WO2010041691A1 - Optical recording medium containing metal complex of squarylium compound - Google Patents

Optical recording medium containing metal complex of squarylium compound Download PDF

Info

Publication number
WO2010041691A1
WO2010041691A1 PCT/JP2009/067508 JP2009067508W WO2010041691A1 WO 2010041691 A1 WO2010041691 A1 WO 2010041691A1 JP 2009067508 W JP2009067508 W JP 2009067508W WO 2010041691 A1 WO2010041691 A1 WO 2010041691A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
compound
optionally substituted
hydrogen atom
Prior art date
Application number
PCT/JP2009/067508
Other languages
French (fr)
Japanese (ja)
Inventor
貴弘 澤田
竜生 新見
豊田 浩
一太 服部
尚志 沖村
辻田 公二
山下 智
大嶋 克則
宇航 須本
栄治 中川
Original Assignee
協和発酵ケミカル株式会社
日本ビクター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵ケミカル株式会社, 日本ビクター株式会社 filed Critical 協和発酵ケミカル株式会社
Priority to JP2010532944A priority Critical patent/JPWO2010041691A1/en
Publication of WO2010041691A1 publication Critical patent/WO2010041691A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/18One oxygen or sulfur atom
    • C07D231/20One oxygen atom attached in position 3 or 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/007Squaraine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds

Definitions

  • the present invention relates to an optical recording medium containing a metal complex of a squarylium compound.
  • an optical recording medium that enables ultra-high density recording using a technique for increasing the numerical aperture NA of the objective lens, a technique for reducing the laser wavelength ⁇ , and the like has been progressing.
  • an optical recording medium having the same size as a DVD and a capacity of at least 23 GB is required.
  • an optical recording medium that records higher density information by using a 405 nm blue-violet laser, setting the NA of the objective lens to 0.85, and reducing the laser spot diameter, so-called Blu-ray Disc (BD) has been developed.
  • BD Blu-ray Disc
  • the write-once Blu-ray Disc (BD-R) is required to have various excellent characteristics in terms of recording sensitivity, modulation degree, jitter (jitter), error rate, etc., in addition to the required performance that enables recording and playback. .
  • BD-R write-once Blu-ray Disc
  • modulation degree modulation degree
  • jitter jitter
  • error rate etc.
  • those properties in BD-R using conventional organic dyes are not sufficient.
  • a metal complex of a squarylium compound having a pyrazole structure is useful as a dye used for a write-once digital versatile disk (DVD-R) (Patent Document 1).
  • the dye is suitable for recording with a laser beam of about 650 nm used for DVD-R recording, but is not suitable for recording with a laser beam of 405 nm.
  • a metal complex of a squarylium compound having a pyrazole structure and an amine structure is useful as a dye for a filter for an electronic display device (Patent Document 2).
  • An object of the present invention is to provide an optical recording medium or the like using a metal complex of a squarylium compound having a highly sensitive photoresponsiveness to blue-violet laser light.
  • the present invention provides the following [1] to [12].
  • R 1 represents a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, An aryl group which may have a substituent or a heterocyclic group which may have a substituent
  • R 2 represents a hydrogen atom, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, a substituent
  • R 3 and R 4 may be the same or different and each may have a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, or a substituent.
  • An alicyclic hydrocarbon group, an optionally substituted aryl group or an optionally substituted heterocyclic group, or R 3 and R 4 together with the adjacent nitrogen atom The optical recording medium according to [1], wherein an alicyclic heterocyclic ring optionally having a substituent is formed.
  • R 5 and R 6 are represented by the formula (II): [Wherein W is a nitrogen atom or C—R 7 (wherein R 7 is a hydrogen atom, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, an amino group which may have a substituent, An alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, and an alicyclic hydrocarbon which may have a substituent A group, an aryl group which may have a substituent or a heterocyclic group which may have a substituent, and X represents a nitrogen atom or C—R 8 (wherein R 8 represents the above R 7 represents a nitrogen atom or C—R 9 (wherein R 9 is as defined above for R 7 ), and Z represents a nitrogen atom or C—R 10 (wherein R 7 10 represents a a
  • optical recording medium according to [3] or [4].
  • [6] The optical recording medium according to [5], wherein W is a nitrogen atom, X is CR 8 , Y is CR 9 , and Z is CR 10 .
  • [7] The optical recording medium according to [5] or [6], wherein one of R 5 and R 6 is the formula (II) and the other is a hydrogen atom.
  • R 1 and R 2 may be the same or different and each may have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • optical recording medium according to any one of [1] to [8], wherein the metal is nickel, cobalt, aluminum, copper, zinc, or iron.
  • metal is nickel or cobalt.
  • R 1 represents a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, An aryl group which may have a substituent or a heterocyclic group which may have a substituent
  • R 2 represents a hydrogen atom, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, a substituent
  • R 9 and R 10 represent an aryl group or an optionally substituted heterocyclic group
  • X represents a nitrogen atom or C—R 8 (wherein R 8 has the same meaning as R 7 above)
  • Y represents Represents a nitrogen atom or C—R 9 (wherein R 9 is as defined above for R 7 )
  • Z is Nitrogen atom or C-R 10 (wherein, R 10 is a is same meaning as the R 7) represents, W is the C-R 7 a and X are each R 7 and R 8 when it is C-R 8
  • a hydrocarbon ring which may have a substituent may be formed together with two adjacent carbon atoms
  • R 8 and R 9 may be combined with two adjacent carbon atoms to form a hydrocarbon ring which may have a substituent
  • Y is C—R 9 and Z is C—R 10 .
  • R 9 and R 10 may be combined with two adjacent nitrogen atoms to form a hydrocarbon ring which may have
  • an optical recording medium using a metal complex of a squarylium compound having a highly sensitive photoresponsiveness to blue-violet laser light.
  • Compound (I) the compound represented by Formula (I) is referred to as Compound (I). The same applies to the compounds of other formula numbers.
  • examples of the alkyl moiety in the alkyl group and the alkoxyl group include a linear or branched alkyl group having 1 to 20 carbon atoms, specifically, a methyl group, an ethyl group, and the like.
  • An octyl group, a nonyl group, a decyl group, an eicosyl group and the like can be mentioned. Among them, those having 1 to 6 carbon atoms are preferable.
  • aralkyl group examples include an aralkyl group having 7 to 15 carbon atoms, and specific examples include a benzyl group, a phenethyl group, a phenylpropyl group, and a naphthylmethyl group.
  • aryl group examples include aryl groups having 6 to 14 carbon atoms, and specific examples include a phenyl group, a naphthyl group, an anthryl group, and an azulenyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alicyclic hydrocarbon in the alicyclic hydrocarbon group include, for example, a cycloalkane having 3 to 8 carbon atoms, a cycloalkene having 3 to 8 carbon atoms, and a bicyclic or tricyclic condensed 3- to 8-membered ring. And alicyclic hydrocarbons.
  • cycloalkane having 3 to 8 carbon atoms include, for example, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like.
  • C3-C8 cycloalkene examples include, for example, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene and the like.
  • bicyclic or tricyclic alicyclic hydrocarbon condensed with a 3- to 8-membered ring include dihydropentalene, dihydroindene, tetrahydronaphthalene, hexahydrofluorene and the like.
  • heterocyclic ring in the heterocyclic group examples include an aromatic heterocyclic ring and an alicyclic heterocyclic ring.
  • aromatic heterocyclic ring for example, a 5- or 6-membered monocyclic aromatic heterocyclic ring containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom is condensed.
  • bicyclic or tricyclic condensed aromatic heterocycles containing at least one atom selected from a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Specific examples include a pyridine ring, a pyrazine ring, and a pyrimidine ring.
  • alicyclic heterocycle for example, a 5- to 8-membered monocyclic alicyclic heterocycle containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom is condensed.
  • a bicyclic or tricyclic condensed alicyclic heterocyclic ring containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom specifically, a pyrrolidine ring, a piperidine ring
  • Examples include piperazine ring, morpholine ring, thiomorpholine ring, homopiperidine ring, homopiperazine ring, tetrahydropyridine ring, tetrahydroquinoline ring, tetrahydroisoquinoline ring, tetrahydrofuran ring, tetrahydropyran ring, dihydrobenzofuran ring, tetrahydrocarbazole ring and the like.
  • Examples of the alicyclic heterocycle formed by combining R 3 and R 4 with the adjacent nitrogen atom include those containing at least one nitrogen atom among the above alicyclic heterocycles. Specific examples include pyrrolidine ring, piperidine ring, piperazine ring, morpholine ring, thiomorpholine ring, homopiperidine ring, homopiperazine ring, tetrahydropyridine ring, tetrahydroquinoline ring, tetrahydroisoquinoline ring and the like.
  • Examples of the hydrocarbon ring formed by combining R 7 and R 8 , R 8 and R 9 , or R 9 and R 10 together with two adjacent carbon atoms include, for example, non-carbon atoms of 5 to 10 carbon atoms.
  • Examples include saturated hydrocarbon rings, and specific examples include a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, a cyclooctene ring, a benzene ring, and a naphthalene ring.
  • substituents for the alkyl group and the alkoxyl group include, for example, the same or different 1 to 5 substituents, specifically, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, an alkoxyl group, an alkoxyalkoxyl.
  • substituents specifically, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, an alkoxyl group, an alkoxyalkoxyl.
  • the halogen atom, the heterocyclic group, and the alkoxyl group have the same meanings as described above.
  • the two alkoxy moieties of the alkoxyalkoxyl group have the same meaning as the above alkoxyl group, respectively.
  • the alkyl portions of the alkanoyl group, alkylcarbonyloxy group and alkoxycarbonyl group are as defined above.
  • the aryl part of the aroyl group, aryloxy group, arylcarbonyloxy group and aryloxycarbonyl group has the same meaning as the above aryl group.
  • substituent of the amino group examples include one or two substituents, specifically, an alkyl group, an aralkyl group, an alicyclic hydrocarbon group, an aryl group, and the like.
  • alkyl group, the aralkyl group, the alicyclic hydrocarbon group, and the aryl group have the same meanings as described above.
  • each of the substituents may be the same or different.
  • substituent of the aralkyl group, alicyclic hydrocarbon group, and aryl group include, for example, the same or different 1 to 5 substituents, specifically, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, Cyano group, optionally substituted alkyl group, optionally substituted alkoxyl group, aralkyl group, alkanoyl group, alkylcarbonyloxy group, alkoxycarbonyl group, aryl group, aroyl group, aryloxy Group, an arylcarbonyloxy group, an aryloxycarbonyl group, a heterocyclic group, an amino group which may have a substituent, and the like.
  • a halogen atom an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group, an alkanoyl group, an alkylcarbonyloxy group, an alkoxycarbonyl group, an aryl group, an aroyl group , Aryloxy group, arylcarbonyloxy group, aryloxycarbonyl group, heterocyclic group and optionally substituted amino group have the same meanings as described above.
  • Examples of the substituent of the heterocyclic group when R 1 , R 2 , R 3 , R 4 , R 7 , R 8 , R 9 or R 10 is a heterocyclic group include, for example, an aralkyl group and an alicyclic hydrocarbon Examples of the group and the substituent of the aryl group include the same functional groups exemplified above.
  • Examples of the substituent of the heterocyclic group when R 5 , R 6 or R 5a is a heterocyclic group may include a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, and a substituent.
  • Examples thereof include a cyclic hydrocarbon group, an aryl group which may have a substituent, and a heterocyclic group which may have a substituent.
  • a halogen atom an amino group which may have a substituent, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, or a substituent.
  • a good aralkyl group, an alicyclic hydrocarbon group which may have a substituent and an aryl group which may have a substituent have the same meanings as described above, and an optionally substituted heterocycle
  • the group has the same meaning as that when R 1 , R 2 , R 3 , R 4 , R 7 , R 8 , R 9 or R 10 is a heterocyclic group which may have a substituent.
  • Examples of the substituent for the alicyclic heterocyclic ring formed by combining R 3 and R 4 with the adjacent nitrogen atom include those exemplified above as the substituent for the aralkyl group, alicyclic hydrocarbon group, and aryl group. And the same functional groups as those described above.
  • Examples of the substituent of the hydrocarbon ring formed by R 7 and R 8 , R 8 and R 9 , or R 9 and R 10 together with two adjacent carbon atoms include aralkyl groups, Examples of the substituent of the cyclic hydrocarbon group and aryl group are the same as the functional groups exemplified above.
  • Examples of the metal in the metal complex include aluminum, ruthenium, osmium, iron, platinum, zinc, beryllium, copper, nickel, chromium, cobalt, manganese, iridium, vanadium, titanium, etc., among which nickel, cobalt, aluminum, Copper, zinc and iron are preferred.
  • compound (I) when at least one of R 3 and R 4 is NR 5 R 6 , one of R 3 and R 4 is NR 5 R 6 , the other is a hydrogen atom, and R 5 and R 4 It is preferable that one of 6 is the formula (II) and the other is a hydrogen atom.
  • formula (II) is as defined above.
  • R 5a is preferably a hydrogen atom.
  • Compound (I) is, for example, reaction formula (a): (Wherein R 1 , R 2 , R 3 and R 4 are as defined above). Specifically, the compound (III) or a salt thereof and the compound (IV) or a salt thereof, if necessary, in the presence of an acid catalyst in an amount of 0.1 to 1.5-fold moles relative to the compound (III)
  • the compound (I) can be produced by reacting at 40 to 140 ° C. for 0.5 to 30 hours.
  • the amount of compound (IV) or a salt thereof used is preferably 1 to 5 times the molar amount relative to compound (III) or a salt thereof.
  • reaction temperature is preferably 40 to 100 ° C.
  • R 3 and R 4 are the same or different and are each a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, or an alicyclic which may have a substituent.
  • the reaction temperature is preferably 80 to 140 ° C.
  • the aryl group and the heterocyclic group which may have a substituent are as defined above.
  • Examples of the salt of compound (III) include potassium salt and sodium salt.
  • Examples of the salt of compound (IV) include hydrochloride, sulfate, p-toluenesulfonate, methanesulfonate, and the like.
  • Examples of the acid catalyst include sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid and the like.
  • Compound (III) is a diester of squaric acid or a dihalide of squaric acid and a compound of formula (V): (Wherein R 1 and R 2 have the same meanings as described above), and a compound represented by the known method, for example, the method described in WO 01/44233 pamphlet or the like. Can be obtained.
  • Compound (V) can be obtained as a commercial product or can be obtained by publicly known methods, for example, the Chemical Society of Japan, New Experimental Chemistry Course, Volume 14, “Synthesis and Reaction of Organic Compounds IV Heterocyclic Compounds”, Maruzen Co., Ltd. Company, 1978, p. 2154, Chemistry, 1964, 26, p. 333, Journal of Organic Chemistry, 1957, Vol. 22, p.
  • a compound (IV) in which at least one of R 3 and R 4 is NR 5 R 6 (wherein R 5 and R 6 have the same meanings as described above) is obtained as a commercial product, Known methods, for example, Journal of Medical Chemistry, 1985, Vol. 28, p. It can be obtained by manufacturing according to the method described in 1394 or the like.
  • R 3 and R 4 in the compound (IV) are the same or different and have a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, or a substituent.
  • An alicyclic hydrocarbon group that may be substituted, an aryl group that may have a substituent, or a heterocyclic group that may have a substituent (provided that R 3 and R 4 simultaneously represent a hydrogen atom; May be obtained as a commercial product or may be obtained by a known method such as JP-A-48-39454, JP-A-63-253056, WO95 / 7888, Tetrahedron, 2005. Year, Vol. 61, No. 24, p.
  • an alkyl group which may have a substituent an aralkyl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, and a substituent.
  • the aryl group and the heterocyclic group which may have a substituent are as defined above.
  • the solvent examples include alcohol solvents such as ethanol, propanol, 2-propanol, butanol and octanol, a mixed solvent of the alcohol solvent (20% by volume or more) and benzene, toluene or xylene, acetonitrile and the like.
  • alcohol solvents such as ethanol, propanol, 2-propanol, butanol and octanol
  • Compound (Ia) can be produced according to the production method of compound (I).
  • the metal complex of compound (I) can be produced according to a known method, for example, the method described in International Publication No. 02/050190 pamphlet or the like. Specifically, the organometallic compound or metal salt and the compound (I) are optionally added at 25 to 120 ° C. in a solvent in the presence of 1 to 5 moles of acetic acid with respect to the organometallic compound or metal salt.
  • the metal complex of compound (I) can be produced by reacting at a temperature of 0.1 to 30 hours.
  • the amount of compound (I) used is preferably 0.5 to 5 times the molar amount of the organometallic compound or metal salt.
  • organometallic compound examples include aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), aluminum isopropoxide, aluminum sec-butoxide, aluminum ethoxide, copper acetylacetonate, zinc acetylacetonate, iron tris. (2,4-pentanedionate), tris (carbonate) cobalt (III) sodium salt, and the like.
  • metal salt examples include aluminum chloride, copper chloride, copper acetate, nickel acetate, nickel chloride, cobalt acetate, cobalt chloride, and hydrates thereof.
  • the solvent examples include alcohol solvents such as methanol, ethanol, propanol, 2-propanol, butanol and isobutanol, halogen solvents such as chloroform and dichloromethane, aromatic solvents such as benzene, toluene and xylene, tetrahydrofuran and methyl.
  • alcohol solvents such as methanol, ethanol, propanol, 2-propanol, butanol and isobutanol
  • halogen solvents such as chloroform and dichloromethane
  • aromatic solvents such as benzene, toluene and xylene
  • tetrahydrofuran and methyl examples include ether solvents such as -tert-butyl ether, ester solvents such as ethyl acetate, ketone solvents such as acetone and methyl ethyl ketone, and mixed solvents thereof.
  • the metal complex of compound (I) may be purified by methods usually used in organic synthetic chemistry (various column chromatography methods, recrystallization methods, washing with a solvent, etc.).
  • the metal complex of compound (Ia) can be manufactured according to the manufacturing method of the metal complex of compound (I).
  • Me represents a methyl group
  • Et represents an ethyl group
  • n-Pr represents a propyl group
  • i-Pr represents an isopropyl group
  • n-Bu represents a butyl group
  • i-Bu represents an isobutyl group
  • T-Bu represents a tert-butyl group
  • Ph represents a phenyl group.
  • the metal complex of the compound (I) used in the present invention is a dye for optical recording media, an ultraviolet absorber, a two-photon absorption dye as a three-dimensional recording material, and an increase in response to short wavelength laser (for example, blue-violet laser). It can be used as a dye-sensitive dye.
  • the metal complex of compound (I) is suitable as a dye for an optical recording medium because it has excellent light resistance, excellent weather resistance, excellent moisture and heat resistance, excellent coating properties, and excellent solubility.
  • the optical recording medium of the present invention contains a metal complex of compound (I) and has high sensitivity photoresponsiveness to blue-violet laser light, excellent recording signal quality, and the like.
  • Examples of the optical recording medium of the present invention include a substrate, a reflective layer, a recording layer, a transparent protective layer and a cover layer. The reflective layer, the recording layer, the transparent protective layer and the cover are provided on the substrate. It is preferable that the layers are provided in this order.
  • Examples of the optical recording medium of the present invention include those having a recording layer containing a metal complex of compound (I). When the recording layer is formed using the metal complex of compound (I), the metal complex of compound (I) may be used alone or in admixture of two or more.
  • the metal complex of compound (I) and other dyes may be used in combination.
  • Other dyes preferably have absorption in the wavelength region of the recording laser light.
  • a dye that does not hinder the formation of information recording (recording marks, etc. formed at a laser irradiation site due to thermal deformation in the recording layer, the reflective layer or the transparent protective layer, and the cover layer) may be used as another dye. preferable.
  • dyes examples include metal-containing azo dyes, phthalocyanine dyes, naphthalocyanine dyes, cyanine dyes, azo dyes, squarylium dyes other than the metal complex of compound (I), metal-containing indoaniline dyes , Triarylmethane dyes, merocyanine dyes, azurenium dyes, naphthoquinone dyes, anthraquinone dyes, indophenol dyes, xanthene dyes, oxazine dyes, pyrylium dyes, and the like. You may use these individually or in mixture of 2 or more types.
  • a combination of a dye suitable for recording using a laser beam such as a near infrared laser beam of 770 to 830 nm and a red laser beam of 620 to 690 nm and a metal complex of compound (I) can be used at a plurality of wavelengths.
  • An optical recording medium capable of recording with a laser beam in the region can also be produced.
  • the recording layer may contain a binder as necessary.
  • the binder include polyvinyl alcohol, polyvinyl pyrrolidone, ketone resin, nitrocellulose, cellulose acetate, polyvinyl butyral, and polycarbonate. You may use these individually or in mixture of 2 or more types.
  • the recording layer may contain, for example, a singlet oxygen quencher, a recording sensitivity improver, etc. in order to improve the stability and light resistance of the recording layer.
  • the singlet oxygen quencher examples include transition metal chelate compounds (for example, chelate compounds of acetylacetonate, bisphenyldithiol, salicylaldehyde oxime, bisdithio- ⁇ -diketone, etc. and transition metal) and the like. You may use these individually or in mixture of 2 or more types.
  • transition metal chelate compounds for example, chelate compounds of acetylacetonate, bisphenyldithiol, salicylaldehyde oxime, bisdithio- ⁇ -diketone, etc. and transition metal
  • a compound in which a metal such as a transition metal is contained in a compound in the form of atoms, ions, clusters, etc. for example, an ethylenediamine complex, an azomethine complex, a phenylhydroxyamine complex, a phenanthroline complex, And organic metal compounds such as dihydroxyazobenzene complex, dioxime complex, nitrosoaminophenol complex, pyridyltriazine complex, acetylacetonate complex, metallocene complex and porphyrin complex. You may use these individually or in mixture of 2 or more types.
  • the thickness of the recording layer of the optical recording medium of the present invention is preferably 1 nm to 5 ⁇ m, more preferably 5 to 100 nm, and further preferably 20 to 60 nm.
  • the recording layer can be formed by a known thin film forming method such as a vacuum deposition method, a sputtering method, a doctor blade method, a cast method, a spin coating method, or an immersion method, but the spin coating method is preferable from the viewpoint of mass productivity and cost.
  • a solution in which the concentration of the metal complex of compound (I) is adjusted to 0.3 to 1.5% by weight is used, and the rotation speed is 500. It is preferable to set it to ⁇ 10000 rpm. After applying the solution by a spin coating method, treatment such as heating, drying under reduced pressure, or exposure to solvent vapor may be performed.
  • the solvent of the solution may be on the substrate before applying the substrate and the recording layer.
  • the solvent is not particularly limited as long as it is a solvent that does not attack the formed layer (for example, a reflective layer).
  • ketone alcohol solvents such as diacetone alcohol and 3-hydroxy-3-methyl-2-butanone
  • cellosolv solvents such as methyl cellosolve and ethyl cellosolve, n-hexane, n-octane, cyclohexane, methylcyclohexane, ethylcyclohexane
  • Hydrocarbon solvents such as dimethylcyclohexane, n-butylcyclohexane, tert-butylcyclohexane and cyclooctane
  • ether solvents such as diisopropyl ether and dibutyl ether
  • fluoroalkyl such as tetrafluoropropanol, octafluoropentanol and hexafluorobutanol
  • alcohol solvents ester solvents such as methyl lactate, ethyl lactate, and methyl isobutyrate. You may use these individually or
  • the substrate of the optical recording medium of the present invention is preferably such that a guide groove formed in a spiral shape is formed on the surface for recording / reproduction with a laser beam.
  • the substrate those that can easily form fine grooves having a narrow track pitch are preferable, and specific examples thereof include glass and plastic.
  • plastics include acrylic resin, methacrylic resin, polycarbonate resin, vinyl chloride resin, vinyl acetate resin, nitrocellulose, polyester resin, polyethylene resin, polypropylene resin, polyimide resin, polystyrene resin, epoxy resin, and alicyclic polyolefin resin.
  • a polycarbonate resin is preferable from the viewpoint of high productivity, cost, moisture absorption resistance, and the like.
  • the substrate is preferably produced by injection molding the plastic.
  • a method for producing a substrate by injection molding include a method using a stamper made of a metal such as Ni in which a guide groove is formed.
  • the master for producing the stamper is produced, for example, as follows. Polish the surface of the disk-shaped glass substrate to be smooth. A photoresist whose thickness is adjusted according to a desired groove depth is applied on the substrate. Next, the photoresist is exposed using a laser beam or an electron beam having a wavelength shorter than that of the blue-violet laser beam and developed, thereby producing a master having a guide groove.
  • a conductive film such as Ni is vacuum-deposited on the surface of the master, and a stamper made of a metal such as Ni in which a guide groove is formed is produced through a plating process.
  • a substrate having guide grooves formed on the surface is produced by injection molding the plastic using this stamper.
  • the guide groove preferably has a height difference (groove depth) between the top surface and the bottom surface of the unevenness of 15 to 80 nm, and more preferably 25 to 50 nm.
  • the ratio of the width of the convex part to the concave part is preferably in the range of 40%: 60% to 60%: 40% (convex part: concave part).
  • the reflective layer is preferably a metal.
  • the metal include gold, silver, aluminum, and alloys thereof. From the viewpoint of reflectivity with respect to laser light having a wavelength of 550 nm or less and surface smoothness, an alloy mainly composed of silver or silver is used. preferable.
  • the silver-based alloy preferably contains about 90% or more of silver, and is selected from the group of Cu, Pd, Ni, Si, Au, Al, Ti, Zn, Zr, Nb, and Mo as components other than silver. Those containing at least one selected from the above are preferred.
  • the reflective layer can be formed on the substrate by, for example, vapor deposition, sputtering (eg, DC sputtering), ion plating, or the like.
  • An intermediate layer may be provided between the reflective layer and the recording layer for the purpose of improving the recording / reproducing characteristics or adjusting the reflectance.
  • Examples of the material for the intermediate layer include metals, metal oxides, metal nitrides, and the like.
  • the thickness of the reflective layer is preferably 5 to 300 nm, and more preferably 30 to 100 nm.
  • the transparent protective layer preferably has no or little absorption with respect to the laser beam used during recording and reproduction, and the real part of the refractive index is relatively large, about 1.5 to 2.0. What has the value of is preferable.
  • the material for the transparent protective layer include metal oxides, metal nitrides, metal sulfides, and mixtures thereof.
  • the thickness of the transparent protective layer is preferably 5 to 50 nm.
  • the thickness of the protective layer is 5 nm or more, a recording signal formed by deforming the recording layer can be clearly separated from an unrecorded portion between the recording marks, so that a better signal can be obtained. Further, when the thickness of the protective layer is 50 nm or less, the transparent protective layer is easily deformed, so that a better signal can be obtained.
  • the transparent protective layer can be formed on the recording layer by sputtering (for example, RF sputtering).
  • the cover layer for example, a polycarbonate sheet having a thickness of about 0.1 mm having an adhesive layer that is transparent to the recording / reproducing laser beam on the surface is used, and the sheet is transparently protected via the adhesive layer. By pressure-bonding to the layer, it can be formed on the transparent protective layer.
  • the adhesive layer is preferably one that does not hinder the deformation of the recording layer and the transparent protective layer during information recording.
  • the cover layer can also be formed using an ultraviolet curable resin, and the ultraviolet curable resin is preferably one that does not hinder the deformation of the recording layer and the transparent protective layer during information recording, like the adhesive layer.
  • the wavelength of the laser beam used for recording is preferably 350 to 530 nm. In general, the shorter the wavelength of laser light used for recording, the higher the density recording possible.
  • laser light examples include, for example, blue-violet laser light having a center wavelength of 405 nm, 410 nm, etc., blue-green high-power semiconductor laser light having a center wavelength of 515 nm, and the center wavelength is 405 nm. Blue-green high-power semiconductor laser light is preferred.
  • SHG may be any piezo element that lacks reflection symmetry, but KDP (KH 2 PO 4 ), ADP (NH 4 H 2 PO 4 ), BNN (Ba 2 NaNb 5 O 15 ), KN ( Preferred examples of SHG include KNbO 3 ), LBO (LiB 3 O 5 ), and compound semiconductors.
  • Specific examples of light (second harmonic) obtained by wavelength conversion by SHG include, for example, 430 nm light obtained by wavelength conversion of semiconductor laser light having a fundamental oscillation wavelength of 860 nm, and semiconductor laser having a fundamental oscillation wavelength of 860 nm. Examples thereof include 430 nm light obtained by wavelength conversion of excitation solid-state laser light.
  • the optical recording medium of the present invention is preferably a BD.
  • the BD is an optical recording medium that uses a blue-violet laser having a wavelength of 405 nm and records a higher density information by reducing the laser spot diameter by setting the NA of the objective lens to 0.85.
  • a reflective layer, a recording layer, a transparent protective layer, and a cover layer thinner than the substrate are sequentially laminated on the substrate. Recording and reproduction is performed by irradiating a blue-violet laser beam from the cover layer side.
  • Example 1 2 1 Complex of Compound (49) and Nickel [Compound (49-N)] 0.50 g of compound (49) and 0.16 g of nickel (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.52 g (yield 97%) of compound (49-N).
  • Example 2 2 1 Complex of Compound (49) and Cobalt [Compound (49-CO)] 0.50 g of compound (49) and 0.16 g of cobalt (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.52 g (yield 97%) of compound (49-CO).
  • Example 3 3 1 Complex of Compound (49) and Aluminum [Compound (49-A)] 0.30 g of compound (49) and 0.093 g of aluminum tris (ethylacetoacetate) were reacted in 3 mL of ethanol at 70 ° C. for 3 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.24 g (yield 79%) of compound (49-A).
  • Example 4 2 1 Complex of Compound (54) and Nickel [Compound (54-N)] 0.20 g of compound (54) and 0.06 g of nickel (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.18 g (yield 86%) of compound (54-N).
  • Example 5 2 1 Complex of Compound (54) and Cobalt [Compound (54-CO)] 0.20 g of compound (54) and 0.06 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.14 g (yield 64%) of compound (54-CO).
  • Example 6 2 1 Complex of Compound (61) and Nickel [Compound (61-N)] 0.30 g of compound (61) and 0.11 g of nickel (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.35 g (yield 95%) of compound (61-N).
  • Example 7 2 1 Complex of Compound (61) and Cobalt [Compound (61-CO)] 0.30 g of compound (61) and 0.11 g of cobalt (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.35 g of compound (61-CO) (yield 97%).
  • Example 8 2 1 Complex of Compound (63) and Nickel [Compound (63-N)] 0.50 g of compound (63) and 0.15 g of nickel (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.48 g (yield 90%) of compound (63-N).
  • Example 9 2 1 Complex of Compound (63) and Cobalt [Compound (63-CO)] 0.50 g of compound (63) and 0.15 g of cobalt (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.47 g (yield 89%) of compound (63-CO).
  • Example 10 2 1 Complex of Compound (71) and Nickel [Compound (71-N)] 0.20 g of compound (71) and 0.07 g of nickel (II) acetate tetrahydrate were reacted in 3 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.21 g (yield 99%) of compound (71-N).
  • Example 11 2 1 Complex of Compound (71) and Cobalt [Compound (71-CO)] 0.20 g of compound (71) and 0.07 g of cobalt (II) acetate tetrahydrate were reacted in 3 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.21 g (yield 96%) of compound (71-CO).
  • Example 12 2 1 Complex of Compound (77) and Nickel [Compound (77-N)] 0.20 g of compound (77) and 0.06 g of nickel acetate (II) tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.21 g (yield 100%) of compound (77-N).
  • Example 13 2 1 Complex of Compound (77) and Cobalt [Compound (77-CO)] 0.20 g of compound (77) and 0.06 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.21 g (yield 94%) of compound (77-CO).
  • Example 14 3 1 Complex of Compound (77) and Aluminum [Compound (77-A)] 0.30 g of compound (77) and 0.08 mg of aluminum tris (ethyl acetoacetate) were reacted in 3 mL of ethanol at 70 ° C. for 3 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.30 g (yield 92%) of compound (77-A).
  • Example 15 2 1 Complex of Compound (84) and Nickel [Compound (84-N)] 0.30 g of compound (84) and 0.09 g of nickel (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.31 g (yield 100%) of compound (84-N).
  • Example 16 1 complex of compound (84) and cobalt [compound (84-CO)] 0.30 g of the compound (84) and 0.09 g of cobalt (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.31 g (yield 100%) of compound (84-CO).
  • Example 17 2 1 Complex of Compound (93) and Nickel [Compound (93-N)] 0.15 g of compound (93) and 0.04 g of nickel (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.13 g (yield 83%) of compound (93-N).
  • Example 18 1 complex of compound (93) and cobalt [compound (93-CO)] 0.30 g of compound (93) and 0.08 g of cobalt (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.31 g (yield 100%) of compound (93-CO).
  • Example 19 2 1 Complex of Compound (102) and Nickel [Compound (102-N)] 0.15 g of compound (102) and 0.04 g of nickel (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.16 g (yield 97%) of compound (102-N).
  • Example 20 2 1 Complex of Compound (102) and Cobalt [Compound (102-CO)] 0.30 g of compound (102) and 0.08 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.33 g (yield 100%) of compound (102-CO).
  • Example 21 1 complex of compound (107) and nickel [compound (107-N)] 0.15 g of the compound (107) and 0.05 g of nickel (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.17 g (yield 100%) of compound (107-N).
  • Example 22 1 complex of compound (107) and cobalt [compound (107-CO)] 0.20 g of compound (107) and 0.06 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.20 g (yield 100%) of compound (107-CO).
  • Example 23 1 complex of compound (112) and nickel [compound (112-N)] 0.20 g of compound (112) and 0.06 g of nickel (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.17 g (yield 79%) of compound (112-N).
  • Example 24 1 complex of compound (112) and cobalt [compound (112-CO)] 0.20 g of compound (112) and 0.06 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.21 g (yield 98%) of compound (112-CO).
  • Example 25 2 1 Complex of Compound (115) and Nickel [Compound (115-N)] 0.25 g of compound (115) and 0.07 g of nickel acetate (II) tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.24 g (yield 89%) of compound (115-N).
  • Example 26 1 complex of compound (115) and cobalt [compound (115-CO)] 0.25 g of compound (115) and 0.07 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.25 g of compound (115-CO) (yield 92%).
  • Example 27 2 1 Complex of Compound (120) and Nickel [Compound (120-N)] 0.20 g of compound (120) and 0.05 g of nickel (II) acetate tetrahydrate were reacted in 2 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.21 g of Compound (120-N) (yield 100%).
  • Example 28 1 complex of compound (120) and cobalt [compound (120-CO)] 0.20 g of the compound (120) and 0.05 g of cobalt (II) acetate tetrahydrate were reacted in 2 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.15 g (yield 73%) of compound (120-CO).
  • ⁇ Substrate 101> A polycarbonate resin was injection molded to produce a substrate having a plate thickness of 1.1 mm and a diameter of 12 cm. On the surface of the substrate, a spiral tracking guide groove was formed by wobbling with an amplitude of 20 nm with a period of about 5 ⁇ m as preformat information such as an address signal in accordance with the BD-R disc standard. The guide groove was found to have a track pitch of 0.32 ⁇ m, a groove depth of 42 nm, and a groove width (half-value width at the top and bottom) of 147 nm, as observed and measured with an atomic force microscope.
  • the film thickness of the reflective layer was 45 nm from cross-sectional observation with an electron microscope.
  • ⁇ Recording layer 103> As the dye for forming the recording layer of the optical recording medium, a metal complex of the squarylium compound shown in Table 1 was used.
  • Each of the metal complexes of the squarylium compound described in Table 1 was ultrasonically dissolved in 2,2,3,3-tetrafluoropropanol at about 35 ° C., and a solution having a concentration of 0.5% by weight of the metal complex was obtained.
  • Prepared. About 0.5 g of this solution is dropped on the reflective layer 102 in a spiral shape from the outer periphery to the inner periphery, applied at a rotational speed of 2000 rpm by a spin coating method, and then heated in an oven at 70 ° C. for 30 minutes to form the recording layer 103. Formed.
  • the film thickness of the groove (concave portion) where recording is performed in the recording layer was about 30 nm from cross-sectional observation with an electron microscope.
  • Table 1 shows the results of measuring the absorbance of the dye used in the disk thin film state at 405 nm, which is the wavelength of the blue-violet laser.
  • a transparent protective layer 104 was formed by the method. The film thickness of this recording layer was 17 nm from cross-sectional observation with an electron microscope.
  • ⁇ Cover layer 105> On the transparent protective layer 104, a cover sheet (trade name Opteria, manufactured by Lintec Co., Ltd.) having a thickness of 100 ⁇ m obtained by applying a transparent adhesive to a polycarbonate film sheet is bonded with a sheet roller, and then subjected to pressure defoaming for 15 seconds. Thus, the cover layer 105 was formed.
  • a cover sheet (trade name Opteria, manufactured by Lintec Co., Ltd.) having a thickness of 100 ⁇ m obtained by applying a transparent adhesive to a polycarbonate film sheet is bonded with a sheet roller, and then subjected to pressure defoaming for 15 seconds.
  • the BD-R type optical recording media of Examples 29 to 37 were manufactured using the materials, procedures, and prototype conditions described above.
  • a disk evaluation machine (PDUSTEC ODU-1000) having a pickup head having a wavelength of 405 nm and a numerical aperture NA of 0.85 was used, and a shortest mark of 0.149 ⁇ m at a linear velocity of 4.92 m / sec.
  • a signal of the RLL (1-7) modulation method was modulated with a ternary multi-pulse as shown in FIG. 2, and five tracks were recorded on the groove. Reproduction was performed at a reproduction power of 0.30 mW on the third track at the center of the five recorded tracks.
  • the value obtained by dividing the jitter of the timing difference between the rise and fall of the signal binarized through the limit equalizer and the rise of the clock signal by the window width T (jitter value) was evaluated.
  • the recording conditions of each example were set by optimizing the recording power and multipulse modulation so that the jitter value was minimized.
  • Table 2 the jitter value obtained by recording / reproduction and the peak value of the recording power shown in FIG. 2 are shown as Pwo.
  • the optical recording media obtained in the examples satisfied the BD-R standards (jitter value: 7% or less, Pwo: 6 mW or less). Further, Pwo was as low as 6 mW or less when recording was performed using the optical recording medium obtained in the example so that the jitter value was 7% or less. This indicates that the optical recording medium obtained in the example has high sensitivity photoresponsiveness to blue-violet laser light.
  • an optical recording medium containing a metal complex of a squarylium compound having a highly sensitive photoresponsiveness to blue-violet laser light.

Abstract

An optical recording medium using a metal complex of a squarylium compound which exhibits highly sensitive photoresponsiveness to blue violet laser light.  Specifically disclosed is an optical recording medium containing a metal complex of a squarylium compound represented by formula (I). (In the formula, R1 represents an optionally substituted alkyl group or the like; R2 represents an optionally substituted alkyl group or the like; and R3 and R4 may be the same or different and each represents a hydrogen atom, an optionally substituted alkyl group, an NR5R6 group (wherein R5 and R6 may be the same or different and each represents a hydrogen atom, an optionally substituted heterocyclic group or the like) or the like.)

Description

スクアリリウム化合物の金属錯体を含有する光記録媒体Optical recording medium containing metal complex of squarylium compound
 本発明は、スクアリリウム化合物の金属錯体を含有する光記録媒体等に関する。 The present invention relates to an optical recording medium containing a metal complex of a squarylium compound.
 近年、対物レンズの開口数NAを大きくする技術、レーザー波長λを小さくする技術等を用い、さらに超高密度記録が可能となる光記録媒体の開発が進んでいる。例えば、HDTV(高精細度テレビ)の映像情報を2時間以上記録するためには、DVDと同サイズで少なくとも23GB以上の容量をもつ光記録媒体が要望されている。こういった要望に応えるために、405nmの青紫色レーザーを使用し、対物レンズのNAを0.85とし、レーザースポット径を小さくすることによって、より高密度の情報を記録する光記録媒体、いわゆるBlu-ray Disc(BD)が開発された。
 追記型Blu-ray Disc(BD-R)には、記録・再生を可能にする要求性能に加えて、記録感度、変調度、ジッタ(Jitter)、エラー率等において様々な優れた特性が求められる。しかし、従来の有機色素を用いたBD-Rにおけるそれらの特性は十分でない。
In recent years, development of an optical recording medium that enables ultra-high density recording using a technique for increasing the numerical aperture NA of the objective lens, a technique for reducing the laser wavelength λ, and the like has been progressing. For example, in order to record video information of HDTV (high definition television) for two hours or more, an optical recording medium having the same size as a DVD and a capacity of at least 23 GB is required. In order to meet these demands, an optical recording medium that records higher density information by using a 405 nm blue-violet laser, setting the NA of the objective lens to 0.85, and reducing the laser spot diameter, so-called Blu-ray Disc (BD) has been developed.
The write-once Blu-ray Disc (BD-R) is required to have various excellent characteristics in terms of recording sensitivity, modulation degree, jitter (jitter), error rate, etc., in addition to the required performance that enables recording and playback. . However, those properties in BD-R using conventional organic dyes are not sufficient.
 ピラゾール構造を有するスクアリリウム化合物の金属錯体は、追記型デジタルバーサタイルディスク(DVD-R)に用いる色素として有用であることが知られている(特許文献1)。該色素はDVD-Rの記録に用いられる約650nmのレーザー光で記録するのに適しているが、405nmのレーザー光で記録するのに適していない。
 ピラゾール構造およびアミン構造を有するスクアリリウム化合物の金属錯体は、電子ディスプレイ装置用フィルター用の色素として有用であることが知られている(特許文献2)。
It is known that a metal complex of a squarylium compound having a pyrazole structure is useful as a dye used for a write-once digital versatile disk (DVD-R) (Patent Document 1). The dye is suitable for recording with a laser beam of about 650 nm used for DVD-R recording, but is not suitable for recording with a laser beam of 405 nm.
It is known that a metal complex of a squarylium compound having a pyrazole structure and an amine structure is useful as a dye for a filter for an electronic display device (Patent Document 2).
国際公開第2002/50190号パンフレットInternational Publication No. 2002/50190 Pamphlet 国際公開第2006/38685号パンフレットInternational Publication No. 2006/38685 Pamphlet
 本発明の目的は、青紫色レーザー光に対する高感度な光応答性等を有するスクアリリウム化合物の金属錯体を用いた光記録媒体等を提供することにある。 An object of the present invention is to provide an optical recording medium or the like using a metal complex of a squarylium compound having a highly sensitive photoresponsiveness to blue-violet laser light.
 本発明は、以下の[1]~[12]を提供する。 The present invention provides the following [1] to [12].
[1] 式(I):
Figure JPOXMLDOC01-appb-C000004
[式中、Rは水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表し、Rは水素原子、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表し、RおよびR4は同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基またはNR(式中、RおよびRは同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表す)を表し、RおよびRは隣接する窒素原子と一緒になって置換基を有していてもよい脂環式複素環を形成してもよい。但し、RおよびRは同時に水素原子を表すことはない]で表されるスクアリリウム化合物の金属錯体を含有する光記録媒体。
[1] Formula (I):
Figure JPOXMLDOC01-appb-C000004
[Wherein, R 1 represents a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, An aryl group which may have a substituent or a heterocyclic group which may have a substituent, R 2 represents a hydrogen atom, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, a substituent An amino group which may have a substituent, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, and a substituent. Represents an alicyclic hydrocarbon group which may be substituted, an aryl group which may have a substituent or a heterocyclic group which may have a substituent, and R 3 and R 4 are the same or different, Hydrogen atom, optionally substituted alkyl group, substituted Which may be an aralkyl group, which may have a substituent the alicyclic hydrocarbon group, an optionally substituted aryl group, optionally substituted heterocyclic group, or NR 5 R 6 (wherein R 5 and R 6 are the same or different and have a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, or a substituent. Represents an alicyclic hydrocarbon group which may be substituted, an aryl group which may have a substituent or a heterocyclic group which may have a substituent, and R 3 and R 4 are adjacent nitrogen atoms And may form an alicyclic heterocyclic ring which may have a substituent. However, R 3 and R 4 do not represent a hydrogen atom at the same time.] An optical recording medium containing a metal complex of a squarylium compound represented by:
[2] RおよびRが同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基であるか、あるいはRおよびRが隣接する窒素原子と一緒になって置換基を有していてもよい脂環式複素環を形成する[1]記載の光記録媒体。 [2] R 3 and R 4 may be the same or different and each may have a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, or a substituent. An alicyclic hydrocarbon group, an optionally substituted aryl group or an optionally substituted heterocyclic group, or R 3 and R 4 together with the adjacent nitrogen atom The optical recording medium according to [1], wherein an alicyclic heterocyclic ring optionally having a substituent is formed.
[3] RおよびRのうち少なくとも一つがNR(式中、RおよびRはそれぞれ前記と同義である)である[1]記載の光記録媒体。
[4] RおよびRの一方がNR(式中、RおよびRはそれぞれ前記と同義である)であり、他方が水素原子である[1]記載の光記録媒体。
[3] The optical recording medium according to [1], wherein at least one of R 3 and R 4 is NR 5 R 6 (wherein R 5 and R 6 are as defined above).
[4] The optical recording medium according to [1], wherein one of R 3 and R 4 is NR 5 R 6 (wherein R 5 and R 6 are as defined above) and the other is a hydrogen atom.
[5] RおよびRのうち少なくとも一つが式(II):
Figure JPOXMLDOC01-appb-C000005
[式中、Wは窒素原子またはC-R(式中、Rは水素原子、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表す)を表し、Xは窒素原子またはC-R(式中、Rは前記Rと同義である)を表し、Yは窒素原子またはC-R(式中、Rは前記Rと同義である)を表し、Zは窒素原子またはC-R10(式中、R10は前記Rと同義である)を表し、WがC-RでありXがC-RであるときRとRはそれぞれが隣接する2つの炭素原子と一緒になって置換基を有していてもよい炭化水素環を形成してもよく、XがC-RでありYがC-RであるときRとRはそれぞれが隣接する2つの炭素原子と一緒になって置換基を有していてもよい炭化水素環を形成してもよく、YがC-RでありZがC-R10であるときRとR10はそれぞれが隣接する2つの炭素原子と一緒になって置換基を有していてもよい炭化水素環を形成してもよい]で表される[3]または[4]記載の光記録媒体。
[6] Wが窒素原子であり、XがC-Rであり、YがC-Rであり、ZがC-R10である[5]記載の光記録媒体。
[7] RおよびRの一方が式(II)であり、他方が水素原子である[5]または[6]記載の光記録媒体。
[5] At least one of R 5 and R 6 is represented by the formula (II):
Figure JPOXMLDOC01-appb-C000005
[Wherein W is a nitrogen atom or C—R 7 (wherein R 7 is a hydrogen atom, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, an amino group which may have a substituent, An alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, and an alicyclic hydrocarbon which may have a substituent A group, an aryl group which may have a substituent or a heterocyclic group which may have a substituent, and X represents a nitrogen atom or C—R 8 (wherein R 8 represents the above R 7 represents a nitrogen atom or C—R 9 (wherein R 9 is as defined above for R 7 ), and Z represents a nitrogen atom or C—R 10 (wherein R 7 10 represents a a) synonymous with the R 7, when W is C-R 7 X is a C-R 8 R 7 and R 8 may each form two or hydrocarbon ring which may have a substituent together with the carbon atom adjacent, X is C-R 8 Y is C- When R 9 is R 9 , R 8 and R 9 may be combined with two adjacent carbon atoms to form an optionally substituted hydrocarbon ring, wherein Y is C—R 9 And when Z is C—R 10 , R 9 and R 10 may be combined with two adjacent carbon atoms to form an optionally substituted hydrocarbon ring]. The optical recording medium according to [3] or [4].
[6] The optical recording medium according to [5], wherein W is a nitrogen atom, X is CR 8 , Y is CR 9 , and Z is CR 10 .
[7] The optical recording medium according to [5] or [6], wherein one of R 5 and R 6 is the formula (II) and the other is a hydrogen atom.
[8] RおよびRが同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基である[1]~[7]のいずれかに記載の光記録媒体。 [8] R 1 and R 2 may be the same or different and each may have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. The optical recording medium according to any one of [1] to [7], which is a heterocyclic group.
[9] 金属がニッケル、コバルト、アルミニウム、銅、亜鉛または鉄である[1]~[8]のいずれかに記載の光記録媒体。
[10] 金属がニッケルまたはコバルトである[1]~[8]のいずれかに記載の光記録媒体。
[9] The optical recording medium according to any one of [1] to [8], wherein the metal is nickel, cobalt, aluminum, copper, zinc, or iron.
[10] The optical recording medium according to any one of [1] to [8], wherein the metal is nickel or cobalt.
[11] 350~530nmの記録波長により記録可能である[1]~[10]のいずれかに記載の光記録媒体。 [11] The optical recording medium according to any one of [1] to [10], wherein recording is possible with a recording wavelength of 350 to 530 nm.
[12] 式(Ia):
Figure JPOXMLDOC01-appb-C000006
[式中、Rは水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表し、Rは水素原子、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表し、R5aは水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表し、Wは窒素原子またはC-R(式中、Rは水素原子、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表す)を表し、Xは窒素原子またはC-R(式中、Rは前記Rと同義である)を表し、Yは窒素原子またはC-R(式中、Rは前記Rと同義である)を表し、Zは窒素原子またはC-R10(式中、R10は前記Rと同義である)を表し、WがC-RでありXがC-RであるときRとRはそれぞれが隣接する2つの炭素原子と一緒になって置換基を有していてもよい炭化水素環を形成してもよく、XがC-RでありYがC-RであるときRとRはそれぞれが隣接する2つの炭素原子と一緒になって置換基を有していてもよい炭化水素環を形成してもよく、YがC-RでありZがC-R10であるときRとR10はそれぞれが隣接する2つの窒素原子と一緒になって置換基を有していてもよい炭化水素環を形成してもよい]で表されるスクアリリウム化合物の金属錯体。
[12] Formula (Ia):
Figure JPOXMLDOC01-appb-C000006
[Wherein, R 1 represents a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, An aryl group which may have a substituent or a heterocyclic group which may have a substituent, R 2 represents a hydrogen atom, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, a substituent An amino group which may have a substituent, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, and a substituent. Represents an alicyclic hydrocarbon group which may be substituted, an aryl group which may have a substituent or a heterocyclic group which may have a substituent, and R 5a has a hydrogen atom and a substituent. An optionally substituted alkyl group, an optionally substituted aralkyl group, An alicyclic hydrocarbon group which may have a substituent, an aryl group which may have a substituent or a heterocyclic group which may have a substituent, W represents a nitrogen atom or C— R 7 (wherein R 7 is a hydrogen atom, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, an amino group which may have a substituent, or an alkyl group which may have a substituent) , An alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, or a substituent. Represents an aryl group or an optionally substituted heterocyclic group), X represents a nitrogen atom or C—R 8 (wherein R 8 has the same meaning as R 7 above), and Y represents Represents a nitrogen atom or C—R 9 (wherein R 9 is as defined above for R 7 ), and Z is Nitrogen atom or C-R 10 (wherein, R 10 is a is same meaning as the R 7) represents, W is the C-R 7 a and X are each R 7 and R 8 when it is C-R 8 A hydrocarbon ring which may have a substituent may be formed together with two adjacent carbon atoms, and when X is C—R 8 and Y is C—R 9 , R 8 and R 9 may be combined with two adjacent carbon atoms to form a hydrocarbon ring which may have a substituent, and Y is C—R 9 and Z is C—R 10 . In some cases, R 9 and R 10 may be combined with two adjacent nitrogen atoms to form a hydrocarbon ring which may have a substituent, and a metal complex of a squarylium compound represented by:
[13] Wが窒素原子であり、XがC-Rであり、YがC-Rであり、ZがC-R10である[12]記載の金属錯体。
[14] R5aが水素原子である[12]または[13]記載の金属錯体。
[15] RおよびRが同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、または置換基を有していてもよい複素環基である[12]~[14]のいずれかに記載の金属錯体。
[13] The metal complex according to [12], wherein W is a nitrogen atom, X is C—R 8 , Y is C—R 9 and Z is C—R 10 .
[14] The metal complex according to [12] or [13], wherein R 5a is a hydrogen atom.
[15] R 1 and R 2 may be the same or different and each may have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. The metal complex according to any one of [12] to [14], which is a good heterocyclic group.
[16] 金属がニッケル、コバルト、アルミニウム、銅、亜鉛または鉄である[12]~[15]のいずれかに記載の金属錯体。
[17] 金属がニッケルまたはコバルトである[12]~[15]のいずれかに記載の金属錯体。
[16] The metal complex according to any one of [12] to [15], wherein the metal is nickel, cobalt, aluminum, copper, zinc or iron.
[17] The metal complex according to any one of [12] to [15], wherein the metal is nickel or cobalt.
 本発明により、青紫色レーザー光に対する高感度な光応答性等を有するスクアリリウム化合物の金属錯体を用いた光記録媒体等を提供できる。 According to the present invention, it is possible to provide an optical recording medium using a metal complex of a squarylium compound having a highly sensitive photoresponsiveness to blue-violet laser light.
追記型Blu-ray Discの構成を示す概略図Schematic diagram showing the structure of write-once Blu-ray Disc マルチパルス変調された記録波形を示す概略図Schematic showing multipulse modulated recording waveform
101 基板
102 反射層
103 記録層
104 透明保護層
105 カバー層
106 記録再生レーザー光
101 Substrate 102 Reflective layer 103 Recording layer 104 Transparent protective layer 105 Cover layer 106 Recording / reproducing laser beam
 以下、式(I)で表される化合物を化合物(I)という。他の式番号の化合物についても同様である。 Hereinafter, the compound represented by Formula (I) is referred to as Compound (I). The same applies to the compounds of other formula numbers.
 一般式の各基の定義において、アルキル基およびアルコキシル基におけるアルキル部分としては、例えば、直鎖または分岐状の炭素数1~20のアルキル基が挙げられ、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、1-メチルブチル基、2-メチルブチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、エイコシル基等が挙げられ、中でも炭素数が1~6であるものが好ましい。 In the definition of each group in the general formula, examples of the alkyl moiety in the alkyl group and the alkoxyl group include a linear or branched alkyl group having 1 to 20 carbon atoms, specifically, a methyl group, an ethyl group, and the like. Propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, 1-methylbutyl group, 2-methylbutyl group, tert-pentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, a decyl group, an eicosyl group and the like can be mentioned. Among them, those having 1 to 6 carbon atoms are preferable.
 アラルキル基としては、例えば、炭素数7~15のアラルキル基が挙げられ、具体的には、ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基等が挙げられる。 Examples of the aralkyl group include an aralkyl group having 7 to 15 carbon atoms, and specific examples include a benzyl group, a phenethyl group, a phenylpropyl group, and a naphthylmethyl group.
 アリール基としては、例えば、炭素数6~14のアリール基が挙げられ、具体的には、フェニル基、ナフチル基、アントリル基、アズレニル基等が挙げられる。 Examples of the aryl group include aryl groups having 6 to 14 carbon atoms, and specific examples include a phenyl group, a naphthyl group, an anthryl group, and an azulenyl group.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 脂環式炭化水素基における脂環式炭化水素としては、例えば、炭素数3~8のシクロアルカン、炭素数3~8のシクロアルケン、3~8員の環が縮合した二環または三環性の脂環式炭化水素等が挙げられる。 Examples of the alicyclic hydrocarbon in the alicyclic hydrocarbon group include, for example, a cycloalkane having 3 to 8 carbon atoms, a cycloalkene having 3 to 8 carbon atoms, and a bicyclic or tricyclic condensed 3- to 8-membered ring. And alicyclic hydrocarbons.
 炭素数3~8のシクロアルカンの具体例としては、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等が挙げられる。 Specific examples of the cycloalkane having 3 to 8 carbon atoms include, for example, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like.
 炭素数3~8のシクロアルケンの具体例としては、例えば、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン等が挙げられる。 Specific examples of the C3-C8 cycloalkene include, for example, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene and the like.
 3~8員の環が縮合した二環または三環性の脂環式炭化水素の具体例としては、例えば、ジヒドロペンタレン、ジヒドロインデン、テトラヒドロナフタレン、ヘキサヒドロフルオレン等が挙げられる。 Specific examples of the bicyclic or tricyclic alicyclic hydrocarbon condensed with a 3- to 8-membered ring include dihydropentalene, dihydroindene, tetrahydronaphthalene, hexahydrofluorene and the like.
 複素環基における複素環としては、芳香族複素環および脂環式複素環が挙げられる。
 芳香族複素環としては、例えば、窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む5員または6員の単環性芳香族複素環、3~8員の環が縮合した二環または三環性で窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む縮環性芳香族複素環等が挙げられ、具体的には、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、キノリン環、イソキノリン環、フタラジン環、キナゾリン環、キノキサリン環、ナフチリジン環、シンノリン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、トリアジン環、テトラゾール環、チオフェン環、フラン環、チアゾール環、オキサゾール環、インドール環、イソインドール環、インダゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、プリン環、カルバゾール環等が挙げられる。
Examples of the heterocyclic ring in the heterocyclic group include an aromatic heterocyclic ring and an alicyclic heterocyclic ring.
As the aromatic heterocyclic ring, for example, a 5- or 6-membered monocyclic aromatic heterocyclic ring containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom is condensed. Examples include bicyclic or tricyclic condensed aromatic heterocycles containing at least one atom selected from a nitrogen atom, an oxygen atom, and a sulfur atom. Specific examples include a pyridine ring, a pyrazine ring, and a pyrimidine ring. , Pyridazine ring, quinoline ring, isoquinoline ring, phthalazine ring, quinazoline ring, quinoxaline ring, naphthyridine ring, cinnoline ring, pyrrole ring, pyrazole ring, imidazole ring, triazole ring, triazine ring, tetrazole ring, thiophene ring, furan ring, thiazole Ring, oxazole ring, indole ring, isoindole ring, indazole ring, benzimidazole ring, benzotri Tetrazole ring, benzothiazole ring, benzoxazole ring, purine ring, carbazole ring.
 脂環式複素環としては、例えば、窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む5~8員の単環性脂環式複素環、3~8員の環が縮合した二環または三環性で窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む縮環性脂環式複素環等が挙げられ、具体的には、ピロリジン環、ピペリジン環、ピペラジン環、モルホリン環、チオモルホリン環、ホモピペリジン環、ホモピペラジン環、テトラヒドロピリジン環、テトラヒドロキノリン環、テトラヒドロイソキノリン環、テトラヒドロフラン環、テトラヒドロピラン環、ジヒドロベンゾフラン環、テトラヒドロカルバゾール環等が挙げられる。 As the alicyclic heterocycle, for example, a 5- to 8-membered monocyclic alicyclic heterocycle containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom is condensed. A bicyclic or tricyclic condensed alicyclic heterocyclic ring containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom, specifically, a pyrrolidine ring, a piperidine ring, Examples include piperazine ring, morpholine ring, thiomorpholine ring, homopiperidine ring, homopiperazine ring, tetrahydropyridine ring, tetrahydroquinoline ring, tetrahydroisoquinoline ring, tetrahydrofuran ring, tetrahydropyran ring, dihydrobenzofuran ring, tetrahydrocarbazole ring and the like.
 RとRが隣接する窒素原子と一緒になって形成される脂環式複素環としては、例えば、前記の脂環式複素環のうち少なくとも窒素原子を一つ含むもの等が挙げられる。具体的には、ピロリジン環、ピペリジン環、ピペラジン環、モルホリン環、チオモルホリン環、ホモピペリジン環、ホモピペラジン環、テトラヒドロピリジン環、テトラヒドロキノリン環、テトラヒドロイソキノリン環等が挙げられる。 Examples of the alicyclic heterocycle formed by combining R 3 and R 4 with the adjacent nitrogen atom include those containing at least one nitrogen atom among the above alicyclic heterocycles. Specific examples include pyrrolidine ring, piperidine ring, piperazine ring, morpholine ring, thiomorpholine ring, homopiperidine ring, homopiperazine ring, tetrahydropyridine ring, tetrahydroquinoline ring, tetrahydroisoquinoline ring and the like.
 RとR、RとR、またはRとR10がそれぞれが隣接する2つの炭素原子と一緒になって形成される炭化水素環としては、例えば、炭素数5~10の不飽和の炭化水素環が挙げられ、具体的には、シクロペンテン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環、ベンゼン環、ナフタレン環等が挙げられる。 Examples of the hydrocarbon ring formed by combining R 7 and R 8 , R 8 and R 9 , or R 9 and R 10 together with two adjacent carbon atoms include, for example, non-carbon atoms of 5 to 10 carbon atoms. Examples include saturated hydrocarbon rings, and specific examples include a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, a cyclooctene ring, a benzene ring, and a naphthalene ring.
 アルキル基およびアルコキシル基の置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、アルコキシル基、アルコキシアルコキシル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、複素環基等が挙げられる。ここで、ハロゲン原子、複素環基およびアルコキシル基は、それぞれ前記と同義である。アルコキシアルコキシル基の2つのアルコキシ部分は、それぞれ前記のアルコキシル基と同義である。アルカノイル基、アルキルカルボニルオキシ基およびアルコキシカルボニル基のアルキル部分は、それぞれ前記のアルキル基と同義である。アロイル基、アリールオキシ基、アリールカルボニルオキシ基およびアリールオキシカルボニル基のアリール部分は、それぞれ前記のアリール基と同義である。 Examples of the substituent for the alkyl group and the alkoxyl group include, for example, the same or different 1 to 5 substituents, specifically, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, an alkoxyl group, an alkoxyalkoxyl. Group, alkanoyl group, alkylcarbonyloxy group, alkoxycarbonyl group, aroyl group, aryloxy group, arylcarbonyloxy group, aryloxycarbonyl group, heterocyclic group and the like. Here, the halogen atom, the heterocyclic group, and the alkoxyl group have the same meanings as described above. The two alkoxy moieties of the alkoxyalkoxyl group have the same meaning as the above alkoxyl group, respectively. The alkyl portions of the alkanoyl group, alkylcarbonyloxy group and alkoxycarbonyl group are as defined above. The aryl part of the aroyl group, aryloxy group, arylcarbonyloxy group and aryloxycarbonyl group has the same meaning as the above aryl group.
 アミノ基の置換基としては、例えば、1個または2個の置換基、具体的には、アルキル基、アラルキル基、脂環式炭化水素基、アリール基等が挙げられる。ここで、アルキル基、アラルキル基、脂環式炭化水素基およびアリール基は、それぞれ前記と同義である。該置換基が2個であるとき、置換基のそれぞれは同一または異なっていてもよい。 Examples of the substituent of the amino group include one or two substituents, specifically, an alkyl group, an aralkyl group, an alicyclic hydrocarbon group, an aryl group, and the like. Here, the alkyl group, the aralkyl group, the alicyclic hydrocarbon group, and the aryl group have the same meanings as described above. When two substituents are present, each of the substituents may be the same or different.
 アラルキル基、脂環式炭化水素基、およびアリール基の置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、アラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、アリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、複素環基、置換基を有していてもよいアミノ基等が挙げられる。ここで、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、アラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、アリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、複素環基および置換基を有していてもよいアミノ基は、それぞれ前記と同義である。 Examples of the substituent of the aralkyl group, alicyclic hydrocarbon group, and aryl group include, for example, the same or different 1 to 5 substituents, specifically, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, Cyano group, optionally substituted alkyl group, optionally substituted alkoxyl group, aralkyl group, alkanoyl group, alkylcarbonyloxy group, alkoxycarbonyl group, aryl group, aroyl group, aryloxy Group, an arylcarbonyloxy group, an aryloxycarbonyl group, a heterocyclic group, an amino group which may have a substituent, and the like. Here, a halogen atom, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group, an alkanoyl group, an alkylcarbonyloxy group, an alkoxycarbonyl group, an aryl group, an aroyl group , Aryloxy group, arylcarbonyloxy group, aryloxycarbonyl group, heterocyclic group and optionally substituted amino group have the same meanings as described above.
 R、R、R、R、R、R、RまたはR10が複素環基であるときの複素環基の置換基としては、例えば、アラルキル基、脂環式炭化水素基、およびアリール基の置換基として前記に例示した官能基と同じものが挙げられる。 Examples of the substituent of the heterocyclic group when R 1 , R 2 , R 3 , R 4 , R 7 , R 8 , R 9 or R 10 is a heterocyclic group include, for example, an aralkyl group and an alicyclic hydrocarbon Examples of the group and the substituent of the aryl group include the same functional groups exemplified above.
 R、RまたはR5aが複素環基であるときの複素環基の置換基としては、例えば、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基等が挙げられる。ここで、ハロゲン原子、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基および置換基を有していてもよいアリール基はそれぞれ前記と同義であり、置換基を有していてもよい複素環基はR、R、R、R、R、R、RまたはR10が置換基を有していてもよい複素環基であるときのそれと同義である。 Examples of the substituent of the heterocyclic group when R 5 , R 6 or R 5a is a heterocyclic group may include a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, and a substituent. A good amino group, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, a fat which may have a substituent Examples thereof include a cyclic hydrocarbon group, an aryl group which may have a substituent, and a heterocyclic group which may have a substituent. Here, a halogen atom, an amino group which may have a substituent, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, or a substituent. A good aralkyl group, an alicyclic hydrocarbon group which may have a substituent and an aryl group which may have a substituent have the same meanings as described above, and an optionally substituted heterocycle The group has the same meaning as that when R 1 , R 2 , R 3 , R 4 , R 7 , R 8 , R 9 or R 10 is a heterocyclic group which may have a substituent.
 RとRが隣接する窒素原子と一緒になって形成される脂環式複素環の置換基としては、例えば、アラルキル基、脂環式炭化水素基およびアリール基の置換基として前記に例示した官能基と同じものが挙げられる。 Examples of the substituent for the alicyclic heterocyclic ring formed by combining R 3 and R 4 with the adjacent nitrogen atom include those exemplified above as the substituent for the aralkyl group, alicyclic hydrocarbon group, and aryl group. And the same functional groups as those described above.
 RとR、RとR、またはRとR10がそれぞれが隣接する2つの炭素原子と一緒になって形成される炭化水素環の置換基としては、例えば、アラルキル基、脂環式炭化水素基、およびアリール基の置換基として前記に例示した官能基と同じものが挙げられる。 Examples of the substituent of the hydrocarbon ring formed by R 7 and R 8 , R 8 and R 9 , or R 9 and R 10 together with two adjacent carbon atoms include aralkyl groups, Examples of the substituent of the cyclic hydrocarbon group and aryl group are the same as the functional groups exemplified above.
 金属錯体における金属としては、例えば、アルミニウム、ルテニウム、オスミウム、鉄、白金、亜鉛、ベリリウム、銅、ニッケル、クロム、コバルト、マンガン、イリジウム、バナジウム、チタン等が挙げられ、中でもニッケル、コバルト、アルミニウム、銅、亜鉛および鉄が好ましい。
化合物(I)においてRおよびRのうち少なくとも一つがNRであるとき、RおよびRの一方がNRであり、他方が水素原子であって、RおよびRの一方が式(II)であり、他方が水素原子であるのが好ましい。ここで、式(II)は前記と同義である。
化合物(Ia)において、R5aが水素原子であるのが好ましい。
Examples of the metal in the metal complex include aluminum, ruthenium, osmium, iron, platinum, zinc, beryllium, copper, nickel, chromium, cobalt, manganese, iridium, vanadium, titanium, etc., among which nickel, cobalt, aluminum, Copper, zinc and iron are preferred.
In compound (I), when at least one of R 3 and R 4 is NR 5 R 6 , one of R 3 and R 4 is NR 5 R 6 , the other is a hydrogen atom, and R 5 and R 4 It is preferable that one of 6 is the formula (II) and the other is a hydrogen atom. Here, formula (II) is as defined above.
In compound (Ia), R 5a is preferably a hydrogen atom.
 化合物(I)は、例えば、反応式(a):
Figure JPOXMLDOC01-appb-C000007
(式中、R、R、RおよびRは、それぞれ前記と同義である)に従って製造することができる。具体的には、化合物(III)またはその塩と化合物(IV)またはその塩とを、要すれば化合物(III)に対して0.1~1.5倍モルの酸触媒の存在下、溶媒中、40~140℃で、0.5~30時間反応させて化合物(I)を製造することができる。
 化合物(IV)またはその塩の使用量は、化合物(III)またはその塩に対して1~5倍モル量であるのが好ましい。
Compound (I) is, for example, reaction formula (a):
Figure JPOXMLDOC01-appb-C000007
(Wherein R 1 , R 2 , R 3 and R 4 are as defined above). Specifically, the compound (III) or a salt thereof and the compound (IV) or a salt thereof, if necessary, in the presence of an acid catalyst in an amount of 0.1 to 1.5-fold moles relative to the compound (III) The compound (I) can be produced by reacting at 40 to 140 ° C. for 0.5 to 30 hours.
The amount of compound (IV) or a salt thereof used is preferably 1 to 5 times the molar amount relative to compound (III) or a salt thereof.
 RおよびRのうち少なくともいずれか一方がNR(式中、RおよびRはそれぞれ前記と同義である)であるとき、反応温度は40~100℃であるのが好ましい。 When at least one of R 3 and R 4 is NR 5 R 6 (wherein R 5 and R 6 are as defined above), the reaction temperature is preferably 40 to 100 ° C.
 RおよびR4が同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基であるとき(但し、RおよびRは同時に水素原子を表すことはない)、反応温度は80~140℃であるのが好ましい。ここで、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基および置換基を有していてもよい複素環基は、それぞれ前記と同義である。 R 3 and R 4 are the same or different and are each a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, or an alicyclic which may have a substituent. When it is a hydrocarbon group, an aryl group which may have a substituent or a heterocyclic group which may have a substituent (provided that R 3 and R 4 do not represent a hydrogen atom at the same time), The reaction temperature is preferably 80 to 140 ° C. Here, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, and a substituent. The aryl group and the heterocyclic group which may have a substituent are as defined above.
 化合物(III)の塩としては、カリウム塩、ナトリウム塩等が挙げられる。
 化合物(IV)の塩としては、塩酸塩、硫酸塩、p-トルエンスルホン酸塩、メタンスルホン酸塩等が挙げられる。
 酸触媒としては、硫酸、p-トルエンスルホン酸、メタンスルホン酸等が挙げられる。
Examples of the salt of compound (III) include potassium salt and sodium salt.
Examples of the salt of compound (IV) include hydrochloride, sulfate, p-toluenesulfonate, methanesulfonate, and the like.
Examples of the acid catalyst include sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid and the like.
 化合物(III)は、スクアリン酸のジエステルまたはスクアリン酸の二ハロゲン化物と式(V):
Figure JPOXMLDOC01-appb-C000008
(式中、RおよびRは、それぞれ前記と同義である)で表される化合物とを公知の方法、例えば、国際公開第01/44233号パンフレット等に記載の方法等に準じて反応させることにより得ることができる。化合物(V)は、市販品として入手するか、公知の方法、例えば、社団法人日本化学会編,新実験化学講座,第14巻,「有機化合物の合成と反応IV 複素環化合物」,丸善株式会社,1978年,p.2154、Chemistry,1964年,第26巻,p.333、Journal of Organic Chemistry,1957年,第22巻,p.780、Chemical & Pharmaceutical Bulletin,1981年,第29巻,第1号,p.244、Journal of Heterocyclic Chemistry,1980年,第17巻,第2号,p.389、Liebigs Annalen der Chemie,1985年,第1巻,p.78、Journal of the Chemical Society.Perkin Transactions.1,1983年,第2巻 ,p.325、Journal of the Indian Chemical Society,1980年,第57巻,p.1108、Journal of Organic Chemistry,1979年,第44巻,p.4597等に記載の方法等に準じて製造することにより得ることができる。
Compound (III) is a diester of squaric acid or a dihalide of squaric acid and a compound of formula (V):
Figure JPOXMLDOC01-appb-C000008
(Wherein R 1 and R 2 have the same meanings as described above), and a compound represented by the known method, for example, the method described in WO 01/44233 pamphlet or the like. Can be obtained. Compound (V) can be obtained as a commercial product or can be obtained by publicly known methods, for example, the Chemical Society of Japan, New Experimental Chemistry Course, Volume 14, “Synthesis and Reaction of Organic Compounds IV Heterocyclic Compounds”, Maruzen Co., Ltd. Company, 1978, p. 2154, Chemistry, 1964, 26, p. 333, Journal of Organic Chemistry, 1957, Vol. 22, p. 780, Chemical & Pharmaceutical Bulletin, 1981, Vol. 29, No. 1, p. 244, Journal of Heterocyclic Chemistry, 1980, Vol. 17, No. 2, p. 389, Liebigs Annalen der Chemie, 1985, Vol. 1, p. 78, Journal of the Chemical Society. Perkin Transactions. 1, 1983, Volume 2, p. 325, Journal of the Indian Chemical Society, 1980, vol. 57, p. 1108, Journal of Organic Chemistry, 1979, vol. 44, p. It can be obtained by manufacturing according to the method described in 4597 and the like.
 化合物 (IV)のうちRおよびR4の少なくともいずれか一方がNR(式中、RおよびRはそれぞれ前記と同義である)であるものは、市販品として入手するか、公知の方法、例えば、Journal of Medical Chemistry,1985年,第28巻,p.1394等に記載の方法等に準じて製造することにより得ることができる。 A compound (IV) in which at least one of R 3 and R 4 is NR 5 R 6 (wherein R 5 and R 6 have the same meanings as described above) is obtained as a commercial product, Known methods, for example, Journal of Medical Chemistry, 1985, Vol. 28, p. It can be obtained by manufacturing according to the method described in 1394 or the like.
 化合物(IV)のうちRおよびR4が同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基であるもの(但し、RおよびRは同時に水素原子を表すことはない)は、市販品として入手するか、公知の方法、例えば、特開昭48-39454号公報、特開昭63-253056号公報、国際公開第95/7888号パンフレット、Tetrahedron,2005年,第61巻,第24号,p.5725、Journal of the Chemical Society,Chemical Communications,1990年,第12巻,p.869等に記載の方法等に準じて製造することにより得ることができる。ここで、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基および置換基を有していてもよい複素環基はそれぞれ前記と同義である。 R 3 and R 4 in the compound (IV) are the same or different and have a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, or a substituent. An alicyclic hydrocarbon group that may be substituted, an aryl group that may have a substituent, or a heterocyclic group that may have a substituent (provided that R 3 and R 4 simultaneously represent a hydrogen atom; May be obtained as a commercial product or may be obtained by a known method such as JP-A-48-39454, JP-A-63-253056, WO95 / 7888, Tetrahedron, 2005. Year, Vol. 61, No. 24, p. 5725, Journal of the Chemical Society, Chemical Communications, 1990, Vol. 12, p. It can obtain by manufacturing according to the method of 869 grade | etc.,. Here, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, and a substituent. The aryl group and the heterocyclic group which may have a substituent are as defined above.
 溶媒としては、例えば、エタノール、プロパノール、2-プロパノール、ブタノール、オクタノール等のアルコール系溶媒、該アルコール系溶媒(20容量%以上)とベンゼン、トルエンまたはキシレンとの混合溶媒、アセトニトリル等が挙げられる。
 反応後、必要に応じて、化合物(I)を有機合成化学で通常用いられる方法(各種カラムクロマトグラフィー法、再結晶法、溶剤での洗浄等)で精製してもよい。
Examples of the solvent include alcohol solvents such as ethanol, propanol, 2-propanol, butanol and octanol, a mixed solvent of the alcohol solvent (20% by volume or more) and benzene, toluene or xylene, acetonitrile and the like.
After the reaction, if necessary, the compound (I) may be purified by methods usually used in organic synthetic chemistry (various column chromatography methods, recrystallization methods, washing with a solvent, etc.).
 化合物(Ia)は化合物(I)の製造方法に準じて製造することができる。
 化合物(I)の金属錯体は、公知の方法、例えば、国際公開第02/050190号パンフレット等に記載の方法等に準じて製造することができる。具体的には、有機金属化合物または金属塩と、化合物(I)とを、要すれば有機金属化合物または金属塩に対して1~5倍モルの酢酸の存在下、溶媒中、25~120℃の温度で、0.1~30時間反応させることにより化合物(I)の金属錯体を製造することができる。
 化合物(I)の使用量は、有機金属化合物または金属塩に対して0.5~5倍モル量であるのが好ましい。
Compound (Ia) can be produced according to the production method of compound (I).
The metal complex of compound (I) can be produced according to a known method, for example, the method described in International Publication No. 02/050190 pamphlet or the like. Specifically, the organometallic compound or metal salt and the compound (I) are optionally added at 25 to 120 ° C. in a solvent in the presence of 1 to 5 moles of acetic acid with respect to the organometallic compound or metal salt. The metal complex of compound (I) can be produced by reacting at a temperature of 0.1 to 30 hours.
The amount of compound (I) used is preferably 0.5 to 5 times the molar amount of the organometallic compound or metal salt.
 有機金属化合物としては、例えば、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムイソプロポキシド、アルミニウムsec-ブトキシド、アルミニウムエトキシド、銅アセチルアセトネート、亜鉛アセチルアセトネート、鉄トリス(2,4-ペンタンジオネート)、トリス(カルボネート)コバルト(III)酸ナトリウム塩等が挙げられる。
 金属塩としては、例えば、塩化アルミニウム、塩化銅、酢酸銅、酢酸ニッケル、塩化ニッケル、酢酸コバルト、塩化コバルト、これらの水和物等が挙げられる。
Examples of the organometallic compound include aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), aluminum isopropoxide, aluminum sec-butoxide, aluminum ethoxide, copper acetylacetonate, zinc acetylacetonate, iron tris. (2,4-pentanedionate), tris (carbonate) cobalt (III) sodium salt, and the like.
Examples of the metal salt include aluminum chloride, copper chloride, copper acetate, nickel acetate, nickel chloride, cobalt acetate, cobalt chloride, and hydrates thereof.
 溶媒としては、例えば、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、イソブタノール等のアルコール系溶媒、クロロホルム、ジクロロメタン等のハロゲン系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、テトラヒドロフラン、メチル-tert-ブチルエーテル等のエーテル系溶媒、酢酸エチル等のエステル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、これらの混合溶媒等が挙げられる。 Examples of the solvent include alcohol solvents such as methanol, ethanol, propanol, 2-propanol, butanol and isobutanol, halogen solvents such as chloroform and dichloromethane, aromatic solvents such as benzene, toluene and xylene, tetrahydrofuran and methyl. Examples include ether solvents such as -tert-butyl ether, ester solvents such as ethyl acetate, ketone solvents such as acetone and methyl ethyl ketone, and mixed solvents thereof.
 反応後、必要に応じて、有機合成化学で通常用いられる方法(各種カラムクロマトグラフィー法、再結晶法、溶媒による洗浄等)で化合物(I)の金属錯体を精製してもよい。
 化合物(Ia)の金属錯体は化合物(I)の金属錯体の製造方法に準じて製造することができる。
After the reaction, if necessary, the metal complex of compound (I) may be purified by methods usually used in organic synthetic chemistry (various column chromatography methods, recrystallization methods, washing with a solvent, etc.).
The metal complex of compound (Ia) can be manufactured according to the manufacturing method of the metal complex of compound (I).
 以下に、化合物(I)および化合物(Ia)の具体例を例示する。表中、Meはメチル基を表し、Etはエチル基を表し、n-Prはプロピル基を表し、i-Prはイソプロピル基を表し、n-Buはブチル基を表し、i-Buはイソブチル基を表し、t-Buはtert-ブチル基を表し、Phはフェニル基を表す。 Hereinafter, specific examples of Compound (I) and Compound (Ia) are exemplified. In the table, Me represents a methyl group, Et represents an ethyl group, n-Pr represents a propyl group, i-Pr represents an isopropyl group, n-Bu represents a butyl group, and i-Bu represents an isobutyl group. T-Bu represents a tert-butyl group, and Ph represents a phenyl group.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 以下、化合物番号(1)のスクアリリウム化合物を化合物(1)という。その他の化合物番号の化合物についても同様である。
 本発明に用いられる化合物(I)の金属錯体は、光記録媒体用色素、紫外線吸収剤、3次元記録材料としての二光子吸収用色素、短波長レーザー(例えば青紫色レーザー等)光対応の増感色素等として使用することができる。化合物(I)の金属錯体は優れた耐光性、優れた耐候性、優れた耐湿熱性、優れた塗膜性、優れた溶解性等を有するので、光記録媒体用の色素として適している。
Hereinafter, the squarylium compound of Compound No. (1) is referred to as Compound (1). The same applies to the compounds with other compound numbers.
The metal complex of the compound (I) used in the present invention is a dye for optical recording media, an ultraviolet absorber, a two-photon absorption dye as a three-dimensional recording material, and an increase in response to short wavelength laser (for example, blue-violet laser). It can be used as a dye-sensitive dye. The metal complex of compound (I) is suitable as a dye for an optical recording medium because it has excellent light resistance, excellent weather resistance, excellent moisture and heat resistance, excellent coating properties, and excellent solubility.
 本発明の光記録媒体は化合物(I)の金属錯体を含有し、青紫色レーザー光に対する高感度な光応答性、優れた記録信号品質等を有する。
本発明の光記録媒体としては、例えば、基板、反射層、記録層、透明保護層およびカバー層を備えているもの等があげられ、基板上に、反射層、記録層、透明保護層およびカバー層がこの順に設けられているものが好ましい。本発明の光記録媒体としては、例えば、化合物(I)の金属錯体を含有する記録層を有するもの等があげられる。化合物(I)の金属錯体を用いて該記録層を形成するとき、化合物(I)の金属錯体は単独でまたは2種以上を混合して用いてもよい。
The optical recording medium of the present invention contains a metal complex of compound (I) and has high sensitivity photoresponsiveness to blue-violet laser light, excellent recording signal quality, and the like.
Examples of the optical recording medium of the present invention include a substrate, a reflective layer, a recording layer, a transparent protective layer and a cover layer. The reflective layer, the recording layer, the transparent protective layer and the cover are provided on the substrate. It is preferable that the layers are provided in this order. Examples of the optical recording medium of the present invention include those having a recording layer containing a metal complex of compound (I). When the recording layer is formed using the metal complex of compound (I), the metal complex of compound (I) may be used alone or in admixture of two or more.
 化合物(I)の金属錯体と他の色素とを併用して用いてもよい。他の色素としては、記録用のレーザー光の波長域に吸収を有するものが好ましい。また、情報記録(記録層、反射層または透明保護層、およびカバー層における熱的変形によりレーザー照射箇所に形成される記録マーク等)の形成が阻害されないようなものを他の色素として用いることが好ましい。他の色素としては、例えば、含金属アゾ系色素、フタロシアニン系色素、ナフタロシアニン系色素、シアニン系色素、アゾ系色素、化合物(I)の金属錯体以外のスクアリリウム系色素、含金属インドアニリン系色素、トリアリールメタン系色素、メロシアニン系色素、アズレニウム系色素、ナフトキノン系色素、アントラキノン系色素、インドフェノール系色素、キサンテン系色素、オキサジン系色素、ピリリウム系色素等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。他の色素のうち770~830nmの近赤外レーザー光、620~690nmの赤色レーザー光等のレーザー光を用いた記録に適する色素と化合物(I)の金属錯体とを併用して、複数の波長域のレーザー光での記録が可能である光記録媒体を作製することもできる。 The metal complex of compound (I) and other dyes may be used in combination. Other dyes preferably have absorption in the wavelength region of the recording laser light. In addition, a dye that does not hinder the formation of information recording (recording marks, etc. formed at a laser irradiation site due to thermal deformation in the recording layer, the reflective layer or the transparent protective layer, and the cover layer) may be used as another dye. preferable. Examples of other dyes include metal-containing azo dyes, phthalocyanine dyes, naphthalocyanine dyes, cyanine dyes, azo dyes, squarylium dyes other than the metal complex of compound (I), metal-containing indoaniline dyes , Triarylmethane dyes, merocyanine dyes, azurenium dyes, naphthoquinone dyes, anthraquinone dyes, indophenol dyes, xanthene dyes, oxazine dyes, pyrylium dyes, and the like. You may use these individually or in mixture of 2 or more types. Among other dyes, a combination of a dye suitable for recording using a laser beam such as a near infrared laser beam of 770 to 830 nm and a red laser beam of 620 to 690 nm and a metal complex of compound (I) can be used at a plurality of wavelengths. An optical recording medium capable of recording with a laser beam in the region can also be produced.
 記録層は、必要に応じてバインダーを含有してもよい。バインダーとしては、例えば、ポリビニルアルコール、ポリビニルピロリドン、ケトン樹脂、ニトロセルロース、酢酸セルロース、ポリビニルブチラール、ポリカーボネート等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。
 また、記録層は、記録層の安定性や耐光性向上のために、例えば、一重項酸素クエンチャー、記録感度向上剤等を含有してもよい。
The recording layer may contain a binder as necessary. Examples of the binder include polyvinyl alcohol, polyvinyl pyrrolidone, ketone resin, nitrocellulose, cellulose acetate, polyvinyl butyral, and polycarbonate. You may use these individually or in mixture of 2 or more types.
Further, the recording layer may contain, for example, a singlet oxygen quencher, a recording sensitivity improver, etc. in order to improve the stability and light resistance of the recording layer.
 一重項酸素クエンチャーとしては、遷移金属キレート化合物(例えば、アセチルアセトネート、ビスフェニルジチオール、サリチルアルデヒドオキシム、ビスジチオ-α-ジケトン等と遷移金属とのキレート化合物等)等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。 Examples of the singlet oxygen quencher include transition metal chelate compounds (for example, chelate compounds of acetylacetonate, bisphenyldithiol, salicylaldehyde oxime, bisdithio-α-diketone, etc. and transition metal) and the like. You may use these individually or in mixture of 2 or more types.
 記録感度向上剤としては、遷移金属等の金属が原子、イオン、クラスター等の形で化合物に含まれるものをいい、例えば、エチレンジアミン系錯体、アゾメチン系錯体、フェニルヒドロキシアミン系錯体、フェナントロリン系錯体、ジヒドロキシアゾベンゼン系錯体、ジオキシム系錯体、ニトロソアミノフェノール系錯体、ピリジルトリアジン系錯体、アセチルアセトネート系錯体、メタロセン系錯体、ポルフィリン系錯体等の有機金属化合物等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。 As the recording sensitivity improver, a compound in which a metal such as a transition metal is contained in a compound in the form of atoms, ions, clusters, etc., for example, an ethylenediamine complex, an azomethine complex, a phenylhydroxyamine complex, a phenanthroline complex, And organic metal compounds such as dihydroxyazobenzene complex, dioxime complex, nitrosoaminophenol complex, pyridyltriazine complex, acetylacetonate complex, metallocene complex and porphyrin complex. You may use these individually or in mixture of 2 or more types.
 本発明の光記録媒体の記録層の厚さは1nm~5μmであるのが好ましく、5~100nmであるのがより好ましく、さらには20~60nmであるのが好ましい。 The thickness of the recording layer of the optical recording medium of the present invention is preferably 1 nm to 5 μm, more preferably 5 to 100 nm, and further preferably 20 to 60 nm.
 記録層は、真空蒸着法、スパッタリング法、ドクターブレード法、キャスト法、スピンコート法、浸漬法等の公知の薄膜形成法で形成することができるが、量産性、コスト面からスピンコート法が好ましい。スピンコート法により記録層を形成する場合、適切な膜厚を得るために、化合物(I)の金属錯体の濃度を0.3~1.5重量%に調整した溶液を用い、回転数を500~10000rpmにするのが好ましい。スピンコート法により溶液を塗布した後、加熱、減圧乾燥、溶媒蒸気への曝露等の処理を行ってもよい。 The recording layer can be formed by a known thin film forming method such as a vacuum deposition method, a sputtering method, a doctor blade method, a cast method, a spin coating method, or an immersion method, but the spin coating method is preferable from the viewpoint of mass productivity and cost. . When the recording layer is formed by the spin coating method, in order to obtain an appropriate film thickness, a solution in which the concentration of the metal complex of compound (I) is adjusted to 0.3 to 1.5% by weight is used, and the rotation speed is 500. It is preferable to set it to ˜10000 rpm. After applying the solution by a spin coating method, treatment such as heating, drying under reduced pressure, or exposure to solvent vapor may be performed.
 溶液を塗布することにより記録層を形成する場合(例えば、ドクターブレード法、キャスト法、スピンコート法、浸漬法等)に用いる溶液の溶媒としては、基板および記録層を塗布する前に基板上に形成した層(例えば、反射層等)を侵さない溶媒であればよく、特に限定されない。例えば、ジアセトンアルコール、3-ヒドロキシ-3-メチル-2-ブタノン等のケトンアルコール系溶媒、メチルセロソルブ、エチルセロソルブ等のセロソルブ系溶媒、n-ヘキサン、n-オクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、n-ブチルシクロヘキサン、tert-ブチルシクロヘキサン、シクロオクタン等の炭化水素系溶媒、ジイソプロピルエーテル、ジブチルエーテル等のエーテル系溶媒、テトラフルオロプロパノール、オクタフルオロペンタノール、ヘキサフルオロブタノール等のフルオロアルキルアルコール系溶媒、乳酸メチル、乳酸エチル、イソ酪酸メチル等のエステル系溶媒等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。 When a recording layer is formed by applying a solution (for example, a doctor blade method, a cast method, a spin coating method, a dipping method, etc.), the solvent of the solution may be on the substrate before applying the substrate and the recording layer. The solvent is not particularly limited as long as it is a solvent that does not attack the formed layer (for example, a reflective layer). For example, ketone alcohol solvents such as diacetone alcohol and 3-hydroxy-3-methyl-2-butanone, cellosolv solvents such as methyl cellosolve and ethyl cellosolve, n-hexane, n-octane, cyclohexane, methylcyclohexane, ethylcyclohexane Hydrocarbon solvents such as dimethylcyclohexane, n-butylcyclohexane, tert-butylcyclohexane and cyclooctane, ether solvents such as diisopropyl ether and dibutyl ether, and fluoroalkyl such as tetrafluoropropanol, octafluoropentanol and hexafluorobutanol Examples include alcohol solvents, ester solvents such as methyl lactate, ethyl lactate, and methyl isobutyrate. You may use these individually or in mixture of 2 or more types.
 本発明の光記録媒体の基板は、レーザー光による記録再生のため、表面上に螺旋状に形成される案内溝が形成されているものが好ましい。基板としては、狭トラックピッチである微細な溝を形成しやすいものが好ましく、具体的には、例えば、ガラス、プラスチック等が挙げられる。プラスチックとしては、アクリル樹脂、メタクリル樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ニトロセルロース、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ポリスチレン樹脂、エポキシ樹脂、脂環式ポリオレフィン樹脂等が挙げられるが、高生産性、コスト、耐吸湿性等の点からポリカーボネート樹脂であるのが好ましい。 The substrate of the optical recording medium of the present invention is preferably such that a guide groove formed in a spiral shape is formed on the surface for recording / reproduction with a laser beam. As the substrate, those that can easily form fine grooves having a narrow track pitch are preferable, and specific examples thereof include glass and plastic. Examples of plastics include acrylic resin, methacrylic resin, polycarbonate resin, vinyl chloride resin, vinyl acetate resin, nitrocellulose, polyester resin, polyethylene resin, polypropylene resin, polyimide resin, polystyrene resin, epoxy resin, and alicyclic polyolefin resin. However, a polycarbonate resin is preferable from the viewpoint of high productivity, cost, moisture absorption resistance, and the like.
 基板は前記のプラスチックを射出成形して作製するのが好ましい。射出成形により基板を作製する方法としては、案内溝が形成されたNi等の金属からなるスタンパーを用いる方法等が挙げられる。
該スタンパーを作製するための原盤は、例えば、以下のようにして作製される。円盤状のガラス基板の表面を平滑になるよう研磨する。その基板上に所望の溝深さに応じて厚さを調整したフォトレジストを塗布する。次いで青紫色レーザー光よりも短い波長のレーザー光または電子ビームを用いてフォトレジストを露光し、現像を行うことにより、案内溝が形成された原盤を作製する。
The substrate is preferably produced by injection molding the plastic. Examples of a method for producing a substrate by injection molding include a method using a stamper made of a metal such as Ni in which a guide groove is formed.
The master for producing the stamper is produced, for example, as follows. Polish the surface of the disk-shaped glass substrate to be smooth. A photoresist whose thickness is adjusted according to a desired groove depth is applied on the substrate. Next, the photoresist is exposed using a laser beam or an electron beam having a wavelength shorter than that of the blue-violet laser beam and developed, thereby producing a master having a guide groove.
 次いで、この原盤表面にNi等の導電膜を真空製膜し、メッキ工程を経て、案内溝が形成されたNi等の金属からなるスタンパーを作製する。このスタンパーを用いて前記のプラスチックを射出成形することにより、表面上に案内溝が形成された基板を作製する。 Next, a conductive film such as Ni is vacuum-deposited on the surface of the master, and a stamper made of a metal such as Ni in which a guide groove is formed is produced through a plating process. A substrate having guide grooves formed on the surface is produced by injection molding the plastic using this stamper.
 該案内溝としては、凹凸の頂点面と底辺面の高低差(溝深さ)が15~80nmであるのが好ましく、25~50nmであるのがより好ましい。凸部と凹部の幅の比率としては40%:60%~60%:40%(凸部:凹部)の範囲であるのが好ましい。 The guide groove preferably has a height difference (groove depth) between the top surface and the bottom surface of the unevenness of 15 to 80 nm, and more preferably 25 to 50 nm. The ratio of the width of the convex part to the concave part is preferably in the range of 40%: 60% to 60%: 40% (convex part: concave part).
 反射層は金属であるのが好ましい。金属としては、例えば、金、銀、アルミニウムまたはそれらの合金等が挙げられるが、550nm以下の波長のレーザー光に対する反射率や表面の平滑性の点から、銀または銀を主成分とする合金が好ましい。該銀を主成分とする合金は銀を90%程度以上含むものが好ましく、銀以外の成分としてCu、Pd、Ni、Si、Au、Al、Ti、Zn、Zr、NbおよびMoの群から選ばれる1種類以上を含むものが好ましい。反射層は、例えば、蒸着法、スパッタリング法(例えば、DCスパッタリング法等)、イオンプレーティング法等によって基板上に形成することができる。記録再生特性を向上させるため、または反射率を調整する等の目的で、反射層と記録層との間に中間層を設けてもよい。中間層の材料としては、例えば、金属、金属酸化物、金属窒化物等が挙げられる。反射層の厚さは5~300nmであるのが好ましく、30~100nmであるのがより好ましい。 The reflective layer is preferably a metal. Examples of the metal include gold, silver, aluminum, and alloys thereof. From the viewpoint of reflectivity with respect to laser light having a wavelength of 550 nm or less and surface smoothness, an alloy mainly composed of silver or silver is used. preferable. The silver-based alloy preferably contains about 90% or more of silver, and is selected from the group of Cu, Pd, Ni, Si, Au, Al, Ti, Zn, Zr, Nb, and Mo as components other than silver. Those containing at least one selected from the above are preferred. The reflective layer can be formed on the substrate by, for example, vapor deposition, sputtering (eg, DC sputtering), ion plating, or the like. An intermediate layer may be provided between the reflective layer and the recording layer for the purpose of improving the recording / reproducing characteristics or adjusting the reflectance. Examples of the material for the intermediate layer include metals, metal oxides, metal nitrides, and the like. The thickness of the reflective layer is preferably 5 to 300 nm, and more preferably 30 to 100 nm.
 透明保護層としては、記録再生時に使用するレーザー光に対して吸収を有しないか、わずかな吸収しか有しないものが好ましく、屈折率の実数部が比較的大きく、1.5~2.0前後の値を有するものが好ましい。透明保護層の材料としては、例えば、金属酸化物、金属窒化物、金属硫化物、これらの混合物等が挙げられる。 The transparent protective layer preferably has no or little absorption with respect to the laser beam used during recording and reproduction, and the real part of the refractive index is relatively large, about 1.5 to 2.0. What has the value of is preferable. Examples of the material for the transparent protective layer include metal oxides, metal nitrides, metal sulfides, and mixtures thereof.
 透明保護層の厚さは、5~50nmであるのが好ましい。保護層の厚さが5nm以上の場合には、記録層に変形を生じさせて形成した記録マークがこの記録マーク間の未記録部分と明確に分離できるためより良好な信号が得られる。また、保護層の厚さが50nm以下の場合には、透明保護層の変形が生じやすいためより良好な信号が得られる。透明保護層はスパッタリング法(例えば、RFスパッタリング法等)等によって記録層の上に形成することができる。 The thickness of the transparent protective layer is preferably 5 to 50 nm. When the thickness of the protective layer is 5 nm or more, a recording signal formed by deforming the recording layer can be clearly separated from an unrecorded portion between the recording marks, so that a better signal can be obtained. Further, when the thickness of the protective layer is 50 nm or less, the transparent protective layer is easily deformed, so that a better signal can be obtained. The transparent protective layer can be formed on the recording layer by sputtering (for example, RF sputtering).
 カバー層は、例えば、表面に記録再生レーザー光に対して透明、かつ、粘着力のある接着層を有する厚さ約0.1mmのポリカーボネート製のシートを用い、接着層を介してシートを透明保護層に加圧接着することにより、透明保護層の上に形成することができる。接着層としては、情報記録の際に記録層および透明保護層の変形を阻害しないものが好ましい。カバー層は紫外線硬化樹脂を用いて形成することもでき、該紫外線硬化樹脂としては、接着層と同様に、情報記録の際に記録層および透明保護層の変形を阻害しないものが好ましい。 For the cover layer, for example, a polycarbonate sheet having a thickness of about 0.1 mm having an adhesive layer that is transparent to the recording / reproducing laser beam on the surface is used, and the sheet is transparently protected via the adhesive layer. By pressure-bonding to the layer, it can be formed on the transparent protective layer. The adhesive layer is preferably one that does not hinder the deformation of the recording layer and the transparent protective layer during information recording. The cover layer can also be formed using an ultraviolet curable resin, and the ultraviolet curable resin is preferably one that does not hinder the deformation of the recording layer and the transparent protective layer during information recording, like the adhesive layer.
 本発明の光記録媒体は化合物(I)の金属錯体を含有することから、記録時に使用するレーザー光の波長は350~530nmであるのが好ましい。一般的に、記録時に使用するレーザー光の波長が短いほど高密度な記録が可能となる。 Since the optical recording medium of the present invention contains the metal complex of compound (I), the wavelength of the laser beam used for recording is preferably 350 to 530 nm. In general, the shorter the wavelength of laser light used for recording, the higher the density recording possible.
 レーザー光の具体例としては、例えば、中心波長が405nm、410nm等である青紫色レーザー光、中心波長が515nmである青緑色の高出力半導体レーザー光等が挙げられ、中でも中心波長が405nmである青緑色の高出力半導体レーザー光が好ましい。
基本発振波長が740~960nmである連続発振可能な半導体レーザー光、半導体レーザー光によって励起されかつ基本発振波長が740~960nmである連続発振可能な固体レーザー光等を、第二高調波発生素子(SHG)により波長変換することによって得られる光を用いてもよい。SHGとしては、反射対称性を欠くピエゾ素子であればいかなるものでもよいが、KDP(KHPO)、ADP(NHPO)、BNN(BaNaNb15)、KN(KNbO)、LBO(LiB)、化合物半導体等がSHGの好ましい具体例として挙げられる。
Specific examples of laser light include, for example, blue-violet laser light having a center wavelength of 405 nm, 410 nm, etc., blue-green high-power semiconductor laser light having a center wavelength of 515 nm, and the center wavelength is 405 nm. Blue-green high-power semiconductor laser light is preferred.
A semiconductor laser beam capable of continuous oscillation having a fundamental oscillation wavelength of 740 to 960 nm, a solid-state laser beam excited by the semiconductor laser beam and capable of continuous oscillation having a fundamental oscillation wavelength of 740 to 960 nm, etc. Light obtained by wavelength conversion by SHG) may be used. SHG may be any piezo element that lacks reflection symmetry, but KDP (KH 2 PO 4 ), ADP (NH 4 H 2 PO 4 ), BNN (Ba 2 NaNb 5 O 15 ), KN ( Preferred examples of SHG include KNbO 3 ), LBO (LiB 3 O 5 ), and compound semiconductors.
 SHGにより波長変換することによって得られる光(第二高調波)の具体例としては、例えば、基本発振波長が860nmである半導体レーザー光を波長変換した430nm光、基本発振波長が860nmである半導体レーザー励起の固体レーザー光を波長変換した430nm光等が挙げられる。
本発明の光記録媒体はBDであるのが好ましい。BDは波長405nmの青紫色レーザーを使用し、対物レンズのNAを0.85とすることによりレーザースポット径を小さくして、より高密度の情報を記録する光記録媒体である。BD-Rでは基板上に反射層と、記録層と、透明保護層と、基板よりも薄いカバー層とが順次積層されている。カバー層側から青紫色レーザー光を照射して記録再生を行う。
Specific examples of light (second harmonic) obtained by wavelength conversion by SHG include, for example, 430 nm light obtained by wavelength conversion of semiconductor laser light having a fundamental oscillation wavelength of 860 nm, and semiconductor laser having a fundamental oscillation wavelength of 860 nm. Examples thereof include 430 nm light obtained by wavelength conversion of excitation solid-state laser light.
The optical recording medium of the present invention is preferably a BD. The BD is an optical recording medium that uses a blue-violet laser having a wavelength of 405 nm and records a higher density information by reducing the laser spot diameter by setting the NA of the objective lens to 0.85. In the BD-R, a reflective layer, a recording layer, a transparent protective layer, and a cover layer thinner than the substrate are sequentially laminated on the substrate. Recording and reproduction is performed by irradiating a blue-violet laser beam from the cover layer side.
 以下、実施例および参考例により、本発明をさらに具体的に説明する。
 スクアリリウム化合物の原料として用いた化合物(III-1)~(III-12)は、公知の方法、例えば国際公開第2001/44233号パンフレット等に記載された方法に準じて製造した。式中、Me、n-Pr、i-Pr、t-BuおよびPhは、それぞれ前記と同義である。
Hereinafter, the present invention will be described more specifically with reference to examples and reference examples.
Compounds (III-1) to (III-12) used as raw materials for the squarylium compound were produced according to a known method, for example, a method described in International Publication No. 2001/44233 pamphlet or the like. In the formula, Me, n-Pr, i-Pr, t-Bu and Ph have the same meanings as described above.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(スクアリリウム化合物の製造)
[参考例1-1] 化合物(2)
 3-ヒドロキシ-4-[1-(3-クロロフェニル)-5-ヒドロキシ-3-プロピルピラゾール-4-イル]シクロブテン-1,2-ジオン[化合物(III-1)]1060mgおよびN-エチル-4-クロロアニリン0.53gをブタノール7mLおよびトルエン15mLの混合溶媒中、100~120℃で7.0時間反応させた。反応液中のトルエンを留去し、残渣にメタノール6mLを添加し、析出した固体を濾取することにより化合物(2)1.30g(収率86%)を得た。
H-NMR (400MHz)δ(CDCl) ppm:0.95-1.06(3H,m),1.35(3H,m),1.73(2H,m),2.85(1H,t),2.92(1H,t),4.33(1H,dd),4.46(1H,dd),7.22-7.37(4H,m),7.46-7.48(2H,m),7.76(1H,dd),7.87(1H,d).
吸収極大波長(CHCl):430.5nm
モル吸光係数(CHCl):56300(mol/L)-1・cm-1
(Manufacture of squarylium compounds)
[Reference Example 1-1] Compound (2)
3-hydroxy-4- [1- (3-chlorophenyl) -5-hydroxy-3-propylpyrazol-4-yl] cyclobutene-1,2-dione [compound (III-1)] 1060 mg and N-ethyl-4 -0.53 g of chloroaniline was reacted in a mixed solvent of 7 mL of butanol and 15 mL of toluene at 100 to 120 ° C for 7.0 hours. Toluene in the reaction solution was distilled off, 6 mL of methanol was added to the residue, and the precipitated solid was collected by filtration to obtain 1.30 g (yield 86%) of Compound (2).
1 H-NMR (400 MHz) δ (CDCl 3 ) ppm: 0.95-1.06 (3H, m), 1.35 (3H, m), 1.73 (2H, m), 2.85 (1H , T), 2.92 (1H, t), 4.33 (1H, dd), 4.46 (1H, dd), 7.22-7.37 (4H, m), 7.46-7. 48 (2H, m), 7.76 (1H, dd), 7.87 (1H, d).
Absorption maximum wavelength (CHCl 3 ): 430.5 nm
Molar extinction coefficient (CHCl 3 ): 56300 (mol / L) −1 · cm −1
[参考例1-2] 化合物(4)
化合物(III-1)およびN-エチル-4-クロロアニリンの代わりに3-ヒドロキシ-4-(5-ヒドロキシ-1-フェニル-3-プロピルピラゾール-4-イル)シクロブテン-1,2-ジオン[化合物(III-2)]およびモルホリンを用いる以外は参考例1-1と同様な操作を行い、化合物(4)(収率81%)を得た。
H-NMR (400MHz)δ(CDCl) ppm:1.02(9H,t),1.74(2H,m),2.88(2H,m),3.89(4H,t),4.00(2H,bs),4.12(2H,bs),7.26-7.30(1H,m),7.41-7.46(2H,m),7.78-7.82(2H,m),14.3(1H,bs).
吸収極大波長(CHCl):412.5nm
モル吸光係数(CHCl):64100(mol/L)-1・cm-1
[Reference Example 1-2] Compound (4)
Instead of compound (III-1) and N-ethyl-4-chloroaniline, 3-hydroxy-4- (5-hydroxy-1-phenyl-3-propylpyrazol-4-yl) cyclobutene-1,2-dione [ The same operation as in Reference Example 1-1 was carried out except that compound (III-2)] and morpholine were used to obtain compound (4) (yield 81%).
1 H-NMR (400 MHz) δ (CDCl 3 ) ppm: 1.02 (9H, t), 1.74 (2H, m), 2.88 (2H, m), 3.89 (4H, t), 4.00 (2H, bs), 4.12 (2H, bs), 7.26-7.30 (1H, m), 7.41-7.46 (2H, m), 7.78-7. 82 (2H, m), 14.3 (1 H, bs).
Absorption maximum wavelength (CHCl 3 ): 412.5 nm
Molar extinction coefficient (CHCl 3 ): 64100 (mol / L) −1 · cm −1
[参考例1-3] 化合物(7)
 化合物(III-1)およびN-エチル-4-クロロアニリンの代わりに3-ヒドロキシ-4-(5-ヒドロキシ-3-フェニル-1-tert-ブチルピラゾール-4-イル)シクロブテン-1,2-ジオン[化合物(III-3)]およびN-メチル-2-フルオロアニリンを用いる以外は参考例1-1と同様な操作を行い、化合物(7)(収率67%)を得た。
H-NMR (400MHz)δ(CDCl) ppm:1.61(9H,s),3.86(3H,s),7.10-7.50(7H,bm),7.63(2H,bs),14.7(1H,bs).
吸収極大波長(CHCl):427.0nm
モル吸光係数(CHCl):47700(mol/L)-1・cm-1
[Reference Example 1-3] Compound (7)
Instead of compound (III-1) and N-ethyl-4-chloroaniline, 3-hydroxy-4- (5-hydroxy-3-phenyl-1-tert-butylpyrazol-4-yl) cyclobutene-1,2- The same operation as in Reference Example 1-1 was carried out except that dione [compound (III-3)] and N-methyl-2-fluoroaniline were used to obtain compound (7) (yield 67%).
1 H-NMR (400 MHz) δ (CDCl 3 ) ppm: 1.61 (9H, s), 3.86 (3H, s), 7.10-7.50 (7H, bm), 7.63 (2H , Bs), 14.7 (1H, bs).
Absorption maximum wavelength (CHCl 3 ): 427.0 nm
Molar extinction coefficient (CHCl 3 ): 47700 (mol / L) −1 · cm −1
[参考例1-4] 化合物(17)
 3-ヒドロキシ-4-[1-(4-クロロフェニル) -5-ヒドロキシ-3-フェニルピラゾール-4-イル]シクロブテン-1,2-ジオン[化合物(III-4)]3.67gおよびモルホリン0.96gを、n-ブタノール10mLおよびトルエン5mLの混合溶媒中、130℃で4時間反応させた。反応液を冷却後、反応液にメタノール10mLを添加して析出した固体を濾取してメタノールで洗浄することにより化合物(17)4.17g(収率96%)を得た。
H-NMR (400MHz)δ(CDCl)ppm:3.85-3.87(4H,m),4.04(4H,s),7.39-7.45(5H,m),7.66-7.69(2H,m),7.87-7.89(2H,m).
吸収極大波長(CHCl): 415.5nm
モル吸光係数(CHCl): 43600(mol/L)-1・cm-1 
[Reference Example 1-4] Compound (17)
3.67 g of 3-hydroxy-4- [1- (4-chlorophenyl) -5-hydroxy-3-phenylpyrazol-4-yl] cyclobutene-1,2-dione [compound (III-4)] and 0. 96 g was reacted at 130 ° C. for 4 hours in a mixed solvent of 10 mL of n-butanol and 5 mL of toluene. After cooling the reaction solution, 10 mL of methanol was added to the reaction solution, and the precipitated solid was collected by filtration and washed with methanol to obtain 4.17 g (yield 96%) of Compound (17).
1 H-NMR (400 MHz) δ (CDCl 3 ) ppm: 3.85-3.87 (4H, m), 4.04 (4H, s), 7.39-7.45 (5H, m), 7 .66-7.69 (2H, m), 7.87-7.89 (2H, m).
Absorption maximum wavelength (CHCl 3 ): 415.5 nm
Molar extinction coefficient (CHCl 3 ): 43600 (mol / L) −1 · cm −1
[参考例1-5] 化合物(24)
 化合物(III-4)の代わりに3-ヒドロキシ-4-(5-ヒドロキシ-1-メチル-3-トリフルオロメチルピラゾール-4-イル)シクロブテン-1,2-ジオン[化合物(III-5)]を用いる以外は参考例1-4と同様な操作を行い、化合物(24)(収率67%)を得た。
H-NMR (400MHz)δ(CDCl)ppm:1.79(3H,s),3.66(4H,s),4.06(6H,s),14.25(1H,bs).
吸収極大波長(CHCl): 398.0nm
モル吸光係数(CHCl): 40000(mol/L)-1・cm-1
[Reference Example 1-5] Compound (24)
3-hydroxy-4- (5-hydroxy-1-methyl-3-trifluoromethylpyrazol-4-yl) cyclobutene-1,2-dione [compound (III-5)] instead of compound (III-4) The compound (24) (yield 67%) was obtained in the same manner as in Reference Example 1-4 except that was used.
1 H-NMR (400 MHz) δ (CDCl 3 ) ppm: 1.79 (3H, s), 3.66 (4H, s), 4.06 (6H, s), 14.25 (1H, bs).
Absorption maximum wavelength (CHCl 3 ): 398.0 nm
Molar extinction coefficient (CHCl 3 ): 40000 (mol / L) −1 · cm −1
[参考例1-6] 化合物(29)
 化合物(III-4)の代わりに化合物(III-1)を用いる以外は参考例1-4と同様な操作を行い、化合物(29)(収率79%)を得た。
H-NMR (400MHz)δ(CDCl) ppm:1.02(3H,t,J=7.3Hz),1.70-1.76(2H,m),2.87(2H,t,J=7.6Hz),3.90-3.93(4H,m),4.02(2H,s),4.14(2H,s),7.23-7.25(1H,m),7.33-7.37(1H,m),7.62-7.77(1H,m),7.88-7.89(1H,m).
吸収極大波長(CHCl): 413.0nm
モル吸光係数(CHCl): 59600(mol/L)-1・cm-1
[Reference Example 1-6] Compound (29)
A compound (29) (yield 79%) was obtained in the same manner as in Reference Example 1-4, except that compound (III-1) was used instead of compound (III-4).
1 H-NMR (400 MHz) δ (CDCl 3 ) ppm: 1.02 (3H, t, J = 7.3 Hz), 1.70-1.76 (2H, m), 2.87 (2H, t, J = 7.6 Hz), 3.90-3.93 (4H, m), 4.02 (2H, s), 4.14 (2H, s), 7.23-7.25 (1 H, m) , 7.33-7.37 (1H, m), 7.62-7.77 (1H, m), 7.88-7.89 (1H, m).
Absorption maximum wavelength (CHCl 3 ): 413.0 nm
Molar extinction coefficient (CHCl 3 ): 59600 (mol / L) −1 · cm −1
[参考例1-7] 化合物(35)
 化合物(III-4)およびモルホリンの代わりに3-ヒドロキシ-4-[5-ヒドロキシ-3-イソプロピル-1-(2-ピリジル)ピラゾール-4-イル]シクロブテン-1,2-ジオン[化合物(III-6)]およびビス(2-エトキシエチル)アミンを用いる以外は参考例1-4と同様な操作を行い、化合物(35)(収率62%)を得た。
H-NMR (400MHz)δ(CDCl)ppm:1.19(6H,t,J=7.0Hz),1.34-1.36(7H,m),3.50-3.56(4H,m),3.71-3.73(4H,m),4.12-4.15(4H,m),7.19-7.22(1H,m),7.57(1H,d,J=5.1Hz),7.80-7.82(2H,m).
吸収極大波長(CHCl): 412.5nm
モル吸光係数(CHCl): 39600(mol/L)-1・cm-1
[Reference Example 1-7] Compound (35)
Instead of compound (III-4) and morpholine, 3-hydroxy-4- [5-hydroxy-3-isopropyl-1- (2-pyridyl) pyrazol-4-yl] cyclobutene-1,2-dione [compound (III −6)] and bis (2-ethoxyethyl) amine were used in the same manner as in Reference Example 1-4 to obtain compound (35) (yield 62%).
1 H-NMR (400 MHz) δ (CDCl 3 ) ppm: 1.19 (6H, t, J = 7.0 Hz), 1.34-1.36 (7H, m), 3.50-3.56 ( 4H, m), 3.71-3.73 (4H, m), 4.12-4.15 (4H, m), 7.19-7.22 (1H, m), 7.57 (1H, d, J = 5.1 Hz), 7.80-7.82 (2H, m).
Absorption maximum wavelength (CHCl 3 ): 412.5 nm
Molar extinction coefficient (CHCl 3 ): 39600 (mol / L) −1 · cm −1
[参考例1-8] 化合物(39)
 化合物(III-4)の代わりに3-ヒドロキシ-4-[1-(2-ベンゾチアゾリル)-5-ヒドロキシ-3-tert-ブチルピラゾール-4-イル]シクロブテン-1,2-ジオン[化合物(III-7)]を用いる以外は参考例1-4と同様な操作を行い、化合物(39)(収率81%)を得た。
H-NMR (400MHz)δ(CDCl)ppm:1.48(9H,s),3.89-3.92(4H,m),4.06-4.09(4H,m),7.29-7.32(1H,m),7.41-7.45(1H,m),7.76(1H,d,J=7.1Hz),7.92(1H,bs).
吸収極大波長(CHCl): 422.5nm
モル吸光係数(CHCl): 51100(mol/L)-1・cm-1
[Reference Example 1-8] Compound (39)
Instead of compound (III-4), 3-hydroxy-4- [1- (2-benzothiazolyl) -5-hydroxy-3-tert-butylpyrazol-4-yl] cyclobutene-1,2-dione [compound (III −7)] was used in the same manner as in Reference Example 1-4 to obtain compound (39) (yield 81%).
1 H-NMR (400 MHz) δ (CDCl 3 ) ppm: 1.48 (9H, s), 3.89-3.92 (4H, m), 4.06-4.09 (4H, m), 7 .29-7.32 (1H, m), 7.41-7.45 (1H, m), 7.76 (1H, d, J = 7.1 Hz), 7.92 (1H, bs).
Absorption maximum wavelength (CHCl 3 ): 422.5 nm
Molar extinction coefficient (CHCl 3 ): 51100 (mol / L) −1 · cm −1
[参考例1-9] 化合物(44)
 化合物(III-4)の代わりに3-ヒドロキシ-4-[5-ヒドロキシ-1-(2-ヒドロキシエチル)-3-メチルピラゾール-4-イル]シクロブテン-1,2-ジオン[化合物(III-8)]を用いる以外は参考例1-4と同様な操作を行い、化合物(44)(収率79%)を得た。
H-NMR (400MHz)δ(CDCl)ppm:2.40(3H,s),3.90-3.98(12H,m).
吸収極大波長(CHCl): 416.0nm
モル吸光係数(CHCl): 37400(mol/L)-1・cm-1
[Reference Example 1-9] Compound (44)
Instead of compound (III-4), 3-hydroxy-4- [5-hydroxy-1- (2-hydroxyethyl) -3-methylpyrazol-4-yl] cyclobutene-1,2-dione [compound (III- 8)] was used in the same manner as in Reference Example 1-4 to obtain compound (44) (yield 79%).
1 H-NMR (400 MHz) δ (CDCl 3 ) ppm: 2.40 (3H, s), 3.90-3.98 (12H, m).
Absorption maximum wavelength (CHCl 3 ): 416.0 nm
Molar extinction coefficient (CHCl 3 ): 37400 (mol / L) −1 · cm −1
[参考例1-10] 化合物(48)
 3-ヒドロキシ-4-[5-ヒドロキシ-3-(3-ニトロフェニル)-1-フェニルピラゾール-4-イル]シクロブテン-1,2-ジオン[化合物(III-9)]0.75gおよびN-(2-tert-ブトキシエチル)シクロペンチルアミン0.41gを、n-ブタノール8mLおよびトルエン4mLの混合溶媒中、硫酸0.03gの存在下、130℃で28時間反応させた。反応液中の溶媒を留去し、残渣に2-プロパノール2mLを添加し、析出した固体を濾取してメタノールで洗浄することにより化合物(48)0.84g(収率77%)を得た。
H-NMR (400MHz)δ(CDCl)ppm:1.18(9H,s),1.65(2H,bs),1.85(4H,bs),2.05(2H,bs),3.68(4H,bs),3.88(4H,bs),7.31-7.35(1H,m),7.46-7.50(2H,m),7.59-7.62(1H,m),7.86-7.91(1H,m),8.05-8.07(1H,m),8.64(1H,s).
吸収極大波長(CHCl): 404.5nm
モル吸光係数(CHCl): 84200(mol/L)-1・cm-1
[Reference Example 1-10] Compound (48)
0.75 g of 3-hydroxy-4- [5-hydroxy-3- (3-nitrophenyl) -1-phenylpyrazol-4-yl] cyclobutene-1,2-dione [compound (III-9)] and N- 0.41 g of (2-tert-butoxyethyl) cyclopentylamine was reacted at 130 ° C. for 28 hours in the presence of 0.03 g of sulfuric acid in a mixed solvent of 8 mL of n-butanol and 4 mL of toluene. The solvent in the reaction solution was distilled off, 2 mL of 2-propanol was added to the residue, and the precipitated solid was collected by filtration and washed with methanol to obtain 0.84 g of Compound (48) (yield 77%). .
1 H-NMR (400 MHz) δ (CDCl 3 ) ppm: 1.18 (9H, s), 1.65 (2H, bs), 1.85 (4H, bs), 2.05 (2H, bs), 3.68 (4H, bs), 3.88 (4H, bs), 7.31-7.35 (1H, m), 7.46-7.50 (2H, m), 7.59-7. 62 (1H, m), 7.86-7.91 (1H, m), 8.05-8.07 (1H, m), 8.64 (1H, s).
Absorption maximum wavelength (CHCl 3 ): 404.5 nm
Molar extinction coefficient (CHCl 3 ): 84200 (mol / L) −1 · cm −1
[参考例1-11] 化合物(49)
 3-ヒドロキシ-4-(5-ヒドロキシ-1-tert-ブチル-3-トリフルオロメチルピラゾール-4-イル)シクロブテン-1,2-ジオン[化合物(III-10)]1500mgおよび2-ヒドラジノピリジン0.59gを、アセトニトリル10mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してアセトニトリルで洗浄することにより化合物(49)1.50g(収率77%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm:1.54(9H,s),6.95(1H,t,J=6.1Hz),7.41(1H,d,J=9.0Hz),7.91-7.99(2H,m),11.68(1H,bs).
吸収極大波長(CHCl): 411.0nm
モル吸光係数(CHCl): 30500(mol/L)-1・cm-1
[Reference Example 1-11] Compound (49)
1500 mg of 3-hydroxy-4- (5-hydroxy-1-tert-butyl-3-trifluoromethylpyrazol-4-yl) cyclobutene-1,2-dione [compound (III-10)] and 2-hydrazinopyridine 0.59 g was reacted in 10 mL of acetonitrile at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with acetonitrile to obtain 1.50 g (yield 77%) of Compound (49).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.54 (9H, s), 6.95 (1H, t, J = 6.1 Hz), 7.41 (1H, d, J = 9.0 Hz), 7.91-7.99 (2H, m), 11.68 (1H, bs).
Absorption maximum wavelength (CHCl 3 ): 411.0 nm
Molar extinction coefficient (CHCl 3 ): 30500 (mol / L) −1 · cm −1
[参考例1-12] 化合物(54)
 2-ヒドラジノピリジンの代わりに2-ヒドラジノ-4,6-ジメトキシピリミジンを用いる以外は参考例1-11と同様の操作を行い、化合物(54)(収率87%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm:1.54(9H,s),3.86(6H,s),5.67(1H,s),10.07(1H,bs).
吸収極大波長(CHCl): 394.0nm
モル吸光係数(CHCl): 36100(mol/L)-1・cm-1
[Reference Example 1-12] Compound (54)
The same operation as in Reference Example 1-11 was carried out, except that 2-hydrazino-4,6-dimethoxypyrimidine was used instead of 2-hydrazinopyridine, to obtain compound (54) (yield 87%).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.54 (9H, s), 3.86 (6H, s), 5.67 (1H, s), 10.07 (1H, bs) ).
Absorption maximum wavelength (CHCl 3 ): 394.0 nm
Molar extinction coefficient (CHCl 3 ): 36100 (mol / L) −1 · cm −1
[参考例1-13] 化合物(61)
 化合物(III-10)の代わりに化合物(III-5)を用いる以外は参考例1-11と同様の操作を行い、化合物(61)(収率74%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm:3.56(3H,s),6.95(1H,t,J=6.6Hz),7.40(1H,d,J=9.0Hz),7.91-7.98(2H,m),11.65(1H,bs),13.53(1H,bs).
吸収極大波長(CHCl): 406.5nm
モル吸光係数(CHCl): 28000(mol/L)-1・cm-1
[Reference Example 1-13] Compound (61)
The same operation as in Reference Example 1-11 was carried out, except that compound (III-5) was used in place of compound (III-10) to obtain compound (61) (yield 74%).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 3.56 (3H, s), 6.95 (1H, t, J = 6.6 Hz), 7.40 (1H, d, J = 9.0 Hz), 7.91-7.98 (2H, m), 11.65 (1H, bs), 13.53 (1H, bs).
Absorption maximum wavelength (CHCl 3 ): 406.5 nm
Molar extinction coefficient (CHCl 3 ): 28000 (mol / L) −1 · cm −1
[参考例1-14] 化合物(63)
 化合物(III-10)および2-ヒドラジノピリジンの代わりに化合物(III-5)および2-ヒドラジノ-4,6-ジメトキシピリミジンを用いる以外は参考例1-11と同様の操作を行い、化合物(63)(収率87%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm:3.56(3H,s),3.86(6H,s),5.70(1H,s),10.11(1H,bs).
吸収極大波長(CHCl): 380.5nm
モル吸光係数(CHCl): 39900(mol/L)-1・cm-1
[Reference Example 1-14] Compound (63)
The same procedure as in Reference Example 1-11 was carried out, except that compound (III-5) and 2-hydrazino-4,6-dimethoxypyrimidine were used instead of compound (III-10) and 2-hydrazinopyridine. 63) (yield 87%).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 3.56 (3H, s), 3.86 (6H, s), 5.70 (1H, s), 10.11 (1H, bs ).
Absorption maximum wavelength (CHCl 3 ): 380.5 nm
Molar extinction coefficient (CHCl 3 ): 39900 (mol / L) −1 · cm −1
[参考例1-15] 化合物(71)
 化合物(III-10)および2-ヒドラジノピリジンの代わりに化合物(III-5)および2-ヒドラジノピリミジンを用いる以外は参考例1-11と同様の操作を行い、化合物(71)(収率88%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm: 3.56(3H,s),7.02(1H,t,J=5.1Hz),8.59(2H,m),11.38(1H,bs).
[Reference Example 1-15] Compound (71)
The same operation as in Reference Example 1-11 was conducted, except that compound (III-5) and 2-hydrazinopyrimidine were used instead of compound (III-10) and 2-hydrazinopyridine, to give compound (71) (yield) 88%).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 3.56 (3H, s), 7.02 (1H, t, J = 5.1 Hz), 8.59 (2H, m), 11 .38 (1H, bs).
[参考例1-16] 化合物(77)
 化合物(III-10)および2-ヒドラジノピリジンの代わりに3-ヒドロキシ-4-[5-ヒドロキシ-1-(4-メトキシフェニル)-3-フェニルピラゾール-4-イル]シクロブテン-1,2-ジオン[化合物(III-11)]および2-ヒドラジノピリミジンを用いる以外は参考例1-11と同様の操作を行い、化合物(77)(収率88%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm: 3.80(3H,s),6.98-7.06(3H,m),7.36-7.38(3H,m),7.70-7.72(4H,m),8.58(2H,m),11.39(1H,bs).
吸収極大波長(CHCl): 385.0.0nm
モル吸光係数(CHCl): 26400(mol/L)-1・cm-1
[Reference Example 1-16] Compound (77)
Instead of compound (III-10) and 2-hydrazinopyridine, 3-hydroxy-4- [5-hydroxy-1- (4-methoxyphenyl) -3-phenylpyrazol-4-yl] cyclobutene-1,2- The same operation as in Reference Example 1-11 was carried out, except that dione [compound (III-11)] and 2-hydrazinopyrimidine were used, to obtain compound (77) (yield 88%).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 3.80 (3H, s), 6.98-7.06 (3H, m), 7.36-7.38 (3H, m) , 7.70-7.72 (4H, m), 8.58 (2H, m), 11.39 (1H, bs).
Absorption maximum wavelength (CHCl 3 ): 385.0.0 nm
Molar extinction coefficient (CHCl 3 ): 26400 (mol / L) −1 · cm −1
[参考例1-17] 化合物(84)
 化合物(III-10)の代わりに3-ヒドロキシ-4-(5-ヒドロキシ-1-フェニル-3-トリフルオロメチルピラゾール-4-イル)シクロブテン-1,2-ジオン[化合物(III-12)]を用いる以外は参考例1-11と同様の操作を行い、化合物(84)(収率61%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm: 6.97(1H,t,J=6.4Hz),7.39-7.42(2H,m),7.52(2H,t,J=7.6Hz),7.76(2H,d,J=7.6Hz),7.93-7.98(2H,m),11.68(1H,bs).
吸収極大波長(CHCl): 407.5nm
モル吸光係数(CHCl): 27900(mol/L)-1・cm-1
[Reference Example 1-17] Compound (84)
Instead of compound (III-10), 3-hydroxy-4- (5-hydroxy-1-phenyl-3-trifluoromethylpyrazol-4-yl) cyclobutene-1,2-dione [compound (III-12)] The compound (84) (yield 61%) was obtained in the same manner as in Reference Example 1-11 except that was used.
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 6.97 (1H, t, J = 6.4 Hz), 7.39-7.42 (2H, m), 7.52 (2H, t, J = 7.6 Hz), 7.76 (2H, d, J = 7.6 Hz), 7.93-7.98 (2H, m), 11.68 (1H, bs).
Absorption maximum wavelength (CHCl 3 ): 407.5 nm
Molar extinction coefficient (CHCl 3 ): 27900 (mol / L) −1 · cm −1
[参考例1-18] 化合物(93)
 化合物(III-10)および2-ヒドラジノピリジンの代わりに化合物(III-12)および2-ヒドラジノ-4,6-ジメトキシピリミジンを用いる以外は参考例1-11と同様の操作を行い、化合物(93)(収率86%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm: 3.85(3H,s),5.62(1H,s),7.37(1H,t,J=7.6Hz),7.51(2H,t,J=7.6Hz),7.76(1H,d,J=9.6Hz),9.82(1H,bs).
吸収極大波長(CHCl): 393.0nm
モル吸光係数(CHCl): 42100(mol/L)-1・cm-1
[Reference Example 1-18] Compound (93)
The same procedure as in Reference Example 1-11 was carried out, except that compound (III-12) and 2-hydrazino-4,6-dimethoxypyrimidine were used instead of compound (III-10) and 2-hydrazinopyridine. 93) (yield 86%).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 3.85 (3H, s), 5.62 (1H, s), 7.37 (1H, t, J = 7.6 Hz), 7 .51 (2H, t, J = 7.6 Hz), 7.76 (1H, d, J = 9.6 Hz), 9.82 (1H, bs).
Absorption maximum wavelength (CHCl 3 ): 393.0 nm
Molar extinction coefficient (CHCl 3 ): 42100 (mol / L) −1 · cm −1
[参考例1-19] 化合物(102)
 化合物(III-10)および2-ヒドラジノピリジンの代わりに化合物(III-12)および2-ヒドラジノ-3-トリフルオロメチルピリジンを用いる以外は参考例1-11と同様の操作を行い、化合物(102)(収率83%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm:7.12(1H,t,J=6.6Hz),7.40(1H,t,J=7.6Hz),7.53(2H,t,J=7.6Hz),7.75(2H,d,J=7.6Hz),8.27(1H,d,J=5.6Hz),8.43(1H,d,J=7.6Hz),10.99(1H,bs).
吸収極大波長(CHCl): 415.5nm
モル吸光係数(CHCl): 23700(mol/L)-1・cm-1
[Reference Example 1-19] Compound (102)
The same procedure as in Reference Example 1-11 was carried out, except that compound (III-12) and 2-hydrazino-3-trifluoromethylpyridine were used instead of compound (III-10) and 2-hydrazinopyridine. 102) (yield 83%).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 7.12 (1H, t, J = 6.6 Hz), 7.40 (1H, t, J = 7.6 Hz), 7.53 ( 2H, t, J = 7.6 Hz), 7.75 (2H, d, J = 7.6 Hz), 8.27 (1H, d, J = 5.6 Hz), 8.43 (1H, d, J = 7.6 Hz), 10.99 (1H, bs).
Absorption maximum wavelength (CHCl 3 ): 415.5 nm
Molar extinction coefficient (CHCl 3 ): 23700 (mol / L) −1 · cm −1
[参考例1-20] 化合物(107)
 化合物(III-10)および2-ヒドラジノピリジンの代わりに化合物(III-12)および2-ヒドラジノピリミジンを用いる以外は参考例1-11と同様の操作を行い、化合物(107)(収率92%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm:7.05(1H,t,J=5.1Hz),7.39(1H,t,J=7.6Hz),7.52(2H,t,J=7.6Hz),7.76(2H,d,J=7.8Hz),8.62(2H,m),11.52(1H,bs).
吸収極大波長(CHCl): 370.5nm
モル吸光係数(CHCl): 20700(mol/L)-1・cm-1
[Reference Example 1-20] Compound (107)
The same operation as in Reference Example 1-11 was carried out, except that compound (III-12) and 2-hydrazinopyrimidine were used instead of compound (III-10) and 2-hydrazinopyridine, to give compound (107) (yield) 92%).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 7.05 (1H, t, J = 5.1 Hz), 7.39 (1H, t, J = 7.6 Hz), 7.52 ( 2H, t, J = 7.6 Hz), 7.76 (2H, d, J = 7.8 Hz), 8.62 (2H, m), 11.52 (1H, bs).
Absorption maximum wavelength (CHCl 3 ): 370.5 nm
Molar extinction coefficient (CHCl 3 ): 20700 (mol / L) −1 · cm −1
[参考例1-21] 化合物(112)
 2-ヒドラジノピリジンの代わりに2-ヒドラジノ-3-トリフルオロメチルピリジンを用いる以外は参考例1-11と同様の操作を行い、化合物(112)(収率98%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm:1.53(9H,s),7.09(1H,t,J=7.1Hz),8.24(1H,d,J=5.9Hz),8.40(1H,d,J=7.8Hz).
吸収極大波長(CHCl): 379.0nm
モル吸光係数(CHCl): 18500(mol/L)-1・cm-1
[Reference Example 1-21] Compound (112)
The same operation as in Reference Example 1-11 was carried out except that 2-hydrazino-3-trifluoromethylpyridine was used in place of 2-hydrazinopyridine to give compound (112) (yield 98%).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.53 (9H, s), 7.09 (1H, t, J = 7.1 Hz), 8.24 (1H, d, J = 5.9 Hz), 8.40 (1H, d, J = 7.8 Hz).
Absorption maximum wavelength (CHCl 3 ): 379.0 nm
Molar extinction coefficient (CHCl 3 ): 18500 (mol / L) −1 · cm −1
[参考例1-22] 化合物(115)
 化合物(III-10)および2-ヒドラジノピリジンの代わりに化合物(III-5)および2-ヒドラジノ-3-トリフルオロメチルピリジンを用いる以外は参考例1-11と同様の操作を行い、化合物(115)(収率77%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm:3.57(3H,s),7.10(1H,t,J=6.8Hz),8.25(1H,d,J=5.6Hz),8.42(1H,d,J=7.3Hz),11.00(1H,bs).
吸収極大波長(CHCl): 378.5nm
モル吸光係数(CHCl): 19900(mol/L)-1・cm-1
[Reference Example 1-22] Compound (115)
The same procedure as in Reference Example 1-11 was carried out, except that compound (III-5) and 2-hydrazino-3-trifluoromethylpyridine were used instead of compound (III-10) and 2-hydrazinopyridine. 115) (yield 77%).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 3.57 (3H, s), 7.10 (1H, t, J = 6.8 Hz), 8.25 (1H, d, J = 5.6 Hz), 8.42 (1H, d, J = 7.3 Hz), 11.00 (1H, bs).
Absorption maximum wavelength (CHCl 3 ): 378.5 nm
Molar extinction coefficient (CHCl 3 ): 19900 (mol / L) −1 · cm −1
[参考例1-23] 化合物(120)
 化合物(III-5)のカリウム塩1.50gおよび1-ヒドラジノフタラジン塩酸塩0.81gを、エタノール60mL中、70℃で3時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(120)1.95g(収率100%)を得た。
H-NMR (400MHz)δ(DMSO-d) ppm:7.39(1H,t,J=6.8Hz),7.54(1H,t,J=6.8Hz),7.66(1H,d,J=6.8Hz),8.13-8.21(3H,m), 8.44-8.46(1H,m), 8.94(1H,s),14.38(1H,bs).
吸収極大波長(CHCl): 425.0nm
モル吸光係数(CHCl): 31900(mol/L)-1・cm-1
(スクアリリウム化合物の金属錯体の製造)
[Reference Example 1-23] Compound (120)
1.50 g of the potassium salt of compound (III-5) and 0.81 g of 1-hydrazinophthalazine hydrochloride were reacted in 70 mL of ethanol at 70 ° C. for 3 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 1.95 g (yield 100%) of Compound (120).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 7.39 (1H, t, J = 6.8 Hz), 7.54 (1H, t, J = 6.8 Hz), 7.66 ( 1H, d, J = 6.8 Hz), 8.13-8.21 (3H, m), 8.44-8.46 (1H, m), 8.94 (1H, s), 14.38 ( 1H, bs).
Absorption maximum wavelength (CHCl 3 ): 425.0 nm
Molar extinction coefficient (CHCl 3 ): 31900 (mol / L) −1 · cm −1
(Production of metal complexes of squarylium compounds)
[参考例2-1] 化合物(2)と鉄との3:1錯体[化合物(2-F)]
 化合物(2)522mgおよび鉄トリス(2,4-ペンタンジオネート)113mgを、エタノール中、70~80℃で3.5時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(2-F)460mg(収率85%)を得た。
吸収極大波長(CHCl): 430.0nm
モル吸光係数(CHCl): 108000(mol/L)-1・cm-1
[Reference Example 2-1] 3: 1 Complex of Compound (2) and Iron [Compound (2-F)]
522 mg of compound (2) and 113 mg of iron tris (2,4-pentandionate) were reacted in ethanol at 70 to 80 ° C. for 3.5 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 460 mg (yield 85%) of compound (2-F).
Absorption maximum wavelength (CHCl 3 ): 430.0 nm
Molar extinction coefficient (CHCl 3 ): 108000 (mol / L) −1 · cm −1
[参考例2-2] 化合物(4)とコバルトとの2:1錯体[化合物(4-CO)]
 化合物(4)0.51gおよび酢酸コバルト(II)四水和物0.18gを、エタノール7mL中、70~80℃で3.5時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(4-CO)0.52g(収率94%)を得た。
吸収極大波長(CHCl):413.0nm
モル吸光係数(CHCl):143000(mol/L)-1・cm-1
分子量: 791[FAB-MS:m/z 792(M+H)
[Reference Example 2-2] 2: 1 Complex of Compound (4) and Cobalt [Compound (4-CO)]
0.51 g of compound (4) and 0.18 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol at 70 to 80 ° C. for 3.5 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.52 g (yield 94%) of compound (4-CO).
Absorption maximum wavelength (CHCl 3 ): 413.0 nm
Molar extinction coefficient (CHCl 3 ): 143000 (mol / L) −1 · cm −1
Molecular weight: 791 [FAB-MS: m / z 792 (M + H) + ]
[参考例2-3] 化合物(7)とアルミニウムとの3:1錯体[化合物(7-A)]
 化合物(7)0.89gおよびアルミニウムトリス(エチルアセトアセテート)0.29gを、エタノール10mL中、70~80℃で3.5時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(7-A)0.78g(収率87%)を得た。
吸収極大波長(CHCl): 421.0nm
モル吸光係数(CHCl):108000(mol/L)-1・cm-1
[Reference Example 2-3] 3: 1 Complex of Compound (7) and Aluminum [Compound (7-A)]
0.89 g of compound (7) and 0.29 g of aluminum tris (ethylacetoacetate) were reacted in 70 mL of ethanol at 70 to 80 ° C. for 3.5 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.78 g of Compound (7-A) (yield 87%).
Absorption maximum wavelength (CHCl 3 ): 421.0 nm
Molar extinction coefficient (CHCl 3 ): 108000 (mol / L) −1 · cm −1
[参考例2-4] 化合物(17)とアルミニウムとの3:1錯体[化合物(17-A)]
 化合物(17)0.92gおよびアルミニウムトリス(エチルアセトアセテート)0.29gを、エタノール4.8mL中、70℃で7時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(17-A)0.92mg(収率88%)を得た。
吸収極大波長(CHCl): 406.5nm
モル吸光係数(CHCl): 128000(mol/L)-1・cm-1
[Reference Example 2-4] 3: 1 Complex of Compound (17) and Aluminum [Compound (17-A)]
0.92 g of compound (17) and 0.29 g of aluminum tris (ethylacetoacetate) were reacted in 4.8 mL of ethanol at 70 ° C. for 7 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.92 mg of Compound (17-A) (yield 88%).
Absorption maximum wavelength (CHCl 3 ): 406.5 nm
Molar extinction coefficient (CHCl 3 ): 128000 (mol / L) −1 · cm −1
[参考例2-5] 化合物(17)とコバルトとの2:1錯体[化合物(17-CO)]
 化合物(17)0.70gおよび酢酸コバルト(II)四水和物0.20gを、エタノール4.8mL中、70℃で7時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(17-CO)0.72g(収率97%)を得た。
吸収極大波長(CHCl): 413.5nm
モル吸光係数(CHCl): 65000(mol/L)-1・cm-1
[Reference Example 2-5] 2: 1 Complex of Compound (17) and Cobalt [Compound (17-CO)]
0.70 g of the compound (17) and 0.20 g of cobalt (II) acetate tetrahydrate were reacted in 4.8 mL of ethanol at 70 ° C. for 7 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.72 g (yield 97%) of compound (17-CO).
Absorption maximum wavelength (CHCl 3 ): 413.5 nm
Molar extinction coefficient (CHCl 3 ): 65000 (mol / L) −1 · cm −1
[参考例2-6] 化合物(24)とコバルトとの2:1錯体[化合物(24-CO)]
 化合物(24)0.53gおよび酢酸コバルト(II)四水和物0.20gを、エタノール5.3mL中、70℃で4時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(24-CO)0.52g(収率91%)を得た。
吸収極大波長(CHCl): 398.0nm
モル吸光係数(CHCl): 50600(mol/L)-1・cm-1
[Reference Example 2-6] 2: 1 Complex of Compound (24) and Cobalt [Compound (24-CO)]
Compound (24) (0.53 g) and cobalt (II) acetate tetrahydrate (0.20 g) were reacted in ethanol (5.3 mL) at 70 ° C. for 4 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.52 g (yield 91%) of compound (24-CO).
Absorption maximum wavelength (CHCl 3 ): 398.0 nm
Molar extinction coefficient (CHCl 3 ): 50600 (mol / L) −1 · cm −1
[参考例2-7] 化合物(29)とニッケルとの2:1錯体[化合物(29-N)]
 化合物(29)0.64gおよび酢酸ニッケル(II)四水和物0.20gを、エタノール4.8mL中、70℃で7時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(29-N)0.66g(収率96%)を得た。
吸収極大波長(CHCl): 413.0nm
モル吸光係数(CHCl): 76900(mol/L)-1・cm-1
[Reference Example 2-7] 2: 1 Complex of Compound (29) and Nickel [Compound (29-N)]
0.64 g of compound (29) and 0.20 g of nickel (II) acetate tetrahydrate were reacted in 4.8 mL of ethanol at 70 ° C. for 7 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.66 g (yield 96%) of compound (29-N).
Absorption maximum wavelength (CHCl 3 ): 413.0 nm
Molar extinction coefficient (CHCl 3 ): 76900 (mol / L) −1 · cm −1
[参考例2-8] 化合物(35)と銅との2:1錯体[化合物(35-CU)]
 化合物(35)0.62gおよび酢酸銅(II)一水和物0.14gを、エタノール12.4mL中、70℃で4時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(35-CU)0.66g(収率100%)を得た。
吸収極大波長(CHCl): 422.0nm
モル吸光係数(CHCl): 86800(mol/L)-1・cm-1
[Reference Example 2-8] 2: 1 Complex of Compound (35) and Copper [Compound (35-CU)]
0.62 g of compound (35) and 0.14 g of copper (II) acetate monohydrate were reacted in 12.4 mL of ethanol at 70 ° C. for 4 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.66 g (yield 100%) of compound (35-CU).
Absorption maximum wavelength (CHCl 3 ): 422.0 nm
Molar extinction coefficient (CHCl 3 ): 86800 (mol / L) −1 · cm −1
[参考例2-9] 化合物(39)とコバルトとの2:1錯体[化合物(39-CO)]
 化合物(39)0.53gおよび酢酸コバルト(II)四水和物0.20gを、エタノール5.3mL中、70℃で4時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(39-CO)0.52g(収率91%)を得た。
吸収極大波長(CHCl): 429.0nm
モル吸光係数(CHCl): 75600(mol/L)-1・cm-1
[Reference Example 2-9] 2: 1 Complex of Compound (39) and Cobalt [Compound (39-CO)]
0.53 g of compound (39) and 0.20 g of cobalt (II) acetate tetrahydrate were reacted in 5.3 mL of ethanol at 70 ° C. for 4 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.52 g (yield 91%) of compound (39-CO).
Absorption maximum wavelength (CHCl 3 ): 429.0 nm
Molar extinction coefficient (CHCl 3 ): 75600 (mol / L) −1 · cm −1
[参考例2-10] 化合物(44)とコバルトとの2:1錯体[化合物(44-CO)]
 化合物(44)0.53gおよびトリス(カルボネート)コバルト(III)酸ナトリウム塩0.14gを、エタノール3.7mL中、酢酸0.024gの存在下、70℃で3時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(44-CO)0.39g(収率100%)を得た。
吸収極大波長(CHCl): 404.5nm
モル吸光係数(CHCl): 74900(mol/L)-1・cm-1
[Reference Example 2-10] 2: 1 Complex of Compound (44) and Cobalt [Compound (44-CO)]
0.53 g of compound (44) and 0.14 g of tris (carbonate) cobalt (III) sodium salt were reacted in 3.7 mL of ethanol at 70 ° C. for 3 hours in the presence of 0.024 g of acetic acid. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.39 g (yield 100%) of compound (44-CO).
Absorption maximum wavelength (CHCl 3 ): 404.5 nm
Molar extinction coefficient (CHCl 3 ): 74900 (mol / L) −1 · cm −1
[参考例2-11] 化合物(48)とニッケルとの2:1錯体[化合物(48-N)]
 化合物(48)0.33gおよび酢酸ニッケル(II)四水和物0.07gを、エタノール3.3mL中、70℃で3時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(48-N)0.34g(収率99%)を得た。
吸収極大波長(CHCl): 417.0nm
モル吸光係数(CHCl): 65600(mol/L)-1・cm-1
[Reference Example 2-11] 2: 1 Complex of Compound (48) and Nickel [Compound (48-N)]
0.33 g of compound (48) and 0.07 g of nickel acetate (II) tetrahydrate were reacted in 3.3 mL of ethanol at 70 ° C. for 3 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.34 g (yield 99%) of compound (48-N).
Absorption maximum wavelength (CHCl 3 ): 417.0 nm
Molar extinction coefficient (CHCl 3 ): 65600 (mol / L) −1 · cm −1
[実施例1] 化合物(49)とニッケルとの2:1錯体[化合物(49-N)]
 化合物(49)0.50gおよび酢酸ニッケル(II)四水和物0.16gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(49-N)0.52g(収率97%)を得た。
吸収極大波長(CHCl): 415.5nm
モル吸光係数(CHCl): 97900(mol/L)-1・cm-1
Example 1 2: 1 Complex of Compound (49) and Nickel [Compound (49-N)]
0.50 g of compound (49) and 0.16 g of nickel (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.52 g (yield 97%) of compound (49-N).
Absorption maximum wavelength (CHCl 3 ): 415.5 nm
Molar extinction coefficient (CHCl 3 ): 97900 (mol / L) −1 · cm −1
[実施例2] 化合物(49)とコバルトとの2:1錯体[化合物(49-CO)]
 化合物(49)0.50gおよび酢酸コバルト(II)四水和物0.16gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(49-CO)0.52g(収率97%)を得た。
吸収極大波長(CHCl): 407.0nm
モル吸光係数(CHCl): 82500(mol/L)-1・cm-1
分子量: 847[FAB-MS:m/z 848(M+H)
Example 2 2: 1 Complex of Compound (49) and Cobalt [Compound (49-CO)]
0.50 g of compound (49) and 0.16 g of cobalt (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.52 g (yield 97%) of compound (49-CO).
Absorption maximum wavelength (CHCl 3 ): 407.0 nm
Molar extinction coefficient (CHCl 3 ): 82500 (mol / L) −1 · cm −1
Molecular weight: 847 [FAB-MS: m / z 848 (M + H) + ]
[実施例3] 化合物(49)とアルミニウムとの3:1錯体[化合物(49-A)]
 化合物(49)0.30gおよびアルミニウムトリス(エチルアセトアセテート)0.093gを、エタノール3mL中、70℃で3時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(49-A)0.24g(収率79%)を得た。
吸収極大波長(2,2,3,3-テトラフルオロプロパノール):398.0nm
Example 3 3: 1 Complex of Compound (49) and Aluminum [Compound (49-A)]
0.30 g of compound (49) and 0.093 g of aluminum tris (ethylacetoacetate) were reacted in 3 mL of ethanol at 70 ° C. for 3 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.24 g (yield 79%) of compound (49-A).
Absorption maximum wavelength (2,2,3,3-tetrafluoropropanol): 398.0 nm
[実施例4] 化合物(54)とニッケルとの2:1錯体[化合物(54-N)]
 化合物(54)0.20gおよび酢酸ニッケル(II)四水和物0.06gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(54-N)0.18g(収率86%)を得た。
吸収極大波長(CHCl): 415.5nm
モル吸光係数(CHCl): 97900(mol/L)-1・cm-1
Example 4 2: 1 Complex of Compound (54) and Nickel [Compound (54-N)]
0.20 g of compound (54) and 0.06 g of nickel (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.18 g (yield 86%) of compound (54-N).
Absorption maximum wavelength (CHCl 3 ): 415.5 nm
Molar extinction coefficient (CHCl 3 ): 97900 (mol / L) −1 · cm −1
[実施例5] 化合物(54)とコバルトとの2:1錯体[化合物(54-CO)]
 化合物(54)0.20gおよび酢酸コバルト(II)四水和物0.06gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(54-CO)0.14g(収率64%)を得た。
吸収極大波長(CHCl): 395.0nm
モル吸光係数(CHCl): 88200(mol/L)-1・cm-1
Example 5 2: 1 Complex of Compound (54) and Cobalt [Compound (54-CO)]
0.20 g of compound (54) and 0.06 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.14 g (yield 64%) of compound (54-CO).
Absorption maximum wavelength (CHCl 3 ): 395.0 nm
Molar extinction coefficient (CHCl 3 ): 88200 (mol / L) −1 · cm −1
[実施例6] 化合物(61)とニッケルとの2:1錯体[化合物(61-N)]
 化合物(61)0.30gおよび酢酸ニッケル(II)四水和物0.11gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(61-N)0.35g(収率95%)を得た。
吸収極大波長(CHCl): 412.0nm
モル吸光係数(CHCl): 75200(mol/L)-1・cm-1
分子量: 762[FAB-MS:m/z 763(M+H)
Example 6 2: 1 Complex of Compound (61) and Nickel [Compound (61-N)]
0.30 g of compound (61) and 0.11 g of nickel (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.35 g (yield 95%) of compound (61-N).
Absorption maximum wavelength (CHCl 3 ): 412.0 nm
Molar extinction coefficient (CHCl 3 ): 75200 (mol / L) −1 · cm −1
Molecular weight: 762 [FAB-MS: m / z 763 (M + H) + ]
[実施例7] 化合物(61)とコバルトとの2:1錯体[化合物(61-CO)]
 化合物(61)0.30gおよび酢酸コバルト(II)四水和物0.11gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(61-CO)0.35g(収率97%)を得た。
吸収極大波長(CHCl): 404.0nm
モル吸光係数(CHCl): 92400(mol/L)-1・cm-1
Example 7 2: 1 Complex of Compound (61) and Cobalt [Compound (61-CO)]
0.30 g of compound (61) and 0.11 g of cobalt (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.35 g of compound (61-CO) (yield 97%).
Absorption maximum wavelength (CHCl 3 ): 404.0 nm
Molar extinction coefficient (CHCl 3 ): 92400 (mol / L) −1 · cm −1
[実施例8] 化合物(63)とニッケルとの2:1錯体[化合物(63-N)]
 化合物(63)0.50gおよび酢酸ニッケル(II)四水和物0.15gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(63-N)0.48g(収率90%)を得た。
吸収極大波長(CHCl): 396.5nm
モル吸光係数(CHCl): 94500(mol/L)-1・cm-1
分子量: 885[FAB-MS:m/z 886(M+H)
Example 8 2: 1 Complex of Compound (63) and Nickel [Compound (63-N)]
0.50 g of compound (63) and 0.15 g of nickel (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.48 g (yield 90%) of compound (63-N).
Absorption maximum wavelength (CHCl 3 ): 396.5 nm
Molar extinction coefficient (CHCl 3 ): 94500 (mol / L) −1 · cm −1
Molecular weight: 885 [FAB-MS: m / z 886 (M + H) + ]
[実施例9] 化合物(63)とコバルトとの2:1錯体[化合物(63-CO)]
 化合物(63)0.50gおよび酢酸コバルト(II)四水和物0.15gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(63-CO)0.47g(収率89%)を得た。
吸収極大波長(CHCl): 392.5nm
モル吸光係数(CHCl): 84600(mol/L)-1・cm-1
Example 9 2: 1 Complex of Compound (63) and Cobalt [Compound (63-CO)]
0.50 g of compound (63) and 0.15 g of cobalt (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.47 g (yield 89%) of compound (63-CO).
Absorption maximum wavelength (CHCl 3 ): 392.5 nm
Molar extinction coefficient (CHCl 3 ): 84600 (mol / L) −1 · cm −1
[実施例10] 化合物(71)とニッケルとの2:1錯体[化合物(71-N)]
 化合物(71)0.20gおよび酢酸ニッケル(II)四水和物0.07gを、エタノール3mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(71-N)0.21g(収率99%)を得た。
吸収極大波長(CHCl): 410.0nm
モル吸光係数(CHCl): 76400(mol/L)-1・cm-1
Example 10 2: 1 Complex of Compound (71) and Nickel [Compound (71-N)]
0.20 g of compound (71) and 0.07 g of nickel (II) acetate tetrahydrate were reacted in 3 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.21 g (yield 99%) of compound (71-N).
Absorption maximum wavelength (CHCl 3 ): 410.0 nm
Molar extinction coefficient (CHCl 3 ): 76400 (mol / L) −1 · cm −1
[実施例11] 化合物(71)とコバルトとの2:1錯体[化合物(71-CO)]
 化合物(71)0.20gおよび酢酸コバルト(II)四水和物0.07gを、エタノール3mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(71-CO)0.21g(収率96%)を得た。
吸収極大波長(CHCl): 401.5nm
モル吸光係数(CHCl): 66300(mol/L)-1・cm-1
Example 11 2: 1 Complex of Compound (71) and Cobalt [Compound (71-CO)]
0.20 g of compound (71) and 0.07 g of cobalt (II) acetate tetrahydrate were reacted in 3 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.21 g (yield 96%) of compound (71-CO).
Absorption maximum wavelength (CHCl 3 ): 401.5 nm
Molar extinction coefficient (CHCl 3 ): 66300 (mol / L) −1 · cm −1
[実施例12] 化合物(77)とニッケルとの2:1錯体[化合物(77-N)]
 化合物(77)0.20gおよび酢酸ニッケル(II)四水和物0.06gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(77-N)0.21g(収率100%)を得た。
吸収極大波長(CHCl): 426.0nm
モル吸光係数(CHCl): 63200(mol/L)-1・cm-1
Example 12 2: 1 Complex of Compound (77) and Nickel [Compound (77-N)]
0.20 g of compound (77) and 0.06 g of nickel acetate (II) tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.21 g (yield 100%) of compound (77-N).
Absorption maximum wavelength (CHCl 3 ): 426.0 nm
Molar extinction coefficient (CHCl 3 ): 63200 (mol / L) −1 · cm −1
[実施例13] 化合物(77)とコバルトとの2:1錯体[化合物(77-CO)]
 化合物(77)0.20gおよび酢酸コバルト(II)四水和物0.06gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(77-CO)0.21g(収率94%)を得た。
吸収極大波長(CHCl): 417.5nm
モル吸光係数(CHCl): 77600(mol/L)-1・cm-1
分子量: 965[FAB-MS:m/z 966(M+H)
Example 13 2: 1 Complex of Compound (77) and Cobalt [Compound (77-CO)]
0.20 g of compound (77) and 0.06 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.21 g (yield 94%) of compound (77-CO).
Absorption maximum wavelength (CHCl 3 ): 417.5 nm
Molar extinction coefficient (CHCl 3 ): 77600 (mol / L) −1 · cm −1
Molecular weight: 965 [FAB-MS: m / z 966 (M + H) + ]
[実施例14] 化合物(77)とアルミニウムとの3:1錯体[化合物(77-A)]
 化合物(77)0.30gおよびアルミニウムトリス(エチルアセトアセテート)0.08mgを、エタノール3mL中、70℃で3時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(77-A)0.30g(収率92%)を得た。
吸収極大波長(2,2,3,3-テトラフルオロプロパノール): 354.5nm
Example 14 3: 1 Complex of Compound (77) and Aluminum [Compound (77-A)]
0.30 g of compound (77) and 0.08 mg of aluminum tris (ethyl acetoacetate) were reacted in 3 mL of ethanol at 70 ° C. for 3 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.30 g (yield 92%) of compound (77-A).
Absorption maximum wavelength (2,2,3,3-tetrafluoropropanol): 354.5 nm
[実施例15] 化合物(84)とニッケルとの2:1錯体[化合物(84-N)]
 化合物(84)0.30gおよび酢酸ニッケル(II)四水和物0.09gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(84-N)0.31g(収率100%)を得た。
吸収極大波長(CHCl): 414.0nm
モル吸光係数(CHCl): 90100(mol/L)-1・cm-1
Example 15 2: 1 Complex of Compound (84) and Nickel [Compound (84-N)]
0.30 g of compound (84) and 0.09 g of nickel (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.31 g (yield 100%) of compound (84-N).
Absorption maximum wavelength (CHCl 3 ): 414.0 nm
Molar extinction coefficient (CHCl 3 ): 90100 (mol / L) −1 · cm −1
[実施例16] 化合物(84)とコバルトとの2:1錯体[化合物(84-CO)]
 化合物(84)0.30gおよび酢酸コバルト(II)四水和物0.09gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(84-CO)0.31g(収率100%)を得た。
吸収極大波長(CHCl): 405.0nm
モル吸光係数(CHCl): 76400(mol/L)-1・cm-1
[Example 16] 2: 1 complex of compound (84) and cobalt [compound (84-CO)]
0.30 g of the compound (84) and 0.09 g of cobalt (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.31 g (yield 100%) of compound (84-CO).
Absorption maximum wavelength (CHCl 3 ): 405.0 nm
Molar extinction coefficient (CHCl 3 ): 76400 (mol / L) −1 · cm −1
[実施例17] 化合物(93)とニッケルとの2:1錯体[化合物(93-N)]
 化合物(93)0.15gおよび酢酸ニッケル(II)四水和物0.04gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(93-N)0.13g(収率83%)を得た。
吸収極大波長(CHCl): 399.5nm
モル吸光係数(CHCl): 90300(mol/L)-1・cm-1
分子量: 1008[FAB-MS:m/z 1009(M+H)
Example 17 2: 1 Complex of Compound (93) and Nickel [Compound (93-N)]
0.15 g of compound (93) and 0.04 g of nickel (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.13 g (yield 83%) of compound (93-N).
Absorption maximum wavelength (CHCl 3 ): 399.5 nm
Molar extinction coefficient (CHCl 3 ): 90300 (mol / L) −1 · cm −1
Molecular weight: 1008 [FAB-MS: m / z 1009 (M + H) + ]
[実施例18] 化合物(93)とコバルトとの2:1錯体[化合物(93-CO)]
 化合物(93)0.30gおよび酢酸コバルト(II)四水和物0.08gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(93-CO)0.31g(収率100%)を得た。
吸収極大波長(CHCl): 395.5nm
モル吸光係数(CHCl): 90100(mol/L)-1・cm-1
[Example 18] 2: 1 complex of compound (93) and cobalt [compound (93-CO)]
0.30 g of compound (93) and 0.08 g of cobalt (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.31 g (yield 100%) of compound (93-CO).
Absorption maximum wavelength (CHCl 3 ): 395.5 nm
Molar extinction coefficient (CHCl 3 ): 90100 (mol / L) −1 · cm −1
[実施例19] 化合物(102)とニッケルとの2:1錯体[化合物(102-N)]
 化合物(102)0.15gおよび酢酸ニッケル(II)四水和物0.04gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(102-N)0.16g(収率97%)を得た。
吸収極大波長(CHCl): 419.5nm
モル吸光係数(CHCl): 104800(mol/L)-1・cm-1
Example 19 2: 1 Complex of Compound (102) and Nickel [Compound (102-N)]
0.15 g of compound (102) and 0.04 g of nickel (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.16 g (yield 97%) of compound (102-N).
Absorption maximum wavelength (CHCl 3 ): 419.5 nm
Molar extinction coefficient (CHCl 3 ): 104800 (mol / L) −1 · cm −1
[実施例20] 化合物(102)とコバルトとの2:1錯体[化合物(102-CO)]
 化合物(102)0.30gおよび酢酸コバルト(II)四水和物0.08gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(102-CO)0.33g(収率100%)を得た。
吸収極大波長(CHCl): 412.0nm
モル吸光係数(CHCl): 101500(mol/L)-1・cm-1
Example 20 2: 1 Complex of Compound (102) and Cobalt [Compound (102-CO)]
0.30 g of compound (102) and 0.08 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.33 g (yield 100%) of compound (102-CO).
Absorption maximum wavelength (CHCl 3 ): 412.0 nm
Molar extinction coefficient (CHCl 3 ): 101500 (mol / L) −1 · cm −1
[実施例21] 化合物(107)とニッケルとの2:1錯体[化合物(107-N)]
 化合物(107)0.15gおよび酢酸ニッケル(II)四水和物0.05gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(107-N)0.17g(収率100%)を得た。
吸収極大波長(CHCl): 412.5nm
モル吸光係数(CHCl): 90300(mol/L)-1・cm-1
[Example 21] 2: 1 complex of compound (107) and nickel [compound (107-N)]
0.15 g of the compound (107) and 0.05 g of nickel (II) acetate tetrahydrate were reacted in 5 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.17 g (yield 100%) of compound (107-N).
Absorption maximum wavelength (CHCl 3 ): 412.5 nm
Molar extinction coefficient (CHCl 3 ): 90300 (mol / L) −1 · cm −1
[実施例22] 化合物(107)とコバルトとの2:1錯体[化合物(107-CO)]
 化合物(107)0.20gおよび酢酸コバルト(II)四水和物0.06gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(107-CO)0.20g(収率100%)を得た。
吸収極大波長(CHCl): 404.5nm
モル吸光係数(CHCl): 73400(mol/L)-1・cm-1
[Example 22] 2: 1 complex of compound (107) and cobalt [compound (107-CO)]
0.20 g of compound (107) and 0.06 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.20 g (yield 100%) of compound (107-CO).
Absorption maximum wavelength (CHCl 3 ): 404.5 nm
Molar extinction coefficient (CHCl 3 ): 73400 (mol / L) −1 · cm −1
[実施例23] 化合物(112)とニッケルとの2:1錯体[化合物(112-N)]
 化合物(112)0.20gおよび酢酸ニッケル(II)四水和物0.06gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(112-N)0.17g(収率79%)を得た。
吸収極大波長(CHCl): 421.0nm
モル吸光係数(CHCl): 83100(mol/L)-1・cm-1
[Example 23] 2: 1 complex of compound (112) and nickel [compound (112-N)]
0.20 g of compound (112) and 0.06 g of nickel (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.17 g (yield 79%) of compound (112-N).
Absorption maximum wavelength (CHCl 3 ): 421.0 nm
Molar extinction coefficient (CHCl 3 ): 83100 (mol / L) −1 · cm −1
[実施例24] 化合物(112)とコバルトとの2:1錯体[化合物(112-CO)]
 化合物(112)0.20gおよび酢酸コバルト(II)四水和物0.06gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(112-CO)0.21g(収率98%)を得た。
吸収極大波長(CHCl): 412.5nm
モル吸光係数(CHCl): 58700(mol/L)-1・cm-1
[Example 24] 2: 1 complex of compound (112) and cobalt [compound (112-CO)]
0.20 g of compound (112) and 0.06 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.21 g (yield 98%) of compound (112-CO).
Absorption maximum wavelength (CHCl 3 ): 412.5 nm
Molar extinction coefficient (CHCl 3 ): 58700 (mol / L) −1 · cm −1
[実施例25] 化合物(115)とニッケルとの2:1錯体[化合物(115-N)]
 化合物(115)0.25gおよび酢酸ニッケル(II)四水和物0.07gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(115-N)0.24g(収率89%)を得た。
吸収極大波長(CHCl): 417.0nm
モル吸光係数(CHCl): 91600(mol/L)-1・cm-1
Example 25 2: 1 Complex of Compound (115) and Nickel [Compound (115-N)]
0.25 g of compound (115) and 0.07 g of nickel acetate (II) tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.24 g (yield 89%) of compound (115-N).
Absorption maximum wavelength (CHCl 3 ): 417.0 nm
Molar extinction coefficient (CHCl 3 ): 91600 (mol / L) −1 · cm −1
[実施例26] 化合物(115)とコバルトとの2:1錯体[化合物(115-CO)]
 化合物(115)0.25gおよび酢酸コバルト(II)四水和物0.07gを、エタノール5mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(115-CO)0.25g(収率92%)を得た。
吸収極大波長(CHCl): 409.5nm
モル吸光係数(CHCl): 71500(mol/L)-1・cm-1
[Example 26] 2: 1 complex of compound (115) and cobalt [compound (115-CO)]
0.25 g of compound (115) and 0.07 g of cobalt (II) acetate tetrahydrate were reacted in 70 mL of ethanol in 5 mL of ethanol for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.25 g of compound (115-CO) (yield 92%).
Absorption maximum wavelength (CHCl 3 ): 409.5 nm
Molar extinction coefficient (CHCl 3 ): 71500 (mol / L) −1 · cm −1
[実施例27] 化合物(120)とニッケルとの2:1錯体[化合物(120-N)]
 化合物(120)0.20gおよび酢酸ニッケル(II)四水和物0.05gを、エタノール2mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(120-N)0.21g(収率100%)を得た。
吸収極大波長(CHCl): 423.0nm
モル吸光係数(CHCl): 63300(mol/L)-1・cm-1
Example 27 2: 1 Complex of Compound (120) and Nickel [Compound (120-N)]
0.20 g of compound (120) and 0.05 g of nickel (II) acetate tetrahydrate were reacted in 2 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.21 g of Compound (120-N) (yield 100%).
Absorption maximum wavelength (CHCl 3 ): 423.0 nm
Molar extinction coefficient (CHCl 3 ): 63300 (mol / L) −1 · cm −1
[実施例28] 化合物(120)とコバルトとの2:1錯体[化合物(120-CO)]
 化合物(120)0.20gおよび酢酸コバルト(II)四水和物0.05gを、エタノール2mL中、70℃で2時間反応させた。反応液を冷却後、析出した固体を濾取してエタノールで洗浄することにより化合物(120-CO)0.15g(収率73%)を得た。
吸収極大波長(CHCl): 417.5nm
[Example 28] 2: 1 complex of compound (120) and cobalt [compound (120-CO)]
0.20 g of the compound (120) and 0.05 g of cobalt (II) acetate tetrahydrate were reacted in 2 mL of ethanol at 70 ° C. for 2 hours. After cooling the reaction solution, the precipitated solid was collected by filtration and washed with ethanol to obtain 0.15 g (yield 73%) of compound (120-CO).
Absorption maximum wavelength (CHCl 3 ): 417.5 nm
 以下に本発明の具体的な光記録媒体の実施例として図1に示した追記型Blu-ray Disc(BD-R)の構成に準拠したディスクを試作して説明するが、本発明は、これら実施例により限定されるものではない。 In the following, a specific example of an optical recording medium according to the present invention will be described as a prototype of a disc conforming to the structure of the write-once Blu-ray Disc (BD-R) shown in FIG. It is not limited by the examples.
[実施例29~37]
<基板101>
 ポリカーボネート樹脂を射出成形して板厚1.1mm、直径12cmの基板を作製した。
 基板表面には、BD-Rディスク規格に準拠した、アドレス信号等のプレフォーマット情報として、約5μmの周期で20nmの振幅でウォブリングさせて入れた螺旋状のトラッキング用案内溝を形成した。
 該案内溝は、原子間力顕微鏡による観察測定からトラックピッチが0.32μmであり、溝深さが42nmであり、溝幅(上部と底部の半値幅)が147nmであった。
[Examples 29 to 37]
<Substrate 101>
A polycarbonate resin was injection molded to produce a substrate having a plate thickness of 1.1 mm and a diameter of 12 cm.
On the surface of the substrate, a spiral tracking guide groove was formed by wobbling with an amplitude of 20 nm with a period of about 5 μm as preformat information such as an address signal in accordance with the BD-R disc standard.
The guide groove was found to have a track pitch of 0.32 μm, a groove depth of 42 nm, and a groove width (half-value width at the top and bottom) of 147 nm, as observed and measured with an atomic force microscope.
<反射層102>
 基板101上に、DCスパッタリング法にてAg-Pd-Cu合金(含有量Ag;98重量%、Pd;1重量%、Cu;1重量%)からなる反射層102を形成した。該反射層の膜厚は電子顕微鏡による断面観察から45nmであった。
<Reflective layer 102>
A reflective layer 102 made of an Ag—Pd—Cu alloy (content Ag: 98 wt%, Pd: 1 wt%, Cu: 1 wt%) was formed on the substrate 101 by DC sputtering. The film thickness of the reflective layer was 45 nm from cross-sectional observation with an electron microscope.
<記録層103>
 光記録媒体の記録層を形成する色素として、表1に記載のスクアリリウム化合物の金属錯体を使用した。
<Recording layer 103>
As the dye for forming the recording layer of the optical recording medium, a metal complex of the squarylium compound shown in Table 1 was used.
 表1に記載のスクアリリウム化合物の金属錯体のそれぞれを2,2,3,3-テトラフルオロプロパノールに約35℃にて超音波溶解し、該金属錯体の濃度が0.5重量%である溶液を調製した。
この溶液を反射層102上に外周から内周にスパイラル状に約0.5g滴下し、スピンコート法にて回転数2000rpmで塗布し、その後オーブンで70℃、30分間加熱し、記録層103を形成した。該記録層において記録が実行される溝部(凹部)の膜厚は、電子顕微鏡による断面観察から、約30nmであった。
Each of the metal complexes of the squarylium compound described in Table 1 was ultrasonically dissolved in 2,2,3,3-tetrafluoropropanol at about 35 ° C., and a solution having a concentration of 0.5% by weight of the metal complex was obtained. Prepared.
About 0.5 g of this solution is dropped on the reflective layer 102 in a spiral shape from the outer periphery to the inner periphery, applied at a rotational speed of 2000 rpm by a spin coating method, and then heated in an oven at 70 ° C. for 30 minutes to form the recording layer 103. Formed. The film thickness of the groove (concave portion) where recording is performed in the recording layer was about 30 nm from cross-sectional observation with an electron microscope.
 使用した色素のディスク薄膜状態での吸光度を青紫色レーザーの波長である405nmにおいて測定した結果を表1に示す。 Table 1 shows the results of measuring the absorbance of the dye used in the disk thin film state at 405 nm, which is the wavelength of the blue-violet laser.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<透明保護層104>
 記録層の保護、ならびに記録信号品質および保存特性の向上のために記録層103の上に、ZnS-SiO(ZnS=80モル%、SiO=20モル%)の透明誘電体薄膜をRFスパッタリング法にて成膜し透明保護層104を形成した。この記録層の膜厚は電子顕微鏡による断面観察から17nmであった。
<Transparent protective layer 104>
A transparent dielectric thin film of ZnS—SiO 2 (ZnS = 80 mol%, SiO 2 = 20 mol%) is RF-sputtered on the recording layer 103 to protect the recording layer and improve recording signal quality and storage characteristics. A transparent protective layer 104 was formed by the method. The film thickness of this recording layer was 17 nm from cross-sectional observation with an electron microscope.
<カバー層105>
 透明保護層104の上に、ポリカーボネート製フィルムシートに透明粘着剤を塗布した厚さ100μmのカバーシート(リンテック社製、商品名 Opteria)をシートローラーで貼り合わせ、その後15秒間加圧脱泡を行って、カバー層105を形成した。
<Cover layer 105>
On the transparent protective layer 104, a cover sheet (trade name Opteria, manufactured by Lintec Co., Ltd.) having a thickness of 100 μm obtained by applying a transparent adhesive to a polycarbonate film sheet is bonded with a sheet roller, and then subjected to pressure defoaming for 15 seconds. Thus, the cover layer 105 was formed.
 以上のような材料、手順、試作条件にて実施例29~37のBD-R型の光記録媒体を作製した。これらの光記録媒体に対し、波長405nm、開口数NA0.85のピックアップヘッドをもつディスク評価機(PULSTEC社製 ODU-1000)を用い、線速4.92m/秒にて最短マーク0.149μm、RLL(1-7)変調方式の信号を図2に示すような3値のマルチパルスで変調し、オングルーブに5トラックの記録を行った。また記録された5トラックの中央の3トラック目において再生パワー0.30mWにて再生を行った。波形等価器にて波形等価を実施した後、リミットイコライザを経て2値化した信号の立ち上がりおよび立ち下りと、クロック信号の立ち上がりとのタイミング差のジッタをウィンドウ幅Tで割った値(ジッタ値)で評価を行った。各実施例の記録条件は、ジッタ値が最小になるように記録パワーとマルチパルス変調の最適化を行い設定した。表2に、記録再生で得られたジッタ値と図2に示す記録時のパワーのピーク値をPwoとして記す。 The BD-R type optical recording media of Examples 29 to 37 were manufactured using the materials, procedures, and prototype conditions described above. For these optical recording media, a disk evaluation machine (PDUSTEC ODU-1000) having a pickup head having a wavelength of 405 nm and a numerical aperture NA of 0.85 was used, and a shortest mark of 0.149 μm at a linear velocity of 4.92 m / sec. A signal of the RLL (1-7) modulation method was modulated with a ternary multi-pulse as shown in FIG. 2, and five tracks were recorded on the groove. Reproduction was performed at a reproduction power of 0.30 mW on the third track at the center of the five recorded tracks. After performing waveform equalization with the waveform equalizer, the value obtained by dividing the jitter of the timing difference between the rise and fall of the signal binarized through the limit equalizer and the rise of the clock signal by the window width T (jitter value) Was evaluated. The recording conditions of each example were set by optimizing the recording power and multipulse modulation so that the jitter value was minimized. In Table 2, the jitter value obtained by recording / reproduction and the peak value of the recording power shown in FIG. 2 are shown as Pwo.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 その結果、実施例で得られた光記録媒体がBD-Rの規格(ジッタ値;7%以下、Pwo;6mW以下)を満足することが確認できた。
 また、実施例で得られた光記録媒体を用いてジッタ値が7%以下になるように記録したときのPwoは6mW以下と低かった。これは、実施例で得られた光記録媒体が青紫色レーザー光に対する高感度な光応答性を有することを表す。
As a result, it was confirmed that the optical recording media obtained in the examples satisfied the BD-R standards (jitter value: 7% or less, Pwo: 6 mW or less).
Further, Pwo was as low as 6 mW or less when recording was performed using the optical recording medium obtained in the example so that the jitter value was 7% or less. This indicates that the optical recording medium obtained in the example has high sensitivity photoresponsiveness to blue-violet laser light.
 本発明により、青紫色レーザー光に対する高感度な光応答性等を有するスクアリリウム化合物の金属錯体を含有する光記録媒体等を提供できる。 According to the present invention, it is possible to provide an optical recording medium containing a metal complex of a squarylium compound having a highly sensitive photoresponsiveness to blue-violet laser light.

Claims (17)

  1.  式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表し、Rは水素原子、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表し、RおよびR4は同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基またはNR(式中、RおよびRは同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表す)を表し、RおよびRは隣接する窒素原子と一緒になって置換基を有していてもよい脂環式複素環を形成してもよい。但し、RおよびRは同時に水素原子を表すことはない]で表されるスクアリリウム化合物の金属錯体を含有する光記録媒体。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 represents a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, An aryl group which may have a substituent or a heterocyclic group which may have a substituent, R 2 represents a hydrogen atom, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, a substituent An amino group which may have a substituent, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, and a substituent. Represents an alicyclic hydrocarbon group which may be substituted, an aryl group which may have a substituent or a heterocyclic group which may have a substituent, and R 3 and R 4 are the same or different, Hydrogen atom, optionally substituted alkyl group, substituted Which may be an aralkyl group, which may have a substituent the alicyclic hydrocarbon group, an optionally substituted aryl group, optionally substituted heterocyclic group, or NR 5 R 6 (wherein R 5 and R 6 are the same or different and have a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, or a substituent. Represents an alicyclic hydrocarbon group which may be substituted, an aryl group which may have a substituent or a heterocyclic group which may have a substituent, and R 3 and R 4 are adjacent nitrogen atoms And may form an alicyclic heterocyclic ring which may have a substituent. However, R 3 and R 4 do not represent a hydrogen atom at the same time.] An optical recording medium containing a metal complex of a squarylium compound represented by:
  2.  RおよびRが同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基であるか、あるいはRおよびRが隣接する窒素原子と一緒になって置換基を有していてもよい脂環式複素環を形成する請求項1記載の光記録媒体。 R 3 and R 4 are the same or different and are a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, or an alicyclic which may have a substituent. A hydrocarbon group, an optionally substituted aryl group or an optionally substituted heterocyclic group, or R 3 and R 4 together with the adjacent nitrogen atom are substituted The optical recording medium according to claim 1, wherein an alicyclic heterocyclic ring which may have
  3.  RおよびRのうち少なくとも一つがNR(式中、RおよびRはそれぞれ前記と同義である)である請求項1記載の光記録媒体。 The optical recording medium according to claim 1, wherein at least one of R 3 and R 4 is NR 5 R 6 (wherein R 5 and R 6 are as defined above).
  4.  RおよびRの一方がNR(式中、RおよびRはそれぞれ前記と同義である)であり、他方が水素原子である請求項1記載の光記録媒体。 The optical recording medium according to claim 1, wherein one of R 3 and R 4 is NR 5 R 6 (wherein R 5 and R 6 are as defined above), and the other is a hydrogen atom.
  5.  RおよびRのうち少なくとも一つが式(II):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Wは窒素原子またはC-R(式中、Rは水素原子、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表す)を表し、Xは窒素原子またはC-R(式中、Rは前記Rと同義である)を表し、Yは窒素原子またはC-R(式中、Rは前記Rと同義である)を表し、Zは窒素原子またはC-R10(式中、R10は前記Rと同義である)を表し、WがC-RでありXがC-RであるときRとRはそれぞれが隣接する2つの炭素原子と一緒になって置換基を有していてもよい炭化水素環を形成してもよく、XがC-RでありYがC-RであるときRとRはそれぞれが隣接する2つの炭素原子と一緒になって置換基を有していてもよい炭化水素環を形成してもよく、YがC-RでありZがC-R10であるときRとR10はそれぞれが隣接する2つの炭素原子と一緒になって置換基を有していてもよい炭化水素環を形成してもよい]で表される請求項3または4記載の光記録媒体。
    At least one of R 5 and R 6 is of the formula (II):
    Figure JPOXMLDOC01-appb-C000002
    [Wherein W is a nitrogen atom or C—R 7 (wherein R 7 is a hydrogen atom, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, an amino group which may have a substituent, An alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, and an alicyclic hydrocarbon which may have a substituent A group, an aryl group which may have a substituent or a heterocyclic group which may have a substituent, and X represents a nitrogen atom or C—R 8 (wherein R 8 represents the above R 7 represents a nitrogen atom or C—R 9 (wherein R 9 is as defined above for R 7 ), and Z represents a nitrogen atom or C—R 10 (wherein R 7 10 represents a a) synonymous with the R 7, when W is C-R 7 X is a C-R 8 R 7 and R 8 may each form two or hydrocarbon ring which may have a substituent together with the carbon atom adjacent, X is C-R 8 Y is C- When R 9 is R 9 , R 8 and R 9 may be combined with two adjacent carbon atoms to form an optionally substituted hydrocarbon ring, wherein Y is C—R 9 And when Z is C—R 10 , R 9 and R 10 may be combined with two adjacent carbon atoms to form an optionally substituted hydrocarbon ring]. The optical recording medium according to claim 3 or 4, wherein:
  6.  Wが窒素原子であり、XがC-Rであり、YがC-Rであり、ZがC-R10である請求項5記載の光記録媒体。 6. The optical recording medium according to claim 5, wherein W is a nitrogen atom, X is CR 8 , Y is CR 9 , and Z is CR 10 .
  7.  RおよびRの一方が式(II)であり、他方が水素原子である請求項5または6記載の光記録媒体。 7. The optical recording medium according to claim 5, wherein one of R 5 and R 6 is formula (II) and the other is a hydrogen atom.
  8.  RおよびRが同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基である請求項1~7のいずれかに記載の光記録媒体。 R 1 and R 2 are the same or different and are each a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or an optionally substituted heterocyclic group. The optical recording medium according to any one of claims 1 to 7, wherein
  9.  金属がニッケル、コバルト、アルミニウム、銅、亜鉛または鉄である請求項1~8のいずれかに記載の光記録媒体。 The optical recording medium according to any one of claims 1 to 8, wherein the metal is nickel, cobalt, aluminum, copper, zinc or iron.
  10.  金属がニッケルまたはコバルトである請求項1~8のいずれかに記載の光記録媒体。 The optical recording medium according to any one of claims 1 to 8, wherein the metal is nickel or cobalt.
  11.  350~530nmの記録波長により記録可能である請求項1~10のいずれかに記載の光記録媒体。 11. The optical recording medium according to claim 1, wherein recording is possible with a recording wavelength of 350 to 530 nm.
  12.  式(Ia):
    Figure JPOXMLDOC01-appb-C000003
    [式中、Rは水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表し、Rは水素原子、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表し、R5aは水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表し、Wは窒素原子またはC-R(式中、Rは水素原子、ヒドロキシル基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基を表す)を表し、Xは窒素原子またはC-R(式中、Rは前記Rと同義である)を表し、Yは窒素原子またはC-R(式中、Rは前記Rと同義である)を表し、Zは窒素原子またはC-R10(式中、R10は前記Rと同義である)を表し、WがC-RでありXがC-RであるときRとRはそれぞれが隣接する2つの炭素原子と一緒になって置換基を有していてもよい炭化水素環を形成してもよく、XがC-RでありYがC-RであるときRとRはそれぞれが隣接する2つの炭素原子と一緒になって置換基を有していてもよい炭化水素環を形成してもよく、YがC-RでありZがC-R10であるときRとR10はそれぞれが隣接する2つの窒素原子と一緒になって置換基を有していてもよい炭化水素環を形成してもよい]で表されるスクアリリウム化合物の金属錯体。
    Formula (Ia):
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, R 1 represents a hydrogen atom, an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, An aryl group which may have a substituent or a heterocyclic group which may have a substituent, R 2 represents a hydrogen atom, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, a substituent An amino group which may have a substituent, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, and a substituent. Represents an alicyclic hydrocarbon group which may be substituted, an aryl group which may have a substituent or a heterocyclic group which may have a substituent, and R 5a has a hydrogen atom and a substituent. An optionally substituted alkyl group, an optionally substituted aralkyl group, An alicyclic hydrocarbon group which may have a substituent, an aryl group which may have a substituent or a heterocyclic group which may have a substituent, W represents a nitrogen atom or C— R 7 (wherein R 7 is a hydrogen atom, a hydroxyl group, a carboxyl group, a halogen atom, a nitro group, a cyano group, an amino group which may have a substituent, or an alkyl group which may have a substituent) , An alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, or a substituent. Represents an aryl group or an optionally substituted heterocyclic group), X represents a nitrogen atom or C—R 8 (wherein R 8 has the same meaning as R 7 above), and Y represents Represents a nitrogen atom or C—R 9 (wherein R 9 is as defined above for R 7 ), and Z is Nitrogen atom or C-R 10 (wherein, R 10 is a is same meaning as the R 7) represents, W is the C-R 7 a and X are each R 7 and R 8 when it is C-R 8 A hydrocarbon ring which may have a substituent may be formed together with two adjacent carbon atoms, and when X is C—R 8 and Y is C—R 9 , R 8 and R 9 may be combined with two adjacent carbon atoms to form a hydrocarbon ring which may have a substituent, and Y is C—R 9 and Z is C—R 10 . In some cases, R 9 and R 10 may be combined with two adjacent nitrogen atoms to form a hydrocarbon ring which may have a substituent, and a metal complex of a squarylium compound represented by:
  13.  Wが窒素原子であり、XがC-Rであり、YがC-Rであり、ZがC-R10である請求項12記載の金属錯体。 The metal complex according to claim 12, wherein W is a nitrogen atom, X is CR 8 , Y is CR 9 , and Z is CR 10 .
  14.  R5aが水素原子である請求項12または13記載の金属錯体。 The metal complex according to claim 12 or 13, wherein R 5a is a hydrogen atom.
  15.  RおよびRが同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよい複素環基である請求項12~14のいずれかに記載の金属錯体。 R 1 and R 2 are the same or different and are each a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group or an optionally substituted heterocyclic group. The metal complex according to any one of claims 12 to 14, which is
  16.  金属がニッケル、コバルト、アルミニウム、銅、亜鉛または鉄である請求項12~15のいずれかに記載の金属錯体。 The metal complex according to any one of claims 12 to 15, wherein the metal is nickel, cobalt, aluminum, copper, zinc or iron.
  17.  金属がニッケルまたはコバルトである請求項12~15のいずれかに記載の金属錯体。 The metal complex according to any one of claims 12 to 15, wherein the metal is nickel or cobalt.
PCT/JP2009/067508 2008-10-08 2009-10-07 Optical recording medium containing metal complex of squarylium compound WO2010041691A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010532944A JPWO2010041691A1 (en) 2008-10-08 2009-10-07 Optical recording medium containing metal complex of squarylium compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008261984 2008-10-08
JP2008-261984 2008-10-08

Publications (1)

Publication Number Publication Date
WO2010041691A1 true WO2010041691A1 (en) 2010-04-15

Family

ID=42100639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067508 WO2010041691A1 (en) 2008-10-08 2009-10-07 Optical recording medium containing metal complex of squarylium compound

Country Status (2)

Country Link
JP (1) JPWO2010041691A1 (en)
WO (1) WO2010041691A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162190A1 (en) * 2010-06-24 2011-12-29 協和発酵ケミカル株式会社 Metal complexes of squarylium compounds and optical recording media comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059608A1 (en) * 2003-12-18 2005-06-30 Kyowa Hakko Chemical Co., Ltd. Filter for electronic display
WO2006011514A1 (en) * 2004-07-27 2006-02-02 Kyowa Hakko Chemical Co., Ltd. Filter for electronic display
WO2006038685A1 (en) * 2004-10-07 2006-04-13 Kyowa Hakko Chemical Co., Ltd. Filter for electronic display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059608A1 (en) * 2003-12-18 2005-06-30 Kyowa Hakko Chemical Co., Ltd. Filter for electronic display
WO2006011514A1 (en) * 2004-07-27 2006-02-02 Kyowa Hakko Chemical Co., Ltd. Filter for electronic display
WO2006038685A1 (en) * 2004-10-07 2006-04-13 Kyowa Hakko Chemical Co., Ltd. Filter for electronic display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162190A1 (en) * 2010-06-24 2011-12-29 協和発酵ケミカル株式会社 Metal complexes of squarylium compounds and optical recording media comprising same

Also Published As

Publication number Publication date
JPWO2010041691A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP3633279B2 (en) Optical recording medium
JP2000043423A (en) Optical recording medium
JPH11334204A (en) Optical recording medium
JPH11334207A (en) Optical recording medium
EP1967378A1 (en) Optical recording medium and azacyanine dye
JPWO2002050190A1 (en) Metal complex type squarylium compound and optical recording medium using the same
US20090252013A1 (en) Hydrazide chelate complex compound, optical recording medium using the compound and recording method thereof
JP5323993B2 (en) Complex compound and optical recording medium containing the same
WO2010041691A1 (en) Optical recording medium containing metal complex of squarylium compound
JP3876970B2 (en) Dye for recording layer formation of optical recording medium, optical recording medium using the same, and recording method of optical recording medium
WO2010047341A1 (en) Metal complexes of squarylium compounds and optical recording media containing same
JP4120340B2 (en) Optical recording medium and optical recording method
JP2006142666A (en) Coloring matter for optical recording medium
JP5352986B2 (en) Metal complex compound, optical recording medium and optical recording material
JPWO2011142329A1 (en) Complex compound and optical recording medium containing the same
JP2011126815A (en) Complex compound and optical recording medium containing the same
WO2011102348A1 (en) Hydrazide chelate complex compound and optical recording medium using same
JP2007216439A (en) Coloring matter for forming recording layer of optical recording medium, optical recording medium and its recording method
WO2011162190A1 (en) Metal complexes of squarylium compounds and optical recording media comprising same
US8759534B2 (en) Trimethine cyanine and its use
EP2116577A1 (en) Cyanine dye and optical recording medium
JP2010100669A (en) Metal complex of squarilium compound, and optical recording medium using the same
JP2002002110A (en) Optical recording medium
JP2015017039A (en) Complex compound and optical recording medium containing the same
JP2014058478A (en) Hydrazide chelate complex compound and optical recording medium using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010532944

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819225

Country of ref document: EP

Kind code of ref document: A1