WO2010038733A1 - Resin composition for adhesive agent, adhesive agent and adhesive sheet each comprising same, and laminate for print circuit board adhered by using same - Google Patents

Resin composition for adhesive agent, adhesive agent and adhesive sheet each comprising same, and laminate for print circuit board adhered by using same Download PDF

Info

Publication number
WO2010038733A1
WO2010038733A1 PCT/JP2009/066935 JP2009066935W WO2010038733A1 WO 2010038733 A1 WO2010038733 A1 WO 2010038733A1 JP 2009066935 W JP2009066935 W JP 2009066935W WO 2010038733 A1 WO2010038733 A1 WO 2010038733A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
acid
adhesive
resin composition
polyester resin
Prior art date
Application number
PCT/JP2009/066935
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 田中
武 伊藤
達也 粟田
慎太郎 南原
武久 家根
裕子 麻田
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to JP2009554800A priority Critical patent/JP5126239B2/en
Publication of WO2010038733A1 publication Critical patent/WO2010038733A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • C08F299/0485Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters from polyesters with side or terminal unsaturations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/10Polycondensates containing more than one epoxy group per molecule of polyamines with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/08Epoxidised polymerised polyenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive

Definitions

  • the present invention provides adhesion to various plastic films, adhesion to metals such as copper, aluminum, and stainless steel, adhesion to glass epoxy, high-temperature heat resistance that can cope with lead-free solder, and FPC for HDD drive.
  • Resin composition that can maintain the adhesive strength under high temperature and high humidity that can be used for various adhesives, secure the sheet life of the B-stage adhesive sheet that can also be used at room temperature, and an adhesive containing the same And a laminated body bonded using the same.
  • adhesives for circuit boards including flexible printed wiring boards for example, epoxy / acryl butadiene adhesives, epoxy / polyvinyl butyral adhesives, and the like are used.
  • FPC flexible printed wiring boards
  • epoxy / acryl butadiene adhesives epoxy / polyvinyl butyral adhesives
  • solder heat resistance is required, but in recent years, heat resistance at higher temperatures (the adhesive layer does not peel or swell) is required to support lead-free solder.
  • Conventionally used epoxy / acryl butadiene adhesives and epoxy / polyvinyl butyral adhesives cannot satisfy the required performance.
  • HDD hard disk drive
  • a strong shearing force is applied to the bonding interface.
  • the environment in which adhesives are actually used has become severe, such as the number of motor rotations and the internal temperature of HDDs increasing.
  • high temperature and high humidity conditions such as 60 ° C. and 90% relative humidity.
  • conventionally used epoxy / acryl butadiene adhesives and epoxy / polyvinyl butyral adhesives cannot satisfy the required performance.
  • the adhesive is often stored, distributed, and sold once as a semi-cured (B stage) sheet. Therefore, in the B stage, it is required to ensure the sheet life, and high curing reactivity is required during actual use (when the B stage adhesive sheet and the base material are bonded).
  • FPC adhesive sheets are often refrigerated and the sheet life is secured even with epoxy / acryl butadiene adhesives and epoxy / polyvinyl butyral adhesives.
  • epoxy / acryl butadiene adhesives and epoxy / polyvinyl butyral adhesives.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-313526. Gazette (Patent Document 2), JP-A-2005-139387 (Patent Document 3), JP-A-2005-139391 (Patent Document 4)).
  • the problem of the present invention is to improve each of the problems that these conventional adhesives have, specifically adhesion to various plastic films, adhesion to metals such as copper, aluminum and stainless steel, Adhesiveness to glass epoxy, high-temperature heat resistance that can handle lead-free solder, maintenance of adhesive strength under high-temperature and high-humidity conditions that can also be used for HDD drive FPC adhesives, and B stage that can also be used at room temperature It is in providing the resin composition which can achieve the sheet life ensuring of the adhesive sheet and the above, the adhesive agent containing this, and the laminated body adhere
  • the present invention includes a resin composition containing the following resin composition, an adhesive containing the resin composition, an adhesive sheet, a laminate for a printed wiring board bonded using the same, and a printed wiring board comprising the laminate as the constituent elements described on the left It is.
  • a polyurethane resin (d) having an acid value of 100 equivalents / 10 6 g or more and 1000 equivalents / 10 6 g or less,
  • An epoxy compound (e) having a dicyclopentadiene structure, Containing 10 mass% or more and 60 mass% or less of the radical polymerizable monomer is maleic anhydride,
  • the glass transition temperature Tg (c) of the resin (c) is 0
  • the glass transition temperature Tg (d) of the resin (d) is ⁇ 10 ° C. or higher and 60 ° C. or lower
  • the relationship between Tg (c) and Tg (d) is the following formula (1) 50 ⁇ Tg (c) ⁇ Tg (d) ⁇ 5 (1)
  • the resin composition for adhesives satisfy
  • the aromatic acid component is 30 mol% or more, and the acid component and the radical polymerizable site including a radical polymerizable site
  • the resin composition as described in (1) above, wherein the total of glycol components contained is 0.5 mol% or more and 20 mol% or less.
  • the polymer (b) is composed of a part derived from the monomer constituting the resin (a) with respect to the resin (a), the polymer (b) and the resin (c) as a whole.
  • the resin composition according to (1), wherein the ratio of the monomer-derived portion to the monomer is 10/90 or more and 99/1 or less in terms of mass ratio.
  • the plurality of plate-like bodies and / or foil-like bodies are made of one or more materials selected from the group consisting of polyester resins, polyimide resins, polyamideimide resins, copper, aluminum, glass epoxy, and stainless steel.
  • adhesion to various plastic films adhesion to metals such as copper, aluminum, and stainless steel, adhesion to glass epoxy, high-temperature heat resistance capable of dealing with lead-free solder, HDD Containing a resin composition capable of maintaining the adhesive strength under high temperature and high humidity that can be used for FPC adhesives for drives, ensuring the sheet life of the B stage adhesive sheet that can also be used at room temperature, and the above. And a laminated body bonded using the adhesive can be obtained.
  • the resin composition of the present invention mainly comprises a modified polyester resin modified with a polymer of a radical polymerizable monomer (hereinafter referred to as a modified polyester resin), a polyurethane resin, and an epoxy compound, and the radical polymerizable monomer. And a non-modified polyester resin. It is essential that the modified polyester resin and polyurethane resin have an acid value by introducing a carboxyl group, an anhydrous carboxyl group or the like into the resin skeleton. If it does not have an acid value, a crosslinking reaction with the epoxy compound does not occur, so that a tough cured coating film cannot be obtained and a high adhesive force cannot be obtained.
  • the acid value of the polyurethane resin used in the present invention is 100 equivalents / 10 6 g or more and 1,000 equivalents / 10 6 g or less.
  • the acid value is less than 100 equivalents / 10 6 g, the adhesion to the metal-based substrate tends to be insufficient.
  • the acid value exceeds 1,000 equivalents / 10 6 g, the urethane reaction during the production of the polyurethane resin may be slow, and the solution viscosity may be increased, resulting in poor productivity. It is also expected to adversely affect the durability of the ester bond.
  • the lower limit of the acid value is preferably 150 equivalents / 10 6 g, more preferably the lower limit of the acid value is 200 equivalents / 10 6 g, and still more preferably the lower limit of the acid value is 400 equivalents / 10 6 g.
  • a preferred upper limit is 900 equivalents / 10 6 g, a more preferred upper limit is 800 equivalents / 10 6 g, and a more preferred upper limit is 700 equivalents / 10 6 g.
  • the acid value said here shows the equivalent number of carboxylic acid contained per 10 6 g of resin.
  • a carboxyl group can be introduced into the molecular skeleton of the polyurethane resin to give an acid value.
  • a resin composition consisting only of a polyurethane resin and an epoxy compound (hereinafter referred to as polyurethane resin / epoxy compound)
  • the adhesion to various substrates at normal temperature is good.
  • seat of a semi-hardened state (B stage) even if it bonds together to a base material after storing for 3 months at room temperature, without refrigerated storage, high adhesive performance is shown.
  • the adhesive layer swells and the heat resistance is insufficient.
  • the adhesive is stored at high temperature and high humidity (40 ° C., relative humidity 80%) for 2 days and then undergoes a solder reflow process (260 ° C.), it is sufficient for the stress due to rapid evaporation of water contained in the adhesive.
  • the resin cannot be resisted, and the resin peels off from the substrate. This is presumably due to the low heat resistance derived from the polyurethane resin skeleton and the hygroscopicity derived from the urethane bond.
  • the resin system is a modified polyester resin / polyurethane resin / epoxy compound ternary system, and the modified polyester resin is used.
  • the lead-free solder is used while controlling the acid value of the polyurethane resin, the glass transition temperature, and further controlling the skeleton of the epoxy compound to maintain the adhesiveness at room temperature and the B sheet life. It has been found that there is no swelling in the solder reflow process (260 ° C.), and even when examined as an FPC adhesive for HDD (examination of adhesion performance at 90 ° C. relative humidity 90%), peeling of the adhesive interface can be suppressed.
  • the role of the modified polyester resin is to impart high heat resistance (260 ° C.) and maintain adhesive performance at high temperature and high humidity (60 ° C. relative humidity 90%).
  • the modified polyester resin is produced by copolymerizing a monomer containing a radical polymerizable moiety such as a double bond with the polyester resin, and radically reacting the radical polymerizable monomer in the organic solvent solution.
  • a modified polyester resin graft-modified with a polymer of a radical polymerizable monomer can be easily obtained.
  • 10 mass% or more and 60 mass% or less of a radically polymerizable monomer is maleic anhydride.
  • Carboxylic anhydride is more reactive with epoxy compounds than carboxyl groups.
  • a modified polyester resin having an anhydride carboxyl group with high acid value and high reactivity with an epoxy compound and an epoxy compound produce a crosslinked structure having a high crosslinking density, and then a relatively crosslinking density with a polyurethane resin and an epoxy compound. It is assumed that a small cross-linked structure is generated.
  • a portion having a high crosslinking density composed of a modified polyester resin and an epoxy compound has high heat resistance and can withstand a solder reflow process at 260 ° C.
  • the adhesive is stored for 2 days under high temperature and high humidity (40 ° C. relative humidity 80%) and then undergoes a solder reflow process (260 ° C.), peeling from the substrate does not occur. This is presumed that the part of the cross-linked structure consisting of polyurethane resin and epoxy compound with a relatively low cross-linking density plays the role of a soft segment and can relieve stress due to rapid evaporation of moisture contained in the adhesive. .
  • the acid value of the modified polyester resin by the polymer of the radical polymerizable monomer is preferably 400 to 8,500 equivalent / 10 6 g. More preferably, it is 650 to 7,000 equivalent / 10 6 g, and still more preferably 900 to 5,500 equivalent / 10 6 g. If the acid value is less than 400 equivalents / 10 6 g, the adhesion to the metal-based substrate tends to be insufficient. Furthermore, since the crosslinking density is small, when blended with a polyurethane resin, the lack of heat resistance of polyurethane may not be compensated.
  • 10 mass% or more and 60 mass% or less of the radical polymerizable monomer in the present invention is maleic anhydride.
  • they are 20 to 55 mass%, More preferably, they are 30 to 50 mass%.
  • maleic anhydride a carboxylic anhydride group highly reactive with an epoxy compound can be easily introduced into the modified polyester resin.
  • maleic anhydride is 10% by mass or less of the radical polymerizable monomer, the reaction between the modified polyester resin and the epoxy compound does not proceed faster than the reaction between the polyurethane resin and the epoxy compound. In the coating film, the non-uniformity is small and the required performance is not easily expressed.
  • radically polymerizable monomers an electron-withdrawing group is adjacent to the unsaturated bond site, and the charge of the unsaturated group and the radical generated therefrom is biased to be positive.
  • a radical polymerizable monomer having an electron donating group adjacent to the unsaturated bond site may be used.
  • vinyl radical polymerizable monomers such as styrene, ⁇ -methylstyrene, t-butylstyrene, and N-vinylpyrrolidone can be used.
  • Vinyl esters such as vinyl acetate, vinyl ethers such as vinyl butyl ether and vinyl isobutyl ether, allylic radical polymerizable monomers such as allyl alcohol, glycerol monoallyl ether, pentaerythritol monoallyl ether, trimethylolpropane monoallyl ether, Butadiene and the like, and one or a mixture of two or more of these are used.
  • a vinyl radical polymerizable monomer such as styrene. Therefore, in order to suppress the unreacted product of maleic anhydride, it is essential to copolymerize a radical polymerizable monomer such as styrene, and it is not preferable to use 60% by mass or more.
  • the acid value of the dry coating film of the modified polyester resin by the polymer of the radical polymerizable monomer is AV (c) (equivalent / 10 6 g)
  • the acid value of the polyurethane resin is AV (d) (equivalent / In the case of 10 6 g)
  • AV (c) -AV (d) is 200 or more and 8,000 or less, preferably 300 or more and 6,500 or less, more preferably 400 or more and 5,000 or less.
  • the modified polyester resin of the present invention a polymer of a radically polymerizable monomer having an anhydrous carboxyl group that is highly reactive with an epoxy compound is chemically bonded to the polyester resin by a graft reaction.
  • the loss tangent peak is a broad peak including 130 to 150 ° C, which is the loss tangent peak of the cured film of the epoxy compound alone, and has high adhesive performance in a wide temperature range. Can be shown.
  • the glass transition temperature of the polyurethane resin is required.
  • a modified polyester resin having a high glass transition temperature may be used.
  • the glass transition temperature of the polyurethane resin used in the present invention is ⁇ 10 to 60 ° C.
  • the adhesiveness at high temperatures tends to be insufficient.
  • the glass transition temperature exceeds 60 ° C., the melt viscosity becomes high, so that the bonding with the base material in the B-stage state becomes insufficient, causing a decrease in peel strength.
  • the elastic modulus at normal temperature is increased, the peel strength at normal temperature is decreased.
  • the lower limit of the preferable glass transition temperature is ⁇ 5 ° C.
  • the lower limit of the more preferable glass transition temperature is 0 ° C.
  • the lower limit of the more preferable glass transition temperature is 5 ° C.
  • a preferred upper limit is 55 ° C, a more preferred upper limit is 50 ° C, and a more preferred upper limit is 45 ° C.
  • Methods for controlling the glass transition temperature include a method for controlling the glass transition temperature of the constituent polyester diol and a method for controlling the content of polyisocyanate constituting the polyurethane resin.
  • the glass transition temperature of the coating film of the modified polyester resin is 0 to 80 ° C., preferably 5 to 75 ° C., more preferably 10 to 70 ° C.
  • the heat resistance of the cured coating film reacted with the curing agent is small, and the adhesiveness at high temperatures is poor.
  • the seat life is deteriorated.
  • the temperature exceeds 80 ° C., the melt viscosity of the resin is high even after modification, and the bonding with the base material in the B-stage state becomes insufficient, resulting in a decrease in peel strength.
  • the elastic modulus at normal temperature is increased, the peel strength at normal temperature is decreased.
  • Tg (c) glass transition temperature of the dried coating film of the modified polyester resin
  • Tg (d) glass transition temperature of the polyurethane resin
  • Tg (c) ⁇ Tg (d) is 5 It is not lower than 50 ° C. and preferably not higher than 7 ° C. and not higher than 45 ° C., more preferably not lower than 10 ° C. and not higher than 40 ° C.
  • Tg (c) -Tg (d) is 5 ° C. or lower, the adhesiveness in a wide temperature range from room temperature to high temperature cannot be maintained.
  • the heat resistance in the solder reflow temperature range is insufficient for polyurethane resins / epoxy compounds, and it can be compensated by blending modified polyester.
  • the heat resistance becomes insufficient.
  • modified polyester is highly reactive with epoxy compound-based curing agents, and the B-stage sheet life is poor with a single resin system. Life can be improved.
  • the modified polyester itself modified with a radically polymerizable monomer cannot secure stability unless the glass transition temperature is raised.
  • Tg (c) -Tg (d) is 5 ° C. or lower, The combined effect of is insufficient.
  • Tg (c) -Tg (d) is 50 ° C. or higher, an effect of improving the sheet life is seen, but the adhesiveness in a wide temperature range is not obtained.
  • the adhesive performance can be maintained at high heat resistance (260 ° C.) and high temperature and high humidity (60 ° C. relative humidity 90%). It becomes lower than the resin / epoxy compound system and the modified polyester resin / polyurethane resin / epoxy compound system. If the substrate is a material that is difficult to adhere, such as a glossy surface of an aluminum plate or copper foil, it may not be practical.
  • the resin composition of the present invention contains an epoxy compound having a dicyclopentadiene structure.
  • a cured coating film composed of an epoxy compound having a dicyclopentadiene skeleton is highly hydrophobic and has a very low moisture absorption rate, and is therefore effective in maintaining adhesive performance at high temperature and high humidity (60 ° C. relative humidity 90%).
  • the dicyclopentadiene skeleton is bulky, the distance between glycidyl groups in the compound is large, and there is an effect of lowering the crosslinking density of the cured coating film.
  • the adhesive is subjected to high temperature and high humidity (40 ° C., relative humidity 80%).
  • glycidyl ether type such as bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, novolak glycidyl ether, brominated bisphenol A diglycidyl ether, glycidyl ester type such as hexahydrophthalic acid glycidyl ester, dimer acid glycidyl ester, triglycidyl Glycidylamine such as isocyanurate, tetraglycidyldiaminodiphenylmethane, or alicyclic or aliphatic epoxide such as 3,4-epoxycyclohexylmethylcarboxylate, epoxidized polybutadiene, epoxidized soybean oil, or tetraglycidyldiaminodiphenylmethane, triglycidylparaamino Phenol, tetraglycidylbisaminomethylcyclohexan
  • Glycidylamines such as N, N, N ′, N′-tetraglycidyl-m-xylenediamine have a catalytic amino group in the skeleton, so that the curing speed is high and a stable B-stage state can be obtained. it can.
  • the compounding amount of the epoxy compound is preferably 5 to 30 parts by mass with respect to 100 parts by mass of the polyurethane resin and the modified polyester resin. If it is this range, since the balance of the reaction point of polyester and an epoxy compound suits, strong adhesive performance can be obtained.
  • the polyester resin containing a radical polymerizable moiety preferably has an aromatic acid content of 30 mol% or more, more preferably 45, when the total amount of all acid components in the polyester resin composition is 100 mol%. It is at least mol%, more preferably at least 60 mol%.
  • aromatic acid is 30 mol% or less, the cohesive strength of the coating film made of resin and the coating film made of resin / curing agent is weak, and a decrease in the adhesive strength to various substrates is observed.
  • aromatic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, diphenic acid, and 5-hydroxyisophthalic acid.
  • aromatic compounds having a sulfonic acid group such as sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5- (4-sulfophenoxy) isophthalic acid, sulfoterephthalic acid, etc.
  • Group dicarboxylic acid metal salt of sulfoterephthalic acid, ammonium salt, metal salt of 5-sulfoisophthalic acid, ammonium salt, metal salt of 4-sulfophthalic acid, ammonium salt, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5 -(4-sulfophenoxy) isophthalic acid metal salt, ammonium salt, sulfoterephthalic acid metal salt, aromatic dicarboxylic acid having a sulfonate group such as ammonium salt, p-hydroxybenzoic acid, p-hydroxyphenylpropionic acid, p-hydroxyphenylacetic acid, 6-hydroxy-2-naphthoic acid And aromatic oxycarboxylic acids such as 4,4-bis (p-hydroxyphenyl) valeric acid.
  • terephthalic acid, isophthalic acid, and a mixture thereof are particularly preferable in terms of increasing the cohesive strength of the coating film.
  • acid components other than aromatic acids include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and alicyclic dicarboxylic acids such as acid anhydrides thereof, and succinic acid.
  • aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid and dimer acid.
  • the glycol component is preferably composed of an aliphatic glycol, an alicyclic glycol, an aromatic-containing glycol, an ether bond-containing glycol, or the like.
  • aliphatic glycols include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neo Pentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, hydroxypivalic acid neopentyl glycol ester Dimethylol heptane, 2,2,4-trimethyl-1,3-pentanediol, and the like.
  • Examples of alicyclic glycols include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, tricyclodecandiol, tricyclodecane dimethylol, spiroglycol, hydrogenated bisphenol. And ethylene oxide adduct and propylene oxide adduct of hydrogenated bisphenol A.
  • Examples of ether bond-containing glycols include diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, neopentyl. Glycol ethylene oxide adducts and neopentyl glycol propylene oxide adducts can also be used if necessary.
  • aromatic-containing glycols examples include para-xylene glycol, meta-xylene glycol, ortho-xylene glycol, 1,4-phenylene glycol, 1,4-phenylene glycol ethylene oxide adduct, bisphenol Obtained by adding 1 to several moles of ethylene oxide or propylene oxide to two phenolic hydroxyl groups of bisphenols such as ethylene oxide adduct and propylene oxide adduct of bisphenol A and bisphenol A
  • Examples include glycols.
  • an oxycarboxylic acid compound having a hydroxyl group and a carboxyl group in the molecular structure can also be used as a raw material for polyester, such as 5-hydroxyisophthalic acid, p-hydroxybenzoic acid, p-hydroxyphenethyl alcohol, p- Examples thereof include hydroxyphenylpropionic acid, p-hydroxyphenylacetic acid, 6-hydroxy-2-naphthoic acid, 4,4-bis (p-hydroxyphenyl) valeric acid and the like.
  • polyester resin used in the present invention when the total molar amount of all acid components and all glycol components constituting the polyester resin is 200% for the purpose of introducing a branched skeleton into the polyester resin as necessary, 0% .
  • About 3 to 5 mol% of tri- or higher functional polycarboxylic acids and / or polyols may be copolymerized.
  • a cured coating film is obtained by reacting with a curing agent, by introducing a branched skeleton, the terminal group concentration (reaction point) of the resin is increased, and a strong coating film having a high crosslinking density can be obtained.
  • tri- or higher functional polycarboxylic acids examples include trimellitic acid, trimesic acid, ethylene glycol bis (anhydro trimellitate), glycerol tris (anhydro trimellitate), trimellitic anhydride, pyromellitic anhydride Acid (PMDA), oxydiphthalic dianhydride (ODPA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride Anhydride (BPDA), 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 2, Compounds such as 2′-bis [(dicarboxyphenoxy) phenyl] propane dianhydride (BSAA) can be used.
  • PMDA oxydi
  • the total acid component or the total glycol component is 0.1 to 5 mol%, preferably 0.5 to 3 mol%. Copolymerization is good, and if it exceeds 5 mol%, mechanical properties such as elongation at break of the coating film may be lowered, and gelation may occur during polymerization.
  • the polyester resin used in the present invention when the total molar amount of all acid components and all glycol components constituting the polyester resin is set to 200% for the purpose of introducing a carboxyl group at the end of the polyester resin as necessary, it is 0.
  • An acid addition of about 1 to 10 mol% can be performed.
  • a monocarboxylic acid, a dicarboxylic acid, or a polyfunctional carboxylic acid compound is used for the acid addition, the molecular weight is reduced by transesterification. Therefore, it is preferable to use an acid anhydride.
  • Acid anhydrides include succinic anhydride, maleic anhydride, orthophthalic acid, 2,5-norbornene dicarboxylic acid anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride (PMDA), oxydiphthalic dianhydride (ODPA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride (BPDA), 3,3 ′ , 4,4′-Diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 2,2′-bis [(dicarboxyphenoxy) Compounds such as phenyl] propane dianhydride (BSAA) can be used.
  • PMDA oxydiphthal
  • the acid addition includes a method of directly performing in a bulk state after the polyester polycondensation and a method of adding the polyester in a solution.
  • the reaction in the bulk state is fast, but if it is added in a large amount, gelation may occur, and since it becomes a reaction at a high temperature, care must be taken such as blocking oxygen gas to prevent oxidation.
  • the addition in the solution state is slow, but a large amount of carboxyl groups can be stably introduced.
  • PMDA pyromellitic anhydride
  • ODPA oxydiphthalic dianhydride
  • BTDA 4,4′-benzophenonetetracarboxylic dianhydride
  • BPDA 4,4′- Diphenyltetracarboxylic dianhydride
  • DSDA 4,4′-diphenylsulfonetetracarboxylic dianhydride
  • 6FDA 2,2′-bis [(dicarboxyphenoxy) phenyl] propane dianhydride
  • BSAA 2,2′-bis [(dicarboxyphenoxy) phenyl] propane dianhydride
  • a polymer of a radical polymerizable monomer in particular, pyromellitic anhydride (PMDA), 3,3 ′, 4,4′- Use of benzophenone tetracarboxylic dianhydride (BTDA) or 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride (BPDA) is effective.
  • PMDA pyromellitic anhydride
  • BTDA benzophenone tetracarboxylic dianhydride
  • BPDA 4,4′-diphenyltetracarboxylic dianhydride
  • examples of the radical polymerizable moiety include an unsaturated bond and a tertiary carbon that easily generates a radical by hydrogen abstraction.
  • the radical polymerizable moiety is efficiently modified with a polymer of a radical polymerizable monomer.
  • it is effective to introduce a polymerizable unsaturated bond into the resin constituting the main chain and to carry out a graft reaction with a radically polymerizable monomer.
  • the introduction of an unsaturated bond can be achieved by copolymerizing an acid component and / or a glycol component having an unsaturated bond.
  • dicarboxylic acids containing polymerizable unsaturated bonds include ⁇ , ⁇ -unsaturated dicarboxylic acids such as fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, etc. containing unsaturated double bonds
  • dicarboxylic acids containing polymerizable unsaturated bonds include ⁇ , ⁇ -unsaturated dicarboxylic acids such as fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, etc. containing unsaturated double bonds
  • the alicyclic dicarboxylic acid include 2,5-norbornene dicarboxylic acid anhydride and tetrahydrophthalic anhydride. Of these, fumaric acid and itaconic acid are particularly preferable in terms of high thermal stability at the time of polyester polymerization and high activity for radical polymerization reaction.
  • glycols containing a polymerizable unsaturated bond examples include glycerin monoallyl ether, trimethylolpropane monoallyl ether, pentaerythritol monoallyl ether, and the like.
  • the copolymerization amount of the monomer containing a polymerizable unsaturated double bond is preferably 0.5 to 20 mol% when the total molar amount of all acid components and all glycol components constituting the polyester resin is 200%, More preferably, it is 1.5 to 15 mol%, further preferably 2.5 to 10 mol%, and most preferably 3 to 7 mol%.
  • the monomer containing a polymerizable unsaturated double bond exceeds 20 mol%, a gelation reaction tends to occur in the graft reaction step, the insoluble matter content increases, and the production stability and workability deteriorate.
  • the amount when the amount is 0.5 mol% or less, the graft reaction is insufficient, unreacted polyester exists, and the molecular weight of the resin after radical reaction does not increase. Therefore, it does not have high heat resistance and adhesiveness under high temperature and high humidity. .
  • the amount of the titanium compound as a polymerization catalyst contained in the polyester resin used in the present invention is preferably 10 to 200 ppm, more preferably 15 to 100 ppm, still more preferably 20 to 80 ppm as titanium atoms in the polyester resin. is there. If it is 10 ppm or less, the activity is extremely lowered when used as a catalyst, which is not preferable. If it is 200 ppm or more, the water resistance, heat resistance, and color tone of the coating film tend to decrease, such being undesirable.
  • Titanium compounds used as a polymerization catalyst when polymerizing the polyester resin used in the present invention include tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutyl titanate, tetra-tert-butyl titanate, Examples include tetracyclohexyl titanate, tetraphenyl titanate, tetrabenzyl titanate and the like, and the use of tetra-n-butyl titanate is particularly preferable.
  • the polyester resin used in the present invention is a polymerization catalyst such as an antimony compound, germanium compound, tin compound, aluminum compound, and the addition of these components causes problems in the water resistance, heat resistance, color tone, etc. of the coating film.
  • a polymerization catalyst such as an antimony compound, germanium compound, tin compound, aluminum compound, and the addition of these components causes problems in the water resistance, heat resistance, color tone, etc. of the coating film.
  • a radical polymerization inhibitor is allowed to coexist when the polyester resin used in the present invention is polymerized and in the resin composition of the present invention.
  • the amount thereof is 10 to 800 ppm, more preferably 100 to 400 ppm as a radical polymerization inhibitor molecule in the polyester resin. If it is 10 ppm or less, the possibility of gelation by double bond cleavage increases, and it may be difficult to produce a high molecular weight polyester resin. If it is 800 ppm or more, the polyester resin may be colored, the color tone of the coating film may be lowered and the appearance may be impaired, and the radical reactivity may be lowered.
  • the radical polymerization inhibitor used in the present invention is mainly used to prevent gelation by double bond cleavage when polymerizing a polyester resin, and further to improve the curability of the paint. In order to enhance the properties, it may be added after polymerization.
  • radical polymerization inhibitors include known antioxidants such as phenolic antioxidants, phosphorus antioxidants, amine antioxidants, sulfur antioxidants, and inorganic compound antioxidants.
  • phenolic antioxidants examples include 2,5-di-t-butylhydroquinone, 4,4′-butyldenbis (3-methyl-6-t-butylphenol), 1,1,3-tris (2-methyl-4 -Hydroxy-5-tert-butylphenyl) butane, 1,3,5-tris-methyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3 , 5-di-t-butyl-4-hydroxyphenyl) isocyanurate, or derivatives thereof.
  • Phosphorus antioxidants include tri (nonylphenyl) phosphite, triphenyl phosphite, diphenylisodecyl phosphite, trioctadecyl phosphite, tridecyl phosphite, diphenyldecyl phosphite, 4,4'-butylidene-bis (3-methyl-6-t-butylphenyl ditridecyl phosphite), distearyl-pentaerythritol diphosphite, trilauryl trithiophosphite, etc., or derivatives thereof.
  • Amine-based antioxidants include phenyl- ⁇ -naphthylamine, phenothiazine, N, N′- diphenyl-p-phenylenediamine, N, N′-di- ⁇ -naphthyl-p-phenylenediamine, N-cyclohexyl-N ′. -Phenyl-p-phenylenediamine, aldol- ⁇ -naphthylamine, 2,2,4-trimethyl-1,2-dihydroquinoline, etc., or derivatives thereof.
  • sulfur-based antioxidants examples include thiobis (N-phenyl- ⁇ -naphthylamine, 2-mercaptobenchazole, 2-mercaptobenzimidazole, tetramethylthiuram disulfide, nickel isopropyl xanthate, and derivatives thereof.
  • Nitro compound antioxidants include 1,3,5-trinitrobenzene, p-nitrosodiphenylamine, p-nitrosodimethylaniline, 1-chloro-3- ⁇ ⁇ ⁇ nitrobenzene, o-dinitrobenzene, m-dinitrobenzene, p-di Examples thereof include nitrobenzene, p-nitrobenzoic acid, nitrobenzene, 2-nitro-5-cyanothiophene, and derivatives thereof.
  • Examples of the inorganic compound antioxidant include FeCl 3 , Fe (CN) 3 , CuCl 2 , CoCl 3 , Co (ClO 4 ) 3 , Co (NO 3 ) 3 , and Co 2 (SO 4 ) 3 .
  • radical polymerization inhibitor used in the present invention among the above-mentioned antioxidants, phenol-based antioxidants and amine-based antioxidants are preferable in terms of thermal stability, and the melting point is 120 ° C. or higher and the molecular weight is 200 or higher. More preferred are those having a melting point of 170 ° C. or higher. Specific examples include phenothiazine and 4,4'-butyldenbis (3-methyl-6-t-butylphenol).
  • the polyester resin used in the present invention can be produced by a known method, but is preferably produced at a reaction temperature of 180 ° C. to 270 ° C.
  • the reaction temperature is 180 ° C. or lower, the resin molecular weight does not increase, the adhesiveness and workability tend to decrease, and the properties as an adhesive tend not to exist.
  • the reaction temperature is 270 ° C. or higher, even when the polymerization inhibitor is added, the unsaturated group is thermally cleaved to generate a gel-like product, which tends to be difficult to produce stably.
  • the polyester resin used in the present invention has a number average molecular weight in the range of 5,000 to 50,000, preferably a number average molecular weight in the range of 7,000 to 40,000, and more preferably 9,000. It is in the range of ⁇ 30,000.
  • the number average molecular weight is less than 5,000, the cohesive force as a resin is small, and therefore the adhesiveness, particularly the adhesiveness under high temperature and high humidity is lowered.
  • the number average molecular weight exceeds 100,000, the viscosity is increased during the grafting reaction, the uniform progress of the reaction is hindered, a gel is generated, and the production stability and workability deteriorate.
  • (meth) acrylic acid, (meth) acrylic acid ester as the radical polymerizable monomer constituting the side chain of the modified polyester resin by the polymer of the radical polymerizable monomer in the present invention
  • a compound, a radical polymerizable monomer containing a nitrogen atom, a dicarboxylic acid type radical polymerizable monomer, a vinyl radical polymerizable monomer, an allyl radical polymerizable monomer, and the like are preferable.
  • ester compounds of (meth) acrylic acid include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isopropyl (meth) acrylate, ethylhexyl (meth) acrylate, (meth ) Isobornyl acrylate, hydroxyethyl (meth) acrylate, hydroxyisopropyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, 2- (meth) acryloyloxy Phthalic acid derivatives such as ethyl hydrogen phthalate and esters of hydroxyethyl (meth) acrylate, as well as a reaction product of acrylic acid, methacrylic acid and phenyl glycidyl ether, ie, 2-hydroxy-3-phenoxypropyl (
  • Examples of the radically polymerizable monomer containing a nitrogen atom include (meth) acrylamide, dimethylacrylamide, N-methylolacrylamide, acrylamide-2-methylpropanesulfonic acid, acrylonitrile, methacrylonitrile and the like.
  • Dicarboxylic acid type radical polymerizable monomers include fumaric acid, monoethyl fumarate, diethyl fumarate, fumaric acid monoesters such as dibutyl fumarate and fumaric acid diesters, maleic acid, monoethyl maleate, diethyl maleate, maleate Mention may be made of maleic acid monoesters and maleic acid diesters such as dibutyl acid, itaconic acid and its anhydride, itaconic acid monoesters and itaconic acid diesters, and maleimides such as phenylmaleimide.
  • vinyl radical polymerizable monomers examples include styrene derivatives such as styrene, ⁇ -methyl styrene, t-butyl styrene, chloromethyl styrene, N-vinyl pyrrolidone, vinyl acetate such as vinyl acetate, vinyl butyl ether, vinyl isobutyl ether.
  • allyl radical polymerizable monomers such as vinyl ether, allyl alcohol, glycerin monoallyl ether, pentaerythritol monoallyl ether, and trimethylolpropane monoallyl ether.
  • the reaction product after completion of the grafting reaction consists of 1) a graft polymer, 2) a non-graft base resin that has not undergone grafting, and 3) a non-graft radical polymer that has not been grafted with the base resin. It is normal. In general, when the ratio of the graft polymer in the reaction product is low and the ratio of the non-graft base resin and the non-graft radical polymer is high, not only the effect of modification is low, but the coating is whitened by the non-graft radical polymer. Adverse effects such as doing are observed. Therefore, it is important to select reaction conditions with a high graft polymer production ratio.
  • the reaction A method of selecting a radical polymerizable monomer in consideration of the properties is desirable. It is preferable to increase the graft efficiency and suppress the amount of the non-graft base resin that has not been grafted and the amount of the non-graft radical polymer that has not been grafted with the base resin.
  • a coating film of a modified polyester resin by a polymer of a radical polymerizable monomer is a coating film including a non-graft base resin and a non-graft radical polymer that has not been grafted with the base resin.
  • the radical polymerizable monomer mixture and the radical initiator may be added to the base resin at a time, or separately for a certain period of time. Then, the reaction may be continued by further heating with stirring for a certain period of time.
  • the grafting reaction temperature is desirably in the range of 50 to 120 ° C. Below 50 ° C., the reaction activity of the radical initiator is low and the radical reaction is difficult to proceed, and when it is 120 ° C. or more, the generated radicals are rapidly deactivated by heat and the sufficient radical reaction is difficult to proceed, and the modification effect is difficult to obtain.
  • the mass ratio of the part derived from the monomer constituting the base resin and the part derived from the radical polymerizable monomer in the graft reaction product suitable for the purpose of the present invention is the part / radical polymerization derived from the monomer constituting the base resin.
  • the portion derived from the functional monomer is preferably in the range of 10/90 to 99/1 by mass ratio, more preferably 25/75 to 95/5, still more preferably 40/60 to 90/10, particularly The range is preferably 60/40 to 85/15.
  • radical polymerization initiator used in the present invention known organic peroxides and organic azo compounds can be used. That is, benzoyl peroxide, t-butylperoxypivalate as organic peroxides, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile) as organic azo compounds, etc. Can be illustrated.
  • the amount of the radical initiator used for carrying out the grafting reaction is required to be at least 0.2% by mass relative to the radical polymerizable monomer, and preferably 0.5% by mass or more is used. In the case of 0.2% by mass or less, modification of the radical polymerizable monomer by the polymer is insufficient and the performance is insufficient. On the other hand, when the content is 0.2% by mass or less, the graft reaction becomes insufficient.
  • Chain transfer agents such as octyl mercaptan, dodecyl mercaptan, mercaptoethanol, ⁇ -mercaptopropionic acid, ⁇ -mercaptopropionic acid methyl ester, ⁇ -mercaptopropionic acid ethyl ester, ⁇ -mercaptopropionic acid 2-ethylhexyl ester, ⁇ -mercapto Propionic acid n-octyl ester, ⁇ -mercaptopropionic acid methoxybutyl ester, ⁇ -mercaptopropionic acid stearyl ester, ⁇ -mercaptopropionic acid isononyl ester, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis ( 3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), tris [(3-mercaptopropionyloxy
  • a solvent having high solubility for polyester and polyester polyurethane can be used as the reaction solvent for the grafting reaction.
  • Applicable solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclic ethers such as tetrahydrofuran, dioxane, glycol ethers such as propylene glycol methyl ether, propylene glycol propyl ether, ethylene glycol.
  • Ethyl ether ethylene glycol butyl ether, carbitols such as methyl carbitol, ethyl carbitol, butyl carbitol, glycols or lower esters of glycol ether such as ethylene glycol diacetate, ethylene glycol Ethyl ether acetate, ketone alcohols such as diacetone alcohol, and N-substituted amides such as dimethylformamide, dimethylacetamide, N-methylpi Pyrrolidone, toluene, aromatic solvents such as xylene, can be exemplified, and the like.
  • polyester and polyester polyurethane examples include lower alcohols, lower carboxylic acids, lower amines, and water.
  • a good solvent and a poor solvent one or a combination of two or more of the above solvents can be mentioned.
  • the boiling point of the grafting reaction solvent for carrying out the present invention exceeds 250 ° C., the evaporation rate is slow, and it is not preferable because it cannot be sufficiently removed even by drying at a high temperature.
  • the boiling point is 50 ° C. or lower, when the grafting reaction is carried out using the solvent as a solvent, an initiator that cleaves into radicals at a temperature of 50 ° C. or lower must be used.
  • the number average molecular weight of the polyurethane resin used in the present invention is preferably 5,000 to 100,000. If the molecular weight is less than 5,000, the adhesion immediately after coating is insufficient and the workability is poor, and if the molecular weight exceeds 100,000, the solution viscosity at the time of coating is too high and a uniform coating film may not be obtained. is there.
  • the lower limit molecular weight is preferably 8,000, more preferably the lower limit molecular weight is 10,000, preferably the upper limit molecular weight is 50,000, and more preferably the upper limit molecular weight is 35,000.
  • polyester polyol those described as the polyester resin (base resin) used in the present invention can be used.
  • the polyisocyanate used in the production of the polyurethane resin used in the present invention is one kind of diisocyanate, its dimer (uretdione), its trimer (isocyanurate, triol adduct, burette), or two or more kinds thereof. It may be a mixture.
  • the diisocyanate component includes 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, diphenylmethane diisocyanate, m-phenylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, 3,3′-dimethoxy.
  • a chain extender may be used if necessary.
  • the chain extender include a low molecular weight diol as a glycol component when synthesizing a polyester polyol, and a carboxyl group-containing low molecular weight diol such as dimethylolpropionic acid and dimethylolbutanoic acid.
  • dimethylolbutanoic acid is preferable because of easy introduction of an acid value and solubility in a general-purpose solvent.
  • the use of trimethylolpropane is preferred because of the ease of introduction of hydroxyl groups.
  • the polyester polyol, the polyisocyanate, and, if necessary, a chain extender may be charged all at once into the reaction vessel, or may be charged separately.
  • the total of the hydroxyl groups of the polyester polyol and chain extender in the system and the total of the isocyanate groups of the polyisocyanate are reacted at an isocyanate group / hydroxyl group functional group ratio of 1 or less.
  • this reaction can be produced by reacting in the presence or absence of a solvent inert to isocyanate groups.
  • the solvents include ester solvents (ethyl acetate, butyl acetate, ethyl butyrate, etc.), ether solvents (dioxane, tetrahydrofuran, diethyl ether, etc.), ketone solvents (cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, etc.), aromatic carbonization.
  • ester solvents ethyl acetate, butyl acetate, ethyl butyrate, etc.
  • ether solvents dioxane, tetrahydrofuran, diethyl ether, etc.
  • ketone solvents cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • aromatic carbonization examples thereof include hydrogen-based solvents (benzene, toluene, xylene, etc.) and mixed solvents thereof, and ethy
  • Catalysts used in ordinary urethane reactions to promote urethane reactions such as tin catalysts (trimethyltin laurate, dimethyltin dilaurate, trimethyltin hydroxide, dimethyltin dihydroxide, stannous octoate, etc.), lead catalysts (Red oleate, red-2-ethylhexoate, etc.), amine catalysts (triethylamine, tributylamine, morpholine, diazabicyclooctane, etc.) and the like can be used.
  • tin catalysts trimethyltin laurate, dimethyltin dilaurate, trimethyltin hydroxide, dimethyltin dihydroxide, stannous octoate, etc.
  • lead catalysts Red oleate, red-2-ethylhexoate, etc.
  • amine catalysts triethylamine, tributylamine, morpholine, diazabic
  • a curing catalyst can be used for the curing reaction of the epoxy compound used in the present invention.
  • imidazole compounds such as 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and triethylamine , Triethylenediamine, N'-methyl-N- (2-dimethylaminoethyl) piperazine, 1,8-diazabicyclo (5,4,0) -undecene-7 and 1,5-diazabicyclo (4,3,0)- Tertiary amines such as nonene-5 and 6-dibutylamino-1,8-diazabicyclo (5,4,0) -undecene-7, and tertiary amines such as phenol, octylic acid and quaternized tetraphenylborate Compounds
  • the blending amount at that time is preferably 0.01 to 1.0 part by mass with respect to 100 parts by mass of the polyester. If it is this range, the effect with respect to reaction of polyester and an epoxy compound will increase further, and the firm adhesive performance can be acquired.
  • Wc / Wd is 1/99 to 80/20. It is preferable that When Wc is 1% or less, the low heat resistance of polyurethane cannot be covered, and the adhesiveness at high temperature is lowered. On the other hand, if it is 80% or more, the adhesiveness at room temperature is lowered.
  • Various adhesives and additives can be blended with the resin composition of the present invention to form an adhesive composition.
  • the curable resin include silicone resin, melamine resin, phenol-formalin resin, and isocyanate resin.
  • phenol resin examples include formaldehyde condensates of alkylated phenols and cresols. Specifically alkylated (methyl, ethyl, propyl, isopropyl, butyl) phenol, p-tert- Amylphenol, 4,4'-sec-butylidenephenol, p-tert-butylphenol, o-, m-, p-cresol, p-cyclohexylphenol, 4,4'- Examples include formaldehyde condensates such as isopropylidenephenol, p-nonylphenol, p-octylphenol, 3-pentadecylphenol, phenol, phenyl-o-cresol, p-phenylphenol, and xylenol.
  • formaldehyde condensates such as isopropylidenephenol, p-nonylphenol, p-octylphenol, 3-pentadecylphenol,
  • amino resins include formaldehyde adducts such as urea, melamine, and benzoguanamine, and alkyl ether compounds of these alcohols having 1 to 6 carbon atoms.
  • Specific examples include methoxylated methylol urea, methoxylated methylol N, N-ethyleneurea, methoxylated methylol dicyandiamide, methoxylated methylol melamine, methoxylated methylol benzoguanamine, butoxylated methylol melamine, butoxylated methylol benzoguanamine, etc.
  • Isocyanate compounds include aromatic and aliphatic diisocyanates, and tri- or higher polyisocyanates, which may be either low molecular compounds or high molecular compounds.
  • the isocyanate compound may be a blocked isocyanate.
  • the isocyanate blocking agent include phenols such as phenol, thiophenol, methylthiophenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol, oximes such as acetoxime, methyl ethyl ketoxime, and cyclohexanone oxime, methanol, ethanol, propanol, Alcohols such as butanol, halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol, tertiary alcohols such as t-butanol and t-pentanol, ⁇ -caprolactam, ⁇ -valerolactam, Examples include lactams such as ⁇ -butyrolactam and ⁇ -propyllactam.
  • the blocked isocyanate is obtained by subjecting the above isocyanate compound, isocyanate compound and isocyanate blocking agent to an addition reaction by a conventionally known appropriate method.
  • silica may be blended as necessary. It is very preferable to add silica because heat resistance is improved.
  • Hydrophobic silica and hydrophilic silica are generally known as silica, but here, hydrophobic silica treated with dimethyldichlorosilane, hexamethyldisilazane, octylsilane, etc. in order to impart moisture absorption resistance. Is good.
  • the average particle diameter of silica is preferably 3 ⁇ m or less. More preferably, it is 50 nm or less. If the average particle size is larger than 3 ⁇ m, poor dispersion or poor adhesion may occur, and heat resistance and adhesion may be reduced.
  • the compounding amount of silica is preferably 0.05 to 30 parts by mass with respect to 100 parts by mass of the polyester. If it is less than 0.05 parts by mass, the effect of improving the heat resistance may not be exhibited. On the other hand, if it exceeds 30 parts by mass, there may be a case where poor dispersion of silica occurs or the solution viscosity becomes too high, resulting in a malfunction in workability or a decrease in adhesiveness.
  • a silane coupling agent may be blended in the adhesive composition of the present invention as necessary. It is very preferable to add a silane coupling agent because adhesion to metal and heat resistance are improved. Although it does not specifically limit as a silane coupling agent, What has an unsaturated group, What has a glycidyl group, What has an amino group, etc. are mentioned. Examples of the silane coupling agent having an unsaturated group include vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane.
  • silane coupling agents having a glycidyl group examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane.
  • Examples of the silane coupling agent having an amino group include N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, N-phenyl- ⁇ .
  • glycidyl groups such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane More preferred is a silane coupling agent having The compounding amount of the silane coupling agent is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polyester. If it is less than 0.5 parts by mass, heat resistance may be deteriorated. On the other hand, if it exceeds 20 parts by mass, heat resistance failure or adhesion failure may occur.
  • flame retardants such as bromine-based, phosphorus-based, nitrogen-based, and metal hydroxide compounds, leveling agents, pigments, dyes, and other additives can be appropriately blended as necessary.
  • the adhesive sheet is composed of a base material and the adhesive composition of the present invention, or a base material, the adhesive composition of the present invention and a release base material.
  • the adhesive sheet has a function of bonding the substrate to the adherend with the adhesive composition.
  • the base material of the adhesive sheet functions as a protective layer for the adherend after adhesion.
  • the releasable base material can be released and the adhesive layer can be transferred to another material to be adhered.
  • the adhesive sheet of the present invention can be obtained by applying and drying the adhesive composition of the present invention on various substrates according to a conventional method.
  • pasting the release substrate to the adhesive layer makes it possible to scrape off without causing the substrate to be transferred to the substrate, which improves operability and protects the adhesive layer. Excellent storage and easy to use.
  • after applying and drying to a mold release base material if another mold release base material is stuck as needed, it will also become possible to transfer the adhesive layer itself to another base material.
  • the substrate to which the composition of the present invention is applied is not particularly limited, and examples thereof include a film-like resin, a metal plate, a metal foil, and papers.
  • the film-like resin include polyester resin, polyamide resin, polyimide resin, polyamideimide resin, and olefin resin.
  • metal plate and metal foil materials include various metals such as SUS, copper, aluminum, iron, and zinc, and alloys and plated products thereof. Glassine paper etc. can be illustrated. Moreover, glass epoxy etc. can be illustrated as a composite material.
  • the base material to which the composition of the present invention is applied is polyester resin, polyamide resin, polyimide resin, polyamideimide resin, SUS steel plate, copper foil, aluminum foil, glass epoxy. Is preferred.
  • the release substrate to which the composition of the present invention is applied is not particularly limited.
  • clay, polyethylene, and polypropylene are provided on both surfaces of paper such as fine paper, kraft paper, roll paper, and glassine paper.
  • a coating layer of a sealing agent such as a silicone, fluorine-based, or alkyd-based release agent is coated on each coating layer, and polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer Examples include various olefin films such as a polymer, propylene- ⁇ -olefin copolymer, and those obtained by applying the release agent on a film such as polyethylene terephthalate, but the release force with the applied adhesive layer, Due to reasons such as the adverse effect of silicone on electrical properties, polypropylene seals are treated on both sides of high-quality paper and alkyd release agents are used on top of that. Those using an alkyd release agent on polyethylene terephthalate are preferred.
  • the method of coating the adhesive composition on the substrate is not particularly limited, and examples thereof include a comma coater and a reverse roll coater.
  • an adhesive film layer can also be provided in the rolled copper foil which is a printed wiring board constituent material, or a polyimide film directly or by the transfer method.
  • the thickness of the adhesive film after drying is appropriately changed as necessary, but is preferably in the range of 5 to 200 ⁇ m. When the adhesive film thickness is less than 5 ⁇ m, the adhesive strength is insufficient. When the thickness is 200 ⁇ m or more, there is a problem that drying is insufficient, a residual solvent increases, and bulge is generated at the time of printed circuit board production.
  • the drying conditions are not particularly limited, but the residual solvent ratio after drying is preferably 1% or less. If it is 1% or more, there is a problem that the residual solvent is foamed during press-pressing of the printed wiring board to cause swelling.
  • the “printed wiring board” in the present invention includes a laminate formed from a metal foil and a resin layer forming a conductor circuit as constituent elements.
  • a printed wiring board is manufactured by conventionally well-known methods, such as a subtractive method, using a metal-clad laminated body, for example. If necessary, a so-called flexible circuit board (FPC), flat cable, tape automated bonding (covered by using a cover film or screen printing ink, etc., partially or entirely covered with a conductor circuit formed of metal foil (tape automated bonding) TAB) circuit board and the like.
  • FPC flexible circuit board
  • TAB tape automated bonding
  • the printed wiring board of the present invention can have any laminated structure that can be employed as a printed wiring board.
  • it can be set as the printed wiring board comprised from four layers, a base film layer, a metal foil layer, an adhesive bond layer, and a cover film layer.
  • it can be set as the printed wiring board comprised from five layers, a base film layer, an adhesive bond layer, a metal foil layer, an adhesive bond layer, and a cover film layer.
  • the printed wiring board may be reinforced with a reinforcing material as necessary. In that case, the reinforcing material and the adhesive layer are provided under the base film layer.
  • the resin composition of the present invention can be suitably used for each adhesive layer of a printed wiring board.
  • the resin composition of the present invention when used as an adhesive, it has high adhesiveness to the base material constituting the printed wiring board, has high heat resistance that can be used for lead-free solder, and has a high temperature. It is possible to maintain high adhesion even under high humidity. Especially in the high temperature range where solder resistance is evaluated, a high crosslink density can be obtained while maintaining a low storage modulus, so the impact due to evaporation of moisture in the solder resistance test in a humidified state must be sufficiently mitigated. It is suitable for bonding between the metal foil layer and the cover film layer and between the base film layer and the reinforcing material layer.
  • any resin film conventionally used as a substrate for printed wiring boards can be used as the substrate film.
  • a resin containing halogen may be used, or a resin not containing halogen may be used. From the viewpoint of environmental problems, a resin containing no halogen is preferable. However, from the viewpoint of flame retardancy, a resin containing halogen can also be used.
  • the base film is preferably a polyimide film or a polyamideimide film.
  • any conventionally known conductive material that can be used for a circuit board can be used.
  • the material for example, copper foil, aluminum foil, steel foil, nickel foil and the like can be used, and composite metal foil obtained by combining these and metal foil treated with other metals such as zinc and chromium compounds are also used. be able to.
  • it is a copper foil.
  • the thickness of the metal foil is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and further preferably 10 ⁇ m or more. Moreover, it is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and still more preferably 20 ⁇ m or less. If the thickness is too thin, it may be difficult to obtain sufficient electrical performance of the circuit. On the other hand, if the thickness is too thick, the processing efficiency at the time of circuit fabrication may be reduced.
  • Metal foil is usually provided in the form of a roll.
  • the form of the metal foil used when manufacturing the printed wiring board of this invention is not specifically limited.
  • its length is not particularly limited.
  • the width is not particularly limited, but is preferably about 250 to 500 mm.
  • any conventionally known insulating film can be used as an insulating film for a printed wiring board.
  • films produced from various polymers such as polyimide, polyester, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, polyimide, and polyamideimide can be used. More preferably, it is a polyimide film or a polyamidoimide film, More preferably, it is a polyimide film.
  • the polyimide film has a polyimide resin as a main component as its resin component.
  • a polyimide resin as a main component as its resin component.
  • 90% by mass or more is preferably polyimide, more preferably 95% by mass or more is polyimide, more preferably 98% by mass or more is polyimide, and 99% by mass or more is polyimide. It is particularly preferred. Any conventionally known resin can be used as the polyimide resin.
  • a resin containing halogen may be used, or a resin not containing halogen may be used. From the viewpoint of environmental problems, a resin containing no halogen is preferable. However, from the viewpoint of flame retardancy, a resin containing halogen can also be used.
  • a metal plate such as a SUS plate or an aluminum plate, a polyimide film, a plate obtained by curing glass fiber with an epoxy compound, or the like is used.
  • the printed wiring board of the present invention can be manufactured using any conventionally known process except that the material of each layer described above is used.
  • a semi-finished product in which an adhesive layer is laminated on a cover film layer (hereinafter referred to as “cover film-side semi-finished product”) is manufactured.
  • an adhesive layer is laminated on a semi-finished product (hereinafter referred to as “base film side two-layer semi-product”) or a base film layer in which a desired circuit pattern is formed by laminating a metal foil layer on the base film layer.
  • base film side three-layer semi-product having a desired circuit pattern formed by laminating a metal foil layer thereon
  • base film side two-layer semi-product The base film side three-layer semi-finished product is collectively referred to as “base film side semi-finished product”.
  • a four-layer or five-layer printed wiring board can be obtained by laminating the cover film side semi-finished product and the base film side semi-finished product thus obtained.
  • a semi-finished product in which an adhesive layer is laminated on a reinforcing material layer (hereinafter referred to as “reinforcing material-side semi-finished product”) can be manufactured and bonded to a substrate film layer of a printed wiring board and reinforced as necessary.
  • the adhesive agent used between a reinforcing material and a base film can be apply
  • the base film side semi-finished product is, for example, (A) The process of apply
  • a conventionally known method can be used to form a circuit in the metal foil layer.
  • An active method may be used and a subtractive method may be used.
  • the subtractive method is preferable.
  • the obtained base film side semi-finished product may be used as it is for pasting with the cover film side semi-finished product. May be used.
  • the cover film side semi-finished product is manufactured, for example, by applying an adhesive to the cover film. If necessary, a crosslinking reaction in the applied adhesive can be performed. In a preferred embodiment, the adhesive layer is semi-cured.
  • the obtained cover film-side semi-finished product may be used as it is for pasting with the base-side-side semi-finished product. May be used.
  • the base film side semi-finished product and the cover film side semi-finished product are each stored, for example, in the form of a roll, and then bonded together to produce a printed wiring board.
  • Arbitrary methods can be used as the method of bonding, for example, it can bond using a press or a roll. Further, the two can be bonded together while heating by a method such as using a heating press or a heating roll device.
  • the reinforcing material-side semi-finished product is preferably manufactured by applying an adhesive to the reinforcing material.
  • a reinforcing plate that cannot be rolled up hard such as a metal plate such as SUS or aluminum, or a plate obtained by curing glass fibers with an epoxy compound, by transferring and applying an adhesive previously applied to a release substrate. It is preferred to be manufactured.
  • coated adhesive agent can be performed as needed.
  • the adhesive layer is semi-cured.
  • the obtained reinforcing material-side semi-finished product may be used as it is for pasting with the back side of the printed wiring board, and after being used for pasting with the base film-side semi-finished product after storing the release film. May be.
  • the base film side semi-finished product, the cover film side semi-finished product, and the reinforcing agent side semi-finished product are all laminated bodies for printed wiring boards in the present invention.
  • the adhesive film (B stage product) was allowed to stand at 40 ° C. and 80% humidification for 14 days, and then cured by pressing with a rolled copper foil and heat treatment under the above conditions to obtain a sample for evaluation over time.
  • Solder resistance humidity: The sample was allowed to stand at 40 ° C. and 80% humidification for 2 days, then floated in a heated solder bath for 1 minute, and the upper limit temperature at which swelling did not occur was measured at a pitch of 10 ° C. Also in this test, it shows that the higher the measured value has better heat resistance, but it is necessary to suppress the impact caused by evaporation of water vapor contained in each base material and adhesive layer. More severe heat resistance is required. In consideration of practical performance, 260 ° C. or higher is favorable.
  • Peel strength At 25 ° C., a 90 ° peel test was conducted at a tensile speed of 50 mm / min, and the peel strength was measured. This test shows the adhesive strength at room temperature. Considering from practical performance, 15 N / cm or more is good.
  • (2) Creep properties An adhesive composition described below was applied to a 125 ⁇ m-thick polyimide film (manufactured by Toray DuPont, Kapton) so that the thickness after drying was 30 ⁇ m, and dried at 130 ° C. for 3 minutes. . The adhesive film (B stage product) obtained in this way was cut to a width of 5 mm, and pressed with a 500 ⁇ m SUS304 plate at 160 ° C.
  • the adhesive film (B stage product) was allowed to stand for 14 days at 40 ° C. and 80% humidification, and then cured by press and heat treatment with a SUS plate under the above conditions to obtain a sample for evaluation over time.
  • a 200 g weight was hung from the obtained sample in an atmosphere of 60 ° C. ⁇ 90%, and the distance peeled off in 30 minutes was measured. Note that the weight was hung so that the peeling form was 180 ° peeling.
  • This test shows the adhesive strength under high temperature and high humidity, and preferably has no peeling. The longer the peeling distance, the lower the adhesive strength. Considering practical performance, 4 mm or less is good.
  • Example of Polymerization of Polyester Resin A Containing Radical Polymerizable Site A reaction vessel equipped with a thermometer, stirrer, reflux condenser and distillation tube was charged with 236.6 parts of terephthalic acid, 236.6 parts of isophthalic acid, and 17.4 of fumaric acid. Water, 266.6 parts of ethylene glycol, 240.2 parts of neopentyl glycol, and 0.13 part of phenothiazine, and gradually heated to 230 ° C. over 4 hours in a nitrogen atmosphere and 2 atm. The esterification reaction was carried out while removing from the system.
  • Polyester Resins C, F, G, I, J, L, and N Containing Radical Polymerizable Sites In the same manner as the polymerized examples of polyester resin A, the raw materials shown in Table 1 are used to include radical polymerizable sites. Polyester resins C, F, G, I, J, L and N were obtained. However, the late polymerization time of 1 mmgHg or less was 42 minutes for G, 32 minutes for H, 16 minutes for L, and 60 minutes for the others. The composition and characteristic values of these resins are shown in Table 1.
  • polyester resins D and K containing radical polymerizable sites were obtained using the raw materials shown in Table 1 in the same manner as the polymerization examples of polyester resin B. .
  • the composition and characteristic values of this resin are shown in Table 1.
  • Polyester resins H and M containing radical polymerizable sites were obtained using the raw materials shown in Table 1 in the same manner as in the polymerization example of polyester resin E. .
  • the composition and characteristic values of this resin are shown in Table 1.
  • octyl mercaptan was dissolved in 10% by mass of the total mass of radical polymerizable monomers and 60.3 parts of methyl ethyl ketone (hereinafter sometimes abbreviated as MEK) to obtain 30% of the radical polymerizable monomer.
  • MEK methyl ethyl ketone
  • A% MEK solution was prepared.
  • Solution 1 was added dropwise to the polyester resin A solution over 1.5 hours, and further reacted for 4 hours to obtain a modified polyester resin solution using a polymer of a radical polymerizable monomer. During this time, the solution was kept at 75 ° C.
  • the acid value of the modified polyester resin composition by the polymer of the obtained radical polymerizable monomer was 2454 equivalent / 10 ⁇ 6 > g, and the glass transition temperature was 72 degreeC.
  • a radical polymerizable monomer 38 parts of maleic anhydride, 37 parts of styrene, acrylic resin
  • polyester polyols O, P, R, S, T used for polyurethane resin
  • polyester polyols O, P, R, S, T were obtained.
  • the composition and characteristic values of this resin are shown in Table 3.
  • Polyester resin Q containing a radical polymerizable moiety was obtained using the raw materials shown in Table 3 in the same manner as in the polymerization example of polyester resin A.
  • the composition and characteristic values of this resin are shown in Table 3.
  • Polyurethane resins II to XI Polyurethane resins II to XI were obtained using the raw materials shown in Table 4 in the same manner as the polymerization examples of polyurethane resin I. The characteristic values are shown in Table 4.
  • Example 1 75 parts of polyurethane resin I (mass only of solid content, does not include solvent; the same applies hereinafter), modified polyester resin 525 parts, epoxy compound [manufactured by Dainippon Ink Industries, Ltd. HP7200-H (dicyclopentanediene type epoxy) Compound)] 38 parts was blended to obtain a desired adhesive composition.
  • the epoxy compound was blended as a MEK 70% solution.
  • the compounding amount of the epoxy compound was determined by calculating so as to include 1.05 times the total amount of acid values of the polyurethane and the modified polyester resin. In this case, Tg (c) -Tg (d) is 8 ° C.
  • AV (c) -AV (d) is 1841 equivalent / 10 6 g, which falls within the scope of the claims of the present invention.
  • Table 5 shows the evaluation results of the adhesion evaluation samples prepared by the above-described methods. Both the initial evaluation and the time evaluation showed good results.
  • Example 2 As in Example 1, samples were prepared with the resin types and blending amounts shown in Table 5, and the resin characteristics were evaluated.
  • the epoxy compound I is TETRAD-X (N, N, N ′, N′-tetraglycidyl-m-xylenediamine) manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the epoxy compound C is YDCN703 (o -Cresol novolac-type epoxy compounds), all formulated as MEK 70% solution.
  • the compounding amount of the epoxy compound was determined by calculating so as to include 1.05 times the total amount of acid values of the polyurethane and the modified polyester resin. Table 5 shows the evaluation results. Both the initial evaluation and the time evaluation showed good results.
  • the glass transition temperature, Tg (c) -Tg (d), AV (c) -AV (d) of the modified polyester resin (7) is outside the scope of the present invention.
  • the proportion of maleic anhydride in the radical polymerizable monomer is also 65% by mass, which is outside the scope of the present invention.
  • the excellent adhesiveness of polyester resin is impaired, and Tg (c) -Tg (d) is large, so the peel strength at room temperature is low, and the creep properties and solder reflow are indicators of adhesiveness at high temperature and high humidity. Solder resistance that is an index of high heat resistance in the region (260 ° C.) is also poor.
  • AV (c) -AV (d) is also large, the reaction rate at the B stage is high, and the performance after aging is further deteriorated.
  • Polyurethane resin with a high concentration in the coating film has a high glass transition temperature (52 ° C.), so the creep characteristics as evaluated at 60 ° C. are good, but the heat resistance of the solder reflow region due to the increased cross-link density of the modified polyester resin The improvement effect is small, and the solder resistance performance is insufficient. Further, Tg (c) -Tg (d) is small, the reaction of the modified polyester resin (8) at the B stage is fast, and the characteristics after aging are greatly deteriorated.
  • the glass transition temperature of the modified polyester resin (7) is as high as 129 ° C., and the proportion of maleic anhydride in the radical polymerizable monomer is 65% by mass, which is out of the scope of the present invention.
  • the acid value of polyurethane resin (VII) is as small as 90 equivalent / 10 6 g, and Tg (c) -Tg (d) and AV (c) -AV (d) are both outside the scope of the present invention. This is because the mass ratio of the monomer constituting the polyester resin component (a) containing the radical polymerizable moiety of the modified polyester (8) and the monomer constituting the polymer component (b) of the radical polymerizable monomer is 99.99.
  • the polyurethane resin (VII) does not use DMBA as a chain extender and has an acid value of 90 equivalents / 10 6 g, which is out of the present invention. Since the curability of the polyurethane resin corresponding to 30% of the mass in the coating film is low, the heat resistance as an adhesive is low, and the solder resistance is extremely poor. Further, since Tg (c) -Tg (d) is large, the peel strength is also poor, and since AV (c) -AV (d) is large, the performance failure with time is also remarkable.
  • Comparative Example 4 a modified polyester resin (10) having a glass transition temperature lower than that of the polyurethane resin (VIII) is blended, and Tg (c) -Tg (d) is ⁇ 13 ° C., which is outside the scope of the present invention. .
  • the polyurethane resin (VIII) has an acid value of 1150 equivalents / 10 6 g, which is outside the scope of the present invention.
  • Tg (c) -Tg (d) is outside the scope of the present invention, a wide range of well-balanced thermal properties is insufficient, and the mass of the component consisting of (a), (b), (c) Wc / Wd is 90/10 when the mass of Wc and polyurethane resin (d) is Wd, and the peel strength is low because the concentration of polyurethane resin is low. Furthermore, since the acid value of the polyurethane resin is high and the crosslink density is increased, the stress relaxation ability generated in the coating film in the solder resistance test in the solder reflow region is lowered, and the modified polyester (10) is used.
  • polyester resin H Since the polyester resin H has no unsaturated groups and the modified polyester H is not grafted, it has no effect of supporting heat resistance and has no solder resistance. Since the polymer (homopolymer) of the radical polymerizable monomer which is not grafted reacts very quickly, the adhesiveness deterioration with time is also great.
  • the modified polyester resin (11) having a glass transition temperature lower than that of the polyurethane resin (IV) is blended, and Tg (c) -Tg (d) is -14 ° C., which is outside the scope of the present invention.
  • maleic anhydride is not used as the radical polymerizable monomer, which is outside the scope of the present invention. Since Tg (c) -Tg (d) is out of the scope of the present invention, a wide range of well-balanced thermal characteristics are insufficient, and adhesion at high temperatures (solder resistance, creep characteristics) is particularly poor. ing.
  • the polyester resin (I) containing a radically polymerizable site used in the modified polyester (11) has a high acid component (itaconic acid) containing a radically polymerizable site of 22 mol%, it is gelled during the grafting process. Samples were prepared by removing them with a 100 mesh nylon filter cloth, but it was confirmed that fine gels were scattered on the entire surface with an optical microscope. confirmed. In actual adhesive property evaluation, peeling occurs from the existing portion of the gel-like material, and the performance is greatly reduced as a whole.
  • the number average molecular weight of the polyurethane resin (IX) is 4,500
  • the number average molecular weight of the modified polyester (14) is as small as 4,500, and the cohesive strength of the resin is small, so that the peel strength at room temperature is also small. It has become.
  • the polyurethane resin (X) is blended with a modified polyester resin (12) having a glass transition temperature as high as 83 ° C. and a glass transition temperature lower than that of the polyurethane resin, and Tg (c) ⁇ Tg (d ) Is ⁇ 23 ° C., which is outside the scope of the present invention. Since Tg (c) -Tg (d) is outside the scope of the present invention, a wide range of well-balanced thermal properties are insufficient, and in particular, since the glass transition temperature of polyurethane resin (X) is low, peeling at room temperature Insufficient strength. On the contrary, the adhesiveness (solder resistance, creep characteristics) at high temperature is good both in the initial stage and after aging.
  • the number average molecular weight of the polyester resin (J) containing a radical polymerizable moiety used in the modified polyester (12) is as low as 4,000, and the number average molecular weight of the modified polyester (12) itself is as low as 4,500. Therefore, it is estimated that the adhesiveness at room temperature is further lowered.
  • Comparative Example 8 has a Tg (c) -Tg (d) of 55 ° C., which is outside the scope of the present invention.
  • Polyurethane resin (XI) has a low glass transition temperature of ⁇ 19 ° C., which is outside the scope of the present invention. Since Tg (c) -Tg (d) is out of the scope of the present invention, a wide range of well-balanced thermal properties are insufficient, and particularly the polyurethane resin has a low glass transition temperature, so that the peel strength at normal temperature is good. However, it has poor adhesion at high temperatures (solder resistance, creep properties).
  • the polyester resin (G) containing a radical polymerizable moiety used in the modified polyester resin (9) has an aromatic acid content (terephthalate) when the total molar amount of all acid components constituting the resin is 100%. Acid) is as low as 20%, and the content of the modified polyester is as low as Wc / Wd of 0.5 / 99.5 when the mass of the modified polyester resin is Wc and the mass of the polyurethane resin is Wd. Since the concentration of the modified polyester is low and the aromatic component is small and the cohesive force is small, the function of covering the heat resistance is also deteriorated.
  • the modified polyester resin (13) having a glass transition temperature lower than that of the polyurethane resin (III) is blended, and Tg (c) -Tg (d) is -21 ° C., which is outside the scope of the present invention.
  • the ratio of the modified polyester (13) to the radical polymerizable monomer of maleic anhydride is as low as 8% by mass, which is out of the scope of the present invention.
  • the number average molecular weight of the polyester resin (K) containing the radical polymerizable moiety used is as large as 53,000, which is outside the scope of the present invention.
  • Tg (c) -Tg (d) is out of the scope of the present invention, and the proportion of maleic anhydride in the radical polymerizable monomer is as low as 8% by mass, and the coating film becomes more uneven. Because it is difficult, it lacks a wide range of well-balanced thermal properties. Furthermore, since the polyester resin (K) containing a radical polymerizable site has many branched components and has a high molecular weight, the modified polyester resin (13) has a gel-like substance, and is made of 100 mesh nylon filter cloth. The sample was prepared by filtering and removing, but it was confirmed with an optical microscope that fine gels were scattered on the entire surface of the sample. In actual adhesive property evaluation, peeling occurs from the existing portion of the gel-like material, and the performance is greatly reduced as a whole.
  • the modified polyester resin (14) has a low glass transition temperature of ⁇ 5 ° C. and a polyurethane resin (II) having a higher glass transition temperature than that, Tg (c) ⁇ Tg ( d) is -44 ° C, outside the scope of the present invention. Furthermore, since Tg (c) -Tg (d) is outside the scope of the present invention, a wide range of well-balanced thermal characteristics are insufficient, and particularly, adhesiveness (solder resistance) at high temperatures is poor. . In addition, since the glass transition temperature of the modified polyester is low, the reactivity of the B stage state with time is large, and the adhesive properties after the time are greatly reduced. Furthermore, in the modified polyester (14), the number average molecular weight of the polyester resin (L) containing the radical polymerizable moiety used is as low as 2500, the cohesive strength of the resin is small, and the peel strength at room temperature is also small. Yes.
  • the modified polyester resin (15) having a glass transition temperature lower than that of the polyurethane resin (II) is blended, and Tg (c) -Tg (d) is ⁇ 26 ° C., which is outside the scope of the present invention.
  • the epoxy compound does not include those having a dicyclopentadiene skeleton, which is outside the scope of the present invention. Since Tg (c) -Tg (d) is outside the scope of the present invention and it does not contain maleic anhydride, it is difficult to make the coating non-uniform. In combination with the absence of an epoxy compound having a dicyclopentadiene skeleton, the adhesiveness (solder resistance) particularly at high temperatures is poor.
  • the glass transition temperature of the modified polyester resin (16) is as high as 84 ° C.
  • the glass transition temperature of the polyurethane resin (XI) is as low as ⁇ 19 ° C.
  • Tg (c) -Tg (d) is 103 ° C. High and outside the scope of the present invention.
  • the epoxy compound does not include those having a dicyclopentadiene skeleton, which is outside the scope of the present invention. Since Tg (c) -Tg (d) is outside the scope of the present invention, a wide range of well-balanced thermal characteristics is insufficient.
  • Comparative Example 13 does not contain a modified polyester resin and is outside the scope of the present invention. There is no heat resistance in the solder reflow area, and solder resistance is poor. Furthermore, the adhesive performance cannot be maintained even in the temperature range used for HDD applications, and the creep characteristics are poor.
  • Comparative Example 14 does not contain a polyurethane resin and is outside the scope of the present invention.
  • the initial performance is good, but the B stage is not stable and the performance over time is poor.

Abstract

Disclosed is a resin composition for an adhesive agent, which comprises: (a) a polyester resin containing a radical-polymerizable site; (b) a polymer of a radical-polymerizable monomer; (c) a modified polyester resin modified with a polymer of a radical-polymerizable monomer, in which the resin (a) and the polymer (b) are bound to each other; (d) a polyurethane resin having an acid value of 100 to 1000 equivalents/106 g inclusive; and (e) an epoxy compound having a dicyclopentadiene structure.  In the resin composition, maleic anhydride makes up 10 to 60 mass% inclusive of the radical-polymerizable monomer, the resin (c) has a glass transition temperature (Tg(c)) of 0 to 80˚C inclusive, the resin (d) has a glass transition temperature (Tg(d)) of –10 to 60˚C inclusive, Tg(c) and Tg(d) meet the requirement represented by the formula: 50 ≥ Tg(c)–Tg(d) ≥ 5, and the acid value of the resin (c) (AV(c) equivalent/106 g) and the acid value of the resin (d) (AV(d) equivalent/106 g) meet the requirement represented by the formula: 8,000 ≥ AV(c)-AV(d) ≥ 200.  Also disclosed are an adhesive agent, an adhesive sheet and a laminate for a print circuit board, each of which comprises the resin composition.

Description

接着剤用樹脂組成物、これを含有する接着剤、接着シートおよびこれを用いて接着したプリント配線板用積層体Resin composition for adhesive, adhesive containing the same, adhesive sheet, and laminate for printed wiring board bonded using the same
 本発明は各種プラスチックフィルムへの接着性や、銅、アルミ、ステンレス鋼などの金属への接着性、ガラスエポキシへの接着性、鉛フリーハンダにも対応できる高度の高温耐熱性、HDDドライブ用FPCの接着剤にも対応できる高温高湿度下での接着力の維持、常温流通にも対応できるBステージ接着シートのシートライフ確保、以上を達成することができる樹脂組成物、これを含有する接着剤、およびこれを用いて接着した積層体に関するものである。 The present invention provides adhesion to various plastic films, adhesion to metals such as copper, aluminum, and stainless steel, adhesion to glass epoxy, high-temperature heat resistance that can cope with lead-free solder, and FPC for HDD drive. Resin composition that can maintain the adhesive strength under high temperature and high humidity that can be used for various adhesives, secure the sheet life of the B-stage adhesive sheet that can also be used at room temperature, and an adhesive containing the same And a laminated body bonded using the same.
 近年、様々な分野で接着剤は使用されているが使用目的の多様化により、従来使用されてきた接着剤よりも各種プラスチックフィルムへの接着性や、銅、アルミ、ステンレス鋼などの金属への接着性、ガラスエポキシへの接着性、耐熱性、耐湿性等、更なる高性能化が求められている。 In recent years, adhesives have been used in various fields, but due to the diversification of purpose of use, adhesiveness to various plastic films and adhesives to metals such as copper, aluminum, and stainless steel, compared to conventional adhesives. There are demands for further improvements in performance, such as adhesion, adhesion to glass epoxy, heat resistance, and moisture resistance.
 フレキシブルプリント配線基盤(以下FPCと略すことがある)を始めとする回路基板用の接着剤としては、例えば、エポキシ/アクリルブタジエン系接着剤や、エポキシ/ポリビニルブチラール系接着剤等が使用されている。当該用途で使用される場合、ハンダ耐熱性が要求されるが、近年、鉛フリーハンダに対応するため、より高温での耐熱性(接着層が剥がれや膨れを起こさないこと)が要求されるため、従来使用されているエポキシ/アクリルブタジエン系接着剤や、エポキシ/ポリビニルブチラール系接着剤では、要求性能を満たせなくなってきている。 As adhesives for circuit boards including flexible printed wiring boards (hereinafter sometimes abbreviated as FPC), for example, epoxy / acryl butadiene adhesives, epoxy / polyvinyl butyral adhesives, and the like are used. . When used in such applications, solder heat resistance is required, but in recent years, heat resistance at higher temperatures (the adhesive layer does not peel or swell) is required to support lead-free solder. Conventionally used epoxy / acryl butadiene adhesives and epoxy / polyvinyl butyral adhesives cannot satisfy the required performance.
 また、ハードディスクドライブ(以下HDDと略することがある)に使用されるFPCは、接着体が屈曲状態で使用されるため、接着界面に強いせん断力がかかる。特に、近年のHDDの高性能化に伴い、モーターの回転数が上がり、HDD内部の温度も高くなる等、接着体が実際に使用される環境は厳しくなっている。具体的には、60℃相対湿度90%といった、高温高湿条件下で、安定した接着性能を維持することが要求される。しかし、従来使用されているエポキシ/アクリルブタジエン系接着剤や、エポキシ/ポリビニルブチラール系接着剤では、要求性能を満たせなくなってきている。 In addition, since the FPC used in a hard disk drive (hereinafter sometimes abbreviated as HDD) is used in a bent state, a strong shearing force is applied to the bonding interface. In particular, with the recent high performance of HDDs, the environment in which adhesives are actually used has become severe, such as the number of motor rotations and the internal temperature of HDDs increasing. Specifically, it is required to maintain stable adhesion performance under high temperature and high humidity conditions such as 60 ° C. and 90% relative humidity. However, conventionally used epoxy / acryl butadiene adhesives and epoxy / polyvinyl butyral adhesives cannot satisfy the required performance.
 また、当該接着剤は、一度半硬化状態(Bステージ)のシートとして保存、流通、販売されることが多い。したがって、Bステージでは、シートライフの確保が要求され、かつ、実使用時(Bステージ接着シートと基材との貼り合せ時)には、高い硬化反応性が要求される。従来、FPC用接着剤シートは冷蔵保管されることが多く、エポキシ/アクリルブタジエン系接着剤や、エポキシ/ポリビニルブチラール系接着剤でも、シートライフは確保された。しかし、近年、製造コストの削減要求により、常温で保存、流通が可能であることを求められることが多く、さらに、海外へ流通される場合も多くなっており、シートライフに要求される条件が厳しくなっており、エポキシ/アクリルブタジエン系接着剤や、エポキシ/ポリビニルブチラール系接着剤では、要求性能を満たせなくなっている(特開2001-291964号公報(特許文献1)、特開2003-313526号公報(特許文献2)、特開2005-139387号公報(特許文献3)、特開2005―139391号公報(特許文献4)参照)。 Also, the adhesive is often stored, distributed, and sold once as a semi-cured (B stage) sheet. Therefore, in the B stage, it is required to ensure the sheet life, and high curing reactivity is required during actual use (when the B stage adhesive sheet and the base material are bonded). Conventionally, FPC adhesive sheets are often refrigerated and the sheet life is secured even with epoxy / acryl butadiene adhesives and epoxy / polyvinyl butyral adhesives. However, in recent years, due to demands for reducing manufacturing costs, it is often required that the products can be stored and distributed at room temperature. The required performance is not satisfied with an epoxy / acryl butadiene adhesive or an epoxy / polyvinyl butyral adhesive (Japanese Patent Laid-Open No. 2001-291964 (Patent Document 1), Japanese Patent Laid-Open No. 2003-313526). Gazette (Patent Document 2), JP-A-2005-139387 (Patent Document 3), JP-A-2005-139391 (Patent Document 4)).
特開2001-291964号公報JP 2001-291964 A 特開2003-313526号公報JP 2003-31526 A 特開2005-139387号公報JP 2005-139387 A 特開2005―139391号公報JP 2005-139391 A
 本発明の課題は、これら従来の接着剤が抱えている各問題点を改良することであり、具体的には各種プラスチックフィルムへの接着性、銅、アルミ、ステンレスなどの金属への接着性、ガラスエポキシへの接着性、鉛フリーハンダにも対応できる高度の高温耐熱性、HDDドライブ用FPCの接着剤にも対応できる高温高湿度下での接着力の維持、常温流通にも対応できるBステージ接着シートのシートライフ確保、以上を達成することができる樹脂組成物、これを含有する接着剤、およびこれを用いて接着した積層体を提供することにある。 The problem of the present invention is to improve each of the problems that these conventional adhesives have, specifically adhesion to various plastic films, adhesion to metals such as copper, aluminum and stainless steel, Adhesiveness to glass epoxy, high-temperature heat resistance that can handle lead-free solder, maintenance of adhesive strength under high-temperature and high-humidity conditions that can also be used for HDD drive FPC adhesives, and B stage that can also be used at room temperature It is in providing the resin composition which can achieve the sheet life ensuring of the adhesive sheet and the above, the adhesive agent containing this, and the laminated body adhere | attached using this.
 本発明は以下の樹脂組成物を含有する樹脂組成物、これを含有する接着剤、接着性シートおよびこれを用いて接着したプリント配線板用積層体および積層体を左記構成要素として含むプリント配線板である。
(1) ラジカル重合性部位を含むポリエステル樹脂(a)、
 ラジカル重合性単量体の重合体(b)、
 前記樹脂(a)と前記重合体(b)が結合している、ラジカル重合性単量体の重合体で変性された変性ポリエステル樹脂(c)、
 酸価が100当量/10g以上1000当量/10g以下であるポリウレタン樹脂(d)、
 ジシクロペンタジエン構造を有するエポキシ化合物(e)、
を含有し、
 ラジカル重合性単量体の10質量%以上60質量%以下が無水マレイン酸であり、
 樹脂(c)のガラス転移温度Tg(c)が0℃以上80℃以下であり、
 樹脂(d)のガラス転移温度Tg(d)が-10℃以上60℃以下であり、
 Tg(c)とTg(d)の関係が下記式(1)
    50≧Tg(c)-Tg(d)≧5         (1)
を満たし、
 樹脂(c)の酸価AV(c)当量/10gと樹脂(d)の酸価AV(d)当量/10gの関係が下記式(2)
    8,000≧AV(c)-AV(d)≧200     (2)
を満たす、接着剤用樹脂組成物。
(2) 前記樹脂(c)の酸価が400当量/10g以上8,500当量/10g以下である前記(1)記載の樹脂組成物。
(3) 前記樹脂(d)の数平均分子量が5,000以上100,000以下である前記(1)記載の樹脂組成物。
(4) 前記樹脂(a)の数平均分子量が5,000以上50,000以下である前記(1)記載の樹脂組成物。
(5) 前記樹脂(a)を構成する全酸成分の合計モル量を100モル%としたとき、芳香族酸成分が30モル%以上、ラジカル重合性部位を含む酸成分とラジカル重合性部位を含むグリコール成分の合計が0.5モル%以上20モル%以下である前記(1)記載の樹脂組成物。
(6) 前記樹脂(a)と前記重合体(b)と前記樹脂(c)の全体に対して、前記樹脂(a)を構成するモノマーに由来する部分と前記重合体(b)を構成するモノマーに由来する部分との比が質量比で10/90以上99/1以下である前記(1)記載の樹脂組成物。
(7) 前記樹脂(a)、前記重合体(b)、前記樹脂(c)の合計質量をWc、樹脂(d)の質量をWdとしたとき、Wc/Wdが1/99以上80/20以下であることを特徴とする前記(1)記載の樹脂組成物。
(8) 前記(1)記載の樹脂組成物を含有することを特徴とする接着剤。
(9) 前記(1)記載の樹脂組成物を含有することを特徴とする接着性シート。
(10) 複数の板状体および/または箔状体を接着層で貼り合わせた積層体であって、該接着層の少なくとも一部が前記(1)記載の樹脂組成物を含むことを特徴とするプリント配線板用積層体。
(11) 前記複数の板状体および/または箔状体が、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、銅、アルミ、ガラスエポキシ、およびステンレス鋼からなる群より選択される1種以上の素材からなるものである前記(10)記載のプリント配線板用積層体。
(12) 前記(10)記載の積層体を構成要素として含むプリント配線板。
The present invention includes a resin composition containing the following resin composition, an adhesive containing the resin composition, an adhesive sheet, a laminate for a printed wiring board bonded using the same, and a printed wiring board comprising the laminate as the constituent elements described on the left It is.
(1) a polyester resin (a) containing a radical polymerizable moiety,
A polymer of a radically polymerizable monomer (b),
A modified polyester resin (c) modified with a polymer of a radically polymerizable monomer, in which the resin (a) and the polymer (b) are bonded;
A polyurethane resin (d) having an acid value of 100 equivalents / 10 6 g or more and 1000 equivalents / 10 6 g or less,
An epoxy compound (e) having a dicyclopentadiene structure,
Containing
10 mass% or more and 60 mass% or less of the radical polymerizable monomer is maleic anhydride,
The glass transition temperature Tg (c) of the resin (c) is 0 ° C. or higher and 80 ° C. or lower,
The glass transition temperature Tg (d) of the resin (d) is −10 ° C. or higher and 60 ° C. or lower,
The relationship between Tg (c) and Tg (d) is the following formula (1)
50 ≧ Tg (c) −Tg (d) ≧ 5 (1)
The filling,
An acid value AV (c) equivalents / 10 6 g and the acid value AV (d) eq / 10 6 g relationship formula of the resin (d) of (c) (2)
8,000 ≧ AV (c) −AV (d) ≧ 200 (2)
The resin composition for adhesives satisfy | fills.
(2) The resin composition according to (1), wherein the acid value of the resin (c) is 400 equivalents / 10 6 g or more and 8,500 equivalents / 10 6 g or less.
(3) The resin composition according to (1), wherein the resin (d) has a number average molecular weight of 5,000 or more and 100,000 or less.
(4) The resin composition according to (1), wherein the resin (a) has a number average molecular weight of 5,000 or more and 50,000 or less.
(5) When the total molar amount of all the acid components constituting the resin (a) is 100 mol%, the aromatic acid component is 30 mol% or more, and the acid component and the radical polymerizable site including a radical polymerizable site The resin composition as described in (1) above, wherein the total of glycol components contained is 0.5 mol% or more and 20 mol% or less.
(6) The polymer (b) is composed of a part derived from the monomer constituting the resin (a) with respect to the resin (a), the polymer (b) and the resin (c) as a whole. The resin composition according to (1), wherein the ratio of the monomer-derived portion to the monomer is 10/90 or more and 99/1 or less in terms of mass ratio.
(7) When the total mass of the resin (a), the polymer (b), and the resin (c) is Wc, and the mass of the resin (d) is Wd, Wc / Wd is 1/99 or more and 80/20. The resin composition as described in (1) above, wherein:
(8) An adhesive comprising the resin composition according to (1).
(9) An adhesive sheet comprising the resin composition according to (1).
(10) A laminate in which a plurality of plate-like bodies and / or foil-like bodies are bonded together with an adhesive layer, wherein at least a part of the adhesive layer contains the resin composition described in (1) above. Laminated body for printed wiring board.
(11) The plurality of plate-like bodies and / or foil-like bodies are made of one or more materials selected from the group consisting of polyester resins, polyimide resins, polyamideimide resins, copper, aluminum, glass epoxy, and stainless steel. The laminate for a printed wiring board according to the above (10).
(12) A printed wiring board comprising the laminate according to (10) as a constituent element.
 本発明によれば、各種プラスチックフィルムへの接着性や、銅、アルミ、ステンレス鋼などの金属への接着性、ガラスエポキシへの接着性、鉛フリーハンダにも対応できる高度の高温耐熱性、HDDドライブ用FPCの接着剤にも対応できる高温高湿度下での接着力の維持、常温流通にも対応できるBステージ接着シートのシートライフ確保、以上を達成することができる樹脂組成物、これを含有する接着剤、およびこれを用いて接着した積層体を得ることができる。 According to the present invention, adhesion to various plastic films, adhesion to metals such as copper, aluminum, and stainless steel, adhesion to glass epoxy, high-temperature heat resistance capable of dealing with lead-free solder, HDD Containing a resin composition capable of maintaining the adhesive strength under high temperature and high humidity that can be used for FPC adhesives for drives, ensuring the sheet life of the B stage adhesive sheet that can also be used at room temperature, and the above. And a laminated body bonded using the adhesive can be obtained.
 本発明の樹脂組成物は、ラジカル重合性単量体の重合体で変性された変性ポリエステル樹脂(以下、変性ポリエステル樹脂と呼ぶ)、ポリウレタン樹脂、エポキシ化合物から主としてなり、前記ラジカル重合性単量体の重合体および未変性ポリエステル樹脂を含有する。変性ポリエステル樹脂、ポリウレタン樹脂は、各々カルボキシル基、無水カルボキシル基等を樹脂骨格に導入し、酸価を持つことが必須である。酸価を持たないとエポキシ化合物と架橋反応が起こらないため、強靭な硬化塗膜を得ることができず、高い接着力を得ることができない。 The resin composition of the present invention mainly comprises a modified polyester resin modified with a polymer of a radical polymerizable monomer (hereinafter referred to as a modified polyester resin), a polyurethane resin, and an epoxy compound, and the radical polymerizable monomer. And a non-modified polyester resin. It is essential that the modified polyester resin and polyurethane resin have an acid value by introducing a carboxyl group, an anhydrous carboxyl group or the like into the resin skeleton. If it does not have an acid value, a crosslinking reaction with the epoxy compound does not occur, so that a tough cured coating film cannot be obtained and a high adhesive force cannot be obtained.
 本発明に用いるポリウレタン樹脂の酸価は100当量/10g以上、1,000当量/10g以下である。酸価が100当量/10g未満だと、金属系基材への密着性が不充分になる傾向にある。酸価が1,000当量/10gを超えると、ポリウレタン樹脂製造時のウレタン反応が遅くなったり、溶液粘度が高くなったりするので生産性が悪くなることがある。また、エステル結合の耐久性に悪影響を与えることも予想される。好ましくは酸価の下限は150当量/10g、より好ましくは酸価の下限は200当量/10g、さらに好ましくは酸価の下限は400当量/10gである。好ましい上限は900当量/10g、より好ましい上限は800当量/10g、さらに好ましい上限は700当量/10gである。なお、ここで言う酸価とは樹脂10g当たりに含まれるカルボン酸の当量数を示す。 The acid value of the polyurethane resin used in the present invention is 100 equivalents / 10 6 g or more and 1,000 equivalents / 10 6 g or less. When the acid value is less than 100 equivalents / 10 6 g, the adhesion to the metal-based substrate tends to be insufficient. If the acid value exceeds 1,000 equivalents / 10 6 g, the urethane reaction during the production of the polyurethane resin may be slow, and the solution viscosity may be increased, resulting in poor productivity. It is also expected to adversely affect the durability of the ester bond. The lower limit of the acid value is preferably 150 equivalents / 10 6 g, more preferably the lower limit of the acid value is 200 equivalents / 10 6 g, and still more preferably the lower limit of the acid value is 400 equivalents / 10 6 g. A preferred upper limit is 900 equivalents / 10 6 g, a more preferred upper limit is 800 equivalents / 10 6 g, and a more preferred upper limit is 700 equivalents / 10 6 g. In addition, the acid value said here shows the equivalent number of carboxylic acid contained per 10 6 g of resin.
 鎖延長剤としてジメチロールプロピオン酸、ジメチロールブタン酸等を使用することにより、ポリウレタン樹脂の分子骨格中にカルボキシル基を導入し、酸価を付与することができる。ポリウレタン樹脂とエポキシ化合物のみからなる樹脂組成物(以下、ポリウレタン樹脂/エポキシ化合物)の場合、常温における各種基材への接着性は良好である。また半硬化状態(Bステージ)のシートとした場合、冷蔵保存することなく、室温で3ヶ月保存した後に、基材に貼り合わせをしても、高い接着性能を示す。しかし、鉛フリーハンダを使用した場合のハンダリフロー工程(260℃)では、接着層の膨れが起こり、耐熱性が不十分である。特に、接着体を高温高湿下(40℃相対湿度80%)に2日間保存した後に、ハンダリフロー工程(260℃)を経ると、接着体に含まれる水分の急激な蒸発による応力に、十分抗することができず、樹脂は基材から剥離してしまう。これは、ポリウレタン樹脂骨格由来の耐熱性の低さ、ウレタン結合由来の吸湿性によるものと推定される。また、HDD用途FPC接着剤として検討(60℃相対湿度90%での接着性能を検討)した場合、接着界面にせん断応力をかけたところ容易に剥離してしまった。これも、ウレタン結合由来の吸湿性によるものと推定される。また、ポリウレタン樹脂のガラス転移温度を60℃以上に設計すると、当該条件での接着界面の剥離は見られないが、逆に常温での接着性能が下がり実用に足らなくなる。ハンダリフロー工程(260℃)での接着層の膨れ、剥離を抑制するには、接着層にさらなる耐熱性を付与することと、水分の急激な蒸発により発生する応力を緩和する機能を付与する必要がある。また、HDD用途で使用可能にするには、室温から60℃を超える広範囲で高い接着能力を維持できるようにする必要がある。 By using dimethylolpropionic acid, dimethylolbutanoic acid, or the like as a chain extender, a carboxyl group can be introduced into the molecular skeleton of the polyurethane resin to give an acid value. In the case of a resin composition consisting only of a polyurethane resin and an epoxy compound (hereinafter referred to as polyurethane resin / epoxy compound), the adhesion to various substrates at normal temperature is good. Moreover, when it is set as the sheet | seat of a semi-hardened state (B stage), even if it bonds together to a base material after storing for 3 months at room temperature, without refrigerated storage, high adhesive performance is shown. However, in the solder reflow process (260 ° C.) when lead-free solder is used, the adhesive layer swells and the heat resistance is insufficient. In particular, after the adhesive is stored at high temperature and high humidity (40 ° C., relative humidity 80%) for 2 days and then undergoes a solder reflow process (260 ° C.), it is sufficient for the stress due to rapid evaporation of water contained in the adhesive. The resin cannot be resisted, and the resin peels off from the substrate. This is presumably due to the low heat resistance derived from the polyurethane resin skeleton and the hygroscopicity derived from the urethane bond. Further, when examined as an FPC adhesive for HDDs (examination of adhesion performance at 90 ° C. and relative humidity of 90%), it was easily peeled off when a shear stress was applied to the adhesion interface. This is also presumed to be due to hygroscopicity derived from urethane bonds. In addition, when the glass transition temperature of the polyurethane resin is designed to be 60 ° C. or higher, peeling of the adhesive interface under the above conditions is not observed, but conversely, the adhesive performance at room temperature is lowered and becomes unpractical. In order to suppress swelling and peeling of the adhesive layer in the solder reflow process (260 ° C.), it is necessary to provide the adhesive layer with further heat resistance and a function to relieve stress generated by rapid evaporation of moisture. There is. In order to be usable in HDD applications, it is necessary to maintain a high bonding ability over a wide range from room temperature to over 60 ° C.
 上記のようなポリウレタン樹脂/エポキシ化合物二元系接着剤組成物の抱える課題を解決すべく鋭意検討した結果、樹脂系は、変性ポリエステル樹脂/ポリウレタン樹脂/エポキシ化合物の三元系とし、変性ポリエステル樹脂、ポリウレタン樹脂の酸価、ガラス転移温度を制御し、さらに、エポキシ化合物の骨格を制御することにより、常温での接着性、Bステージのシートライフを維持しつつ、鉛フリーハンダを使用した場合のハンダリフロー工程(260℃)での膨れもなく、HDD用途FPC接着剤として検討(60℃相対湿度90%での接着性能を検討)した場合でも、接着界面の剥離を抑制できることを発見した。 As a result of intensive studies to solve the problems of the polyurethane resin / epoxy compound binary adhesive composition as described above, the resin system is a modified polyester resin / polyurethane resin / epoxy compound ternary system, and the modified polyester resin is used. When the lead-free solder is used while controlling the acid value of the polyurethane resin, the glass transition temperature, and further controlling the skeleton of the epoxy compound to maintain the adhesiveness at room temperature and the B sheet life. It has been found that there is no swelling in the solder reflow process (260 ° C.), and even when examined as an FPC adhesive for HDD (examination of adhesion performance at 90 ° C. relative humidity 90%), peeling of the adhesive interface can be suppressed.
 変性ポリエステル樹脂の役割は、高度耐熱性(260℃)付与と、高温高湿度(60℃相対湿度90%)での接着性能維持である。まず、変性ポリエステル樹脂の製法であるが、ポリエステル樹脂に二重結合等、ラジカル重合性部位を含む単量体を共重合し、その有機溶剤溶液中で、ラジカル重合性単量体をラジカル反応させると、容易にラジカル重合性単量体の重合体でグラフト変性された変性ポリエステル樹脂を得ることができる。このとき、ラジカル重合性単量体の10質量%以上60質量%以下は無水マレイン酸である。カルボキシル基無水物は、カルボキシル基よりもエポキシ化合物との反応性が大きい。この変性法を用いると、ポリエステル樹脂に、容易に高酸価でかつエポキシ化合物と反応性の高い部位を導入することができる。本発明の、変性ポリエステル樹脂/ポリウレタン樹脂/エポキシ化合物の三元系の反応において、三者は完全に相溶して均一な構造になるのではなく、不均一構造をとり、かかる優れた特性を実現する。本発明の樹脂組成物からなる硬化塗膜が不均一構造を取っていることは、位相差顕微鏡、電子顕微鏡の観察で容易に確認できる。まず、高酸価でエポキシ化合物との反応性の大きい無水カルボキシル基を持つ変性ポリエステル樹脂とエポキシ化合物が、架橋密度の高い架橋構造を生成し、その後、ポリウレタン樹脂とエポキシ化合物で、比較的架橋密度の小さな架橋構造を生成すると推測される。変性ポリエステル樹脂とエポキシ化合物からなる架橋密度の高い部位は、耐熱性が高く、260℃のハンダリフロー工程に耐えることができる。特に、接着体を高温高湿下(40℃相対湿度80%)に2日間保存した後に、ハンダリフロー工程(260℃)を経た場合でも、基材からの剥離が発生しない。これは、ポリウレタン樹脂とエポキシ化合物からなる比較的架橋密度の小さな架橋構造を持つ部位が、ソフトセグメントの役割を果たし、接着体に含まれる水分の急激な蒸発による応力を緩和できるものと推測される。 The role of the modified polyester resin is to impart high heat resistance (260 ° C.) and maintain adhesive performance at high temperature and high humidity (60 ° C. relative humidity 90%). First, the modified polyester resin is produced by copolymerizing a monomer containing a radical polymerizable moiety such as a double bond with the polyester resin, and radically reacting the radical polymerizable monomer in the organic solvent solution. Thus, a modified polyester resin graft-modified with a polymer of a radical polymerizable monomer can be easily obtained. At this time, 10 mass% or more and 60 mass% or less of a radically polymerizable monomer is maleic anhydride. Carboxylic anhydride is more reactive with epoxy compounds than carboxyl groups. When this modification method is used, a site having a high acid value and high reactivity with an epoxy compound can be easily introduced into the polyester resin. In the ternary reaction of the modified polyester resin / polyurethane resin / epoxy compound of the present invention, the three parties do not have a completely compatible and uniform structure, but have a non-uniform structure and have such excellent characteristics. Realize. It can be easily confirmed by observation with a phase contrast microscope and an electron microscope that the cured coating film made of the resin composition of the present invention has a non-uniform structure. First, a modified polyester resin having an anhydride carboxyl group with high acid value and high reactivity with an epoxy compound and an epoxy compound produce a crosslinked structure having a high crosslinking density, and then a relatively crosslinking density with a polyurethane resin and an epoxy compound. It is assumed that a small cross-linked structure is generated. A portion having a high crosslinking density composed of a modified polyester resin and an epoxy compound has high heat resistance and can withstand a solder reflow process at 260 ° C. In particular, even when the adhesive is stored for 2 days under high temperature and high humidity (40 ° C. relative humidity 80%) and then undergoes a solder reflow process (260 ° C.), peeling from the substrate does not occur. This is presumed that the part of the cross-linked structure consisting of polyurethane resin and epoxy compound with a relatively low cross-linking density plays the role of a soft segment and can relieve stress due to rapid evaporation of moisture contained in the adhesive. .
 本発明における、ラジカル重合性単量体の重合体による変性ポリエステル樹脂の酸価は400~8,500当量/10gであることが好ましい。より好ましくは650~7,000当量/10g、さらに好ましくは900~5,500当量/10gである。酸価が400当量/10g未満だと、金属系基材への密着性が不充分になる傾向にある。さらに、架橋密度が小さくなるため、ポリウレタン樹脂と配合した場合、ポリウレタンの耐熱性不足を補うことができない場合がある。酸価が8,500当量/10gを超えると、硬化塗膜の架橋度が大きくなるため、内部応力が大きくなり、接着力が低下する傾向がある。またBステージでの反応性が大きくなりシートライフが悪化する傾向がある。 In the present invention, the acid value of the modified polyester resin by the polymer of the radical polymerizable monomer is preferably 400 to 8,500 equivalent / 10 6 g. More preferably, it is 650 to 7,000 equivalent / 10 6 g, and still more preferably 900 to 5,500 equivalent / 10 6 g. If the acid value is less than 400 equivalents / 10 6 g, the adhesion to the metal-based substrate tends to be insufficient. Furthermore, since the crosslinking density is small, when blended with a polyurethane resin, the lack of heat resistance of polyurethane may not be compensated. When the acid value exceeds 8,500 equivalents / 10 6 g, the degree of crosslinking of the cured coating film increases, so that the internal stress increases and the adhesive strength tends to decrease. In addition, the reactivity at the B stage tends to increase and the seat life tends to deteriorate.
 先述したように、本発明における、ラジカル重合性単量体の10質量%以上60質量%以下は無水マレイン酸である。好ましくは20質量%以上55質量%以下、より好ましくは30質量%以上50質量%以下である。無水マレイン酸を用いることにより、エポキシ化合物と反応性の高いカルボン酸無水物基を容易に変性ポリエステル樹脂に導入することができる。無水マレイン酸がラジカル重合性単量体の10質量%以下の場合は、変性ポリエステル樹脂とエポキシ化合物との反応が、ポリウレタン樹脂とエポキシ化合物の反応に比べて早く進行しないため、三元系の硬化塗膜において不均一性が小さく、求める性能が発現しにくい。また60質量%以上の場合、未反応の無水マレイン酸が多く存在するため、硬化塗膜が脆くなったり、耐水性がなくなり、接着強度が下がる。特に高湿度下での接着強度が下がる。ラジカル重合性部位を含むポリエステル樹脂に、ラジカル重合性部位を導入するには、フマル酸、マレイン酸、イタコン酸等の不飽和ジカルボン酸の共重合を行うのが一般的であるが、かかる不飽和ジカルボン酸の不飽和基と無水マレイン酸は、ラジカル反応で殆ど反応が進まない。これらのラジカル重合性単量体は、不飽和結合部位に電子吸引基が隣接しており、不飽和基及びそれから生成するラジカルの電荷正に偏っているために、互いの反応が進みにくい。無水マレイン酸を効率よく重合するには、不飽和結合部位に電子供与基が隣接しているラジカル重合性単量体を用いればよい。これらのラジカル重合性単量体は不飽和基及びそれから生成するラジカルの電荷が負に偏っているため、無水マレイン酸、フマル酸、イタコン酸等との反応性が高い。不飽和結合部位に電子供与基が隣接しているラジカル重合性単量体として使用できるのは、スチレン、α-メチルスチレン、t-ブチルスチレン、N-ビニルピロリドンなどのビニル系ラジカル重合性単量体、酢酸ビニルなどのビニルエステル、ビニルブチルエーテル、ビニルイソブチルエーテルなどのビニルエーテル、アリルアルコール、グリセリンモノアリルエーテル、ペンタエリスリトールモノアリルエーテル、トリメチロールプロパンモノアリルエーテルなどのアリル系ラジカル重合性単量体、ブタジエンなどであり、これらのうちの一種または二種以上の混合物が使用される。もっとも好ましくは、スチレンなどのビニル系ラジカル重合性単量体である。したがって、無水マレイン酸の未反応物を抑制するためには、スチレン等のラジカル重合性単量体の共重合が必須であり、60質量%以上用いることは好ましくない。 As described above, 10 mass% or more and 60 mass% or less of the radical polymerizable monomer in the present invention is maleic anhydride. Preferably they are 20 to 55 mass%, More preferably, they are 30 to 50 mass%. By using maleic anhydride, a carboxylic anhydride group highly reactive with an epoxy compound can be easily introduced into the modified polyester resin. When maleic anhydride is 10% by mass or less of the radical polymerizable monomer, the reaction between the modified polyester resin and the epoxy compound does not proceed faster than the reaction between the polyurethane resin and the epoxy compound. In the coating film, the non-uniformity is small and the required performance is not easily expressed. On the other hand, when it is 60% by mass or more, a large amount of unreacted maleic anhydride is present, so that the cured coating film becomes brittle, water resistance is lost, and the adhesive strength is lowered. In particular, the adhesive strength under high humidity decreases. In order to introduce a radical polymerizable moiety into a polyester resin containing a radical polymerizable moiety, it is common to copolymerize unsaturated dicarboxylic acids such as fumaric acid, maleic acid, and itaconic acid. The unsaturated group of dicarboxylic acid and maleic anhydride hardly react by radical reaction. In these radically polymerizable monomers, an electron-withdrawing group is adjacent to the unsaturated bond site, and the charge of the unsaturated group and the radical generated therefrom is biased to be positive. In order to polymerize maleic anhydride efficiently, a radical polymerizable monomer having an electron donating group adjacent to the unsaturated bond site may be used. These radically polymerizable monomers are highly reactive with maleic anhydride, fumaric acid, itaconic acid and the like because the unsaturated groups and the radicals generated therefrom are negatively charged. As radically polymerizable monomers in which an electron donating group is adjacent to the unsaturated bond site, vinyl radical polymerizable monomers such as styrene, α-methylstyrene, t-butylstyrene, and N-vinylpyrrolidone can be used. , Vinyl esters such as vinyl acetate, vinyl ethers such as vinyl butyl ether and vinyl isobutyl ether, allylic radical polymerizable monomers such as allyl alcohol, glycerol monoallyl ether, pentaerythritol monoallyl ether, trimethylolpropane monoallyl ether, Butadiene and the like, and one or a mixture of two or more of these are used. Most preferred is a vinyl radical polymerizable monomer such as styrene. Therefore, in order to suppress the unreacted product of maleic anhydride, it is essential to copolymerize a radical polymerizable monomer such as styrene, and it is not preferable to use 60% by mass or more.
 本発明において、ラジカル重合性単量体の重合体による変性ポリエステル樹脂の乾燥塗膜の酸価をAV(c)(当量/10g)、ポリウレタン樹脂の酸価をAV(d)(当量/10g)とした場合、AV(c)-AV(d)は、200以上8,000以下であり、好ましくは300以上6,500以下、さらに好ましくは400以上5,000以下である。AV(c)-AV(d)が200当量/10g以下の場合、変性ポリエステル/エポキシ化合物部位、ポリウレタン部位/エポキシ化合物部位の架橋密度の差が小さく、ポリウレタン樹脂/エポキシ化合物部位の応力緩和能力が小さく、ハンダリフロー領域での耐熱性が不十分になる。また、AV(c)-AV(d)が8,000当量/10g以上の場合、変性ポリエステル部位の反応性が高く、エポキシとの反応が早く、シートライフを維持することができない。また、系全体の架橋密度も大きくなるため、剥離応力に対する応力緩和が不十分になり、室温から高温に至る、幅広い領域での剥離強度が小さくなる。 In the present invention, the acid value of the dry coating film of the modified polyester resin by the polymer of the radical polymerizable monomer is AV (c) (equivalent / 10 6 g), and the acid value of the polyurethane resin is AV (d) (equivalent / In the case of 10 6 g), AV (c) -AV (d) is 200 or more and 8,000 or less, preferably 300 or more and 6,500 or less, more preferably 400 or more and 5,000 or less. When AV (c) -AV (d) is 200 equivalents / 10 6 g or less, the difference in crosslink density between the modified polyester / epoxy compound part and the polyurethane part / epoxy compound part is small, and the stress relaxation of the polyurethane resin / epoxy compound part The capacity is small, and the heat resistance in the solder reflow region is insufficient. When AV (c) -AV (d) is 8,000 equivalent / 10 6 g or more, the reactivity of the modified polyester portion is high, the reaction with the epoxy is fast, and the sheet life cannot be maintained. Further, since the cross-linking density of the entire system is increased, the stress relaxation with respect to the peeling stress becomes insufficient, and the peeling strength in a wide range from room temperature to high temperature is reduced.
 また、変性ポリエステル樹脂、ポリウレタン樹脂のガラス転移温度を制御すれば幅広い温度領域で高い接着性能を実現することが可能である。特に、本発明の変性ポリエステル樹脂においては、エポキシ化合物との反応性の高い無水カルボキシル基を持つラジカル重合性単量体の重合体がポリエステル樹脂とグラフト反応で化学結合しているため、硬化塗膜の動的粘弾性測を行うと、損失正接のピークはエポキシ化合物単体の硬化塗膜の損失正接ピークである130~150℃も含めた幅広い一山のピークとなり、広い温度領域で、高い接着性能を示すことができる。かかる変性ポリエステル樹脂の特性を活用して、変性ポリエステル樹脂/ポリウレタン樹脂/エポキシ化合物の三元系で、さらに幅広い温度領域で、安定した接着性能を達成するには、ポリウレタン樹脂のガラス転移温度よりも、ガラス転移温度の高い変性ポリエステル樹脂を使用すればよい。 Also, by controlling the glass transition temperature of the modified polyester resin and polyurethane resin, it is possible to achieve high adhesion performance in a wide temperature range. In particular, in the modified polyester resin of the present invention, a polymer of a radically polymerizable monomer having an anhydrous carboxyl group that is highly reactive with an epoxy compound is chemically bonded to the polyester resin by a graft reaction. When measuring the dynamic viscoelasticity, the loss tangent peak is a broad peak including 130 to 150 ° C, which is the loss tangent peak of the cured film of the epoxy compound alone, and has high adhesive performance in a wide temperature range. Can be shown. In order to achieve stable adhesive performance in a wider range of temperatures using the modified polyester resin / polyurethane resin / epoxy compound ternary system by utilizing the properties of the modified polyester resin, the glass transition temperature of the polyurethane resin is required. A modified polyester resin having a high glass transition temperature may be used.
 本発明に用いるポリウレタン樹脂のガラス転移温度は、-10~60℃である。ガラス転移温度が-10℃以下だと、高温での接着性が不十分になる傾向がある。ガラス転移温度が60℃を超えると、溶融粘度が高くなるため、Bステージ状態での基材との貼り合せが不十分になり、剥離強度低下の原因になる。また常温での弾性率が高くなるので、常温での剥離強度が低くなる。好ましいガラス転移温度の下限は-5℃、より好ましいガラス転移温度の下限は0℃、さらに好ましいガラス転移温度の下限は5℃である。好ましい上限は55℃、より好ましい上限は50℃、さらに好ましい上限は45℃である。ガラス転移温度を制御する方法は、構成成分のポリエステルジオールのガラス転移温度を制御する方法、ポリウレタン樹脂を構成するポリイソシアネートの含有量を制御する方法等がある。 The glass transition temperature of the polyurethane resin used in the present invention is −10 to 60 ° C. When the glass transition temperature is −10 ° C. or lower, the adhesiveness at high temperatures tends to be insufficient. When the glass transition temperature exceeds 60 ° C., the melt viscosity becomes high, so that the bonding with the base material in the B-stage state becomes insufficient, causing a decrease in peel strength. Moreover, since the elastic modulus at normal temperature is increased, the peel strength at normal temperature is decreased. The lower limit of the preferable glass transition temperature is −5 ° C., the lower limit of the more preferable glass transition temperature is 0 ° C., and the lower limit of the more preferable glass transition temperature is 5 ° C. A preferred upper limit is 55 ° C, a more preferred upper limit is 50 ° C, and a more preferred upper limit is 45 ° C. Methods for controlling the glass transition temperature include a method for controlling the glass transition temperature of the constituent polyester diol and a method for controlling the content of polyisocyanate constituting the polyurethane resin.
 本発明における、変性ポリエステル樹脂の塗膜のガラス転移温度は0~80℃で、好ましくは5~75℃であり、更に好ましくは10~70℃である。0℃以下では、硬化剤と反応させた硬化塗膜においても耐熱性が小さく、高温時での接着性が悪くなる。さらにBステージ状態での反応性が大きくなるため、シートライフが悪くなる。また、80℃を超えると変性後においても樹脂の溶融粘度が高く、Bステージ状態での基材との貼り合せが不十分になり、剥離強度低下の原因になる。また常温での弾性率が高くなるので、常温での剥離強度が低くなる。 In the present invention, the glass transition temperature of the coating film of the modified polyester resin is 0 to 80 ° C., preferably 5 to 75 ° C., more preferably 10 to 70 ° C. Below 0 ° C., the heat resistance of the cured coating film reacted with the curing agent is small, and the adhesiveness at high temperatures is poor. Furthermore, since the reactivity in the B stage state is increased, the seat life is deteriorated. On the other hand, if the temperature exceeds 80 ° C., the melt viscosity of the resin is high even after modification, and the bonding with the base material in the B-stage state becomes insufficient, resulting in a decrease in peel strength. Moreover, since the elastic modulus at normal temperature is increased, the peel strength at normal temperature is decreased.
 変性ポリエステル樹脂の乾燥塗膜のガラス転移温度をTg(c)(℃)、ポリウレタン樹脂のガラス転移温度をTg(d)(℃)とした場合、Tg(c)-Tg(d)は、5℃以上50℃以下であり、好ましくは7℃以上45℃以下、さらに好ましくは10℃以上40℃以下である。Tg(c)-Tg(d)が、5℃以下の場合、室温から高温にわたる幅広い温度領域での接着性が保てない。特に、ハンダリフロー温度域での耐熱性がポリウレタン樹脂/エポキシ化合物には不足しており、変性ポリエステルを配合することにより補うことが可能であるが、ガラス転移温度が近接していると補う効果が少なくなり、耐熱性が不十分になる。また、変性ポリエステルは、エポキシ化合物系の硬化剤との反応性が高く、Bステージ状態のシートライフが単独樹脂系では不良だが、比較的反応性の低いポリウレタン樹脂と併用することでBステージのシートライフの向上が可能である。しかしラジカル重合性単量体で変性された変性ポリエステルそのものガラス転移温度を上げないと安定性を確保することができず、Tg(c)-Tg(d)が5℃以下の場合、ポリウレタン樹脂との併用効果が不十分である。またTg(c)-Tg(d)が50℃以上の場合、シートライフ向上効果は見られるが、幅広い温度領域での接着性がでない。 When the glass transition temperature of the dried coating film of the modified polyester resin is Tg (c) (° C.) and the glass transition temperature of the polyurethane resin is Tg (d) (° C.), Tg (c) −Tg (d) is 5 It is not lower than 50 ° C. and preferably not higher than 7 ° C. and not higher than 45 ° C., more preferably not lower than 10 ° C. and not higher than 40 ° C. When Tg (c) -Tg (d) is 5 ° C. or lower, the adhesiveness in a wide temperature range from room temperature to high temperature cannot be maintained. In particular, the heat resistance in the solder reflow temperature range is insufficient for polyurethane resins / epoxy compounds, and it can be compensated by blending modified polyester. The heat resistance becomes insufficient. In addition, modified polyester is highly reactive with epoxy compound-based curing agents, and the B-stage sheet life is poor with a single resin system. Life can be improved. However, the modified polyester itself modified with a radically polymerizable monomer cannot secure stability unless the glass transition temperature is raised. When Tg (c) -Tg (d) is 5 ° C. or lower, The combined effect of is insufficient. Further, when Tg (c) -Tg (d) is 50 ° C. or higher, an effect of improving the sheet life is seen, but the adhesiveness in a wide temperature range is not obtained.
 以上に示したように、ポリウレタン樹脂/エポキシ化合物の系に、変性ポリエステル樹脂を加えて三元系にすることにより、高度耐熱性(260℃)付与と、高温高湿度(60℃相対湿度90%)での接着性能維持が可能になった。一方、変性ポリエステル樹脂/エポキシ化合物の系では、高度耐熱性(260℃)、高温高湿度(60℃相対湿度90%)での接着性能維持は可能であるが、常温での接着性は、ポリウレタン樹脂/エポキシ化合物の系、変性ポリエステル樹脂/ポリウレタン樹脂/エポキシ化合物系に比べて低くなる。基材がアルミニウム板や銅箔の光沢面等、接着しにくい素材の場合には、実用に値しない場合がある。 As shown above, by adding a modified polyester resin to a polyurethane resin / epoxy compound system to form a ternary system, high heat resistance (260 ° C) is imparted and high temperature and high humidity (60 ° C relative humidity 90%) ) Can maintain the adhesion performance. On the other hand, in the modified polyester resin / epoxy compound system, the adhesive performance can be maintained at high heat resistance (260 ° C.) and high temperature and high humidity (60 ° C. relative humidity 90%). It becomes lower than the resin / epoxy compound system and the modified polyester resin / polyurethane resin / epoxy compound system. If the substrate is a material that is difficult to adhere, such as a glossy surface of an aluminum plate or copper foil, it may not be practical.
 本発明の樹脂組成物は、ジシクロペンタジエン構造を有するエポキシ化合物を含む。ジシクロペンタジエン骨格を持つエポキシ化合物からなる硬化塗膜は、疎水性が大きく、極めて吸湿率が小さいため、高温高湿度(60℃相対湿度90%)での接着性能維持に有効である。また、ジシクロペンタジエン骨格が嵩高いため、化合物中のグリシジル基の間隔が大きく、硬化塗膜の架橋密度を下げる効果があり、特に、接着体を高温高湿下(40℃相対湿度80%)に2日間保存した後に、ハンダリフロー工程(260℃)を経た時に、接着体に含まれる水分の急激な蒸発による応力を緩和する能力が大きく、基材からの接着樹脂の剥離を抑制することができる。配合するエポキシ樹脂として、その他のエポキシも併用することができる。例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ノボラックグリシジルエーテル、ブロム化ビスフェノールAジグリシジルエーテル等のグリシジルエーテルタイプ、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル等のグリシジルエステルタイプ、トリグリシジルイソシアヌレート、テトラグリシジルジアミノジフェニルメタン等のグリシジルアミン、あるいは3,4-エポキシシクロヘキシルメチルカルボキシレート、エポキシ化ポリブタジエン、エポキシ化大豆油等の脂環族あるいは脂肪族エポキサイド、あるいはテトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、テトラグリシジルビスアミノメチルシクロヘキサノン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン等のグリシジルアミン系などが挙げられる。N,N,N’,N’-テトラグリシジル-m-キシレンジアミン等のグリシジルアミン系は、触媒作用のあるアミノ基を骨格にもつため、硬化速度が高く、安定したBステージ状態を得ることができる。エポキシ化合物の配合量はポリウレタン樹脂と変性ポリエステル樹脂100質量部に対して5~30質量部の配合量であることが好ましい。この範囲であればポリエステルとエポキシ化合物の反応点のバランスが合うため、強固な接着性能を得ることができる。 The resin composition of the present invention contains an epoxy compound having a dicyclopentadiene structure. A cured coating film composed of an epoxy compound having a dicyclopentadiene skeleton is highly hydrophobic and has a very low moisture absorption rate, and is therefore effective in maintaining adhesive performance at high temperature and high humidity (60 ° C. relative humidity 90%). In addition, since the dicyclopentadiene skeleton is bulky, the distance between glycidyl groups in the compound is large, and there is an effect of lowering the crosslinking density of the cured coating film. In particular, the adhesive is subjected to high temperature and high humidity (40 ° C., relative humidity 80%). After two days of storage, when the solder reflow process (260 ° C.) is performed, the ability to relieve stress due to rapid evaporation of moisture contained in the bonded body is great, and the peeling of the adhesive resin from the substrate can be suppressed. it can. Other epoxy can also be used together as an epoxy resin to be blended. For example, glycidyl ether type such as bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, novolak glycidyl ether, brominated bisphenol A diglycidyl ether, glycidyl ester type such as hexahydrophthalic acid glycidyl ester, dimer acid glycidyl ester, triglycidyl Glycidylamine such as isocyanurate, tetraglycidyldiaminodiphenylmethane, or alicyclic or aliphatic epoxide such as 3,4-epoxycyclohexylmethylcarboxylate, epoxidized polybutadiene, epoxidized soybean oil, or tetraglycidyldiaminodiphenylmethane, triglycidylparaamino Phenol, tetraglycidylbisaminomethylcyclohexanone, N, N, ', Glycidyl amine type, such as N'- tetraglycidyl -m- xylene diamine. Glycidylamines such as N, N, N ′, N′-tetraglycidyl-m-xylenediamine have a catalytic amino group in the skeleton, so that the curing speed is high and a stable B-stage state can be obtained. it can. The compounding amount of the epoxy compound is preferably 5 to 30 parts by mass with respect to 100 parts by mass of the polyurethane resin and the modified polyester resin. If it is this range, since the balance of the reaction point of polyester and an epoxy compound suits, strong adhesive performance can be obtained.
 本発明において、ラジカル重合性部位を含むポリエステル樹脂は、ポリエステル樹脂組成における全酸成分の合計量を100モル%としたとき、芳香族酸は30モル%以上であることが好ましく、より好ましくは45モル%以上、よりさらに好ましくは60モル%以上である。芳香族酸が30モル%以下の場合、樹脂からなる塗膜、及び樹脂/硬化剤からなる塗膜の凝集力が弱く、各種基材への接着強度の低下が見られる。 In the present invention, the polyester resin containing a radical polymerizable moiety preferably has an aromatic acid content of 30 mol% or more, more preferably 45, when the total amount of all acid components in the polyester resin composition is 100 mol%. It is at least mol%, more preferably at least 60 mol%. When the aromatic acid is 30 mol% or less, the cohesive strength of the coating film made of resin and the coating film made of resin / curing agent is weak, and a decrease in the adhesive strength to various substrates is observed.
 芳香族酸の例としてはテレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、ジフェン酸、5-ヒドロキシイソフタル酸等の芳香族ジカルボン酸が例示できる。また、スルホテレフタル酸、5-スルホイソフタル酸、4-スルホフタル酸、4-スルホナフタレン-2,7-ジカルボン酸、5-(4-スルホフェノキシ)イソフタル酸、スルホテレフタル酸などのスルホン酸基有する芳香族ジカルボン酸、スルホテレフタル酸の金属塩、アンモニウム塩、5-スルホイソフタル酸の金属塩、アンモニウム塩、4-スルホフタル酸の金属塩、アンモニウム塩、4-スルホナフタレン-2,7-ジカルボン酸、5-(4-スルホフェノキシ)イソフタル酸の金属塩、アンモニウム塩、スルホテレフタル酸の金属塩、アンモニウム塩などのスルホン酸塩基を有する芳香族ジカルボン酸、p-ヒドロキシ安息香酸、p-ヒドロキシフェニルプロピオン酸、p-ヒドロキシフェニル酢酸、6-ヒドロキシ-2-ナフトエ酸、4,4-ビス(p-ヒドロキシフェニル)バレリック酸などの芳香族オキシカルボン酸等を挙げることができる。これらのうちでもテレフタル酸、イソフタル酸、およびその混合物が塗膜の凝集力を上げる点で特に好ましい。 Examples of aromatic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, diphenic acid, and 5-hydroxyisophthalic acid. In addition, aromatic compounds having a sulfonic acid group such as sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5- (4-sulfophenoxy) isophthalic acid, sulfoterephthalic acid, etc. Group dicarboxylic acid, metal salt of sulfoterephthalic acid, ammonium salt, metal salt of 5-sulfoisophthalic acid, ammonium salt, metal salt of 4-sulfophthalic acid, ammonium salt, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5 -(4-sulfophenoxy) isophthalic acid metal salt, ammonium salt, sulfoterephthalic acid metal salt, aromatic dicarboxylic acid having a sulfonate group such as ammonium salt, p-hydroxybenzoic acid, p-hydroxyphenylpropionic acid, p-hydroxyphenylacetic acid, 6-hydroxy-2-naphthoic acid And aromatic oxycarboxylic acids such as 4,4-bis (p-hydroxyphenyl) valeric acid. Among these, terephthalic acid, isophthalic acid, and a mixture thereof are particularly preferable in terms of increasing the cohesive strength of the coating film.
 なお、芳香族酸以外の酸成分としては、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸とその酸無水物などの脂環族ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸などの脂肪族ジカルボン酸を挙げることができる。 Examples of acid components other than aromatic acids include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and alicyclic dicarboxylic acids such as acid anhydrides thereof, and succinic acid. And aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid and dimer acid.
 一方、グリコ-ル成分は脂肪族グリコ-ル、脂環族グリコ-ル、芳香族含有グリコール、エ-テル結合含有グリコ-ルなどよりなることが好ましい。脂肪族グリコ-ルの例としては、エチレングリコ-ル、1,2-プロピレングリコ-ル、1,3-プロパンジオ-ル、1,4-ブタンジオ-ル、1,5-ペンタンジオ-ル、ネオペンチルグリコ-ル、1,6-ヘキサンジオ-ル、3-メチル-1,5-ペンタンジオ-ル、1,9-ノナンジオ-ル、2-エチル-2-ブチルプロパンジオール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、ジメチロールヘプタン、2,2,4-トリメチル-1,3-ペンタンジオ-ル等を挙げることができる。脂環族グリコ-ルの例としては、1,4-シクロヘキサンジオ-ル、1,4-シクロヘキサンジメタノ-ル、トリシクロデカンジオ-ル、トリシクロデカンジメチロール、スピログリコ-ル、水素化ビスフェノ-ルA、水素化ビスフェノ-ルAのエチレンオキサイド付加物およびプロピレンオキサイド付加物、等を挙げることができる。エ-テル結合含有グリコ-ルの例としては、ジエチレングリコ-ル、トリエチレングリコ-ル、ジプロピレングリコ-ル、さらに、ポリエチレングリコ-ル、ポリプロピレングリコ-ル、ポリテトラメチレングリコ-ル、ネオペンチルグリコールエチレンオキサイド付加物、ネオペンチルグリコールプロピレンオキサイド付加物も必要により使用しうる。芳香族含有グリコールの例としてはパラキシレングリコ-ル、メタキシレングリコ-ル、オルトキシレングリコ-ル、1,4-フェニレングリコ-ル、1,4-フェニレングリコ-ルのエチレンオキサイド付加物、ビスフェノ-ルA、ビスフェノ-ルAのエチレンオキサイド付加物およびプロピレンオキサイド付加物等の、ビスフェノ-ル類の2つのフェノ-ル性水酸基にエチレンオキサイド又はプロピレンオキサイドをそれぞれ1~数モル付加して得られるグリコ-ル類等を例示できる。 On the other hand, the glycol component is preferably composed of an aliphatic glycol, an alicyclic glycol, an aromatic-containing glycol, an ether bond-containing glycol, or the like. Examples of aliphatic glycols include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neo Pentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, hydroxypivalic acid neopentyl glycol ester Dimethylol heptane, 2,2,4-trimethyl-1,3-pentanediol, and the like. Examples of alicyclic glycols include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, tricyclodecandiol, tricyclodecane dimethylol, spiroglycol, hydrogenated bisphenol. And ethylene oxide adduct and propylene oxide adduct of hydrogenated bisphenol A. Examples of ether bond-containing glycols include diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, neopentyl. Glycol ethylene oxide adducts and neopentyl glycol propylene oxide adducts can also be used if necessary. Examples of aromatic-containing glycols include para-xylene glycol, meta-xylene glycol, ortho-xylene glycol, 1,4-phenylene glycol, 1,4-phenylene glycol ethylene oxide adduct, bisphenol Obtained by adding 1 to several moles of ethylene oxide or propylene oxide to two phenolic hydroxyl groups of bisphenols such as ethylene oxide adduct and propylene oxide adduct of bisphenol A and bisphenol A Examples include glycols.
 また、分子構造の中に、水酸基とカルボキシル基を有する、オキシカルボン酸化合物もポリエステル原料として使用することができ、5-ヒドロキシイソフタル酸、p-ヒドロキシ安息香酸、p-ヒドロキシフェニチルアルコール、p-ヒドロキシフェニルプロピオン酸、p-ヒドロキシフェニル酢酸、6-ヒドロキシ-2-ナフトエ酸、4,4-ビス(p-ヒドロキシフェニル)バレリック酸等を例示できる。 In addition, an oxycarboxylic acid compound having a hydroxyl group and a carboxyl group in the molecular structure can also be used as a raw material for polyester, such as 5-hydroxyisophthalic acid, p-hydroxybenzoic acid, p-hydroxyphenethyl alcohol, p- Examples thereof include hydroxyphenylpropionic acid, p-hydroxyphenylacetic acid, 6-hydroxy-2-naphthoic acid, 4,4-bis (p-hydroxyphenyl) valeric acid and the like.
 本発明で使用されるポリエステル樹脂中には、必要によりポリエステル樹脂中に分岐骨格を導入する目的で、ポリエステル樹脂を構成する全酸成分、全グリコール成分の合計モル量を200%としたとき、0.1~5モル%程度の3官能以上のポリカルボン酸類および/又はポリオ-ル類を共重合しても構わない。特に硬化剤と反応させて硬化塗膜を得る場合、分岐骨格を導入することにより、樹脂の末端基濃度(反応点)が増え、架橋密度の高い、強度な塗膜を得ることができる。その場合の3官能以上のポリカルボン酸の例としてはトリメリット酸、トリメシン酸、エチレングルコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、無水トリメリット酸、無水ピロメリット酸(PMDA)、オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-(ヘキサフロロイソプロピリデン)ジフタル酸二無水物(6FDA)、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BSAA)などの化合物等、が使用でき、一方3官能以上のポリオ-ルの例としてはグリセリン、トリメチロ-ルエタン、トリメチロ-ルプロパン、ペンタエリスリト-ル等が使用できる。3官能以上のポリカルボン酸および/またはポリオ-ルを使用する場合は、全酸成分あるいは全グリコ-ル成分に対し0.1~5モル%、好ましくは0.5~3モル%の範囲で共重合するのが良く、5モル%を超えると塗膜の破断点伸度などの力学物性の低下が生じることがあり、また重合中にゲル化を起こす可能性がある。 In the polyester resin used in the present invention, when the total molar amount of all acid components and all glycol components constituting the polyester resin is 200% for the purpose of introducing a branched skeleton into the polyester resin as necessary, 0% . About 3 to 5 mol% of tri- or higher functional polycarboxylic acids and / or polyols may be copolymerized. In particular, when a cured coating film is obtained by reacting with a curing agent, by introducing a branched skeleton, the terminal group concentration (reaction point) of the resin is increased, and a strong coating film having a high crosslinking density can be obtained. Examples of tri- or higher functional polycarboxylic acids are trimellitic acid, trimesic acid, ethylene glycol bis (anhydro trimellitate), glycerol tris (anhydro trimellitate), trimellitic anhydride, pyromellitic anhydride Acid (PMDA), oxydiphthalic dianhydride (ODPA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride Anhydride (BPDA), 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 2, Compounds such as 2′-bis [(dicarboxyphenoxy) phenyl] propane dianhydride (BSAA) can be used. Trifunctional or higher polyol - glycerin Examples Le, trimethylol - Ruetan, trimethylol - trimethylolpropane, pentaerythritol - Le like. When using a tri- or higher functional polycarboxylic acid and / or polyol, the total acid component or the total glycol component is 0.1 to 5 mol%, preferably 0.5 to 3 mol%. Copolymerization is good, and if it exceeds 5 mol%, mechanical properties such as elongation at break of the coating film may be lowered, and gelation may occur during polymerization.
 本発明で使用されるポリエステル樹脂中には必要によりポリエステル樹脂末端にカルボキシル基を導入する目的で、ポリエステル樹脂を構成する全酸成分、全グリコール成分の合計モル量を200%としたとき、0.1~10モル%程度の酸付加を行うことができる。酸付加にモノカルボン酸、ジカルボン酸、多官能カルボン酸化合物を用いると、エステル交換により分子量の低下が起こるので、酸無水物を用いることが好ましい。酸無水物としては、無水コハク酸、無水マレイン酸、オルソフタル酸、2,5-ノルボルネンジカルボン酸無水物、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸(PMDA)、オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-(ヘキサフロロイソプロピリデン)ジフタル酸二無水物(6FDA)、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BSAA)などの化合物等が使用できる。10モル%以上酸付加を行うと、ゲル化を起こすことがあり、またポリエステルの解重合を起こし樹脂分子量を下げてしまうことがある。酸付加はポリエステル重縮合後、バルク状態で直接行う方法と、ポリエステルを溶液化し付加する方法がある。バルク状態での反応は、速度が速いが、多量に付加するとゲル化が起こることがあり、かつ高温での反応になるので、酸素ガスを遮断し酸化を防ぐなどの注意が必要である。一方、溶液状態での付加は、反応は遅いが、多量のカルボキシル基を安定に導入することができる。特に、無水ピロメリット酸(PMDA)、オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-(ヘキサフロロイソプロピリデン)ジフタル酸二無水物(6FDA)、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BSAA)などの酸二無水物を使用すると、鎖延長効果で分子量を上げることができる。本発明において、ラジカル重合性単量体の重合体による変性後のポリエステル樹脂として高い重量平均分子量を得るのには、特に、無水ピロメリット酸(PMDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)の使用が有効である。 In the polyester resin used in the present invention, when the total molar amount of all acid components and all glycol components constituting the polyester resin is set to 200% for the purpose of introducing a carboxyl group at the end of the polyester resin as necessary, it is 0. An acid addition of about 1 to 10 mol% can be performed. When a monocarboxylic acid, a dicarboxylic acid, or a polyfunctional carboxylic acid compound is used for the acid addition, the molecular weight is reduced by transesterification. Therefore, it is preferable to use an acid anhydride. Acid anhydrides include succinic anhydride, maleic anhydride, orthophthalic acid, 2,5-norbornene dicarboxylic acid anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride (PMDA), oxydiphthalic dianhydride (ODPA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride (BPDA), 3,3 ′ , 4,4′-Diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 2,2′-bis [(dicarboxyphenoxy) Compounds such as phenyl] propane dianhydride (BSAA) can be used. When the acid addition is carried out at 10 mol% or more, gelation may occur, and polyester depolymerization may occur and the resin molecular weight may be lowered. The acid addition includes a method of directly performing in a bulk state after the polyester polycondensation and a method of adding the polyester in a solution. The reaction in the bulk state is fast, but if it is added in a large amount, gelation may occur, and since it becomes a reaction at a high temperature, care must be taken such as blocking oxygen gas to prevent oxidation. On the other hand, the addition in the solution state is slow, but a large amount of carboxyl groups can be stably introduced. In particular, pyromellitic anhydride (PMDA), oxydiphthalic dianhydride (ODPA), 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′- Diphenyltetracarboxylic dianhydride (BPDA), 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride ( The use of acid dianhydrides such as 6FDA), 2,2′-bis [(dicarboxyphenoxy) phenyl] propane dianhydride (BSAA) can increase the molecular weight due to chain extension effect. In the present invention, in order to obtain a high weight average molecular weight as a polyester resin after modification with a polymer of a radical polymerizable monomer, in particular, pyromellitic anhydride (PMDA), 3,3 ′, 4,4′- Use of benzophenone tetracarboxylic dianhydride (BTDA) or 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride (BPDA) is effective.
 本発明において、ラジカル重合性部位としては、不飽和結合、水素引き抜きで容易にラジカルを発生する三級炭素などを挙げることができるが、ラジカル重合性単量体の重合体で効率よく変性するためには、主鎖をなす樹脂中に重合性不飽和結合を導入し、ラジカル重合性単量体でグラフト反応することが有効である。不飽和結合の導入は、不飽和結合をもつ酸成分および/またはグリコール成分を共重合することにより達成できる。重合性不飽和結合を含有するジカルボン酸の例としては、α、β-不飽和ジカルボン酸類としてフマル酸、マレイン酸、無水マレイン酸、イタコン酸、シトラコン酸などが、不飽和二重結合を含有する脂環族ジカルボン酸の例としては2,5-ノルボルネンジカルボン酸無水物、テトラヒドロ無水フタル酸等を挙げることができる。これらのうちでもフマル酸、イタコン酸がポリエステル重合時の熱安定性が高い点、さらにラジカル重合反応に対しても活性が高い点で特に好ましい。 In the present invention, examples of the radical polymerizable moiety include an unsaturated bond and a tertiary carbon that easily generates a radical by hydrogen abstraction. However, the radical polymerizable moiety is efficiently modified with a polymer of a radical polymerizable monomer. For this purpose, it is effective to introduce a polymerizable unsaturated bond into the resin constituting the main chain and to carry out a graft reaction with a radically polymerizable monomer. The introduction of an unsaturated bond can be achieved by copolymerizing an acid component and / or a glycol component having an unsaturated bond. Examples of dicarboxylic acids containing polymerizable unsaturated bonds include α, β-unsaturated dicarboxylic acids such as fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, etc. containing unsaturated double bonds Examples of the alicyclic dicarboxylic acid include 2,5-norbornene dicarboxylic acid anhydride and tetrahydrophthalic anhydride. Of these, fumaric acid and itaconic acid are particularly preferable in terms of high thermal stability at the time of polyester polymerization and high activity for radical polymerization reaction.
 重合性不飽和結合を含有するグリコールの例としては、グリセリンモノアリルエーテル、トリメチロールプロパンモノアリルエーテル、ペンタエリスリトールモノアリルエーテル、等を挙げることができる。 Examples of glycols containing a polymerizable unsaturated bond include glycerin monoallyl ether, trimethylolpropane monoallyl ether, pentaerythritol monoallyl ether, and the like.
 重合性不飽和二重結合を含有するモノマーの共重合量は、ポリエステル樹脂を構成する全酸成分、全グリコール成分の合計モル量を200%としたとき、好ましくは0.5~20モル%、より好ましくは1.5~15モル%、さらに好ましくは2.5~10モル%であり、最も好ましくは3~7モル%である。重合性不飽和二重結合を含有するモノマーが20モル%を超える場合は、グラフト反応工程で、ゲル化反応が起こりやすくなり、不溶物含量が増加し、製造安定性、作業性が悪くなる。また、0.5モル%以下ではグラフト反応が不十分で、未反応のポリエステルが存在し、ラジカル反応後の樹脂の分子量が上がらないため、高い耐熱性、高温高湿下での接着性がでない。 The copolymerization amount of the monomer containing a polymerizable unsaturated double bond is preferably 0.5 to 20 mol% when the total molar amount of all acid components and all glycol components constituting the polyester resin is 200%, More preferably, it is 1.5 to 15 mol%, further preferably 2.5 to 10 mol%, and most preferably 3 to 7 mol%. When the monomer containing a polymerizable unsaturated double bond exceeds 20 mol%, a gelation reaction tends to occur in the graft reaction step, the insoluble matter content increases, and the production stability and workability deteriorate. In addition, when the amount is 0.5 mol% or less, the graft reaction is insufficient, unreacted polyester exists, and the molecular weight of the resin after radical reaction does not increase. Therefore, it does not have high heat resistance and adhesiveness under high temperature and high humidity. .
 本発明に用いるポリエステル樹脂に含まれる重合触媒としてのチタン系化合物の量は、ポリエステル樹脂中にチタン原子として10~200ppmであることが好ましく、より好ましくは15~100ppm、更に好ましくは20~80ppmである。10ppm以下では触媒として用いる場合に活性が極端に低下するため好ましくない。200ppm以上では塗膜の耐水性、耐熱性、色調が低下する傾向にあるため好ましくない。 The amount of the titanium compound as a polymerization catalyst contained in the polyester resin used in the present invention is preferably 10 to 200 ppm, more preferably 15 to 100 ppm, still more preferably 20 to 80 ppm as titanium atoms in the polyester resin. is there. If it is 10 ppm or less, the activity is extremely lowered when used as a catalyst, which is not preferable. If it is 200 ppm or more, the water resistance, heat resistance, and color tone of the coating film tend to decrease, such being undesirable.
 本発明に用いるポリエステル樹脂を重合する際に重合触媒として使用するチタン化合物としては、テトラ-n-プロピルチタネート、テトライソプロピルチタネート、テトラ-n-ブチルチタネート、テトライソブチルチタネート、テトラ-tert-ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェニルチタネート、テトラベンジルチタネートなどが挙げられ、特にテトラ-n-ブチルチタネートの使用が好ましい。 Titanium compounds used as a polymerization catalyst when polymerizing the polyester resin used in the present invention include tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutyl titanate, tetra-tert-butyl titanate, Examples include tetracyclohexyl titanate, tetraphenyl titanate, tetrabenzyl titanate and the like, and the use of tetra-n-butyl titanate is particularly preferable.
 また一方で、本発明に用いるポリエステル樹脂は、アンチモン化合物、ゲルマニウム化合物、スズ化合物、アルミニウム化合物などの重合触媒を、これらの成分の添加が塗膜の耐水性、耐熱性、色調等に問題を生じない添加量の範囲内において共存させて用いることは、これらを重合触媒として用いる場合に重合時間の短縮による生産性を向上させる際に有効であり、好ましい。 On the other hand, the polyester resin used in the present invention is a polymerization catalyst such as an antimony compound, germanium compound, tin compound, aluminum compound, and the addition of these components causes problems in the water resistance, heat resistance, color tone, etc. of the coating film. When these are used together as a polymerization catalyst, it is effective in improving the productivity by shortening the polymerization time, and is preferable.
 本発明に用いるポリエステル樹脂を重合する際および本発明の樹脂組成物には、ラジカル重合禁止剤を共存させることが好ましい。その量はポリエステル樹脂中にラジカル重合禁止剤分子として10~800ppm、より好ましくは100~400ppmである。10ppm以下では二重結合開裂によるゲル化の可能性が高くなり高分子量のポリエステル樹脂の製造が困難になることがある。800ppm以上ではポリエステル樹脂が着色する場合があり、塗膜の色調が低下し外観を損ねることがあり、またラジカル反応性を下げてしまう。 It is preferable that a radical polymerization inhibitor is allowed to coexist when the polyester resin used in the present invention is polymerized and in the resin composition of the present invention. The amount thereof is 10 to 800 ppm, more preferably 100 to 400 ppm as a radical polymerization inhibitor molecule in the polyester resin. If it is 10 ppm or less, the possibility of gelation by double bond cleavage increases, and it may be difficult to produce a high molecular weight polyester resin. If it is 800 ppm or more, the polyester resin may be colored, the color tone of the coating film may be lowered and the appearance may be impaired, and the radical reactivity may be lowered.
 本発明に使用するラジカル重合禁止剤は主にポリエステル樹脂を重合する際に二重結合開裂によるゲル化防止、さらには塗料の硬化性向上のために用いられるものであるが、ポリエステル樹脂の貯蔵安定性を高めるために重合後に添加しても良い。ラジカル重合禁止剤としてはフェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤、硫黄系酸化防止剤、無機化合物系酸化防止剤など公知のものが例示できる。 The radical polymerization inhibitor used in the present invention is mainly used to prevent gelation by double bond cleavage when polymerizing a polyester resin, and further to improve the curability of the paint. In order to enhance the properties, it may be added after polymerization. Examples of radical polymerization inhibitors include known antioxidants such as phenolic antioxidants, phosphorus antioxidants, amine antioxidants, sulfur antioxidants, and inorganic compound antioxidants.
 フェノール系酸化防止剤としては、2,5-ジ-t-ブチルハイドロキノン、4,4’-ブチルデンビス(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリス-メチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)イソシアヌレートなど、またはそれらの誘導体等が挙げられる。 Examples of phenolic antioxidants include 2,5-di-t-butylhydroquinone, 4,4′-butyldenbis (3-methyl-6-t-butylphenol), 1,1,3-tris (2-methyl-4 -Hydroxy-5-tert-butylphenyl) butane, 1,3,5-tris-methyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3 , 5-di-t-butyl-4-hydroxyphenyl) isocyanurate, or derivatives thereof.
 リン系酸化防止剤としては、トリ(ノニルフェニル)ホスファイト、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、トリオクタデシルホスファイト、トリデシルホスファイト、ジフェニルデシルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニルジトリデシルホスファイト)、ジステアリル-ペンタエリスリトールジホスファイト、トリラウリルトリチオホスファイトなど、またはそれらの誘導体等が挙げられる。 Phosphorus antioxidants include tri (nonylphenyl) phosphite, triphenyl phosphite, diphenylisodecyl phosphite, trioctadecyl phosphite, tridecyl phosphite, diphenyldecyl phosphite, 4,4'-butylidene-bis (3-methyl-6-t-butylphenyl ditridecyl phosphite), distearyl-pentaerythritol diphosphite, trilauryl trithiophosphite, etc., or derivatives thereof.
 アミン系酸化防止剤としては、フェニル-β-ナフチルアミン、フェノチアジン、N,N’- ジフェニル-p-フェニレンジアミン、N,N’-ジ-β-ナフチル-p-フェニレンジアミン、N-シクロヘキシル-N’-フェニル-p-フェニレンジアミン、アルドール-α-ナフチルアミン、2,2,4-トリメチル-1,2-ジハイドロキノリンなど、またはそれらの誘導体等が挙げられる。 Amine-based antioxidants include phenyl-β-naphthylamine, phenothiazine, N, N′- diphenyl-p-phenylenediamine, N, N′-di-β-naphthyl-p-phenylenediamine, N-cyclohexyl-N ′. -Phenyl-p-phenylenediamine, aldol-α-naphthylamine, 2,2,4-trimethyl-1,2-dihydroquinoline, etc., or derivatives thereof.
 硫黄系酸化防止剤としては、チオビス(N-フェニル-β-ナフチルアミン、2-メルカプトベンチアゾール、2-メルカプトベンゾイミダゾール、テトラメチルチウラムジサルファイド、ニッケルイソプロピルキサンテートなど、又はそれらの誘導体が挙げられる。 Examples of sulfur-based antioxidants include thiobis (N-phenyl-β-naphthylamine, 2-mercaptobenchazole, 2-mercaptobenzimidazole, tetramethylthiuram disulfide, nickel isopropyl xanthate, and derivatives thereof.
 ニトロ化合物系酸化防止剤としては、1,3,5-トリニトロベンゼン、p-ニトロソジフェニルアミン、p-ニトロソジメチルアニリン、1-クロロ-3- ニトロベンゼン、o-ジニトロベンゼン、m-ジニトロベンゼン、p-ジニトロベンゼン、p-ニトロ安息香酸、ニトロベンゼン、2-ニトロ-5-シアノチオフェンなど、又はそれらの誘導体が挙げられる。 Nitro compound antioxidants include 1,3,5-trinitrobenzene, p-nitrosodiphenylamine, p-nitrosodimethylaniline, 1-chloro-3- ク ロ ロ nitrobenzene, o-dinitrobenzene, m-dinitrobenzene, p-di Examples thereof include nitrobenzene, p-nitrobenzoic acid, nitrobenzene, 2-nitro-5-cyanothiophene, and derivatives thereof.
 無機化合物系酸化防止剤としては、FeCl3、Fe(CN)3、CuCl2、CoCl3、Co(ClO43、Co(NO33、Co2(SO43等が挙げられる。 Examples of the inorganic compound antioxidant include FeCl 3 , Fe (CN) 3 , CuCl 2 , CoCl 3 , Co (ClO 4 ) 3 , Co (NO 3 ) 3 , and Co 2 (SO 4 ) 3 .
 本発明に用いるラジカル重合禁止剤としては、上記の酸化防止剤の中で、フェノール系酸化防止剤、アミン系酸化防止剤が熱安定性の点で好ましく、融点が120℃以上で分子量が200以上のものがより好ましく、融点が170℃以上のものがさらに好ましい。具体的には、フェノチアジン、4,4’-ブチルデンビス(3-メチル-6-t-ブチルフェノール)などである。 As the radical polymerization inhibitor used in the present invention, among the above-mentioned antioxidants, phenol-based antioxidants and amine-based antioxidants are preferable in terms of thermal stability, and the melting point is 120 ° C. or higher and the molecular weight is 200 or higher. More preferred are those having a melting point of 170 ° C. or higher. Specific examples include phenothiazine and 4,4'-butyldenbis (3-methyl-6-t-butylphenol).
 本発明に用いるポリエステル樹脂は、公知の方法で製造できるが、180℃~270℃の反応温度で製造することが好ましい。反応温度が180℃以下の場合、樹脂分子量が大きくならず、接着性、加工性が低下し、接着剤としての特性がでない傾向にある。また反応温度が270℃以上になると、前記重合禁止剤を添加しても、不飽和基の熱解裂が起こりゲル状物が発生し、安定に製造することが困難になる傾向にある。 The polyester resin used in the present invention can be produced by a known method, but is preferably produced at a reaction temperature of 180 ° C. to 270 ° C. When the reaction temperature is 180 ° C. or lower, the resin molecular weight does not increase, the adhesiveness and workability tend to decrease, and the properties as an adhesive tend not to exist. On the other hand, when the reaction temperature is 270 ° C. or higher, even when the polymerization inhibitor is added, the unsaturated group is thermally cleaved to generate a gel-like product, which tends to be difficult to produce stably.
 本発明で使用されるポリエステル樹脂は、数平均分子量が5,000~50,000の範囲であり、好ましくは数平均分子量が7,000~40,000の範囲であり、さらに好ましくは9,000~30,000の範囲である。数平均分子量が5,000未満であると樹脂としての凝集力が小さく、ために接着性、特に高温高湿下での接着性が低下する。また、数平均分子量が100,000を超えるとグラフト化反応中に高粘度化し、反応の均一な進行が妨げられ、ゲル物が発生し、製造安定性、作業性が悪くなる。 The polyester resin used in the present invention has a number average molecular weight in the range of 5,000 to 50,000, preferably a number average molecular weight in the range of 7,000 to 40,000, and more preferably 9,000. It is in the range of ~ 30,000. When the number average molecular weight is less than 5,000, the cohesive force as a resin is small, and therefore the adhesiveness, particularly the adhesiveness under high temperature and high humidity is lowered. On the other hand, if the number average molecular weight exceeds 100,000, the viscosity is increased during the grafting reaction, the uniform progress of the reaction is hindered, a gel is generated, and the production stability and workability deteriorate.
 本発明におけるラジカル重合性単量体の重合体による変性ポリエステル樹脂の側鎖を構成するラジカル重合性単量体として、無水マレイン酸以外には、(メタ)アクリル酸、(メタ)アクリル酸のエステル化合物、窒素原子を含有するラジカル重合性単量体、ジカルボン酸タイプのラジカル重合性単量体、ビニル系ラジカル重合性単量体、アリル系ラジカル重合性単量体などが好ましい。(メタ)アクリル酸のエステル化合物の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸エチルヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシイソプロピル、(メタ)アクリル酸ジメチルアミノエチル、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルハイドロゲンフタレートなどのフタル酸誘導体と(メタ)アクリル酸ヒドロキシエチルのエステル、さらにはアクリル酸、メタクリル酸とフェニルグリシジルエーテルとの反応物、すなわち、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートなどを挙げることができる。窒素原子を含有するラジカル重合性単量体として(メタ)アクリルアミド、ジメチルアクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸、アクリロニトリル、メタクリロニトリルなどを挙げることができる。ジカルボン酸タイプのラジカル重合性単量体としては、フマル酸、フマル酸モノエチル、フマル酸ジエチル、フマル酸ジブチルなどのフマル酸モノエステル及びフマル酸ジエステル、マレイン酸、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸ジブチルなどのマレイン酸モノエステル及びマレイン酸ジエステル、イタコン酸およびその無水物、イタコン酸モノエステル及びイタコン酸ジエステル、フェニルマレイミド等のマレイミドなどを挙げることができる。ビニル系ラジカル重合性単量体としては、スチレン、α-メチルスチレン、t-ブチルスチレン、クロロメチルスチレンなどのスチレン誘導体、N-ビニルピロリドンなど、酢酸ビニルなどのビニルエステル、ビニルブチルエーテル、ビニルイソブチルエーテルなどのビニルエーテル、アリルアルコール、グリセリンモノアリルエーテル、ペンタエリスリトールモノアリルエーテル、トリメチロールプロパンモノアリルエーテルなどのアリル系ラジカル重合性単量体などを挙げることができる。 In addition to maleic anhydride, (meth) acrylic acid, (meth) acrylic acid ester as the radical polymerizable monomer constituting the side chain of the modified polyester resin by the polymer of the radical polymerizable monomer in the present invention A compound, a radical polymerizable monomer containing a nitrogen atom, a dicarboxylic acid type radical polymerizable monomer, a vinyl radical polymerizable monomer, an allyl radical polymerizable monomer, and the like are preferable. Examples of ester compounds of (meth) acrylic acid include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isopropyl (meth) acrylate, ethylhexyl (meth) acrylate, (meth ) Isobornyl acrylate, hydroxyethyl (meth) acrylate, hydroxyisopropyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, 2- (meth) acryloyloxy Phthalic acid derivatives such as ethyl hydrogen phthalate and esters of hydroxyethyl (meth) acrylate, as well as a reaction product of acrylic acid, methacrylic acid and phenyl glycidyl ether, ie, 2-hydroxy-3-phenoxypropyl (meth) acrylate Relates can be mentioned. Examples of the radically polymerizable monomer containing a nitrogen atom include (meth) acrylamide, dimethylacrylamide, N-methylolacrylamide, acrylamide-2-methylpropanesulfonic acid, acrylonitrile, methacrylonitrile and the like. Dicarboxylic acid type radical polymerizable monomers include fumaric acid, monoethyl fumarate, diethyl fumarate, fumaric acid monoesters such as dibutyl fumarate and fumaric acid diesters, maleic acid, monoethyl maleate, diethyl maleate, maleate Mention may be made of maleic acid monoesters and maleic acid diesters such as dibutyl acid, itaconic acid and its anhydride, itaconic acid monoesters and itaconic acid diesters, and maleimides such as phenylmaleimide. Examples of vinyl radical polymerizable monomers include styrene derivatives such as styrene, α-methyl styrene, t-butyl styrene, chloromethyl styrene, N-vinyl pyrrolidone, vinyl acetate such as vinyl acetate, vinyl butyl ether, vinyl isobutyl ether. And allyl radical polymerizable monomers such as vinyl ether, allyl alcohol, glycerin monoallyl ether, pentaerythritol monoallyl ether, and trimethylolpropane monoallyl ether.
 グラフト化反応終了後の反応生成物は、1)グラフト重合体の他に、2)グラフトを受けなかった非グラフトベース樹脂および3)ベース樹脂とグラフト化しなかった非グラフトラジカル重合体より成るのが通常である。一般に、反応生成物中のグラフト重合体比率が低く、非グラフトベース樹脂及び非グラフトラジカル重合体の比率が高い場合は、変性による効果が低いだけでなく、非グラフトラジカル重合体により塗膜が白化するなどの悪影響が観察される。従ってグラフト重合体生成比率の高い反応条件を選択することが重要である。グラフトを受けなかった非グラフトベース樹脂およびベース樹脂とグラフト化しなかった非グラフトラジカル重合体を、再沈法で除去し精製することは可能であるが、製造効率を考慮すると、先述したとおり、反応性を考慮してラジカル重合性単量体を選択する方法が望ましい。グラフト効率を上げ、グラフトを受けなかった非グラフトベース樹脂およびベース樹脂とグラフト化しなかった非グラフトラジカル重合体の量を抑制する方が好ましい。以下に、ラジカル重合性単量体の重合体による変性ポリエステル樹脂の塗膜と示す場合は、非グラフトベース樹脂およびベース樹脂とグラフト化しなかった非グラフトラジカル重合体も含む塗膜である。 The reaction product after completion of the grafting reaction consists of 1) a graft polymer, 2) a non-graft base resin that has not undergone grafting, and 3) a non-graft radical polymer that has not been grafted with the base resin. It is normal. In general, when the ratio of the graft polymer in the reaction product is low and the ratio of the non-graft base resin and the non-graft radical polymer is high, not only the effect of modification is low, but the coating is whitened by the non-graft radical polymer. Adverse effects such as doing are observed. Therefore, it is important to select reaction conditions with a high graft polymer production ratio. It is possible to remove the non-graft base resin that has not been grafted and the non-graft radical polymer that has not been grafted with the base resin by the reprecipitation method, but considering the production efficiency, as described above, the reaction A method of selecting a radical polymerizable monomer in consideration of the properties is desirable. It is preferable to increase the graft efficiency and suppress the amount of the non-graft base resin that has not been grafted and the amount of the non-graft radical polymer that has not been grafted with the base resin. Hereinafter, a coating film of a modified polyester resin by a polymer of a radical polymerizable monomer is a coating film including a non-graft base resin and a non-graft radical polymer that has not been grafted with the base resin.
 ベース樹脂に対するラジカル重合性単量体のグラフト化反応の実施に際しては、ベース樹脂に対し、ラジカル重合性単量体混合物とラジカル開始剤を一時に添加して行なってもよいし、別々に一定時間を要して滴下した後、更に一定時間撹拌下に加温を継続して反応を進行せしめてもよい。グラフト化反応温度は50~120℃の範囲にあることが望ましい。50℃以下ではラジカル開始剤の反応活性が低くラジカル反応が進みにくく、また120℃以上だと発生したラジカルの熱による失活が早く十分なラジカル反応が進みにくく、変性効果が得られにくい。 In carrying out the grafting reaction of the radical polymerizable monomer to the base resin, the radical polymerizable monomer mixture and the radical initiator may be added to the base resin at a time, or separately for a certain period of time. Then, the reaction may be continued by further heating with stirring for a certain period of time. The grafting reaction temperature is desirably in the range of 50 to 120 ° C. Below 50 ° C., the reaction activity of the radical initiator is low and the radical reaction is difficult to proceed, and when it is 120 ° C. or more, the generated radicals are rapidly deactivated by heat and the sufficient radical reaction is difficult to proceed, and the modification effect is difficult to obtain.
 本発明の目的に適合するグラフト反応生成物に占めるベース樹脂を構成するモノマーに由来する部分とラジカル重合性単量体由来部分の質量比率は、ベース樹脂を構成するモノマーに由来する部分/ラジカル重合性単量体に由来する部分が質量比で10/90~99/1の範囲であることが好ましく、より好ましくは25/75~95/5、さらに好ましくは40/60~90/10、特に好ましくは60/40~85/15の範囲である。ベース樹脂を構成するモノマーに由来する部分の質量比率が10質量%未満であるとき、ベース樹脂の優れた性能、即ち接着性を充分に発揮することが困難となる傾向がある。ベース樹脂を構成するモノマーに由来する部分の質量比率が99質量%を超えると、グラフト生成物中のグラフトされていないベース樹脂の割合がほとんどになり、変性による官能基導入の効果が少なく、硬化塗膜の強靭性が劣る傾向がある。 The mass ratio of the part derived from the monomer constituting the base resin and the part derived from the radical polymerizable monomer in the graft reaction product suitable for the purpose of the present invention is the part / radical polymerization derived from the monomer constituting the base resin. The portion derived from the functional monomer is preferably in the range of 10/90 to 99/1 by mass ratio, more preferably 25/75 to 95/5, still more preferably 40/60 to 90/10, particularly The range is preferably 60/40 to 85/15. When the mass ratio of the portion derived from the monomer constituting the base resin is less than 10% by mass, it tends to be difficult to sufficiently exhibit the excellent performance of the base resin, that is, the adhesiveness. When the mass ratio of the portion derived from the monomer constituting the base resin exceeds 99 mass%, the ratio of the ungrafted base resin in the graft product becomes almost all, and the effect of introducing functional groups due to modification is small, and curing There exists a tendency for the toughness of a coating film to be inferior.
 本発明で使用されるラジカル重合開始剤としては、公知の有機過酸化物類や有機アゾ化合物類を利用しうる。すなわち有機過酸化物としてベンゾイルパ-オキサイド、t-ブチルパ-オキシピバレ-ト、有機アゾ化合物として2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)などを例示することが出来る。グラフト化反応を行うためのラジカル開始剤の使用量は、ラジカル重合性単量体に対して少なくとも0.2質量%以上が必要であり、好ましくは、0.5質量%以上が使用される。0.2質量%以下の場合、ラジカル重合性単量体の重合体による変性が不十分であり性能が不十分である。また0.2質量%以下の場合、グラフト反応が不十分になってしまう。 As the radical polymerization initiator used in the present invention, known organic peroxides and organic azo compounds can be used. That is, benzoyl peroxide, t-butylperoxypivalate as organic peroxides, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile) as organic azo compounds, etc. Can be illustrated. The amount of the radical initiator used for carrying out the grafting reaction is required to be at least 0.2% by mass relative to the radical polymerizable monomer, and preferably 0.5% by mass or more is used. In the case of 0.2% by mass or less, modification of the radical polymerizable monomer by the polymer is insufficient and the performance is insufficient. On the other hand, when the content is 0.2% by mass or less, the graft reaction becomes insufficient.
 連鎖移動剤、例えば、オクチルメルカプタン、ドデシルメルカプタン、メルカプトエタノール、β-メルカプトプロピオン酸、β-メルカプトプロピオン酸メチルエステル、β-メルカプトプロピオン酸エチルエステル、β-メルカプトプロピオン酸2-エチルヘキシルエステル、β-メルカプトプロピオン酸n-オクチルエステル、β-メルカプトプロピオン酸メトキシブチルエステル、β-メルカプトプロピオン酸ステアリルエステル、β-メルカプトプロピオン酸イソノニルエステル、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、トリス[(3-メルカプトプロピオニロキシ)-エチル]イソシアヌレート等の添加も、グラフト鎖長調整のために必要に応じて使用される。その場合、ラジカル重合性単量体に対して0~20質量%の範囲で添加されるのが好ましい。 Chain transfer agents such as octyl mercaptan, dodecyl mercaptan, mercaptoethanol, β-mercaptopropionic acid, β-mercaptopropionic acid methyl ester, β-mercaptopropionic acid ethyl ester, β-mercaptopropionic acid 2-ethylhexyl ester, β-mercapto Propionic acid n-octyl ester, β-mercaptopropionic acid methoxybutyl ester, β-mercaptopropionic acid stearyl ester, β-mercaptopropionic acid isononyl ester, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis ( 3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), tris [(3-mercaptopropionyloxy) -ethyl] isocyanurate Addition of bets like are also used as needed for the graft chain length adjustment. In that case, it is preferably added in the range of 0 to 20% by mass relative to the radical polymerizable monomer.
 グラフト化反応の反応溶媒として、ポリエステル及びポリエステルポリウレタンの溶解性の高い溶媒を使用できる。該当する溶剤としては、ケトン類例えばメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、環状エ-テル類例えばテトラヒドロフラン、ジオキサン、グリコ-ルエ-テル類例えばプロピレングリコ-ルメチルエ-テル、プロピレングリコ-ルプロピルエ-テル、エチレングリコールエチルエーテル、エチレングリコ-ルブチルエ-テル、カルビトール類例えばメチルカルビト-ル、エチルカルビト-ル、ブチルカルビト-ル、グリコ-ル類若しくはグリコ-ルエ-テルの低級エステル類例えばエチレングリコ-ルジアセテ-ト、エチレングリコールエチルエーテルアセテート、ケトンアルコール類例えばダイアセトンアルコール、更にはN-置換アミド類例えばジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、トルエン、キシレンなどの芳香族系溶媒、などを例示することが出来る。また、単独ではポリエステル及びポリエステルポリウレタンを溶解しない貧溶媒でも、良溶剤との混合溶媒とした場合、樹脂の溶解が可能であれば使用することができる。ポリエステル及びポリエステルポリウレタンの貧溶媒として、低級アルコール類、低級カルボン酸類、低級アミン類、水などを挙げることができる。良溶媒と貧溶媒の組み合わせとして、上記の溶媒の一種または二種以上の組み合わせを挙げることができる。 As the reaction solvent for the grafting reaction, a solvent having high solubility for polyester and polyester polyurethane can be used. Applicable solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclic ethers such as tetrahydrofuran, dioxane, glycol ethers such as propylene glycol methyl ether, propylene glycol propyl ether, ethylene glycol. Ethyl ether, ethylene glycol butyl ether, carbitols such as methyl carbitol, ethyl carbitol, butyl carbitol, glycols or lower esters of glycol ether such as ethylene glycol diacetate, ethylene glycol Ethyl ether acetate, ketone alcohols such as diacetone alcohol, and N-substituted amides such as dimethylformamide, dimethylacetamide, N-methylpi Pyrrolidone, toluene, aromatic solvents such as xylene, can be exemplified, and the like. Moreover, even if it is a poor solvent which does not melt | dissolve polyester and polyester polyurethane independently, when it is set as a mixed solvent with a good solvent, if it can melt | dissolve resin, it can be used. Examples of the poor solvent for polyester and polyester polyurethane include lower alcohols, lower carboxylic acids, lower amines, and water. As a combination of a good solvent and a poor solvent, one or a combination of two or more of the above solvents can be mentioned.
 本発明の実施のためのグラフト化反応溶媒の沸点が250℃を超えるものは、蒸発速度が遅く、高温における乾燥によっても充分に取り除くことが出来ないので好ましくない。また沸点が50℃以下では、それを溶媒としてグラフト化反応を実施する場合、50℃以下の温度でラジカルに開裂する開始剤を用いねばならないので取扱上の危険が増大し、好ましくない。 When the boiling point of the grafting reaction solvent for carrying out the present invention exceeds 250 ° C., the evaporation rate is slow, and it is not preferable because it cannot be sufficiently removed even by drying at a high temperature. On the other hand, when the boiling point is 50 ° C. or lower, when the grafting reaction is carried out using the solvent as a solvent, an initiator that cleaves into radicals at a temperature of 50 ° C. or lower must be used.
 本発明に用いるポリウレタン樹脂は、数平均分子量は5,000~100,000であることが好ましい。分子量5,000未満だと塗布直後の密着性が不充分で作業性が悪くなり、分子量100,000を超えると、塗布時の溶液粘度が高すぎて、均一な塗布膜が得られないことがある。好ましくは下限分子量8,000、さらに望ましくは下限分子量10,000、好ましくは上限分子量50,000、さらに望ましくは上限分子量35,000である。 The number average molecular weight of the polyurethane resin used in the present invention is preferably 5,000 to 100,000. If the molecular weight is less than 5,000, the adhesion immediately after coating is insufficient and the workability is poor, and if the molecular weight exceeds 100,000, the solution viscosity at the time of coating is too high and a uniform coating film may not be obtained. is there. The lower limit molecular weight is preferably 8,000, more preferably the lower limit molecular weight is 10,000, preferably the upper limit molecular weight is 50,000, and more preferably the upper limit molecular weight is 35,000.
 該ポリエステルポリオールは、本発明で使用されるポリエステル樹脂(ベース樹脂)として説明したものを使用することができる。 As the polyester polyol, those described as the polyester resin (base resin) used in the present invention can be used.
 本発明に用いるポリウレタン樹脂の製造で使用するポリイソシアネートは、ジイソシアネート、その二量体(ウレトジオン)、その三量体(イソシアヌレート、トリオール付加物、ビューレット)等の一種、またはそれら二種以上の混合物であってもよい。例えば、ジイソシアネート成分としては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、p-フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、m-フェニレンジイソシアネート、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、2,6-ナフタレンジイソシアネート、4,4’-ジイソシアネートジフェニルエーテル、1,5-キシリレンジイソシアネート、1,3-ジイソシアネートメチルシクロヘキサン、1,4-ジイソシアネ-トメチルシクロヘキサン、4,4’-ジイソシアネートシクロヘキサン、4,4’-ジイソシアネートシクロヘキシルメタン、イソホロンジイソシアネート、ダイマー酸ジイソシアネート、ノルボルネンジイソシアネート等が挙げられるが、透明蒸着フィルムへの用途等では黄変性が問題となる場合が多いので、脂肪族・脂環族のジイソシアネートが好ましい。さらに入手容易性および経済的な理由で、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートが特に好ましい。 The polyisocyanate used in the production of the polyurethane resin used in the present invention is one kind of diisocyanate, its dimer (uretdione), its trimer (isocyanurate, triol adduct, burette), or two or more kinds thereof. It may be a mixture. For example, the diisocyanate component includes 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, diphenylmethane diisocyanate, m-phenylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, 3,3′-dimethoxy. -4,4'-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 2,6-naphthalene diisocyanate, 4,4'-diisocyanate diphenyl ether, 1,5-xylylene diisocyanate, 1,3-diisocyanate methylcyclohexane, 1,4 -Diisocyanate methylcyclohexane, 4,4'-diisocyanate cyclohexane, 4,4'-diisocyanate cyclohexyl methane, Isophorone diisocyanate, dimer acid diisocyanate, although norbornene diisocyanate, and the like, since the application of the the transparent vapor deposited film is often yellowing becomes a problem, diisocyanates aliphatic alicyclic is preferable. Further, hexamethylene diisocyanate and isophorone diisocyanate are particularly preferable for easy availability and economical reasons.
 本発明に用いるポリウレタン樹脂を製造する上で、必要により鎖延長剤を使用しても良い。鎖延長剤としては、ポリエステルポリオールを合成する際のグリコール成分としての低分子量ジオールや、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有低分子量ジオール等が挙げられる。その中で、酸価導入の容易さと、汎用溶剤への溶解性からジメチロールブタン酸が好ましい。また、水酸基導入の容易さから、トリメチロールプロパンの使用も好ましい。 In producing the polyurethane resin used in the present invention, a chain extender may be used if necessary. Examples of the chain extender include a low molecular weight diol as a glycol component when synthesizing a polyester polyol, and a carboxyl group-containing low molecular weight diol such as dimethylolpropionic acid and dimethylolbutanoic acid. Among them, dimethylolbutanoic acid is preferable because of easy introduction of an acid value and solubility in a general-purpose solvent. Also, the use of trimethylolpropane is preferred because of the ease of introduction of hydroxyl groups.
 本発明に用いるポリウレタン樹脂の反応方法としては、該ポリエステルポリオール及び該ポリイソシアネート、必要により鎖延長剤を一括して反応容器に仕込んでも良いし、分割して仕込んでも良い。いずれにしても、系内のポリエステルポリオール、鎖延長剤の水酸基価の合計と、ポリイソシアネートのイソシアネート基の合計について、イソシアネート基/水酸基の官能基の比率が1以下で反応させる。またこの反応は、イソシアネート基に対して不活性な溶媒の存在下または非存在下に反応させることにより製造することができる。その溶媒としては、エステル系溶媒(酢酸エチル、酢酸ブチル、酪酸エチルなど)、エーテル系溶媒(ジオキサン、テトラヒドロフラン、ジエチルエーテルなど)、ケトン系溶媒(シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトンなど)、芳香族炭化水素系溶媒(ベンゼン、トルエン、キシレンなど)およびこれらの混合溶媒が挙げられるが、環境負荷の低減の観点から、酢酸エチルやメチルエチルケトンが好ましい。反応装置としては、撹拌装置の具備した反応缶だけでなく、ニーダー、二軸押出機のような混合混練装置も使用できる。 As a reaction method of the polyurethane resin used in the present invention, the polyester polyol, the polyisocyanate, and, if necessary, a chain extender may be charged all at once into the reaction vessel, or may be charged separately. In any case, the total of the hydroxyl groups of the polyester polyol and chain extender in the system and the total of the isocyanate groups of the polyisocyanate are reacted at an isocyanate group / hydroxyl group functional group ratio of 1 or less. In addition, this reaction can be produced by reacting in the presence or absence of a solvent inert to isocyanate groups. The solvents include ester solvents (ethyl acetate, butyl acetate, ethyl butyrate, etc.), ether solvents (dioxane, tetrahydrofuran, diethyl ether, etc.), ketone solvents (cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, etc.), aromatic carbonization. Examples thereof include hydrogen-based solvents (benzene, toluene, xylene, etc.) and mixed solvents thereof, and ethyl acetate and methyl ethyl ketone are preferable from the viewpoint of reducing environmental burden. As the reaction apparatus, not only a reaction can equipped with a stirring apparatus but also a mixing and kneading apparatus such as a kneader or a twin screw extruder can be used.
 ウレタン反応を促進させる為、通常のウレタン反応において用いられる触媒、たとえば錫系触媒(トリメチルチンラウレート、ジメチルチンジラウレート、トリメチルチンヒドロキサイド、ジメチルチンジヒドロキサイド、スタナスオクトエートなど)、鉛系触媒(レッドオレート、レッド-2-エチルヘキソエートなど)、アミン系触媒(トリエチルアミン、トリブチルアミン、モルホリン、ジアザビシクロオクタンなど)等を使用することができる。 Catalysts used in ordinary urethane reactions to promote urethane reactions, such as tin catalysts (trimethyltin laurate, dimethyltin dilaurate, trimethyltin hydroxide, dimethyltin dihydroxide, stannous octoate, etc.), lead catalysts (Red oleate, red-2-ethylhexoate, etc.), amine catalysts (triethylamine, tributylamine, morpholine, diazabicyclooctane, etc.) and the like can be used.
 本発明に使用するエポキシ化合物の硬化反応に、硬化触媒を使用することができる。例えば2-メチルイミダゾールや1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾールや2-フェニル-4-メチルイミダゾールや1-シアノエチル-2-エチル-4-メチルイミダゾール等のイミダゾール系化合物やトリエチルアミンやトリエチレンジアミンやN’-メチル-N-(2-ジメチルアミノエチル)ピペラジンや1,8-ジアザビシクロ(5,4,0)-ウンデセン-7や1,5-ジアザビシクロ(4,3,0)-ノネン-5や6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)-ウンデセン-7等の3級アミン類及びこれらの3級アミン類をフェノールやオクチル酸や4級化テトラフェニルボレート塩等でアミン塩にした化合物、トリアリルスルフォニウムヘキサフルオロアンチモネートやジアリルヨードニウムヘキサフルオロアンチモナート等のカチオン触媒、トリフェニルフォスフィン等が挙げられる。これらのうちが1,8-ジアザビシクロ(5,4,0)-ウンデセン-7や1,5-ジアザビシクロ(4,3,0)-ノネン-5や6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)-ウンデセン-7等の3級アミン類及びこれらの3級アミン類をフェノールやオクチル酸等や4級化テトラフェニルボレート塩でアミン塩にした化合物が熱硬化性及び耐熱性、金属への接着性、配合後の保存安定性の点で好ましい。その際の配合量はポリエステル100質量部に対して0.01~1.0質量部の配合量であることが好ましい。この範囲であればポリエステルとエポキシ化合物の反応に対する効果が一段と増し、強固な接着性能を得ることができる。 A curing catalyst can be used for the curing reaction of the epoxy compound used in the present invention. For example, imidazole compounds such as 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and triethylamine , Triethylenediamine, N'-methyl-N- (2-dimethylaminoethyl) piperazine, 1,8-diazabicyclo (5,4,0) -undecene-7 and 1,5-diazabicyclo (4,3,0)- Tertiary amines such as nonene-5 and 6-dibutylamino-1,8-diazabicyclo (5,4,0) -undecene-7, and tertiary amines such as phenol, octylic acid and quaternized tetraphenylborate Compounds converted to amine salts with salts, triallylsulfonium hexafluoroantimonate and dia Le iodonium hexafluoroantimonate Mona bets and cationic catalysts include triphenylphosphine and the like. Among these, 1,8-diazabicyclo (5,4,0) -undecene-7, 1,5-diazabicyclo (4,3,0) -nonene-5 and 6-dibutylamino-1,8-diazabicyclo (5 , 4,0) -undecene-7 and the like, and compounds obtained by converting these tertiary amines into amine salts with phenol, octylic acid or the like or quaternized tetraphenylborate salts are thermosetting and heat resistant. It is preferable in terms of adhesion to metal and storage stability after blending. The blending amount at that time is preferably 0.01 to 1.0 part by mass with respect to 100 parts by mass of the polyester. If it is this range, the effect with respect to reaction of polyester and an epoxy compound will increase further, and the firm adhesive performance can be acquired.
 本発明において、ラジカル重合性単量体の重合体による変性ポリエステル樹脂の質量をWc(g)、ポリウレタン樹脂の質量をWd(g)とした場合、Wc/Wdは、1/99~80/20であることが好ましい。Wcが1%以下の場合、ポリウレタンの耐熱性の低さをカバーすることができず、高温での接着性が低下する。また80%以上の場合、室温での接着性が低下してしまう。 In the present invention, when the mass of the modified polyester resin by the polymer of the radical polymerizable monomer is Wc (g) and the mass of the polyurethane resin is Wd (g), Wc / Wd is 1/99 to 80/20. It is preferable that When Wc is 1% or less, the low heat resistance of polyurethane cannot be covered, and the adhesiveness at high temperature is lowered. On the other hand, if it is 80% or more, the adhesiveness at room temperature is lowered.
 本発明の樹脂組成物に各種硬化性樹脂、添加剤を配合して接着剤組成物とすることができる。硬化性樹脂としてはシリコーン樹脂、メラミン樹脂、フェノールーホルマリン樹脂、イソシアネート樹脂などが挙げられる。 Various adhesives and additives can be blended with the resin composition of the present invention to form an adhesive composition. Examples of the curable resin include silicone resin, melamine resin, phenol-formalin resin, and isocyanate resin.
 フェノール樹脂としてはたとえばアルキル化フェノール類、クレゾール類のホルムアルデヒド縮合物を挙げることが出来る。具体的にはアルキル化(メチル、エチル、プロピル、イソプロピル、ブチル)フェノール、p-tert-
アミルフェノール、4、4'-sec- ブチリデンフェノール、p-tert- ブチルフェノール、o-,m-,p-クレゾール、p-シクロヘキシルフェノール、4,4'-
イソプロピリデンフェノール、p-ノニルフェノール、p-オクチルフェノール、3-ペンタデシルフェノール、フェノール、フェニル-o- クレゾール、p-フェニルフェノール、キシレノールなどのホルムアルデヒド縮合物が挙げられる。
Examples of the phenol resin include formaldehyde condensates of alkylated phenols and cresols. Specifically alkylated (methyl, ethyl, propyl, isopropyl, butyl) phenol, p-tert-
Amylphenol, 4,4'-sec-butylidenephenol, p-tert-butylphenol, o-, m-, p-cresol, p-cyclohexylphenol, 4,4'-
Examples include formaldehyde condensates such as isopropylidenephenol, p-nonylphenol, p-octylphenol, 3-pentadecylphenol, phenol, phenyl-o-cresol, p-phenylphenol, and xylenol.
 アミノ樹脂としては、例えば尿素、メラミン、ベンゾグアナミンなどのホルムアルデヒド付加物、さらにこれらの炭素原子数が1~6のアルコールによるアルキルエーテル化合物を挙げることができる。具体的にはメトキシ化メチロール尿素、メトキシ化メチロールN,N-エチレン尿素、メトキシ化メチロールジシアンジアミド、メトキシ化メチロールメラミン、メトキシ化メチロールベンゾグアナミン、ブトキシ化メチロールメラミン、ブトキシ化メチロールベンゾグアナミンなどが挙げられるが好ましくはメトキシ化メチロールメラミン、ブトキシ化メチロールメラミン、およびメチロール化ベンゾグアナミンであり、それぞれ単独または併用して使用することができる。 Examples of amino resins include formaldehyde adducts such as urea, melamine, and benzoguanamine, and alkyl ether compounds of these alcohols having 1 to 6 carbon atoms. Specific examples include methoxylated methylol urea, methoxylated methylol N, N-ethyleneurea, methoxylated methylol dicyandiamide, methoxylated methylol melamine, methoxylated methylol benzoguanamine, butoxylated methylol melamine, butoxylated methylol benzoguanamine, etc. They are methoxylated methylol melamine, butoxylated methylol melamine, and methylolated benzoguanamine, each of which can be used alone or in combination.
 イソシアネート化合物としては芳香族、脂肪族のジイソシアネート、3価以上のポリイソシアネートがあり、低分子化合物、高分子化合物のいずれでもよい。たとえば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(以下、HDIと略記する場合がある)、トルエンジイソシアネート、ジフェニルメタンジイソシアネート(以下、MDIと略記する場合がある)、水素化ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネートあるいはこれらのイソシアネート化合物の3量体、およびこれらのイソシアネート化合物の過剰量と、たとえばエチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどの低分子活性水素化合物または各種ポリエステルポリオール類、ポリエーテルポリオール類、ポリアミド類の高分子活性水素化合物などとを反応させて得られる末端イソシアネート基含有化合物が挙げられる。 Isocyanate compounds include aromatic and aliphatic diisocyanates, and tri- or higher polyisocyanates, which may be either low molecular compounds or high molecular compounds. For example, tetramethylene diisocyanate, hexamethylene diisocyanate (hereinafter abbreviated as HDI), toluene diisocyanate, diphenylmethane diisocyanate (hereinafter abbreviated as MDI), hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene Diisocyanate, isophorone diisocyanate or trimers of these isocyanate compounds, and excess amounts of these isocyanate compounds, such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanol Low molecular active hydrogen compounds such as amines or various polyester polyols Polyether polyols include terminal isocyanate group-containing compounds obtained by reacting with such polymer active hydrogen compound polyamides.
 イソシアネート化合物としてはブロック化イソシアネートであってもよい。イソシアネートブロック化剤としては、例えばフェノール、チオフェノール、メチルチオフェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノール等のフェノール類、アセトキシム、メチルエチルケトオキシム、シクロヘキサノンオキシムなどのオキシム類、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、エチレンクロルヒドリン、1,3-ジクロロ-2-プロパノールなどのハロゲン置換アルコール類、t-ブタノール、t-ペンタノールなどの第3級アルコール類、ε-カプロラクタム、δーバレロラクタム、γーブチロラクタム、βープロピルラクタムなどのラクタム類が挙げられ、その他にも芳香族アミン類、イミド類、アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステルなどの活性メチレン化合物、メルカプタン類、イミン類、尿素類、ジアリール化合物類重亜硫酸ソーダなども挙げられる。ブロック化イソシアネートは上記イソシアネート化合物とイソシアネート化合物とイソシアネートブロック化剤とを従来公知の適宜の方法より付加反応させて得られる。 The isocyanate compound may be a blocked isocyanate. Examples of the isocyanate blocking agent include phenols such as phenol, thiophenol, methylthiophenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol, oximes such as acetoxime, methyl ethyl ketoxime, and cyclohexanone oxime, methanol, ethanol, propanol, Alcohols such as butanol, halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol, tertiary alcohols such as t-butanol and t-pentanol, ε-caprolactam, δ-valerolactam, Examples include lactams such as γ-butyrolactam and β-propyllactam. In addition, aromatic amines, imides, acetylacetone, acetoacetate ester, ethyl malonate Active methylene compounds such as Le, mercaptans, imines, ureas, and also such as diaryl compounds sodium bisulfite. The blocked isocyanate is obtained by subjecting the above isocyanate compound, isocyanate compound and isocyanate blocking agent to an addition reaction by a conventionally known appropriate method.
 本発明の接着剤組成物には必要に応じてシリカを配合しても良い。シリカを配合することにより耐熱性の特性が向上するため非常に好ましい。シリカとしては一般に疎水性シリカと親水性シリカが知られているが、ここでは耐吸湿性を付与する上でジメチルジクロロシランやヘキサメチルジシラザン、オクチルシラン等で処理を行った疎水性シリカの方が良い。シリカの平均粒子径は3μm以下が好ましい。より好ましくは50nm以下である。平均粒子径が3μmより大きいと分散不良や接着不良を起こし、耐熱性や接着性が低下する場合がある。シリカの配合量はポリエステル100質量部に対して0.05~30質量部の配合量であることが好ましい。0.05質量部未満であると耐熱性を向上させる効果が発揮しない場合がある。一方30質量部を超えるとシリカの分散不良が生じたり溶液粘度が高くなりすぎて作業性に不具合が生じたり或いは接着性が低下する場合がある。 In the adhesive composition of the present invention, silica may be blended as necessary. It is very preferable to add silica because heat resistance is improved. Hydrophobic silica and hydrophilic silica are generally known as silica, but here, hydrophobic silica treated with dimethyldichlorosilane, hexamethyldisilazane, octylsilane, etc. in order to impart moisture absorption resistance. Is good. The average particle diameter of silica is preferably 3 μm or less. More preferably, it is 50 nm or less. If the average particle size is larger than 3 μm, poor dispersion or poor adhesion may occur, and heat resistance and adhesion may be reduced. The compounding amount of silica is preferably 0.05 to 30 parts by mass with respect to 100 parts by mass of the polyester. If it is less than 0.05 parts by mass, the effect of improving the heat resistance may not be exhibited. On the other hand, if it exceeds 30 parts by mass, there may be a case where poor dispersion of silica occurs or the solution viscosity becomes too high, resulting in a malfunction in workability or a decrease in adhesiveness.
 本発明の接着剤組成物には必要に応じてシランカップリング剤を配合しても良い。シランカップリング剤を配合することにより金属への接着性や耐熱性の特性が向上するため非常に好ましい。シランカップリング剤としては特に限定されないが、不飽和基を有するもの、グリシジル基を有するもの、アミノ基を有するものなどが挙げられる。不飽和基を有するシランカップリング剤としては、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等を挙げることができる。グリシジル基を有するシランカップリング剤としては、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等を挙げることができる。アミノ基を有するシランカップリング剤としては、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等を挙げることができる。これらのうち耐熱性の観点からγ-グリシドキシプロピルトリメトキシシランやβ-(3,4エポキシシクロヘキシル)エチルトリメトキシシランやβ-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のグリシジル基を有したシランカップリング剤がさらに好ましくなる。シランカップリング剤の配合量はポリエステル100質量部に対して0.5~20質量部の配合量であることが好ましい。0.5質量部未満であると耐熱性不良となる場合がある。一方、20質量部を超えると耐熱性不良や接着性不良なる場合がある。 A silane coupling agent may be blended in the adhesive composition of the present invention as necessary. It is very preferable to add a silane coupling agent because adhesion to metal and heat resistance are improved. Although it does not specifically limit as a silane coupling agent, What has an unsaturated group, What has a glycidyl group, What has an amino group, etc. are mentioned. Examples of the silane coupling agent having an unsaturated group include vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane. Examples of silane coupling agents having a glycidyl group include γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane. Etc. Examples of the silane coupling agent having an amino group include N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-phenyl-γ. -Aminopropyltrimethoxysilane and the like. Of these, from the viewpoint of heat resistance, glycidyl groups such as γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltriethoxysilane More preferred is a silane coupling agent having The compounding amount of the silane coupling agent is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polyester. If it is less than 0.5 parts by mass, heat resistance may be deteriorated. On the other hand, if it exceeds 20 parts by mass, heat resistance failure or adhesion failure may occur.
 本発明の接着剤組成物には必要に応じ、臭素系、リン系、窒素系、水酸化金属化合物等の難燃剤、レベリング剤、顔料、染料等の添加剤を適宜配合することができる。 In the adhesive composition of the present invention, flame retardants such as bromine-based, phosphorus-based, nitrogen-based, and metal hydroxide compounds, leveling agents, pigments, dyes, and other additives can be appropriately blended as necessary.
 本発明において、接着性シートとは、基材と本発明の接着剤組成物、または基材と本発明の接着剤組成物と離型基材から構成されるものである。接着性シートは接着剤組成物によって基材を被接着材に接着させる機能を有する。接着性シートの基材は、接着後、被接着材の保護層として機能する。また接着性シートの基材として離型性基材を使用すると、離型性基材を離型して、さらに別の被接着材に接着剤層を転写することができる。 In the present invention, the adhesive sheet is composed of a base material and the adhesive composition of the present invention, or a base material, the adhesive composition of the present invention and a release base material. The adhesive sheet has a function of bonding the substrate to the adherend with the adhesive composition. The base material of the adhesive sheet functions as a protective layer for the adherend after adhesion. Moreover, when a releasable base material is used as the base material of the adhesive sheet, the releasable base material can be released and the adhesive layer can be transferred to another material to be adhered.
 本発明の接着剤組成物を、常法に従い、各種基材に塗布、乾燥せしむることにより、本発明の接着性シートを得ることができる。また乾燥せしめた後、接着剤層に離型基材を貼付けると、基材への裏移りを起こすことなくまき取りが可能になり操業性に優れるとともに、接着剤層が保護されることから保存性に優れ、使用も容易である。また離型基材に塗布、乾燥せしめた後、必要に応じて別の離型基材を貼付すれば、接着剤層そのものを他の基材に転写することも可能になる。 The adhesive sheet of the present invention can be obtained by applying and drying the adhesive composition of the present invention on various substrates according to a conventional method. In addition, after drying, pasting the release substrate to the adhesive layer makes it possible to scrape off without causing the substrate to be transferred to the substrate, which improves operability and protects the adhesive layer. Excellent storage and easy to use. Moreover, after applying and drying to a mold release base material, if another mold release base material is stuck as needed, it will also become possible to transfer the adhesive layer itself to another base material.
 ここで、本発明の組成物を塗布する基材としては、特に限定されるものではないが、フィルム状樹脂、金属板、金属箔、紙類等を挙げることができる。フィルム状樹脂としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、オレフィン系樹脂等を例示することができる。金属板および金属箔の素材としては、SUS、銅、アルミ、鉄、亜鉛等の各種金属、及びそれぞれの合金、めっき品等を例示することができる、紙類として上質紙、クラフト紙、ロール紙、グラシン紙等を例示することができる。また複合素材として、ガラスエポキシ等を例示することができる。接着剤組成物との接着力、耐久性から、本発明の組成物を塗布する基材としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、SUS鋼板、銅箔、アルミ箔、ガラスエポキシが好ましい。 Here, the substrate to which the composition of the present invention is applied is not particularly limited, and examples thereof include a film-like resin, a metal plate, a metal foil, and papers. Examples of the film-like resin include polyester resin, polyamide resin, polyimide resin, polyamideimide resin, and olefin resin. Examples of metal plate and metal foil materials include various metals such as SUS, copper, aluminum, iron, and zinc, and alloys and plated products thereof. Glassine paper etc. can be illustrated. Moreover, glass epoxy etc. can be illustrated as a composite material. From the viewpoint of adhesive strength and durability with the adhesive composition, the base material to which the composition of the present invention is applied is polyester resin, polyamide resin, polyimide resin, polyamideimide resin, SUS steel plate, copper foil, aluminum foil, glass epoxy. Is preferred.
 また本発明の組成物を塗布する離型基材としては、特に限定されるものではないが、例えば、上質紙、クラフト紙、ロール紙、グラシン紙などの紙の両面に、クレー、ポリエチレン、ポリプロピレンなどの目止剤の塗布層を設け、さらにその各塗布層の上にシリコーン系、フッ素系、アルキド系の離型剤が塗布されたもの、及び、ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体、プロピレン-α-オレフィン共重合体等の各種オレフィンフィルム単独、及びポリエチレンテレフタレート等のフィルム上に上記離型剤を塗布したものが挙げられるが、塗布された接着剤層との離型力、シリコーンが電気特性に悪影響を与える等の理由から、上質紙の両面にポリプロピレン目止処理しその上にアルキド系離型剤を用いたもの、ポリエチレンテレフタレート上にアルキド系離型剤を用いたものが好ましい。 Further, the release substrate to which the composition of the present invention is applied is not particularly limited. For example, clay, polyethylene, and polypropylene are provided on both surfaces of paper such as fine paper, kraft paper, roll paper, and glassine paper. In addition, a coating layer of a sealing agent such as a silicone, fluorine-based, or alkyd-based release agent is coated on each coating layer, and polyethylene, polypropylene, ethylene-α-olefin copolymer Examples include various olefin films such as a polymer, propylene-α-olefin copolymer, and those obtained by applying the release agent on a film such as polyethylene terephthalate, but the release force with the applied adhesive layer, Due to reasons such as the adverse effect of silicone on electrical properties, polypropylene seals are treated on both sides of high-quality paper and alkyd release agents are used on top of that. Those using an alkyd release agent on polyethylene terephthalate are preferred.
 なお、本発明において接着剤組成物を基材上にコーティングする方法としては、特に限定されないが、コンマコーター、リバースロールコーター等が挙げられる。もしくは、必要に応じて、プリント配線板構成材料である圧延銅箔、またはポリイミドフィルムに直接もしくは転写法で接着剤フィルム層を設けることもできる。乾燥後の接着剤フィルム厚みは、必要に応じて、適宜変更されるが、好ましくは5~200μmの範囲である。接着フィルム厚が5μm未満では、接着強度が不十分である。200μm以上では乾燥が不十分で、残留溶剤が多くなり、プリント配線板製造のプレス時にフクレを生じるという問題点が挙げられる。乾燥条件は特に限定されないが、乾燥後の残留溶剤率は1%以下が好ましい。1%以上では、プリント配線板プレス時に残留溶剤が発泡して、フクレを生じるという問題点が挙げられる。 In the present invention, the method of coating the adhesive composition on the substrate is not particularly limited, and examples thereof include a comma coater and a reverse roll coater. Or as needed, an adhesive film layer can also be provided in the rolled copper foil which is a printed wiring board constituent material, or a polyimide film directly or by the transfer method. The thickness of the adhesive film after drying is appropriately changed as necessary, but is preferably in the range of 5 to 200 μm. When the adhesive film thickness is less than 5 μm, the adhesive strength is insufficient. When the thickness is 200 μm or more, there is a problem that drying is insufficient, a residual solvent increases, and bulge is generated at the time of printed circuit board production. The drying conditions are not particularly limited, but the residual solvent ratio after drying is preferably 1% or less. If it is 1% or more, there is a problem that the residual solvent is foamed during press-pressing of the printed wiring board to cause swelling.
 本発明における「プリント配線板」は、導体回路を形成する金属箔と樹脂層とから形成された積層体を構成要素として含むものである。プリント配線板は、例えば、金属張積層体を用いてサブトラクティブ法などの従来公知の方法により製造される。必要に応じて、金属箔によって形成された導体回路を部分的、或いは全面的にカバーフィルムやスクリーン印刷インキ等を用いて被覆した、いわゆるフレキシブル回路板(FPC)、フラットケーブル、テープオートメーティッドボンディング(TAB)用の回路板などを総称している。 The “printed wiring board” in the present invention includes a laminate formed from a metal foil and a resin layer forming a conductor circuit as constituent elements. A printed wiring board is manufactured by conventionally well-known methods, such as a subtractive method, using a metal-clad laminated body, for example. If necessary, a so-called flexible circuit board (FPC), flat cable, tape automated bonding (covered by using a cover film or screen printing ink, etc., partially or entirely covered with a conductor circuit formed of metal foil (tape automated bonding) TAB) circuit board and the like.
 本発明のプリント配線板は、プリント配線板として採用され得る任意の積層構成とすることができる。例えば、基材フィルム層、金属箔層、接着剤層、およびカバーフィルム層の4層から構成されるプリント配線板とすることができる。また例えば、基材フィルム層、接着剤層、金属箔層、接着剤層、およびカバーフィルム層の5層から構成されるプリント配線板とすることができる。プリント配線板は必要に応じて補強材で補強することがあり、その場合、補強材、接着剤層が基材フィルム層の下に設けられる。 The printed wiring board of the present invention can have any laminated structure that can be employed as a printed wiring board. For example, it can be set as the printed wiring board comprised from four layers, a base film layer, a metal foil layer, an adhesive bond layer, and a cover film layer. For example, it can be set as the printed wiring board comprised from five layers, a base film layer, an adhesive bond layer, a metal foil layer, an adhesive bond layer, and a cover film layer. The printed wiring board may be reinforced with a reinforcing material as necessary. In that case, the reinforcing material and the adhesive layer are provided under the base film layer.
 さらに、必要に応じて、上記のプリント配線板を2つもしくは3つ以上積層した構成とすることもできる。 Furthermore, if necessary, a configuration in which two or three or more of the above-described printed wiring boards are laminated may be employed.
 本発明の樹脂組成物はプリント配線板の各接着剤層に好適に使用することが可能である。特に本発明の樹脂組成物を接着剤として使用すると、プリント配線板を構成する基材に対して高い接着性を有し、かつ鉛フリーハンダにも対応できる高度の耐熱性を有し、さらに高温高湿度下においても高い接着性を維持することが可能である。特に耐ハンダ性を評価する高温領域において、低い貯蔵弾性率を維持しながら、高い架橋密度を得ることができるので、加湿状態での耐ハンダ性試験における水分の蒸発による衝撃を十分に緩和することが可能であり、金属箔層とカバーフィルム層間の接着剤、および基材フィルム層と補強材層間の接着に適している。特に、SUS板のように剛直な補強材を使用した場合、加湿状態でのハンダづけの際の基材フィルム層と補強材層間の接着剤層に及ぶ衝撃は強大であり、そのような場合の接着に用いる樹脂組成物として好適である。 The resin composition of the present invention can be suitably used for each adhesive layer of a printed wiring board. In particular, when the resin composition of the present invention is used as an adhesive, it has high adhesiveness to the base material constituting the printed wiring board, has high heat resistance that can be used for lead-free solder, and has a high temperature. It is possible to maintain high adhesion even under high humidity. Especially in the high temperature range where solder resistance is evaluated, a high crosslink density can be obtained while maintaining a low storage modulus, so the impact due to evaporation of moisture in the solder resistance test in a humidified state must be sufficiently mitigated. It is suitable for bonding between the metal foil layer and the cover film layer and between the base film layer and the reinforcing material layer. In particular, when a rigid reinforcing material such as a SUS plate is used, the impact on the adhesive layer between the base film layer and the reinforcing material layer when soldering in a humidified state is strong. It is suitable as a resin composition used for adhesion.
 本発明のプリント配線板において、基材フィルムとしては、従来からプリント配線板の基材として使用されている任意の樹脂フィルムが使用可能である。基材フィルムの樹脂としては、ハロゲンを含む樹脂を用いてもよく、ハロゲンを含まない樹脂を用いてもよい。環境問題の観点から、好ましくは、ハロゲンを含まない樹脂であるが、難燃性の観点からは、ハロゲンを含む樹脂を用いることもできる。基材フィルムは、好ましくは、ポリイミドフィルムまたはポリアミドイミドフィルムである。 In the printed wiring board of the present invention, any resin film conventionally used as a substrate for printed wiring boards can be used as the substrate film. As the resin for the base film, a resin containing halogen may be used, or a resin not containing halogen may be used. From the viewpoint of environmental problems, a resin containing no halogen is preferable. However, from the viewpoint of flame retardancy, a resin containing halogen can also be used. The base film is preferably a polyimide film or a polyamideimide film.
 本発明に用いる金属箔としては、回路基板に使用可能な任意の従来公知の導電性材料が使用可能である。材質としては、例えば、銅箔、アルミニウム箔、スチール箔、及びニッケル箔などを使用することができ、これらを複合した複合金属箔や亜鉛やクロム化合物など他の金属で処理した金属箔についても用いることができる。好ましくは、銅箔である。 As the metal foil used in the present invention, any conventionally known conductive material that can be used for a circuit board can be used. As the material, for example, copper foil, aluminum foil, steel foil, nickel foil and the like can be used, and composite metal foil obtained by combining these and metal foil treated with other metals such as zinc and chromium compounds are also used. be able to. Preferably, it is a copper foil.
 金属箔の厚みについては特に限定はないが、好ましくは1μm以上であり、より好ましくは、3μm以上であり、さらに好ましくは10μm以上である。また、好ましくは50μm以下であり、より好ましくは30μm以下であり、さらに好ましくは20μm以下である。厚さが薄すぎる場合には、回路の充分な電気的性能が得られにくい場合があり、一方、厚さが厚すぎる場合には回路作製時の加工能率等が低下する場合がある。 The thickness of the metal foil is not particularly limited, but is preferably 1 μm or more, more preferably 3 μm or more, and further preferably 10 μm or more. Moreover, it is preferably 50 μm or less, more preferably 30 μm or less, and still more preferably 20 μm or less. If the thickness is too thin, it may be difficult to obtain sufficient electrical performance of the circuit. On the other hand, if the thickness is too thick, the processing efficiency at the time of circuit fabrication may be reduced.
 金属箔は、通常、ロール状の形態で提供されている。本発明のプリント配線板を製造する際に使用される金属箔の形態は特に限定されない。ロール状の形態の金属箔を用いる場合、その長さは特に限定されない。また、その幅も特に限定されないが、250~500mm程度であるのが好ましい。 Metal foil is usually provided in the form of a roll. The form of the metal foil used when manufacturing the printed wiring board of this invention is not specifically limited. When a roll-shaped metal foil is used, its length is not particularly limited. The width is not particularly limited, but is preferably about 250 to 500 mm.
 カバーフィルムとしては、プリント配線板用の絶縁フィルムとして従来公知の任意の絶縁フィルムが使用可能である。例えば、ポリイミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、アラミド、ポリカーボネート、ポリアリレート、ポリイミド、ポリアミドイミドなどの各種ポリマーから製造されるフィルムが使用可能である。より好ましくは、ポリイミドフィルムまたはポリアミドイミドフィルムであり、さらに好ましくは、ポリイミドフィルムである。 As the cover film, any conventionally known insulating film can be used as an insulating film for a printed wiring board. For example, films produced from various polymers such as polyimide, polyester, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, polyimide, and polyamideimide can be used. More preferably, it is a polyimide film or a polyamidoimide film, More preferably, it is a polyimide film.
 ポリイミドフィルムは、その樹脂成分としてポリイミド樹脂を主成分とする。樹脂成分のうち、90質量%以上がポリイミドであることが好ましく、95質量%以上がポリイミドであることがより好ましく、98質量%以上がポリイミドであることがさらに好ましく、99質量%以上がポリイミドであることが特に好ましい。ポリイミド樹脂としては、従来公知の任意の樹脂を使用することができる。 The polyimide film has a polyimide resin as a main component as its resin component. Of the resin components, 90% by mass or more is preferably polyimide, more preferably 95% by mass or more is polyimide, more preferably 98% by mass or more is polyimide, and 99% by mass or more is polyimide. It is particularly preferred. Any conventionally known resin can be used as the polyimide resin.
 カバーフィルムの素材樹脂としては、ハロゲンを含む樹脂を用いてもよく、ハロゲンを含まない樹脂を用いてもよい。環境問題の観点から、好ましくは、ハロゲンを含まない樹脂であるが、難燃性の観点からは、ハロゲンを含む樹脂を用いることもできる。 As the material resin for the cover film, a resin containing halogen may be used, or a resin not containing halogen may be used. From the viewpoint of environmental problems, a resin containing no halogen is preferable. However, from the viewpoint of flame retardancy, a resin containing halogen can also be used.
 補強材としては、SUS板、アルミニウム板等の金属板、ポリイミドフィルム、ガラス繊維をエポキシ化合物で硬化した板等が使用される。 As the reinforcing material, a metal plate such as a SUS plate or an aluminum plate, a polyimide film, a plate obtained by curing glass fiber with an epoxy compound, or the like is used.
 本発明のプリント配線板は、上述した各層の材料を用いる以外は、従来公知の任意のプロセスを用いて製造することができる。 The printed wiring board of the present invention can be manufactured using any conventionally known process except that the material of each layer described above is used.
 好ましい実施態様では、カバーフィルム層に接着剤層を積層した半製品(以下、「カバーフィルム側半製品」という)を製造する。他方、基材フィルム層に金属箔層を積層して所望の回路パターンを形成した半製品(以下、「基材フィルム側2層半製品」という)または基材フィルム層に接着剤層を積層し、その上に金属箔層を積層して所望の回路パターンを形成した半製品(以下、「基材フィルム側3層半製品」という)を製造する(以下、基材フィルム側2層半製品と基材フィルム側3層半製品とを合わせて「基材フィルム側半製品」という)。このようにして得られたカバーフィルム側半製品と、基材フィルム側半製品とを貼り合わせることにより、4層または5層のプリント配線板を得ることができる。さらに補強材層に接着剤層を積層した半製品(以下、「補強材側半製品」という)を製造し、必要に応じて、プリント配線板の基材フィルム層に貼り合わせ補強することができる。また、補強材と基材フィルム間に用いる接着剤を離型基材に塗布し、プリント配線板の基材フィルム裏面に転写し、補強材と貼りあわせることもできる。 In a preferred embodiment, a semi-finished product in which an adhesive layer is laminated on a cover film layer (hereinafter referred to as “cover film-side semi-finished product”) is manufactured. On the other hand, an adhesive layer is laminated on a semi-finished product (hereinafter referred to as “base film side two-layer semi-product”) or a base film layer in which a desired circuit pattern is formed by laminating a metal foil layer on the base film layer. And a semi-finished product (hereinafter referred to as “base film side three-layer semi-product”) having a desired circuit pattern formed by laminating a metal foil layer thereon (hereinafter referred to as base film side two-layer semi-product) The base film side three-layer semi-finished product is collectively referred to as “base film side semi-finished product”). A four-layer or five-layer printed wiring board can be obtained by laminating the cover film side semi-finished product and the base film side semi-finished product thus obtained. Furthermore, a semi-finished product in which an adhesive layer is laminated on a reinforcing material layer (hereinafter referred to as “reinforcing material-side semi-finished product”) can be manufactured and bonded to a substrate film layer of a printed wiring board and reinforced as necessary. . Moreover, the adhesive agent used between a reinforcing material and a base film can be apply | coated to a mold release base material, it can transcribe | transfer to the base film back surface of a printed wiring board, and can also be bonded together with a reinforcing material.
 基材フィルム側半製品は、例えば、
  (A) 前記金属箔に基材フィルムとなる樹脂の溶液を塗布し、塗膜を初期乾燥する工程、
  (B) (A)で得られた金属箔と初期乾燥塗膜との積層物を熱処理・乾燥する工程(以下、「熱処理・脱溶剤工程」という)、
を含む製造法により得られる。
The base film side semi-finished product is, for example,
(A) The process of apply | coating the resin solution used as a base film to the said metal foil, and initial-drying a coating film,
(B) A step of heat-treating and drying the laminate of the metal foil obtained in (A) and the initial dry coating film (hereinafter referred to as “heat treatment / solvent removal step”),
It is obtained by the manufacturing method containing.
 金属箔層における回路の形成は、従来公知の方法を用いることができる。アクティブ法を用いてもよく、サブトラクティブ法を用いてもよい。好ましくは、サブトラクティブ法である。 A conventionally known method can be used to form a circuit in the metal foil layer. An active method may be used and a subtractive method may be used. The subtractive method is preferable.
 得られた基材フィルム側半製品は、そのままカバーフィルム側半製品との貼り合わせに使用されてもよく、また、離型フィルムを貼り合わせて保管した後にカバーフィルム側半製品との貼り合わせに使用してもよい。 The obtained base film side semi-finished product may be used as it is for pasting with the cover film side semi-finished product. May be used.
 カバーフィルム側半製品は、例えば、カバーフィルムに接着剤を塗布して製造される。必要に応じて、塗布された接着剤における架橋反応を行うことができる。好ましい実施態様においては、接着剤層を半硬化させる。 The cover film side semi-finished product is manufactured, for example, by applying an adhesive to the cover film. If necessary, a crosslinking reaction in the applied adhesive can be performed. In a preferred embodiment, the adhesive layer is semi-cured.
 得られたカバーフィルム側半製品は、そのまま基材側半製品との貼り合わせに使用されてもよく、また、離型フィルムを貼り合わせて保管した後に基材フィルム側半製品との貼り合わせに使用してもよい。 The obtained cover film-side semi-finished product may be used as it is for pasting with the base-side-side semi-finished product. May be used.
 基材フィルム側半製品とカバーフィルム側半製品とは、それぞれ、例えば、ロールの形態で保管された後、貼り合わされて、プリント配線板が製造される。貼り合わせる方法としては、任意の方法が使用可能であり、例えば、プレスまたはロールなどを用いて貼り合わせることができる。また、加熱プレス、または加熱ロ-ル装置を使用するなどの方法により加熱を行いながら両者を貼り合わせることもできる。 The base film side semi-finished product and the cover film side semi-finished product are each stored, for example, in the form of a roll, and then bonded together to produce a printed wiring board. Arbitrary methods can be used as the method of bonding, for example, it can bond using a press or a roll. Further, the two can be bonded together while heating by a method such as using a heating press or a heating roll device.
 補強材側半製品は、例えば、ポリイミドフィルムのように柔らかく巻き取り可能な補強材の場合、補強材に接着剤を塗布して製造されることが好適である。また、例えばSUS、アルミ等の金属板、ガラス繊維をエポキシ化合物で硬化させた板等のように硬く巻き取りできない補強板の場合、予め離型基材に塗布した接着剤を転写塗布することによって製造されることが好適である。また、必要に応じて、塗布された接着剤における架橋反応を行うことができる。好ましい実施態様においては、接着剤層を半硬化させる。 For example, in the case of a reinforcing material that can be rolled up softly, such as a polyimide film, the reinforcing material-side semi-finished product is preferably manufactured by applying an adhesive to the reinforcing material. Also, for example, in the case of a reinforcing plate that cannot be rolled up hard, such as a metal plate such as SUS or aluminum, or a plate obtained by curing glass fibers with an epoxy compound, by transferring and applying an adhesive previously applied to a release substrate. It is preferred to be manufactured. Moreover, the crosslinking reaction in the apply | coated adhesive agent can be performed as needed. In a preferred embodiment, the adhesive layer is semi-cured.
 得られた補強材側半製品は、そのままプリント配線板裏面との貼り合わせに使用されてもよく、また、離型フィルムを貼り合わせて保管した後に基材フィルム側半製品との貼り合わせに使用してもよい。 The obtained reinforcing material-side semi-finished product may be used as it is for pasting with the back side of the printed wiring board, and after being used for pasting with the base film-side semi-finished product after storing the release film. May be.
 基材フィルム側半製品、カバーフィルム側半製品、補強剤側半製品はいずれも、本発明におけるプリント配線板用積層体である。 The base film side semi-finished product, the cover film side semi-finished product, and the reinforcing agent side semi-finished product are all laminated bodies for printed wiring boards in the present invention.
 〈実施例〉
 以下、実施例により本発明を具体的に例示する。実施例中に単に部とあるのは質量部を示す。
<Example>
Hereinafter, the present invention will be specifically illustrated by examples. In the examples, “parts” means “parts by mass”.
 (物性評価方法)
 (1)ポリエステル樹脂等樹脂の組成
ポリエステル樹脂等樹脂を重クロロホルムに溶解し、1H-NMR分析により、酸成分、グリコール成分のモル比を求めた。樹脂が重クロロホルムに溶解しない場合は、溶解可能な他のD化溶媒を使用した。
(Physical property evaluation method)
(1) Composition of Resin such as Polyester Resin Resin such as polyester resin was dissolved in deuterated chloroform, and the molar ratio of acid component to glycol component was determined by 1 H-NMR analysis. When the resin did not dissolve in deuterated chloroform, another soluble D solvent was used.
 (2)数平均分子量Mn
試料を、樹脂濃度が0.5%程度となるようにテトラヒドロフランで溶解および/または希釈し、孔径0.5μmのポリ四フッ化エチレン製メンブランフィルターで濾過したものを測定用試料として、テトラヒドロフランを移動相とし示差屈折計を検出器とするゲル浸透クロマトグラフィーにより分子量を測定した。流速は1mL/分、カラム温度は30℃とした。カラムには昭和電工製KF-802、804L、806Lを用いた。分子量標準には単分散ポリスチレンを使用した。
(2) Number average molecular weight Mn
The sample was dissolved and / or diluted with tetrahydrofuran so that the resin concentration was about 0.5%, and filtered through a polytetrafluoroethylene membrane filter with a pore size of 0.5 μm. The molecular weight was measured by gel permeation chromatography using a differential refractometer as the phase detector. The flow rate was 1 mL / min and the column temperature was 30 ° C. KF-802, 804L and 806L manufactured by Showa Denko were used for the column. Monodisperse polystyrene was used as the molecular weight standard.
 (3)ガラス転移温度
示差走査熱量計(DSC)を用いて20℃/分の昇温速度で測定した。
(3) Glass transition temperature It measured with the temperature increase rate of 20 degree-C / min using the differential scanning calorimeter (DSC).
 (4)酸価
試料0.2gを20mlのクロロホルムに溶解し、指示薬フェノールフタレインを用い、0.1Nの水酸化カリウムエタノール溶液で滴定し、算出した(mgKOH/g)。
(4) Acid value 0.2 g of a sample was dissolved in 20 ml of chloroform and titrated with a 0.1N potassium hydroxide ethanol solution using an indicator phenolphthalein and calculated (mg KOH / g).
 (特性評価方法)
(1)耐ハンダ性、剥離強度
 後述する接着剤組成物を厚さ25μmのポリイミドフィルム(株式会社カネカ製、アピカル)に、乾燥後の厚みが30μmとなるように塗布し、130℃で3分乾燥した。この様にして得られた接着性フィルム(Bステージ品)を30μmの圧延銅箔と貼り合わせる際、圧延銅箔の光沢面が接着剤と接する様にして、160℃で35kgf/cm2の加圧下に30秒間プレスし、接着した。次いで140℃で4時間熱処理して硬化させて、耐ハンダ性および剥離強度評価用サンプルを得た(初期評価用)。
(Characteristic evaluation method)
(1) Solder resistance, peel strength An adhesive composition to be described later was applied to a 25 μm-thick polyimide film (manufactured by Kaneka Corporation, Apical) so that the thickness after drying would be 30 μm, and at 130 ° C. for 3 minutes. Dried. When the adhesive film (B stage product) obtained in this way is bonded to a 30 μm rolled copper foil, 35 kgf / cm 2 is applied at 160 ° C. so that the glossy surface of the rolled copper foil is in contact with the adhesive. It was pressed and pressed for 30 seconds under pressure. Subsequently, it was cured by heat treatment at 140 ° C. for 4 hours to obtain a solder resistance and peel strength evaluation sample (for initial evaluation).
 接着性フィルム(Bステージ品)を、40℃、80%加湿下にて14日間放置後、上記条件にて圧延銅箔とプレス、熱処理して硬化させ、経時評価用のサンプルを得た。
各特性の評価は以下の方法で行った;
  耐ハンダ性(加湿):サンプルを40℃、80%加湿下にて2日間放置後、加熱したハンダ浴に1分間浮かべて、膨れが発生しない上限の温度を10℃ピッチで測定した。この試験においても、測定値の高い方が良好な耐熱性を持つことを示すが、各基材、接着剤層に含まれた水蒸気の蒸発による衝撃をも抑制する必要があり、常態よりも、さらに厳しい耐熱性が要求される。実用的性能から考慮すると260℃以上が良好である。
The adhesive film (B stage product) was allowed to stand at 40 ° C. and 80% humidification for 14 days, and then cured by pressing with a rolled copper foil and heat treatment under the above conditions to obtain a sample for evaluation over time.
Each characteristic was evaluated by the following method;
Solder resistance (humidification): The sample was allowed to stand at 40 ° C. and 80% humidification for 2 days, then floated in a heated solder bath for 1 minute, and the upper limit temperature at which swelling did not occur was measured at a pitch of 10 ° C. Also in this test, it shows that the higher the measured value has better heat resistance, but it is necessary to suppress the impact caused by evaporation of water vapor contained in each base material and adhesive layer. More severe heat resistance is required. In consideration of practical performance, 260 ° C. or higher is favorable.
  剥離強度:25℃において、引張速度50mm/minで90°剥離試験を行ない、剥離強度を測定した。この試験は常温での接着強度を示すものである。実用的性能から考慮すると15N/cm以上が良好である。
(2)クリープ特性
 後述する接着剤組成物を厚さ125μmのポリイミドフィルム(東レ・デュポン株式会社製、カプトン)に、乾燥後の厚みが30μmとなる様に塗布し、130℃で3分乾燥した。このようにして得られた接着性フィルム(Bステージ品)を5mm幅に切断したものを、500μmのSUS304板と、160℃で5kgf/cm2の加圧下に30秒間プレスし、接着した。次いで140℃で4時間熱処理して硬化させて、クリープ特性評価用サンプルを得た(初期サンプル)。また、接着性フィルム(Bステージ品)を、40℃、80%加湿下にて14日間放置後、上記条件にてSUS板とプレス、熱処理して硬化させ、経時評価用のサンプルを得た。得られたサンプルを、60℃×90%雰囲気下、200gの錘をぶら下げ、30分間で剥がれた距離を測定した。なお錘のぶら下げ方は、剥離形態が180°剥離となるように行った。この試験は、高温高湿下での接着強度を示すもので、剥離のないものが好ましく、剥離距離が大きくなるほど、接着強度が低い。実用的性能から考慮すると4mm以下が良好である。
Peel strength: At 25 ° C., a 90 ° peel test was conducted at a tensile speed of 50 mm / min, and the peel strength was measured. This test shows the adhesive strength at room temperature. Considering from practical performance, 15 N / cm or more is good.
(2) Creep properties An adhesive composition described below was applied to a 125 μm-thick polyimide film (manufactured by Toray DuPont, Kapton) so that the thickness after drying was 30 μm, and dried at 130 ° C. for 3 minutes. . The adhesive film (B stage product) obtained in this way was cut to a width of 5 mm, and pressed with a 500 μm SUS304 plate at 160 ° C. under a pressure of 5 kgf / cm 2 for 30 seconds and adhered. Subsequently, it was cured by heat treatment at 140 ° C. for 4 hours to obtain a sample for creep property evaluation (initial sample). Further, the adhesive film (B stage product) was allowed to stand for 14 days at 40 ° C. and 80% humidification, and then cured by press and heat treatment with a SUS plate under the above conditions to obtain a sample for evaluation over time. A 200 g weight was hung from the obtained sample in an atmosphere of 60 ° C. × 90%, and the distance peeled off in 30 minutes was measured. Note that the weight was hung so that the peeling form was 180 ° peeling. This test shows the adhesive strength under high temperature and high humidity, and preferably has no peeling. The longer the peeling distance, the lower the adhesive strength. Considering practical performance, 4 mm or less is good.
 ラジカル重合性部位を含むポリエステル樹脂Aの重合例
温度計、撹拌機、還流式冷却管および蒸留管を具備した反応容器にテレフタル酸236.6部、イソフタル酸236.6部、フマル酸17.4部、エチレングリコール266.6部、ネオペンチルグリコール240.2部、フェノチアジン0.13部を仕込み、窒素雰囲気、2気圧にて、4時間かけて230℃まで徐々に昇温し、留出する水を系外に除きつつエステル化反応を行った。続いて、常圧に戻したのち、チタンテトラブトキシド0.11部を加え、5分間撹拌した後、30分かけて10mmHgまで減圧初期重合を行うと共に温度を250℃まで昇温し、更に1mmHg以下で60分間後期重合を行った。その後、窒素にて常圧に戻し、ポリエステル樹脂Aを得た。この様にして得られたポリエステルの組成、特性値を表1に示した。各測定評価項目は先述の方法に従った。
Example of Polymerization of Polyester Resin A Containing Radical Polymerizable Site A reaction vessel equipped with a thermometer, stirrer, reflux condenser and distillation tube was charged with 236.6 parts of terephthalic acid, 236.6 parts of isophthalic acid, and 17.4 of fumaric acid. Water, 266.6 parts of ethylene glycol, 240.2 parts of neopentyl glycol, and 0.13 part of phenothiazine, and gradually heated to 230 ° C. over 4 hours in a nitrogen atmosphere and 2 atm. The esterification reaction was carried out while removing from the system. Subsequently, after returning to normal pressure, 0.11 part of titanium tetrabutoxide was added, and after stirring for 5 minutes, initial polymerization was performed under reduced pressure to 10 mmHg over 30 minutes and the temperature was raised to 250 ° C., and further 1 mmHg or less The late polymerization was carried out for 60 minutes. Thereafter, the pressure was returned to normal pressure with nitrogen to obtain polyester resin A. The composition and characteristic values of the polyester thus obtained are shown in Table 1. Each measurement evaluation item followed the above-mentioned method.
 ラジカル重合性部位を含むポリエステル樹脂C、F、G、I、J、L、Nの重合例
ポリエステル樹脂Aの重合例と同様にして、表1に示す原料を用いて、ラジカル重合性部位を含むポリエステル樹脂C、F、G、I、J、L、Nを得た。ただし、1mmgHg以下の後期重合時間は、Gが42分、Hが32分、Lが16分であり、その他のものは60分行った。これらの樹脂の組成、特性値を表1に示した。
Polymerization Examples of Polyester Resins C, F, G, I, J, L, and N Containing Radical Polymerizable Sites In the same manner as the polymerized examples of polyester resin A, the raw materials shown in Table 1 are used to include radical polymerizable sites. Polyester resins C, F, G, I, J, L and N were obtained. However, the late polymerization time of 1 mmgHg or less was 42 minutes for G, 32 minutes for H, 16 minutes for L, and 60 minutes for the others. The composition and characteristic values of these resins are shown in Table 1.
 ラジカル重合性部位を含むポリエステル樹脂Bの重合例
 温度計、撹拌機、還流式冷却管および蒸留管を具備した反応容器にテレフタル酸80.5部、イソフタル酸24.9部、セバシン酸60.6部、フマル酸5.8部、エチレングリコール74.4部、ネオペンチルグリコール83.2部、フェノチアジン0.1部を仕込み、窒素雰囲気、2気圧にて、4時間かけて230℃まで徐々に昇温し、留出する水を系外に除きつつエステル化反応を行った。続いて、常圧に戻したのち、チタンテトラブトキシド0.11部を加え、5分間撹拌した後、30分かけて10mmHgまで減圧初期重合を行うと共に温度を250℃まで昇温し、更に1mmHg以下で60分間後期重合を行った。その後、窒素にて常圧に戻し、80℃まで温度を下げ、2-ブタノン(MEK)430部を加え溶解、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)32.2部を加え、2時間撹拌し酸付加を行い、ポリエステル樹脂B溶液を得た。なお、MEKは溶液中樹脂分が30%になるように調整している。さらに、ポリエステル樹脂A溶液を真空条件下(5mmHg以下)にて80℃、3時間加熱し、溶剤を揮発させたものにて、樹脂組成及び特性を評価した。結果を表1に示した。なお、各測定評価項目は先述の方法に従った。
Polymerization Example of Polyester Resin B Containing Radical Polymerizable Site A reaction vessel equipped with a thermometer, a stirrer, a reflux condenser and a distillation tube was charged with 80.5 parts terephthalic acid, 24.9 parts isophthalic acid, and 60.6 sebacic acid. Part, 5.8 parts of fumaric acid, 74.4 parts of ethylene glycol, 83.2 parts of neopentyl glycol and 0.1 part of phenothiazine were gradually added to 230 ° C. over 4 hours in a nitrogen atmosphere and 2 atm. The esterification reaction was performed while warming and removing the distilled water out of the system. Subsequently, after returning to normal pressure, 0.11 part of titanium tetrabutoxide was added, and after stirring for 5 minutes, initial polymerization was performed under reduced pressure to 10 mmHg over 30 minutes and the temperature was raised to 250 ° C., and further 1 mmHg or less The late polymerization was carried out for 60 minutes. Thereafter, the pressure is returned to normal pressure with nitrogen, the temperature is lowered to 80 ° C., 430 parts of 2-butanone (MEK) is added and dissolved, and 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA) 32 2 parts were added and the mixture was stirred for 2 hours to perform acid addition to obtain a polyester resin B solution. MEK is adjusted so that the resin content in the solution is 30%. Furthermore, the polyester resin A solution was heated at 80 ° C. for 3 hours under a vacuum condition (5 mmHg or less) to evaporate the solvent, and the resin composition and characteristics were evaluated. The results are shown in Table 1. In addition, each measurement evaluation item followed the above-mentioned method.
 ラジカル重合性部位を含むポリエステル樹脂D、Kの重合例
 ポリエステル樹脂Bの重合例と同様にして、表1に示す原料を用いて、ラジカル重合性部位を含むポリエステル樹脂ポリエステル樹脂D、Kを得た。この樹脂の組成、特性値を表1に示した。
Polymerization examples of polyester resins D and K containing radical polymerizable sites Polyester resins D and K containing radical polymerizable sites were obtained using the raw materials shown in Table 1 in the same manner as the polymerization examples of polyester resin B. . The composition and characteristic values of this resin are shown in Table 1.
 ラジカル重合性部位を含むポリエステル樹脂Eの重合例
 温度計、撹拌機、還流式冷却管および蒸留管を具備した反応容器にテレフタル酸78.0部、イソフタル酸81.3部、フマル酸2.3部、2-メチル-1,3-プロパンジオール135.0部、フェノチアジン0.1部を仕込み、窒素雰囲気、2気圧にて、4時間かけて230℃まで徐々に昇温し、留出する水を系外に除きつつエステル化反応を行った。続いて、常圧に戻したのち、チタンテトラブトキシド0.11部を加え、5分間撹拌した後、30分かけて10mmHgまで減圧初期重合を行うと共に温度を250℃まで昇温し、更に1mmHg以下で60分間後期重合を行った。その後、窒素にて常圧に戻し、220℃まで温度を下げ、無水トリメリット酸3.8部を加え、30分撹拌し酸付加を行い、ポリエステル樹脂Eを得た。この様にして得られたポリエステルの組成、特性値を表1に示した。各測定評価項目は先述の方法に従った。
Polymerization Example of Polyester Resin E Containing Radical Polymerizable Site In a reaction vessel equipped with a thermometer, stirrer, reflux condenser and distillation tube, 78.0 parts of terephthalic acid, 81.3 parts of isophthalic acid, 2.3 of fumaric acid Of water, 135.0 parts of 2-methyl-1,3-propanediol and 0.1 part of phenothiazine, and gradually heated to 230 ° C. over 4 hours in a nitrogen atmosphere and 2 atm. The esterification reaction was carried out while removing from the system. Subsequently, after returning to normal pressure, 0.11 part of titanium tetrabutoxide was added, and after stirring for 5 minutes, initial polymerization was performed under reduced pressure to 10 mmHg over 30 minutes and the temperature was raised to 250 ° C., and further 1 mmHg or less The late polymerization was carried out for 60 minutes. Thereafter, the pressure was returned to normal pressure with nitrogen, the temperature was lowered to 220 ° C., 3.8 parts of trimellitic anhydride was added, the mixture was stirred for 30 minutes, and acid addition was performed to obtain polyester resin E. The composition and characteristic values of the polyester thus obtained are shown in Table 1. Each measurement evaluation item followed the above-mentioned method.
 ラジカル重合性部位を含むポリエステル樹脂H、Mの重合例
ポリエステル樹脂Eの重合例と同様にして、表1に示す原料を用いて、ラジカル重合性部位を含むポリエステル樹脂ポリエステル樹脂H、Mを得た。この樹脂の組成、特性値を表1に示した。
Polymerization Example of Polyester Resins H and M Containing Radical Polymerizable Sites Polyester resins H and M containing radical polymerizable sites were obtained using the raw materials shown in Table 1 in the same manner as in the polymerization example of polyester resin E. . The composition and characteristic values of this resin are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ラジカル重合性単量体の重合体で変性された変性ポリエステル樹脂1の重合例
 撹拌機、温度計、還流装置と定量滴下装置を備えた反応器にポリエステル樹脂Aの30質量%MEK溶液(ポリエステルA樹脂分75部含有)を調製し、75℃で加熱撹拌した。一方、ラジカル重合性単量体25部(無水マレイン酸12部、スチレン13部)、重合開始剤として2,2’-アゾビスイソブチロニトリルをラジカル重合性単量体質量総和の6質量%、連鎖移動剤としてオクチルメルカプタンをラジカル重合性単量体質量総和の10質量%、メチルエチルケトン(以下、MEKと略記することがある)60.3部に溶解して、ラジカル重合性単量体の30%MEK溶液を調整した。ポリエステル樹脂A溶液に、溶液1を1.5時間かけて滴下し、さらに4時間反応させ、ラジカル重合性単量体の重合体による変性ポリエステル樹脂溶液を得た。この間、溶液は75℃に保った。得られたラジカル重合性単量体の重合体による変性ポリエステル樹脂組成物の酸価は2454当量/10g、ガラス転移温度は72℃であった。
Polymerization Example of Modified Polyester Resin 1 Modified with Polymer of Radical Polymerizable Monomer 30% by Mass MEK Solution of Polyester Resin A (Polyester A) in a reactor equipped with a stirrer, thermometer, reflux device and quantitative dropping device Resin content 75 parts) was prepared and heated and stirred at 75 ° C. On the other hand, 25 parts of radically polymerizable monomer (12 parts of maleic anhydride, 13 parts of styrene) and 2,2′-azobisisobutyronitrile as a polymerization initiator were 6% by mass of the total amount of radically polymerizable monomers. As a chain transfer agent, octyl mercaptan was dissolved in 10% by mass of the total mass of radical polymerizable monomers and 60.3 parts of methyl ethyl ketone (hereinafter sometimes abbreviated as MEK) to obtain 30% of the radical polymerizable monomer. A% MEK solution was prepared. Solution 1 was added dropwise to the polyester resin A solution over 1.5 hours, and further reacted for 4 hours to obtain a modified polyester resin solution using a polymer of a radical polymerizable monomer. During this time, the solution was kept at 75 ° C. The acid value of the modified polyester resin composition by the polymer of the obtained radical polymerizable monomer was 2454 equivalent / 10 < 6 > g, and the glass transition temperature was 72 degreeC.
 ラジカル重合性単量体の重合体で変性された変性ポリエステル樹脂2~16の重合例
変性ポリエステル樹脂1の重合例と同様にして、表2に示す原料を用いて、変性ポリエステル樹脂2~16を得た。変性ポリエステル樹脂2について例示すると、ポリエステル樹脂Bの30質量%MEK溶液(ポリエステル樹脂B分20部含有)に対して、ラジカル重合性単量体80部(無水マレイン酸38部、スチレン37部、アクリル酸2-エチルヘキシル5部)、重合開始剤2,2’-アゾビスイソブチロニトリル4.8部(ラジカル重合性単量体質量総和の6%)、連鎖移動剤としてオクチルメルカプタン8部(ラジカル重合性単量質量総和の10%)をMEK186.7部に溶解し(溶液2)、溶液2を1.5時間かけて滴下し、さらに4時間反応させ、ラジカル重合性単量体の重合体による変性ポリエステル樹脂溶液2を得た。
Example of Polymerization of Modified Polyester Resin 2-16 Modified with Polymer of Radical Polymerizable Monomer Similar to the example of polymerization of modified polyester resin 1, using the raw materials shown in Table 2, the modified polyester resins 2-16 were prepared. Obtained. As an example of the modified polyester resin 2, 80 parts of a radical polymerizable monomer (38 parts of maleic anhydride, 37 parts of styrene, acrylic resin) with respect to a 30% by mass MEK solution of polyester resin B (containing 20 parts of polyester resin B). Acid 2-ethylhexyl 5 parts), polymerization initiator 2,2′-azobisisobutyronitrile 4.8 parts (6% of the total mass of radical polymerizable monomers), octyl mercaptan 8 parts (radical) as chain transfer agent 10% of the total polymerizable monomer mass) is dissolved in 186.7 parts of MEK (solution 2), and the solution 2 is added dropwise over 1.5 hours, followed by further reaction for 4 hours. A modified polyester resin solution 2 was obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ポリウレタン樹脂に使用したポリエステルポリオールO、P、R、S、Tの重合例
ポリエステル樹脂Eの重合例と同様にして、表3に示す原料を用いて、ポリウレタン樹脂に使用したポリエステルポリオールO、P、R、S、Tを得た。この樹脂の組成、特性値を表3に示した。
Example of polymerization of polyester polyols O, P, R, S, T used for polyurethane resin In the same manner as polymerization example of polyester resin E, using the raw materials shown in Table 3, polyester polyols O, P, R, S, T were obtained. The composition and characteristic values of this resin are shown in Table 3.
 ポリウレタン樹脂に使用したポリエステルポリオールQの重合例
ポリエステル樹脂Aの重合例と同様にして、表3に示す原料を用いて、ラジカル重合性部位を含むポリエステル樹脂Qを得た。この樹脂の組成、特性値を表3に示した。
Polymerization Example of Polyester Polyol Q Used for Polyurethane Resin Polyester resin Q containing a radical polymerizable moiety was obtained using the raw materials shown in Table 3 in the same manner as in the polymerization example of polyester resin A. The composition and characteristic values of this resin are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 ポリウレタン樹脂Iの重合例
 温度計、撹拌機、還流式冷却管および蒸留管を具備した反応容器に表3に記載したポリエステルポリオール(O)100部、トルエン70部を仕込み溶解後、トルエン20部を蒸留させ、トルエン/水の共沸により反応系を脱水した。60℃まで冷却後、2,2-ジメチロールブタン酸(DMBA)を9部、メチルエチルケトン50部を加えた。DMBAが溶解後、ヘキサメチレンジイソシアネートを8部さらに反応触媒としてジブチルチンジラウレートを0.4部加え、80℃で3時間反応させてから、メチルエチルケトンとトルエンの同質量混合溶液を投入して固形分濃度を30質量%に調整し、ポリウレタン樹脂(I)の溶液を得た。ポリウレタン樹脂の特性を表4に示す。ポリウレタン樹脂(I)の溶液を120℃で1時間乾燥することにより溶剤を除いたフィルムを用いて、クロロホルム中で水酸化カリウムのエタノール溶液により酸価を求めた。表4中、数平均分子量はテトラハイドロフランを溶媒としてゲル浸透クロマトグラフィーにより、ガラス転移温度は昇温速度20℃/分の条件で示差走査熱量計により測定した。
Polymerization Example of Polyurethane Resin I A reactor equipped with a thermometer, stirrer, reflux condenser and distillation tube was charged with 100 parts of polyester polyol (O) listed in Table 3 and 70 parts of toluene. The reaction system was dehydrated by azeotropic distillation with toluene / water. After cooling to 60 ° C., 9 parts of 2,2-dimethylolbutanoic acid (DMBA) and 50 parts of methyl ethyl ketone were added. After DMBA is dissolved, add 8 parts of hexamethylene diisocyanate and 0.4 parts of dibutyltin dilaurate as a reaction catalyst, react at 80 ° C. for 3 hours, and then add a mixed solution of methyl ethyl ketone and toluene in the same mass to obtain a solid content concentration. Was adjusted to 30% by mass to obtain a polyurethane resin (I) solution. Table 4 shows the characteristics of the polyurethane resin. The acid value was determined with an ethanol solution of potassium hydroxide in chloroform using a film from which the solvent was removed by drying the polyurethane resin (I) solution at 120 ° C. for 1 hour. In Table 4, the number average molecular weight was measured by gel permeation chromatography using tetrahydrofuran as a solvent, and the glass transition temperature was measured by a differential scanning calorimeter at a temperature rising rate of 20 ° C./min.
 ポリウレタン樹脂II~XIの重合例
 ポリウレタン樹脂Iの重合例と同様にして、表4に示す原料を用いて、ポリウレタン樹脂II~XIを得た。特性値を表4に示した。
Polymerization examples of polyurethane resins II to XI Polyurethane resins II to XI were obtained using the raw materials shown in Table 4 in the same manner as the polymerization examples of polyurethane resin I. The characteristic values are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 〈実施例1〉
 ポリウレタン樹脂I 75部(固形分のみの質量、溶剤は含まない。以下同様)、変性ポリエステル樹脂5 25部、エポキシ化合物ア[大日本インキ工業(株)製 HP7200-H(ジシクロペンタンジエン型エポキシ化合物)] 38部を配合し、目的とする接着剤組成物を得た。なお、エポキシ化合物は、MEK70%溶液として配合した。エポキシ化合物の配合量は、ポリウレタン及び変性ポリエステル樹脂の酸価の総量の1.05倍のグリシジル基を含むように算出して決定した。この配合の場合、Tg(c)-Tg(d)が8℃、AV(c)-AV(d)が1841当量/10gとなり、本発明の請求範囲内に入る。接着評価試料を上述の方法で作製し、評価した結果を表5に示す。初期評価、経時評価ともに良好な結果を示している。
<Example 1>
75 parts of polyurethane resin I (mass only of solid content, does not include solvent; the same applies hereinafter), modified polyester resin 525 parts, epoxy compound [manufactured by Dainippon Ink Industries, Ltd. HP7200-H (dicyclopentanediene type epoxy) Compound)] 38 parts was blended to obtain a desired adhesive composition. The epoxy compound was blended as a MEK 70% solution. The compounding amount of the epoxy compound was determined by calculating so as to include 1.05 times the total amount of acid values of the polyurethane and the modified polyester resin. In this case, Tg (c) -Tg (d) is 8 ° C. and AV (c) -AV (d) is 1841 equivalent / 10 6 g, which falls within the scope of the claims of the present invention. Table 5 shows the evaluation results of the adhesion evaluation samples prepared by the above-described methods. Both the initial evaluation and the time evaluation showed good results.
 〈実施例2~6〉
 実施例1と同じく、表5に示される、樹脂種、配合量で試料を作製し、樹脂特性を評価した。なお、エポキシ化合物イは、三菱瓦斯化学(株)製 TETRAD-X(N,N,N’,N’―テトラグリジジル-m-キシレンジアミン)、エポキシ化合物ウは、東都化成社製 YDCN703(o-クレゾールノボラック型エポキシ化合物)であり、いずれもMEK70%溶液として配合した。エポキシ化合物の配合量は、ポリウレタン及び変性ポリエステル樹脂の酸価の総量の1.05倍のグリシジル基を含むように算出して決定した。評価した結果を表5に示す。初期評価、経時評価ともに良好な結果を示している。
<Examples 2 to 6>
As in Example 1, samples were prepared with the resin types and blending amounts shown in Table 5, and the resin characteristics were evaluated. The epoxy compound I is TETRAD-X (N, N, N ′, N′-tetraglycidyl-m-xylenediamine) manufactured by Mitsubishi Gas Chemical Co., Ltd., and the epoxy compound C is YDCN703 (o -Cresol novolac-type epoxy compounds), all formulated as MEK 70% solution. The compounding amount of the epoxy compound was determined by calculating so as to include 1.05 times the total amount of acid values of the polyurethane and the modified polyester resin. Table 5 shows the evaluation results. Both the initial evaluation and the time evaluation showed good results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 〈比較例1~14〉
 実施例1~6と同様にして、表6、7に示される、樹脂種、配合量で試料を作製し、樹脂特性を評価した。評価結果を表6、7に示した。
<Comparative Examples 1 to 14>
In the same manner as in Examples 1 to 6, samples were prepared with the resin types and blending amounts shown in Tables 6 and 7, and the resin characteristics were evaluated. The evaluation results are shown in Tables 6 and 7.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 比較例1は、変性ポリエステル樹脂(7)のガラス転移温度、Tg(c)-Tg(d)、AV(c)-AV(d)が本発明の範囲外である。また、無水マレイン酸のラジカル重合性単量体に占める割合も65質量%となっており、本発明の範囲から外れている。ポリエステル樹脂の優れた接着性が損なわれ、かつTg(c)-Tg(d)も大きいことから、室温の剥離強度も低く、高温高湿度下での接着性の指標となるクリープ特性、ハンダリフロー領域(260℃)の高度耐熱性の指標となる耐ハンダ性も不良である。さらに、AV(c)-AV(d)も大きいために、Bステージでの反応速度が速く、経時後の性能はさらに低下している。 In Comparative Example 1, the glass transition temperature, Tg (c) -Tg (d), AV (c) -AV (d) of the modified polyester resin (7) is outside the scope of the present invention. The proportion of maleic anhydride in the radical polymerizable monomer is also 65% by mass, which is outside the scope of the present invention. The excellent adhesiveness of polyester resin is impaired, and Tg (c) -Tg (d) is large, so the peel strength at room temperature is low, and the creep properties and solder reflow are indicators of adhesiveness at high temperature and high humidity. Solder resistance that is an index of high heat resistance in the region (260 ° C.) is also poor. Furthermore, since AV (c) -AV (d) is also large, the reaction rate at the B stage is high, and the performance after aging is further deteriorated.
 比較例2は、変性ポリエステル樹脂(8)の酸価が小さく、かつガラス転移温度の高いポリウレタン樹脂(III)と配合しているため、Tg(c)-Tg(d)、AV(c)-AV(d)ともに本発明の範囲外である。これは、変性ポリエステル(8)のラジカル重合性部位を含むポリエステル樹脂成分(a)を構成するモノマーと前記ラジカル重合性単量体の重合体成分(b)を構成するモノマーの質量比が99.5/0.5と、ポリエステル樹脂成分が大きいため、変性ポリエステル樹脂の酸価が小さくなっているためである。塗膜中の濃度の大きいポリウレタン樹脂のガラス転移温度が高い(52℃)ため、60℃での評価であるクリープ特性は良好ではあるが、変性ポリエステル樹脂の架橋密度上昇によるハンダリフロー領域の耐熱性改善効果が小さく、耐ハンダ性の性能は不十分である。また、Tg(c)-Tg(d)が小さく、変性ポリエステル樹脂(8)のBステージの反応も早く、経時後の特性は大幅に低下している。 In Comparative Example 2, since the modified polyester resin (8) is blended with the polyurethane resin (III) having a low acid value and a high glass transition temperature, Tg (c) -Tg (d), AV (c)- Both AV (d) are outside the scope of the present invention. This is because the mass ratio of the monomer constituting the polyester resin component (a) containing the radical polymerizable moiety of the modified polyester (8) and the monomer constituting the polymer component (b) of the radical polymerizable monomer is 99.99. This is because the acid value of the modified polyester resin is small because the polyester resin component is large at 5 / 0.5. Polyurethane resin with a high concentration in the coating film has a high glass transition temperature (52 ° C.), so the creep characteristics as evaluated at 60 ° C. are good, but the heat resistance of the solder reflow region due to the increased cross-link density of the modified polyester resin The improvement effect is small, and the solder resistance performance is insufficient. Further, Tg (c) -Tg (d) is small, the reaction of the modified polyester resin (8) at the B stage is fast, and the characteristics after aging are greatly deteriorated.
 比較例3は、変性ポリエステル樹脂(7)のガラス転移温度が129℃と高く、無水マレイン酸のラジカル重合性単量体に占める割合も65質量%となっており、本発明の範囲から外れている。またポリウレタン樹脂(VII)酸価は90当量/10gと小さく、Tg(c)-Tg(d)、AV(c)-AV(d)ともに本発明の範囲外である。これは、変性ポリエステル(8)のラジカル重合性部位を含むポリエステル樹脂成分(a)を構成するモノマーと前記ラジカル重合性単量体の重合体成分(b)を構成するモノマーの質量比が99.5/0.5と、本発明から外れていること、及びポリウレタン樹脂(VII)が鎖延長剤としてDMBAを使用せず酸価90当量/10gと、本発明からはずれていることによる。塗膜中の30%の質量にあたるポリウレタン樹脂の硬化性が低いことから、接着剤としての耐熱性は低く、耐ハンダ性は極端に不良。また、Tg(c)-Tg(d)が大きいことから、剥離強度も不良、AV(c)-AV(d)が大きいことから、経時による性能不良も顕著である。 In Comparative Example 3, the glass transition temperature of the modified polyester resin (7) is as high as 129 ° C., and the proportion of maleic anhydride in the radical polymerizable monomer is 65% by mass, which is out of the scope of the present invention. Yes. The acid value of polyurethane resin (VII) is as small as 90 equivalent / 10 6 g, and Tg (c) -Tg (d) and AV (c) -AV (d) are both outside the scope of the present invention. This is because the mass ratio of the monomer constituting the polyester resin component (a) containing the radical polymerizable moiety of the modified polyester (8) and the monomer constituting the polymer component (b) of the radical polymerizable monomer is 99.99. This is due to the fact that the polyurethane resin (VII) does not use DMBA as a chain extender and has an acid value of 90 equivalents / 10 6 g, which is out of the present invention. Since the curability of the polyurethane resin corresponding to 30% of the mass in the coating film is low, the heat resistance as an adhesive is low, and the solder resistance is extremely poor. Further, since Tg (c) -Tg (d) is large, the peel strength is also poor, and since AV (c) -AV (d) is large, the performance failure with time is also remarkable.
 比較例4は、ポリウレタン樹脂(VIII)よりガラス転移温度の低い変性ポリエステル樹脂(10)を配合しており、Tg(c)-Tg(d)が-13℃で、本発明の範囲外である。またポリウレタン樹脂(VIII)は、酸価が1150当量/10gで本発明の範囲外である。Tg(c)-Tg(d)が本発明の範囲外であるため、バランスの取れた幅広い熱特性が不足しており、また(a)、(b)、(c)からなる成分の質量をWc、ポリウレタン樹脂(d)の質量をWdとした場合の、Wc/Wdが90/10で、ポリウレタン樹脂の濃度が低いため、剥離強度が低くなっている。さらに、ポリウレタンの樹脂の酸価が高く、架橋密度が上がるため、ハンダリフロー領域の耐ハンダ性試験の塗膜に発生する応力緩和能力が下がっているのに加え、変性ポリエステル(10)に使用しているポリエステル樹脂Hは不飽和基を全くもたず、変性ポリエステルHはグラフトされていないため、耐熱性をサポートする効果がなく、耐ハンダ性は全くでない。グラフトされないラジカル重合性単量体の重合体(ホモポリマー)は極めて反応が早いため、経時による接着性低下も大きい。 In Comparative Example 4, a modified polyester resin (10) having a glass transition temperature lower than that of the polyurethane resin (VIII) is blended, and Tg (c) -Tg (d) is −13 ° C., which is outside the scope of the present invention. . The polyurethane resin (VIII) has an acid value of 1150 equivalents / 10 6 g, which is outside the scope of the present invention. Since Tg (c) -Tg (d) is outside the scope of the present invention, a wide range of well-balanced thermal properties is insufficient, and the mass of the component consisting of (a), (b), (c) Wc / Wd is 90/10 when the mass of Wc and polyurethane resin (d) is Wd, and the peel strength is low because the concentration of polyurethane resin is low. Furthermore, since the acid value of the polyurethane resin is high and the crosslink density is increased, the stress relaxation ability generated in the coating film in the solder resistance test in the solder reflow region is lowered, and the modified polyester (10) is used. Since the polyester resin H has no unsaturated groups and the modified polyester H is not grafted, it has no effect of supporting heat resistance and has no solder resistance. Since the polymer (homopolymer) of the radical polymerizable monomer which is not grafted reacts very quickly, the adhesiveness deterioration with time is also great.
 比較例5は、ポリウレタン樹脂(IV)よりガラス転移温度の低い変性ポリエステル樹脂(11)を配合しており、Tg(c)-Tg(d)が-14℃で、本発明の範囲外である。また、ラジカル重合性単量体として無水マレイン酸を使用しておらず、本発明の範囲外である。Tg(c)-Tg(d)が本発明の範囲外であるため、バランスの取れた幅広い熱特性が不足しており、特に高温での接着性(耐ハンダ性、クリープ特性)が不良になっている。さらに、変性ポリエステル(11)に使用しているラジカル重合性部位を含むポリエステル樹脂(I)は、ラジカル重合性部位を含む酸成分(イタコン酸)が22モル%と高いため、グラフト工程中にゲル状物が発生しており、100メッシュのナイロン濾布で濾過し、取り除いて試料の作製を行ったが、微細なゲル状物が、試料の全面に点在していることを、光学顕微鏡で確認した。実際の接着特性評価では、ゲル状物の存在部分から剥離が生じており、全体に性能を大きく引き下げている。 In Comparative Example 5, the modified polyester resin (11) having a glass transition temperature lower than that of the polyurethane resin (IV) is blended, and Tg (c) -Tg (d) is -14 ° C., which is outside the scope of the present invention. . Further, maleic anhydride is not used as the radical polymerizable monomer, which is outside the scope of the present invention. Since Tg (c) -Tg (d) is out of the scope of the present invention, a wide range of well-balanced thermal characteristics are insufficient, and adhesion at high temperatures (solder resistance, creep characteristics) is particularly poor. ing. Furthermore, since the polyester resin (I) containing a radically polymerizable site used in the modified polyester (11) has a high acid component (itaconic acid) containing a radically polymerizable site of 22 mol%, it is gelled during the grafting process. Samples were prepared by removing them with a 100 mesh nylon filter cloth, but it was confirmed that fine gels were scattered on the entire surface with an optical microscope. confirmed. In actual adhesive property evaluation, peeling occurs from the existing portion of the gel-like material, and the performance is greatly reduced as a whole.
 比較例6は、変性ポリエステル樹脂(14)のガラス転移温度が-5℃と低く、かつ配合しているポリウレタン樹脂(IX)のガラス転移温度の方が高いため、Tg(c)-Tg(d)が-14℃となり、本発明の範囲外である。Tg(c)-Tg(d)が本発明の範囲外であるため、バランスの取れた幅広い熱特性が不足しており、特に高温での接着性(耐ハンダ性、クリープ特性)が不良になっている。さらに、ポリウレタン樹脂(IX)の数平均分子量が4,500、また、変性ポリエステル(14)の数平均分子量も4,500と小さく、樹脂の凝集力が小さいため、室温の剥離強度も小さなものになっている。 In Comparative Example 6, since the glass transition temperature of the modified polyester resin (14) is as low as −5 ° C. and the glass transition temperature of the blended polyurethane resin (IX) is higher, Tg (c) −Tg (d ) Is −14 ° C., which is outside the scope of the present invention. Since Tg (c) -Tg (d) is out of the scope of the present invention, a wide range of well-balanced thermal characteristics are insufficient, and adhesion at high temperatures (solder resistance, creep characteristics) is particularly poor. ing. Furthermore, the number average molecular weight of the polyurethane resin (IX) is 4,500, and the number average molecular weight of the modified polyester (14) is as small as 4,500, and the cohesive strength of the resin is small, so that the peel strength at room temperature is also small. It has become.
 比較例7は、ポリウレタン樹脂(X)は、ガラス転移温度が83℃と高く、かつポリウレタン樹脂よりガラス転移温度の低い変性ポリエステル樹脂(12)を配合しており、Tg(c)-Tg(d)が-23℃となり、本発明の範囲外である。Tg(c)-Tg(d)が本発明の範囲外であるため、バランスの取れた幅広い熱特性が不足しており、特にポリウレタン樹脂(X)のガラス転移温度が低いため、室温での剥離強度が不足している。逆に、高温での接着性(耐ハンダ性、クリープ特性)は、初期、経時後ともに良好である。また、変性ポリエステル(12)に使用しているラジカル重合性部位を含むポリエステル樹脂(J)の数平均分子量が4,000と低く、変性ポリエステル(12)そのものの数平均分子量も4,500と低いため、さらに室温での接着性を下げていると推測される。 In Comparative Example 7, the polyurethane resin (X) is blended with a modified polyester resin (12) having a glass transition temperature as high as 83 ° C. and a glass transition temperature lower than that of the polyurethane resin, and Tg (c) −Tg (d ) Is −23 ° C., which is outside the scope of the present invention. Since Tg (c) -Tg (d) is outside the scope of the present invention, a wide range of well-balanced thermal properties are insufficient, and in particular, since the glass transition temperature of polyurethane resin (X) is low, peeling at room temperature Insufficient strength. On the contrary, the adhesiveness (solder resistance, creep characteristics) at high temperature is good both in the initial stage and after aging. Further, the number average molecular weight of the polyester resin (J) containing a radical polymerizable moiety used in the modified polyester (12) is as low as 4,000, and the number average molecular weight of the modified polyester (12) itself is as low as 4,500. Therefore, it is estimated that the adhesiveness at room temperature is further lowered.
 比較例8は、Tg(c)-Tg(d)が55℃で、本発明の範囲外である。またポリウレタン樹脂(XI)はガラス転移温度が-19℃と低く、本発明の範囲外である。Tg(c)-Tg(d)が本発明の範囲外であるため、バランスの取れた幅広い熱特性が不足しており、特にポリウレタン樹脂のガラス転移温度が低いため、常温の剥離強度は良好であるが、高温での接着性(耐ハンダ性、クリープ特性)が不良である。また、変性ポリエステル樹脂(9)に使用しているラジカル重合性部位を含むポリエステル樹脂(G)は樹脂を構成する全酸成分の合計モル量を100%とした時の、芳香族酸性分(テレフタル酸)が20%と低く、さらに、変性ポリエステル樹脂の質量をWc、ポリウレタン樹脂の質量をWdとした場合のWc/Wdが0.5/99.5と変性ポリエステルの含量が低くなっている。変性ポリエステルの濃度が低く、かつ芳香族成分が少なく凝集力が少ないことから、耐熱性をカバーする機能が低下するのも、高温接着性が不良の原因と推測される。 Comparative Example 8 has a Tg (c) -Tg (d) of 55 ° C., which is outside the scope of the present invention. Polyurethane resin (XI) has a low glass transition temperature of −19 ° C., which is outside the scope of the present invention. Since Tg (c) -Tg (d) is out of the scope of the present invention, a wide range of well-balanced thermal properties are insufficient, and particularly the polyurethane resin has a low glass transition temperature, so that the peel strength at normal temperature is good. However, it has poor adhesion at high temperatures (solder resistance, creep properties). The polyester resin (G) containing a radical polymerizable moiety used in the modified polyester resin (9) has an aromatic acid content (terephthalate) when the total molar amount of all acid components constituting the resin is 100%. Acid) is as low as 20%, and the content of the modified polyester is as low as Wc / Wd of 0.5 / 99.5 when the mass of the modified polyester resin is Wc and the mass of the polyurethane resin is Wd. Since the concentration of the modified polyester is low and the aromatic component is small and the cohesive force is small, the function of covering the heat resistance is also deteriorated.
 比較例9は、ポリウレタン樹脂(III)よりガラス転移温度の低い変性ポリエステル樹脂(13)を配合しており、Tg(c)-Tg(d)が-21℃で、本発明の範囲外である。さらに変性ポリエステル(13)は、無水マレイン酸のラジカル重合性単量体に占める割合も8質量%と低く、本発明の範囲から外れている。使用しているラジカル重合性部位を含むポリエステル樹脂(K)の数平均分子量が53,000と大きく、本発明の範囲外である。さらに、Tg(c)-Tg(d)が本発明の範囲外であり、かつ無水マレイン酸のラジカル重合性単量体に占める割合もが8質量%と低く、塗膜に不均一化が進みにくいため、バランスの取れた幅広い熱特性が不足している。さらに、ラジカル重合性部位を含むポリエステル樹脂(K)は分岐成分が多く分子量が上がっているため、変性ポリエステル樹脂(13)には、ゲル状物が存在しており、100メッシュのナイロン濾布で濾過し、取り除いて試料の作製を行ったが、微細なゲル状物が、試料の全面に点在していることを、光学顕微鏡で確認した。実際の接着特性評価では、ゲル状物の存在部分から剥離が生じており、全体に性能を大きく引き下げている。 In Comparative Example 9, the modified polyester resin (13) having a glass transition temperature lower than that of the polyurethane resin (III) is blended, and Tg (c) -Tg (d) is -21 ° C., which is outside the scope of the present invention. . Furthermore, the ratio of the modified polyester (13) to the radical polymerizable monomer of maleic anhydride is as low as 8% by mass, which is out of the scope of the present invention. The number average molecular weight of the polyester resin (K) containing the radical polymerizable moiety used is as large as 53,000, which is outside the scope of the present invention. Further, Tg (c) -Tg (d) is out of the scope of the present invention, and the proportion of maleic anhydride in the radical polymerizable monomer is as low as 8% by mass, and the coating film becomes more uneven. Because it is difficult, it lacks a wide range of well-balanced thermal properties. Furthermore, since the polyester resin (K) containing a radical polymerizable site has many branched components and has a high molecular weight, the modified polyester resin (13) has a gel-like substance, and is made of 100 mesh nylon filter cloth. The sample was prepared by filtering and removing, but it was confirmed with an optical microscope that fine gels were scattered on the entire surface of the sample. In actual adhesive property evaluation, peeling occurs from the existing portion of the gel-like material, and the performance is greatly reduced as a whole.
 比較例10は、変性ポリエステル樹脂(14)のガラス転移温度が-5℃と低く、さらにそれよりもガラス転移温度の高いポリウレタン樹脂(II)を配合しているため、Tg(c)-Tg(d)が-44℃、本発明の範囲外である。さらにTg(c)-Tg(d)が本発明の範囲外であるため、バランスの取れた幅広い熱特性が不足しており、特に高温での接着性(耐ハンダ性)が不良になっている。また、変性ポリエステルのガラス転移温度が低いため、Bステージ状態の経時の反応性が大きく、経時後の接着特性が大幅に低下している。さらに、変性ポリエステル(14)は、使用しているラジカル重合性部位を含むポリエステル樹脂(L)の数平均分子量が2500と低く、樹脂の凝集力が小さく、室温の剥離強度も小さなものになっている。 In Comparative Example 10, since the modified polyester resin (14) has a low glass transition temperature of −5 ° C. and a polyurethane resin (II) having a higher glass transition temperature than that, Tg (c) −Tg ( d) is -44 ° C, outside the scope of the present invention. Furthermore, since Tg (c) -Tg (d) is outside the scope of the present invention, a wide range of well-balanced thermal characteristics are insufficient, and particularly, adhesiveness (solder resistance) at high temperatures is poor. . In addition, since the glass transition temperature of the modified polyester is low, the reactivity of the B stage state with time is large, and the adhesive properties after the time are greatly reduced. Furthermore, in the modified polyester (14), the number average molecular weight of the polyester resin (L) containing the radical polymerizable moiety used is as low as 2500, the cohesive strength of the resin is small, and the peel strength at room temperature is also small. Yes.
 比較例11は、ポリウレタン樹脂(II)よりガラス転移温度の低い変性ポリエステル樹脂(15)を配合しており、Tg(c)-Tg(d)が-26℃で、本発明の範囲外である。さらに、エポキシ化合物に、ジシクロペンタジエン骨格を持っているものを含んでおらず、本発明の範囲外である。Tg(c)-Tg(d)が本発明の範囲外であること、無水マレイン酸を含んでいないため塗膜の不均一化が進みにくいことから、バランスの取れた幅広い熱特性が不足しており、ジシクロペンタジエン骨格を持つエポキシ化合物を含まないことと相俟って、特に高温での接着性(耐ハンダ性)が不良になっている。 In Comparative Example 11, the modified polyester resin (15) having a glass transition temperature lower than that of the polyurethane resin (II) is blended, and Tg (c) -Tg (d) is −26 ° C., which is outside the scope of the present invention. . Furthermore, the epoxy compound does not include those having a dicyclopentadiene skeleton, which is outside the scope of the present invention. Since Tg (c) -Tg (d) is outside the scope of the present invention and it does not contain maleic anhydride, it is difficult to make the coating non-uniform. In combination with the absence of an epoxy compound having a dicyclopentadiene skeleton, the adhesiveness (solder resistance) particularly at high temperatures is poor.
 比較例12は、変性ポリエステル樹脂(16)のガラス転移温度が84℃と高く、ポリウレタン樹脂(XI)のガラス転移温度が-19℃と低く、Tg(c)-Tg(d)が103℃と高くて、本発明の範囲外である。さらに、エポキシ化合物に、ジシクロペンタジエン骨格を持っているものを含んでおらず、本発明の範囲外である。Tg(c)-Tg(d)が本発明の範囲外であるため、バランスの取れた幅広い熱特性が不足している。ジシクロペンタジエン骨格を持つエポキシ化合物を含まないことと相俟って、特に高温での接着性(耐ハンダ性、クリープ特性)が不良になっている。変性ポリエステル樹脂のガラス転移温度が高いため、常温での剥離強度も不良になっている。 In Comparative Example 12, the glass transition temperature of the modified polyester resin (16) is as high as 84 ° C., the glass transition temperature of the polyurethane resin (XI) is as low as −19 ° C., and Tg (c) -Tg (d) is 103 ° C. High and outside the scope of the present invention. Furthermore, the epoxy compound does not include those having a dicyclopentadiene skeleton, which is outside the scope of the present invention. Since Tg (c) -Tg (d) is outside the scope of the present invention, a wide range of well-balanced thermal characteristics is insufficient. In combination with the absence of an epoxy compound having a dicyclopentadiene skeleton, adhesion at high temperatures (solder resistance, creep properties) is particularly poor. Since the glass transition temperature of the modified polyester resin is high, the peel strength at normal temperature is also poor.
 比較例13は、変性ポリエステル樹脂を含まず、本発明の範囲外である。ハンダリフロー領域での耐熱性がなく、耐ハンダ性が不良。さらにHDD用途で使用される温度領域でも接着性能を維持できず、クリープ特性不良である。 Comparative Example 13 does not contain a modified polyester resin and is outside the scope of the present invention. There is no heat resistance in the solder reflow area, and solder resistance is poor. Furthermore, the adhesive performance cannot be maintained even in the temperature range used for HDD applications, and the creep characteristics are poor.
 比較例14は、ポリウレタン樹脂を含まず、本発明の範囲外である。初期性能は良好であるが、Bステージの安定性がなく、経時での性能はすべて不良である。 Comparative Example 14 does not contain a polyurethane resin and is outside the scope of the present invention. The initial performance is good, but the B stage is not stable and the performance over time is poor.

Claims (12)

  1.  ラジカル重合性部位を含むポリエステル樹脂(a)、
     ラジカル重合性単量体の重合体(b)、
     前記樹脂(a)と前記重合体(b)が結合している、ラジカル重合性単量体の重合体で変性された変性ポリエステル樹脂(c)、
     酸価が100当量/10g以上1000当量/10g以下であるポリウレタン樹脂(d)、
     ジシクロペンタジエン構造を有するエポキシ化合物(e)、
    を含有し、
     ラジカル重合性単量体の10質量%以上60質量%以下が無水マレイン酸であり、
     樹脂(c)のガラス転移温度Tg(c)が0℃以上80℃以下であり、
     樹脂(d)のガラス転移温度Tg(d)が-10℃以上60℃以下であり、
     Tg(c)とTg(d)の関係が下記式(1)
        50≧Tg(c)-Tg(d)≧5         (1)
    を満たし、
     樹脂(c)の酸価AV(c)当量/10gと樹脂(d)の酸価AV(d)当量/10gの関係が下記式(2)
        8,000≧AV(c)-AV(d)≧200     (2)
    を満たす、接着剤用樹脂組成物。
    A polyester resin (a) containing a radically polymerizable moiety,
    A polymer of a radically polymerizable monomer (b),
    A modified polyester resin (c) modified with a polymer of a radically polymerizable monomer, in which the resin (a) and the polymer (b) are bonded;
    A polyurethane resin (d) having an acid value of 100 equivalents / 10 6 g or more and 1000 equivalents / 10 6 g or less,
    An epoxy compound (e) having a dicyclopentadiene structure,
    Containing
    10 mass% or more and 60 mass% or less of the radical polymerizable monomer is maleic anhydride,
    The glass transition temperature Tg (c) of the resin (c) is 0 ° C. or higher and 80 ° C. or lower,
    The glass transition temperature Tg (d) of the resin (d) is −10 ° C. or higher and 60 ° C. or lower,
    The relationship between Tg (c) and Tg (d) is the following formula (1)
    50 ≧ Tg (c) −Tg (d) ≧ 5 (1)
    The filling,
    An acid value AV (c) equivalents / 10 6 g and the acid value AV (d) eq / 10 6 g relationship formula of the resin (d) of (c) (2)
    8,000 ≧ AV (c) −AV (d) ≧ 200 (2)
    The resin composition for adhesives satisfy | fills.
  2.  前記樹脂(c)の酸価が400当量/10g以上8,500当量/10g以下である請求の範囲1記載の樹脂組成物。 The resin composition according to claim 1, wherein the acid value of the resin (c) is 400 equivalent / 10 6 g or more and 8,500 equivalent / 10 6 g or less.
  3.  前記樹脂(d)の数平均分子量が5,000以上100,000以下である請求の範囲1記載の樹脂組成物。 The resin composition according to claim 1, wherein the resin (d) has a number average molecular weight of 5,000 or more and 100,000 or less.
  4.  前記樹脂(a)の数平均分子量が5,000以上50,000以下である請求の範囲1記載の樹脂組成物。 The resin composition according to claim 1, wherein the resin (a) has a number average molecular weight of 5,000 or more and 50,000 or less.
  5.  前記樹脂(a)を構成する全酸成分の合計モル量を100モル%としたとき、芳香族酸成分が30モル%以上、ラジカル重合性部位を含む酸成分とラジカル重合性部位を含むグリコール成分の合計が0.5モル%以上20モル%以下である請求の範囲1記載の樹脂組成物。 When the total molar amount of all the acid components constituting the resin (a) is 100 mol%, the aromatic acid component is 30 mol% or more, the acid component containing a radical polymerizable moiety and the glycol component containing a radical polymerizable moiety 2. The resin composition according to claim 1, wherein the total is from 0.5 mol% to 20 mol%.
  6.  前記樹脂(a)と前記重合体(b)と前記樹脂(c)の全体に対して、前記樹脂(a)を構成するモノマーに由来する部分と前記重合体(b)を構成するモノマーに由来する部分との比が質量比で10/90以上99/1以下である請求の範囲1記載の樹脂組成物。 From the resin (a), the polymer (b) and the resin (c) as a whole, derived from the monomer constituting the resin (a) and the monomer constituting the polymer (b) 2. The resin composition according to claim 1, wherein the ratio to the portion to be processed is 10/90 or more and 99/1 or less by mass ratio.
  7.  前記樹脂(a)、前記重合体(b)、前記樹脂(c)の合計質量をWc、樹脂(d)の質量をWdとしたとき、Wc/Wdが1/99以上80/20以下であることを特徴とする請求の範囲1記載の樹脂組成物。 When the total mass of the resin (a), the polymer (b), and the resin (c) is Wc, and the mass of the resin (d) is Wd, Wc / Wd is 1/99 or more and 80/20 or less. The resin composition according to claim 1, wherein:
  8.  請求の範囲1記載の樹脂組成物を含有することを特徴とする接着剤。 An adhesive comprising the resin composition according to claim 1.
  9.  請求の範囲1記載の樹脂組成物を含有することを特徴とする接着性シート。 An adhesive sheet comprising the resin composition according to claim 1.
  10.  複数の板状体および/または箔状体を接着層で貼り合わせた積層体であって、該接着層の少なくとも一部が請求の範囲1記載の樹脂組成物を含むことを特徴とするプリント配線板用積層体。 A laminate comprising a plurality of plate-like bodies and / or foil-like bodies bonded together with an adhesive layer, wherein at least a part of the adhesive layer contains the resin composition according to claim 1 Laminate for board.
  11.  前記複数の板状体および/または箔状体が、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、銅、アルミ、ガラスエポキシ、およびステンレス鋼からなる群より選択される1種以上の素材からなるものである請求の範囲10記載のプリント配線板用積層体。 The plurality of plate-like bodies and / or foil-like bodies are made of at least one material selected from the group consisting of polyester resin, polyimide resin, polyamideimide resin, copper, aluminum, glass epoxy, and stainless steel. The laminate for a printed wiring board according to claim 10.
  12.  請求の範囲10記載の積層体を構成要素として含むプリント配線板。 A printed wiring board comprising the laminate according to claim 10 as a constituent element.
PCT/JP2009/066935 2008-09-30 2009-09-29 Resin composition for adhesive agent, adhesive agent and adhesive sheet each comprising same, and laminate for print circuit board adhered by using same WO2010038733A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009554800A JP5126239B2 (en) 2008-09-30 2009-09-29 Resin composition for adhesive, adhesive containing the same, adhesive sheet, and laminate for printed wiring board bonded using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-254366 2008-09-30
JP2008254366 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010038733A1 true WO2010038733A1 (en) 2010-04-08

Family

ID=42073494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066935 WO2010038733A1 (en) 2008-09-30 2009-09-29 Resin composition for adhesive agent, adhesive agent and adhesive sheet each comprising same, and laminate for print circuit board adhered by using same

Country Status (2)

Country Link
JP (1) JP5126239B2 (en)
WO (1) WO2010038733A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129278A1 (en) * 2010-04-14 2011-10-20 東洋紡績株式会社 Resin composition for adhesive agent, adhesive agent comprising the resin composition, adhesive sheet, and printed wiring board involving the adhesive sheet as adhesive layer
WO2011129323A1 (en) * 2010-04-14 2011-10-20 東洋紡績株式会社 Resin composition for adhesive agent, adhesive agent and adhesive sheet each comprising same, and printed wiring board involving the same as adhesive agent layer
JP2015078298A (en) * 2013-10-16 2015-04-23 出光興産株式会社 Antioxidant for ethyl methyl ketone, and composition containing the same
JP2015530701A (en) * 2012-08-03 2015-10-15 エルジー・ケム・リミテッド Adhesive film and organic electronic device sealing product using the same
JP2015217577A (en) * 2014-05-16 2015-12-07 昭和電工パッケージング株式会社 Packaging material for molding and molded case
JP2019157005A (en) * 2018-03-14 2019-09-19 Mcppイノベーション合同会社 Adhesive resin composition, laminate and molding
CN112285273A (en) * 2020-11-16 2021-01-29 黄河三角洲京博化工研究院有限公司 Method for detecting hydroxyl value content of dimethylolpropionic acid
JP2021102711A (en) * 2019-12-25 2021-07-15 東洋インキScホールディングス株式会社 Method for Producing Resin Composition and Adhesive Composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248890A (en) * 1991-01-25 1992-09-04 Nissan Motor Co Ltd Adhesive composition
JPH0632882A (en) * 1992-05-19 1994-02-08 Mitsui Petrochem Ind Ltd Adhesive component and adherent polyester composition
JPH06240213A (en) * 1993-02-19 1994-08-30 Mitsui Mining & Smelting Co Ltd Copper foil coated with adhesive and copper-clad laminate made using the same
JP2000129236A (en) * 1998-10-27 2000-05-09 Hitachi Chem Co Ltd Aqueous adhesive resin composition and preparation of film bonded product
JP2003027030A (en) * 2001-07-19 2003-01-29 Nitto Shinko Kk Moist heat-resistant hot melt adhesive composition
JP2008007720A (en) * 2006-06-30 2008-01-17 Toyobo Co Ltd Water dispersion for hybrid resin, adhesive using the same, coating agent and coating
JP2008038111A (en) * 2006-08-10 2008-02-21 Nippon Steel Chem Co Ltd Film-shaped adhesive and method for producing semiconductor package using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248890A (en) * 1991-01-25 1992-09-04 Nissan Motor Co Ltd Adhesive composition
JPH0632882A (en) * 1992-05-19 1994-02-08 Mitsui Petrochem Ind Ltd Adhesive component and adherent polyester composition
JPH06240213A (en) * 1993-02-19 1994-08-30 Mitsui Mining & Smelting Co Ltd Copper foil coated with adhesive and copper-clad laminate made using the same
JP2000129236A (en) * 1998-10-27 2000-05-09 Hitachi Chem Co Ltd Aqueous adhesive resin composition and preparation of film bonded product
JP2003027030A (en) * 2001-07-19 2003-01-29 Nitto Shinko Kk Moist heat-resistant hot melt adhesive composition
JP2008007720A (en) * 2006-06-30 2008-01-17 Toyobo Co Ltd Water dispersion for hybrid resin, adhesive using the same, coating agent and coating
JP2008038111A (en) * 2006-08-10 2008-02-21 Nippon Steel Chem Co Ltd Film-shaped adhesive and method for producing semiconductor package using the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487762B (en) * 2010-04-14 2015-06-11 Toyo Boseki Resin composition for adhesive agent, adhesive agent containing thereof, adhesive sheet and printed wire board containing the same as adhesive layer
JP4978753B2 (en) * 2010-04-14 2012-07-18 東洋紡績株式会社 RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND A PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER
US9133300B2 (en) 2010-04-14 2015-09-15 Toyo Boseki Kabushiki Kaisha Resin composition for adhesive, adhesive containing resin composition for adhesive, adhesive sheet containing resin composition for adhesive, and printed wiring board including adhesive or adhesive sheet as adhesive layer
CN102782074A (en) * 2010-04-14 2012-11-14 东洋纺织株式会社 Resin composition for adhesive agent, adhesive agent comprising the resin composition, adhesive sheet, and printed wiring board involving the adhesive sheet as adhesive layer
CN102822304A (en) * 2010-04-14 2012-12-12 东洋纺织株式会社 Resin composition for adhesive agent, adhesive agent and adhesive sheet each comprising same, and printed circuit board comprising same as adhesive agent layer
KR20130057965A (en) * 2010-04-14 2013-06-03 도요보 가부시키가이샤 Resin composition for adhesive agent, adhesive agent comprising the resin composition, adhesive sheet, and printed wiring board involving the adhesive sheet as adhesive layer
KR20130086117A (en) * 2010-04-14 2013-07-31 도요보 가부시키가이샤 Resin composition for adhesive, adhesive containing resin composition for adhesive, adhesive sheet containing resin composition for adhesive, and printed wiring board including adhesive or adhesive sheet as adhesive layer
CN102782074B (en) * 2010-04-14 2014-06-18 东洋纺织株式会社 Resin composition for adhesive agent, adhesive agent comprising the resin composition, adhesive sheet, and printed wiring board involving the adhesive sheet as adhesive layer
WO2011129278A1 (en) * 2010-04-14 2011-10-20 東洋紡績株式会社 Resin composition for adhesive agent, adhesive agent comprising the resin composition, adhesive sheet, and printed wiring board involving the adhesive sheet as adhesive layer
KR101727353B1 (en) * 2010-04-14 2017-04-14 도요보 가부시키가이샤 Resin composition for adhesive, adhesive containing resin composition for adhesive, adhesive sheet containing resin composition for adhesive, and printed wiring board including adhesive or adhesive sheet as adhesive layer
KR101660083B1 (en) * 2010-04-14 2016-09-26 도요보 가부시키가이샤 Resin composition for adhesive agent, adhesive agent comprising the resin composition, adhesive sheet, and printed wiring board involving the adhesive sheet as adhesive layer
WO2011129323A1 (en) * 2010-04-14 2011-10-20 東洋紡績株式会社 Resin composition for adhesive agent, adhesive agent and adhesive sheet each comprising same, and printed wiring board involving the same as adhesive agent layer
JP5688077B2 (en) * 2010-04-14 2015-03-25 東洋紡株式会社 RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND A PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER
TWI504712B (en) * 2010-04-14 2015-10-21 Toyo Boseki Resin composition for adhesive agent, adhesive agent containing thereof, adhesive sheet and printed wire board containing the same as adhesive layer
JP2015530701A (en) * 2012-08-03 2015-10-15 エルジー・ケム・リミテッド Adhesive film and organic electronic device sealing product using the same
JP2015078298A (en) * 2013-10-16 2015-04-23 出光興産株式会社 Antioxidant for ethyl methyl ketone, and composition containing the same
JP2015217577A (en) * 2014-05-16 2015-12-07 昭和電工パッケージング株式会社 Packaging material for molding and molded case
JP2019157005A (en) * 2018-03-14 2019-09-19 Mcppイノベーション合同会社 Adhesive resin composition, laminate and molding
JP7147195B2 (en) 2018-03-14 2022-10-05 Mcppイノベーション合同会社 Adhesive resin composition, laminate and molded article
JP7371490B2 (en) 2019-12-25 2023-10-31 東洋インキScホールディングス株式会社 Method for producing resin composition and adhesive composition
JP2021102711A (en) * 2019-12-25 2021-07-15 東洋インキScホールディングス株式会社 Method for Producing Resin Composition and Adhesive Composition
CN112285273A (en) * 2020-11-16 2021-01-29 黄河三角洲京博化工研究院有限公司 Method for detecting hydroxyl value content of dimethylolpropionic acid

Also Published As

Publication number Publication date
JP5126239B2 (en) 2013-01-23
JPWO2010038733A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP6032318B2 (en) RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND A PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER
TWI504712B (en) Resin composition for adhesive agent, adhesive agent containing thereof, adhesive sheet and printed wire board containing the same as adhesive layer
JP5126239B2 (en) Resin composition for adhesive, adhesive containing the same, adhesive sheet, and laminate for printed wiring board bonded using the same
JP5304152B2 (en) RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER
JP4978753B2 (en) RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND A PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER
CN110268030B (en) Polyester-based adhesive composition containing carboxylic acid group
WO2021200716A1 (en) Polyester, film, and adhesive composition, and adhesive sheet, laminate, and printed wiring board
JP7326417B2 (en) Polyesters, films and adhesive compositions, and adhesive sheets, laminates and printed wiring boards
JP6380710B1 (en) Carboxylic acid group-containing polymer compound and adhesive composition containing the same
JP7318838B2 (en) Adhesive composition, adhesive sheet, laminate and printed wiring board
TW202224929A (en) Laminate and manufacturing method thereof
JP2024007384A (en) Adhesive agent composition and adhesive agent

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009554800

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817765

Country of ref document: EP

Kind code of ref document: A1