WO2010040496A2 - Location-specific recombination for activating genes in genetic systems - Google Patents

Location-specific recombination for activating genes in genetic systems Download PDF

Info

Publication number
WO2010040496A2
WO2010040496A2 PCT/EP2009/007148 EP2009007148W WO2010040496A2 WO 2010040496 A2 WO2010040496 A2 WO 2010040496A2 EP 2009007148 W EP2009007148 W EP 2009007148W WO 2010040496 A2 WO2010040496 A2 WO 2010040496A2
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
seq
sequences
chemically
recognition sequences
Prior art date
Application number
PCT/EP2009/007148
Other languages
German (de)
French (fr)
Other versions
WO2010040496A3 (en
Inventor
Ralph Bertram
Original Assignee
Universität Tübingen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität Tübingen filed Critical Universität Tübingen
Publication of WO2010040496A2 publication Critical patent/WO2010040496A2/en
Publication of WO2010040496A3 publication Critical patent/WO2010040496A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1082Preparation or screening gene libraries by chromosomal integration of polynucleotide sequences, HR-, site-specific-recombination, transposons, viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Definitions

  • the invention relates to the use of recognition sequences for site-specific recombinases for activating a target gene in a genetic system and to a corresponding method therefor.
  • Transcription is understood to mean the transcription of a gene from DNA into RNA.
  • a gene is read by the transcription.
  • the result of the transcription process is a messenger RNA (mRNA) complementary to a read DNA template strand.
  • mRNA messenger RNA
  • a functional gene product a protein
  • Artificial gene regulation in bacterial systems is currently mainly based on the control of transcription.
  • artificial gene regulation is based on the regulation of Transcription initiation.
  • the gene to be expressed is usually preceded by a regulatable promoter which has a binding site for a repressor. By binding the repressor to the promoter, the gene to be expressed is inactivated. By adding a suitable inducer, the repressor releases from the promoter, thereby initiating transcription.
  • a problem with this type of gene regulation is that, in some cases, inactivating a gene in the manner described in this section, some background or basal activity of the gene can often not be completely prevented.
  • the present invention therefore has for its object to provide an alternative possibility of gene regulation, in particular gene activation, which in particular avoids the problems known from the prior art.
  • Preferred embodiments are the subject of dependent claims 2 to 18.
  • a method for regulating, in particular activating, a target gene in a genetic system is the subject of independent claim 19.
  • Preferred Embodiments of the method are the subject of the dependent claims 20 to 22.
  • the present invention relates to the use of site-specific or sequence-specific recombinase recognition sequences for the regulation, in particular activation, of a target gene in a genetic system.
  • the recognition sequences preferably each contain two recombinase binding sequences, which are preferably separated by a spacer sequence.
  • the recognition sequences used according to the invention are inserted into a target gene, whereby its open reading frame or reading frame is interrupted or disrupted. As a result, the translation occurring after the transcription will generally not provide a meaningful protein. As a result, the target gene is selectively turned on or off by the insertion of the recognition sequences without any basal activity being observed.
  • the recognition sequences are cut out with the appropriate site-specific recombinases from the target gene, as a rule a recognition sequence remains in the target gene.
  • the recognition sequence remaining in the target gene and the disrupted sequence segments of the target gene are assembled (assembled) under the influence of the recombinases into a target-like, open reading frame.
  • the target gene can be translated back to a functional target protein. In this way, therefore, a selective activation of the target gene is possible.
  • the recognition sequences provided according to the invention are in the form of DNA double strands.
  • a total of two recognition sequences are provided for the activation of the target gene. These may be two identical recognition sequences or two different recognition sequences.
  • recognition sequences are provided for activation of the target gene, which are separated from each other by a DNA sequence.
  • the DNA sequence is a gene or gene cassette sequence.
  • a gene cassette is usually understood to mean a genetic functional unit of promoter, gene and transcription terminator. Preferably, it is in the DNA sequence around the sequence for a reporter or marker gene.
  • a gene cassette used may contain a corresponding reporter or marker gene.
  • the marker genes may be positive and / or negative selection markers. For the purposes of the present invention, negative selection markers are to be understood as meaning marker genes whose gene products do not allow a cell to survive under certain conditions.
  • Reporter or marker genes in the context of the present invention are genes which code for proteins which enable a qualitative and / or quantitative detection of their expression.
  • Reporter genes of this type are adequately described in the prior art and include, inter alia, the genes coding for ⁇ -galactosidase, luciferase, chloramphenicol acetyltransferase or the genes coding for various antibiotic resistances, in particular ampicillin, erythromycin, tetracycline, kanamycin or spectinomycin.
  • antibiotic resistances in particular ampicillin, erythromycin, tetracycline, kanamycin or spectinomycin.
  • ⁇ -galactosidase can be determined, for example, both colorimetrically (by staining the cell) by reacting the substrate ortho-nitrophenyl- ⁇ -D-galactoside (ONPG) or X-GaI, fluorometrically by reacting a 4-methylumbelliferyl- ⁇ galactopyranoside compound or by chemoluminescence based on the implementation of a 1, 2-dioxetane galactopyranoside derivative detect.
  • ONPG ortho-nitrophenyl- ⁇ -D-galactoside
  • X-GaI fluorometrically by reacting a 4-methylumbelliferyl- ⁇ galactopyranoside compound or by chemoluminescence based on the implementation of a 1, 2-dioxetane galactopyranoside derivative detect.
  • chemoluminescence based on the implementation of a 1, 2-dioxetane galactopyranoside derivative detect.
  • the recognition sequences may be wild-type sequences.
  • the recognition sequences are sequence mutants.
  • recognition sequences are to be understood which have mutations.
  • the mutations may be at least one mutation from the group of point mutations of one nucleotide or fewer adjacent nucleotides, multiple nucleotide mutations, deletions, insertions and substitutions.
  • the spacing sequence can have mutations.
  • at least one of the two binding sequences, in particular both binding sequences has mutations, preferably of the type described above.
  • the recognition sequences each have the same length of base pairs (bp).
  • the recognition sequences Preferably, the recognition sequences have a length of 34 base pairs (bp).
  • the binding sequences for the recombinases preferably each have a length of 13 base pairs (bp). According to the invention, it is particularly preferred for the binding sequences to be palindromic sequences.
  • the spacing sequence preferably has a length of 8 base pairs (bp).
  • the recognition sequences provided according to the invention are recognition sequences for recombinases.
  • these are to be understood as meaning proteins or polypeptides which catalyze a DNA recombination.
  • DNA recombination is to be understood as meaning a process which leads to an exchange of DNA regions between two different DNA molecules or two different regions of a single DNA molecule and thus to a rearrangement of the genetic starting material.
  • recognition sequences for ⁇ integrases or tyrosine recombinases or serine recombinases are especially preferred according to the invention. These recombinases recognize specific DNA sequences and catalyze the mutual (reciprocal) exchange of DNA segments between these recognition sequences.
  • recognition sequences are therefore in a further embodiment, recognition sequences for recombinases from the group Cre recombinases, Flp recombinases, Fre recombinases, Tre recombinases and mutants thereof, wherein recognition sequences for recombinases from the group Cre recombinases, Flp recombinases and mutants thereof are particularly preferred.
  • the recognition sequences are / ox sequences, preferably / ox sequence mutants. Particularly preferred are recognition sequences which are / oxP sequence mutants.
  • the recognition sequences for site-specific recombinases in question may in particular be at least one recognition sequence from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 176 according to the attached sequence listing.
  • the recognition sequences are lox sequences and the site-specific recombinases are Cre recombinases.
  • a suitable site-specific recombination system is the Cre / 7ox system from the bacteriophage P1 or systems derived therefrom.
  • the recombinase Cre of the bacteriophage P1 is a site-specific recombinase, which mediates a DNA rearrangement via a DNA target sequence, namely the so-called / oxP sequence.
  • Each of the / oxP sequences consists of two 13 base pair (bp) recombinase binding elements that flank a central 8 base pair (bp) sequence as "inverted repeats."
  • the central 8 bp sequence which is a distance If there is a recombination between two identically aligned recognition sequences, a DNA segment lying between the recognition sequences is excised as a circular molecule together with one of the recognition sequences (excision). Due to the initial spatial proximity of both recognition sequences, this process is extremely efficient.
  • FIp-FRT FIp-FRT
  • FRT Flp-recombininear target
  • the genetic system may be a prokaryotic or eukaryotic cell, for example a bacterial, yeast, plant zen-, insect or mammalian cell, in particular human cells, or even act on an animal or plant organism.
  • the genetic system is a prokaryotic system, preferably a bacterial cell.
  • Cells of Escherichia coli, Bacillus subtilis, Staphylococcus aureus or Staphylococcus carnosus are particularly suitable as bacterial cells.
  • the present invention furthermore relates to the use of a site-specific recombination system which has the recognition sequences provided according to the invention and recombinases suitable therefor, for the regulation, in particular activation, of a target gene in a genetic system.
  • the recombinant systems in question are preferably used for excision, inversion or insertion of recognition sequence-flanked DNA sequences.
  • a DNA segment flanked on both sides by a loxP sequence ("floxed" DNA segment) is inserted into the target gene.
  • the open reading frame of the target gene is thereby interrupted and the target gene thus inactivated.
  • the usual homologous recombination techniques are used which are well known to the person skilled in the art, so that they should not be discussed in more detail successful recombination events.
  • the inserted into the target gene / oxP sequences allow efficient excision of the lox-flanked DNA segment under catalysis of the Cre recombinase.
  • the excised fragment containing the flanked DNA sequence as well as one of the flanking / oxP sequences is broken down. healed and lost through degradation.
  • the other / oxP sequence remains in the target gene.
  • the present invention further relates to a method for regulating, in particular activation, a target gene in a genetic system, comprising the following steps:
  • the target gene product it is usually a protein.
  • the target gene product may also be a polypeptide.
  • the recognition sequences are inserted into the target gene in the form of a recognition sequence-flanked DNA sequence, preferably in the form of a recognition sequence-flanked gene cassette sequence.
  • the recognition sequences are inserted into a section of the target gene which codes for a permissive region of the target gene product.
  • a permissive region is to be understood as meaning a region of the target gene product which is tolerable in relation to an exchange of one, two, three or more amino acids. In the context of the present invention, this was successfully demonstrated by the tetracycline repressor protein (TetR) are verified.
  • a lox sequence-flanked gene cassette was inserted into a portion of the tefR gene encoding a permissive loop region of the tefR protein. Subsequent recombination, mediated by the Cre recombinase, yielded a tefR gene which still contained one of the flanking lox sequences. Expression of this modified or mutated tefR gene revealed a TetR protein which was fully active.
  • the sequence SEQ ID NO 177 stands for the gene sequence of tetR with an FRT sequence.
  • the sequence SEQ ID NO 178 represents the sequence of tetR with an Iox72 / 1 sequence.
  • the sequence SEQ ID NO 179 stands for the sequence of the wild-type tefR gene.
  • the primary sequence of the target gene product can be investigated specifically for amino acid sequences which are essentially codable by recognition sequences for recombinases.
  • the primary sequence of a target protein may also be screened for whether a sequence of amino acids functionally corresponds to the amino acids encoded by the recognition sequences.
  • the recognition sequences are selected by selection from a library of recognition sequences, in particular by selection from a library comprising at least one of the recognition sequences from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 176 according to the attached Sequence Listing.
  • the library preferably comprises the recognition sequences SEQ ID NO: 1 to SEQ ID NO: 176 according to the attached sequence listing.
  • the additionally required recombinases may be wild-type recombinases or mutants of recombinases. With regard to the recombinases in question, reference is made to the previous description.
  • the expression of the site-specific recombinase is achieved in a preferred embodiment by transformation or transfection of the genetic system with a vector encoding the recombinase.
  • the vector may be a plasmid or a bacteriophage.
  • the recombinase can be introduced into the genetic system as an RNA molecule at a desired time.
  • the recombinase can already be encoded within the genetic system and induced by transcriptional control or low molecular weight substances at a desired time.
  • the recombinases may also be encoded within the sequence to be excised.
  • the natural gene regulatory structure, in particular promoter and terminator, of the target gene remains intact. If the target gene is in a transcription unit with further genes (operon), the influence of "downstream" genes (polar effect) after the recombination event is minimized.
  • the gene is completely inactive before cleavage by a site-specific recombinase, d. H. no background or basal activity is observed.
  • the activation can also be correlated with a positive or negative selectability.
  • a change in phenotype associated with the activation is conceivable, for example by excising a fluorescence protein gene.
  • E. coli Escherichia coli
  • DH5 ⁇ Escherichia coli
  • Genetic manipulations of tetR were performed in vivo in Bacillus subtilis WH558 (Bertram, R., M. Köstner, J. Muller, J. Vazquez Ramos, and W. Hillen. 2005. Integrative elements for Bacillus subtilis yielding tetracycline-dependent growth phenotypes. Nucleic Acids Res 33: e153) and derivatives thereof as shown in Table 1.
  • the cells were generally grown either in a liquid (with shaking) or on a solid nutrient medium LB or BM (Bera, A., S. Herbert, A. Jakob, W. Vollmer, and F. Götz. 2005. Why are pathogenic staphylococci so lysozyme resistant?
  • the peptidoglycan O-acetyl transferase OatA is the major determinant of lysozyme resistance of Staphylococcus aureus, Mol Microbiol 55: 778-787).
  • the nutrient media were supplemented with ampicillin (Ap, 100 mg / L for E. coli) kanamycin (Km, 30 mg / L for E. coli or 15 mg / L for B.
  • E. coli strains were made competent and transformed using standard techniques (Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids J. Mol Biol 166: 557-80). Naturally, competent B. subtilis cells were obtained by a standard protocol (Kraus, A., C. Hueck, D. Gärtner, and W. Hillen, 1994.
  • a plasmid DNA of E. coli was prepared according to the manufacturer's protocols using the E.Z.N.A. Plasmid miniprepkit (Peqlab, Er Weg, Germany), a Nukleospinplasmids (Macherey-Nagel, Düren, Germany) or the Plasmidmidikits (Qiagen, Hilden, Germany) produced.
  • Plasmid miniprepkit Peqlab, Er Weg, Germany
  • Nukleospinplasmids Macherey-Nagel, Düren, Germany
  • Plasmidmidikits Qiagen, Hilden, Germany
  • Sequencing of the plasmids or PCR products was performed on an ABI PRISM 310 genetic analyzer (Applied Biosystems, Rothstadt, Germany) or on a GATC (Konstanz, Germany).
  • the primers were purchased from Biomers (Ulm, Germany) or MWG-Biotech (Ebersberg, Germany). Longer oligonucleotides were purchased from TIB-MOLBIOL (Berlin, Germany). The primer sequences used are shown in Table 2.
  • Oligo sequence (5 ' ⁇ 3') nucleotides
  • a chimeric TetR protein having a TetR (B) sequence with amino acid residues 1 to 50 and a TetR (D) sequence with amino acid residues 51 to 208 was used (Schnappinger, D., P. Schubert, K. Pfleiderer, and W. Hillen. 1998. Determinants of protein-protein recognition by four helix bundles: changing the dimerization specificity of Tet repressor. Embo J 17: 535-43; Schubert, P., D. Schnappinger, K. Pfleiderer, and W. Hillen. 2001. Identification of a stability determinant on the edge of the Tet repressor four-helix bundle dimerization motif. Biochemistry 40: 3257-3263).
  • TetR chimeric TetR
  • complementary oligonucleotides containing an FRT or a / ox sequence were phosphorylated in their 5 'end by means of a T4 polynucleotide kinase (New England Biolabs, Frankfurt / Main, Germany).
  • T4 polynucleotide kinase New England Biolabs, Frankfurt / Main, Germany.
  • two complementary oligonucleotides were hybridized by mixing two aqueous solutions, each containing 37.5 pmol of each oligonucleotide, heated to 90 0 C and then cooled to room temperature within one hour.
  • the hybridized oligonucleotides had 3 'overhangs which were compatible or identical to those of PstI cut DNA.
  • the hybridized oligonucleotides contained the following recognition sequences for site-specific recombination: FRT within flp_fw / flp_rev, and Iox72 in two different reading frames within lockP / Pkcol and lockP_fw / lockP_rev.
  • an apM /// cassette from plasmid pDG792 was amplified by PCR using primers Km_66_inv and Km_71_inv (Guerot-Fleury, AM, K. Shazand. N. Frandsen, and P. Stragier, 1995.
  • pWH1926-TLKLT tetR'-lox66-aphAIII-lox71 -tetR
  • subtilis WH558 carried chromosomal DNA from pUC19 and was the precursor of pWH1926
  • subtilis were first at 30 0 C on a medium containing 2.5 ug / ml EM (erythromycin) but no Km (Ka namycin) were cultured as was intended to eliminate aphAIII the resistance marker.
  • EM-resistant colonies were plated and without EM incubated at 37 0 C, a temperature which is not permissive for pCrePA.
  • candidate clones were plated and incubated at 37 0 C overnight a second time. clones which both vity against these sensitivity EM and g over Km, were checked by PCR analysis after this treatment and showed marker loss as well as loss of pCrePA.
  • TetR variants were ⁇ -galactosidase ( ⁇ -gal) assays of mid-log cultures of E. coli WH207 ⁇ tet ⁇ O (Smith, LD, and KP Bertrand, 1988. Mutations in the Tn-ZO Tetrahedron Biol 203: 949-959; Wissmann, A., LV Wray, Jr., U. Somaggio, R. Bauhoff, M. Geissendörfer, and W. 1991.
  • ECL Plus Western blotting detection reagents (GE Healthcare, Kunststoff, Germany) were used in a manner known to those skilled in the art (Kamionka, A., R. Bertram, and W. Hillen, 2005. Tetracycline-dependent conditional gene knockout in Bacillus subtilis, Appl Environ Microbiol 71: 728-733). 2 results
  • TetR variants partially encoded by recognition sequences for site-specific recombination
  • the loop region between the helices ⁇ 8 and ⁇ 9 (Figure 1A) in the TetR protein consists of 15 amino acid residues (positions 152 to 167) and is identical to that of TetR (D). Previous studies have shown that lengths and sequence variations of this region are tolerated to some degree. The first goal was therefore to replace codons 161-167 with different recognition sequences for site-specific recombination while maintaining an open reading frame. For this, FRT or Iox72-containing sequences were cloned into the vector pWH1926 expressing the tetR gene. The desired constructs pWH1926-F1, pWH1926-L1 and pWH1926-L2 were obtained.
  • TetR FRT FRT sequence
  • TetR lox72 / 1 Iox72, first reading frame
  • TetR io ⁇ 72 / 2
  • TetR FRJ inv TetR lox72 / 1 - inv .
  • the altered sequence sections of the variants and their in wVo activities in E. coli are shown in Fig.
  • TetR FRT and TetR lox72 / 1 were almost identical to those of the wild-type TetR protein. However, the repression capacities were reduced in the case of TetR log72 / 2 . This is in marked contrast to the behavior of the ,, - inv "constructs, one of which had no regulatory properties The truncated y e t R lox72 / 2 -
  • the next goal was to provide a model system by which an artificially disrupted tefR gene variant could be activated by Cre recombinase treatment.
  • a lox66 (marker gene) -lox71 cassette should be excised in vivo between two portions of the fefR gene to yield TetR lox72 / 1 as the final product.
  • the corresponding manipulations within the B. subtilis chromosome were performed using the Cre / 7ox system.
  • B. subtilis is susceptible to transformation and integration of foreign DNA into the chromosome by a double homologous recombination (Fernandez, S., S. Ayora, and JC Alonso 2000.
  • Bacillus subtilis homologous recombination genes and products. Res Microbiol 151 : 481-6).
  • strains of these species are available to quantify the in vivo activity of TetR variants (Bertram, R., M. Köstner, J. Müller, J. Vazquez Ramos, and W. Hillen, 2005. Integrative elements for Bacillus subtilis yielding tetracycline-dependent growth phenotypes, Nucleic Acids Res 33: e153, Kamionka, A., R. Bertram, and W. Hillen, 2005. Tetracycline-dependent conditional gene knockout in Bacillus subtilis, Appl Environ Microbiol 71: 728-733).
  • S, subtilis WH558 ( Figure 2A) was used as the initial host strain (Bertram, R., M. Köstner, J. Muller, J. Vazquez Ramos, and W. Hale, 2005. Integrative elements for Bacillus subtilis yielding tetracycline). dependent growth phenotypes: Nucleic Acids Res 33: e153).
  • the strain carried the wild-type tefR gene, which was regulated by a constitutive promoter integrated in the lacA locus, and lacZ, downstream of a Pyi / tet promoter with two fef operators within amyE (Geissendörfer, M., and W 1990.
  • RAB102 One of the positive candidates in which the region of the tefR gene was confirmed by sequencing was designated RAB102.
  • treatment with Cre had assembled the two halves of the fefR gene-like sequence into tetR 10 * 72 ' 1 , leaving a / ox72 sequence within the ⁇ to ⁇ 9 loop codons.
  • the master manipulation described is summarized schematically in FIG. 2B.
  • the corresponding PCR analyzes are shown in FIG. 2C.
  • the regulatory capacities of the newly produced B. subtilis WH558 derivatives were investigated by measuring ⁇ -galactosidase activity. The results obtained therefrom are shown in the upper part of FIG.
  • Fig. 3 shows the results obtained with the monoclonal antibody TOP19 whose epitope matches the "helix-turn-helix” motif of TetR (B), which is identical to that of TetR (Pook, E., S. Grimm, A. Bonin, T. Winkler, and W. Hillen, 1998.
  • Fig. 1A shows the structure of TetR (D).
  • the target region of the TetR protein selected for this method is the region enclosed by the arrows.
  • Fig. 1B shows the orientation of amino acid sequences of various ⁇ - ⁇ 9 loop regions. Shown are the amino acid sequences from the five C-terminal residues of helix ⁇ to the end of He-Nx ⁇ 9 of TetR variants or TetR-like polypeptides. Identical positions are highlighted in black or gray. The C-terminal end of TetR lox72 / 2' ⁇ nv is terminated with a black check. The positions of the two PstI sites used for cloning within the corresponding tefR alleles are indicated by arrows. The ⁇ -galactosidase activities of the corresponding constructs, which were determined in E. coli (in%), are indicated on the right.
  • Fig. 2A shows a schematic representation of gene regions in the strain WH558, the regions of the tefR gene and the P xy ⁇ / tet - / acZ fusion are shown schematically.
  • the open kinked arrows indicate the promoter Pt17 (for tefR expression) and P ⁇ yi / tet (tef-regulatable, upstream of lacZ).
  • the black trapezoids indicate various lox sequences flanking the kanamycin resistance cassette (aphAIII) and their orientation.
  • the boxes marked with an "O" represent the tef operator, a transcriptional terminator is shown as a hairpin, and the stop codons that follow are indicated by a bold "S”.
  • Fig. 2B shows schematically the multiple changes of the fefR region.
  • the aphAIII gene was excised by Cre recombinase. This resulted in the marker-free Strain RAB1OO.
  • the tefR gene was replaced by a double homologous recombination against a tetR'-lox66-aphAllf-lox71-tetR sequence (tlklt). This provided B. subtilis strain RAB101.
  • the aphAIII gene was again eliminated by Cre. This gave the final construct RAB102, which had tetF ⁇ ox72 / 1 .
  • the primers used for the analytical PCR reactions are shown as narrow arrows and with a Roman numbering and mean: I) / ox_test_fw, II) DP3, III) DPnew, IV) Km 1, V) Km2, VI) / ox_test_rev ,
  • Fig. 2C shows the results of the analytical PCR.
  • the PCR products of the four B. subtilis strains shown were obtained with the following pricerocombinations (see Fig. 2B for approximate primer localization): lane 1: 1) + VI), lane 2: IM) + VI) , Lane 3: I) + II) and lane 4: IV) + V) (from left to right). Furthermore, the sizes of selected reference bands (in bp) are shown.
  • Fig. 3 shows the regulatory capacities and regulatory amounts of various B. subtilis strains.
  • the results of measurements of ⁇ -galactosidase activity are shown in the figure above.
  • the y-axis represents the Miller units.
  • As control strains were WH557 which tetR but not encoded lacZ, and WH560, which P x y / teWacZ but did not have tetR.
  • the open bars show the values obtained without ATc, whereas the closed bars reflect 0.4 ⁇ M ATc conditions.
  • the results of western blot analyzes for the respective strains obtained using a monoclonal antibody are shown in the lower figure of FIG.
  • 80 ng of purified TetR protein was used as a control.
  • SEQ. ID. NO 1 loxP (bacteriophage P1, natural occurrence) ATAACTTCGTATA ATGTATGC TATACGAAGTTAT
  • SEQ. ID. NO 2 Iox66 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) TACCGTTCGTATA ATGTATGC TATACGAAGTTAT
  • SEQ. ID. NO 3 Iox71 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) ATAACTTCGTATA ATGTATGC TATACGAACGGTA
  • SEQ. ID. NO 4 Iox72 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) TACCGTTCGTATA ATGTATGC TATACGAACGGTA
  • SEQ. ID. NO 5 Iox76 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) TACCGGGCGTATA ATGTATGC TATACGAAGTTAT
  • SEQ. ID. NO 6 Iox75 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) ATAACTTCGTATA ATGTATGC TATACGCCCGGTA
  • SEQ. ID. NO 7 Iox78 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) TACCGGGCGTATA ATGTATGC TATACGCCCGGTA
  • SEQ. ID. NO 8 Iox43 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) CTCGGTACCTATA ATGTATGC TATACGAAGTTAT
  • SEQ. ID. NO 9 Iox44 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) ATAACTTCGTATA ATGTATGC TATAGCATGCATT
  • SEQ. ID. NO 10 Iox65 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) CTCGGTACCTATA ATGTATGC TATAGCATGCATT
  • SEQ. ID. NO 12 JT4 (analysis in Escherichia coli, produced chemically / synthetically)
  • SEQ. ID. NO 13 JT5 (analysis in Escherichia coli, produced chemically / synthetically)
  • SEQ. ID. NO 14 JT12 (analysis in Escherichia coli, produced chemically / synthetically)
  • SEQ. ID. NO 15 JT15 (analysis in Escherichia coli, chemically / synthetically producing) ATAACTTCGTATA ATGTATGC TATACGAATAATT
  • SEQ. ID. NO 18 JT47 (analysis in Escherichia coli, chemical / synthetic) ATAACTTCGTATA ATGTATGC TATACGAACCCCG
  • SEQ. ID. NO 19 JT510 (analysis in Escherichia coli, chemically / synthetically producing) ATAACTTCGTATA ATGTATGC TATACGAACGTTA
  • SEQ. ID. NO 20 JT520 (analysis in Escherichia coli, chemically / synthetically producing) ATAACTTCGTATA ATGTATGC TATACGAACGATA
  • SEQ. ID. NO 21 JT530 (analysis in Escherichia coli, chemically / synthetically producing) ATAACTTCGTATA ATGTATGC TATACGAACCGTA
  • SEQ. ID. NO 22 JT540 (analysis in Escherichia coli, chemically / synthetically producing) ATAACTTCGTATA ATGTATGC TATACGAAGTAAA
  • SEQ. ID. NO 23 JTZ2 (analysis in Escherichia coli, chemical / synthetic production) AGGTATTCGTATA ATGTATGC TATACGAAGTTAT
  • SEQ. ID. NO 24 JTZ5 (analysis in Escherichia coli, chemically / synthetically producing) ACAGGTTGCTATA ATGTATGC TATACGAAGTTAT
  • SEQ. ID. NO 25 JTZ10 (analysis in Escherichia coli, chemically / synthetically producing) CAATATTGCTATA ATGTATGC TATACGAAGTTAT
  • SEQ. ID. NO 26 JTZ17 (analysis in Escherichia coli, chemical / synthetic preparation) ATAAATTGCTATA ATGTATGC TATACGAAGTTAT
  • SEQ. ID. NO 27 Iox511 (analysis in Mus musculus (mouse), chemically / synthetically produced) ATAACTTCGTATA ATGTATAC TATACGAAGTTAT
  • SEQ. ID. NO 28 Iox2272 (analysis in Mus musculus (mouse), chemically / synthetically produced) ATAACTTCGTATA AAGTATCC TATACGAAGTTAT
  • SEQ. ID. NO 42: Iee52 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTTTGC TATACGAAGTTAT
  • SEQ. ID. NO 46: Iee63 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTAGGC TATACGAAGTTAT
  • SEQ. ID. NO 50: Iee81 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTATGI TATACGAAGTTAT
  • SEQ. ID. NO 52: Iee83 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTATGA TATACGAAGTTAT
  • SEQ. ID. NO 58 Iee3371 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATTTATAC TATACGAAGTTAT
  • SEQ. ID. NO 61 Iee4371 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGGATAC TATACGAAGTTAT
  • SEQ. ID. NO 62 Iee5171 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTGTAC TATACGAAGTTAT
  • SEQ. ID. NO 63 Iee5271 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTITAC TATACGAAGTTAT
  • SEQ. ID. NO 66 Iee2272 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA AAGTATCC TATACGAAGTTAT
  • SEQ. ID. NO 68 Iee3172 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATATATCC TATACGAAGTTAT
  • SEQ. ID. NO 70: Iee3372 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATTTATCC TATACGAAGTTAT
  • SEQ. ID. NO 76 Iee5372 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTCTCC TATACGAAGTTAT
  • SEQ. ID. NO 78 Iee2273 (tested in vitro, chemically / synthetically produced) ATAACTTCGTATA AAGTATIC TATACGAAGTTAT
  • SEQ. ID. NO 82 Iee5373 (tested in vitro, chemically / synthetically produced) ATAACTTCGTATA ATGTCTTC TATACGAAGTTAT
  • SEQ. ID. NO 83 she39 (E. coli, chemically / synthetically produced) ATAACTTCGTATA ACCACTGC TATACGAAGTTAT
  • SEQ. ID. NO 84 she33 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GCCACAGA TATACGAAGTTAT
  • SEQ. ID. NO 85 she9 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CCGAACAA TATACGAAGTTAT
  • SEQ. ID. NO 87 she14 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GCTTTAGT TATACGAAGTTAT
  • SEQ. ID. NO 88 she29 (E. coli, chemically / synthetically produced) ATAACTTCGTATA ATGATTCT TATACGAAGTTAT
  • SEQ. ID. NO 89 she592 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CCGCGTCC TATACGAAGTTAT
  • SEQ. ID. NO 92 she37 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GCCGTCTG TATACGAAGTTAT
  • SEQ. ID. NO 93 she25 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CCAATCCG TATACGAAGTTAT
  • SEQ. ID. NO 94 she4 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CTCAGCAA TATACGAAGTTAT
  • SEQ. ID. NO 95 shelO (E. coli, chemically / synthetically produced) ATAACTTCGTATA AGACATGC TATACGAAGTTAT
  • SEQ. ID. NO 96 she412 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GATCGCGT TATACGAAGTTAT
  • SEQ. ID. NO 97 she7 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CGCCTCCT TATACGAAGTTAT
  • SEQ. ID. NO 98 she512 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CGCCACCC TATACGAAGTTAT
  • SEQ. ID. NO 99 she17 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CGCCCACA TATACGAAGTTAT
  • SEQ. ID. NO 100 she ⁇ (E. coli, chemically / synthetically produced) ATAACTTCGTATA CACGGCCC TATACGAAGTTAT
  • SEQ. ID. NO 103 she206 (E. coli, chemically / synthetically produced) ATAACTTCGTATA TACATGAC TATACGAAGTTAT
  • SEQ. ID. NO 104 she270 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CATTCTGG TATACGAAGTTAT
  • SEQ. ID. NO 105 she271 (E. coli, chemically / synthetically produced) ATAACTTCGTATA ATGATTTG TATACGAAGTTAT
  • SEQ. ID. NO 106 she268 (E. coli, chemically / synthetically produced) ATAACTTCGTATA AATCCTGC TATACGAAGTTAT
  • SEQ ID NO 108-she207 E-coli, chemically / synthetically produced
  • SEQ. ID. NO 110 she265 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GATACTTA TATACGAAGTTAT
  • SEQ. ID. NO 113 she208 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GGCTTTTA TATACGAAGTTAT
  • SEQ. ID. NO 114 she266 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CATTTATG TATACGAAGTTAT
  • SEQ. ID. NO 115 she204 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GACCGTTC TATACGAAGTTAT
  • SEQ. ID. NO 116 saul (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATTT TATAAGCTAATTT
  • SEQ. ID. NO 117 sau11 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) AAATTACGTTATA ATGTATTT TATAAGCTAATTT
  • SEQ. ID. NO 118 sau2 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATGA TATATGTTGGAGC
  • SEQ. ID. NO 119 sau21 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom)
  • sau3 naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom
  • SEQ. ID. NO 121 sau31 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) AAAAAAAGGTATA ATGTATGC TATACCTTTTTTTT
  • SEQ. ID. NO 122 sau4 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATGG AACAAGAAGGAAG
  • SEQ. ID. NO 123 sau41 (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) CTTCCTTCTTGTT ATGTATGC AACAAGAAGGAAG
  • SEQ. ID. NO 124 sau5 (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATGG AACTCT I I I I GT
  • SEQ. ID. NO 125 sau51 (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ACAAAAAAGAGTT ATGTATGC AACTCTTTTTGT
  • SEQ. ID. NO 126 sow (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATGT TAACTTATATGGT
  • SEQ. ID. NO 127 sau61 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom)
  • SEQ. ID. NO 128 sau7 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATGT TGTCCACAGGCAA
  • SEQ. ID. NO 129 sau71 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) TTGCCTGTGGACA ATGTATGC TGTCCACAGGCAA
  • SEQ. ID. NO 130: sow ⁇ naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGGCAAT TATACGAAGCTTG
  • SEQ. ID. NO 131 sau81 (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) CAAGCTTCGTATA ATGTATGC TATACGAAGCTTG
  • SEQ. ID. NO 132 sau9 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTTCCA TATAATGACCCAA
  • SEQ. ID. NO 133 sau91 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) TTGGGTCATTATA ATGTATGC TATAATGACCCAA
  • SEQ. ID. NO 134 SaulO (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATGT TATCATTAATATA
  • SEQ. ID. NO 135 sau101 (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) TATATTAATGATA ATGTATGC TATCATTAATATA
  • SEQ. ID. NO 136 M 1 (E. coli, chemically / synthetically produced) ATAACTTCATATA ATGTATGC TATAIGAAGTTAT
  • SEQ. ID. NO 137 M2 (E. coli, chemically / synthetically produced) ATAACTTCGTACA ATGTATGC TGTACGAAGTTAT
  • SEQ. ID. NO 138 M3 (E. coli, chemically / synthetically produced) ATAACTTCATACA ATGTATGC TGTAIGAAGTTAT
  • SEQ. ID. NO 139 M4 (E. coli, chemically / synthetically produced) ATAACTTTGTATA ATGTATGC TATACAAAGTTAT
  • SEQ. ID. NO 140 M5 (E. coli, chemically / synthetically produced) ATAACTTCGTGCA ATGTATGC TGCACGAAGTTAT
  • SEQ. ID. NO 141 M6 (E. coli, chemically / synthetically produced) ATAACTCIGTATA ATGTATGC TATACAGAGTTAT
  • SEQ. ID. NO 142 M7 (E. coli, chemically / synthetically produced) ATAACTCTATATA ATGTATGC TATATAGAGTTAT
  • SEQ. ID. NO 143 M8 (E. coli, chemically / synthetically produced) ATAACTCTGTGTA ATGTATGC TACACAGAGTTAT
  • SEQ. ID. NO 144 PM7 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTATGC TATATAGAGTTAT
  • SEQ. ID. NO 145 M7P (tested in vitro, chemically / synthetically prepared) ATAACTCTATATA ATGTATGC TATACGAAGTTAT
  • SEQ. ID. NO 146 lanM2 (E. coli / H, sapiens, chemically / synthetically produced) ATAACTTCGTATA AGAAACCA TATACGAAGTTAT
  • SEQ. ID. NO 147 lanM3 (E. coli / H, sapiens, chemically / synthetically produced) ATAACTTCGTATA TAATACCA TATACGAAGTTAT
  • SEQ. ID. NO 148 lanM7 (E. coli / H, sapiens, chemically / synthetically produced) ATAACTTCGTATA AGATAGAA TATACGAAGTTAT
  • SEQ. ID. NO 149 lanM11 (E. coli / H, sapiens, chemically / synthetically produced) ATAACTTCGTATA CGATACCA TATACGAAGTTAT
  • SEQ. ID. NO 150 psiloxmod22 (Naturally occurring sequences in H. sapiens / M. musculus, analysis in E. coli / H, sapiens) ATAACTTCGTATA ATATATAA TATACGAAGTTAT
  • SEQ. ID. NO 151 psiloxmod ⁇ ((Naturally occurring sequences in H. sapiens / M. musculus, analysis in E. coli / H, sapiens) ATAACTTCGTATA TGCATATA TATACGAAGTTAT
  • SEQ. ID. NO 152 mockloxFASI (S. cerevisiae, chemically / synthetically produced)
  • SEQ. ID. NO 153 Iox514 (E. coli, chemically / synthetically produced) ATAACTTCGTATA ATGTACGC TATACGAAGTTAT
  • SEQ. ID. NO 154 loxsym (E. coli, chemically / synthetically produced) ATAACTTCGTATA ATGTACAT TATACGAAGTTAT
  • OxK2 E. coli, chemically / synthetically produced
  • GATACAACGTATA TACCTTTC TATACGTTGTTTA
  • SEQ. ID. NO 157 hybrid IOXH / IOXP (analysis in E. coli, produced chemically / synthetically (hybrid IoxH / IoxP) or in H. sapiens occurring (loxH)) ATATATACGTATA ATGTATGC TATACGTATATAT
  • SEQ. ID. NO 158 loxH (analysis in E. coli, produced chemically / synthetically (hybrid IoxH / IoxP) or occurring in H. sapiens (loxH)) ATATATACGTATA TATGTCTA TATACGTATATAT
  • SEQ. ID. NO 159 loxLTR (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) ACAACATCCTATT ACACCCTA TATGCCAACATGG
  • SEQ. ID. NO 160 loxLTRI (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) ACAACATCCTATT ACACCCTA AATAGGATGTTGT
  • SEQ. ID. NO 161 SEQ. ID. NO 161: loxLTRI a (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) ACAACATCGTATA ACACCCTA TATACGATGTTGT
  • SEQ. ID. NO 162 SEQ. ID. NO 162: loxLTRI b (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) ATAACTTCCTATT ACACCCTA AATAGGAAGTTAT
  • SEQ. ID. NO 163 loxLTR2 (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) CCATGTTGGCATA ACACCCTA TATGCCAACATGG
  • SEQ. ID. NO 164 loxLTR2a (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) CCATCTTCGTATA ACACCCTA TATACGAAGATGG SEQ. ID. NO 165: loxLTR2b (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) ATAAGTTGGCATA ACACCCTA TATGCCAACTTAT
  • SEQ. ID. NO 166 rox (analysis in E. coli, naturally occurring in bacteriophage D6) TAACTTTAAATAAT GCCA ATTATTTAAAGTTA
  • SEQ. ID. NO 167 FRT (occurring naturally in S. cerevisiae) GAAGTTCCTATAC TTTCTAGA GAATAGGAACTTC
  • SEQ. ID. NO 173 FL-IL10A (analysis in E. coli, FL-IL10A and FL-IL10B: naturally occurring in H. sapiens, all others: chemically / synthetically produced)
  • SEQ. ID. NO 176 FLRTB (1-10g) (analysis in E. coli, FL-IL10A and FL-IL10B: naturally occurring in H. sapiens, all others: chemically / synthetically produced) GAATTTCCTTCGC TTTGAAAA GGAGAAGTGGTTC

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Virology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention relates to the use of identification sequences for location-specific recombinases, the identification sequences each containing two recombinase binding sequences that are separated by a spacer sequence, in order to regulate, especially activate, a target gene in a genetic system. The invention also relates to the corresponding use of a location-specific recombination system as well as a method for regulating, especially activating, a target gene in a genetic system.

Description

Beschreibung description
Ortsspezifische Rekombination zur Genaktivierung in genetischen SystemenSite-specific recombination for gene activation in genetic systems
Die Erfindung betrifft die Verwendung von Erkennungssequenzen für ortsspezifische Rekombinasen zur Aktivierung eines Zielgens in einem genetischen System sowie ein entsprechendes Verfahren hierfür.The invention relates to the use of recognition sequences for site-specific recombinases for activating a target gene in a genetic system and to a corresponding method therefor.
Als Transkription wird das Umschreiben eines Gens von DNA in RNA verstanden. Mit anderen Worten wird durch die Transkription ein Gen abgelesen. Das Ergebnis des Transkriptionsvorganges ist eine zu einem abgelesenen DNA-Matrizenstrang komplementäre Messenger-RNA (mRNA). Durch Translation der mRNA, sowie sich gegebenenfalls daran anschließende posttranslationale Modifikationen, wird in der Regel ein funktionsfähiges Genprodukt, ein Protein, erhalten.Transcription is understood to mean the transcription of a gene from DNA into RNA. In other words, a gene is read by the transcription. The result of the transcription process is a messenger RNA (mRNA) complementary to a read DNA template strand. By translation of the mRNA, and optionally subsequent post-translational modifications, a functional gene product, a protein, is usually obtained.
Die künstliche Genregulation in bakteriellen Systemen basiert derzeit hauptsächlich auf der Kontrolle der Transkription. In den meisten Fällen beruht die künstliche Genregulation dabei auf der Regulation der Transkriptionsinitiation. Hierzu ist dem zu exprimierenden Gen in der Regel ein regulierbarer Promotor vorgeschaltet, der eine Bindestelle für einen Repressor aufweist. Durch die Bindung des Repressors an den Promotor wird das zu exprimierende Gen inaktiviert. Durch Zugabe eines geeigneten Induktors löst sich der Repressor vom Promotor ab, wodurch die Transkription initiiert wird. Problematisch bei dieser Art der Genregulation ist, dass in manchen Fällen bei einer Inaktivierung eines Gens in der in diesem Abschnitt beschriebenen Art und Weise eine gewisse Hintergrund- bzw. Basalaktivität des Gens oftmals nicht vollständig verhindert werden kann.Artificial gene regulation in bacterial systems is currently mainly based on the control of transcription. In most cases, artificial gene regulation is based on the regulation of Transcription initiation. For this purpose, the gene to be expressed is usually preceded by a regulatable promoter which has a binding site for a repressor. By binding the repressor to the promoter, the gene to be expressed is inactivated. By adding a suitable inducer, the repressor releases from the promoter, thereby initiating transcription. A problem with this type of gene regulation is that, in some cases, inactivating a gene in the manner described in this section, some background or basal activity of the gene can often not be completely prevented.
Die vorliegende Erfindung stellt sich deswegen die Aufgabe, eine alternative Möglichkeit der Genregulation, insbesondere Genaktivierung, bereitzustellen, welche insbesondere die aus dem Stand der Technik bekannten Probleme vermeidet.The present invention therefore has for its object to provide an alternative possibility of gene regulation, in particular gene activation, which in particular avoids the problems known from the prior art.
Diese Aufgabe wird gelöst durch die Verwendung von Erkennungssequenzen mit den Merkmalen gemäß unabhängigem Anspruch 1. Bevorzugte Ausführungsformen sind Gegenstand der abhängigen Ansprüche 2 bis 18. Ein Verfahren zur Regulierung, insbesondere Aktivierung, eines Zielgens in einem genetischen System ist Gegenstand des unabhängigen Anspruchs 19. Bevorzugte Ausführungsformen des Verfahrens sind Gegenstand der abhängigen Ansprüche 20 bis 22.This object is achieved by the use of recognition sequences having the features according to independent claim 1. Preferred embodiments are the subject of dependent claims 2 to 18. A method for regulating, in particular activating, a target gene in a genetic system is the subject of independent claim 19. Preferred Embodiments of the method are the subject of the dependent claims 20 to 22.
Die vorliegende Erfindung betrifft die Verwendung von Erkennungssequenzen für ortsspezifische bzw. sequenzspezifische Rekombinasen zur Regulierung, insbesondere Aktivierung, eines Zielgens in einem genetischen System. Die Erkennungssequenzen enthalten vorzugsweise jeweils zwei Rekombinase-Bindungssequenzen, die vorzugsweise durch eine Abstandssequenz voneinander getrennt sind. Die erfindungsgemäß verwendeten Erkennungssequenzen werden in ein Zielgen inseriert, wodurch dessen offener Leseraster bzw. Leserahmen unterbrochen bzw. disruptiert wird. Dadurch wird die im Anschluss an die Transkription ablaufende Translation in der Regel kein sinnvolles P rotein produkt liefern. Im Ergebnis wird das Zielgen daher durch die Insertion der Erkennungssequenzen selektiv in- bzw. deaktiviert, ohne dass eine Basalaktivität beobachtet werden kann. Soll das Zielgen wieder aktiviert werden, werden die Erkennungssequenzen mit Hiife hierfür geeigneter ortsspezifischer Rekombinasen aus dem Zielgen herausgeschnitten, wobei in der Regel eine Erkennungssequenz in dem Zielgen verbleibt. Die im Zielgen verbleibende Erkennungssequenz und die dis- ruptierten Sequenzabschnitte des Zielgens werden dabei unter dem Ein- fluss der Rekombinasen zu einem zielgenartigen, offenen Leseraster zusammengefügt (assembliert). Damit kann das Zielgen wieder zu einem funktionsfähigen Zielprotein translatiert werden. Auf diese Weise ist daher auch eine selektive Aktivierung des Zielgens möglich.The present invention relates to the use of site-specific or sequence-specific recombinase recognition sequences for the regulation, in particular activation, of a target gene in a genetic system. The recognition sequences preferably each contain two recombinase binding sequences, which are preferably separated by a spacer sequence. The recognition sequences used according to the invention are inserted into a target gene, whereby its open reading frame or reading frame is interrupted or disrupted. As a result, the translation occurring after the transcription will generally not provide a meaningful protein. As a result, the target gene is selectively turned on or off by the insertion of the recognition sequences without any basal activity being observed. If the target gene is to be activated again, the recognition sequences are cut out with the appropriate site-specific recombinases from the target gene, as a rule a recognition sequence remains in the target gene. The recognition sequence remaining in the target gene and the disrupted sequence segments of the target gene are assembled (assembled) under the influence of the recombinases into a target-like, open reading frame. Thus, the target gene can be translated back to a functional target protein. In this way, therefore, a selective activation of the target gene is possible.
In der Regel liegen die erfindungsgemäß vorgesehenen Erkennungssequenzen in Form von DNA-Doppelsträngen vor.As a rule, the recognition sequences provided according to the invention are in the form of DNA double strands.
in einer bevorzugten Ausführungsform sind für die Aktivierung des Zielgens insgesamt zwei Erkennungssequenzen vorgesehen. Hierbei kann es sich um zwei identische Erkennungssequenzen oder um zwei unterschiedliche Erkennungssequenzen handeln.In a preferred embodiment, a total of two recognition sequences are provided for the activation of the target gene. These may be two identical recognition sequences or two different recognition sequences.
Gemäß einer besonders bevorzugten Ausführungsform sind zur Aktivierung des Zielgens Erkennungssequenzen, insbesondere zwei Erkennungssequenzen, vorgesehen, welche durch eine DNA-Sequenz voneinander getrennt sind. Bevorzugt handelt es sich bei der DNA-Sequenz um eine Gen- oder Genkassettensequenz. Unter einer Genkassette wird gewöhnlich eine genetische Funktionseinheit aus Promotor, Gen und Transkriptionsterminator verstanden. Bevorzugt handelt es sich bei der DNA-Sequenz um die Sequenz für ein Reporter- oder Marker-Gen. Insbesondere kann eine zum Einsatz kommende Genkassette ein entsprechendes Reporter- oder Markergen enthalten. Bei den Marker-Genen kann es sich um positive und/oder negative Selektionsmarker handeln. Unter negativen Selektionsmarker sollen im Sinne der vorliegenden Erfindung Markergene verstanden werden, deren Genprodukte einer Zelle unter bestimmten Bedingungen kein Überleben erlauben.According to a particularly preferred embodiment, recognition sequences, in particular two recognition sequences, are provided for activation of the target gene, which are separated from each other by a DNA sequence. Preferably, the DNA sequence is a gene or gene cassette sequence. A gene cassette is usually understood to mean a genetic functional unit of promoter, gene and transcription terminator. Preferably, it is in the DNA sequence around the sequence for a reporter or marker gene. In particular, a gene cassette used may contain a corresponding reporter or marker gene. The marker genes may be positive and / or negative selection markers. For the purposes of the present invention, negative selection markers are to be understood as meaning marker genes whose gene products do not allow a cell to survive under certain conditions.
Als Reporter- oder Markergene werden im Rahmen der vorliegenden Erfindung Gene bezeichnet, die für Proteine kodieren, die einen qualitativen und/oder quantitativen Nachweis ihrer Expression ermöglichen. Derartige Reportergene sind im Stand der Technik hinreichend beschrieben und umfassen unter anderem die für ß-Galaktosidase, Lucife- rase, Chloramphenicol-Acetyltransferase oder die für diverse Antibiotikaresistenzen, insbesondere gegen Ampicillin, Erythromycin, Tetracyclin, Kanamycin oder Spectinomycin, kodierenden Gene. Zum Nachweis einer erfolgreichen Rekombination können Zellen aufgeschlossen und/ oder zusätzliche Substanzen hinzugegeben werden, deren biochemische Umsetzung durch das Genprodukt eines Reportergens erfassbar ist. Die Expression der ß-Galaktosidase lässt sich beispielsweise sowohl kolorimetrisch (mittels einer Anfärbung der Zelle) durch Umsetzung des Substrats ortho-Nitrophenyl-ß-D-galactosid (ONPG) oder X-GaI, fluoro- metrisch durch Umsetzung einer 4-Methylumbelliferyl-ß-galactopyrano- sid-Verbindung oder durch Chemolumineszenz anhand der Umsetzung eines 1 ,2-Dioxetan-Galactopyranosid-Derivates nachweisen. Zur Überprüfung einer exprimierten Anbiotikaresistenz werden Zellen in der Regel in Nährmedien überführt, welche die entsprechenden Antibiotika enthalten.Reporter or marker genes in the context of the present invention are genes which code for proteins which enable a qualitative and / or quantitative detection of their expression. Reporter genes of this type are adequately described in the prior art and include, inter alia, the genes coding for β-galactosidase, luciferase, chloramphenicol acetyltransferase or the genes coding for various antibiotic resistances, in particular ampicillin, erythromycin, tetracycline, kanamycin or spectinomycin. To demonstrate successful recombination, cells can be disrupted and / or additional substances added whose biochemical conversion can be detected by the gene product of a reporter gene. The expression of β-galactosidase can be determined, for example, both colorimetrically (by staining the cell) by reacting the substrate ortho-nitrophenyl-β-D-galactoside (ONPG) or X-GaI, fluorometrically by reacting a 4-methylumbelliferyl-β galactopyranoside compound or by chemoluminescence based on the implementation of a 1, 2-dioxetane galactopyranoside derivative detect. To test an expressed antibiotic resistance, cells are usually transferred to nutrient media containing the appropriate antibiotics.
Erfindungsgemäß kann es sich bei den Erkennungssequenzen um Wildtypsequenzen handeln. Bevorzugt handelt es sich bei den Erkennungssequenzen jedoch um Sequenzmutanten. Unter Sequenzmutanten im Sinne der vorliegenden Erfindung sollen Erkennungssequenzen verstanden werden, welche Mutationen aufweisen. Bei den Mutationen kann es sich um zumindest eine Mutation aus der Gruppe Punktmutationen eines Nukleotids oder weniger benachbarter Nukleotide, mehrere Nukleotide betreffende Mutationen, Deletionen, Insertionen und Substitutionen handeln. Grundsätzlich kann die Abstandssequenz Mutationen aufweisen. Bevorzugt weist zumindest eine der beiden Bindungsse- quenzen, insbesondere beide Bindungssequenzen, Mutationen, vorzugsweise der zuvor beschriebenen Art, auf.According to the invention, the recognition sequences may be wild-type sequences. Preferably, however, the recognition sequences are sequence mutants. Under sequence mutants in For the purposes of the present invention, recognition sequences are to be understood which have mutations. The mutations may be at least one mutation from the group of point mutations of one nucleotide or fewer adjacent nucleotides, multiple nucleotide mutations, deletions, insertions and substitutions. In principle, the spacing sequence can have mutations. Preferably, at least one of the two binding sequences, in particular both binding sequences, has mutations, preferably of the type described above.
Die Erkennungssequenzen weisen in einer weiteren Ausführungsform jeweils eine gleiche Länge an Basenpaaren (bp) auf. Vorzugsweise weisen die Erkennungssequenzen eine Länge von 34 Basenpaaren (bp) auf. Die Bindungssequenzen für die Rekombinasen besitzen bevorzugt jeweils eine Länge von 13 Basenpaaren (bp). Erfindungsgemäß ist es besonders bevorzugt, wenn es sich bei den Bindungssequenzen um palindromische Sequenzen handelt. Die Abstandssequenz besitzt vorzugsweise eine Länge von 8 Basenpaaren (bp).In a further embodiment, the recognition sequences each have the same length of base pairs (bp). Preferably, the recognition sequences have a length of 34 base pairs (bp). The binding sequences for the recombinases preferably each have a length of 13 base pairs (bp). According to the invention, it is particularly preferred for the binding sequences to be palindromic sequences. The spacing sequence preferably has a length of 8 base pairs (bp).
Wie bereits erwähnt, handelt es sich bei den erfindungsgemäß vorgesehenen Erkennungssequenzen um Erkennungssequenzen für Rekombinasen. Hierunter sollen im Sinne der vorliegenden Erfindung Proteine oder Polypeptide verstanden werden, welche eine DNA-Rekombination katalysieren. Unter einer DNA-Rekombination soll im Sinne der vorliegenden Erfindung ein Vorgang bezeichnet werden, der zu einem Austausch von DNA-Bereichen zwischen zwei verschiedenen DNA-Molekülen oder zwei verschiedenen Bereichen eines einzelnen DNA-Moleküls und damit zu einer Neuordnung des genetischen Ausgangsmaterials führt. Erfindungsgemäß besonders bevorzugt sind Erkennungssequenzen für λ-lntegrasen bzw. Tyrosin-Rekombinasen oder aber Serinre- kombinasen. Diese Rekombinasen erkennen spezifische DNA-Sequen- zen und katalysieren den gegenseitigen (reziproken) Austausch der DNA-Abschnitte zwischen diesen Erkennungssequenzen.As already mentioned, the recognition sequences provided according to the invention are recognition sequences for recombinases. For the purposes of the present invention, these are to be understood as meaning proteins or polypeptides which catalyze a DNA recombination. For the purposes of the present invention, DNA recombination is to be understood as meaning a process which leads to an exchange of DNA regions between two different DNA molecules or two different regions of a single DNA molecule and thus to a rearrangement of the genetic starting material. Especially preferred according to the invention are recognition sequences for λ integrases or tyrosine recombinases or serine recombinases. These recombinases recognize specific DNA sequences and catalyze the mutual (reciprocal) exchange of DNA segments between these recognition sequences.
Bei den Erkennungssequenzen handelt es sich daher in einer weitergehenden Ausführungsform um Erkennungssequenzen für Rekombinasen aus der Gruppe Cre-Rekombinasen, Flp-Rekombinasen, Fre-Rekombi- nasen, Tre-Rekombinasen und Mutanten davon, wobei Erkennungssequenzen für Rekombinasen aus der Gruppe Cre-Rekombinasen, Flp- Rekombinasen und Mutanten davon besonders bevorzugt sind.The recognition sequences are therefore in a further embodiment, recognition sequences for recombinases from the group Cre recombinases, Flp recombinases, Fre recombinases, Tre recombinases and mutants thereof, wherein recognition sequences for recombinases from the group Cre recombinases, Flp recombinases and mutants thereof are particularly preferred.
Bei den Erkennungssequenzen handelt es sich in einer geeigneten Ausführungsform um /ox-Sequenzen, bevorzugt /ox-Sequenzmutanten. Besonders bevorzugt sind dabei Erkennungssequenzen, bei denen es sich um /oxP-Sequenzmutanten handelt.In a suitable embodiment, the recognition sequences are / ox sequences, preferably / ox sequence mutants. Particularly preferred are recognition sequences which are / oxP sequence mutants.
Erfindungsgemäß kann es sich bei den in Frage kommenden Erkennungssequenzen für ortsspezifische Rekombinasen insbesondere um zumindest eine Erkennungssequenz aus der Gruppe, bestehend aus SEQ ID NO: 1 und SEQ ID NO: 176 gemäß beiliegendem Sequenzprotokoll handeln. In den Veröffentlichungen Albert et al. Plant J (1995)7; 649-659 ; Thomson et al. Genesis (2003)36; 162-167 ; Araki et al. Nuc- leic Acids Res (2002)19;e103; Lee & Saito Gene (1998)216;55-65; She- ren et al. Nucleic Acids Res (2007)35; 5464-5473; Sauer J Mol Biol (1992)223; 911-928; Santoro & Schultz PNAS (2002)99;4185-4190; Sa- raf-Levy et al. Bioorg Med Chem (2006)14; 3081-3089; Langer et al. Nucleic Acids Res (2002) ; Thyagarajan et al. Gene 2000 ; Sauer NAR1996 ; Hoess NAR 1986 ; Corneille et al. Plant J (2003)35; 753- 762; Rufer & Sauer Nucleic Acids Res (2002)30; 2764-2771 ; Buchholz & Stewart Nature Biotech (2001 )19; 1047-1052; Sarkar et al. Science (2007)316; 1912-1915 ; Sauer & McDermott Nucleic Acids Res. (2004)32; 6086-6095 ; Bolusani et al. Nucleic Acids Res. 2006 und Baldwin et al. Chem Biol (2003) 10; 1085-1094 und in der vorliegenden Beschreibung finden sich weiteren Einzelheiten zu den Sequenzen an sich sowie dazu, in welchen Organismen die Sequenzen untersucht wurden.According to the invention, the recognition sequences for site-specific recombinases in question may in particular be at least one recognition sequence from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 176 according to the attached sequence listing. In the publications Albert et al. Plant J (1995) 7; 649-659; Thomson et al. Genesis (2003) 36; 162-167; Araki et al. Nuclear Acids Res (2002) 19; e103; Lee & Saito Gene (1998) 216; 55-65; Sheen et al. Nucleic Acids Res (2007) 35; 5464-5473; Sauer J Mol Biol (1992) 223; 911-928; Santoro & Schultz PNAS (2002) 99; 4185-4190; Saraf-Levy et al. Bioorg Med Chem (2006) 14; 3081-3089; Langer et al. Nucleic Acids Res (2002); Thyagarajan et al. Gene 2000; Sauer NAR1996; Hoess NAR 1986; Corneille et al. Plant J (2003) 35; 753-762; Rufer & Sauer Nucleic Acids Res (2002) 30; 2764-2771; Buchholz & Stewart Nature Biotech (2001) 19; 1047-1052; Sarkar et al. Science (2007) 316; 1912-1915; Sauer & McDermott Nucleic Acids Res. (2004) 32; 6086-6095; Bolusani et al. Nucleic Acids Res. 2006 and Baldwin et al. Chem Biol (2003) 10; 1085-1094 and in the present The description provides further details of the sequences themselves and of the organisms in which the sequences were examined.
In einer besonders bevorzugten Ausführungsform handelt es sich bei den Erkennungssequenzen um lox-Sequenzen und bei den ortsspezifischen Rekombinasen um Cre-Rekombinasen. Ein hierfür geeignetes ortsspezifisches Rekombinationssystem ist das Cre/7ox-System aus dem Bakteriophagen P1 oder davon abgeleitete Systeme. Die Rekombinase Cre des Bakteriophagen P1 ist eine ortsspezifische Rekombinase, die eine DNA-Neuordnung über eine DNA-Zielsequenz, nämlich die sogenannte /oxP-Sequenz, vermittelt. Die /oxP-Sequenzen bestehen jeweils aus zwei Rekombinase-Bindungselementen von 13 Basenpaaren (bp), welche als „inverted repeats" eine zentrale Sequenz von 8 Basenpaaren (bp) flankieren. Die zentrale 8 bp-Sequenz, bei der es sich um eine Abstands- bzw. Spacersequenz handelt, bestimmt die Orientierung der 34 bp /oxP-Sequenz. Kommt es zwischen zwei gleichgerichteten Erkennungssequenzen zu einer Rekombination, so wird ein zwischen den Erkennungssequenzen liegender DNA-Abschnitt zusammen mit einer der Erkennungssequenzen als kreisförmiges Molekül herausgeschnitten (Exzision). Aufgrund der ursprünglichen räumlichen Nähe beider Erkennungssequenzen ist dieser Prozess überaus effizient.In a particularly preferred embodiment, the recognition sequences are lox sequences and the site-specific recombinases are Cre recombinases. A suitable site-specific recombination system is the Cre / 7ox system from the bacteriophage P1 or systems derived therefrom. The recombinase Cre of the bacteriophage P1 is a site-specific recombinase, which mediates a DNA rearrangement via a DNA target sequence, namely the so-called / oxP sequence. Each of the / oxP sequences consists of two 13 base pair (bp) recombinase binding elements that flank a central 8 base pair (bp) sequence as "inverted repeats." The central 8 bp sequence, which is a distance If there is a recombination between two identically aligned recognition sequences, a DNA segment lying between the recognition sequences is excised as a circular molecule together with one of the recognition sequences (excision). Due to the initial spatial proximity of both recognition sequences, this process is extremely efficient.
Ein weiteres, geeignetes Rekombinationssystem ist das FIp-FRT-Sy- stem bzw. davon abgeleitete Systeme. Die Rekombinase FIp (benannt nach der Flippase-Aktivität, durch die Hefensequenzabschnitte invertieren) hat als Zielsequenz die sogenannte FRT-Sequenz (FRT: Flp-re- combinased target). Diese Zielsequenz ist im Wesentlichen gleich aufgebaut wie die /oxP-Sequenz der Cre-Rekombinase.Another suitable recombination system is the FIp-FRT system or systems derived therefrom. The recombinase FIp (named for the flippase activity through which yeast sequence segments invert) has as target sequence the so-called FRT sequence (FRT: Flp-recombininear target). This target sequence has essentially the same structure as the / oxP sequence of the Cre recombinase.
Bei dem genetischen System kann es sich um eine prokaryontische o- der eukaryontische Zelle, beispielsweise eine Bakterien-, Hefe-, Pflan- zen-, Insekten- oder Säugetierzelle, insbesondere humane Zellen, oder auch um einen Tier- oder Pflanzenorganismus handeln. Bevorzugt handelt es sich bei dem genetischen System um ein prokaryontisches System, vorzugsweise um eine Bakterienzelle. Als Bakterienzelle kommen insbesondere Zellen von Escherichia coli, Bacillus subtilis, Staphylo- coccus aureus oder Staphylococcus carnosus in Frage.The genetic system may be a prokaryotic or eukaryotic cell, for example a bacterial, yeast, plant zen-, insect or mammalian cell, in particular human cells, or even act on an animal or plant organism. Preferably, the genetic system is a prokaryotic system, preferably a bacterial cell. Cells of Escherichia coli, Bacillus subtilis, Staphylococcus aureus or Staphylococcus carnosus are particularly suitable as bacterial cells.
Die vorliegende Erfindung betrifft weiterhin auch die Verwendung eines ortsspezifischen Rekombinationssystems, welches die erfindungsgemäß vorgesehenen Erkennungssequenzen sowie hierfür geeignete Rekom- binasen aufweist, zur Regulation, insbesondere Aktivierung, eines Zielgens in einem genetischen System. Die in Frage kommenden Rekombinationssysteme werden dabei bevorzugt zur Exzision, Inversion oder Insertion von erkennungssequenz-flankierten DNA-Sequenzen verwendet.The present invention furthermore relates to the use of a site-specific recombination system which has the recognition sequences provided according to the invention and recombinases suitable therefor, for the regulation, in particular activation, of a target gene in a genetic system. The recombinant systems in question are preferably used for excision, inversion or insertion of recognition sequence-flanked DNA sequences.
Im Folgenden wird die Funktionsweise eines ortsspezifischen Rekombi- nasesystems am Beispiel des Cre-/oxP-Systems näher erläutert. Zunächst wird ein DNA-Segment, welches auf beiden Seiten von einer loxP-Sequenz flankiert wird („floxiertes DNA-Segment) in das Zielgen inseriert. Wie bereits eingangs erwähnt, wird der offene Leseraster des Zielgens hierdurch unterbrochen und das Zielgen damit inaktiviert. Zur Insertion des „floxierten" DNA-Segments kommen die üblichen homologen Rekombinationstechniken in Frage, die dem Fachmann hinreichend bekannt sind, so dass hierauf nicht näher eingegangen werden soll. In der Regel weist das „floxierte" DNA-Segment einen genetischen Marker zur Selektion von erfolgreichen Rekombinationsereignissen auf. Die in das Zielgen eingebauten /oxP-Sequenzen erlauben eine effiziente Exzision des lox-flankierten DNA-Segments unter Katalyse der Cre-Re- kombinase. Das ausgeschnittene Fragment, welches die flankierte DNA- Sequenz sowie eine der flankierenden /oxP-Sequenzen enthält, wird zir- kularisiert und geht durch Abbau verloren. Die andere /oxP-Sequenz verbleibt dagegen im Zielgen.In the following, the mode of operation of a site-specific recombination system is explained in more detail using the Cre / oxP system as an example. First, a DNA segment flanked on both sides by a loxP sequence ("floxed" DNA segment) is inserted into the target gene. As already mentioned, the open reading frame of the target gene is thereby interrupted and the target gene thus inactivated. For the insertion of the "floxed" DNA segment, the usual homologous recombination techniques are used which are well known to the person skilled in the art, so that they should not be discussed in more detail successful recombination events. The inserted into the target gene / oxP sequences allow efficient excision of the lox-flanked DNA segment under catalysis of the Cre recombinase. The excised fragment containing the flanked DNA sequence as well as one of the flanking / oxP sequences is broken down. healed and lost through degradation. The other / oxP sequence, however, remains in the target gene.
Bezüglich weiterer Merkmale und Einzelheiten zu den erfindungsgemäß verwendbaren Rekombinationssystemen, insbesondere im Hinblick auf die verwendbaren Erkennungssequenzen und Rekombinasen, wird vollständig auf die bisherige Beschreibung verwiesen.With regard to further features and details of the recombination systems which can be used according to the invention, in particular with regard to the usable recognition sequences and recombinases, reference is made in full to the previous description.
Die vorliegende Erfindung betrifft weiterhin auch ein Verfahren zur Regulierung, insbesondere Aktivierung, eines Zielgens in einem genetischen System, umfassend die folgenden Schritte:The present invention further relates to a method for regulating, in particular activation, a target gene in a genetic system, comprising the following steps:
a) Bereitstellen von zwei Erkennungssequenzen für ortsspezifische Rekombinasen, wobei die Erkennungssequenzen jeweils zwei Re- kombinase-Bindungssequenzen enthalten, die durch eine Abstandssequenz voneinander getrennt sind, b) Inserieren der beiden Erkennungssequenzen in das Zielgen unter Disruption des offenen Leserasters des Zielgens, c) Exprimieren einer ortsspezifischen Rekombinase zur Durchführung eines Rekombinationsereignisses, wobei eine Erkennungssequenz in dem Zielgen zurückbleibt und die zurückgebliebene Erkennungssequenz zusammen mit dem Zielgen ein offenes Leseraster zur Expression eines im Wesentlichen aktiven Zielgenprodukts bildet.a) providing two recognition sequences for site-specific recombinases, the recognition sequences each containing two recombinase binding sequences separated by a spacer sequence, b) inserting the two recognition sequences into the target gene with disruption of the open reading frame of the target gene, c) expressing a site-specific recombinase for performing a recombination event, wherein a recognition sequence remains in the target gene and the remaining recognition sequence together with the target gene forms an open reading frame for expression of a substantially active target gene product.
Im Falle des Zielgenprodukts handelt es sich in der Regel um ein Protein. Erfindungsgemäß kann es sich bei dem Zielgenprodukt aber auch um ein Polypeptid handeln.In the case of the target gene product, it is usually a protein. However, according to the invention, the target gene product may also be a polypeptide.
Für das Bereitstellen von geeigneten Erkennungssequenzen stehen grundsätzlich unterschiedliche Möglichkeiten zur Verfügung. Diese Möglichkeiten werden im Folgenden beispielhaft anhand von Erkennungsse- quenzen mit einer Länge von 34 Basenpaaren (bp) näher erläutert. Eine derartige Erkennungssequenz, beispielsweise in Form einer Iox-Se- quenz oder FRT-Sequenz, kodiert zusammen mit zwei weiteren Basenpaaren theoretisch einen sequenzspezifischen Abschnitt von 12 Aminosäuren, ein sogenanntes Dodecapeptid. Bei der Transkription einer dop- pelsträngigen DNA sind grundsätzlich sechs verschiedene Leseraster möglich, da die Transkription von beiden Strängen möglich ist. Entsprechend kann eine Erkennungssequenz mit 34 Basenpaaren zusammen mit zwei weiteren Basenpaaren theoretisch sechs verschiedene Dode- capeptide kodieren. Da es insgesamt 20 verschiedene proteinogene A- minosäuren gibt, ist die Wahrscheinlichkeit, dass ein Zielprotein innerhalb seiner natürlichen Sequenz eine Sequenz aufweist, welches eines dieser Dodecapeptide kodiert, als eher gering anzusehen. Würde man zudem in einem Zielprotein in ungerichteter Weise einen Abschnitt aus zwölf der im Zielprotein natürlich vorkommenden Aminosäuren etwa gegen ein /ox-kodiertes Dodecapeptid ersetzen (was gewöhnlich der Situation nach dem Ausschneiden aus dem Zielgen entspräche), so wäre das modifizierte Protein wahrscheinlich weniger aktiv oder gänzlich inaktiv. Erfindungsgemäß haben sich daher die im Folgenden näher beschriebenen Maßnahmen als besonders vorteilhaft erwiesen.There are basically different options for providing suitable recognition sequences. These possibilities are described below by way of example by means of recognition in more detail with a length of 34 base pairs (bp). Such a recognition sequence, for example in the form of an Iox sequence or FRT sequence, together with two further base pairs theoretically encodes a sequence-specific section of 12 amino acids, a so-called dodecapeptide. In principle, six different reading frames are possible in the transcription of a double-stranded DNA since the transcription of both strands is possible. Accordingly, a recognition sequence with 34 base pairs together with two further base pairs can theoretically encode six different dode-capeptides. Since there are a total of 20 different proteinogenic amino acids, the likelihood that a target protein has within its natural sequence a sequence encoding one of these dodecapeptides is rather low. Moreover, if a portion of twelve of the amino acids naturally occurring in the target protein were to be replaced in an undirected manner against a / ox-encoded dodecapeptide (which would normally correspond to the situation after excision from the target gene), the modified protein would probably be less active or completely inactive. According to the invention, therefore, the measures described in more detail below have proven to be particularly advantageous.
In einer bevorzugten Ausführungsform werden die Erkennungssequenzen in Form einer erkennungssequenz-flankierten DNA-Sequenz, vorzugsweise in Form einer erkennungssequenz-flankierten Genkassettensequenz, in das Zielgen insertiert. Erfindungsgemäß ist es hierbei besonders bevorzugt, wenn die Erkennungssequenzen in einen Abschnitt des Zielgens insertiert werden, der für einen permissiven Bereich des Zielgenprodukts kodiert. Unter einem permissiven Bereich soll im Sinne der vorliegenden Erfindung ein Bereich des Zielgenprodukts verstanden werden, der gegenüber einem Austausch von einer, zwei, drei oder mehreren Aminosäuren tolerabel ist. Im Rahmen der vorliegenden Erfindung konnte dies erfolgreich anhand des Tetracyclin-Repressor-Proteins (TetR) verifiziert werden. Hierbei wurde eine lox-Sequenz-flankierte Genkassette in einen Abschnitt des tefR-Gens insertiert, der für eine permissive Schlaufenregion des tefR-Proteins kodiert. Eine anschlies- send durchgeführte Rekombination, vermittelt durch die Cre-Rekombi- nase, lieferte ein tefR-Gen, welches noch eine der flankierenden lox- Sequenzen aufwies. Die Expression dieses modifizierten bzw. mutierten tefR-Gens ergab ein TetR-Protein, welches vollständig aktiv war. Die Sequenz SEQ ID NO 177 steht für die Gensequenz von tetR mit einer FRT-Sequenz. Die Sequenz SEQ ID NO 178 steht für die Sequenz von tetR mit einer Iox72/1 -Sequenz. Die Sequenz SEQ ID NO 179 steht für die Sequenz des Wildtyp-tefR-Gen.In a preferred embodiment, the recognition sequences are inserted into the target gene in the form of a recognition sequence-flanked DNA sequence, preferably in the form of a recognition sequence-flanked gene cassette sequence. According to the invention, it is particularly preferred in this case if the recognition sequences are inserted into a section of the target gene which codes for a permissive region of the target gene product. For the purposes of the present invention, a permissive region is to be understood as meaning a region of the target gene product which is tolerable in relation to an exchange of one, two, three or more amino acids. In the context of the present invention, this was successfully demonstrated by the tetracycline repressor protein (TetR) are verified. Here, a lox sequence-flanked gene cassette was inserted into a portion of the tefR gene encoding a permissive loop region of the tefR protein. Subsequent recombination, mediated by the Cre recombinase, yielded a tefR gene which still contained one of the flanking lox sequences. Expression of this modified or mutated tefR gene revealed a TetR protein which was fully active. The sequence SEQ ID NO 177 stands for the gene sequence of tetR with an FRT sequence. The sequence SEQ ID NO 178 represents the sequence of tetR with an Iox72 / 1 sequence. The sequence SEQ ID NO 179 stands for the sequence of the wild-type tefR gene.
Für den Fall, dass lediglich die Primärsequenz des Zielgenprodukts bekannt ist, kann die Primärsequenz gezielt auf Aminosäureabfolgen hin untersucht werden, welche im Wesentlichen durch Erkennungssequenzen für Rekombinasen kodierbar sind. Je größer hierbei eine Übereinstimmung zwischen einer Aminosäureabfolge in dem Zielgenprodukt und einem durch die Erkennungssequenz kodierten Peptid herbeigeführt werden kann, umso wahrscheinlicher ist auch, dass das modifizierte bzw. mutierte Zielgenprodukt eine vollständige Aktivität aufweist. Alternativ oder in Kombination dazu kann die Primärsequenz eines Zielproteins auch daraufhin untersucht werden, ob eine Abfolge von Aminosäuren funktionell den durch die Erkennungssequenzen kodierten Aminosäuren entsprechen. In beiden Fällen ist es besonders vorteilhaft, wenn auf eine ausreichende Anzahl an Erkennungssequenzen für ortsspezifische Rekombinasen, insbesondere in Form einer Sequenzbibliothek, zurückgegriffen werden kann, da sich auf diese Weise die Wahrscheinlichkeit eines „Treffers" deutlich erhöhen lässt. Erfindungsgemäß ist es daher besonders bevorzugt, wenn die Erkennungssequenzen durch Auswahl aus einer Bibliothek von Erkennungssequenzen, insbesondere durch Auswahl aus einer Bibliothek, umfassend zumindest eine der Erkennungssequenzen aus der Gruppe bestehend aus SEQ ID NO: 1 und SEQ ID NO: 176 gemäß beiliegendem Sequenzprotokoll, bereitgestellt werden. Bevorzugt umfasst die Bibliothek die Erkennungssequenzen SEQ ID NO: 1 bis SEQ ID NO: 176 gemäß beiliegendem Sequenzprotokoll. Bei den außerdem erforderlichen Rekombinasen kann es sich um Wildtyp-Rekombinasen oder um Mutanten von Rekombinasen handeln. Bezüglich der in Frage kommenden Rekombinasen wird auf die bisherige Beschreibung Bezug genommen.In the event that only the primary sequence of the target gene product is known, the primary sequence can be investigated specifically for amino acid sequences which are essentially codable by recognition sequences for recombinases. The greater the degree of correspondence between an amino acid sequence in the target gene product and a peptide encoded by the recognition sequence, the more likely that the modified or mutant target gene product has complete activity. Alternatively, or in combination, the primary sequence of a target protein may also be screened for whether a sequence of amino acids functionally corresponds to the amino acids encoded by the recognition sequences. In both cases, it is particularly advantageous if it is possible to resort to a sufficient number of recognition sequences for site-specific recombinases, in particular in the form of a sequence library, since this significantly increases the probability of a "hit." Therefore, it is particularly preferred according to the invention if the recognition sequences are selected by selection from a library of recognition sequences, in particular by selection from a library comprising at least one of the recognition sequences from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 176 according to the attached Sequence Listing. The library preferably comprises the recognition sequences SEQ ID NO: 1 to SEQ ID NO: 176 according to the attached sequence listing. The additionally required recombinases may be wild-type recombinases or mutants of recombinases. With regard to the recombinases in question, reference is made to the previous description.
Die Expression der ortsspezifischen Rekombinase wird in einer bevorzugten Ausführungsform durch Transformation oder Transfektion des genetischen Systems mit einem Vektor, kodierend für die Rekombinase, erreicht. Bei dem Vektor kann es sich um ein Plasmid oder einen Bakteriophagen handeln.The expression of the site-specific recombinase is achieved in a preferred embodiment by transformation or transfection of the genetic system with a vector encoding the recombinase. The vector may be a plasmid or a bacteriophage.
Daneben existieren noch weitere Möglichkeiten zur Expression der ortsspezifischen Rekombinase. So kann die Rekombinase beispielsweise als RNA-Molekül zu einem gewünschten Zeitpunkt in das genetische System eingeschleust werden. Weiterhin kann die Rekombinase bereits innerhalb des genetischen Systems kodiert und mittels Transkriptionskontrolle oder niedermolekularer Substanzen zu einem gewünschten Zeitpunkt induziert werden. Insbesondere können die Rekombinasen auch innerhalb der auszuschneidenden Sequenz kodiert sein.In addition, there are other possibilities for the expression of the site-specific recombinase. Thus, for example, the recombinase can be introduced into the genetic system as an RNA molecule at a desired time. Furthermore, the recombinase can already be encoded within the genetic system and induced by transcriptional control or low molecular weight substances at a desired time. In particular, the recombinases may also be encoded within the sequence to be excised.
Die im Rahmen der vorliegenden Erfindung beschriebene Genregulation auf Basis von Erkennungssequenzen für ortsspezifische Rekombinasen bzw. darauf basierenden ortsspezifischen Rekombinationssystemen hat gegenüber der herkömmlichen Genregulation auf der Basis von Transkriptionskontrollsystemen die folgenden Vorteile:The gene regulation described in the context of the present invention on the basis of recognition sequences for site-specific recombinases or site-specific recombination systems based thereon has the following advantages over conventional gene regulation based on transcription control systems:
Die natürliche Genregulationsstruktur, insbesondere Promotor und Terminator, des Zielgens, bleibt erhalten. Befindet sich das Zielgen in einer Transkriptionseinheit mit weiteren Genen (Operon), so wird die Beeinflussung „stromabwärts" liegender Gene (polarer Effekt) nach dem Rekombinationsereignis minimiert.The natural gene regulatory structure, in particular promoter and terminator, of the target gene remains intact. If the target gene is in a transcription unit with further genes (operon), the influence of "downstream" genes (polar effect) after the recombination event is minimized.
Weiterhin ist das Gen vor dem Ausschneiden durch eine ortsspezifische Rekombinase komplett inaktiv, d. h. es wird auch keine Hintergrund- bzw. Basalaktivität beobachtet. Die Aktivierung kann zudem mit einer positiven oder negativen Selektierbarkeit korreliert werden. Denkbar ist insbesondere eine mit der Aktivierung einhergehende Phänotypveränderung, etwa durch Ausschneiden eines Fluoreszenzproteingens.Furthermore, the gene is completely inactive before cleavage by a site-specific recombinase, d. H. no background or basal activity is observed. The activation can also be correlated with a positive or negative selectability. In particular, a change in phenotype associated with the activation is conceivable, for example by excising a fluorescence protein gene.
Weitere Merkmale und Vorteile der Erfindung ergeben sich durch die nachfolgende Beschreibung von bevorzugten Ausführungsformen in Form von Beispielen und Figurenbeschreibungen in Verbindung mit dem beigefügten Sequenzprotokoll sowie den Merkmalen aus den Unteransprüchen. Hierbei können einzelne Merkmale der Erfindung allein oder in Kombination miteinander verwirklicht sein. Die beschriebenen Ausführungsformen dienen lediglich zur Erläuterung und zum besseren Verständnis der Erfindung und sind in keiner Weise einschränkend zu verstehen. Die Figuren sowie das beigefügte Sequenzprotokoll werden hiermit durch ausführliche Bezugnahme zum Inhalt der vorliegenden Beschreibung gemacht.Further features and advantages of the invention will become apparent from the following description of preferred embodiments in the form of examples and figure descriptions in conjunction with the attached sequence listing and the features of the subclaims. Here, individual features of the invention can be realized alone or in combination with each other. The described embodiments are merely illustrative and for a better understanding of the invention and are in no way limiting. The figures and the attached sequence listing are hereby incorporated by reference in their entirety.
1. Material und Methoden1. Material and methods
1.1 Bakterienstämme und Wachstumsbedingungen1.1 Bacterial strains and growth conditions
Das Klonieren wurde in Escherichia coli (E. coli) DH5α durchgeführt (Hanahan, D. 1983. Studies on transformation of Escherichia coli with Plasmids. J. Mol Biol 166: 577-80). Genetische Manipulationen von tetR wurden in vivo in Bacillus subtilis WH558 (Bertram, R., M. Köstner, J. Müller, J. Vazquez Ramos, and W. Hillen. 2005. Integrative elements for Bacillus subtilis yielding tetracycline-dependent growth phenotypes. Nucleic Acids Res 33:e153) und Derivaten davon, wie in Tabelle 1 gezeigt, durchgeführt. Die Zellen wurden allgemein entweder in einem flüssigen (unter Schütteln) oder auf einem festen Nährmedium LB oder BM gezüchtet (Bera, A., S. Herbert, A. Jakob, W. Vollmer, and F. Götz. 2005. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyitransferase öatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55: 778- 787). Sofern erforderlich, wurden die Nährmedien mit Ampicillin (Ap; 100 mg/l für E. coli) Kanamycin (Km; 30 mg/l für E. coli oder 15 mg/l für B. subtilis), Chloramphenicol (Cm; 25 mg/l für E. coli, oder 5 oder 10 mg/l für B. subtilis) oder mit Erythromycin (Em, 2.5 mg/l für B. subtilis) ergänzt. Für das Klonieren wurden die E. coli-Stämme kompetent gemacht und mit Hilfe von Standardtechniken transformiert (Hanahan, D. 1983. Studies on transformation of Escherichia coli with Plasmids. J. Mol Biol 166: 557-80). Natürlich kompetente B. subtilis-ZeWen wurden durch ein Standardprotokoll erhalten (Kraus, A., C. Hueck, D. Gärtner, and W. Hillen. 1994. Catabolite repression of the Bacillus subtilis xyl Operon in- volves a eis element functional in the context of an unrelated sequence, and glucose exerts additional xy/R-dependent repression. J Bacteriol 176: 1738-45). Alle im Rahmen der Erfindung verwendeten Bakterienstämme sind in der Tabelle 1 zusammengefasst.The cloning was performed in Escherichia coli (E. coli) DH5α (Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids J. Mol Biol 166: 577-80). Genetic manipulations of tetR were performed in vivo in Bacillus subtilis WH558 (Bertram, R., M. Köstner, J. Muller, J. Vazquez Ramos, and W. Hillen. 2005. Integrative elements for Bacillus subtilis yielding tetracycline-dependent growth phenotypes. Nucleic Acids Res 33: e153) and derivatives thereof as shown in Table 1. The cells were generally grown either in a liquid (with shaking) or on a solid nutrient medium LB or BM (Bera, A., S. Herbert, A. Jakob, W. Vollmer, and F. Götz. 2005. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyl transferase OatA is the major determinant of lysozyme resistance of Staphylococcus aureus, Mol Microbiol 55: 778-787). If necessary, the nutrient media were supplemented with ampicillin (Ap, 100 mg / L for E. coli) kanamycin (Km, 30 mg / L for E. coli or 15 mg / L for B. subtilis), chloramphenicol (Cm; l for E. coli, or 5 or 10 mg / L for B. subtilis) or with erythromycin (Em, 2.5 mg / L for B. subtilis). For cloning, E. coli strains were made competent and transformed using standard techniques (Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids J. Mol Biol 166: 557-80). Naturally, competent B. subtilis cells were obtained by a standard protocol (Kraus, A., C. Hueck, D. Gärtner, and W. Hillen, 1994. Catabolite repression of the Bacillus subtilis xyl operon context of an unrelated sequence, and glucose exerts additional xy / R-dependent repression J Bacteriol 176: 1738-45). All bacterial strains used in the invention are summarized in Table 1.
Tabelle 1 : Bakterienstämme oder PlasmideTable 1: Bacterial strains or plasmids
Figure imgf000015_0001
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000016_0001
Figure imgf000017_0001
1.2 DNA-Isolation und Modifikation1.2 DNA Isolation and Modification
Es wurde eine Plasmid-DNA von E. coli gemäß den Herstellerprotokollen unter Verwendung des E.Z.N.A. Plasmidminiprepkit (Peqlab, Erlangen, Deutschland), eines Nukleospinplasmids (Macherey-Nagel, Düren, Deutschland) oder des Plasmidmidikits (Qiagen, Hilden, Deutschland) hergestellt. Zur Amplifikation chromosomaler DNA von B. subtilis wurden Bakterienkolonien aus einem festen Medium direkt in eine PCR- Reaktionsmischung eingeimpft, welche die Verwendung von PuReTaq Ready-To-Go PCR beads (GE Healthcare, München, Deutschland) vorsah. Die Sequenzierung der Plasmide oder PCR-Produkte wurde mit einem ABI PRISM 310 genetischen Analysegerät (Applied Biosystems, Weiterstadt, Deutschland) oder auf einem GATC (Konstanz, Deutschland) durchgeführt. Die Primer wurden von Biomers (Ulm, Deutschland) oder MWG-Biotech (Ebersberg, Deutschland) gekauft. Längere Oligo- nukleotide wurden von TIB-MOLBIOL (Berlin, Deutschland) bezogen. Die verwendeten Primersequenzen sind in der Tabelle 2 dargestellt.A plasmid DNA of E. coli was prepared according to the manufacturer's protocols using the E.Z.N.A. Plasmid miniprepkit (Peqlab, Erlangen, Germany), a Nukleospinplasmids (Macherey-Nagel, Düren, Germany) or the Plasmidmidikits (Qiagen, Hilden, Germany) produced. For the amplification of B. subtilis chromosomal DNA, bacterial colonies from a solid medium were inoculated directly into a PCR reaction mixture which provided for the use of PuReTaq Ready-To-Go PCR beads (GE Healthcare, Munich, Germany). Sequencing of the plasmids or PCR products was performed on an ABI PRISM 310 genetic analyzer (Applied Biosystems, Weiterstadt, Germany) or on a GATC (Konstanz, Germany). The primers were purchased from Biomers (Ulm, Germany) or MWG-Biotech (Ebersberg, Germany). Longer oligonucleotides were purchased from TIB-MOLBIOL (Berlin, Germany). The primer sequences used are shown in Table 2.
Tabelle 2:Table 2:
Oligo- Sequenz (5' → 3') nukleotide Oligo sequence (5 '→ 3') nucleotides
Figure imgf000018_0001
Figure imgf000018_0001
1.3 Herstellung eines Plasmids zur Expression von tetR-Allelen mit Erkennungssequenzen für eine ortsspezifische Rekombination1.3 Preparation of a plasmid for expression of tetR alleles with recognition sequences for site-specific recombination
Es wurde ein chimäres TetR-Protein, welches eine TetR(B)-Sequenz mit den Aminosäureresten 1 bis 50 und eine TetR(D)-Sequenz mit den Aminosäureresten 51 bis 208 aufwies, verwendet (Schnappinger, D., P. Schubert, K. Pfleiderer, and W. Hillen. 1998. Determinants of protein- protein recognition by four helix bundles: changing the dimerization specificity of Tet repressor. Embo J 17: 535-43.; Schubert, P., D. Schnappinger, K. Pfleiderer, and W. Hillen. 2001. Identification of a sta- bility determinant on the edge of the Tet repressor four-helix bündle dimerization motif. Biochemistry 40: 3257-3263). Im Folgenden wird das chimäre TetR(BD)-Protein als TetR bezeichnet. Für eine Insertion in das tefR-Gen wurden komplimentäre Oligonukleotide, enthaltend eine FRT- oder eine /ox-Sequenz, in ihrem 5'-Ende mit Hilfe einer T4-Polynukleo- tidkinase phosphoryliert (New England Biolabs, Frankfurt/Main, Deutschland). Anschließend wurden zwei komplimentäre Oligonukleotide durch Mischen zweier wässriger Lösungen, welche jeweils 37.5 pmol von jedem Oligonukleotid enthielten, hybridisiert, auf 90 0C erhitzt und anschließend innerhalb einer Stunde auf Raumtemperatur abgekühlt. Die hybridisierten Oligonukleotide wiesen 3'-Überhänge auf, welche kompatibel oder identisch zu denen von Pstl geschnittener DNA waren. Außerdem enthielten die hybridisierten Oligonukleotide die folgenden Erkennungssequenzen für eine ortsspezifische Rekombination: FRT innerhalb flp_fw/flp_rev, und Iox72 in zwei verschiedenen Leserahmen innerhalb lockP/Pkcol und lockP_fw/lockP_rev. Nach Insertion von Pstl geschnittenem pWH1926 (Kamionka, A., M. Majewski, K. Roth, R. Bertram, C. Kraft, and W. Hillen. 2006. Induction of Single chain tetracycline repressor requires the binding of two inducers. Nucleic Acids Res 34: 3834- 3841 ) in das tefR-Gen wurden die folgenden erwünschten Konstrukte erhalten: pWH1926-F mit FRT in 5'^3' Leserahmen 2, pWH1926-L1 (Iox72 in 3'^5' Leserahmen 1) und pWH1926-L2 Iox72 (3'^5' Rahmen 2). In allen Konstrukten waren in dem offenen Leserahmen des TetR- Gens Erkennungssequenzen für die ortsspezifische Rekombination eingebettet. Plasmide, in welchen die Fragmente in entgegengesetzter Orientierung inseriert waren, wurden entsprechend bestimmt und werden im Folgenden mit ,,-inv" bezeichnet. 1.4. Klonieren eines B. subtilis Integrationsvektors zur Ermöglichung einer Cre vermittelten teff?-Gen-AktivierungA chimeric TetR protein having a TetR (B) sequence with amino acid residues 1 to 50 and a TetR (D) sequence with amino acid residues 51 to 208 was used (Schnappinger, D., P. Schubert, K. Pfleiderer, and W. Hillen. 1998. Determinants of protein-protein recognition by four helix bundles: changing the dimerization specificity of Tet repressor. Embo J 17: 535-43; Schubert, P., D. Schnappinger, K. Pfleiderer, and W. Hillen. 2001. Identification of a stability determinant on the edge of the Tet repressor four-helix bundle dimerization motif. Biochemistry 40: 3257-3263). Hereinafter, the chimeric TetR (BD) protein will be referred to as TetR. For insertion into the tefR gene, complementary oligonucleotides containing an FRT or a / ox sequence were phosphorylated in their 5 'end by means of a T4 polynucleotide kinase (New England Biolabs, Frankfurt / Main, Germany). Subsequently, two complementary oligonucleotides were hybridized by mixing two aqueous solutions, each containing 37.5 pmol of each oligonucleotide, heated to 90 0 C and then cooled to room temperature within one hour. The hybridized oligonucleotides had 3 'overhangs which were compatible or identical to those of PstI cut DNA. In addition, the hybridized oligonucleotides contained the following recognition sequences for site-specific recombination: FRT within flp_fw / flp_rev, and Iox72 in two different reading frames within lockP / Pkcol and lockP_fw / lockP_rev. After insertion of PstI cut pWH1926 (Kamionka, A., M. Majewski, K. Roth, R. Bertram, C. Kraft, and W. Hillen, 2006. Induction of single chain tetracycline repressor requires the binding of two inducers Res 34: 3834-3841) into the tefR gene, the following desired constructs were obtained: pWH1926-F with FRT in 5 '^ 3' reading frame 2, pWH1926-L1 (Iox72 in 3 '^ 5' reading frame 1) and pWH1926- L2 Iox72 (3 '^ 5' frame 2). In all constructs, recognition sequences for site-specific recombination were embedded in the open reading frame of the TetR gene. Plasmids in which the fragments were inserted in opposite orientation were determined accordingly and will be referred to hereinafter as "- inv". 1.4. Cloning of a B.subtilis integration vector to enable Cre mediated teff? Gene activation
Zur Disruption des tefR-Gens mit einem „floxierten" Kanamycin-Re- sistenzmarker wurde eine apM///-Kassette aus dem Plasmid pDG792 durch PCR unter Verwendung der Primer Km_66_inv und Km_71_inv amplifiziert (Guerot-Fleury, A. M., K. Shazand., N. Frandsen, and P. Stragier. 1995. Antibio- tic-resistance cassettes for Bacillus subtilis. Gene 167: 335-336). Das PCR- Produkt wurde in pWH1926 via Pstl insertiert. Von den zwei möglichen, resultierenden Plasmiden wurde das mit aphAIII in entgegengesetzter Orientierung zu dem disruptierten fefR-Gen verwendet und im Folgenden als pWH1926-TLKLT (tetR'-lox66-aphAIII-lox71-'tetR) bezeichnet. Der Zielstamm B. subtilis WH558 trug chromosomale DNA von pUC19 und war der Vorgänger von pWH1926-Derivaten. Um eine mögliche, unerwünschte ektopische Insertion nach Transformation mit pWH 1926-TLKLT zu umgehen, wurde die Sequenz tetR'-lox66-aphAIII-lox71-'tetR in pWH1411 BD mittels BgIII und Nco! kloniert (Scholz, O., M. Köstner, M. Reich, S. Gastiger, and W. Hillen. 2003. Teaching TetR to recognize a new inducer. J Mol Biol 329: 217=227) und ergab p\Λ/H 1411 -TLKLT. Um eine größere Region mit einer Sequenzidentität für die genomische Integration bereitzustellen, wurde ein Teil der chromosomalen Sequenz innerhalb und stromabwärts von tetR aus B. subtilis RAB100 DNA amplifiziert (vgl. hierzu Tabelle 1). Hierbei wurden die Primer DP8neu und lacA extd verwendet (vgl. hierzu Tabelle 2). Dieses Fragment wurde in pWH 1411 -TLKLT via Ncol und Pael insertiert, um den Integrationsvektor pWH1411-TLKLTextd zu erhalten. Dieser Vektor wurde durch Nhel vor der Transformation von S. subtilis linearisiert.To disrupt the tefR gene with a "floxed" kanamycin resistance marker, an apM /// cassette from plasmid pDG792 was amplified by PCR using primers Km_66_inv and Km_71_inv (Guerot-Fleury, AM, K. Shazand. N. Frandsen, and P. Stragier, 1995. Antibiotic resistance cassettes for Bacillus subtilis, Gene 167: 335-336.) The PCR product was inserted into pWH1926 via PstI of the two possible resulting plasmids aphAIII used in opposite orientation to the disrupted fefR gene and hereafter referred to as pWH1926-TLKLT (tetR'-lox66-aphAIII-lox71 -tetR) The target strain B. subtilis WH558 carried chromosomal DNA from pUC19 and was the precursor of pWH1926 To circumvent a possible undesired ectopic insertion after transformation with pWH 1926-TLKLT, the sequence tetR'-lox66-aphAIII-lox71 -tetR was cloned into pWH1411 BD using BglII and NcoI (Scholz, O., M Köstner, M. Reich, S. Gastiger, to d W. Hillen. 2003. Teaching TetR to recognize a new inducer. J Mol Biol 329: 217 = 227) to give p \ Λ / H 1411 -TLKLT. In order to provide a larger region with sequence identity for genomic integration, part of the chromosomal sequence within and downstream of tetR of B. subtilis RAB100 DNA was amplified (see Table 1). The primers DP8neu and lacA extd were used here (see Table 2). This fragment was inserted into pWH1411-TLKLT via Ncol and Pael to obtain the integration vector pWH1411-TLKLTextd. This vector was linearized by Nhel prior to the transformation of S. subtilis.
1.5 Verwendete Techniken zur Genommodifikation von B. subtilis- Stämmen Die Elimination von „floxierter" apM///-Kassettten von B. subtilis Chromosomen wurde durch Behandlung der entsprechenden Zellen mit pCrePA erreicht, einem Plasmid, welches für die Cre-Expression in B. anthracis hergestellt wurde (Pomerantsev, A. P., R. Sitaraman, C. R. Galloway, V. Kivovich, and S. H. Leppla. 2006. Genome engineering in Bacillus anthracis using Cre recombinase. Infect Immun 74: 682-693). Im Allgemeinen wurde 1 μg dieses Plasmids verwendet, um B. subtilis zu transformieren. Die Transformanten wurden zuerst bei 30 0C auf einem Medium, welches 2.5 μg/ml EM (Erythromycin) aber kein Km (Ka- namycin) enthielten, kultiviert, da beabsichtigt war, den Resistenzmarker aphAIII zu eliminieren. EM-resistente Kolonien wurden ohne EM ausplattiert und bei 37 0C inkubiert, einer Temperatur, welche für pCrePA nicht permissiv ist. Die Kandidatenklone wurden ausplattiert und bei 37 0C über Nacht ein zweites Mal inkubiert. Klone, welche sowohl eine Sensiti- vität gegenüber EM als auch gegenüber Km zeigten, wurden nach dieser Behandlung durch PCR-Analyse überprüft und zeigten einen Markerverlust sowie einen Verlust von pCrePA.1.5 Techniques used for genome modification of B. subtilis strains The elimination of "floxed" apM /// cassettes from B. subtilis chromosomes was achieved by treatment of the respective cells with pCrePA, a plasmid prepared for Cre expression in B. anthracis (Pomerantsev, AP, R. Sitaraman G. Galloway, V. Kivovich, and SH Leppla, 2006. Genome engineering in Bacillus anthracis using Cre recombinase, Infect Immun 74: 682-693.) In general, 1 μg of this plasmid was used to transform B. subtilis were first at 30 0 C on a medium containing 2.5 ug / ml EM (erythromycin) but no Km (Ka namycin) were cultured as was intended to eliminate aphAIII the resistance marker. EM-resistant colonies were plated and without EM incubated at 37 0 C, a temperature which is not permissive for pCrePA. candidate clones were plated and incubated at 37 0 C overnight a second time. clones which both vity against these sensitivity EM and g over Km, were checked by PCR analysis after this treatment and showed marker loss as well as loss of pCrePA.
1.6 Quantifizierungen der ß-Galaktosidase-Aktivität1.6 Quantifications of β-galactosidase activity
Die in vivo Expression und Induktionskapazitäten von TetR-Varianten wurde ß-Galaktosidase (ß-gal)-Assays von mid-log-Kulturen von E. coli WH207 λtetδO (Smith, L. D., and K. P. Bertrand. 1988. Mutations in the Tn-ZO tet repressor that infere with induction. Location of the tetracycline- binding domain. J Mol Biol 203: 949-959; Wissmann, A., L. V. Wray, Jr., U. Somaggio, R. Baumeister, M. Geissendörfer, and W. Hillen. 1991. Selection for Tn-ZO tet repressor binding to tet Operator in Escherichia coli: isolation of temperature-sensitive mutants and combinatorial mutagenesis in the DNA binding motif. Genetics 128: 225-232) oder verschiedenen B. subtilis-Stämmen bestimmt (Kamionka, A., R. Bertram, and W. Hillen. 2005. Tetracycline-dependent conditional gene knockout in Bacillus subtilis. Appl Environ Microbiol 71 : 728-733; Scholz, O., E. M. Henssler, J. Bail, P. Schubert, J. Bogdanska-Urbaniak, S. Sopp, M. Reich, S. Wisshak, M. Köstner, R. Bertram, and W. Hillen. 2004. Activity reversal of Tet repressor caused by Single amino acid exchanges. Mol Microbiol 53: 777-89). Die Zellen wurden in LB ohne Zusätze (repressive Konditionen) oder ergänzt mit 0.4 μm ATc (zur Induktion von TetR) gezüchtet. Es wurden drei unabhängige Kulturen einem Assay unterworfen, wobei die Messungen zumindest zweimal durchgeführt wurden. Die Werte, welche für E. co//-Zellen erhalten wurden, welche das Plasmid pWH1925Δ trugen (Plasmid ohne tetR, Bertram, R., C. Kraft, S. Wisshak, J. Mueller, O. Scholz, and W. Hillen. 2004. Phenotypes of com- bined tet repressor mutants for effector and Operator recognition and al- lostery. J Mol Microbiol Biotechnol 8: 104-110), wurden auf 100 % gesetzt, da sie vollständige Induktion von TetR widerspiegeln. Die Standardabweichungen dieser Messungen waren unter 10 %.The in vivo expression and induction capacities of TetR variants were β-galactosidase (β-gal) assays of mid-log cultures of E. coli WH207 λtetδO (Smith, LD, and KP Bertrand, 1988. Mutations in the Tn-ZO Tetrahedron Biol 203: 949-959; Wissmann, A., LV Wray, Jr., U. Somaggio, R. Baumeister, M. Geissendörfer, and W. 1991. Selection for Tn-ZO tet repressor binding to tet operator in Escherichia coli: isolation of temperature-sensitive mutants and combinatorial mutagenesis in the DNA binding motif Genetics 128: 225-232) or different B. subtilis strains ( Kamionka, A., R. Bertram, and W. Hillen, 2005. Tetracycline-dependent conditional gene knockout in Bacillus subtilis, Appl Environ Microbiol 71: 728-733, Scholz, O., EM Henssler, J. Bail, P. Schubert, J. Bogdanska-Urbaniak, S. Sopp, M. Reich, S. Wisshak, M. Köstner, R. Bertram, and W. Hillen. 2004. Activity reversal of Tet repressor caused by Single amino acid exchanges. Mol Microbiol 53: 777-89). The cells were grown in LB without additives (repressive conditions) or supplemented with 0.4 μm ATc (for the induction of TetR). Three independent cultures were assayed, with measurements taken at least twice. The values obtained for E. coli cells carrying the plasmid pWH1925Δ (plasmid without tetR, Bertram, R., Kraft, S. Wisshak, J. Mueller, O. Scholz, and W. Hillen Phenotypes of com- bined tet repressor mutants for effector and operator recognition and al- loyery J Mol Microbiol Biotechnol 8: 104-110) were set at 100% as they reflect complete induction of TetR. The standard deviations of these measurements were below 10%.
1.7 Western Blot Analyse1.7 Western blot analysis
Die Immundetektion des TetR-Proteins in löslichen B. st/bf/V/s-Extrakten wurde mit 75 μg des gesamten Proteins durchgeführt, die Immundetektion beruhte entweder auf der Verwendung eines Serums von TOP19 monoklonalem Antikörper, der gegen TetR(B) gerichtet war (Pook, E., S. Grimm, A. Bonin, T. Winkler, and W. Hillen. 1998. Affinities of mAbs to Tet repressor complexed with Operator or tetracycline suggest conforma- tional changes associated with induction. Eur J Biochem 258: 915-922) oder auf der Verwendung einer 1 :20.000 Verdünnung von polyklonalen Kaninchenantikörpern, welche TetR-Protein erkennen. Des weiteren wurden ECL Plus Western Blotting Detektionsreagenzien (GE Healthcare, München, Deutschland) in einer dem Fachmann bekannten Art und Weise verwendet (Kamionka, A., R. Bertram, and W. Hillen. 2005. Tet- racycline-dependent conditional gene knockout in Bacillus subtilis. Appl Environ Microbiol 71 : 728-733). 2. ErgebnisseImmunodetection of the TetR protein in soluble B.st / bf / V / s extracts was performed with 75 μg of total protein, immunodetection based either on the use of a serum of TOP19 monoclonal antibody directed against TetR (B) (Pook, E., S. Grimm, A. Bonin, T. Winkler, and W. Hillen, 1998. Affinities of mAbs to Tet repressor complexed with operator or tetracyclines suggestional changes associated with induction.) Eur J Biochem 258: 915-922) or using a 1: 20,000 dilution of rabbit polyclonal antibodies which recognize TetR protein. Further, ECL Plus Western blotting detection reagents (GE Healthcare, Munich, Germany) were used in a manner known to those skilled in the art (Kamionka, A., R. Bertram, and W. Hillen, 2005. Tetracycline-dependent conditional gene knockout in Bacillus subtilis, Appl Environ Microbiol 71: 728-733). 2 results
2.1 In vivo Aktivität von TetR- Varianten, teilweise kodiert durch Erkennungssequenzen für eine ortsspezifische Rekombination2.1 In vivo activity of TetR variants, partially encoded by recognition sequences for site-specific recombination
Die Schleifenregion zwischen den Helices α8 und α9 (Fig. 1A) im TetR- Protein besteht aus 15 Aminosäureresten (Positionen 152 bis 167) und ist identisch zu der von TetR(D). Frühere Studien haben gezeigt, dass Längen und Sequenzvariationen dieser Region zu einem gewissen Grad toleriert werden. Das erste Ziel war daher, die Codons 161 bis 167 gegen verschiedene Erkennungssequenzen für eine ortsspezifische Rekombination zu ersetzen und dabei ein offenes Leseraster aufrecht zu erhalten. Hierzu wurden FRT oder Iox72 enthaltene Sequenzen in den das tetR-Gen exprimierenden Vektor pWH1926 kloniert. Man erhielt die gewünschten Konstrukte pWH1926-F1 , pWH1926-L1 und pWH1926-L2. Ebenso erhielt man die Konstrukte pWH1926-F1-inv, pWH1926-L1-inv und pWH1926-L2-inv. In den drei letztgenannten Vektorkonstrukten wurden die Fragmente mit entgegengesetzter Orientierung inseriert. Aufgrund der Position der zwei Pstl-Stellen, welche für die Klonierung innerhalb des TetR-Gens verwendet wurden, zeigten die von den „inv"- Plasmidkonstrukten abgeleiteten Proteine Sequenzalterationen, welche nicht nur die Schleifenregion beeinflussten, sondern auch die Region der Helix α9. Bei dem Konstrukt L2-inv wurde hierdurch eine vorzeitige Ter- mination durch das ochre Stop Codon verursacht. Daher kodierte dieses Konstrukt, bezeichnet als tetR!ox72/2-inv , lediglich ein trunkiertes TetR- proteinartiges Polypeptid von 170 Aminosäuren. Alle anderen offene Leserahmen kodierten für vollständige TetR-Monomere mit 214 oder 215 Aminosäureresten, welche im Folgenden folgendermaßen bezeichnet werden: TetRFRT (FRT-Sequenz), TetRlox72/1 (Iox72, erster Leserahmen), TetR ioχ72/2 (|oχ72i zweiter Leserahmen), TetRFRJ-inv und TetRlox72/1-inv. Die geänderten Sequenzabschnitte der Varianten und ihre in wVo-Aktivitäten in E. coli sind in Fig. 1 B dargestellt. Interessanterweise zeigten alle drei TetR-Varianten, in welchen lediglich die Schlaufenregion geändert wurde, vollständige Induzierbarkeit mit ATc. Ebenso waren die Repressionskapazitäten von TetRFRT und TetRlox72/1 nahezu identisch mit denen des Wildtyp-TetR-Proteins. Allerdings waren die Repressionskapazitäten im Falle von TetRlog72/2 vermindert. Dies steht in deutlichem Gegensatz zu dem Verhalten der ,,-inv"-Konstrukte, von denen keines regulatorische Eigenschaften besaß. Das trunkierte yetRlox72/2-|nv war inaktiv, wohingegen TetRFRT und TetRlox72/1 anscheinend an tetO banden, jedoch keine Induktion zuließen.The loop region between the helices α8 and α9 (Figure 1A) in the TetR protein consists of 15 amino acid residues (positions 152 to 167) and is identical to that of TetR (D). Previous studies have shown that lengths and sequence variations of this region are tolerated to some degree. The first goal was therefore to replace codons 161-167 with different recognition sequences for site-specific recombination while maintaining an open reading frame. For this, FRT or Iox72-containing sequences were cloned into the vector pWH1926 expressing the tetR gene. The desired constructs pWH1926-F1, pWH1926-L1 and pWH1926-L2 were obtained. The constructs pWH1926-F1-inv, pWH1926-L1-inv and pWH1926-L2-inv were also obtained. In the latter three vector constructs, the fragments were inserted in opposite orientation. Because of the location of the two PstI sites used for cloning within the TetR gene, the proteins derived from the "inv" plasmid constructs displayed sequence alterations affecting not only the loop region but also the region of the helix α9 This caused the construct L2-inv to be prematurely terminated by the open stop codon, so that this construct, termed tetR! ox72 / 2 - inv , encoded only one truncated TetR protein-like polypeptide of 170 amino acids, encoding all other open reading frames for complete 214 or 215 amino acid residue TetR monomers, hereinafter referred to as TetR FRT (FRT sequence), TetR lox72 / 1 (Iox72, first reading frame), TetR ioχ72 / 2 ( | oχ72i second reading frame), TetR FRJ inv and TetR lox72 / 1 - inv . The altered sequence sections of the variants and their in wVo activities in E. coli are shown in Fig. 1B All three showed it TetR variants in which only the loop region was changed, complete inducibility with ATc. Likewise, the repression capacities of TetR FRT and TetR lox72 / 1 were almost identical to those of the wild-type TetR protein. However, the repression capacities were reduced in the case of TetR log72 / 2 . This is in marked contrast to the behavior of the ,, - inv "constructs, one of which had no regulatory properties The truncated y e t R lox72 / 2 - |. Na wa r inactive, whereas TetR FRT and TetR lox72 / 1 seems to tetO tied, but did not allow induction.
2.2 Vektor zur chromosomalen Integration einer gesplitteten tetR-art\gen Sequenz in B. subtilis2.2 Vector for chromosomal integration of a split tetR-type sequence into B. subtilis
Das nächste Ziel bestand darin, ein Modellsystem bereitzustellen, durch welches eine künstlich disruptierte tefR-Genvariante durch Cre- Rekombinase-Behandlung aktiviert werden konnte. Ausgehend von den bisher beschriebenen Ergebnissen sollte eine lox66-(Markergen)-lox71 - Kassette zwischen zwei Abschnitten des fefR-Gens in vivo herausgeschnitten werden können, um TetRlox72/1 als Endprodukt zu erhalten. Aus verschiedenen Gründen wurden die entsprechenden Manipulationen innerhalb des Chromosoms von B. subtilis unter Verwendung des Cre/7ox-Systems durchgeführt. So ist B. subtilis einer Transformation und Integration von Fremd-DNA in das Chromosom durch eine doppelte homologe Rekombination zugänglich (Fernandez, S., S. Ayora, and J. C. Alonso. 2000. Bacillus subtilis homologous recombination: genes and products. Res Microbiol 151 : 481-6). Außerdem sind Stämme dieser Spezies erhältlich, um die in wVo-Aktivität von TetR-Varianten quantifizieren zu können (Bertram, R., M. Köstner, J. Müller, J. Vazquez Ra- mos, and W. Hillen. 2005. Integrative elements for Bacillus subtilis yield- ing tetracycline-dependent growth phenotypes. Nucleic Acids Res 33: e153; Kamionka, A., R. Bertram, and W. Hillen. 2005. Tetracycline- dependent conditional gene knockout in Bacillus subtilis. Appl Environ Microbiol 71 : 728-733). Schließlich ist die Verwendung des Cre/lox- Systems für diese Art beschrieben (Pomerantsev, A. P., R. Sitaraman, c. R. Galloway, V. Kivovich, and S. H. Leppla. 2006. Genome engineering n Bacillus anthracis using Cre recombinase. Infect Immun 74: 682-693). Um einen Integrationsvektor zu klonieren, wurde eine apM///-Kassette, welche eine Kanamycin-Resistenz verlieh, amplifiziert und durch PCR modifiziert. Dadurch wurde die Kassette stromaufwärts durch Iox66- Sequenz und sieben Codons, welche den Positionen 168-174 der Helix α9 des TetR-Proteins entsprachen, und stromabwärts von einer Iox71- Sequenz flankiert. Dieses Produkt wurde zwischen die Pstl-Stellen von tetR inseriert. Auf diese Weise erhielt man eine tetR'-lox66-aphAlll- lox71-'tetR-Sequenz, im Folgenden als tlklt bezeichnet. Nach Subklonie- ren und kleineren Modifikationen (vgl. hierzu den Abschnitt „Material und Methoden") wurde der finale B. sub/W/s-Integrationsvektor pWH1411- TLKLTextd erhalten.The next goal was to provide a model system by which an artificially disrupted tefR gene variant could be activated by Cre recombinase treatment. Based on the results reported so far, a lox66 (marker gene) -lox71 cassette should be excised in vivo between two portions of the fefR gene to yield TetR lox72 / 1 as the final product. For various reasons, the corresponding manipulations within the B. subtilis chromosome were performed using the Cre / 7ox system. Thus B. subtilis is susceptible to transformation and integration of foreign DNA into the chromosome by a double homologous recombination (Fernandez, S., S. Ayora, and JC Alonso 2000. Bacillus subtilis homologous recombination: genes and products. Res Microbiol 151 : 481-6). In addition, strains of these species are available to quantify the in vivo activity of TetR variants (Bertram, R., M. Köstner, J. Müller, J. Vazquez Ramos, and W. Hillen, 2005. Integrative elements for Bacillus subtilis yielding tetracycline-dependent growth phenotypes, Nucleic Acids Res 33: e153, Kamionka, A., R. Bertram, and W. Hillen, 2005. Tetracycline-dependent conditional gene knockout in Bacillus subtilis, Appl Environ Microbiol 71: 728-733). Finally, the use of the Cre / lox system for this species has been described (Pomerantsev, AP, R. Sitaraman, C. R. Galloway, V. Kivovich, and SH Leppla, 2006. Genome Engineering n Bacillus anthracis using Cre recombinase.) Infect Immun 74: 682-693). To clone an integration vector, an apM /// cassette conferring kanamycin resistance was amplified and modified by PCR. This flanked the cassette upstream by an Iox66 sequence and seven codons corresponding to positions 168-174 of helix α9 of the TetR protein and downstream of an Iox71 sequence. This product was inserted between the PstI sites of tetR. In this way, a tetR'-lox66-aphAlll-lox71 'tetR sequence, hereinafter referred to as tlklt, was obtained. After subcloning and minor modifications (see the section "Materials and Methods"), the final B. sub / W / s integration vector pWH1411- TLKLTextd was obtained.
2.3 Multiple Modifikationen des B. subtilis-Genoms und Cre-vermittelte Aktivierung von TetRlox72/1 2.3 Multiple modifications of the B. subtilis genome and Cre-mediated activation of TetR lox72 / 1
S, subtilis WH558 (Fig. 2A) wurde als anfänglicher Wirtsstamm verwendet (Bertram, R., M. Köstner, J. Müller, J. Vazquez Ramos, and W. HiI- len. 2005. Integrative elements for Bacillus subtilis yielding tetracycline- dependent growth phenotypes. Nucleic Acids Res 33: e153). Der Stamm trug das Wildtyp-tefR-Gen, welches durch einen konstitutiven Promotor, integriert im lacA-Locus, reguliert wurde, sowie lacZ, stromabwärts eines Pχyi/tet-Promotors mit zwei fef-Operatoren innerhalb amyE (Geissendörfer, M., and W. Hillen. 1990. Regulated expression of heterologous genes in Bacillus subtilis using the Tn 10 encoded tet regulatory elements. Appl Microbiol Biotechnol 33: 657-663). Zuerst musste ein aphAI- Il-Gen in dem WH558-Genom entfernt werden. Die Wiederherstellung der Sensitivität für Kanamycin innerhalb des Stamms war Voraussetzung für eine spätere Selektion der tlklt- Kassette. Die zur Selektion von WH558 verwendete aphAIII-Resistenzkassette wurde mit Iox66 und Iox71 flankiert (Bertram, R., M. Köstner, J. Müller, J. Vazquez Ramos, and W. Hillen. 2005. Integrative elements for Bacillus subtilis yielding tetracycline-dependent growth phenotypes. Nucleic Acids Res 33: e153). Nach Behandlung mit dem Plasmid pCrePA, hergestellt für die Expression der Cre-Rekombinase in B. anthracis, wurde ein gegenüber Kanamycin sensitiver Abkömmling von WH558, im Folgenden als RAB100 bezeichnet, erhalten (Pomerantsev, A. P., R. Sitaraman, C. R. Galloway, V. Kivovich, and S. H. Leppla. 2006. Genome engineering in Bacillus anthracis using Cre recombinase. Infect Immun 74: 682-693). Die beobachtete Größenreduktion der Region stromabwärts des tetR- Gens in dem Chromosom korrespondierte mit der Länge des „floxierten" Markergens. Dies belegte das Cre vermittelte Herausschneiden der aphAIII-Kassette. RAB100 wurde mit pWH1411 BD-TLKLTextd transformiert. Die Integration des tf/ctf-Fragments in das tetR-Gen von RAB100 ergab den Stamm RAB101. Dies wurde anhand von PCR bestätigt. Um tetR*ox72/1 zu assemblieren und zu aktivieren, wurden kompetente RABI 01 -Zellen mit pCrePA behandelt. Eine durchgeführte PCR-Analyse der Kanamycin sensitiver Kandidaten bestätigte die Abwesenheit der „floxierten" Resistenzkasette. Einer der positiven Kandidaten, bei welchem die Region des tefR-Gens durch Sequenzierung bestätigt wurde, wurde als RAB102 bezeichnet. Erwartungsgemäß hatte eine Behandlung mit Cre die zwei Hälften der fefR-genartigen Sequenz zu tetR10*72'1 assembliert, wobei eine /ox72-Sequenz innerhalb der αδ bis α9 Schlei- fencodons zurückblieb. Die beschriebene Stammmanipulation ist schematisch in Fig. 2B zusammengefasst. Die hierzu korrespondierenden PCR-Analysen sind in der Fig. 2C dargestellt. Die regulatorischen Kapazitäten der neu hergestellten B. subtilis WH558-Derivate wurden durch Messung der ß-Galaktosidase-Aktivität untersucht. Die hieraus erhaltenen Ergebnisse sind in dem oberen Teil von Fig. 3 dargestellt. Dabei wurden keine Unterschiede in der ß-Galaktosidase-Aktivität zwischen WH558 und RAB100, welche sich lediglich in dem aphAIII- Selektionsmarker stromabwärts des tetR-Gens unterschieden, beobachtet. RAB101 zeigte keine /acZ-Repression, was durch ein Stop-Codon unmittelbar stromabwärts von Iox71 in tlklt erklärt werden kann. Das Konstrukt tetRlox72/2'ιnv führte nicht zu der Expression eines funktionalen Repressors. Bezüglich RAB102 (tetR10*™1) wurde ein nahezu identisches Aktivitätsprofil zu dem von WH558 oder RAB100 beobachtet. Dies stimmt mit den in E. coli erhaltenen Ergebnissen überein (Fig. 1 B). Um die Mengen des TetR-Proteins (oder die Mengen der verkürzten tlklt kodierten Produkte) der betreffenden ßac/7/t/s-Stämme zu bestimmen, wurden Western Blot Analysen durchgeführt. Fig. 3 (oberer Teil) zeigt die Ergebnisse, welche mit dem monoklonalen Antikörper TOP19 erhalten wurden, dessen Epitop zu dem „helix-turn-helix"-Motiv von TetR(B) passt, welches identisch zu dem von TetR ist (Pook, E., S. Grimm, A. Bonin, T. Winkler, and W. Hillen. 1998. Affinities of mAbs to Tet repres- sor complexed with Operator or tetracycline suggest conformational changes associated with induction. Eur J Biochem 258: 915-922). Die ungefähr gleich starken Signale, welche mit löslichen Proteinextrakten von WH557, WH558 und RAB100 erhalten wurden, heben sich von der schwächeren Bande im Falle von RAB102 ab. Kein Signal wurde dagegen im Falle von RAB101 beobachtet, welches das vorzeitig terminierte TLKLT-Produkt kodierte, welches den Aminosäureresten 1-161 des TetR-Proteins entsprach, allerdings mit zusätzlichen 11 Aminosäuren am C-Terminus. Zusätzliche Western Blot Analysen unter Verwendung von gegen das TetR-Protein gerichteten polyklonalen Antikörpern ergaben eine stärkere Reduktion der Signalintensität bei RAB102 im Vergleich zu WH558 und RAB100. Dies kann durch weniger Antikörperer- kennungsepitope in der veränderten Schlaufenregion von TetRlox72/1 im Vergleich zum Wildtyp-TetR-Protein erklärt werden. Trotzdem waren die reduzierten Regulatormengen von RAB102 ausreichend, um eine sehr effiziente Tet-Regulation in dem B. sι/όf///s-Modell-System zu erreichen. 3. FigurenbeschreibungS, subtilis WH558 (Figure 2A) was used as the initial host strain (Bertram, R., M. Köstner, J. Muller, J. Vazquez Ramos, and W. Hale, 2005. Integrative elements for Bacillus subtilis yielding tetracycline). dependent growth phenotypes: Nucleic Acids Res 33: e153). The strain carried the wild-type tefR gene, which was regulated by a constitutive promoter integrated in the lacA locus, and lacZ, downstream of a Pyi / tet promoter with two fef operators within amyE (Geissendörfer, M., and W 1990. Regulated expression of heterologous genes in Bacillus subtilis using the Tn 10 encoded tet regulatory element. Appl Microbiol Biotechnol 33: 657-663). First, an aphAI-Il gene had to be removed in the WH558 genome. Restoration of kanamycin sensitivity within the strain was a prerequisite for later selection of the tlklt cassette. The for the selection of WH558 used aphAIII resistance cassette was flanked with Iox66 and Iox71 (Bertram, R., M. Köstner, J. Muller, J. Vazquez Ramos, and W. Hillen, 2005. Integrative elements for Bacillus subtilis yielding tetracycline-dependent growth phenotypes Acids Res 33: e153). After treatment with the plasmid pCrePA prepared for expression of the Cre recombinase in B. anthracis, a kanamycin-sensitive derivative of WH558, hereinafter referred to as RAB100, was obtained (Pomerantsev, AP, R. Sitaraman, CR Galloway, V. Kivovich, and SH Leppla, 2006. Genome engineering in Bacillus anthracis using Cre recombinase, Infect Immun 74: 682-693). The reduction in size of the region downstream of the tetR gene in the chromosome corresponded to the length of the "floxed" marker gene, thus demonstrating the Cre-mediated excision of the aphAIII cassette RAB100 was transformed with pWH1411 BD-TLKLTextd.The integration of the tf / ctf- Fragments into the tetR gene of RAB100 yielded the strain RAB101, which was confirmed by PCR To assemble and activate tetR * ox72 / 1 , competent RABI 01 cells were treated with pCrePA.A PCR-analysis of the kanamycin was more sensitive Candidates confirmed the absence of the "floxed" resistance cassette. One of the positive candidates in which the region of the tefR gene was confirmed by sequencing was designated RAB102. As expected, treatment with Cre had assembled the two halves of the fefR gene-like sequence into tetR 10 * 72 ' 1 , leaving a / ox72 sequence within the αδ to α9 loop codons. The master manipulation described is summarized schematically in FIG. 2B. The corresponding PCR analyzes are shown in FIG. 2C. The regulatory capacities of the newly produced B. subtilis WH558 derivatives were investigated by measuring β-galactosidase activity. The results obtained therefrom are shown in the upper part of FIG. There were no differences in the β-galactosidase activity between WH558 and RAB100, which are found only in the aphAIII- Selection marker downstream of the tetR gene distinguished, observed. RAB101 did not show / acZ repression, which can be explained by a stop codon immediately downstream of Iox71 in tlklt. The construct tetR lox72 / 2'ιnv did not lead to the expression of a functional repressor. With respect to RAB102 (tetR 10 * 1 ), a nearly identical activity profile to that of WH558 or RAB100 was observed. This agrees with the results obtained in E. coli (FIG. 1B). To determine the levels of the TetR protein (or the quantities of truncated coded products) of the respective βac / 7 / t / s strains, Western blot analyzes were performed. Fig. 3 (upper part) shows the results obtained with the monoclonal antibody TOP19 whose epitope matches the "helix-turn-helix" motif of TetR (B), which is identical to that of TetR (Pook, E., S. Grimm, A. Bonin, T. Winkler, and W. Hillen, 1998. Affinities of mAbs to Tet Representative Complexed with Operator or Tetracycline Suggested Conformational Changes Associated with Induction Eur J Biochem 258: 915-922 The approximately equally strong signals obtained with soluble protein extracts of WH557, WH558 and RAB100 contrast with the weaker band in the case of RAB102, but no signal was observed in the case of RAB101, which is the prematurely terminated TLKLT product which corresponded to amino acid residues 1-161 of the TetR protein, but with an additional 11 amino acids at the C-terminus Additional Western blot analysis using polyclonal antibodies directed against the TetR protein gave a stronger protein No reduction in signal intensity in RAB102 compared to WH558 and RAB100. This can be explained by fewer antibody recognition epitopes in the altered loop region of TetR lox72 / 1 compared to the wild-type TetR protein. Nevertheless, the reduced regulatory levels of RAB102 were sufficient to achieve very efficient tet regulation in the B.sup./fs model system. 3rd figure description
Fig. 1A zeigt die Struktur von TetR(D). Die für diese Methode ausgewählte Zielregion des TetR-Proteins ist dabei die von den Pfeilen eingeschlossene Region.Fig. 1A shows the structure of TetR (D). The target region of the TetR protein selected for this method is the region enclosed by the arrows.
Fig. 1 B zeigt die Orientierung von Aminosäuresequenzen verschiedener αδ-α9-Schleifenregionen. Dargestellt sind die Aminosäuresequenzen von den fünf C-terminalen Resten der Helix αδ bis zu dem Ende der He- Nx α9 von TetR-Varianten oder TetR-artigen Polypeptiden. Identische Positionen sind dabei schwarz oder grau hinterlegt. Das C-terminale Ende von TetRlox72/2'ιnv wird mit einem schwarzen Karo abgeschlossen. Die Positionen der zwei Pstl-Stellen, welche zum Klonieren innerhalb der entsprechenden tefR-Allele verwendet wurden, sind durch Pfeile gekennzeichnet. Die ß-Galaktosidase-Aktivitäten der entsprechenden Kon- strukte, welche in E. coli (in %) bestimmt wurden, sind auf der rechten Seite angegeben.Fig. 1B shows the orientation of amino acid sequences of various αδ-α9 loop regions. Shown are the amino acid sequences from the five C-terminal residues of helix αδ to the end of He-Nx α9 of TetR variants or TetR-like polypeptides. Identical positions are highlighted in black or gray. The C-terminal end of TetR lox72 / 2'ιnv is terminated with a black check. The positions of the two PstI sites used for cloning within the corresponding tefR alleles are indicated by arrows. The β-galactosidase activities of the corresponding constructs, which were determined in E. coli (in%), are indicated on the right.
Fig. 2A zeigt eine schematische Darstellung von Genregionen im Stamm WH558, Die Regionen des tefR-Gens und der Pxyι/tet-/acZ-Fusion sind schematisch dargestellt. Die offenen geknickten Pfeile bezeichnen den Promotor Pt17 (für tefR-Expression) und Pχyi/tet (tef-regulierbar, stromaufwärts von lacZ). Die schwarzen Trapezoide zeigen verschiedene lox- Sequenzen, welche die Kanamycin-Resistenz-Kassette (aphAIII) flankieren, und deren Orientierung an. Die mit einem „O" markierten Kästchen geben den tef-Operator wieder. Ein transkriptioneller Terminator ist als Haarnadel dargestellt. Die sich anschließenden Stop-Codons sind durch ein fett markiertes „S" symbolisiert.Fig. 2A shows a schematic representation of gene regions in the strain WH558, the regions of the tefR gene and the P xy ι / tet - / acZ fusion are shown schematically. The open kinked arrows indicate the promoter Pt17 (for tefR expression) and Pχyi / tet (tef-regulatable, upstream of lacZ). The black trapezoids indicate various lox sequences flanking the kanamycin resistance cassette (aphAIII) and their orientation. The boxes marked with an "O" represent the tef operator, a transcriptional terminator is shown as a hairpin, and the stop codons that follow are indicated by a bold "S".
Fig. 2B zeigt schematisch die multiplen Veränderungen der fefR-Region. In einem ersten Schritt wurde das aphAIII-Gen durch die Cre- Rekombinase herausgeschnitten. Dies führte zu dem markerfreien Stamm RAB1OO. In einem zweiten Schritt wurde das tefR-Gen durch eine doppelte homologe Rekombination gegen eine tetR'-lox66-aphAllf- lox71-tetR-Sequenz (tlklt) ersetzt. Dies lieferte den B. subtilis-Stamm RAB101. In einem dritten Schritt wurde das aphAIII-Gen erneut durch Cre eliminiert. Dies ergab das finale Konstrukt RAB102, welches tetF^ox72/1 aufwies. Die für die analytischen PCR-Reaktionen verwendeten Primer sind als schmale Pfeile und mit einer römischen Nummerie- rung dargestellt und bedeuten: I) /ox_test_fw, II) DP3, III) DPδneu, IV) Km 1 , V) Km2, VI) /ox_test_rev.Fig. 2B shows schematically the multiple changes of the fefR region. In a first step, the aphAIII gene was excised by Cre recombinase. This resulted in the marker-free Strain RAB1OO. In a second step, the tefR gene was replaced by a double homologous recombination against a tetR'-lox66-aphAllf-lox71-tetR sequence (tlklt). This provided B. subtilis strain RAB101. In a third step, the aphAIII gene was again eliminated by Cre. This gave the final construct RAB102, which had tetF ^ ox72 / 1 . The primers used for the analytical PCR reactions are shown as narrow arrows and with a Roman numbering and mean: I) / ox_test_fw, II) DP3, III) DPnew, IV) Km 1, V) Km2, VI) / ox_test_rev ,
Fig. 2C zeigt die Ergebnisse der analytischen PCR. Die PCR-Produkte der vier dargestellten B. subtilis-Stämme wurden mit den folgenden Pri- merkombinationen erhalten (vgl. Fig. 2B zur ungefähren Primerlokalisa- tion): Bahn 1 : 1) + VI), Bahn 2: IM) + VI), Bahn 3: I) + II) und Bahn 4: IV) + V) (von links nach rechts). Des weiteren sind die Größen von selektierten Referenzbanden (in bp) dargestellt.Fig. 2C shows the results of the analytical PCR. The PCR products of the four B. subtilis strains shown were obtained with the following pricerocombinations (see Fig. 2B for approximate primer localization): lane 1: 1) + VI), lane 2: IM) + VI) , Lane 3: I) + II) and lane 4: IV) + V) (from left to right). Furthermore, the sizes of selected reference bands (in bp) are shown.
Fig. 3 zeigt die regulatorischen Kapazitäten und Regulatormengen von verschiedene B. subtilis-Stämmen. Die Ergebnisse der Messungen der ß-Galaktosidase-Aktivität sind in der oberen Abbildung dargestellt. Die y- Achse gibt dabei die Miller-Einheiten wieder. Als Kontrollstämme wurden WH557, welcher tetR aber nicht lacZ kodierte, und WH560, welcher Pxyi/teWacZ aber nicht tetR aufwies. Die offenen Balken zeigen dabei die Werte, welche ohne ATc-erhalten wurden, wohingegen die geschlossenen Balken 0.4 μM ATc-Bedingungen widerspiegeln. Die Ergebnisse von Western Blot Analysen für die entsprechenden Stämme, welche unter Verwendung eines monoklonalen Antikörpers erhalten wurden, sind in der unteren Abbildung von Fig. 3 dargestellt. Hierbei wurden 80 ng gereinigten TetR-Proteins als Kontrolle verwendet.Fig. 3 shows the regulatory capacities and regulatory amounts of various B. subtilis strains. The results of measurements of β-galactosidase activity are shown in the figure above. The y-axis represents the Miller units. As control strains were WH557 which tetR but not encoded lacZ, and WH560, which P x y / teWacZ but did not have tetR. The open bars show the values obtained without ATc, whereas the closed bars reflect 0.4 μM ATc conditions. The results of western blot analyzes for the respective strains obtained using a monoclonal antibody are shown in the lower figure of FIG. Here, 80 ng of purified TetR protein was used as a control.
Bei den in der Beschreibung genannten Sequenzen handelt es sich um die im Folgenden aufgeführten Sequenzen: SEQ. ID. NO 1 : loxP (Bakteriophage P1 , natürliches Vorkommen) ATAACTTCGTATA ATGTATGC TATACGAAGTTATThe sequences mentioned in the description are the sequences listed below: SEQ. ID. NO 1: loxP (bacteriophage P1, natural occurrence) ATAACTTCGTATA ATGTATGC TATACGAAGTTAT
SEQ. ID. NO 2: Iox66 (Analyse in Nicotiana tabacum (Tabakpflanze), chemisch/synthetisch hergestellt) TACCGTTCGTATA ATGTATGC TATACGAAGTTATSEQ. ID. NO 2: Iox66 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) TACCGTTCGTATA ATGTATGC TATACGAAGTTAT
SEQ. ID. NO 3: Iox71 (Analyse in Nicotiana tabacum (Tabakpflanze), chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTATGC TATACGAACGGTASEQ. ID. NO 3: Iox71 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) ATAACTTCGTATA ATGTATGC TATACGAACGGTA
SEQ. ID. NO 4: Iox72 (Analyse in Nicotiana tabacum (Tabakpflanze), chemisch/synthetisch hergestellt) TACCGTTCGTATA ATGTATGC TATACGAACGGTASEQ. ID. NO 4: Iox72 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) TACCGTTCGTATA ATGTATGC TATACGAACGGTA
SEQ. ID. NO 5: Iox76 (Analyse in Nicotiana tabacum (Tabakpflanze), chemisch/synthetisch hergestellt) TACCGGGCGTATA ATGTATGC TATACGAAGTTATSEQ. ID. NO 5: Iox76 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) TACCGGGCGTATA ATGTATGC TATACGAAGTTAT
SEQ. ID. NO 6: Iox75 (Analyse in Nicotiana tabacum (Tabakpflanze), chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTATGC TATACGCCCGGTASEQ. ID. NO 6: Iox75 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) ATAACTTCGTATA ATGTATGC TATACGCCCGGTA
SEQ. ID. NO 7: Iox78 (Analyse in Nicotiana tabacum (Tabakpflanze), chemisch/synthetisch hergestellt) TACCGGGCGTATA ATGTATGC TATACGCCCGGTASEQ. ID. NO 7: Iox78 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) TACCGGGCGTATA ATGTATGC TATACGCCCGGTA
SEQ. ID. NO 8: Iox43 (Analyse in Nicotiana tabacum (Tabakpflanze), chemisch/synthetisch hergestellt) CTCGGTACCTATA ATGTATGC TATACGAAGTTAT SEQ. ID. NO 9: Iox44 (Analyse in Nicotiana tabacum (Tabakpflanze), chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTATGC TATAGCATGCATTSEQ. ID. NO 8: Iox43 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) CTCGGTACCTATA ATGTATGC TATACGAAGTTAT SEQ. ID. NO 9: Iox44 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) ATAACTTCGTATA ATGTATGC TATAGCATGCATT
SEQ. ID. NO 10: Iox65 (Analyse in Nicotiana tabacum (Tabakpflanze), chemisch/synthetisch hergestellt) CTCGGTACCTATA ATGTATGC TATAGCATGCATTSEQ. ID. NO 10: Iox65 (analysis in Nicotiana tabacum (tobacco plant), chemically / synthetically produced) CTCGGTACCTATA ATGTATGC TATAGCATGCATT
SEQ. ID. NO 11 : JT1 (Analyse in Escherichia coli, chemisch/synthetisch herstellt)SEQ. ID. NO 11: JT1 (analysis in Escherichia coli, produced chemically / synthetically)
ATAACTTCGTATA ATGTATGC TATACGAATAGGAATAACTTCGTATA ATGTATGC TATACGAATAGGA
SEQ. ID. NO 12:JT4 (Analyse in Escherichia coli, chemisch/synthetisch herstellt)SEQ. ID. NO 12: JT4 (analysis in Escherichia coli, produced chemically / synthetically)
ATAACTTCGTATA ATGTATGC TATACGAAACCCCATAACTTCGTATA ATGTATGC TATACGAAACCCC
SEQ. ID. NO 13: JT5 (Analyse in Escherichia coli, chemisch/synthetisch herstellt)SEQ. ID. NO 13: JT5 (analysis in Escherichia coli, produced chemically / synthetically)
ATAACTTCGTATA ATGTATGC TATACGAAATTAAATAACTTCGTATA ATGTATGC TATACGAAATTAA
SEQ. ID. NO 14:JT12 (Analyse in Escherichia coli, chemisch/synthetisch herstellt)SEQ. ID. NO 14: JT12 (analysis in Escherichia coli, produced chemically / synthetically)
ATAACTTCGTATA ATGTATGC TATACGAACAACTATAACTTCGTATA ATGTATGC TATACGAACAACT
SEQ. ID. NO 15: JT15 (Analyse in Escherichia coli, chemisch/synthetisch herstellt) ATAACTTCGTATA ATGTATGC TATACGAATAATTSEQ. ID. NO 15: JT15 (analysis in Escherichia coli, chemically / synthetically producing) ATAACTTCGTATA ATGTATGC TATACGAATAATT
SEQ. ID. NO 16: JT21 (Analyse in Escherichia coli, chemisch/synthetisch herstellt) ATAACTTCGTATA ATGTATGC TATACGAACGAAA SEQ. ID. NO 17: JT44 (Analyse in Escherichia coli, chemisch/synthetisch herstellt) ATAACTTCGTATA ATGTATGC TATACGAACCTGTSEQ. ID. NO 16: JT21 (analysis in Escherichia coli, chemical / synthetically produced) ATAACTTCGTATA ATGTATGC TATACGAACGAAA SEQ. ID. NO 17: JT44 (analysis in Escherichia coli, chemically / synthetically producing) ATAACTTCGTATA ATGTATGC TATACGAACCTGT
SEQ. ID. NO 18: JT47 (Analyse in Escherichia coli, chemisch/synthetisch herstellt) ATAACTTCGTATA ATGTATGC TATACGAACCCCGSEQ. ID. NO 18: JT47 (analysis in Escherichia coli, chemical / synthetic) ATAACTTCGTATA ATGTATGC TATACGAACCCCG
SEQ. ID. NO 19: JT510 (Analyse in Escherichia coli, chemisch/synthetisch herstellt) ATAACTTCGTATA ATGTATGC TATACGAACGTTASEQ. ID. NO 19: JT510 (analysis in Escherichia coli, chemically / synthetically producing) ATAACTTCGTATA ATGTATGC TATACGAACGTTA
SEQ. ID. NO 20: JT520 (Analyse in Escherichia coli, chemisch/synthetisch herstellt) ATAACTTCGTATA ATGTATGC TATACGAACGATASEQ. ID. NO 20: JT520 (analysis in Escherichia coli, chemically / synthetically producing) ATAACTTCGTATA ATGTATGC TATACGAACGATA
SEQ. ID. NO 21 : JT530 (Analyse in Escherichia coli, chemisch/synthetisch herstellt) ATAACTTCGTATA ATGTATGC TATACGAACCGTASEQ. ID. NO 21: JT530 (analysis in Escherichia coli, chemically / synthetically producing) ATAACTTCGTATA ATGTATGC TATACGAACCGTA
SEQ. ID. NO 22: JT540 (Analyse in Escherichia coli, chemisch/synthetisch herstellt) ATAACTTCGTATA ATGTATGC TATACGAAGTAAASEQ. ID. NO 22: JT540 (analysis in Escherichia coli, chemically / synthetically producing) ATAACTTCGTATA ATGTATGC TATACGAAGTAAA
SEQ. ID. NO 23: JTZ2 (Analyse in Escherichia coli, chemisch/synthetisch herstellt) AGGTATTCGTATA ATGTATGC TATACGAAGTTATSEQ. ID. NO 23: JTZ2 (analysis in Escherichia coli, chemical / synthetic production) AGGTATTCGTATA ATGTATGC TATACGAAGTTAT
SEQ. ID. NO 24: JTZ5 (Analyse in Escherichia coli, chemisch/synthetisch herstellt) ACAGGTTGCTATA ATGTATGC TATACGAAGTTAT SEQ. ID. NO 25: JTZ10 (Analyse in Escherichia coli, chemisch/synthetisch herstellt) CAATATTGCTATA ATGTATGC TATACGAAGTTATSEQ. ID. NO 24: JTZ5 (analysis in Escherichia coli, chemically / synthetically producing) ACAGGTTGCTATA ATGTATGC TATACGAAGTTAT SEQ. ID. NO 25: JTZ10 (analysis in Escherichia coli, chemically / synthetically producing) CAATATTGCTATA ATGTATGC TATACGAAGTTAT
SEQ. ID. NO 26: JTZ17 (Analyse in Escherichia coli, chemisch/synthetisch herstellt) ATAAATTGCTATA ATGTATGC TATACGAAGTTATSEQ. ID. NO 26: JTZ17 (analysis in Escherichia coli, chemical / synthetic preparation) ATAAATTGCTATA ATGTATGC TATACGAAGTTAT
SEQ. ID. NO 27: Iox511 (Analyse in Mus musculus (Maus), chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTATAC TATACGAAGTTATSEQ. ID. NO 27: Iox511 (analysis in Mus musculus (mouse), chemically / synthetically produced) ATAACTTCGTATA ATGTATAC TATACGAAGTTAT
SEQ. ID. NO 28: Iox2272 (Analyse in Mus musculus (Maus), chemisch/synthetisch hergestellt) ATAACTTCGTATA AAGTATCC TATACGAAGTTATSEQ. ID. NO 28: Iox2272 (analysis in Mus musculus (mouse), chemically / synthetically produced) ATAACTTCGTATA AAGTATCC TATACGAAGTTAT
SEQ. ID. NO 29: Iee11 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA GTGTATGC TATACGAAGTTATSEQ. ID. NO 29: Iee11 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA GTGTATGC TATACGAAGTTAT
SEQ. ID. NO 30: Iee12 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA TTGTATGC TATACGAAGTTATSEQ. ID. NO 30: Iee12 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA TTGTATGC TATACGAAGTTAT
SEQ. ID. NO 31 : Iee13 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ACGTATGC TATACGAAGTTATSEQ. ID. NO 31: Iee13 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ACGTATGC TATACGAAGTTAT
SEQ. ID. NO 32: Iee21 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ACGTATGC TATACGAAGTTAT SEQ. ID. NO 33: Iee22 (in vitro untersucht, chemisch/synthetisch herge- stellt)ATAACTTCGTATA AAGTATGC TATACGAAGTTATSEQ. ID. NO 32: Iee21 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ACGTATGC TATACGAAGTTAT SEQ. ID. NO 33: Iee22 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA AAGTATGC TATACGAAGTTAT
SEQ. ID. NO 34: Iee23 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA AGGTATGC TATACGAAGTTATSEQ. ID. NO 34: Iee23 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA AGGTATGC TATACGAAGTTAT
SEQ. ID. NO 35: Iee31 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATATATGC TATACGAAGTTATSEQ. ID. NO 35: Iee31 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATATATGC TATACGAAGTTAT
SEQ. ID. NO 36: Iee32 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATCTATGC TATACGAAGTTATSEQ. ID. NO 36: Iee32 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATCTATGC TATACGAAGTTAT
SEQ. ID. NO 37: Iee33 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATTTATGC TATACGAAGTTATSEQ. ID. NO 37: Iee33 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATTTATGC TATACGAAGTTAT
SEQ, ID. NO 38: Iee41 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGCATGC TATACGAAGTTATSEQ. ID. NO 38: Iee41 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGCATGC TATACGAAGTTAT
SEQ. ID. NO 39: Iee42 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGAATGC TATACGAAGTTATSEQ. ID. NO 39: Iee42 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGAATGC TATACGAAGTTAT
SEQ. ID. NO 40: Iee43 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGGATGC TATACGAAGTTAT SEQ. ID. NO 41 : Iee51 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTGTGC TATACGAAGTTATSEQ. ID. NO 40: Iee43 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGGATGC TATACGAAGTTAT SEQ. ID. NO 41: Iee51 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTGTGC TATACGAAGTTAT
SEQ. ID. NO 42: Iee52 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTTTGC TATACGAAGTTATSEQ. ID. NO 42: Iee52 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTTTGC TATACGAAGTTAT
SEQ. ID. NO 43: Iee53 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTCTGC TATACGAAGTTATSEQ. ID. NO 43: Iee53 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTCTGC TATACGAAGTTAT
SEQ. ID. NO 44: Iee61 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTACGC TATACGAAGTTATSEQ. ID. NO 44: Iee61 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTACGC TATACGAAGTTAT
SEQ. ID. NO 45: Iee62 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTAAGC TATACGAAGTTATSEQ. ID. NO 45: Iee62 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTAAGC TATACGAAGTTAT
SEQ. ID. NO 46: Iee63 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTAGGC TATACGAAGTTATSEQ. ID. NO 46: Iee63 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTAGGC TATACGAAGTTAT
SEQ. ID. NO 47: Iee71 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTATAC TATACGAAGTTATSEQ. ID. NO 47: Iee71 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTATAC TATACGAAGTTAT
SEQ. ID. NO 48: Iee72 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTATCC TATACGAAGTTAT SEQ. ID. NO 49: Iee73 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTATTC TATACGAAGTTATSEQ. ID. NO 48: Iee72 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTATCC TATACGAAGTTAT SEQ. ID. NO 49: Iee73 (tested in vitro, chemically / synthetically produced) ATAACTTCGTATA ATGTATTC TATACGAAGTTAT
SEQ. ID. NO 50: Iee81 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTATGI TATACGAAGTTATSEQ. ID. NO 50: Iee81 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTATGI TATACGAAGTTAT
SEQ. ID. NO 51 : Iee82 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTATGG TATACGAAGTTATSEQ. ID. NO 51: Iee82 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTATGG TATACGAAGTTAT
SEQ. ID. NO 52: Iee83 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTATGA TATACGAAGTTATSEQ. ID. NO 52: Iee83 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTATGA TATACGAAGTTAT
SEQ. ID. NO 53: Iee2171 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ACGTATAC TATACGAAGTTATSEQ. ID. NO 53: Iee2171 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ACGTATAC TATACGAAGTTAT
SEQ. ID. NO 54: Iee2271 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA AAGTATAC TATACGAAGTTATSEQ. ID. NO 54: Iee2271 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA AAGTATAC TATACGAAGTTAT
SEQ. ID. NO 55: Iee2371 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA AGGTATAC TATACGAAGTTATSEQ. ID. NO 55: Iee2371 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA AGGTATAC TATACGAAGTTAT
SEQ. ID. NO 56: Iee3171 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATATATAC TATACGAAGTTAT SEQ. ID. NO 57: Iee3271 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATCTATAC TATACGAAGTTATSEQ. ID. NO 56: Iee3171 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATATATAC TATACGAAGTTAT SEQ. ID. NO 57: Iee3271 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATCTATAC TATACGAAGTTAT
SEQ. ID. NO 58: Iee3371 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATTTATAC TATACGAAGTTATSEQ. ID. NO 58: Iee3371 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATTTATAC TATACGAAGTTAT
SEQ. ID. NO 59: Iee4171 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGCATAC TATACGAAGTTATSEQ. ID. NO 59: Iee4171 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGCATAC TATACGAAGTTAT
SEQ. ID. NO 60: Iee4271 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGAATAC TATACGAAGTTATSEQ. ID. NO 60: Iee4271 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGAATAC TATACGAAGTTAT
SEQ. ID. NO 61 : Iee4371 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGGATAC TATACGAAGTTATSEQ. ID. NO 61: Iee4371 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGGATAC TATACGAAGTTAT
SEQ. ID. NO 62: Iee5171 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTGTAC TATACGAAGTTATSEQ. ID. NO 62: Iee5171 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTGTAC TATACGAAGTTAT
SEQ. ID. NO 63: Iee5271 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTITAC TATACGAAGTTATSEQ. ID. NO 63: Iee5271 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTITAC TATACGAAGTTAT
SEQ. ID. NO 64: Iee5371 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTCTAC TATACGAAGTTAT SEQ. ID. NO 65: Iee2172 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ACGTATCC TATACGAAGTTATSEQ. ID. NO 64: Iee5371 (tested in vitro, chemically / synthetically produced) ATAACTTCGTATA ATGTCTAC TATACGAAGTTAT SEQ. ID. NO 65: Iee2172 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ACGTATCC TATACGAAGTTAT
SEQ. ID. NO 66: Iee2272 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA AAGTATCC TATACGAAGTTATSEQ. ID. NO 66: Iee2272 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA AAGTATCC TATACGAAGTTAT
SEQ. ID. NO 67: Iee2372 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA AGGTATCC TATACGAAGTTATSEQ. ID. NO 67: Iee2372 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA AGGTATCC TATACGAAGTTAT
SEQ. ID. NO 68: Iee3172 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATATATCC TATACGAAGTTATSEQ. ID. NO 68: Iee3172 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATATATCC TATACGAAGTTAT
SEQ. ID. NO 69: Iee3272 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATCTATCC TATACGAAGTTATSEQ. ID. NO 69: Iee3272 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATCTATCC TATACGAAGTTAT
SEQ. ID. NO 70: Iee3372 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATTTATCC TATACGAAGTTATSEQ. ID. NO 70: Iee3372 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATTTATCC TATACGAAGTTAT
SEQ. ID. NO 71 : Iee4172 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGCATCC TATACGAAGTTATSEQ. ID. NO 71: Iee4172 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGCATCC TATACGAAGTTAT
SEQ. ID. NO 72: Iee4272 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGAATCC TATACGAAGTTAT SEQ. ID. NO 73: Iee4372 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGGATCC TATACGAAGTTATSEQ. ID. NO 72: Iee4272 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGAATCC TATACGAAGTTAT SEQ. ID. NO 73: Iee4372 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGGATCC TATACGAAGTTAT
SEQ. ID. NO 74: Iee5172 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTGTCC TATACGAAGTTATSEQ. ID. NO 74: Iee5172 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTGTCC TATACGAAGTTAT
SEQ. ID. NO 75: Iee5272 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTJTCC TATACGAAGTTATSEQ. ID. NO 75: Iee5272 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTJTCC TATACGAAGTTAT
SEQ. ID. NO 76: Iee5372 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTCTCC TATACGAAGTTATSEQ. ID. NO 76: Iee5372 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTCTCC TATACGAAGTTAT
SEQ. ID. NO 77: Iee2173 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ACGTATTC TATACGAAGTTATSEQ. ID. NO 77: Iee2173 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ACGTATTC TATACGAAGTTAT
SEQ. ID. NO 78: Iee2273 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA AAGTATIC TATACGAAGTTATSEQ. ID. NO 78: Iee2273 (tested in vitro, chemically / synthetically produced) ATAACTTCGTATA AAGTATIC TATACGAAGTTAT
SEQ. ID. NO 79: Iee2373 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA AGGTATTC TATACGAAGTTATSEQ. ID. NO 79: Iee2373 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA AGGTATTC TATACGAAGTTAT
SEQ. ID. NO 80: Iee3373 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATTTATTC TATACGAAGTTAT SEQ. ID. NO 81 : Iee4373 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGGATTC TATACGAAGTTATSEQ. ID. NO 80: Iee3373 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATTTATTC TATACGAAGTTAT SEQ. ID. NO 81: Iee4373 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGGATTC TATACGAAGTTAT
SEQ. ID. NO 82: Iee5373 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTCTTC TATACGAAGTTATSEQ. ID. NO 82: Iee5373 (tested in vitro, chemically / synthetically produced) ATAACTTCGTATA ATGTCTTC TATACGAAGTTAT
SEQ. ID. NO 83: she39 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA ACCACTGC TATACGAAGTTATSEQ. ID. NO 83: she39 (E. coli, chemically / synthetically produced) ATAACTTCGTATA ACCACTGC TATACGAAGTTAT
SEQ. ID. NO 84: she33 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA GCCACAGA TATACGAAGTTATSEQ. ID. NO 84: she33 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GCCACAGA TATACGAAGTTAT
SEQ. ID. NO 85: she9 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CCGAACAA TATACGAAGTTATSEQ. ID. NO 85: she9 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CCGAACAA TATACGAAGTTAT
SEQ. !D. NO 86: she28 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CGCAACGG TATACGAAGTTATSEQ. ! D. NO 86: she28 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CGCAACGG TATACGAAGTTAT
SEQ. ID. NO 87: she14 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA GCTTTAGT TATACGAAGTTATSEQ. ID. NO 87: she14 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GCTTTAGT TATACGAAGTTAT
SEQ. ID. NO 88: she29 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGATTCT TATACGAAGTTATSEQ. ID. NO 88: she29 (E. coli, chemically / synthetically produced) ATAACTTCGTATA ATGATTCT TATACGAAGTTAT
SEQ. ID. NO 89: she592 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CCGCGTCC TATACGAAGTTATSEQ. ID. NO 89: she592 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CCGCGTCC TATACGAAGTTAT
SEQ. ID. NO 90: she64 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA TAAACCGC TATACGAAGTTAT SEQ. ID. NO 91 : she63 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA TACCTCCT TATACGAAGTTATSEQ. ID. NO 90: she64 (E. coli, chemically / synthetically produced) ATAACTTCGTATA TAAACCGC TATACGAAGTTAT SEQ. ID. NO 91: she63 (E. coli, chemically / synthetically produced) ATAACTTCGTATA TACCTCCT TATACGAAGTTAT
SEQ. ID. NO 92: she37 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA GCCGTCTG TATACGAAGTTATSEQ. ID. NO 92: she37 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GCCGTCTG TATACGAAGTTAT
SEQ. ID. NO 93: she25 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CCAATCCG TATACGAAGTTATSEQ. ID. NO 93: she25 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CCAATCCG TATACGAAGTTAT
SEQ. ID. NO 94: she4 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CTCAGCAA TATACGAAGTTATSEQ. ID. NO 94: she4 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CTCAGCAA TATACGAAGTTAT
SEQ. ID. NO 95: shelO (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA AGACATGC TATACGAAGTTATSEQ. ID. NO 95: shelO (E. coli, chemically / synthetically produced) ATAACTTCGTATA AGACATGC TATACGAAGTTAT
SEQ. ID. NO 96: she412 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA GATCGCGT TATACGAAGTTATSEQ. ID. NO 96: she412 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GATCGCGT TATACGAAGTTAT
SEQ. ID. NO 97: she7 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CGCCTCCT TATACGAAGTTATSEQ. ID. NO 97: she7 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CGCCTCCT TATACGAAGTTAT
SEQ. ID. NO 98: she512 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CGCCACCC TATACGAAGTTATSEQ. ID. NO 98: she512 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CGCCACCC TATACGAAGTTAT
SEQ. ID. NO 99: she17 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CGCCCACA TATACGAAGTTATSEQ. ID. NO 99: she17 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CGCCCACA TATACGAAGTTAT
SEQ. ID. NO 100: sheθ (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CACGGCCC TATACGAAGTTATSEQ. ID. NO 100: sheθ (E. coli, chemically / synthetically produced) ATAACTTCGTATA CACGGCCC TATACGAAGTTAT
SEQ. ID. NO 101 : she21 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CTATTGCC TATACGAAGTTAT SEQ. ID. NO 102: she3 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CACCGGAA TATACGAAGTTATSEQ. ID. NO 101: she21 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CTATTGCC TATACGAAGTTAT SEQ. ID. NO 102: she3 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CACCGGAA TATACGAAGTTAT
SEQ. ID. NO 103: she206 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA TACATGAC TATACGAAGTTATSEQ. ID. NO 103: she206 (E. coli, chemically / synthetically produced) ATAACTTCGTATA TACATGAC TATACGAAGTTAT
SEQ. ID. NO 104: she270 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CATTCTGG TATACGAAGTTATSEQ. ID. NO 104: she270 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CATTCTGG TATACGAAGTTAT
SEQ. ID. NO 105: she271 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGATTTG TATACGAAGTTATSEQ. ID. NO 105: she271 (E. coli, chemically / synthetically produced) ATAACTTCGTATA ATGATTTG TATACGAAGTTAT
SEQ. ID. NO 106: she268 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA AATCCTGC TATACGAAGTTATSEQ. ID. NO 106: she268 (E. coli, chemically / synthetically produced) ATAACTTCGTATA AATCCTGC TATACGAAGTTAT
SEQ. ID. NO 107: she267 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA AAGTATAC TATACGAAGTTATSEQ. ID. NO 107: she267 (E. coli, chemically / synthetically produced) ATAACTTCGTATA AAGTATAC TATACGAAGTTAT
SEQ- ID- NO 108- she207 (E- coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATTGAAGA TATACGAAGTTATSEQ ID NO 108-she207 (E-coli, chemically / synthetically produced) ATAACTTCGTATA ATTGAAGA TATACGAAGTTAT
SEQ. ID. NO 109: she269 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA AGTTCGAA TATACGAAGTTATSEQ. ID. NO 109: she269 (E. coli, chemically / synthetically produced) ATAACTTCGTATA AGTTCGAA TATACGAAGTTAT
SEQ. ID. NO 110: she265 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA GATACTTA TATACGAAGTTATSEQ. ID. NO 110: she265 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GATACTTA TATACGAAGTTAT
SEQ. ID. NO 111 : she202 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA TTGCACAC TATACGAAGTTAT SEQ. ID. NO 112: she203 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA GCGTCACG TATACGAAGTTATSEQ. ID. NO 111: she202 (E. coli, chemically / synthetically produced) ATAACTTCGTATA TTGCACAC TATACGAAGTTAT SEQ. ID. NO 112: she203 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GCGTCACG TATACGAAGTTAT
SEQ. ID. NO 113: she208 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA GGCTTTTA TATACGAAGTTATSEQ. ID. NO 113: she208 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GGCTTTTA TATACGAAGTTAT
SEQ. ID. NO 114: she266 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA CATTTATG TATACGAAGTTATSEQ. ID. NO 114: she266 (E. coli, chemically / synthetically produced) ATAACTTCGTATA CATTTATG TATACGAAGTTAT
SEQ. ID. NO 115: she204 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA GACCGTTC TATACGAAGTTATSEQ. ID. NO 115: she204 (E. coli, chemically / synthetically produced) ATAACTTCGTATA GACCGTTC TATACGAAGTTAT
SEQ. ID. NO 116: saul (Natürlich vorkommende Sequenzen in Saccha- romyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) ATAACTTCGTATA ATGTATTT TATAAGCTAATTTSEQ. ID. NO 116: saul (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATTT TATAAGCTAATTT
SEQ. ID. NO 117: sau11 (Natürlich vorkommende Sequenzen in Sac- charomyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) AAATTACGTTATA ATGTATTT TATAAGCTAATTTSEQ. ID. NO 117: sau11 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) AAATTACGTTATA ATGTATTT TATAAGCTAATTT
SEQ. ID. NO 118: sau2 (Natürlich vorkommende Sequenzen in Saccha- romyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) ATAACTTCGTATA ATGTATGA TATATGTTGGAGCSEQ. ID. NO 118: sau2 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATGA TATATGTTGGAGC
SEQ. ID. NO 119: sau21 (Natürlich vorkommende Sequenzen in Sac- charomyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) GCTCCAACATATA ATGTATGC TATATGTTGGAGC SEQ. ID. NO 120: sau3 (Natürlich vorkommende Sequenzen in Saccha- romyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen)SEQ. ID. NO 119: sau21 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) GCTCCAACATATA ATGTATGC TATATGTTGGAGC SEQ. ID. NO 120: sau3 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom)
ATAACTTCGTATA ATGTGATGA TATACCTΠTTTTATAACTTCGTATA ATGTGATGA TATACCTΠTTTT
SEQ. ID. NO 121 : sau31 (Natürlich vorkommende Sequenzen in Sac- charomyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) AAAAAAAGGTATA ATGTATGC TATACCTTTTTTTSEQ. ID. NO 121: sau31 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) AAAAAAAGGTATA ATGTATGC TATACCTTTTTT
SEQ. ID. NO 122: sau4 (Natürlich vorkommende Sequenzen in Saccha- romyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) ATAACTTCGTATA ATGTATGG AACAAGAAGGAAGSEQ. ID. NO 122: sau4 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATGG AACAAGAAGGAAG
SEQ. ID. NO 123: sau41 (Natürlich vorkommende Sequenzen in Sac- charomyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) CTTCCTTCTTGTT ATGTATGC AACAAGAAGGAAGSEQ. ID. NO 123: sau41 (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) CTTCCTTCTTGTT ATGTATGC AACAAGAAGGAAG
SEQ. ID. NO 124: sau5 (Natürlich vorkommende Sequenzen in Saccha- romyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) ATAACTTCGTATA ATGTATGG AACTCT I I I I I GTSEQ. ID. NO 124: sau5 (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATGG AACTCT I I I I GT
SEQ. ID. NO 125: sau51 (Natürlich vorkommende Sequenzen in Sac- charomyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) ACAAAAAAGAGTT ATGTATGC AACTCTTTTTTGTSEQ. ID. NO 125: sau51 (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ACAAAAAAGAGTT ATGTATGC AACTCTTTTTGT
SEQ. ID. NO 126: sauβ (Natürlich vorkommende Sequenzen in Saccha- romyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) ATAACTTCGTATA ATGTATGT TAACTTATATGGT SEQ. ID. NO 127: sau61 (Natürlich vorkommende Sequenzen in Sac- charomyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) ACCATATAAGTTA ATGTATGC TAACTTATATGGTSEQ. ID. NO 126: sow (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATGT TAACTTATATGGT SEQ. ID. NO 127: sau61 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ACCATATAAGTTA ATGTATGC TAACTTATATGGT
SEQ. ID. NO 128: sau7 (Natürlich vorkommende Sequenzen in Saccha- romyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) ATAACTTCGTATA ATGTATGT TGTCCACAGGCAASEQ. ID. NO 128: sau7 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATGT TGTCCACAGGCAA
SEQ. ID. NO 129: sau71 (Natürlich vorkommende Sequenzen in Sac- charomyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) TTGCCTGTGGACA ATGTATGC TGTCCACAGGCAASEQ. ID. NO 129: sau71 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) TTGCCTGTGGACA ATGTATGC TGTCCACAGGCAA
SEQ. ID. NO 130: sauδ (Natürlich vorkommende Sequenzen in Saccha- romyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) ATAACTTCGTATA ATGGCAAT TATACGAAGCTTGSEQ. ID. NO 130: sowδ (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGGCAAT TATACGAAGCTTG
SEQ. ID. NO 131 : sau81 (Natürlich vorkommende Sequenzen in Sac- c'naromyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) CAAGCTTCGTATA ATGTATGC TATACGAAGCTTGSEQ. ID. NO 131: sau81 (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) CAAGCTTCGTATA ATGTATGC TATACGAAGCTTG
SEQ. ID. NO 132: sau9 ((Natürlich vorkommende Sequenzen in Sac- charomyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) ATAACTTCGTATA ATGTTCCA TATAATGACCCAASEQ. ID. NO 132: sau9 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTTCCA TATAATGACCCAA
SEQ. ID. NO 133: sau91 (Natürlich vorkommende Sequenzen in Sac- charomyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) TTGGGTCATTATA ATGTATGC TATAATGACCCAA SEQ. ID. NO 134: saulO (Natürlich vorkommende Sequenzen in Sac- charomyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) ATAACTTCGTATA ATGTATGT TATCATTAATATASEQ. ID. NO 133: sau91 (naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) TTGGGTCATTATA ATGTATGC TATAATGACCCAA SEQ. ID. NO 134: SaulO (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) ATAACTTCGTATA ATGTATGT TATCATTAATATA
SEQ. ID. NO 135: sau101 (Natürlich vorkommende Sequenzen in Sac- charomyces cerevisiae (Bäckerhefe) sowie davon abgeleitete Sequenzen) TATATTAATGATA ATGTATGC TATCATTAATATASEQ. ID. NO 135: sau101 (Naturally occurring sequences in Saccharomyces cerevisiae (baker's yeast) and sequences derived therefrom) TATATTAATGATA ATGTATGC TATCATTAATATA
SEQ. ID. NO 136: M 1 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCATATA ATGTATGC TATAIGAAGTTATSEQ. ID. NO 136: M 1 (E. coli, chemically / synthetically produced) ATAACTTCATATA ATGTATGC TATAIGAAGTTAT
SEQ. ID. NO 137: M2 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTACA ATGTATGC TGTACGAAGTTATSEQ. ID. NO 137: M2 (E. coli, chemically / synthetically produced) ATAACTTCGTACA ATGTATGC TGTACGAAGTTAT
SEQ. ID. NO 138: M3 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCATACA ATGTATGC TGTAIGAAGTTATSEQ. ID. NO 138: M3 (E. coli, chemically / synthetically produced) ATAACTTCATACA ATGTATGC TGTAIGAAGTTAT
SEQ. ID. NO 139: M4 (E. coli, chemisch/synthetisch hergestellt) ATAACTTTGTATA ATGTATGC TATACAAAGTTATSEQ. ID. NO 139: M4 (E. coli, chemically / synthetically produced) ATAACTTTGTATA ATGTATGC TATACAAAGTTAT
SEQ. ID. NO 140: M5 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTGCA ATGTATGC TGCACGAAGTTATSEQ. ID. NO 140: M5 (E. coli, chemically / synthetically produced) ATAACTTCGTGCA ATGTATGC TGCACGAAGTTAT
SEQ. ID. NO 141 : M6 (E. coli, chemisch/synthetisch hergestellt) ATAACTCIGTATA ATGTATGC TATACAGAGTTATSEQ. ID. NO 141: M6 (E. coli, chemically / synthetically produced) ATAACTCIGTATA ATGTATGC TATACAGAGTTAT
SEQ. ID. NO 142: M7 (E. coli, chemisch/synthetisch hergestellt) ATAACTCTATATA ATGTATGC TATATAGAGTTAT SEQ. ID. NO 143: M8 (E. coli, chemisch/synthetisch hergestellt) ATAACTCTGTGTA ATGTATGC TACACAGAGTTATSEQ. ID. NO 142: M7 (E. coli, chemically / synthetically produced) ATAACTCTATATA ATGTATGC TATATAGAGTTAT SEQ. ID. NO 143: M8 (E. coli, chemically / synthetically produced) ATAACTCTGTGTA ATGTATGC TACACAGAGTTAT
SEQ. ID. NO 144: PM7 (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTATGC TATATAGAGTTATSEQ. ID. NO 144: PM7 (tested in vitro, chemically / synthetically prepared) ATAACTTCGTATA ATGTATGC TATATAGAGTTAT
SEQ. ID. NO 145: M7P (in vitro untersucht, chemisch/synthetisch hergestellt) ATAACTCTATATA ATGTATGC TATACGAAGTTATSEQ. ID. NO 145: M7P (tested in vitro, chemically / synthetically prepared) ATAACTCTATATA ATGTATGC TATACGAAGTTAT
SEQ. ID. NO 146: lanM2 (E. coli/H, sapiens, chemisch/synthetisch hergestellt) ATAACTTCGTATA AGAAACCA TATACGAAGTTATSEQ. ID. NO 146: lanM2 (E. coli / H, sapiens, chemically / synthetically produced) ATAACTTCGTATA AGAAACCA TATACGAAGTTAT
SEQ. ID. NO 147: lanM3 (E. coli/H, sapiens, chemisch/synthetisch hergestellt) ATAACTTCGTATA TAATACCA TATACGAAGTTATSEQ. ID. NO 147: lanM3 (E. coli / H, sapiens, chemically / synthetically produced) ATAACTTCGTATA TAATACCA TATACGAAGTTAT
SEQ. ID. NO 148: lanM7 (E. coli/H, sapiens, chemisch/synthetisch hergestellt) ATAACTTCGTATA AGATAGAA TATACGAAGTTATSEQ. ID. NO 148: lanM7 (E. coli / H, sapiens, chemically / synthetically produced) ATAACTTCGTATA AGATAGAA TATACGAAGTTAT
SEQ. ID. NO 149: lanM11 (E. coli/H, sapiens, chemisch/synthetisch hergestellt) ATAACTTCGTATA CGATACCA TATACGAAGTTATSEQ. ID. NO 149: lanM11 (E. coli / H, sapiens, chemically / synthetically produced) ATAACTTCGTATA CGATACCA TATACGAAGTTAT
SEQ. ID. NO 150: psiloxmod22 (Natürlich vorkommende Sequenzen in H. sapiens/M. musculus. Analyse in E. coli/H, sapiens) ATAACTTCGTATA ATATATAA TATACGAAGTTAT SEQ. ID. NO 151 : psiloxmodδ ((Natürlich vorkommende Sequenzen in H. sapiens/M. musculus. Analyse in E. coli/H, sapiens) ATAACTTCGTATA TGCATATA TATACGAAGTTATSEQ. ID. NO 150: psiloxmod22 (Naturally occurring sequences in H. sapiens / M. musculus, analysis in E. coli / H, sapiens) ATAACTTCGTATA ATATATAA TATACGAAGTTAT SEQ. ID. NO 151: psiloxmodδ ((Naturally occurring sequences in H. sapiens / M. musculus, analysis in E. coli / H, sapiens) ATAACTTCGTATA TGCATATA TATACGAAGTTAT
SEQ. ID. NO 152: mockloxFASI (S. cerevisiae, chemisch/synthetisch hergestellt)SEQ. ID. NO 152: mockloxFASI (S. cerevisiae, chemically / synthetically produced)
TAAGCTTCGTATA TACCTTTC TATACGAAGTTGTTAAGCTTCGTATA TACCTTTC TATACGAAGTTGT
SEQ. ID. NO 153: Iox514 (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTACGC TATACGAAGTTATSEQ. ID. NO 153: Iox514 (E. coli, chemically / synthetically produced) ATAACTTCGTATA ATGTACGC TATACGAAGTTAT
SEQ. ID. NO 154: loxsym (E. coli, chemisch/synthetisch hergestellt) ATAACTTCGTATA ATGTACAT TATACGAAGTTATSEQ. ID. NO 154: loxsym (E. coli, chemically / synthetically produced) ATAACTTCGTATA ATGTACAT TATACGAAGTTAT
SEQ. ID. NO 155: lox-psbA (Natürlich vorkommende Sequenzen in N. tabacum)SEQ. ID. NO 155: lox-psbA (Naturally occurring sequences in N. tabacum)
ATTCAACAGTATA ACATGACT TATATACTCGTGTATTCAACAGTATA ACATGACT TATATACTCGTGT
SEQ. ID. NO 156: !oxK2 (E. coli, chemisch/synthetisch hergestellt) GATACAACGTATA TACCTTTC TATACGTTGTTTASEQ. ID. NO 156:! OxK2 (E. coli, chemically / synthetically produced) GATACAACGTATA TACCTTTC TATACGTTGTTTA
SEQ. ID. NO 157: hybrid IOXH/IOXP (Analyse in E. coli, chemisch/synthetisch hergestellt (hybrid IoxH/IoxP) bzw. in H. sapiens vorkommend (loxH)) ATATATACGTATA ATGTATGC TATACGTATATATSEQ. ID. NO 157: hybrid IOXH / IOXP (analysis in E. coli, produced chemically / synthetically (hybrid IoxH / IoxP) or in H. sapiens occurring (loxH)) ATATATACGTATA ATGTATGC TATACGTATATAT
SEQ. ID. NO 158: loxH (Analyse in E. coli, chemisch/synthetisch hergestellt (hybrid IoxH/IoxP) bzw. in H. sapiens vorkommend (loxH)) ATATATACGTATA TATGTCTA TATACGTATATAT SEQ. ID. NO 159: loxLTR (Analyse in E. coli/H, sapiens, loxLTRI : natürlich vorkommend in Virus HIV-1 , alle weiteren: chemisch/synthetisch hergestellt) ACAACATCCTATT ACACCCTA TATGCCAACATGGSEQ. ID. NO 158: loxH (analysis in E. coli, produced chemically / synthetically (hybrid IoxH / IoxP) or occurring in H. sapiens (loxH)) ATATATACGTATA TATGTCTA TATACGTATATAT SEQ. ID. NO 159: loxLTR (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) ACAACATCCTATT ACACCCTA TATGCCAACATGG
SEQ. ID. NO 160: loxLTRI (Analyse in E. coli/H, sapiens, loxLTRI : natürlich vorkommend in Virus HIV-1 , alle weiteren: chemisch/synthetisch hergestellt) ACAACATCCTATT ACACCCTA AATAGGATGTTGTSEQ. ID. NO 160: loxLTRI (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) ACAACATCCTATT ACACCCTA AATAGGATGTTGT
SEQ. ID. NO 161 : loxLTRI a (Analyse in E. coli/H, sapiens, loxLTRI : natürlich vorkommend in Virus HIV-1 , alle weiteren: chemisch/synthetisch hergestellt) ACAACATCGTATA ACACCCTA TATACGATGTTGTSEQ. ID. NO 161: loxLTRI a (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) ACAACATCGTATA ACACCCTA TATACGATGTTGT
SEQ. ID. NO 162: loxLTRI b (Analyse in E. coli/H, sapiens, loxLTRI : natürlich vorkommend in Virus HIV-1 , alle weiteren: chemisch/synthetisch hergestellt) ATAACTTCCTATT ACACCCTA AATAGGAAGTTATSEQ. ID. NO 162: loxLTRI b (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) ATAACTTCCTATT ACACCCTA AATAGGAAGTTAT
SEQ. ID. NO 163: loxLTR2 (Analyse in E. coli/H, sapiens, loxLTRI : natürlich vorkommend in Virus HIV-1 , alle weiteren: chemisch/synthetisch hergestellt) CCATGTTGGCATA ACACCCTA TATGCCAACATGGSEQ. ID. NO 163: loxLTR2 (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) CCATGTTGGCATA ACACCCTA TATGCCAACATGG
SEQ. ID. NO 164: loxLTR2a (Analyse in E. coli/H, sapiens, loxLTRI : natürlich vorkommend in Virus HIV-1 , alle weiteren: chemisch/synthetisch hergestellt) CCATCTTCGTATA ACACCCTA TATACGAAGATGG SEQ. ID. NO 165: loxLTR2b (Analyse in E. coli/H, sapiens, loxLTRI : natürlich vorkommend in Virus HIV-1 , alle weiteren: chemisch/synthetisch hergestellt) ATAAGTTGGCATA ACACCCTA TATGCCAACTTATSEQ. ID. NO 164: loxLTR2a (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) CCATCTTCGTATA ACACCCTA TATACGAAGATGG SEQ. ID. NO 165: loxLTR2b (analysis in E. coli / H, sapiens, loxLTRI: naturally occurring in virus HIV-1, all others: chemically / synthetically produced) ATAAGTTGGCATA ACACCCTA TATGCCAACTTAT
SEQ. ID. NO 166: rox (Analyse in E. coli, natürlich vorkommend in Bakteriophage D6) TAACTTTAAATAAT GCCA ATTATTTAAAGTTASEQ. ID. NO 166: rox (analysis in E. coli, naturally occurring in bacteriophage D6) TAACTTTAAATAAT GCCA ATTATTTAAAGTTA
SEQ. ID. NO 167: FRT (Natürlich vorkommend in S. cerevisiae) GAAGTTCCTATAC TTTCTAGA GAATAGGAACTTCSEQ. ID. NO 167: FRT (occurring naturally in S. cerevisiae) GAAGTTCCTATAC TTTCTAGA GAATAGGAACTTC
SEQ. ID. NO 168: sch1SEQ. ID. NO 168: sch1
GAAGTTCCTATAC TATCTAGA GAATAGGAACTTCGAAGTTCCTATAC TATCTAGA GAATAGGAACTTC
SEQ. ID. NO 169: sch2SEQ. ID. NO 169: sch2
GAAGTTCCTATAC TAAGTAGA GAATAGGAACTTCGAAGTTCCTATAC TAAGTAGA GAATAGGAACTTC
SEQ. ID. NO 170: sch3SEQ. ID. NO 170: sch3
GAAGTTCCTATAC TATTTGAA GAATAGGAACTTCGAAGTTCCTATAC TATTTGAA GAATAGGAACTTC
SEQ. ID. NO 171 : sch4SEQ. ID. NO 171: sch4
GAAGTTCCTATAC CTTCTAGA GAATAGGAACTTCGAAGTTCCTATAC CTTCTAGA GAATAGGAACTTC
SEQ. ID. NO 172: sch5SEQ. ID. NO 172: sh5
GAAGTTCCTATAC CTTTTGAA GAATAGGAACTTCGAAGTTCCTATAC CTTTTGAA GAATAGGAACTTC
SEQ. ID. NO 173: FL-IL10A (Analyse in E. coli, FL-IL10A und FL-IL10B: natürlich vorkommend in H. sapiens, alle weiteren: chemisch/synthetisch hergestellt)SEQ. ID. NO 173: FL-IL10A (analysis in E. coli, FL-IL10A and FL-IL10B: naturally occurring in H. sapiens, all others: chemically / synthetically produced)
AGTGATTTGATAC TTACATGA GTAAAGGAATTAG SEQ. ID. NO 174: FL-IL10B (Analyse in E. coli, FL-IL10A und FL-IL10B: natürlich vorkommend in H. sapiens, alle weiteren: chemisch/synthetisch hergestellt)AGTGATTTGATAC TTACATGA GTAAAGGAATTAG SEQ. ID. NO 174: FL-IL10B (analysis in E. coli, FL-IL10A and FL-IL10B: naturally occurring in H. sapiens, all others: chemically / synthetically produced)
TTGTTTCCTTCGC TTTGAAAA GGAGAAGTGGGAATTGTTTCCTTCGC TTTGAAAA GGAGAAGTGGGAA
SEQ. ID. NO 175: FLRTB(I -8g) (Analyse in E. coli, FL-ILIOA und FL- IL10B: natürlich vorkommend in H. sapiens, alle weiteren: chemisch/synthetisch hergestellt) GAAGTTCCTTCGC TTTGAAAA GGAGAAGTACTTCSEQ. ID. NO 175: FLRTB (I-8g) (analysis in E. coli, FL-ILIOA and FL-IL10B: naturally occurring in H. sapiens, all others: chemically / synthetically produced) GAAGTTCCTTCGC TTTGAAAA GGAGAAGTACTTC
SEQ. ID. NO 176: FLRTB(1-10g) (Analyse in E. coli, FL-IL10A und FL- IL10B: natürlich vorkommend in H. sapiens, alle weiteren: chemisch/synthetisch hergestellt) GAATTTCCTTCGC TTTGAAAA GGAGAAGTGGTTCSEQ. ID. NO 176: FLRTB (1-10g) (analysis in E. coli, FL-IL10A and FL-IL10B: naturally occurring in H. sapiens, all others: chemically / synthetically produced) GAATTTCCTTCGC TTTGAAAA GGAGAAGTGGTTC
SEQ. ID. NO 177: tetR-FRTSEQ. ID. NO 177: tetR-FRT
ATGATGTCTAGATTAGATAAAAGTAAAGTGATTAACAGCGCATTAGA GCTGCTTAATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACTC GCCCAGAAGCTTGGTGTAGAGCAGCCTACATTGTATTGGCATGTAAATGATGTCTAGATTAGATAAAAGTAAAGTGATTAACAGCGCATTAGA GCTGCTTAATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACTC GCCCAGAAGCTTGGTGTAGAGCAGCCTACATTGTATTGGCATGTAA
AAAATAAGCGGGCCCTACTGGATGCGCTGGCGGTGGAGATCTTGGAAAATAAGCGGGCCCTACTGGATGCGCTGGCGGTGGAGATCTTGG
CGCGTCATCATGATTATTCACTGCCTGCGGCGGGGGAATCTTGGCCGCGTCATCATGATTATTCACTGCCTGCGGCGGGGGAATCTTGGC
AGTCATTTCTGCGCAATAATGCAATGAGTTTCCGCCGCGCGCTGCTAGTCATTTCTGCGCAATAATGCAATGAGTTTCCGCCGCGCGCTGCT
GCGTTACCGTGACGGGGCAAAAGTGCACCTCGGCACGCGTCCTGAGCGTTACCGTGACGGGGCAAAAGTGCACCTCGGCACGCGTCCTGA
TGAAAAACAGTATGATACGGTGGAAACCCAGTTACGCTTTATGACATGAAAAACAGTATGATACGGTGGAAACCCAGTTACGCTTTATGACA
GAAAACGGCTTTTCACTGCGCGACGGGTTATATGCGATTTCAGCGGGAAAACGGCTTTTCACTGCGCGACGGGTTATATGCGATTTCAGCGG
TCAGTCATΠTACCTTAGGTGCCGTACTGGAGCAGCAGGAGCATACTCAGTCATΠTACCTTAGGTGCCGTACTGGAGCAGCAGGAGCATAC
TGCCGCCCTGACCGACCGCCCTGCATTGAAGTTCCTATACTTTCTATGCCGCCCTGACCGACCGCCCTGCATTGAAGTTCCTATACTTTCTA
GAGAATAGGAACTTCCCGCTATTGCGGGAAGCGCTGCAGATTATGGAGAATAGGAACTTCCCGCTATTGCGGGAAGCGCTGCAGATTATG
GACAGTGATGATGGTGAGCAGGCCTTTCTGCATGGCCTGGAGAGCGACAGTGATGATGGTGAGCAGGCCTTTCTGCATGGCCTGGAGAGC
CTGATCCGGGGGTTTGAGGTGCAGCTTACGGCACTGTTGCAAATACTGATCCGGGGGTTTGAGGTGCAGCTTACGGCACTGTTGCAAATA
GTCTGA SEQ. ID. NO 178: tetR-lox72/1GTCTGA SEQ. ID. NO 178: tetR-lox72 / 1
ATGATGTCTAGATTAGATAAAAGTAAAGTGATTAACAGCGCATTAGAATGATGTCTAGATTAGATAAAAGTAAAGTGATTAACAGCGCATTAGA
GCTGCTTAATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACTCGCTGCTTAATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACTC
GCCCAGAAGCTTGGTGTAGAGCAGCCTACATTGTATTGGCATGTAAGCCCAGAAGCTTGGTGTAGAGCAGCCTACATTGTATTGGCATGTAA
AAAATAAGCGGGCCCTACTGGATGCGCTGGCGGTGGAGATCTTGGAAAATAAGCGGGCCCTACTGGATGCGCTGGCGGTGGAGATCTTGG
CGCGTCATCATGATTATTCACTGCCTGCGGCGGGGGAATCTTGGCCGCGTCATCATGATTATTCACTGCCTGCGGCGGGGGAATCTTGGC
AGTCATTTCTGCGCAATAATGCAATGAGTTTCCGCCGCGCGCTGCTAGTCATTTCTGCGCAATAATGCAATGAGTTTCCGCCGCGCGCTGCT
GCGTTACCGTGACGGGGCAAAAGTGCACCTCGGCACGCGTCCTGAGCGTTACCGTGACGGGGCAAAAGTGCACCTCGGCACGCGTCCTGA
TGAAAAACAGTATGATACGGTGGAAACCCAGTTACGCTTTATGACATGAAAAACAGTATGATACGGTGGAAACCCAGTTACGCTTTATGACA
GAAAACGGCTTTTCACTGCGCGACGGGTTATATGCGATTTCAGCGGGAAAACGGCTTTTCACTGCGCGACGGGTTATATGCGATTTCAGCGG
TCAGTCATTTTACCTTAGGTGCCGTACTGGAGCAGCAGGAGCATACTCAGTCATTTTACCTTAGGTGCCGTACTGGAGCAGCAGGAGCATAC
TGCCGCCCTGACCGACCGCCCTGCAGCCTACCGTTCGTATAGCATTGCCGCCCTGACCGACCGCCCTGCAGCCTACCGTTCGTATAGCAT
ACATTATACGAACGGTATCCCGCTATTGCGGGAAGCGCTGCAGATTACATTATACGAACGGTATCCCGCTATTGCGGGAAGCGCTGCAGATT
ATGGACAGTGATGATGGTGAGCAGGCCTTTCTGCATGGCCTGGAGATGGACAGTGATGATGGTGAGCAGGCCTTTCTGCATGGCCTGGAG
AGCCTGATCCGGGGGTTTGAGGTGCAGCTTACGGCACTGTTGCAAAGCCTGATCCGGGGGTTTGAGGTGCAGCTTACGGCACTGTTGCAA
ATAGTCTGAATAGTCTGA
SEQ. ID. NO 179: wt-tetRSEQ. ID. NO 179: wt-tetR
ATGATGTCTAGATTAGATAAAAGTAAAGTGATTAACAGCGCATTAGAATGATGTCTAGATTAGATAAAAGTAAAGTGATTAACAGCGCATTAGA
GCTGCTTAATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACTCGCTGCTTAATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACTC
GCCCAGAAGCTTGGTGTAGAGCAGCCTACATTGTATTGGCATGTAAGCCCAGAAGCTTGGTGTAGAGCAGCCTACATTGTATTGGCATGTAA
AAAATAAGCGGGCCCTACTGGATGCGCTGGCGGTGGAGATCTTGGAAAATAAGCGGGCCCTACTGGATGCGCTGGCGGTGGAGATCTTGG
CGCGTCATCATGATTATTCACTGCCTGCGGCGGGGGAATCTTGGCCGCGTCATCATGATTATTCACTGCCTGCGGCGGGGGAATCTTGGC
AGTCATTTCTGCGCAATAATGCAATGAGTTTCCGCCGCGCGCTGCTAGTCATTTCTGCGCAATAATGCAATGAGTTTCCGCCGCGCGCTGCT
GCGTTACCGTGACGGGGCAAAAGTGCACCTCGGCACGCGTCCTGAGCGTTACCGTGACGGGGCAAAAGTGCACCTCGGCACGCGTCCTGA
TGAAAAACAGTATGATACGGTGGAAACCCAGTTACGCTTTATGACATGAAAAACAGTATGATACGGTGGAAACCCAGTTACGCTTTATGACA
GAAAACGGCTTTTCACTGCGCGACGGGTTATATGCGATTTCAGCGGGAAAACGGCTTTTCACTGCGCGACGGGTTATATGCGATTTCAGCGG
TCAGTCATTTTACCTTAGGTGCCGTACTGGAGCAGCAGGAGCATACTCAGTCATTTTACCTTAGGTGCCGTACTGGAGCAGCAGGAGCATAC
TGCCGCCCTGACCGACCGCCCTGCAGCACCGGACGAAAACCTGCCTGCCGCCCTGACCGACCGCCCTGCAGCACCGGACGAAAACCTGCC
GCCGCTATTGCGGGAAGCGCTGCAGATTATGGACAGTGATGATGGGCCGCTATTGCGGGAAGCGCTGCAGATTATGGACAGTGATGATGG
TGAGCAGGCCTTTCTGCATGGCCTGGAGAGCCTGATCCGGGGGTTTGAGCAGGCCTTTCTGCATGGCCTGGAGAGCCTGATCCGGGGGTT
TGAGGTGCAGCTTACGGCACTGTTGCAAATAGTCTGA TGAGGTGCAGCTTACGGCACTGTTGCAAATAGTCTGA

Claims

Patentansprüche claims
1. Verwendung von Erkennungssequenzen für ortspezifische Re- kombinasen, wobei die Erkennungssequenzen jeweils zwei Re- kombinase-Bindungssequenzen enthalten, die durch eine Abstandssequenz getrennt sind, zur Regulierung, insbesondere Aktivierung, eines Zielgens in einem genetischen System.1. Use of recognition sequences for site-specific recombinases, wherein the recognition sequences each contain two recombinase binding sequences, which are separated by a distance sequence, for the regulation, in particular activation, of a target gene in a genetic system.
2. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass zur Regulierung des Zielgens zwei Erkennungssequenzen vorgesehen sind.2. Use according to claim 1, characterized in that two recognition sequences are provided for the regulation of the target gene.
3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Regulierung des Zielgens zwei Erkennungssequenzen vorgesehen sind, die durch eine DNA-Sequenz, insbesondere eine Gen- oder Genkassettensequenz, voneinander getrennt sind.3. Use according to claim 1 or 2, characterized in that for the regulation of the target gene two recognition sequences are provided which are separated from each other by a DNA sequence, in particular a gene or gene cassette sequence.
4. Verwendung nach Anspruch 3, dadurch gekennzeichnet, dass es sich bei der DNA-Sequenz um die Sequenz für ein Reporter- oder Markergen handelt.4. Use according to claim 3, characterized in that the DNA sequence is the sequence for a reporter or marker gene.
5. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass es sich bei den Erkennungssequenzen um Wildtypsequenzen handelt.5. Use according to one of the preceding claims, characterized in that it is the wild type sequences in the recognition sequences.
6. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei den Erkennungssequenzen um Sequenzmutanten handelt.6. Use according to any one of claims 1 to 4, characterized in that the recognition sequences are sequence mutants.
7. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eine Bindungssequenz der Erkennungssequenzen Mutationen aufweist. 7. Use according to one of the preceding claims, characterized in that at least one binding sequence of the recognition sequences has mutations.
8. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abstandssequenz Mutationen aufweist.8. Use according to one of the preceding claims, characterized in that the spacing sequence has mutations.
9. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erkennungssequenzen jeweils eine Länge von 34 bp besitzen.9. Use according to one of the preceding claims, characterized in that the recognition sequences each have a length of 34 bp.
10. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bindungssequenzen für die Re- kombinasen jeweils eine Länge von 13 bp besitzen.10. Use according to one of the preceding claims, characterized in that the binding sequences for the recombinase each have a length of 13 bp.
11. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei den Bindungssequenzen für die Rekombinasen um palindromische Sequenzen handelt.11. Use according to one of the preceding claims, characterized in that the binding sequences for the recombinases are palindromic sequences.
12. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abstandssequenz eine Länge von 8 bp besitzt.12. Use according to one of the preceding claims, characterized in that the spacing sequence has a length of 8 bp.
13. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei den Erkennungssequenzen um Erkennungssequenzen für Rekombinasen aus der Gruppe Cre-Rekombinasen, Flp-Rekombinase, Fre-Rekombinasen, Tre- Rekombinasen und Mutanten davon, vorzugsweise aus der Gruppe Cre-Rekombinasen, Flp-Rekombinasen und Mutanten davon, handelt.13. Use according to one of the preceding claims, characterized in that the recognition sequences are recognition sequences for recombinases from the group Cre recombinases, Flp recombinase, Fre recombinases, Tre recombinases and mutants thereof, preferably from the group Cre. Recombinases, Flp recombinases and mutants thereof.
14. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei den Erkennungssequen- zen um /ox-Sequenzen, insbesondere um /ox-Sequenzmutanten, handelt.14. Use according to one of the preceding claims, characterized in that it is in the Erkennungssequen- zen um / ox sequences, especially around / ox sequence mutants.
15. Verwendung nach Anspruch 14, dadurch gekennzeichnet, dass es sich bei den /ox-Sequenzmutanten um /oxP-Sequenzmutanten handelt.Use according to claim 14, characterized in that the / ox sequence mutants are / oxP sequence mutants.
16. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei den Erkennungssequenzen um zumindest eine Erkennungssequenz aus der Gruppe SEQ ID NO: 1 bis SEQ ID NO: 176 gemäß beiliegendem Sequenzprotokoll handelt.16. Use according to one of the preceding claims, characterized in that the recognition sequences are at least one recognition sequence from the group SEQ ID NO: 1 to SEQ ID NO: 176 according to the attached sequence listing.
17. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem genetischen System um ein prokaryontisches System, vorzugsweise um eine Bakterienzelle, handelt.17. Use according to one of the preceding claims, characterized in that the genetic system is a prokaryotic system, preferably a bacterial cell.
18. Verwendung eines ortspezifischen Rekombinationssystem, umfassend Erkeππuπgssequenzen nach einem der vorhergehenden Ansprüche und Rekombinasen für die Erkennungssequenzen, zur Regulierung, insbesondere Aktivierung eines Zielgens in einem genetischen System.18. Use of a site-specific recombination system, comprising Erkeππuπgssequenzen according to any one of the preceding claims and recombinases for the recognition sequences, for the regulation, in particular activation of a target gene in a genetic system.
19. Verfahren zur Regulierung, insbesondere Aktivierung, eines Zielgens in einem genetischen System, umfassend die folgenden Schritte:19. A method of regulating, in particular activating, a target gene in a genetic system, comprising the following steps:
a) Bereitstellen von zwei Erkennungssequenzen für ortspezifische Rekombinasen, wobei die Erkennungssequenzen jeweils zwei Rekombinase-Bindungssequenzen enthalten, die durch eine Abstandssequenz getrennt sind, b) Inserieren der beiden Erkennungssequenzen in das Zielgen unter Disruption des offenen Leserasters des Zielgens, c) Exprimieren einer ortspezifischen Rekombinase zur Durchführung eines Rekombinationsereignisses, wobei eine Erkennungssequenz in dem Zielgen zurückbleibt und die zurückgebliebene Erkennungssequenz zusammen mit dem Zielgen ein offenes Leseraster zur Expression eines im Wesentlichen aktiven Zielgenprodukts bildet..a) providing two recognition sequences for site-specific recombinases, the recognition sequences each containing two recombinase binding sequences separated by a spacer sequence, b) inserting the two recognition sequences into the target gene with disruption of the open reading frame of the target gene, c) expressing a site-specific recombinase for carrying out a recombination event, leaving a recognition sequence in the target gene and the remaining recognition sequence together with the target gene an open reading frame for expression of a Substantially active target gene product forms ..
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Erkennungssequenzen durch Auswahl aus einer Bibliothek von Erkennungssequenzen, insbesondere durch Auswahl aus einer Bibliothek, umfassend die Erkennungssequenzen SEQ ID NO: 1 bis SEQ ID NO: 176, bereitgestellt werden.20. Method according to claim 19, characterized in that the recognition sequences are provided by selection from a library of recognition sequences, in particular by selection from a library comprising the recognition sequences SEQ ID NO: 1 to SEQ ID NO: 176.
21. Verfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass die Erkennungssequenzen in Form einer erkennungsse- quenz-flankierten DNA-Sequenz, vorzugsweise in Form einer er- kennungssequenz-flankierten Genkassettensequenz, in das Zielgen inseriert werden.21. Process according to claim 19 or 20, characterized in that the recognition sequences are inserted into the target gene in the form of a recognition sequence-flanked DNA sequence, preferably in the form of a recognition sequence-flanked gene cassette sequence.
22. Verfahren nach einem der Ansprüche 19 bis 21 , dadurch gekennzeichnet, dass die Rekombinase durch Transformation oder Transfektion des genetischen Systems mit einem Vektor, kodierend für die Rekombinase, exprimiert wird. 22. The method according to any one of claims 19 to 21, characterized in that the recombinase is expressed by transformation or transfection of the genetic system with a vector encoding the recombinase.
PCT/EP2009/007148 2008-10-06 2009-10-06 Location-specific recombination for activating genes in genetic systems WO2010040496A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008051708.9 2008-10-06
DE102008051708A DE102008051708A1 (en) 2008-10-06 2008-10-06 Site-specific recombination for gene activation in genetic systems

Publications (2)

Publication Number Publication Date
WO2010040496A2 true WO2010040496A2 (en) 2010-04-15
WO2010040496A3 WO2010040496A3 (en) 2010-11-04

Family

ID=41795163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/007148 WO2010040496A2 (en) 2008-10-06 2009-10-06 Location-specific recombination for activating genes in genetic systems

Country Status (2)

Country Link
DE (1) DE102008051708A1 (en)
WO (1) WO2010040496A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058488A2 (en) * 1999-03-31 2000-10-05 Invitrogen Corporation Delivery of functional protein sequences by translocating polypeptides

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140030C1 (en) * 2001-08-16 2002-12-19 Gsf Forschungszentrum Umwelt Method for performing multiple recombination events in a genetic system, useful e.g. for removing antibiotic resistance genes, uses mutant recombinase recognition sites

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058488A2 (en) * 1999-03-31 2000-10-05 Invitrogen Corporation Delivery of functional protein sequences by translocating polypeptides

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHENG TZU-HAO ET AL: "Controlling gene expression in yeast by inducible site-specific recombination" NUCLEIC ACIDS RESEARCH, Bd. 28, Nr. 24, Dezember 2000 (2000-12), XP002580124 ISSN: 0305-1048 *
HUANG Z JOSH ET AL: "Cre/loxP recombination-activated neuronal markers in mouse neocortex and hippocampus" GENESIS THE JOURNAL OF GENETICS AND DEVELOPMENT, Bd. 32, Nr. 3, März 2002 (2002-03), Seiten 209-217, XP002580123 ISSN: 1526-954X *
SPIOTTO M T ET AL: "Floxed reporter genes: Flow-cytometric selection of clonable cells expressing high levels of a target gene after tamoxifen-regulated Cre-loxP recombination" JOURNAL OF IMMUNOLOGICAL METHODS, ELSEVIER SCIENCE PUBLISHERS B.V.,AMSTERDAM, NL LNKD- DOI:10.1016/J.JIM.2006.02.016, Bd. 312, Nr. 1-2, 30. Mai 2006 (2006-05-30), Seiten 201-208, XP025158186 ISSN: 0022-1759 [gefunden am 2006-05-30] *
ZHU HUAN-ZHANG ET AL: "Conditional gene activation in cultured hepatocytes using a ligand-dependent chimeric Cre recombinase." SHENGWU HUAXUE YU SHENGWU WULI XUEBAO, Bd. 35, Nr. 5, Mai 2003 (2003-05), Seiten 435-440, XP002580122 ISSN: 0582-9879 *

Also Published As

Publication number Publication date
DE102008051708A1 (en) 2010-04-08
WO2010040496A3 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
DE69027526T3 (en) PREPARATION OF PROTEINS BY HOMOLOGOUS RECOMBINATION
DE60121372T2 (en) METHODS OF MODIFYING EUKARYOTIC CELLS
DE3546806C2 (en)
DE60221801T2 (en) CPG-FREE SYNTHETIC GENES AND BACTERIAL PLASMIDES
DE69636878T2 (en) Circular DNA molecule with a dependent origin of replication, its production methods and its use in gene therapy
DE69636032T2 (en) PLASMIDE FOR THE ADMINISTRATION OF NUCLEIC ACIDS AND METHOD OF USE
EP1214440B1 (en) Sequence-specific dna recombination in eukaryotic cells
DE102011118018B4 (en) Minicircles with transposition cassettes and their use for transforming cells
DE60036297T2 (en) CONDITIONAL 'GENE TRAPPING' CONSTRUCTION FOR THE INTERRUPTION OF GENES
EP2205767B1 (en) Method for determining frameshift mutations in coding nucleic acids
AT412400B (en) MINI CIRCLE MANUFACTURING
WO1999020780A1 (en) Positive-negative selection for homologous recombination
DE60113159T2 (en) MODIFIED RECOMBINATION
WO2010040496A2 (en) Location-specific recombination for activating genes in genetic systems
EP2625275A1 (en) Methods for semi-synthetically producing highly pure minicircle dna vectors from plasmids
WO2008155306A1 (en) Nucleic acid constructs for the inactivation and conditional mutagenesis of genes
DE19851415A1 (en) New transactivator containing mutant tetracycline repressor, useful e.g. as pharmaceutical and for regulation of gene expression, has amino acids exchanged at selected sites
EP1275736B1 (en) Method for detection of frameshift mutations
DE69731970T2 (en) IN VIVO RECOMBINATION
EP1288295A2 (en) Use of mutated recognition sites for multiple successive recombinase-mediated recombinations in a genetic system
DE60315179T2 (en) A method of inserting a nucleic acid into a prokaryotic or eukaryotic cell by homologous recombination
WO2003070941A2 (en) Method for the identification of tissue-specific regulatory sequences
EP0939125A2 (en) Expression vector for the conditional regulation of expression of the large subunit of polymerase II
DE19956513A1 (en) Resolvase-catalyzed, sequence-specific DNA recombination in eukaryotic cells
WO2003076618A1 (en) Reversible toxin and the use thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09736138

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 09736138

Country of ref document: EP

Kind code of ref document: A2