shown in Examples 1 to 10 are common in that the optical refractive index n is 1.67 and the astigmatism power C is 0.00.
 (実施例1)
 実施例1では、遠用度数Sを5.00、処方加入度addを3.50、基準面における面加入度ADDb(S,C,add)を4.00、補正面における面加入度ADDc(S,C,add)を-1.02、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を6.27、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-1.62とした。
Example 1
In Example 1, the distance power S is 5.00, the prescription addition add is 3.50, the surface addition ADDb (S, C, add) on the reference surface is 4.00, and the surface addition ADDc ( S, C, add) is -1.02, surface average refractive power PFb (S, C, add) at the reference point for distance on the reference surface is 6.27, surface average power PFc at the reference point for distance on the correction surface (S, C, add) was set to −1.62.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.52となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは-0.35となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .52. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was -0.35.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。 At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
 (実施例2)
 実施例2では、遠用度数Sを3.00、処方加入度addを1.00、基準面における面加入度ADDb(S,C,add)を1.50、補正面における面加入度ADDc(S,C,add)を-0.59、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を6.27、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-3.44とした。
(Example 2)
In Example 2, the distance power S is 3.00, the prescription addition add is 1.00, the surface addition ADDb (S, C, add) on the reference surface is 1.50, and the surface addition ADDc ( S, C, add) is −0.59, the surface average refractive power PFb (S, C, add) at the reference point for distance on the reference surface is 6.27, and the surface average power PFc at the reference point for distance on the correction surface (S, C, add) was set to -3.44.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.09となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは-0.17となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .09. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was -0.17.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。 At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
 (実施例3)
 実施例3では、遠用度数Sを2.00、処方加入度addを0.75、基準面における面加入度ADDb(S,C,add)を1.50、補正面における面加入度ADDc(S,C,add)を-0.88、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を4.39、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-2.50とした。
(Example 3)
In Example 3, the distance power S is 2.00, the prescription addition add is 0.75, the surface addition ADDb (S, C, add) on the reference plane is 1.50, and the surface addition ADDc ( S, C, add) is −0.88, the surface average refractive power PFb (S, C, add) at the distance reference point of the reference surface is 4.39, and the surface average power PFc at the distance reference point of the correction surface (S, C, add) was set to -2.50.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.13となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは-0.11となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .13. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was -0.11.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。 At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
 (実施例4)
 実施例4では、遠用度数Sを0.00、処方加入度addを2.00、基準面における面加入度ADDb(S,C,add)を2.50、補正面における面加入度ADDc(S,C,add)を-0.66、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を4.39、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-4.42とした。
Example 4
In Example 4, the distance power S is 0.00, the prescription addition add is 2.00, the surface addition ADDb (S, C, add) on the reference surface is 2.50, and the surface addition ADDc ( S, C, add) is −0.66, the surface average refractive power PFb (S, C, add) at the distance reference point on the reference surface is 4.39, and the surface average power PFc at the distance reference point on the correction surface is (S, C, add) was set to -4.42.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.16となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは-0.03となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .16. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was -0.03.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。 At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
 (実施例5)
 実施例5では、遠用度数Sを-1.00、処方加入度addを3.50、基準面における面加入度ADDb(S,C,add)を4.00、補正面における面加入度ADDc(S,C,add)を-0.83、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を2.51、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-3.47とした。
(Example 5)
In Example 5, the distance power S is -1.00, the prescription addition add is 3.50, the surface addition ADDb (S, C, add) on the reference surface is 4.00, and the surface addition ADDc on the correction surface. (S, C, add) is -0.83, the surface average refractive power PFb (S, C, add) at the distance reference point of the reference surface is 2.51, and the surface average power at the distance reference point of the correction surface PFc (S, C, add) was set to -3.47.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.33となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは0.04となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .33. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.04.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。 At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
 (実施例6)
 実施例6では、遠用度数Sを-3.00、処方加入度addを2.00、基準面における面加入度ADDb(S,C,add)を2.50、補正面における面加入度ADDc(S,C,add)を-0.70、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を2.51、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-5.42とした。
(Example 6)
In Example 6, the distance power S is −3.00, the prescription addition add 2.00, the surface addition ADDb (S, C, add) on the reference surface is 2.50, and the surface addition ADDc on the correction surface. (S, C, add) is -0.70, surface average refractive power PFb (S, C, add) at the reference point for distance on the reference surface is 2.51, surface average refractive power at the reference point for distance on the correction surface PFc (S, C, add) was set to −5.42.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.20となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは0.09となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .20. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.09.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。 At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
 (実施例7)
 実施例7では、遠用度数Sを-5.00、処方加入度addを1.00、基準面における面加入度ADDb(S,C,add)を1.50、補正面における面加入度ADDc(S,C,add)を-0.68、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を2.51、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-7.40とした。
(Example 7)
In Example 7, the distance diopter S is -5.00, the prescription addition add is 1.00, the surface addition ADDb (S, C, add) on the reference surface is 1.50, and the surface addition ADDc on the correction surface. (S, C, add) is -0.68, surface average refractive power PFb (S, C, add) at the reference point for distance on the reference surface is 2.51, surface average refractive power at the reference point for distance on the correction surface PFc (S, C, add) was set to −7.40.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.18となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは0.11となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .18. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.11.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。 At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
 (実施例8)
 実施例8では、遠用度数Sを-6.00、処方加入度addを0.75、基準面における面加入度ADDb(S,C,add)を1.50、補正面における面加入度ADDc(S,C,add)を-0.91、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を1.25、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-7.08とした。
(Example 8)
In Example 8, the distance power S is −6.00, the prescription addition add is 0.75, the surface addition ADDb (S, C, add) on the reference surface is 1.50, and the surface addition ADDc on the correction surface. (S, C, add) is −0.91, surface average refractive power PFb (S, C, add) at the reference point for distance on the reference surface is 1.25, surface average refractive power at the reference point for distance on the correction surface PFc (S, C, add) was set to −7.08.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.16となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは0.17となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .16. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.17.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。 At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
 (実施例9)
 実施例9では、遠用度数Sを-8.00、処方加入度addを1.75、基準面における面加入度ADDb(S,C,add)を2.50、補正面における面加入度ADDc(S,C,add)を-1.17、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を1.25、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-9.09とした。
Example 9
In Example 9, the distance diopter S is −8.00, the prescription addition add is 1.75, the surface addition ADDb (S, C, add) on the reference surface is 2.50, and the surface addition ADDc on the correction surface. (S, C, add) is -1.17, surface average refractive power PFb (S, C, add) at the reference point for distance on the reference surface is 1.25, surface average refractive power at the reference point for distance on the correction surface PFc (S, C, add) was set to −9.09.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.42となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは0.16となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .42. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.16.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。 At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
 (実施例10)
 実施例10では、遠用度数Sを-10.00、処方加入度addを3.25、基準面における面加入度ADDb(S,C,add)を4.00、補正面における面加入度ADDc(S,C,add)を-1.51、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を1.25、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-11.13とした。
(Example 10)
In Example 10, the diopter power S is −10.00, the prescription addition add is 3.25, the surface addition ADDb (S, C, add) on the reference plane is 4.00, and the surface addition ADDc on the correction plane. (S, C, add) is -1.51, surface average refractive power PFb (S, C, add) at the distance reference point of the reference surface is 1.25, surface average power at the distance reference point of the correction surface PFc (S, C, add) was set to -11.13.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.76となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは0.12となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .76. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.12.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。
 (実施例11)
 実施例11では、屈折率nを1.60、遠用度数Sを-10.00、処方加入度addを3.25、基準面における面加入度ADDb(S,C,add)を4.00、補正面における面加入度ADDc(S,C,add)を-1.59、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を1.13、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-11.04とした。
At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
Example 11
In Example 11, the refractive index n is 1.60, the distance diopter S is −10.00, the prescription addition add is 3.25, and the surface addition ADDb (S, C, add) at the reference plane is 4.00. The surface addition ADDc (S, C, add) on the correction surface is -1.59, the surface average refractive power PFb (S, C, add) at the distance reference point on the reference surface is 1.13, the distance on the correction surface is The surface average refractive power PFc (S, C, add) at the reference point for use was set to -11.04.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.84となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは0.09となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .84. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.09.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。 At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
 (実施例12)
 実施例12では、屈折率nを1.74、遠用度数Sを-10.00、処方加入度addを3.25、基準面における面加入度ADDb(S,C,add)を4.00、補正面における面加入度ADDc(S,C,add)を-1.44、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を1.38、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-11.23とした。
(Example 12)
In Example 12, the refractive index n is 1.74, the distance diopter S is −10.00, the prescription addition add is 3.25, and the surface addition ADDb (S, C, add) at the reference plane is 4.00. The surface addition ADDc (S, C, add) on the correction surface is -1.44, the surface average refractive power PFb (S, C, add) at the distance reference point on the reference surface is 1.38, the distance on the correction surface is The surface average refractive power PFc (S, C, add) at the reference point for use was set to -11.23.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.69となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは0.15となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .69. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.15.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。 At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
 (実施例13)
 実施例13では、屈折率nを1.74、遠用度数Sを-12.00、処方加入度addを3.25、基準面における面加入度ADDb(S,C,add)を4.00、補正面における面加入度ADDc(S,C,add)を-1.69、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を1.38、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を-13.28とした。
(Example 13)
In Example 13, the refractive index n is 1.74, the distance diopter S is −12.00, the prescription addition add is 3.25, and the surface addition ADDb (S, C, add) at the reference plane is 4.00. The surface addition ADDc (S, C, add) on the correction surface is −1.69, the surface average refractive power PFb (S, C, add) at the distance reference point on the reference surface is 1.38, and the distance on the correction surface is The surface average refractive power PFc (S, C, add) at the reference point for use was set to -13.28.
 この場合、基準面における面加入度と補正面における面加入度との和から加入度の値を引いた値ADDb(S,C,add)+ADDc(S,C,add)-addは、-0.94となった。また、基準面の遠用基準点における面平均屈折力と補正面の遠用基準点における面平均屈折力との和から遠用度数Sを引いた値PFb(S,C,add)+PFc(S,C,add)-Sは0.10となった。 In this case, a value ADDb (S, C, add) + ADDc (S, C, add) −add obtained by subtracting the value of the addition from the sum of the surface addition on the reference surface and the surface addition on the correction surface is −0. .94. Further, a value PFb (S, C, add) + PFc (S) obtained by subtracting the distance power S from the sum of the surface average power at the distance reference point of the reference surface and the surface average power at the distance reference point of the correction surface. , C, add) -S was 0.10.
 この時の装用加入度ADDの値は処方加入度addと等しく、遠用基準点を通る透過光線の平均屈折力DFは処方値で指定された遠用度数Sと等しい値となり、本発明の目的を達成することが出来た。 At this time, the value of the wear addition ADD is equal to the prescription addition add, and the average refractive power DF of the transmitted light passing through the distance reference point is equal to the distance diopter S designated by the prescription value. Was able to be achieved.
 本実施例1~実施例13のいずれについても、上記実施形態における式(1)~(8)を満足する結果となった。したがって、上記実施形態に示すように累進屈折力レンズの屈折率n、処方値で指定された遠用度数S、処方値で指定された乱視度数C、処方加入度add、基準面における面加入度ADDb(S,C,add)、補正面における面加入度ADDc(S,C,add)、基準面の遠用基準点OFにおける面平均屈折力PFb(S,C,add)、補正面の遠用基準点OFにおける面平均屈折力PFc(S,C,add)を設定することにより、累進屈折力レンズの最も重要な仕様である遠用度数と加入度を処方で指定された値と等しくでき、透過光線の光学性能を良好に保つことが可能となる。 In all of Examples 1 to 13, the results (1) to (8) in the above embodiment were satisfied. Therefore, as shown in the above embodiment, the refractive index n of the progressive power lens, the distance power S specified by the prescription value, the astigmatism power C specified by the prescription value, the prescription addition add, and the surface addition power at the reference plane ADDb (S, C, add), surface addition ADDc (S, C, add) on the correction surface, surface average refractive power PFb (S, C, add) at the distance reference point OF of the reference surface, distance of the correction surface By setting the surface average refractive power PFc (S, C, add) at the reference point OF, it is possible to make the distance power and addition, which are the most important specifications of the progressive power lens, equal to the values specified in the prescription. The optical performance of transmitted light can be kept good.
 また、実施例1と実施例5と実施例10との間、実施例2と実施例3と実施例7と実施例8との間、実施例4と実施例6と実施例9との間では、それぞれ基準面における面加入度ADDb(S,C,add)が等しくなっており、補正面における面加入度ADDc(S,C,add)のみが異なっている。 Moreover, between Example 1, Example 5, and Example 10, Between Example 2, Example 3, Example 7, and Example 8, Between Example 4, Example 6, and Example 9. Then, the surface addition ADDb (S, C, add) on the reference surface is equal, and only the surface addition ADDc (S, C, add) on the correction surface is different.
 このように、基準面における面加入度ADDb(S,C,add)を一定の値とし、補正面における面加入度ADDc(S,C,add)を変数として、ADDb(S,C,add)+ADDc(S,C,add)-addの値を調節することも可能である。一方の面の面加入度を一定にして、他方の面の面加入度を変化させながら両面の面加入度の和を調節することにより、当該両面の面加入度の和が調整しやすくなり、より好ましい値に調整することができる。 Thus, the surface addition ADDb (S, C, add) on the reference surface is set to a constant value, and the surface addition ADDc (S, C, add) on the correction surface is used as a variable, and ADDb (S, C, add). It is also possible to adjust the value of + ADDc (S, C, add) −add. By adjusting the sum of the surface additions of both surfaces while keeping the surface addition of one surface constant and changing the surface addition of the other surface, it becomes easier to adjust the sum of the surface additions of both surfaces, It can be adjusted to a more preferable value.
 また、実施例1と実施例2との間、実施例3と実施例4との間、実施例5と実施例6と実施例7との間、実施例8と実施例9と実施例10との間では、それぞれ基準面の遠用基準点における面平均屈折力PFb(S,C,add)が等しくなっており、補正面の遠用基準点における面平均屈折力PFc(S,C,add)のみが異なっている。 Moreover, between Example 1 and Example 2, between Example 3 and Example 4, between Example 5, Example 6 and Example 7, Example 8, Example 9 and Example 10. , The surface average refractive power PFb (S, C, add) at the distance reference point of the reference surface is equal, and the surface average power PFc (S, C, add) at the distance reference point of the correction surface is the same. only add) is different.
 このように、基準面の遠用基準点における面平均屈折力PFb(S,C,add)を一定の値とし、補正面の遠用基準点における面平均屈折力PFc(S,C,add)を変数として、PFb(S,C,add)+PFc(S,C,add)-Sの値を調節することも可能である。一方の遠用基準点における面平均屈折力を一定にして、他方の面の遠用基準点における面平均屈折力を変化させながら両面の遠用基準点における面平均屈折力の和を調節することにより、当該両面の遠用基準点における面平均屈折力の和が調整しやすくなり、より好ましい値に調整することができる。 Thus, the surface average refractive power PFb (S, C, add) at the distance reference point on the reference surface is set to a constant value, and the surface average power PFc (S, C, add) at the distance reference point on the correction surface is set. It is also possible to adjust the value of PFb (S, C, add) + PFc (S, C, add) −S, using as a variable. Adjusting the sum of the surface average refractive powers at the distance reference points on both sides while changing the surface average power at the distance reference point on the other surface while keeping the surface average power at one distance reference point constant. Thus, the sum of the surface average refractive powers at the distance reference points on both surfaces can be easily adjusted, and can be adjusted to a more preferable value.
 次に、本発明の別の実施の形態を説明する。なお、上述の実施形態と同様の構成要素についてはその説明を省略又は簡略化する。 Next, another embodiment of the present invention will be described. Note that the description of the same components as those in the above-described embodiment is omitted or simplified.
 図2において、前述したように、装用者の視線に相当する任意の光線Lは、外面であるレンズ面M1上の点O1と内面であるレンズ面M2上の点O2、眼球の回旋点RCを通って眼球の網膜R上の点ORに結像する。光線は点O1及び点O2を通る際に、それぞれの点に対する入射角に応じて屈折する。同様に、装用者の視線に相当する遠用基準点を通る光線LFは、外面であるレンズ面M1上の遠用基準点OF1と内面であるレンズ面M2上の遠用基準点OF2を通り、更に眼球の回旋点RCを通って眼球の網膜R上の点ORfに結像する。光線は点OF1及び点OF2を通る際に、それぞれの点に対する入射角に応じて屈折する。 In FIG. 2, as described above, an arbitrary light beam L corresponding to the line of sight of the wearer has a point O1 on the lens surface M1 that is the outer surface, a point O2 on the lens surface M2 that is the inner surface, and the rotation point RC of the eyeball. It forms an image at a point OR on the retina R of the eyeball. When the light ray passes through the point O1 and the point O2, it is refracted according to the incident angle with respect to each point. Similarly, the light beam LF passing through the distance reference point corresponding to the line of sight of the wearer passes through the distance reference point OF1 on the lens surface M1 which is the outer surface and the distance reference point OF2 on the lens surface M2 which is the inner surface. Further, an image is formed at a point ORf on the retina R of the eyeball through the rotation point RC of the eyeball. When the light ray passes through the point OF1 and the point OF2, it is refracted according to the incident angle with respect to each point.
 また、装用者の視線に相当する近用基準点を通る光線LNは、外面であるレンズ面M1上の近用基準点ON1と内面であるレンズ面M2上の近用基準点ON2を通り、更に眼球の回旋点RCを通って眼球の網膜R上の点ORnに結像する。光線は点ON1及び点ON2を通る際に、それぞれの点に対する入射角に応じて屈折する。本実施形態では、外面であるレンズ面M1を基準面とし、内面であるレンズ面M2を透過光線の光学性能を補正するために非球面形状に形成される補正面として説明する。 The light beam LN passing through the near reference point corresponding to the line of sight of the wearer passes through the near reference point ON1 on the lens surface M1 that is the outer surface and the near reference point ON2 on the lens surface M2 that is the inner surface. An image is formed at a point ORn on the retina R of the eyeball through the rotation point RC of the eyeball. When the light beam passes through the points ON1 and ON2, it is refracted according to the incident angle with respect to each point. In this embodiment, the lens surface M1 that is an outer surface is used as a reference surface, and the lens surface M2 that is an inner surface is described as a correction surface formed in an aspherical shape in order to correct the optical performance of transmitted light.
 装用者の視線に相当する光線Lは、レンズの光軸OAの近傍を通る光線を除けば、レンズ面に対して垂直に入射することは殆ど無く、光線がレンズ面に入射する位置がレンズの光軸から離れるに従ってレンズ面への入射角が大きくなる傾向がある。つまり各種収差は、レンズ面の周辺を通る光線でより大きな収差が発生することになる。 The light beam L corresponding to the line of sight of the wearer hardly enters the lens surface perpendicularly except for the light beam passing through the vicinity of the optical axis OA of the lens, and the position where the light beam enters the lens surface is the position of the lens. As the distance from the optical axis increases, the incident angle on the lens surface tends to increase. In other words, various aberrations are caused by light rays passing through the periphery of the lens surface.
 また、レンズ面M1上の遠用基準点OF1及び近用基準点ON1、レンズ面M2上の遠用基準点OF2及び近用基準点ON2も、通常はそれぞれがレンズの光軸OAが通るレンズ面M1上の光学中心OG1及びレンズ面M2上の光学中心OG2から離れた位置に設定される。つまり前記光線LF及び光線LNも、レンズ面に対して垂直に入射することは無く、例え遠用基準点と近用基準点を通る光線においても収差が発生することになる。 Further, the distance reference point OF1 and the near reference point ON1 on the lens surface M1, and the distance reference point OF2 and the near reference point ON2 on the lens surface M2 are usually lens surfaces through which the optical axis OA of the lens passes. The positions are set apart from the optical center OG1 on M1 and the optical center OG2 on the lens surface M2. That is, the light beam LF and the light beam LN do not enter the lens surface perpendicularly, and aberration occurs even in light beams passing through the distance reference point and the near reference point.
 本実施形態の累進屈折力レンズでは、上記のように外面であるレンズ面M1を基準面とし、内面であるレンズ面M2を補正面とすると共に、処方値で指定された遠用度数をSとし、当該遠用度数がSのときにそれぞれ処方値で指定された乱視度数をC(S)、処方値で指定された加入度をadd(S)、基準面M1の近用基準点ON1での面平均屈折力と基準面M1の遠用基準点OF1での面平均屈折力との差である基準面M1の面加入度をADDb(S)、補正面M2の近用基準点ON2での面平均屈折力と補正面M2の遠用基準点OF1での面平均屈折力との差である補正面M2の面加入度をADDc(S)とし、前記累進屈折力レンズシリーズに含まれる、前記乱視度数C(S)および、前記加入度add(S)および、前記基準面の面加入度ADDb(S)が等しい累進屈折力レンズにおいて、補正面M2の面加入度ADDc(S)が最大値をとるときの遠用度数をSpとし、前記累進屈折力レンズシリーズの中から、遠用度数が第1遠用度数Slである第1累進屈折力レンズと、遠用度数が前記第1遠用度数Slよりも大きい第2遠用度数Shである第2累進屈折力レンズShとを選択した場合、第1累進屈折力レンズにおける乱視度数C(Sl)、加入度add(Sl)、基準面M1の面加入度ADDb(Sl)及び補正面M2の面加入度ADDc(Sl)のそれぞれと、第2累進屈折力レンズにおける乱視度数C(Sh)、加入度add(Sh)、基準面M1の面加入度ADDb(Sh)及び補正面M2の面加入度ADDc(Sh)のそれぞれとについて、
 C(Sh)=C(Sl)、
 add(Sh)=add(Sl)、
 ADDb(Sh)=ADDb(Sl)
 であるときに、Sp≦Slのとき下記の条件式(9)を満足し、Sp≧Shのとき下記の条件式(10)を満足するように累進屈折力レンズLSが形成されている。
In the progressive-power lens of this embodiment, the lens surface M1, which is the outer surface, is used as the reference surface, the lens surface M2, which is the inner surface, is used as the correction surface, and the distance power specified by the prescription value is S. When the distance power is S, the astigmatic power specified by the prescription value is C (S), the addition power specified by the prescription value is add (S), and the near reference point ON1 of the reference plane M1 The surface addition power of the reference surface M1, which is the difference between the surface average refractive power and the surface average refractive power at the distance reference point OF1 of the reference surface M1, is ADDb (S), and the surface of the correction surface M2 at the near reference point ON2 The astigmatism included in the progressive power lens series, where ADDc (S) is the addition power of the correction surface M2, which is the difference between the average refractive power and the surface average refractive power at the distance reference point OF1 of the correction surface M2. The power C (S), the addition add (S), and the reference plane In a progressive-power lens having the same addition ADDb (S), the distance dioptric power when the surface addition ADDc (S) of the correction surface M2 takes the maximum value is Sp. A first progressive power lens having a first power diopter S1 and a second progressive power lens Sh having a second power diopter Sh greater than the first power diopter S1. When selected, the astigmatism power C (Sl), the addition power add (Sl), the surface addition power ADDb (Sl) of the reference surface M1, and the surface addition power ADDc (Sl) of the correction surface M2 in the first progressive addition lens, respectively. And astigmatism power C (Sh), addition power add (Sh), surface addition power ADDb (Sh) of the reference surface M1, and surface power addition ADDc (Sh) of the correction surface M2 in the second progressive addition lens. ,
C (Sh) = C (Sl),
add (Sh) = add (Sl),
ADDb (Sh) = ADDb (Sl)
In this case, the progressive addition lens LS is formed so that the following conditional expression (9) is satisfied when Sp ≦ Sl, and the following conditional expression (10) is satisfied when Sp ≧ Sh.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 ADDc(S)の値は、設定された条件に従って遠用度数Sによって変化し、所定の遠用度数Spにおいて最大値を取る。なお、最大値ADDc(Sp)を取るときのSpの値は、遠用度数Sが連続的に変化する場合には厳密に1つとなるが、通常の累進屈折力レンズのように遠用度数Sが一定の間隔をおいて設定されて離散的な値を取る場合には、Spの値は2つとなる場合もありえる。そのような場合には、前記2つのSpのうち、遠用度数が大きい方をSph、遠用度数が小さい方をSplとすると、Sph≦Slのとき上記の条件式(9)を満足し、Spl≧Shのとき上記の条件式(10)を満足するように累進屈折力レンズLSが形成することが望ましい。 The value of ADDc (S) varies depending on the distance power S according to the set condition, and takes a maximum value at a predetermined distance power Sp. Note that the Sp value when taking the maximum value ADDc (Sp) is exactly one when the distance power S continuously changes, but the distance power S as in a normal progressive-power lens. Is set at a fixed interval and takes a discrete value, the value of Sp may be two. In such a case, out of the two Sps, assuming that the greater distance power is Sph and the smaller distance power is Sp1, the above conditional expression (9) is satisfied when Sph ≦ Sl, It is desirable that the progressive addition lens LS be formed so as to satisfy the conditional expression (10) when Spl ≧ Sh.
 式(9)に示される範囲においては、更に下記の条件式(11)を満足することが好ましい。また、式(10)に示される範囲においては、下記の条件式(12)を満足することが好ましい。 In the range indicated by the formula (9), it is preferable that the following conditional formula (11) is further satisfied. Moreover, in the range shown by Formula (10), it is preferable to satisfy the following conditional formula (12).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 なお、式(11)に示される範囲においては、更に下記の条件式(13)を満足することが好ましい。また、式(12)に示される範囲においては、更に下記の条件式(14)を満足することが好ましい。 In addition, in the range shown by Formula (11), it is preferable to satisfy the following conditional formula (13). Moreover, in the range shown by Formula (12), it is preferable to satisfy the following conditional formula (14).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 また、式(13)に示される範囲においては、更に下記の条件式(15)を満足することが好ましい。 In addition, it is preferable that the following conditional expression (15) is further satisfied within the range indicated by the expression (13).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 また、基準面M1の遠用基準点OF1での面平均屈折力をPFbとすると、下記の条件式(16)を満足することが好ましい。 Further, when the surface average refractive power at the distance reference point OF1 of the reference surface M1 is PFb, it is preferable that the following conditional expression (16) is satisfied.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 なお、式(16)に示される範囲においては、更に下記の条件式(17)を満足することが好ましい。 In addition, in the range shown by Formula (16), it is preferable to satisfy the following conditional formula (17).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 本実施形態の累進屈折力レンズでは、上記のように外面であるレンズ面M1を基準面とし、内面であるレンズ面M2を補正面とすると共に、処方値で指定された遠用度数をSとし、当該遠用度数がSのときにそれぞれ処方値で指定された乱視度数をC(S)、処方値で指定された加入度をadd(S)、基準面M1の近用基準点ON1での面平均屈折力と基準面M1の遠用基準点OF1での面平均屈折力との差である基準面M1の面加入度をADDb(S)、補正面M2の近用基準点ON2での面平均屈折力と補正面M2の遠用基準点OF2での面平均屈折力との差である補正面M2の面加入度をADDc(S)とし、前記累進屈折力レンズシリーズの中から、遠用度数が第1遠用度数Slである第1累進屈折力レンズと、遠用度数が前記第1遠用度数Slよりも大きい第2遠用度数Shである第2累進屈折力レンズShとを選択した場合、第1累進屈折力レンズにおける乱視度数C(Sl)、加入度add(Sl)、基準面M1の面加入度ADDb(Sl)及び補正面M2の面加入度ADDc(Sl)のそれぞれと、第2累進屈折力レンズにおける乱視度数C(Sh)、加入度add(Sh)、基準面M1の面加入度ADDb(Sh)及び補正面M2の面加入度ADDc(Sh)のそれぞれとについて、
 C(Sh)=C(Sl)、
 add(Sh)=add(Sl)、
 ADDb(Sh)=ADDb(Sl)、
 であり、かつ、0≦Slであるときに、下記の条件式(18)を満足することが好ましい。
In the progressive-power lens of this embodiment, the lens surface M1, which is the outer surface, is used as the reference surface, the lens surface M2, which is the inner surface, is used as the correction surface, and the distance power specified by the prescription value is S. When the distance power is S, the astigmatic power specified by the prescription value is C (S), the addition power specified by the prescription value is add (S), and the near reference point ON1 of the reference plane M1 The surface addition power of the reference surface M1, which is the difference between the surface average refractive power and the surface average refractive power at the distance reference point OF1 of the reference surface M1, is ADDb (S), and the surface of the correction surface M2 at the near reference point ON2 The addition power of the correction surface M2, which is the difference between the average refractive power and the surface average refractive power at the distance reference point OF2 of the correction surface M2, is ADDc (S). A first progressive-power lens whose power is the first distance power S1; When the second progressive power lens Sh having the second distance power Sh larger than the distance power S1 is selected, the astigmatism power C (Sl), the add power add (Sl), and the reference in the first progressive power lens Each of the surface addition ADDb (Sl) of the surface M1 and the surface addition ADDc (Sl) of the correction surface M2, astigmatism power C (Sh), addition add (Sh), and reference surface M1 in the second progressive addition lens For each of the surface addition ADDb (Sh) and the correction surface M2 surface addition ADDc (Sh),
C (Sh) = C (Sl),
add (Sh) = add (Sl),
ADDb (Sh) = ADDb (Sl),
When 0 ≦ Sl, it is preferable that the following conditional expression (18) is satisfied.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 また、式(18)に示される範囲においては、更に下記の条件式(19)を満足することが好ましい。更に下記の条件式(20)を満足することが好ましい。 In addition, it is preferable that the following conditional expression (19) is further satisfied within the range indicated by the expression (18). Furthermore, it is preferable that the following conditional expression (20) is satisfied.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 また、式(20)に示される範囲においては、更に下記の条件式(21)を満足することが好ましい。 Further, it is preferable that the following conditional expression (21) is further satisfied within the range indicated by the expression (20).
 以上のように、本実施形態によれば、複数の累進屈折力レンズLSのうち第1累進屈折力レンズと第2累進屈折力レンズとの間において、処方値により指定される乱視度数Cが等しく、処方値により指定される加入度addが等しく、基準面の面加入度ADDbが等しい場合、Sp≦Slのときには遠用度数Sが増加するにしたがってそれぞれの補正面の面加入度ADDcが減少し、Sp≧Shのときには遠用度数Sが減少するにしたがってそれぞれの補正面の面加入度ADDcが減少するように設定することとした。 As described above, according to the present embodiment, the astigmatic power C specified by the prescription value is equal between the first progressive power lens and the second progressive power lens among the plurality of progressive power lenses LS. When the addition add specified by the prescription value is equal and the surface addition ADDb of the reference surface is equal, when Sp ≦ Sl, the surface addition ADDc of each correction surface decreases as the distance power S increases. When Sp ≧ Sh, the surface addition ADDc of each correction surface is set to decrease as the distance power S decreases.
 また、本実施形態によれば、複数の累進屈折力レンズのうち第1累進屈折力レンズと第2累進屈折力レンズとの間において、処方値により指定される乱視度数Cが等しく、処方値により指定される加入度addが等しく、基準面の面加入度ADDbが等しい場合、0≦Slのときには遠用度数Sが増加するにしたがってそれぞれ補正面の面加入度ADDcが減少するように設定することとした。 According to the present embodiment, the astigmatism power C specified by the prescription value is equal between the first progressive power lens and the second progressive power lens among the plurality of progressive power lenses, and the prescription value When the specified addition add is equal and the surface addition ADDb of the reference surface is equal, when 0 ≦ S1, the surface addition ADDc of the correction surface is set to decrease as the distance power S increases. It was.
 このように複数の累進屈折力レンズのうち任意の2つについて比較した場合に上記関係を満たすように装用者の処方や使用状況等を考慮して透過光線の光学性能の最適化を行うことによって、累進屈折力レンズで重要な仕様である加入度を、処方値で指定された値と等しくし、透過光線の光学性能を目標とする累進屈折力レンズの光学性能により近づけるように改善することが可能となった。その結果、レンズの装用上における光学的な効果及びレンズの基本的な仕様をレンズシリーズにおいて等しくすることが可能となる。 In this way, by optimizing the optical performance of the transmitted light in consideration of the wearer's prescription and usage conditions so as to satisfy the above relationship when comparing any two of the plurality of progressive-power lenses It is possible to improve the addition power, which is an important specification in the progressive power lens, to be equal to the value specified in the prescription value and to make the optical performance of the transmitted light closer to the optical performance of the target progressive power lens. It has become possible. As a result, the optical effects on lens wearing and the basic specifications of the lens can be made equal in the lens series.
 本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。
 例えば、本実施形態では、外面M1及び内面M2のうちの外面M1を基準面とし、内面M2を補正面としたが、これに限られることは無く、例えば内面M2を基準面とし、外面M1を補正面とする構成であっても上記の条件式(9)~(21)の適用が可能となる。
The technical scope of the present invention is not limited to the above-described embodiment, and appropriate modifications can be made without departing from the spirit of the present invention.
For example, in the present embodiment, the outer surface M1 of the outer surface M1 and the inner surface M2 is the reference surface and the inner surface M2 is the correction surface. However, the present invention is not limited to this. For example, the inner surface M2 is the reference surface, and the outer surface M1 is The conditional expressions (9) to (21) can be applied even with the configuration of the correction surface.
 (実施例14)
 表2を参照して、本発明の実施例14を説明する。
(Example 14)
Example 14 of the present invention will be described with reference to Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2は、第1累進屈折力レンズについての処方値で指定された遠用度数Sl、補正面における面加入度ADDc(Sl)、第2累進屈折力レンズについての処方値で指定された遠用度数Sh、補正面における面加入度ADDc(Sh)、第2累進屈折力レンズの補正面における面加入度ADDc(Sh)と第1累進屈折力レンズの補正面における面加入度ADDc(Sl)との差を第2累進屈折力レンズについての処方値で指定された遠用度数Shと第1累進屈折力レンズについての処方値で指定された遠用度数Slとの差で割った値(ADDc(Sh)-ADDc(Sl))/(Sh-Sl)、第1累進屈折力レンズの装用加入度ADD(Sl)、第2累進屈折力レンズの装用加入度ADD(Sh)をそれぞれ示している。 Table 2 shows the distance power designated by the prescription value for the first progressive-power lens, the surface addition ADDc (Sl) on the correction surface, and the distance-use designated by the prescription value for the second progressive-power lens. The power Sh, the surface addition ADDc (Sh) on the correction surface, the surface addition ADDc (Sh) on the correction surface of the second progressive-power lens, and the surface addition ADDc (Sl) on the correction surface of the first progressive-power lens Is divided by the difference between the distance power Sh specified by the prescription value for the second progressive power lens and the distance power Sl specified by the prescription value for the first progressive power lens (ADDc ( Sh) -ADDc (Sl)) / (Sh-Sl), wearing addition ADD (Sl) of the first progressive addition lens, and wearing addition ADD (Sh) of the second progressive addition lens are shown.
 実施例14に係る累進屈折力レンズシリーズは、遠用度数が5.00、4.00、3.00、2.00、1.00の5つの累進屈折力レンズを有している。実施例14の最上行(1)の各欄に示す値は、遠用度数が5.00のレンズを第2累進屈折力レンズとし(Sh=5.00)、遠用度数が4.00のレンズを第1累進屈折力レンズとした(Sl=4.00)場合の2つの累進屈折力レンズの関係を示している。 The progressive-power lens series according to Example 14 has five progressive-power lenses with a distance power of 5.00, 4.00, 3.00, 2.00, and 1.00. The value shown in each column of the top row (1) of Example 14 is that the lens with a distance power of 5.00 is the second progressive addition lens (Sh = 5.00) and the power of distance is 4.00. The relationship between the two progressive-power lenses when the lens is the first progressive-power lens (Sl = 4.00) is shown.
 また、表2には示されていないが、実施例14に係る累進屈折力レンズシリーズは、屈折率nが1.67であり、乱視度数Cが0.00、基準面M1の遠用基準点OFでの面平均屈折力がPFbが6.27、処方加入度addが2.00、基準面における面加入度ADDbが2.50である点は共通している。 Although not shown in Table 2, the progressive-power lens series according to Example 14 has a refractive index n of 1.67, an astigmatism power C of 0.00, and a distance reference point on the reference surface M1. The surface average refractive power at OF is PFb 6.27, prescription addition add 2.00, and surface addition ADDb at the reference plane is 2.50.
 実施例14の上から第2行目(2)の各欄に示す値は、遠用度数が4.00のレンズを第2累進屈折力レンズとし(Sh=4.00)、遠用度数が3.00のレンズを第1累進屈折力レンズとした(Sl=3.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the respective columns of the second row (2) from the top of Example 14 indicate that the lens having the distance power of 4.00 is the second progressive power lens (Sh = 4.00), and the distance power is The relationship between the two progressive-power lenses when the 3.00 lens is the first progressive-power lens (Sl = 3.00) is shown.
 実施例14の上から第3行目(3)の各欄に示す値は、遠用度数が3.00のレンズを第2累進屈折力レンズとし(Sh=3.00)、遠用度数が2.00のレンズを第1累進屈折力レンズとした(Sl=2.00)場合の2つの累進屈折力レンズの関係を示している。 The value shown in each column of the third row (3) from the top of Example 14 is that the lens with a distance power of 3.00 is the second progressive addition lens (Sh = 3.00), and the distance power is The relationship between the two progressive-power lenses when the lens of 2.00 is the first progressive-power lens (Sl = 2.00) is shown.
 実施例14の最下行(4)の各欄に示す値は、遠用度数が2.00のレンズを第2累進屈折力レンズとし(Sh=2.00)、遠用度数が1.00のレンズを第1累進屈折力レンズとした(Sl=1.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the columns of the bottom row (4) of Example 14 are as follows. A lens with a distance power of 2.00 is a second progressive power lens (Sh = 2.00), and a distance power is 1.00. The relationship between the two progressive-power lenses when the lens is the first progressive-power lens (Sl = 1.00) is shown.
 実施例14の累進屈折力レンズシリーズでは、基準面の遠用基準点における面平均屈折力PFbを6.27と同一の値にした。また、処方値で指定された乱視度数を0.00、処方値で指定された加入度を2.00、基準面における面加入度を2.50と、それぞれ5つのレンズ間で同一の値にした。 In the progressive-power lens series of Example 14, the surface average refractive power PFb at the distance reference point of the reference surface was set to the same value as 6.27. Also, the astigmatic power specified by the prescription value is 0.00, the addition power specified by the prescription value is 2.00, and the surface addition power at the reference plane is 2.50, which is the same value among the five lenses. did.
 補正面における面加入度に関しては、遠用度数が5.00の累進屈折力レンズについては-0.83、遠用度数が4.00の累進屈折力レンズについては-0.74、遠用度数が3.00の累進屈折力レンズについては-0.67、遠用度数が2.00の累進屈折力レンズについては-0.63、遠用度数が1.00の累進屈折力レンズについては-0.60とした。 Regarding the addition power on the correction surface, -0.83 for a progressive power lens with a distance power of 5.00, -0.74 for a progressive power lens with a distance power of 4.00, and a distance power Is -0.67 for a progressive power lens with a 3.00, -0.63 for a progressive power lens with a distance power of 2.00, and-for a progressive power lens with a distance power of 1.00- It was 0.60.
 この結果、第2累進屈折力レンズの補正面における面加入度と第1累進屈折力レンズの補正面における面加入度との差を第2累進屈折力レンズについての処方値で指定された遠用度数Shと第1累進屈折力レンズについての処方値で指定された遠用度数Slとの差で割った値(ADDc(Sh)-ADDc(Sl))/(Sh-Sl)は、上記(1)の場合には-0.09であり、上記(2)の場合には-0.07であり、上記(3)の場合には-0.04であり、上記(4)の場合には-0.03であった。 As a result, the distance between the surface addition on the correction surface of the second progressive-power lens and the surface addition on the correction surface of the first progressive-power lens is the distance specified by the prescription value for the second progressive-power lens. The value (ADDc (Sh) −ADDc (Sl)) / (Sh−Sl) divided by the difference between the power Sh and the distance power S1 designated by the prescription value for the first progressive-power lens is the above (1 ) In the case of (2), -0.07 in the case of (2), -0.04 in the case of (3), and in the case of (4) above. -0.03.
 この時それぞれの遠用度数のレンズにおける装用加入度ADDの値は、全て処方加入度addと等しい値となり、本発明の目的を達成することが出来た。 At this time, all the values of the wearing addition ADD in the lenses of the respective dioptric powers were equal to the prescription addition add, and the object of the present invention could be achieved.
 (実施例15)
 次に、表3を参照して、本実施例15を説明する。
(Example 15)
Next, Example 15 will be described with reference to Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3は、上記表2と同様、第1累進屈折力レンズについての処方値で指定された遠用度数Sl、補正面における面加入度ADDc(Sl)、第2累進屈折力レンズについての処方値で指定された遠用度数Sh、補正面における面加入度ADDc(Sh)、第2累進屈折力レンズの補正面における面加入度ADDc(Sh)と第1累進屈折力レンズの補正面における面加入度ADDc(Sl)との差を第2累進屈折力レンズについての処方値で指定された遠用度数Shと第1累進屈折力レンズについての処方値で指定された遠用度数Slとの差で割った値(ADDc(Sh)-ADDc(Sl))/(Sh-Sl)、第1累進屈折力レンズの装用加入度ADD(Sl)、第2累進屈折力レンズの装用加入度ADD(Sh)をそれぞれ示している。 Table 3 is the same as Table 2 above, but the distance power S1 specified by the prescription value for the first progressive-power lens, the surface addition ADDc (Sl) on the correction surface, and the prescription value for the second progressive-power lens Distance addition power Sh specified by the above, surface addition ADDc (Sh) on the correction surface, surface addition ADDc (Sh) on the correction surface of the second progressive power lens and surface addition on the correction surface of the first progressive power lens The difference from the power ADDc (Sl) is the difference between the distance power Sh specified by the prescription value for the second progressive power lens and the distance power Sl specified by the prescription value for the first progressive power lens. Divided value (ADDc (Sh) -ADDc (Sl)) / (Sh-Sl), wearing addition ADD (Sl) of the first progressive addition lens, wearing addition ADD (Sh) of the second progressive addition lens Shows each .
 実施例15に係る累進屈折力レンズシリーズは、遠用度数が4.00、3.00、2.00、1.00、0.00の5つの累進屈折力レンズを有している。実施例15の最上行(1)の各欄に示す値は、遠用度数が4.00のレンズを第2累進屈折力レンズとし(Sh=4.00)、遠用度数が3.00のレンズを第1累進屈折力レンズとした(Sl=3.00)場合の2つの累進屈折力レンズの関係を示している。 The progressive-power lens series according to Example 15 has five progressive-power lenses having a distance power of 4.00, 3.00, 2.00, 1.00, and 0.00. The values shown in each column of the top row (1) of Example 15 are such that a lens with a distance power of 4.00 is a second progressive power lens (Sh = 4.00), and a distance power is 3.00. The relationship between the two progressive-power lenses when the lens is a first progressive-power lens (Sl = 3.00) is shown.
 また、表3には示されていないが、実施例15に係る累進屈折力レンズシリーズは、屈折率nが1.67であり、基準面M1の遠用基準点OF1での面平均屈折力がPFbが4.39、処方で指定された乱視度数Cが0.00、処方加入度addが3.50、基準面における面加入度ADDbが4.00である点は共通している。 Although not shown in Table 3, the progressive-power lens series according to Example 15 has a refractive index n of 1.67, and has a surface average refractive power of the reference surface M1 at the distance reference point OF1. The PFb is 4.39, the astigmatic power C specified in the prescription is 0.00, the prescription addition add is 3.50, and the surface addition ADDb on the reference plane is 4.00.
 実施例15の上から第2行目(2)の各欄に示す値は、遠用度数が3.00のレンズを第2累進屈折力レンズとし(Sh=3.00)、遠用度数が2.00のレンズを第1累進屈折力レンズとした(Sl=2.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the respective columns of the second row (2) from the top of Example 15 indicate that the lens with a distance power of 3.00 is the second progressive addition lens (Sh = 3.00), and the power of distance is The relationship between the two progressive-power lenses when the lens of 2.00 is the first progressive-power lens (Sl = 2.00) is shown.
 実施例15の上から第3行目(3)の各欄に示す値は、遠用度数が2.00のレンズを第2累進屈折力レンズとし(Sh=2.00)、遠用度数が1.00のレンズを第1累進屈折力レンズとした(Sl=1.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the columns of the third row (3) from the top of Example 15 are such that the lens with a distance power of 2.00 is the second progressive addition lens (Sh = 2.00), and the power of distance is The relationship between the two progressive-power lenses when the lens of 1.00 is the first progressive-power lens (Sl = 1.00) is shown.
 実施例15の最下行(4)の各欄に示す値は、遠用度数が1.00のレンズを第2累進屈折力レンズとし(Sh=1.00)、遠用度数が0.00のレンズを第1累進屈折力レンズとした(Sl=0.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in each column of the bottom row (4) of Example 15 are such that a lens with a distance power of 1.00 is a second progressive power lens (Sh = 1.00), and a distance power is 0.00. The relationship between the two progressive-power lenses when the lens is a first progressive-power lens (Sl = 0.00) is shown.
 実施例15の累進屈折力レンズシリーズでは、基準面の遠用基準点における面平均屈折力PFbを4.39と同一の値にした。また、処方値で指定された乱視度数を0.00、処方値で指定された加入度を3.50、基準面における面加入度を4.00と、それぞれ5つのレンズ間で同一の値にした。 In the progressive-power lens series of Example 15, the surface average refractive power PFb at the distance reference point of the reference surface was set to the same value as 4.39. In addition, the astigmatic power specified by the prescription value is 0.00, the addition power specified by the prescription value is 3.50, and the surface addition power at the reference plane is 4.00, which is the same value among the five lenses. did.
 補正面における面加入度に関しては、遠用度数が4.00の累進屈折力レンズについては-1.07、遠用度数が3.00の累進屈折力レンズについては-0.96、遠用度数が2.00の累進屈折力レンズについては-0.88、遠用度数が1.00の累進屈折力レンズについては-0.82、遠用度数が0.00の累進屈折力レンズについては-0.78とした。 As for the surface addition on the correction surface, -1.07 for a progressive power lens with a distance power of 4.00, -0.96 for a progressive power lens with a distance power of 3.00, and a distance power Is -0.88 for progressive-power lenses with a power of 2.00, -0.82 for progressive-power lenses with a distance power of 1.00, and-for progressive-power lenses with a distance power of 0.00- It was set to 0.78.
 この結果、第2累進屈折力レンズの補正面における面加入度と第1累進屈折力レンズの補正面における面加入度との差を第2累進屈折力レンズについての処方値で指定された遠用度数Shと第1累進屈折力レンズについての処方値で指定された遠用度数Slとの差で割った値(ADDc(Sh)-ADDc(Sl))/(Sh-Sl)は、上記(1)の場合には-0.11であり、上記(2)の場合には-0.08であり、上記(3)の場合には-0.07であり、上記(4)の場合には-0.04であった。 As a result, the distance between the surface addition on the correction surface of the second progressive-power lens and the surface addition on the correction surface of the first progressive-power lens is the distance specified by the prescription value for the second progressive-power lens. The value (ADDc (Sh) −ADDc (Sl)) / (Sh−Sl) divided by the difference between the power Sh and the distance power S1 designated by the prescription value for the first progressive-power lens is the above (1 ) In the case of (2), -0.08 in the case of (2), -0.07 in the case of (3), and in the case of (4) above. -0.04.
 この時それぞれの遠用度数のレンズにおける装用加入度ADDの値は、全て処方加入度addと等しい値となり、本発明の目的を達成することが出来た。 At this time, all the values of the wearing addition ADD in the lenses of the respective dioptric powers were equal to the prescription addition add, and the object of the present invention could be achieved.
 (実施例16)
 次に、表4を参照して、本実施例16を説明する。
(Example 16)
Next, Example 16 will be described with reference to Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4は、上記表2及び表3と同様、第1累進屈折力レンズについての処方値で指定された遠用度数Sl、補正面における面加入度ADDc(Sl)、第2累進屈折力レンズについての処方値で指定された遠用度数Sh、補正面における面加入度ADDc(Sh)、第2累進屈折力レンズの補正面における面加入度ADDc(Sh)と第1累進屈折力レンズの補正面における面加入度ADDc(Sl)との差を第2累進屈折力レンズについての処方値で指定された遠用度数Shと第1累進屈折力レンズについての処方値で指定された遠用度数Slとの差で割った値(ADDc(Sh)-ADDc(Sl))/(Sh-Sl)、第1累進屈折力レンズの装用加入度ADD(Sl)、第2累進屈折力レンズの装用加入度ADD(Sh)をそれぞれ示している。 Table 4 is the same as Table 2 and Table 3 above, regarding the distance diopter S1 specified by the prescription value for the first progressive addition lens, the surface addition ADDc (S1) on the correction surface, and the second progressive addition lens. The distance dioptric power Sh specified by the prescription value, the surface addition ADDc (Sh) on the correction surface, the surface addition ADDc (Sh) on the correction surface of the second progressive addition lens, and the correction surface of the first progressive addition lens The difference between the surface addition power ADDc (Sl) at the distance and the distance power Sh designated by the prescription value for the second progressive power lens and the distance power Sl designated by the prescription value for the first progressive power lens (ADDc (Sh) −ADDc (Sl)) / (Sh−Sl) divided by the difference between the first progressive addition lens ADD (Sl) and second addition ADD lens addition ADD (Sh) It is.
 実施例16に係る累進屈折力レンズシリーズは、遠用度数が0.00、-1.00、-2.00、-3.00、-4.00、-5.00、-6.00、-7.00、-8.00、-9.00の10個の累進屈折力レンズを有している。 The progressive addition lens series according to Example 16 has a distance power of 0.00, -1.00, -2.00, -3.00, -4.00, -5.00, -6.00, It has 10 progressive power lenses of −7.00, −8.00, and −9.00.
 また、表4には示されていないが、実施例16に係る累進屈折力レンズシリーズは、屈折率nが1.67であり、基準面M1の遠用基準点OF1での面平均屈折力がPFbが2.51、処方で指定された乱視度数Cが0.00、処方加入度addが0.75、基準面における面加入度ADDbが1.50である点は共通している。 Although not shown in Table 4, the progressive-power lens series according to Example 16 has a refractive index n of 1.67, and a surface average refractive power at the distance reference point OF1 of the reference surface M1. PFb is 2.51, astigmatism power C specified by prescription is 0.00, prescription addition add is 0.75, and surface addition ADDb at the reference plane is 1.50.
 実施例16の最上行(1)の各欄に示す値は、遠用度数が0.00のレンズを第2累進屈折力レンズとし(Sh=0.00)、遠用度数が-1.00のレンズを第1累進屈折力レンズとした(Sl=-1.00)場合の2つの累進屈折力レンズの関係を示している。 The value shown in each column of the top row (1) of Example 16 is that the lens with a distance power of 0.00 is the second progressive power lens (Sh = 0.00), and the power of distance is -1.00. The relationship between the two progressive-power lenses when the first lens is the first progressive-power lens (Sl = −1.00) is shown.
 実施例16の上から第2行目(2)の各欄に示す値は、遠用度数が-1.00のレンズを第2累進屈折力レンズとし(Sh=-1.00)、遠用度数が-2.00のレンズを第1累進屈折力レンズとした(Sl=-2.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the columns of the second row (2) from the top of Example 16 are as follows: a lens with a distance power of -1.00 is a second progressive power lens (Sh = -1.00) This shows the relationship between two progressive-power lenses when a lens with a power of -2.00 is a first progressive-power lens (Sl = -2.00).
 実施例16の上から第3行目(3)の各欄に示す値は、遠用度数が-2.00のレンズを第2累進屈折力レンズとし(Sh=-2.00)、遠用度数が-3.00のレンズを第1累進屈折力レンズとした(Sl=-3.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the columns of the third row (3) from the top of Example 16 are as follows: a lens with a distance power of -2.00 is a second progressive power lens (Sh = -2.00) The relationship between the two progressive-power lenses when the lens having a power of −3.00 is used as the first progressive-power lens (Sl = −3.00) is shown.
 実施例16の上から第4行目(4)の各欄に示す値は、遠用度数が-3.00のレンズを第2累進屈折力レンズとし(Sh=-3.00)、遠用度数が-4.00のレンズを第1累進屈折力レンズとした(Sl=-4.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the columns of the fourth row (4) from the top of Example 16 are as follows: a lens with a distance power of −3.00 is the second progressive addition lens (Sh = −3.00), The relationship between the two progressive-power lenses when the lens having a power of −4.00 is used as the first progressive-power lens (Sl = −4.00) is shown.
 実施例16の上から第5行目(5)の各欄に示す値は、遠用度数が-4.00のレンズを第2累進屈折力レンズとし(Sh=-4.00)、遠用度数が-5.00のレンズを第1累進屈折力レンズとした(Sl=-5.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the respective columns of the fifth row (5) from the top of Example 16 indicate that the lens with the distance power of −4.00 is the second progressive addition lens (Sh = −4.00), and the distance The relationship between the two progressive-power lenses when the lens having a power of −5.00 is used as the first progressive-power lens (Sl = −5.00) is shown.
 実施例16の上から第6行目(6)の各欄に示す値は、遠用度数が-5.00のレンズを第2累進屈折力レンズとし(Sh=-5.00)、遠用度数が-6.00のレンズを第1累進屈折力レンズとした(Sl=-6.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the respective columns of the sixth row (6) from the top of Example 16 indicate that the lens with a distance power of −5.00 is the second progressive addition lens (Sh = −5.00), and the distance is The relationship between the two progressive-power lenses when the lens having a power of −6.00 is used as the first progressive-power lens (Sl = −6.00) is shown.
 実施例16の上から第7行目(7)の各欄に示す値は、遠用度数が-6.00のレンズを第2累進屈折力レンズとし(Sh=-6.00)、遠用度数が-7.00のレンズを第1累進屈折力レンズとした(Sl=-7.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the respective columns of the seventh row (7) from the top of Example 16 indicate that the lens with the distance power of −6.00 is the second progressive addition lens (Sh = −6.00), and the distance The relationship between the two progressive-power lenses when the lens having the power of −7.00 is used as the first progressive-power lens (S1 = −7.00) is shown.
 実施例16の上から第8行目(8)の各欄に示す値は、遠用度数が-7.00のレンズを第2累進屈折力レンズとし(Sh=-7.00)、遠用度数が-8.00のレンズを第1累進屈折力レンズとした(Sl=-8.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the respective columns of the eighth row (8) from the top of Example 16 indicate that the lens with the distance power of −7.00 is the second progressive addition lens (Sh = −7.00), and the distance The relationship between the two progressive-power lenses when the lens having the power of −8.00 is used as the first progressive-power lens (Sl = −8.00) is shown.
 実施例16の最下行(9)の各欄に示す値は、遠用度数が-8.00のレンズを第2累進屈折力レンズとし(Sh=-8.00)、遠用度数が-9.00のレンズを第1累進屈折力レンズとした(Sl=-9.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the respective columns of the bottom line (9) of Example 16 indicate that the lens with a distance power of −8.00 is the second progressive addition lens (Sh = −8.00), and the distance power is −9. The relationship between the two progressive-power lenses when the lens of .00 is the first progressive-power lens (Sl = −9.00) is shown.
 補正面における面加入度に関しては、遠用度数が0.00の累進屈折力レンズについては-0.86、遠用度数が-1.00の累進屈折力レンズについては-0.84、遠用度数が-2.00の累進屈折力レンズについては-0.84、遠用度数が-3.00の累進屈折力レンズについては-0.86、遠用度数が-4.00の累進屈折力レンズについては-0.89、遠用度数が-5.00の累進屈折力レンズについては-0.94、遠用度数が-6.00の累進屈折力レンズについては-1.00、遠用度数が-7.00の累進屈折力レンズについては-1.08、遠用度数が-8.00の累進屈折力レンズについては-1.17、遠用度数が-9.00の累進屈折力レンズについては-1.28とした。 Regarding the addition power on the correction surface, -0.86 for a progressive power lens with a distance power of 0.00, -0.84 for a progressive power lens with a distance power of -1.00, -0.84 for a progressive power lens with a power of -2.00, -0.86 for a progressive power lens with a power of -3.00, and a progressive power of -4.00 for a distance power -0.89 for lenses, -0.94 for progressive-power lenses with a distance power of -5.00, -1.00 for progressive-power lenses with a distance power of -6.00, distance use -1.08 for a progressive power lens with a power of -7.00, -1.17 for a progressive power lens with a power of -8.00, and a progressive power of -9.00 for a distance power The lens was set to -1.28.
 この結果、第2累進屈折力レンズの補正面における面加入度と第1累進屈折力レンズの補正面における面加入度との差を第2累進屈折力レンズについての処方値で指定された遠用度数Shと第1累進屈折力レンズについての処方値で指定された遠用度数Slとの差で割った値(ADDc(Sh)-ADDc(Sl))/(Sh-Sl)は、上記(1)の場合には-0.02であり、上記(2)の場合には0.00であり、上記(3)の場合には0.02であり、上記(4)の場合には0.03であり、上記(5)の場合には0.05であり、上記(6)の場合には0.06であり、上記(7)の場合には0.08であり、上記(8)の場合には0.09であり、上記(9)の場合には0.11であった。 As a result, the distance between the surface addition on the correction surface of the second progressive-power lens and the surface addition on the correction surface of the first progressive-power lens is the distance specified by the prescription value for the second progressive-power lens. The value (ADDc (Sh) −ADDc (Sl)) / (Sh−Sl) divided by the difference between the power Sh and the distance power S1 designated by the prescription value for the first progressive-power lens is the above (1 ) In the case of (2) above, 0.02 in the case of (3) above, 0.02 in the case of (4) above. 03, 0.05 in the case of (5), 0.06 in the case of (6), 0.08 in the case of (7), and (8) In the case of (9), it was 0.09, and in the case of (9), it was 0.11.
 また、本実施例において、補正面M2の面加入度ADDc(S)が最大値をとるときの遠用度数Spは-1.00及び-2.00であった。この場合の補正面M2の面加入度の最大値ADDc(Sp)は-0.84であった。また、このときの基準面M1の遠用基準点OF1での面平均屈折力をPFbと遠用度数Spとの差(PFb-Sp)は3.51及び4.51となった。 Further, in this embodiment, the distance power Sp when the surface addition ADDc (S) of the correction surface M2 takes the maximum value was −1.00 and −2.00. In this case, the maximum value ADDc (Sp) of the addition of the correction surface M2 was −0.84. At this time, the difference (PFb−Sp) between the surface average refractive power of the reference surface M1 at the distance reference point OF1 and PFb and the distance power Sp was 3.51 and 4.51.
 この時それぞれの遠用度数のレンズにおける装用加入度ADDの値は、全て処方加入度addと等しい値となり、本発明の目的を達成することが出来た。 At this time, all the values of the wearing addition ADD in the lenses of the respective dioptric powers were equal to the prescription addition add, and the object of the present invention could be achieved.
 (実施例17)
 次に、表5を参照して、本実施例17を説明する。
(Example 17)
Next, Example 17 will be described with reference to Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5は、上記表2~表4と同様、第1累進屈折力レンズについての処方値で指定された遠用度数Sl、補正面における面加入度ADDc(Sl)、第2累進屈折力レンズについての処方値で指定された遠用度数Sh、補正面における面加入度ADDc(Sh)、第2累進屈折力レンズの補正面における面加入度ADDc(Sh)と第1累進屈折力レンズの補正面における面加入度ADDc(Sl)との差を第2累進屈折力レンズについての処方値で指定された遠用度数Shと第1累進屈折力レンズについての処方値で指定された遠用度数Slとの差で割った値(ADDc(Sh)-ADDc(Sl))/(Sh-Sl)、第1累進屈折力レンズの装用加入度ADD(Sl)、第2累進屈折力レンズの装用加入度ADD(Sh)をそれぞれ示している。実施例17に係る累進屈折力レンズシリーズは、遠用度数が-2.00、-3.00、-4.00、-5.00、-6.00、-7.00、-8.00、-9.00、-10.00の9個の累進屈折力レンズを有している。 Table 5 shows the distance power S1 specified by the prescription value for the first progressive-power lens, the surface addition ADDc (Sl) on the correction surface, and the second progressive-power lens, as in Tables 2 to 4 above. The distance dioptric power Sh specified by the prescription value, the surface addition ADDc (Sh) on the correction surface, the surface addition ADDc (Sh) on the correction surface of the second progressive addition lens, and the correction surface of the first progressive addition lens The difference between the surface addition power ADDc (Sl) at the distance and the distance power Sh designated by the prescription value for the second progressive power lens and the distance power Sl designated by the prescription value for the first progressive power lens (ADDc (Sh) −ADDc (Sl)) / (Sh−Sl) divided by the difference between the first progressive addition lens ADD (Sl) and second addition ADD lens addition ADD (Sh) respectively To have. The progressive-power lens series according to Example 17 has a distance power of -2.00, -3.00, -4.00, -5.00, -6.00, -7.00, and -8.00. , -9.00, -10.00, 9 progressive power lenses.
 また、表5には示されていないが、実施例17に係る累進屈折力レンズシリーズは、屈折率nが1.67であり、基準面M1の遠用基準点OF1での面平均屈折力がPFbが1.25、処方で指定された乱視度数Cが0.00、処方加入度addが2.00、基準面における面加入度ADDbが2.50である点は共通している。 Although not shown in Table 5, the progressive-power lens series according to Example 17 has a refractive index n of 1.67, and has a surface average refractive power of the reference surface M1 at the distance reference point OF1. PFb is 1.25, prescription-specified astigmatism power C is 0.00, prescription addition power add is 2.00, and surface addition power ADDb at the reference plane is 2.50.
 実施例17の最上行(1)の各欄に示す値は、遠用度数が-2.00のレンズを第2累進屈折力レンズとし(Sh=-2.00)、遠用度数が-3.00のレンズを第1累進屈折力レンズとした(Sl=-3.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in each column of the top row (1) of Example 17 are such that a lens with a distance power of -2.00 is a second progressive power lens (Sh = -2.00) and a distance power is -3. The relationship between the two progressive-power lenses when the lens of .00 is the first progressive-power lens (Sl = −3.00) is shown.
 実施例17の上から第2行目(2)の各欄に示す値は、遠用度数が-3.00のレンズを第2累進屈折力レンズとし(Sh=-3.00)、遠用度数が-4.00のレンズを第1累進屈折力レンズとした(Sl=-4.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the respective columns of the second row (2) from the top of Example 17 indicate that the lens with the distance power of −3.00 is the second progressive addition lens (Sh = −3.00), and the distance The relationship between the two progressive-power lenses when the lens having a power of −4.00 is used as the first progressive-power lens (Sl = −4.00) is shown.
 実施例17の上から第3行目(3)の各欄に示す値は、遠用度数が-4.00のレンズを第2累進屈折力レンズとし(Sh=-4.00)、遠用度数が-5.00のレンズを第1累進屈折力レンズとした(Sl=-5.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the respective columns of the third row (3) from the top of Example 17 indicate that the lens having the distance power of −4.00 is the second progressive addition lens (Sh = −4.00), and the distance The relationship between the two progressive-power lenses when the lens having a power of −5.00 is used as the first progressive-power lens (Sl = −5.00) is shown.
 実施例17の上から第4行目(4)の各欄に示す値は、遠用度数が-5.00のレンズを第2累進屈折力レンズとし(Sh=-5.00)、遠用度数が-6.00のレンズを第1累進屈折力レンズとした(Sl=-6.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the columns of the fourth row (4) from the top in Example 17 are as follows: a lens with a distance power of -5.00 is a second progressive addition lens (Sh = -5.00), The relationship between the two progressive-power lenses when the lens having a power of −6.00 is used as the first progressive-power lens (Sl = −6.00) is shown.
 実施例17の上から第5行目(5)の各欄に示す値は、遠用度数が-6.00のレンズを第2累進屈折力レンズとし(Sh=-6.00)、遠用度数が-7.00のレンズを第1累進屈折力レンズとした(Sl=-7.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the columns of the fifth row (5) from the top of Example 17 are as follows: a lens with a distance power of −6.00 is the second progressive addition lens (Sh = −6.00) The relationship between the two progressive-power lenses when the lens having the power of −7.00 is used as the first progressive-power lens (S1 = −7.00) is shown.
 実施例17の上から第6行目(6)の各欄に示す値は、遠用度数が-7.00のレンズを第2累進屈折力レンズとし(Sh=-7.00)、遠用度数が-8.00のレンズを第1累進屈折力レンズとした(Sl=-8.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the respective columns of the sixth row (6) from the top of Example 17 indicate that the lens having the distance power of −7.00 is the second progressive addition lens (Sh = −7.00), and the distance The relationship between the two progressive-power lenses when the lens having the power of −8.00 is used as the first progressive-power lens (Sl = −8.00) is shown.
 実施例17の上から第7行目(7)の各欄に示す値は、遠用度数が-8.00のレンズを第2累進屈折力レンズとし(Sh=-8.00)、遠用度数が-9.00のレンズを第1累進屈折力レンズとした(Sl=-9.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in the respective columns of the seventh row (7) from the top of Example 17 indicate that the lens with the distance power of −8.00 is the second progressive addition lens (Sh = −8.00), and the distance The relationship between the two progressive-power lenses when the lens having the power of −9.00 is used as the first progressive-power lens (Sl = −9.00) is shown.
 実施例17の最下行(8)の各欄に示す値は、遠用度数が-9.00のレンズを第2累進屈折力レンズとし(Sh=-9.00)、遠用度数が-10.00のレンズを第1累進屈折力レンズとした(Sl=-10.00)場合の2つの累進屈折力レンズの関係を示している。 The values shown in each column of the bottom row (8) of Example 17 are such that a lens with a distance power of −9.00 is the second progressive addition lens (Sh = −9.00), and the power of distance is −10. The relationship between the two progressive-power lenses when the lens of .00 is used as the first progressive-power lens (Sl = -10.00) is shown.
  補正面における面加入度に関しては、遠用度数が-2.00の累進屈折力レンズについては-0.70、遠用度数が-3.00の累進屈折力レンズについては-0.69、遠用度数が-4.00の累進屈折力レンズについては-0.70、遠用度数が-5.00の累進屈折力レンズについては-0.73、遠用度数が-6.00の累進屈折力レンズについては-0.77、遠用度数が-7.00の累進屈折力レンズについては-0.82、遠用度数が-8.00の累進屈折力レンズについては-0.90、遠用度数が-9.00の累進屈折力レンズについては-0.98、遠用度数が-10.00の累進屈折力レンズについては-1.08とした。 Regarding the addition power on the correction surface, -0.70 for a progressive power lens with a distance power of -2.00, -0.69 for a progressive power lens with a distance power of -3.00, and far -0.70 for a progressive power lens with a power of -4.00, -0.73 for a progressive power lens with a power of -5.00, and progressive power of -6.00 for a distance power -0.77 for a power lens, -0.82 for a progressive power lens with a distance power of -7.00, -0.90 for a progressive power lens with a distance power of -8.00, It was set to -0.98 for a progressive power lens with a power of -9.00, and -1.08 for a progressive power lens with a distance power of -10.00.
 この結果、第2累進屈折力レンズの補正面における面加入度と第1累進屈折力レンズの補正面における面加入度との差を第2累進屈折力レンズについての処方値で指定された遠用度数Shと第1累進屈折力レンズについての処方値で指定された遠用度数Slとの差で割った値(ADDc(Sh)-ADDc(Sl))/(Sh-Sl)は、上記(1)の場合には-0.01であり、上記(2)の場合には0.01であり、上記(3)の場合には0.03であり、上記(4)の場合には0.04であり、上記(5)の場合には0.06であり、上記(6)の場合には0.07であり、上記(7)の場合には0.09であり、上記(8)の場合には0.10であった。 As a result, the distance between the surface addition on the correction surface of the second progressive-power lens and the surface addition on the correction surface of the first progressive-power lens is the distance specified by the prescription value for the second progressive-power lens. The value (ADDc (Sh) −ADDc (Sl)) / (Sh−Sl) divided by the difference between the power Sh and the distance power S1 designated by the prescription value for the first progressive-power lens is the above (1 ) In the case of (2) above, 0.01 in the case of (3) above, 0.03 in the case of (4) above. 04, 0.06 in the case of (5), 0.07 in the case of (6), 0.09 in the case of (7), and (8) In this case, it was 0.10.
 また、本実施例において、補正面M2の面加入度ADDc(S)が最大値をとるときの遠用度数Spは-3.00であった。この場合の補正面M2の面加入度の最大値ADDc(Sp)は-0.69であった。また、このときの基準面M1の遠用基準点OF1での面平均屈折力をPFbと遠用度数Spとの差(PFb-Sp)は4.25となった。 In this example, the distance dioptric power Sp when the surface addition ADDc (S) of the correction surface M2 takes the maximum value was −3.00. In this case, the maximum value ADDc (Sp) of the addition of the correction surface M2 was −0.69. At this time, the difference (PFb−Sp) between the surface average refractive power of the reference surface M1 at the distance reference point OF1 and the distance power Sp (PFb−Sp) was 4.25.
 この時それぞれの遠用度数のレンズにおける装用加入度ADDの値は、全て処方加入度addと等しい値となり、本発明の目的を達成することが出来た。 At this time, all the values of the wearing addition ADD in the lenses of the respective dioptric powers were equal to the prescription addition add, and the object of the present invention could be achieved.
 LS…累進屈折力レンズ F…遠用部 N…近用部 P…累進部 M1…レンズ面(外面、基準面) M2…レンズ面(内面、補正面) LS ... Progressive power lens F ... Distance part N ... Near part P ... Progressive part M1 ... Lens surface (outer surface, reference surface) M2 ... Lens surface (inner surface, correction surface)

Claims (13)

  1.  装用状態で物体側の屈折面となる外面と、
     装用状態で眼球側の屈折面となる内面とを有し、
     前記外面及び前記内面のうち少なくとも一方は、
      装用状態でレンズの上方位置に設けられ、比較的遠方視に適した遠用部と、
      装用状態でレンズの下方位置に設けられ、比較的近方視に適した近用部と、
      前記遠用部と前記近用部の間に設けられ、前記遠用部と前記近用部の間で面屈折力が累進的に変化する累進部と、を有し、
     前記外面及び内面のうちの一方を所定の面形状を有する基準面とし、他方を補正面とし、処方値で指定された遠用度数をS、処方値で指定された乱視度数をC、処方値で指定された加入度をaddとした場合において、
     前記基準面の前記近用基準点での前記面平均屈折力と前記基準面の前記遠用基準点での前記面平均屈折力との差である前記基準面の面加入度をADDb(S,C,add)とし、前記補正面の前記近用基準点での前記面平均屈折力と前記補正面の前記遠用基準点での前記面平均屈折力との差である前記補正面の面加入度をADDc(S,C,add)とすると、
    Figure JPOXMLDOC01-appb-M000026
     の条件式を満足する
     ことを特徴とする累進屈折力レンズ。
    An outer surface that becomes a refractive surface on the object side in the wearing state;
    An inner surface that is a refractive surface on the eyeball side when worn,
    At least one of the outer surface and the inner surface is
    A distance portion that is provided at a position above the lens in a worn state and is relatively suitable for far vision,
    A near-use portion that is provided at a lower position of the lens in a wearing state and is relatively suitable for near vision,
    A progressive portion that is provided between the distance portion and the near portion, and whose surface refractive power gradually changes between the distance portion and the near portion,
    One of the outer surface and the inner surface is a reference surface having a predetermined surface shape, the other is a correction surface, the distance power specified by the prescription value is S, the astigmatism power specified by the prescription value is C, the prescription value In the case where add is designated as add,
    A surface addition power of the reference surface, which is a difference between the surface average refractive power at the near reference point of the reference surface and the surface average refractive power at the distance reference point of the reference surface, is defined as ADDb (S, C, add), and the addition of the correction surface to the correction surface, which is the difference between the surface average refractive power at the near reference point of the correction surface and the surface average refractive power at the distance reference point of the correction surface If the degree is ADDc (S, C, add),
    Figure JPOXMLDOC01-appb-M000026
    A progressive-power lens that satisfies the following conditional expression:
  2. Figure JPOXMLDOC01-appb-M000027
     の条件式を満足する
     ことを特徴とする請求項1に記載の累進屈折力レンズ。
    Figure JPOXMLDOC01-appb-M000027
    The progressive-power lens according to claim 1, wherein the following conditional expression is satisfied.
  3.  前記基準面の前記遠用基準点での前記面平均屈折力をPFb(S,C,add)とし、
     前記補正面の前記遠用基準点での前記面平均屈折力をPFc(S,C,add)とすると、
     S≧0の時、
    Figure JPOXMLDOC01-appb-M000028
    の条件式を満足し、
     S<0の時、
    Figure JPOXMLDOC01-appb-M000029
    の条件式を満足する
     ことを特徴とする請求項1又は請求項2に記載の累進屈折力レンズ。
    The surface average refractive power of the reference surface at the distance reference point is PFb (S, C, add),
    When the surface average refractive power at the distance reference point of the correction surface is PFc (S, C, add),
    When S ≧ 0,
    Figure JPOXMLDOC01-appb-M000028
    Is satisfied,
    When S <0,
    Figure JPOXMLDOC01-appb-M000029
    The progressive-power lens according to claim 1, wherein the following conditional expression is satisfied.
  4.  S>0の時、
    Figure JPOXMLDOC01-appb-M000030
     を満足すると共に、
     S<0の時、
    Figure JPOXMLDOC01-appb-M000031
     を満足する
     ことを特徴とする請求項3に記載の累進屈折力レンズ。
    When S> 0
    Figure JPOXMLDOC01-appb-M000030
    As well as
    When S <0,
    Figure JPOXMLDOC01-appb-M000031
    The progressive-power lens according to claim 3, wherein:
  5.  請求項1から請求項4のうちいずれか一項に記載の累進屈折力レンズを複数備える累進屈折力レンズシリーズであって、
     複数の前記累進屈折力レンズは、それぞれの前記基準面の面加入度が一定の値となり、それぞれの前記補正面の面加入度が変数となるように形成されている
     ことを特徴とする累進屈折力レンズシリーズ。
    A progressive-power lens series comprising a plurality of progressive-power lenses according to any one of claims 1 to 4,
    The plurality of progressive-power lenses are formed so that the surface addition of each reference surface has a constant value, and the surface addition of each of the correction surfaces is a variable. Power lens series.
  6.  請求項3又は請求項4に記載の累進屈折力レンズを複数備える累進屈折力レンズシリーズであって、
     複数の前記累進屈折力レンズは、それぞれの前記基準面の遠用基準点における面平均屈折力が一定の値となり、それぞれの前記補正面の遠用基準点における面平均屈折力が変数となるように形成されている
     ことを特徴とする累進屈折力レンズシリーズ。
    A progressive-power lens series comprising a plurality of progressive-power lenses according to claim 3 or 4,
    In the plurality of progressive-power lenses, the surface average refractive power at the distance reference point of each reference surface is a constant value, and the surface average power at the distance reference point of each correction surface is a variable. A progressive-power lens series characterized by
  7.  複数の異なる処方に対応した累進屈折力レンズシリーズに含まれる累進屈折力レンズであって、
     装用状態で物体側の屈折面となる外面と、
     装用状態で眼球側の屈折面となる内面と、を有し、
     前記外面及び前記内面のうち少なくとも一方は、
      装用状態でレンズの上方位置に設けられ、比較的遠方視に適した遠用部と、
      装用状態でレンズの下方位置に設けられ、比較的近方視に適した近用部と、
      前記遠用部と前記近用部の間に設けられ、前記遠用部と前記近用部の間の面屈折力が累進的に変化する累進部と、を有し、
     前記外面及び内面のうちの一方を所定の面形状を有する基準面とし、他方を補正面とし、
     処方値で指定された遠用度数をSとし、前記遠用度数がSのときにそれぞれ処方値で指定された乱視度数をC(S)、処方値で指定された加入度をadd(S)、前記基準面の近用基準点での面平均屈折力と前記基準面の遠用基準点での面平均屈折力との差である前記基準面の面加入度をADDb(S)、前記補正面の近用基準点での面平均屈折力と前記補正面の遠用基準点での面平均屈折力との差である前記補正面の面加入度をADDc(S)とし、前記累進屈折力レンズシリーズに含まれる、前記乱視度数C(S)および、前記加入度add(S)および、前記基準面の面加入度ADDb(S)が等しい累進屈折力レンズにおいて、前記補正面の面加入度ADDc(S)が最大値をとるときの遠用度数をSpとし、
     前記累進屈折力レンズシリーズの中から、前記遠用度数が第1遠用度数Slである第1累進屈折力レンズと、前記遠用度数が前記第1遠用度数Slよりも大きい第2遠用度数Shである第2累進屈折力レンズとを選択した場合、
     前記第1累進屈折力レンズにおける前記乱視度数C(Sl)、前記加入度add(Sl)、前記基準面の面加入度ADDb(Sl)及び前記補正面の面加入度ADDc(Sl)のそれぞれと、
     前記第2累進屈折力レンズにおける前記乱視度数C(Sh)、前記加入度add(Sh)、前記基準面の面加入度ADDb(Sh)及び前記補正面の面加入度ADDc(Sh)のそれぞれとについて、
     C(Sh)=C(Sl)、
     add(Sh)=add(Sl)、
     ADDb(Sh)=ADDb(Sl)
     であるときに、
    Sp≦Slのとき、
    Figure JPOXMLDOC01-appb-M000032
     の条件式を満足し、
    Sp≧Shのとき、
    Figure JPOXMLDOC01-appb-M000033
     の条件式を満足する
     ことを特徴とする累進屈折力レンズ。
    A progressive power lens included in a progressive power lens series corresponding to a plurality of different prescriptions,
    An outer surface that becomes a refractive surface on the object side in the wearing state;
    An inner surface that becomes a refractive surface on the eyeball side in a wearing state,
    At least one of the outer surface and the inner surface is
    A distance portion that is provided at a position above the lens in a worn state and is relatively suitable for far vision,
    A near-use portion that is provided at a lower position of the lens in a wearing state and is relatively suitable for near vision,
    A progressive portion that is provided between the distance portion and the near portion, and in which surface refractive power between the distance portion and the near portion changes progressively,
    One of the outer surface and the inner surface is a reference surface having a predetermined surface shape, the other is a correction surface,
    The distance power specified by the prescription value is S, and when the distance power is S, the astigmatism power specified by the prescription value is C (S), and the addition power specified by the prescription value is add (S). The surface addition power of the reference surface, which is the difference between the surface average refractive power at the near reference point of the reference surface and the surface average refractive power at the distance reference point of the reference surface, is ADDb (S), the correction The addition power of the correction surface, which is the difference between the surface average power at the near reference point of the surface and the surface average power at the distance reference point of the correction surface, is ADDc (S), and the progressive power In a progressive addition lens having the same astigmatism power C (S), the addition power add (S), and the surface surface addition power ADDb (S) included in the lens series, the surface addition power of the correction surface Sp is the distance power when ADDc (S) takes the maximum value,
    In the progressive power lens series, the first progressive power lens in which the distance power is the first distance power S1 and the second distance power in which the distance power is greater than the first distance power S1. When the second progressive-power lens having the power Sh is selected,
    Each of the astigmatism power C (Sl), the addition add (Sl), the surface addition ADDb (Sl) of the reference surface, and the surface addition ADDc (Sl) of the correction surface in the first progressive-power lens, ,
    The astigmatic power C (Sh), the addition power add (Sh), the surface addition power ADDb (Sh) of the reference surface, and the surface addition power ADDc (Sh) of the correction surface in the second progressive-power lens, respectively about,
    C (Sh) = C (Sl),
    add (Sh) = add (Sl),
    ADDb (Sh) = ADDb (Sl)
    When
    When Sp ≦ Sl,
    Figure JPOXMLDOC01-appb-M000032
    Is satisfied,
    When Sp ≧ Sh,
    Figure JPOXMLDOC01-appb-M000033
    A progressive-power lens that satisfies the following conditional expression:
  8. Sp≦Slのとき、
    Figure JPOXMLDOC01-appb-M000034
     の条件式を満足し、
     Sp≧Shのとき、
    Figure JPOXMLDOC01-appb-M000035
     の条件式を満足する
     ことを特徴とする請求項7に記載の累進屈折力レンズ。
    When Sp ≦ Sl,
    Figure JPOXMLDOC01-appb-M000034
    Is satisfied,
    When Sp ≧ Sh,
    Figure JPOXMLDOC01-appb-M000035
    The progressive-power lens according to claim 7, wherein the following conditional expression is satisfied.
  9.  前記基準面の前記遠用基準点での前記面平均屈折力をPFbとすると、
    Figure JPOXMLDOC01-appb-M000036
     の条件式を満足する
     ことを特徴とする請求項7又は請求項8に記載の累進屈折力レンズ。
    When the surface average refractive power at the distance reference point of the reference surface is PFb,
    Figure JPOXMLDOC01-appb-M000036
    The progressive-power lens according to claim 7 or 8, wherein the following conditional expression is satisfied.
  10.  複数の異なる処方に対応した累進屈折力レンズシリーズに含まれる累進屈折力レンズであって、
     装用状態で物体側の屈折面となる外面と、
     装用状態で眼球側の屈折面となる内面と、を有し、
     前記外面及び前記内面のうち少なくとも一方は、
      装用状態でレンズの上方位置に設けられ、比較的遠方視に適した遠用部と、
      装用状態でレンズの下方位置に設けられ、比較的近方視に適した近用部と、
      前記遠用部と前記近用部の間に設けられ、前記遠用部と前記近用部の間の面屈折力が累進的に変化する累進部と、を有し、
     前記外面及び内面のうちの一方を所定の面形状を有する基準面とし、他方を補正面とし、
     処方値で指定された遠用度数をSとし、前記遠用度数がSのときにそれぞれ処方値で指定された乱視度数をC(S)、処方値で指定された加入度をadd(S)、前記基準面の近用基準点での面平均屈折力と前記基準面の遠用基準点での面平均屈折力との差である前記基準面の面加入度をADDb(S)、前記補正面の近用基準点での面平均屈折力と前記補正面の遠用基準点での面平均屈折力との差である前記補正面の面加入度をADDc(S)とし、
     前記累進屈折力レンズシリーズの中から、前記遠用度数が第1遠用度数Slである第1累進屈折力レンズと、前記遠用度数が前記第1遠用度数Slよりも大きい第2遠用度数Shである第2累進屈折力レンズとを選択した場合、
     前記第1累進屈折力レンズにおける前記乱視度数C(Sl)、前記加入度add(Sl)、前記基準面の面加入度ADDb(Sl)及び前記補正面の面加入度ADDc(Sl)のそれぞれと、
     前記第2累進屈折力レンズにおける前記乱視度数C(Sh)、前記加入度add(Sh)、前記基準面の面加入度ADDb(Sh)及び前記補正面の面加入度ADDc(Sh)のそれぞれとについて、
     C(Sh)=C(Sl)、
     add(Sh)=add(Sl)、
     ADDb(Sh)=ADDb(Sl)、
     であり、かつ、
     0≦Sl
     であるときに、
    Figure JPOXMLDOC01-appb-M000037
     の条件式を満足する
     ことを特徴とする累進屈折力レンズ。
    A progressive power lens included in a progressive power lens series corresponding to a plurality of different prescriptions,
    An outer surface that becomes a refractive surface on the object side in the wearing state;
    An inner surface that becomes a refractive surface on the eyeball side in a wearing state,
    At least one of the outer surface and the inner surface is
    A distance portion that is provided at a position above the lens in a worn state and is relatively suitable for far vision,
    A near-use portion that is provided at a lower position of the lens in a wearing state and is relatively suitable for near vision,
    A progressive portion that is provided between the distance portion and the near portion, and in which surface refractive power between the distance portion and the near portion changes progressively,
    One of the outer surface and the inner surface is a reference surface having a predetermined surface shape, the other is a correction surface,
    The distance power specified by the prescription value is S, and when the distance power is S, the astigmatism power specified by the prescription value is C (S), and the addition power specified by the prescription value is add (S). The surface addition power of the reference surface, which is the difference between the surface average refractive power at the near reference point of the reference surface and the surface average refractive power at the distance reference point of the reference surface, is ADDb (S), the correction The addition power of the correction surface, which is the difference between the surface average power at the near reference point of the surface and the surface average power at the distance reference point of the correction surface, is ADDc (S),
    In the progressive power lens series, the first progressive power lens in which the distance power is the first distance power S1 and the second distance power in which the distance power is greater than the first distance power S1. When the second progressive-power lens having the power Sh is selected,
    Each of the astigmatism power C (Sl), the addition add (Sl), the surface addition ADDb (Sl) of the reference surface, and the surface addition ADDc (Sl) of the correction surface in the first progressive-power lens, ,
    The astigmatic power C (Sh), the addition power add (Sh), the surface addition power ADDb (Sh) of the reference surface, and the surface addition power ADDc (Sh) of the correction surface in the second progressive-power lens, respectively about,
    C (Sh) = C (Sl),
    add (Sh) = add (Sl),
    ADDb (Sh) = ADDb (Sl),
    And
    0 ≦ Sl
    When
    Figure JPOXMLDOC01-appb-M000037
    A progressive-power lens that satisfies the following conditional expression:
  11. Figure JPOXMLDOC01-appb-M000038
     の条件式を満足する
     ことを特徴とする請求項10に記載の累進屈折力レンズ。
    Figure JPOXMLDOC01-appb-M000038
    The progressive-power lens according to claim 10, wherein the following conditional expression is satisfied.
  12.  前記第1累進屈折力レンズと前記第2累進屈折力レンズとの間では、前記基準面形状が等しい
     ことを特徴とする請求項7から請求項11のうちいずれか一項に記載の累進屈折力レンズ。
    The progressive power according to any one of claims 7 to 11, wherein the reference surface shape is the same between the first progressive-power lens and the second progressive-power lens. lens.
  13.  前記第1累進屈折力レンズ及び前記第2累進屈折力レンズのそれぞれは、前記外面を前記基準面とする
     ことを特徴とする請求項7から請求項13のうちいずれか一項に記載の累進屈折力レンズ。
    The progressive refraction according to any one of claims 7 to 13, wherein each of the first progressive-power lens and the second progressive-power lens has the outer surface as the reference surface. Power lens.
PCT/JP2009/005371 2008-10-14 2009-10-14 Progressive power lens and progressive power lens series WO2010044266A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-265631 2008-10-14
JP2008265631A JP5135159B2 (en) 2008-10-14 2008-10-14 Progressive power lens series
JP2008265630A JP5135158B2 (en) 2008-10-14 2008-10-14 Progressive power lens, progressive power lens series, and manufacturing method of progressive power lens
JP2008-265630 2008-10-14

Publications (1)

Publication Number Publication Date
WO2010044266A1 true WO2010044266A1 (en) 2010-04-22

Family

ID=42106436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005371 WO2010044266A1 (en) 2008-10-14 2009-10-14 Progressive power lens and progressive power lens series

Country Status (1)

Country Link
WO (1) WO2010044266A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923467A (en) * 2016-10-31 2019-06-21 株式会社尼康依视路 Manufacturing method of the progressive refractive power glasses lens to, the design method of progressive refractive power glasses lens pair and progressive refractive power glasses lens pair

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019383A1 (en) * 1995-11-24 1997-05-29 Seiko Epson Corporation Multifocal lens for eyeglasses and eyeglass lens
JP2006350381A (en) * 2003-11-27 2006-12-28 Hoya Corp Both-sided aspherical varifocal refractive lens and method of designing in
WO2008010504A1 (en) * 2006-07-20 2008-01-24 Nikon-Essilor Co., Ltd. Method for designing progressive refraction lens, method for manufacturing the same, and eyeglasses lens supplying system
JP2008116510A (en) * 2006-10-31 2008-05-22 Hoya Corp Semifinished lens for progressive refracting power spectacles lens, and progressive refracting power spectacles lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019383A1 (en) * 1995-11-24 1997-05-29 Seiko Epson Corporation Multifocal lens for eyeglasses and eyeglass lens
JP2006350381A (en) * 2003-11-27 2006-12-28 Hoya Corp Both-sided aspherical varifocal refractive lens and method of designing in
WO2008010504A1 (en) * 2006-07-20 2008-01-24 Nikon-Essilor Co., Ltd. Method for designing progressive refraction lens, method for manufacturing the same, and eyeglasses lens supplying system
JP2008116510A (en) * 2006-10-31 2008-05-22 Hoya Corp Semifinished lens for progressive refracting power spectacles lens, and progressive refracting power spectacles lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923467A (en) * 2016-10-31 2019-06-21 株式会社尼康依视路 Manufacturing method of the progressive refractive power glasses lens to, the design method of progressive refractive power glasses lens pair and progressive refractive power glasses lens pair
CN112882253A (en) * 2016-10-31 2021-06-01 株式会社尼康依视路 Method for designing progressive-power lens pair and method for manufacturing progressive-power lens pair

Similar Documents

Publication Publication Date Title
KR100940699B1 (en) Progressive-power lens
JP5542447B2 (en) Method for determining a single focus spectacle lens and single focus spectacle lens
JP5388579B2 (en) Eyeglass lenses
JP2009237548A (en) Method for determining ophthalmic lenses
JP2009517709A (en) Eyeglass lenses
JP3617004B2 (en) Double-sided aspherical progressive-power lens
JP4618656B2 (en) Progressive multifocal lens series
JP4380887B2 (en) Progressive multifocal lens
CN112882254B (en) Progressive multi-focal ophthalmic lens suitable for people with myopia to presbyopia and design method thereof
JP5135158B2 (en) Progressive power lens, progressive power lens series, and manufacturing method of progressive power lens
JP5017542B2 (en) Aspheric spectacle lens and method of manufacturing aspheric spectacle lens
WO2013046677A1 (en) Progressive refractive power lens
JP4243335B2 (en) Progressive power lens
WO2019185848A1 (en) A method for determining a single vision ophthalmic lens
WO2010044266A1 (en) Progressive power lens and progressive power lens series
JP5138536B2 (en) Progressive power lens series
JP5135159B2 (en) Progressive power lens series
WO2010044260A1 (en) Progressive power lens
CN113655634A (en) Lens capable of reducing side-center defocusing and design method thereof
JP4450480B2 (en) Progressive multifocal lens series
JPH10123469A (en) Progressive multifocus lens
JP5135160B2 (en) Progressive power lens series
JP6126772B2 (en) Progressive power lens
JP4219148B2 (en) Double-sided aspherical progressive-power lens
JP6038224B2 (en) Manufacturing method of progressive power lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09820444

Country of ref document: EP

Kind code of ref document: A1