WO2010038723A1 - Compound spring - Google Patents

Compound spring Download PDF

Info

Publication number
WO2010038723A1
WO2010038723A1 PCT/JP2009/066912 JP2009066912W WO2010038723A1 WO 2010038723 A1 WO2010038723 A1 WO 2010038723A1 JP 2009066912 W JP2009066912 W JP 2009066912W WO 2010038723 A1 WO2010038723 A1 WO 2010038723A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
axial direction
outer spring
combined
combination
Prior art date
Application number
PCT/JP2009/066912
Other languages
French (fr)
Japanese (ja)
Inventor
慶則 本多
Original Assignee
株式会社東郷製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東郷製作所 filed Critical 株式会社東郷製作所
Publication of WO2010038723A1 publication Critical patent/WO2010038723A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/02Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction
    • F16F3/04Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction composed only of wound springs
    • F16F3/06Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction composed only of wound springs of which some are placed around others in such a way that they damp each other by mutual friction

Definitions

  • the present invention relates to a combination spring.
  • Patent Document 1 Japanese Utility Model Publication No. 60-52435
  • the main coil spring is wound in the opposite direction in the vibration damping coil spring fitted inside. Therefore, the main coil spring and the damped vibration coil spring come into contact with each other at a portion where the strands intersect each other. This can suppress the resonance of the coil spring.
  • the present invention has been completed based on the above-described circumstances, and an object thereof is to provide a combination spring having an excellent vibration damping function.
  • the present invention is a combined spring comprising an outer spring formed by a compression coil spring, and at least one inner spring formed by the compression coil spring and inserted substantially coaxially inside the outer spring.
  • the effective winding portions of the inner spring and the outer spring are both set in the same winding direction and are in a natural state after the inner spring and the outer spring are combined, the effective winding in the inner spring In the axial direction of the combination spring, the positions of the strands of the portion are located with a pitch shift between the strands of the outer spring, and in the radial direction of the combination spring, the outer peripheral edge is the strand of the outer spring. It is the structure which protrudes and is located in the radial direction outer side rather than an inner periphery.
  • An end spring is provided at at least one end of the outer spring and the inner spring in the axial direction, and the end spring on the inner spring side is press-fitted into the outer spring.
  • the inner spring may be connected to the inner spring.
  • both the outer and inner springs are assembled at the end winding portion, it is possible to avoid a situation where they are entangled during the expansion and contraction operation of the combination spring.
  • An end spring is provided at at least one end of the outer spring and the inner spring in the axial direction, and an intermediate spring is press-fitted from the axial direction between the end winding of the inner spring and the outer spring. Accordingly, the outer spring and the inner spring may be connected to each other.
  • At least one end side in the axial direction of the outer spring and the inner spring is assembled with a spring receiving member from the axial direction of the combined spring, and the spring receiving member is axially outer with respect to the end winding portion of the outer spring.
  • a disc-shaped base plate portion that abuts from the inner surface of the base plate portion, a step portion concentrically protruding from the inner surface side of the base plate portion and press-fitted into the end winding portion of the outer spring, and a step portion that can be connected to the outer spring; It is good also as a structure formed from the axial part which can be connected with an inner spring by protruding concentrically and press-fitting in the axial direction edge part of an inner spring.
  • the outer spring in the process of compressing the entire combination spring, the outer spring is expanded and deformed even after the inner spring strand is sandwiched between the outer spring strands and the outer spring is deformed. Since the inner spring deforms in a reduced diameter, this allows the combined spring to be compressed beyond the pseudo contact height.
  • the inner spring has an axial length shorter than that of the outer spring, and is disposed at an intermediate portion in the axial direction with respect to the outer spring, and the end winding portions formed at both ends in the axial direction are outer springs.
  • the inner spring and the outer spring may be connected to each other by being press-fitted into the inner part.
  • the inner spring may be divided into two parts with respect to the axial direction.
  • One of the two divided inner springs is formed only by the end winding portion that is press-fitted into the end winding portion formed on one end side of the outer spring, and the winding direction of the strand of the end winding portion May be configured to be opposite to the winding direction of the outer spring.
  • each of the two split inner springs may be formed on a plane substantially orthogonal to the axial direction of the combination spring and abut against each other.
  • both the outer and inner springs come into contact with each other when the entire combination spring expands and contracts.
  • the present invention has a greater damping performance than the contact portion is almost in a point-striking state. Obtainable.
  • the maximum portion of stress is the inner peripheral portion of the strand, but in the case of the present invention, at least in the effective winding portion, the strand of the inner spring with respect to the axial direction is Since the opportunity of contact between the innermost peripheral edge of the outer spring element wire and the inner spring is reduced so as to be positioned between the outer spring lines, wear and the like are less likely to occur and the durability is excellent.
  • the combination spring S1 in the first embodiment is used as a valve spring for an intake valve or an exhaust valve of an engine.
  • the combination spring S1 is inserted through valve stems (not shown) of both valves, and one end side (the upper end side in the drawing) is brought into contact with the spring seat 1 arranged at the upper end portion of the valve stem, The other end (the lower end in the figure) is in contact with a wall surface around the stem through hole 2 formed in the cylinder head 3.
  • the compressed state is compressed by a predetermined length from the natural state (the state shown in FIG. 2).
  • the combination spring S1 is composed of an outer outer spring O1 and an inner spring I1 that is coaxially incorporated inside the outer spring O1.
  • Both springs O1 and I1 are compression coil springs formed by spirally winding an element wire made of spring steel into a cylindrical shape. More specifically, the outer spring O1 is formed in a cylindrical shape having a uniform outer diameter over the entire length, and the inner spring I1 is formed in a substantially barrel shape whose diameter is slightly reduced only at both ends.
  • the inner spring I1 is wound in the same direction as the winding direction of the outer spring O1, and when incorporated into the outer spring O1, the inner spring I1 is incorporated while rotating around the axis.
  • the strands of both the outer and inner springs O1, I1 are both substantially circular in cross section (otherwise, they may be in the form of an ellipse in the radial direction of the entire spring, or in the shape of a generally oval pointed on the outer peripheral side or inner peripheral side).
  • the inner wire diameter of the inner spring I1 is smaller than that of the outer spring O1, that is, the inner spring I1 side has a smaller diameter.
  • both the outer and inner springs O1 and I1 form end winding parts SO1 and SI1, and both end windings SO1 and SI1 of both springs O1 and I1 are both spring seat 1 or It abuts on the cylinder head 3 side.
  • the outer diameter of the both-ends winding part SI1 of the inner spring I1 is set slightly larger than the inner diameter of the both-ends winding part SO1 of the outer spring O1, so that this dimensional difference is the outer and inner springs O1, I1.
  • the outer and inner springs O1, I1 are fastened to each other at the end winding portions SO1, SI1. Thereby, the situation where both springs O1 and I1 are entangled can be avoided as much as possible.
  • the inner spring I1 includes the natural state of the combination spring S1, and until the inner spring I1 reaches the close contact state (the state shown in FIG. 3) in the axial direction, the strand of the inner spring I1 (the end winding portion SI1) Are removed from each other so as to be positioned between the strands of the outer spring O1.
  • the outer peripheral edge (the outermost edge in the radial direction) of the strand of the inner spring I1 is always the inner peripheral edge (in the radial direction) of the outer spring O1. It is positioned slightly outward in the radial direction from the innermost edge). With such a positional relationship, the strand of the inner spring I1 comes into contact with the strand of the outer spring O1 in a line-contact state with contraction deformation of the outer spring O1.
  • the inner spring I1 performs a combination operation on the outer spring O1 from one end side thereof. Then, both the outer and inner springs O1 and I1 are integrated by being tightened together at the both end wound portions SI1 of the inner spring I1 and the both end wound portions SO1 of the outer spring O1.
  • the inner spring I1 and the outer spring O1 are in the same winding direction. Therefore, when the springs O1, I1 are compressed, the outer and inner springs O1, I1 are along the winding direction. “Line per line”. Therefore, since the length region in contact with each other is longer than that in the conventional case where the winding directions are reversed to each other, the vibration damping property is accordingly improved.
  • the strand of the inner spring I1 is positioned between the strands of the outer spring O1 in the axial direction.
  • the strand of the inner spring I1 is the strand of the outer spring O1. Do not touch the innermost periphery of the line. Therefore, wear due to contact does not occur.
  • the portion where the stress is maximized is the inner peripheral edge. Therefore, in order to improve the durability, no wear is caused here. It is extremely effective.
  • FIG. 3 shows a state where the strands of the outer spring O1 are in close contact with each other and the combined spring S1 has a true contact height that cannot be compressed any more.
  • a pseudo contact state (see FIG. 4) is passed before reaching such a true contact height.
  • This pseudo close contact state refers to a state in which the strand of the inner spring I1 is sandwiched between the strands of the outer spring O1, and at this time, between the strands of the outer spring O1, the outer diameter of the strand of the inner spring I1 extends in the axial direction. Small dimension clearance is retained.
  • both strands of the outer spring O1 sandwiching each strand of the inner spring I1 act so as to push the strand of the inner spring I1 radially inward.
  • the outer spring O1 is deformed to increase in diameter, while the inner spring I1 is deformed to reduce diameter, whereby the strands of the outer spring O1 can be brought into close contact with each other. Therefore, even when an abnormal operation occurs in the intake / exhaust valves, the expanded elastic deformation region can be retained.
  • both the outer and inner springs O1 and I1 need to have the same contact height in the single product state. Since the outer and inner springs O1 and I1 are assembled in SO1 and SI1 to obtain one contact height in the combined state, it is not necessary to consider the contact height between the outer and inner combined states.
  • the inner spring I2 is formed in a cylindrical shape having a uniform outer diameter over the entire length range
  • the outer spring O2 is formed in a substantially drum shape in which only both end portions in the axial direction are expanded.
  • the end springs SO2 and SI2 have a structure in which the springs O2 and I2 are not tightened together.
  • FIG. 6 shows Embodiment 3 of the present invention.
  • the length of the inner spring I3 in the axial direction is shorter than that of the outer spring O3, and is combined with the outer spring O3 at an intermediate portion in the axial direction.
  • the outer spring O3 is formed in a cylindrical shape having a uniform outer diameter over the entire length range, and end winding portions SO3 are formed at both ends in the axial direction.
  • the inner spring I3 also has end winding portions SI3 at both ends in the axial direction, and the range excluding the end winding portion SI3 has a larger outer diameter than that of the end winding portion SI3 in the axial direction.
  • the whole is formed in a substantially barrel shape.
  • the outer and inner springs O3 and I3 are tightened with respect to the outer spring O3 at both end wound portions SI3 of the inner spring I3.
  • FIG. 7 shows Embodiment 4 of the present invention.
  • the outer spring O4 is formed in a cylindrical shape having a uniform outer diameter over the entire length range
  • the inner spring I4 is formed by strands of the same number of turns at both ends in the axial direction. Is formed in close contact part SI4.
  • the end face in the axial direction of the end turn SI4 on the inner spring I4 side is in a position retracted inward in the axial direction from the end face of the end turn SO4 on the outer spring O4 side.
  • Both end wound portions SI4 of the inner spring I4 are formed to have a smaller diameter than the effective winding portion, and are combined with a predetermined tightening margin on the outer spring O4 side.
  • FIG. 8 shows Embodiment 5 of the present invention.
  • the combination spring S5 of the present embodiment has a form similar to that of the fourth embodiment described above. The difference is that, in the fifth embodiment, the inner spring I5 is divided into first and second inner springs I5-A and I5-B, and is constituted by three members as a whole.
  • both the end wound portions SI4 of the inner spring I4 are tightly wound in the same winding direction as the outer spring O4 side.
  • the second inner spring I5-B is formed only by the end wound portion. The winding direction is opposite to the outer spring O5 side.
  • the upper end of the first inner spring I5-A is in contact with the lower end of the second inner spring I5-B.
  • the second inner spring I5-B may have the same setting as the wire diameter of the first inner spring I5-A or a different setting.
  • FIG. 9 shows Embodiment 6 of the present invention.
  • the combination spring S6 of the present embodiment also has a configuration in which the inner spring I6 is divided into first and second inner springs I6-A and I6-B.
  • the second inner spring I5-B is formed only by the end winding portion and does not have the effective winding portion.
  • the first and second inner springs I6-A are formed.
  • I6-B both have an effective winding portion and end winding portions SI6-A, SI6-B, and the lengths in the axial direction are substantially equal.
  • the first and second inner springs I6-A and I6-B are both wound in the same winding direction as the outer spring O6. Also, the outer spring O6-A and the inner springs I6-A, I6-B all have different wire diameters, and the end surfaces of the inner springs I6-A, I6-B are in contact with each other. Are formed with mutually flat ground surfaces so that they are abutted while forming a plane substantially perpendicular to the axis.
  • FIG. 10 shows Embodiment 7 of the present invention.
  • the combination spring S7 of the present embodiment has an intermediate spring M interposed between the inner spring I7 and the outer spring O7 on one end side (the lower end side in the drawing) of the inner spring I7.
  • the outer spring O7 in this embodiment is formed in a cylindrical shape having the same diameter over the entire length.
  • a small-diameter end wound portion SI7 is formed on the other end side (the upper end side in the drawing) of the inner spring I7, and is fastened to the end turn portion SO7 of the outer spring O7.
  • One end side of the inner spring I7 is formed with a throttle end wound part SI7 'formed to have a smaller diameter than the outer diameter of the end wound part SI7 on the other end side.
  • An intermediate spring M having an element wire diameter (Md) slightly larger than the gap dimension (L1) between the outer peripheral surface of the restrictor winding portion SI7 ′ and the inner peripheral surface on the outer spring O7 side is provided. It is inserted with a press fit. Tightening margins are set for the narrow end winding part SI7 'with respect to the end winding part SO7 on one end side of the inner spring I7 and one end side of the outer spring O7.
  • FIG. 11 shows an eighth embodiment of the present invention.
  • the combination spring S8 of the present embodiment is obtained by incorporating the spring receiving members 4 at both ends of the inner spring I8.
  • Both spring receiving members 4 are made of metal and have a base plate portion 4A that abuts against the end surfaces of both end wound portions SO8 of the outer spring O8.
  • the base plate portion 4A is formed to have substantially the same diameter as the outer diameter of the end winding portion SO8 of the outer spring O8.
  • a concentric disc-shaped step 4B is formed on the inner surface side of the base plate 4A so as to protrude.
  • the outer diameter of the stepped portion 4B is formed to be larger than the inner diameter of the end winding portion SO8 of the outer spring O8, which serves as a tightening allowance for the outer spring O8.
  • a shaft portion 4C is formed concentrically on the inner surface side of the step portion 4B. Both ends of the inner spring I8 have a reduced diameter, and the entire inner spring I8 is formed in a barrel shape.
  • the shaft portion 4C is press-fitted into both end portions of the inner spring I8. That is, the outer diameter of the shaft portion 4C is formed to be slightly larger than the inner diameters of both end portions of the inner spring I8, and this is an allowance for the inner spring I8.
  • the wire diameter of the inner spring is smaller than the wire diameter on the outer spring side, but it may be set to the same diameter or vice versa.
  • the material of the inner spring and the outer spring may be the same or different.
  • both end wound portions SI4 of the inner spring I4 are formed by close winding, but may be formed by close winding only on one side. Further, in place of the tight winding, the end winding portions may be formed at an unequal pitch as a pitch that is narrower than the effective winding portion but does not reach the tight winding. In that case, it is also possible to adopt a form in which the end winding portion is arranged only on one side.
  • the intermediate spring M is interposed only at one end, but it may be disposed at both ends.
  • the spring receiving member is made of metal, but may be made of synthetic resin. However, it is only necessary to receive the spring, and the material is not particularly limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)

Abstract

A compound spring (S1) is provided with an outer spring (O1) and an inner spring (I1) inserted on the inner side of the outer spring (O1) so as to be substantially coaxial with the outer spring (O1), and the outer and inner springs are coiled compression springs.  The inner spring (I1) and the outer spring (O1) are wound in the same direction.  With regard to the springs (O1, I1), at all times, the positions of portions of the element wire of the inner spring (I1), said portions constituting at least the effective winding portion of the inner spring (I1) are axially located between the pitches of the element wire of the outer spring (O1), and the outer peripheral edges of the portions are radially located on the outer side of the inner peripheral edges of the element wire of the outer spring (O1).

Description

組合せスプリングCombination spring
 本発明は組合せスプリングに関する。 The present invention relates to a combination spring.
 例えば、エンジンの弁ばねのように高速度で往復運動をするものでは、サージングの防止を図る工夫が求められる。その一例として、下記特許文献1が知られている。このものは、主コイルばねの内側に振動減衰用コイルばねを同軸で嵌め入れた二重ばね構造となっている。
実開昭60-52435号公報
For example, a device that reciprocates at a high speed, such as an engine valve spring, requires a device for preventing surging. As an example, Patent Document 1 below is known. This has a double spring structure in which a vibration damping coil spring is coaxially fitted inside the main coil spring.
Japanese Utility Model Publication No. 60-52435
 上記した従来のコイルばねにおいては、内側に嵌め入れられる振動減衰用コイルばねは主コイルばねの巻き方向が逆向きにしてある。したがって、主コイルばねと減衰振動用コイルばねとは、互いの素線同士が交差する部位において接触し合う。このことによって、コイルばねが共振するのを抑制することができる。 In the conventional coil spring described above, the main coil spring is wound in the opposite direction in the vibration damping coil spring fitted inside. Therefore, the main coil spring and the damped vibration coil spring come into contact with each other at a portion where the strands intersect each other. This can suppress the resonance of the coil spring.
 しかし、両ばねが接触し合う部位は交差部位に限られ、ほぼ点接触の状態であることから、振動減衰性において未だ充分に改良の余地がある、と言える。 However, the part where both springs contact is limited to the intersecting part and is almost in a point contact state, so it can be said that there is still room for improvement in vibration damping.
 本発明は上記のような事情に基づいて完成されたものであって、振動の減衰機能に優れる組合せスプリングを提供することを目的とする。 The present invention has been completed based on the above-described circumstances, and an object thereof is to provide a combination spring having an excellent vibration damping function.
 本発明は、圧縮コイルばねにより形成されたアウタスプリングと、圧縮コイルばねにより形成され、前記アウタスプリングの内側へほぼ同軸で挿通された少なくとも一つ以上のインナスプリングとを備えた組合せスプリングであって、前記インナスプリングと前記アウタスプリングとの有効巻線部は共に同一巻き方向に設定され、かつインナスプリングとアウタスプリングが組み合わされた後の自然状態にあるときに、前記インナスプリングにおける前記有効巻線部の素線の位置が、前記組合せスプリングの軸線方向に関しては、前記アウタスプリングの素線間にピッチずれして位置し、かつ組合せスプリングの径方向に関しては、外周縁が前記アウタスプリングの素線内周縁よりも径方向外側へ張り出して位置している構成である。 The present invention is a combined spring comprising an outer spring formed by a compression coil spring, and at least one inner spring formed by the compression coil spring and inserted substantially coaxially inside the outer spring. When the effective winding portions of the inner spring and the outer spring are both set in the same winding direction and are in a natural state after the inner spring and the outer spring are combined, the effective winding in the inner spring In the axial direction of the combination spring, the positions of the strands of the portion are located with a pitch shift between the strands of the outer spring, and in the radial direction of the combination spring, the outer peripheral edge is the strand of the outer spring. It is the structure which protrudes and is located in the radial direction outer side rather than an inner periphery.
 本発明の実施態様として、以下の構成が好ましい。 
 (1)アウタスプリング及びインナスプリングにおける軸線方向の少なくとも一方の端部には座巻部が設けられ、この座巻部ではインナスプリング側の座巻部がアウタスプリングに対して圧入されて、アウタスプリングとインナスプリングとの連結がなされている構成としてもよい。
The following configuration is preferable as an embodiment of the present invention.
(1) An end spring is provided at at least one end of the outer spring and the inner spring in the axial direction, and the end spring on the inner spring side is press-fitted into the outer spring. The inner spring may be connected to the inner spring.
 このような構成によると、座巻部においてアウタ及びインナの両スプリングが組み付けられているため、組合せスプリングの伸縮動作中に絡み合う事態を回避することができる。 According to such a configuration, since both the outer and inner springs are assembled at the end winding portion, it is possible to avoid a situation where they are entangled during the expansion and contraction operation of the combination spring.
 (2)アウタスプリング及びインナスプリングにおける軸線方向の少なくとも一方の端部には座巻部が設けられ、インナスプリングの座巻部とアウタスプリングとの間には、中間スプリングが軸線方向から圧入されることによって、アウタスプリングとインナスプリングとの連結がなされている構成としてもよい。 (2) An end spring is provided at at least one end of the outer spring and the inner spring in the axial direction, and an intermediate spring is press-fitted from the axial direction between the end winding of the inner spring and the outer spring. Accordingly, the outer spring and the inner spring may be connected to each other.
 (3)アウタスプリング及びインナスプリングにおける軸線方向の少なくとも一端側には、ばね受け部材が組合せスプリングの軸線方向から組み付けられ、かつ、このばね受け部材は、アウタスプリングの座巻部に対し軸線方向外側から当接する円板状のベースプレート部と、このベースプレート部の内面側から同心で突出しアウタスプリングの座巻部に圧入されることでアウタスプリングと連結可能な段部と、この段部の内面には同心で突出しインナスプリングの軸線方向端部に圧入されることでインナスプリングと連結可能な軸部とから形成されている構成としてもよい。 (3) At least one end side in the axial direction of the outer spring and the inner spring is assembled with a spring receiving member from the axial direction of the combined spring, and the spring receiving member is axially outer with respect to the end winding portion of the outer spring. A disc-shaped base plate portion that abuts from the inner surface of the base plate portion, a step portion concentrically protruding from the inner surface side of the base plate portion and press-fitted into the end winding portion of the outer spring, and a step portion that can be connected to the outer spring; It is good also as a structure formed from the axial part which can be connected with an inner spring by protruding concentrically and press-fitting in the axial direction edge part of an inner spring.
 (4)アウタスプリング及びインナスプリングの圧縮動作の過程で、両スプリングの有効巻線部では、アウタスプリングの素線間にインナスプリングの素線の外周寄りの部分を接触状態で挟み込んだ擬似密着状態となり、この状態から、さらに圧縮力が加えられたときに、少なくとも前記アウタスプリングが拡径方向へ変形することで、あるいは少なくともインナスプリングが縮径方向へ変形することで、アウタスプリングは擬似密着状態を超えてさらに圧縮変形が可能となっている構成としてもよい。 (4) In the process of compressing the outer spring and the inner spring, in the effective winding part of both springs, a pseudo close contact state in which a portion near the outer periphery of the inner spring strand is sandwiched between the outer spring strands. From this state, when further compression force is applied, at least the outer spring is deformed in the diameter increasing direction, or at least the inner spring is deformed in the diameter decreasing direction, so that the outer spring is in a pseudo-adhered state. It is good also as a structure which can be further compressed and deformed beyond this.
 このような構成によると、組合せスプリング全体が圧縮する過程で、アウタスプリングの素線間にインナスプリングの素線が挟み込まれた擬似密着状態となった後も、アウタスプリングは拡径変形する一方でインナスプリングは縮径変形するため、このことによって組合せスプリングは擬似密着高さを越えて圧縮することができる。 According to such a configuration, in the process of compressing the entire combination spring, the outer spring is expanded and deformed even after the inner spring strand is sandwiched between the outer spring strands and the outer spring is deformed. Since the inner spring deforms in a reduced diameter, this allows the combined spring to be compressed beyond the pseudo contact height.
 (5)インナスプリングは、アウタスプリングより軸線方向の長さが短く形成されるとともに、アウタスプリングに対し軸線方向の中間部に配置され、かつ軸線方向両端部に形成された座巻部がアウタスプリングに圧入されることで、インナスプリングとアウタスプリングとが連結可能となっている構成としてもよい。 (5) The inner spring has an axial length shorter than that of the outer spring, and is disposed at an intermediate portion in the axial direction with respect to the outer spring, and the end winding portions formed at both ends in the axial direction are outer springs. The inner spring and the outer spring may be connected to each other by being press-fitted into the inner part.
 (6)インナスプリングは、軸線方向に関して二分割されている構成としてもよい。 (6) The inner spring may be divided into two parts with respect to the axial direction.
 (7)二分割されたインナスプリングの一方は、アウタスプリングの一端側に形成された座巻部へ圧入される座巻部のみによって形成されるとともに、この座巻部の素線の巻き線方向はアウタスプリングの巻き線方向と逆向きである構成としてもよい。 (7) One of the two divided inner springs is formed only by the end winding portion that is press-fitted into the end winding portion formed on one end side of the outer spring, and the winding direction of the strand of the end winding portion May be configured to be opposite to the winding direction of the outer spring.
 (8)二分割された各インナスプリングの分割面は、組合せスプリングの軸線方向とほぼ直交する平面に形成されて相互に当接している構成としてもよい。 (8) The split surface of each of the two split inner springs may be formed on a plane substantially orthogonal to the axial direction of the combination spring and abut against each other.
 本発明によれば、インナスプリングとアウタスプリングとが同一巻き方向であるため、組合せスプリング全体が伸縮動作をしたときに、アウタ及びインナの両スプリングは線当たり状態で接触する。これに対し、アウタ及びインナの両スプリングの巻き方向を相互に逆方向とした場合には、接触部位がほぼ点当たり状態となってしまうのに比較して、本発明の方が大きな減衰性を得ることができる。また、圧縮ばねの場合、応力の最大部位は素線の内周部であることはよく知られているが、本発明の場合、少なくとも有効巻部分では、軸方向に関してインナスプリングの素線は、アウタスプリングの線間に位置するようにしてアウタスプリングの素線最内周縁部とインナスプリングとの接触機会を減らしてあるため、摩耗等を生じにくく、耐久性に優れる。 According to the present invention, since the inner spring and the outer spring are in the same winding direction, both the outer and inner springs come into contact with each other when the entire combination spring expands and contracts. On the other hand, when the winding directions of both the outer and inner springs are opposite to each other, the present invention has a greater damping performance than the contact portion is almost in a point-striking state. Obtainable. Further, in the case of a compression spring, it is well known that the maximum portion of stress is the inner peripheral portion of the strand, but in the case of the present invention, at least in the effective winding portion, the strand of the inner spring with respect to the axial direction is Since the opportunity of contact between the innermost peripheral edge of the outer spring element wire and the inner spring is reduced so as to be positioned between the outer spring lines, wear and the like are less likely to occur and the durability is excellent.
実施形態1における組合せスプリングを弁ばねとして組付けた状態での断面図Sectional drawing in the state which assembled | attached the combination spring in Embodiment 1 as a valve spring 同じく自由状態における断面図Cross section in the free state 密着高さに至るまで圧縮された状態での断面図Sectional view in a compressed state up to the contact height 擬似密着状態での断面図Sectional view in pseudo contact state 実施形態2における自由状態での断面図Sectional drawing in the free state in Embodiment 2 実施形態3における自由状態での断面図Sectional drawing in the free state in Embodiment 3 実施形態4における自由状態での断面図Sectional drawing in the free state in Embodiment 4 実施形態5における自由状態での断面図Sectional drawing in the free state in Embodiment 5 実施形態6における自由状態での断面図Sectional drawing in the free state in Embodiment 6 実施形態7における自由状態での断面図Sectional drawing in the free state in Embodiment 7 実施形態8における自由状態での断面図Sectional drawing in the free state in Embodiment 8
 <実施形態1>
 本発明の実施形態1を図1ないし図4によって説明する。実施形態1における組合せスプリングS1は、エンジンの吸気バルブあるいは排気バルブの弁ばねとして使用されている。図1に示すように、組合せスプリングS1は両バルブのバルブステム(図示しない)を挿通させ、その一端側(図示上端側)はバルブステムの上端部に配されたスプリングシート1に当接され、他端側(図示下端側)はシリンダヘッド3に形成されたステム通し孔2周りの壁面に当接されている。組合せスプリングS1がシリンダヘッド3中に組み付けられた状態では、自然状態(図2に示す状態)から所定長さだけ圧縮された状態となっている。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. The combination spring S1 in the first embodiment is used as a valve spring for an intake valve or an exhaust valve of an engine. As shown in FIG. 1, the combination spring S1 is inserted through valve stems (not shown) of both valves, and one end side (the upper end side in the drawing) is brought into contact with the spring seat 1 arranged at the upper end portion of the valve stem, The other end (the lower end in the figure) is in contact with a wall surface around the stem through hole 2 formed in the cylinder head 3. In a state in which the combination spring S1 is assembled in the cylinder head 3, the compressed state is compressed by a predetermined length from the natural state (the state shown in FIG. 2).
 組合せスプリングS1は、外側のアウタスプリングO1とこのアウタスプリングO1の内側に同軸で組み込まれるインナスプリングI1とからなっている。両スプリングO1,I1は、共にばね鋼からなる素線を筒型形状に螺旋巻きしてなる圧縮コイルばねである。より詳細には、アウタスプリングO1は全長に亘って均一な外径を持つ円筒形状に形成され、インナスプリングI1は両端部のみ僅かに縮径された略樽型形状に形成されている。 The combination spring S1 is composed of an outer outer spring O1 and an inner spring I1 that is coaxially incorporated inside the outer spring O1. Both springs O1 and I1 are compression coil springs formed by spirally winding an element wire made of spring steel into a cylindrical shape. More specifically, the outer spring O1 is formed in a cylindrical shape having a uniform outer diameter over the entire length, and the inner spring I1 is formed in a substantially barrel shape whose diameter is slightly reduced only at both ends.
 インナスプリングI1はアウタスプリングO1の巻き方向と同一方向で巻かれており、アウタスプリングO1への組み込みに際しては、軸線周りに回転させながら組み込まれる。アウタ及びインナの両スプリングO1,I1の素線は共に断面略円形状(その他、スプリング全体の径方向に長円となる形態、外周側又は内周側に尖る略卵型形状としてもよい。)に形成されるとともに、インナスプリングI1の素線径はアウタスプリングO1の素線径に比して小さく、つまりインナスプリングI1側の方が細径になっている。 The inner spring I1 is wound in the same direction as the winding direction of the outer spring O1, and when incorporated into the outer spring O1, the inner spring I1 is incorporated while rotating around the axis. The strands of both the outer and inner springs O1, I1 are both substantially circular in cross section (otherwise, they may be in the form of an ellipse in the radial direction of the entire spring, or in the shape of a generally oval pointed on the outer peripheral side or inner peripheral side). And the inner wire diameter of the inner spring I1 is smaller than that of the outer spring O1, that is, the inner spring I1 side has a smaller diameter.
 組合せスプリングS1の両端部において、アウタ及びインナの両スプリングO1,I1は共に座巻部SO1,SI1を形成しており、両スプリングO1,I1の座巻部SO1,SI1は共に、スプリングシート1あるいはシリンダヘッド3側に当接するようになっている。インナスプリングI1の両座巻部SI1における外径は、アウタスプリングO1の両座巻部SO1における内径よりも僅かに大きめに設定されることで、この寸法差分がアウタ及びインナの両スプリングO1,I1における締め代となり、アウタ及びインナの両スプリングO1,I1は両端の座巻部SO1,SI1において相互に締結される。これにより、両スプリングO1,I1が絡み合ってしまう事態を極力に回避することができる。 At both ends of the combined spring S1, both the outer and inner springs O1 and I1 form end winding parts SO1 and SI1, and both end windings SO1 and SI1 of both springs O1 and I1 are both spring seat 1 or It abuts on the cylinder head 3 side. The outer diameter of the both-ends winding part SI1 of the inner spring I1 is set slightly larger than the inner diameter of the both-ends winding part SO1 of the outer spring O1, so that this dimensional difference is the outer and inner springs O1, I1. The outer and inner springs O1, I1 are fastened to each other at the end winding portions SO1, SI1. Thereby, the situation where both springs O1 and I1 are entangled can be avoided as much as possible.
 また、インナスプリングI1は組合せスプリングS1の自然状態を含め、インナスプリングI1が軸方向に関して密着状態(図3に示す状態)に至るまでの間は、インナスプリングI1の素線(座巻部SI1を除く)はアウタスプリングO1の各素線間に位置するように、ピッチをずらして組み込んである。また、径方向に関しては、常に、インナスプリングI1の素線(座巻き部分を除く)の外周縁(径方向に関して最も外側となる縁部)がアウタスプリングO1の素線の内周縁(径方向に関して最も内側となる縁部)よりも僅かに径方向外側に位置するようになっている。このような位置関係によって、アウタスプリングO1の収縮変形に伴ってインナスプリングI1の素線はアウタスプリングO1の素線と線当たり状態で接触する関係となる。 Further, the inner spring I1 includes the natural state of the combination spring S1, and until the inner spring I1 reaches the close contact state (the state shown in FIG. 3) in the axial direction, the strand of the inner spring I1 (the end winding portion SI1) Are removed from each other so as to be positioned between the strands of the outer spring O1. As for the radial direction, the outer peripheral edge (the outermost edge in the radial direction) of the strand of the inner spring I1 is always the inner peripheral edge (in the radial direction) of the outer spring O1. It is positioned slightly outward in the radial direction from the innermost edge). With such a positional relationship, the strand of the inner spring I1 comes into contact with the strand of the outer spring O1 in a line-contact state with contraction deformation of the outer spring O1.
 上記のように構成された実施形態1によれば、インナスプリングI1はアウタスプリングO1に対しその一方の端部側から組合せ作業を行う。そして、インナスプリングI1の両座巻部SI1とアウタスプリングO1の両座巻部SO1において共に締め付けられることで、アウタ及びインナの両スプリングO1,I1が一体化される。 According to the first embodiment configured as described above, the inner spring I1 performs a combination operation on the outer spring O1 from one end side thereof. Then, both the outer and inner springs O1 and I1 are integrated by being tightened together at the both end wound portions SI1 of the inner spring I1 and the both end wound portions SO1 of the outer spring O1.
 図1の取り付け状態において、組合せスプリングS1の往復運動が繰り返されると、アウタスプリングO1の素線とインナスプリングI1の素線とは干渉し合う位置関係(径方向に関して、インナスプリングI1の素線がアウタスプリングO1の素線間に入り込む位置関係)にあることから、インナスプリングI1側の素線と、これを挟むアウタスプリングO1側の素線とが接触することによるダンパ効果によって共振現象を緩和することができる。具体的には、アウタスプリングO1が振動をしたときに、インナスプリングI1はこれに追従しないため、インナスプリングI1の各素線がこれを挟むアウタスプリングO1の素線にぶつかりあって、共振の緩和が図られる。特に、本実施形態では、インナスプリングI1とアウタスプリングO1とは同一の巻き方向としてあるため、両スプリングO1,I1が圧縮したときに、アウタ及びインナの両スプリングO1,I1は巻き方向に沿って「線当たり状態」となる。したがって、相互に巻き方向を逆にして「点当たり状態」としていた従来と比較して接触し合う長さ領域が長いため、その分、振動の減衰性に優れる。 1, when the reciprocating motion of the combination spring S1 is repeated, the positional relationship in which the strands of the outer spring O1 and the strands of the inner spring I1 interfere with each other (the strands of the inner spring I1 in the radial direction are Therefore, the resonance phenomenon is mitigated by a damper effect caused by the contact between the inner spring I1 side strand and the outer spring O1 side strand sandwiching the outer spring O1 strand. be able to. Specifically, when the outer spring O1 vibrates, the inner spring I1 does not follow this, so each strand of the inner spring I1 collides with a strand of the outer spring O1 that sandwiches the inner spring I1, and the resonance is reduced. Is planned. In particular, in the present embodiment, the inner spring I1 and the outer spring O1 are in the same winding direction. Therefore, when the springs O1, I1 are compressed, the outer and inner springs O1, I1 are along the winding direction. “Line per line”. Therefore, since the length region in contact with each other is longer than that in the conventional case where the winding directions are reversed to each other, the vibration damping property is accordingly improved.
 また、有効巻き部において、軸方向に関してインナスプリングI1の素線は、アウタスプリングO1の素線間に位置し、通常に使用される圧縮領域では、インナスプリングI1の素線はアウタスプリングO1の素線の最内周縁部分に接触しない。したがって、接触に起因した摩耗が生じない。前述したように、アウタスプリングO1に対して圧縮力が作用したときに応力が最大となる部位は内周縁部であることから、ここに摩耗を生じさせないことは耐久性の向上を図る上で、極めて有効である。 Further, in the effective winding portion, the strand of the inner spring I1 is positioned between the strands of the outer spring O1 in the axial direction. In the compression region that is normally used, the strand of the inner spring I1 is the strand of the outer spring O1. Do not touch the innermost periphery of the line. Therefore, wear due to contact does not occur. As described above, when the compressive force is applied to the outer spring O1, the portion where the stress is maximized is the inner peripheral edge. Therefore, in order to improve the durability, no wear is caused here. It is extremely effective.
 図3はアウタスプリングO1の各素線同士が密着して、組合せスプリングS1がこれ以上に圧縮ができない真の密着高さとなった状態を示している。本実施形態の場合、このような真の密着高さとなる前に擬似密着状態(図4参照)を経る。この擬似密着状態は、アウタスプリングO1の素線間にインナスプリングI1の素線を挟み込んだ状態を言い、このときにはアウタスプリングO1の素線間には軸方向にインナスプリングI1の素線外径より小さい寸法のクリアランスが保有されている。この擬似密着状態からさらに圧縮力が加わると、インナスプリングI1の各素線を挟んでいるアウタスプリングO1の両素線が、インナスプリングI1の素線を径方向内方へ押し出すように作用する。これに伴い、アウタスプリングO1は拡径変形する一方で、インナスプリングI1は縮径変形することで、アウタスプリングO1の素線同士を密着状態に至らしめることができる。したがって、吸気・排気のバルブに異常動作が生じたときにも、拡張された弾性変形領域を保有することができる。 FIG. 3 shows a state where the strands of the outer spring O1 are in close contact with each other and the combined spring S1 has a true contact height that cannot be compressed any more. In the case of the present embodiment, a pseudo contact state (see FIG. 4) is passed before reaching such a true contact height. This pseudo close contact state refers to a state in which the strand of the inner spring I1 is sandwiched between the strands of the outer spring O1, and at this time, between the strands of the outer spring O1, the outer diameter of the strand of the inner spring I1 extends in the axial direction. Small dimension clearance is retained. When a compressive force is further applied from this pseudo close contact state, both strands of the outer spring O1 sandwiching each strand of the inner spring I1 act so as to push the strand of the inner spring I1 radially inward. Along with this, the outer spring O1 is deformed to increase in diameter, while the inner spring I1 is deformed to reduce diameter, whereby the strands of the outer spring O1 can be brought into close contact with each other. Therefore, even when an abnormal operation occurs in the intake / exhaust valves, the expanded elastic deformation region can be retained.
 また、一般的に二重ばねの構造をとった場合に、アウタ及びインナの両スプリングO1,I1は単品状態での密着高さを揃える必要があるが、本実施形態のように、座巻部SO1,SI1においてアウタ及びインナの両スプリングO1,I1が組み付けられて組合せ状態で一つの密着高さを得るため、アウタ及びインナの組合せ状態において、お互いの密着高さを考慮する必要がない。 In general, when the double spring structure is adopted, both the outer and inner springs O1 and I1 need to have the same contact height in the single product state. Since the outer and inner springs O1 and I1 are assembled in SO1 and SI1 to obtain one contact height in the combined state, it is not necessary to consider the contact height between the outer and inner combined states.
 <実施形態2>
 次に、本発明の実施形態2を図5によって説明する。実施形態2の組合せスプリングS2では、インナスプリングI2を全長さ範囲に亘って均一の外径を有する円筒形状に形成し、アウタスプリングO2を軸方向の両端部のみが拡径した略鼓型形状に形成している。したがって、本実施形態では座巻部SO2,SI2において両スプリングO2,I2相互の締め込みはなされていない構造となっている。
<Embodiment 2>
Next, Embodiment 2 of the present invention will be described with reference to FIG. In the combination spring S2 of the second embodiment, the inner spring I2 is formed in a cylindrical shape having a uniform outer diameter over the entire length range, and the outer spring O2 is formed in a substantially drum shape in which only both end portions in the axial direction are expanded. Forming. Accordingly, in the present embodiment, the end springs SO2 and SI2 have a structure in which the springs O2 and I2 are not tightened together.
 他の構成は実施形態1と同様であり、同様の作用効果を発揮することができる。 Other configurations are the same as those of the first embodiment, and the same operational effects can be exhibited.
 <実施形態3>
 図6は本発明の実施形態3を示している。本実施形態の組合せスプリングS3では、インナスプリングI3の軸方向の長さ寸法がアウタスプリングO3に比較して短く形成され、アウタスプリングO3に対し軸方向の中間部において組合せたものである。アウタスプリングO3は全長さ範囲に亘って均一な外径を有した円筒形状に形成され、軸方向の両端部には座巻部SO3が形成されている。一方、インナスプリングI3も軸方向両端部に座巻部SI3を有し、この座巻部SI3を除く範囲は座巻部SI3に比較して大き目で軸方向に均一な外径を有しており、全体として略樽型形状に形成されている。
<Embodiment 3>
FIG. 6 shows Embodiment 3 of the present invention. In the combination spring S3 of the present embodiment, the length of the inner spring I3 in the axial direction is shorter than that of the outer spring O3, and is combined with the outer spring O3 at an intermediate portion in the axial direction. The outer spring O3 is formed in a cylindrical shape having a uniform outer diameter over the entire length range, and end winding portions SO3 are formed at both ends in the axial direction. On the other hand, the inner spring I3 also has end winding portions SI3 at both ends in the axial direction, and the range excluding the end winding portion SI3 has a larger outer diameter than that of the end winding portion SI3 in the axial direction. The whole is formed in a substantially barrel shape.
 アウタ及びインナの両スプリングO3,I3は、インナスプリングI3の両座巻部SI3においてアウタスプリングO3に対する締め込みがなされている。 The outer and inner springs O3 and I3 are tightened with respect to the outer spring O3 at both end wound portions SI3 of the inner spring I3.
 他の構成は、実施形態1,2と同様であり、同様の作用効果を発揮することができる。 Other configurations are the same as those in the first and second embodiments, and the same operational effects can be exhibited.
 <実施形態4>
 図7は本発明の実施形態4を示している。本実施形態の組合せスプリングS4では、アウタスプリングO4が全長さ範囲に亘って均一な外径を有する円筒形状に形成され、インナスプリングI4は軸方向の両端部において、それぞれ同じ巻数分の素線同士が密着した座巻部SI4が形成されている。インナスプリングI4側の座巻部SI4の軸方向の端面はアウタスプリングO4側の座巻部SO4の端面から軸方向内方へ引っ込んだ位置にある。インナスプリングI4の両座巻部SI4は有効巻き部よりも小径に形成され、アウタスプリングO4側に対し所定の締め代をもって組み合わされている。
<Embodiment 4>
FIG. 7 shows Embodiment 4 of the present invention. In the combination spring S4 of the present embodiment, the outer spring O4 is formed in a cylindrical shape having a uniform outer diameter over the entire length range, and the inner spring I4 is formed by strands of the same number of turns at both ends in the axial direction. Is formed in close contact part SI4. The end face in the axial direction of the end turn SI4 on the inner spring I4 side is in a position retracted inward in the axial direction from the end face of the end turn SO4 on the outer spring O4 side. Both end wound portions SI4 of the inner spring I4 are formed to have a smaller diameter than the effective winding portion, and are combined with a predetermined tightening margin on the outer spring O4 side.
 他の構成は、他の実施形態と同様であり、同様の作用効果を発揮することができる。 Other configurations are the same as those of the other embodiments, and the same operational effects can be exhibited.
 <実施形態5>
 図8は本発明の実施形態5を示している。本実施形態の組合せスプリングS5は上記した実施形態4と類似した形態となっている。相違する点は、実施形態5では、インナスプリングI5を第1及び第2のインナスプリングI5-A,I5-Bに分割し、全体として3つの部材によって構成されている。また、実施形態4では、インナスプリングI4の両座巻部SI4は共にアウタスプリングO4側と同じ巻き方向で密着巻きしたが、実施形態5では第2のインナスプリングI5-Bは座巻部のみによって形成され、かつアウタスプリングO5側とは逆の巻き方向としてある。また、第1のインナスプリングI5-Aの上端は、第2のインナスプリングI5-Bの下端と当接するようにしてある。
<Embodiment 5>
FIG. 8 shows Embodiment 5 of the present invention. The combination spring S5 of the present embodiment has a form similar to that of the fourth embodiment described above. The difference is that, in the fifth embodiment, the inner spring I5 is divided into first and second inner springs I5-A and I5-B, and is constituted by three members as a whole. In the fourth embodiment, both the end wound portions SI4 of the inner spring I4 are tightly wound in the same winding direction as the outer spring O4 side. However, in the fifth embodiment, the second inner spring I5-B is formed only by the end wound portion. The winding direction is opposite to the outer spring O5 side. The upper end of the first inner spring I5-A is in contact with the lower end of the second inner spring I5-B.
 このように構成された実施形態5においても、他の実施形態と同様の作用効果を発揮することができる。なお、第2のインナスプリングI5-Bは第1のインナスプリングI5-Aの素線径と同一の設定としても、あるいは異なる設定としてもよい。 Also in the fifth embodiment configured as described above, the same operational effects as those of the other embodiments can be exhibited. The second inner spring I5-B may have the same setting as the wire diameter of the first inner spring I5-A or a different setting.
 <実施形態6>
 図9は本発明の実施形態6を示している。本実施形態の組合せスプリングS6も上記した実施形態5と同様、インナスプリングI6を第1、第2のインナスプリングI6-A,I6-Bに分割した形態となっている。しかし、実施形態5では第2のインナスプリングI5-Bは座巻部のみによって形成され有効巻部を有さない形態であったが、本実施形態では第1、第2のインナスプリングI6-A,I6-B共に有効巻部及び座巻部SI6-A,SI6-Bを有し、それぞれ軸方向の長さ寸法がほぼ等しく形成されている。また、第1及び第2のインナスプリングI6-A,I6-Bは共にアウタスプリングO6と巻き方向が同一としてある。また、アウタスプリングO6-Aと両インナスプリングI6-A,I6-Bは全て線径が異なっており、さらに、両インナスプリングI6-A,I6-Bの有効巻き部同士が突き当てられる端面相互は、軸線とほぼ直交する平面を構成しつつ突き当てがなされるよう、相互に平坦な研削面が形成されている。
<Embodiment 6>
FIG. 9 shows Embodiment 6 of the present invention. Similarly to the fifth embodiment described above, the combination spring S6 of the present embodiment also has a configuration in which the inner spring I6 is divided into first and second inner springs I6-A and I6-B. However, in the fifth embodiment, the second inner spring I5-B is formed only by the end winding portion and does not have the effective winding portion. However, in the present embodiment, the first and second inner springs I6-A are formed. , I6-B both have an effective winding portion and end winding portions SI6-A, SI6-B, and the lengths in the axial direction are substantially equal. The first and second inner springs I6-A and I6-B are both wound in the same winding direction as the outer spring O6. Also, the outer spring O6-A and the inner springs I6-A, I6-B all have different wire diameters, and the end surfaces of the inner springs I6-A, I6-B are in contact with each other. Are formed with mutually flat ground surfaces so that they are abutted while forming a plane substantially perpendicular to the axis.
 他の構成は、実施形態5と同様であり、もって他の実施形態と同様の作用効果を発揮することができる。 Other configurations are the same as those of the fifth embodiment, so that the same effects as those of the other embodiments can be exhibited.
 <実施形態7>
 図10は本発明の実施形態7を示している。本実施形態の組合せスプリングS7は、インナスプリングI7の軸方向の一端側(図示下端側)において、アウタスプリングO7との間に中間スプリングMを介在させたものである。本実施形態でのアウタスプリングO7は全長に亘って同一径の円筒形状に形成されている。インナスプリングI7の他端側(図示上端側)には小径の座巻部SI7が形成されてアウタスプリングO7の座巻部SO7に締め込まれている。インナスプリングI7の一端側は、他端側の座巻部SI7の外径よりも小径に形成された絞り座巻部SI7´が形成されている。この絞り座巻部SI7´の外周面とアウタスプリングO7側の内周面との間には、この間の隙間寸法(L1)よりやや大径の素線径(Md)をもった中間スプリングMが圧入気味にして介在されている。絞り座巻部SI7´はインナスプリングI7の一端側及びアウタスプリングO7の一端側の座巻部SO7に対してそれぞれ締め代が設定されている。
<Embodiment 7>
FIG. 10 shows Embodiment 7 of the present invention. The combination spring S7 of the present embodiment has an intermediate spring M interposed between the inner spring I7 and the outer spring O7 on one end side (the lower end side in the drawing) of the inner spring I7. The outer spring O7 in this embodiment is formed in a cylindrical shape having the same diameter over the entire length. A small-diameter end wound portion SI7 is formed on the other end side (the upper end side in the drawing) of the inner spring I7, and is fastened to the end turn portion SO7 of the outer spring O7. One end side of the inner spring I7 is formed with a throttle end wound part SI7 'formed to have a smaller diameter than the outer diameter of the end wound part SI7 on the other end side. An intermediate spring M having an element wire diameter (Md) slightly larger than the gap dimension (L1) between the outer peripheral surface of the restrictor winding portion SI7 ′ and the inner peripheral surface on the outer spring O7 side is provided. It is inserted with a press fit. Tightening margins are set for the narrow end winding part SI7 'with respect to the end winding part SO7 on one end side of the inner spring I7 and one end side of the outer spring O7.
 他の構成は他の実施形態と同様であり、もって同様の作用効果を発揮することができる。 Other configurations are the same as those in the other embodiments, and the same operational effects can be exhibited.
 <実施形態8>
 図11は本発明の実施形態8を示している。本実施形態の組合せスプリングS8は、インナスプリングI8の両端部にそれぞればね受け部材4を組み込んだものである。両ばね受け部材4は金属製であり、アウタスプリングO8の両座巻部SO8の端面に当接するベースプレート部4Aを有する。このベースプレート部4AはアウタスプリングO8の座巻部SO8の外径とほぼ同径に形成されている。ベースプレート4Aの内面側には同心で円板状の段部4Bが突出形成されている。段部4Bの外径は、アウタスプリングO8の座巻部SO8の内径より大きめに形成され、これがアウタスプリングO8に対する締め代となっている。段部4Bの内面側には軸部4Cが同心で突出形成されている。インナスプリングI8の両端部は径が絞ってあり、インナスプリングI8全体は樽型形状に形成されている。軸部4Cは、インナスプリングI8の両端部へ圧入されている。つまり、軸部4Cの外径はインナスプリングI8の両端部の内径よりやや大きめに形成され、これがインナスプリングI8に対する締め代となっている。
<Embodiment 8>
FIG. 11 shows an eighth embodiment of the present invention. The combination spring S8 of the present embodiment is obtained by incorporating the spring receiving members 4 at both ends of the inner spring I8. Both spring receiving members 4 are made of metal and have a base plate portion 4A that abuts against the end surfaces of both end wound portions SO8 of the outer spring O8. The base plate portion 4A is formed to have substantially the same diameter as the outer diameter of the end winding portion SO8 of the outer spring O8. A concentric disc-shaped step 4B is formed on the inner surface side of the base plate 4A so as to protrude. The outer diameter of the stepped portion 4B is formed to be larger than the inner diameter of the end winding portion SO8 of the outer spring O8, which serves as a tightening allowance for the outer spring O8. A shaft portion 4C is formed concentrically on the inner surface side of the step portion 4B. Both ends of the inner spring I8 have a reduced diameter, and the entire inner spring I8 is formed in a barrel shape. The shaft portion 4C is press-fitted into both end portions of the inner spring I8. That is, the outer diameter of the shaft portion 4C is formed to be slightly larger than the inner diameters of both end portions of the inner spring I8, and this is an allowance for the inner spring I8.
 他の構成は、他の実施形態と同様であり、もって同様の作用効果を発揮することができる。 Other configurations are the same as those of the other embodiments, and the same operational effects can be exhibited.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
 (1)何れの実施形態においても、インナスプリングの素線径はアウタスプリング側の素線径よりも小さくなっていたが、同径あるいは逆に大きく設定してもよい。 (1) In any of the embodiments, the wire diameter of the inner spring is smaller than the wire diameter on the outer spring side, but it may be set to the same diameter or vice versa.
 (2)また、インナスプリングとアウタスプリングの材質は、同材質でも異なるものであってもよい。 (2) The material of the inner spring and the outer spring may be the same or different.
 (3)図7に示す実施形態4では、インナスプリングI4の両座巻部SI4は共に密着巻きによって形成したが、片側のみを密着巻きにしたものであってもよい。また、密着巻きに代えて、密着にまでは至らないが有効巻き部よりはピッチの狭い程度のピッチとして不等ピッチで座巻部を形成してもよい。その場合の座巻部も片側だけに配置した形態とすることも可能である。 (3) In the fourth embodiment shown in FIG. 7, both end wound portions SI4 of the inner spring I4 are formed by close winding, but may be formed by close winding only on one side. Further, in place of the tight winding, the end winding portions may be formed at an unequal pitch as a pitch that is narrower than the effective winding portion but does not reach the tight winding. In that case, it is also possible to adopt a form in which the end winding portion is arranged only on one side.
 (4)図10に示した実施形態7では、片側端部にのみ中間スプリングMを介在したが、両端部に配するようにしてもよい。 (4) In the seventh embodiment shown in FIG. 10, the intermediate spring M is interposed only at one end, but it may be disposed at both ends.
 (5)図11で示した実施形態8では、ばね受け部材を金属製としたが、合成樹脂製であってもよい。もっとも、ばねを受けることさえできれば良いのであって、材質は特に問わない。 (5) In the eighth embodiment shown in FIG. 11, the spring receiving member is made of metal, but may be made of synthetic resin. However, it is only necessary to receive the spring, and the material is not particularly limited.
 S1~S8…組合せスプリング
 O1~O8…アウタスプリング
 I1~I8…インナスプリング
 SO1~SO8…座巻部
 SI1~SI8…座巻部
S1 to S8 ... combination springs O1 to O8 ... outer springs I1 to I8 ... inner springs SO1 to SO8 ... end winding parts SI1 to SI8 ... end winding parts

Claims (10)

  1. 圧縮コイルばねにより形成されたアウタスプリングと、
     圧縮コイルばねにより形成され、前記アウタスプリングの内側へほぼ同軸で挿通された少なくとも一つ以上のインナスプリングとを備えた組合せスプリングであって、
     前記インナスプリングと前記アウタスプリングとの有効巻線部は共に同一巻き方向に設定され、
     かつインナスプリングとアウタスプリングが組み合わされた後の自然状態にあるときに、前記インナスプリングにおける前記有効巻線部の素線の位置が、前記組合せスプリングの軸線方向に関しては、前記アウタスプリングの素線間にピッチずれして位置し、かつ組合せスプリングの径方向に関しては、その外周縁が前記アウタスプリングの素線内周縁よりも径方向外側へ張り出して位置している組合せスプリング。
    An outer spring formed by a compression coil spring;
    A combination spring comprising at least one inner spring formed by a compression coil spring and inserted substantially coaxially into the outer spring;
    The effective winding portions of the inner spring and the outer spring are both set in the same winding direction,
    In addition, when the inner spring and the outer spring are in a natural state after being combined, the position of the strand of the effective winding portion in the inner spring is determined with respect to the axial direction of the combined spring. A combination spring that is positioned with a pitch deviation therebetween and that has an outer peripheral edge that protrudes radially outward from an inner peripheral edge of the outer spring with respect to the radial direction of the combination spring.
  2. 前記アウタスプリング及び前記インナスプリングにおける軸線方向の少なくとも一方の端部には座巻部が設けられ、この座巻部には前記インナスプリング側の座巻部が前記アウタスプリングに対して圧入されて、前記アウタスプリングと前記インナスプリングとの連結がなされている請求項1に記載の組合せスプリング。 At least one end of the outer spring and the inner spring in the axial direction is provided with an end winding portion, and the end winding portion on the inner spring side is press-fitted into the outer spring to the end winding portion, The combination spring according to claim 1, wherein the outer spring and the inner spring are connected.
  3. 前記アウタスプリング及び前記インナスプリングにおける軸線方向の少なくとも一方の端部には座巻部が設けられ、前記インナスプリングの座巻部と前記アウタスプリングとの間には、中間スプリングが軸線方向から圧入されることによって、前記アウタスプリングと前記インナスプリングとの連結がなされている請求項1に記載の組合せスプリング。 An end spring is provided at at least one end of the outer spring and the inner spring in the axial direction, and an intermediate spring is press-fitted in the axial direction between the end winding of the inner spring and the outer spring. The combined spring according to claim 1, wherein the outer spring and the inner spring are connected to each other.
  4. 前記アウタスプリング及び前記インナスプリングにおける軸線方向の少なくとも一端側には、ばね受け部材が前記組合せスプリングの軸線方向から組み付けられ、かつ、
     このばね受け部材は、前記アウタスプリングの座巻部に対し軸線方向外側から当接する円板状のベースプレート部と、
     このベースプレート部の内面側から同心で突出し前記アウタスプリングの座巻部に圧入されることで前記アウタスプリングと連結可能な段部と、
     この段部の内面には同心で突出し前記インナスプリングの軸線方向端部に圧入されることで前記インナスプリングと連結可能な軸部とから形成されている請求項1に記載の組合せスプリング。
    On at least one end side in the axial direction of the outer spring and the inner spring, a spring receiving member is assembled from the axial direction of the combination spring, and
    The spring receiving member includes a disc-shaped base plate portion that comes into contact with the end winding portion of the outer spring from the outside in the axial direction;
    A stepped portion that can be connected to the outer spring by projecting concentrically from the inner surface side of the base plate portion and being press-fitted into the end winding portion of the outer spring,
    The combined spring according to claim 1, wherein the stepped portion is formed from a shaft portion concentrically protruding from a shaft portion that can be connected to the inner spring by being press-fitted into an axial end portion of the inner spring.
  5. 前記アウタスプリング及びインナスプリングの圧縮動作の過程で、前記両スプリングの有効巻線部では、前記アウタスプリングの素線間に前記インナスプリングの素線の外周寄りの部分を接触状態で挟み込んだ擬似密着状態となり、この状態から、さらに圧縮力が加えられたときに、少なくとも前記アウタスプリングが拡径方向へ変形することで、あるいは少なくともインナスプリングが縮径方向へ変形することで、前記アウタスプリングは前記擬似密着状態を超えてさらに圧縮変形が可能となっている請求項1に記載の組合せスプリング。 In the process of compressing the outer spring and the inner spring, in the effective winding portion of the two springs, a pseudo close contact is made in such a manner that a portion near the outer periphery of the inner spring strand is sandwiched between the outer spring strands. From this state, when further compressive force is applied, at least the outer spring is deformed in the diameter increasing direction, or at least the inner spring is deformed in the diameter reducing direction, the outer spring is The combined spring according to claim 1, further capable of being compressed and deformed beyond the pseudo close contact state.
  6. 前記インナスプリングは、前記アウタスプリングより軸線方向の長さが短く形成されるとともに、前記アウタスプリングに対し軸線方向の中間部に配置され、かつ軸線方向両端部に形成された座巻部が前記アウタスプリングに圧入されることで、前記インナスプリングと前記アウタスプリングとが連結可能となっている請求項1又は請求項5に記載の組合せスプリング。 The inner spring has an axial length shorter than that of the outer spring, and is disposed at an intermediate portion in the axial direction with respect to the outer spring, and end winding portions formed at both ends in the axial direction have the outer spring. The combination spring according to claim 1 or 5, wherein the inner spring and the outer spring are connectable by being press-fitted into the spring.
  7. 前記インナスプリングは、軸線方向に関して二分割されている請求項5に記載の組合せスプリング。 The combined spring according to claim 5, wherein the inner spring is divided into two parts in the axial direction.
  8. 二分割された前記インナスプリングの分割面は、前記組合せスプリングの軸線方向とほぼ直交する平面に形成されて相互に当接している請求項7に記載の組合せスプリング。 The combined spring according to claim 7, wherein the split surfaces of the inner spring divided into two are formed in a plane substantially perpendicular to the axial direction of the combined spring and are in contact with each other.
  9. 圧縮コイルばねにより形成されたアウタスプリングと、
     圧縮コイルばねにより形成され、前記アウタスプリングの内側へほぼ同軸で挿通された少なくとも一つ以上のインナスプリングとを備えた組合せスプリングであって、
     前記インナスプリングと前記アウタスプリングとの有効巻線部は共に同一巻き方向に設定され、
     かつインナスプリングとアウタスプリングが組み合わされた後の自然状態にあるときに、前記インナスプリングにおける前記有効巻線部の素線の位置が、前記組合せスプリングの軸線方向に関しては、前記アウタスプリングの素線間にピッチずれして位置し、かつ組合せスプリングの径方向に関しては、その外周縁が前記アウタスプリングの素線内周縁よりも径方向外側へ張り出して位置し、
     かつ前記インナスプリングは、軸線方向に関して二分割されている組合せスプリング。
    An outer spring formed by a compression coil spring;
    A combination spring comprising at least one inner spring formed by a compression coil spring and inserted substantially coaxially into the outer spring;
    The effective winding portions of the inner spring and the outer spring are both set in the same winding direction,
    In addition, when the inner spring and the outer spring are in a natural state after being combined, the position of the strand of the effective winding portion in the inner spring is determined with respect to the axial direction of the combined spring. The outer peripheral edge of the combined spring is positioned so as to protrude radially outward from the inner peripheral edge of the outer spring with respect to the radial direction of the combination spring.
    The inner spring is a combination spring that is divided into two in the axial direction.
  10. 二分割された前記インナスプリングの一方は、前記アウタスプリングの一端側に形成された座巻部へ圧入される座巻部のみによって形成されるとともに、この座巻部の素線の巻き線方向は前記アウタスプリングの巻き線方向と逆向きである請求項7,8又は9のいずれかに記載の組合せスプリング。 One of the two divided inner springs is formed only by the end winding portion that is press-fitted into the end winding portion formed on one end side of the outer spring, and the winding direction of the strand of the end winding portion is The combined spring according to claim 7, wherein the combined spring is in a direction opposite to a winding direction of the outer spring.
PCT/JP2009/066912 2008-10-01 2009-09-29 Compound spring WO2010038723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-256888 2008-10-01
JP2008256888A JP2010084912A (en) 2008-10-01 2008-10-01 Combination spring

Publications (1)

Publication Number Publication Date
WO2010038723A1 true WO2010038723A1 (en) 2010-04-08

Family

ID=42073484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066912 WO2010038723A1 (en) 2008-10-01 2009-09-29 Compound spring

Country Status (2)

Country Link
JP (1) JP2010084912A (en)
WO (1) WO2010038723A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2397576A1 (en) * 2010-08-19 2013-03-08 Fº JAVIER PORRAS VILA Concentric oil springs. (Machine-translation by Google Translate, not legally binding)
ES2408105R1 (en) * 2011-07-15 2013-06-24 Vila Fco Javier Porras MATRIUSKOS ANTISEISM SPRINGS, POTENTIATED
DE102022131026A1 (en) 2022-11-23 2024-05-23 Schaeffler Technologies AG & Co. KG Torsional vibration damper for a motor vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9375795B2 (en) * 2013-03-14 2016-06-28 Robert Bosch Gmbh Reciprocating tool with biasing snubber
CN103462564B (en) * 2013-09-17 2015-12-09 镇江市华银仪表电器有限公司 A kind of dust catcher gold stretches pipe inside spring wire
JP6503639B2 (en) * 2014-05-16 2019-04-24 沖電気工業株式会社 Cash handling equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143934U (en) * 1984-03-05 1985-09-24 株式会社 大金製作所 Damper disk torsion spring device
JPS6323037A (en) * 1986-07-15 1988-01-30 Nhk Spring Co Ltd Joint structure of coil spring
JPH08240244A (en) * 1995-02-03 1996-09-17 Luk Lamellen & Kupplungsbau Gmbh Rotational vibration damper
JPH11311296A (en) * 1998-03-07 1999-11-09 Luk Lamellen & Kupplungsbau Gmbh Rotary vibration damper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143934U (en) * 1984-03-05 1985-09-24 株式会社 大金製作所 Damper disk torsion spring device
JPS6323037A (en) * 1986-07-15 1988-01-30 Nhk Spring Co Ltd Joint structure of coil spring
JPH08240244A (en) * 1995-02-03 1996-09-17 Luk Lamellen & Kupplungsbau Gmbh Rotational vibration damper
JPH11311296A (en) * 1998-03-07 1999-11-09 Luk Lamellen & Kupplungsbau Gmbh Rotary vibration damper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2397576A1 (en) * 2010-08-19 2013-03-08 Fº JAVIER PORRAS VILA Concentric oil springs. (Machine-translation by Google Translate, not legally binding)
ES2408105R1 (en) * 2011-07-15 2013-06-24 Vila Fco Javier Porras MATRIUSKOS ANTISEISM SPRINGS, POTENTIATED
DE102022131026A1 (en) 2022-11-23 2024-05-23 Schaeffler Technologies AG & Co. KG Torsional vibration damper for a motor vehicle

Also Published As

Publication number Publication date
JP2010084912A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
WO2010038723A1 (en) Compound spring
US8771088B2 (en) Damper device
JP5229835B2 (en) Spring structure
JP5268261B2 (en) Coil spring
JP5064138B2 (en) Valve spring device and valve operating mechanism of engine using the same
JPH11311296A (en) Rotary vibration damper
CN104471301B (en) flexible pipeline device
RU167641U1 (en) VIBRATION EXTINGUISHER ASSEMBLY FOR INTERNAL COMBUSTION ENGINE
JP5590119B2 (en) Damper device
JP2011033119A (en) Coil spring
US1905498A (en) Valve spring
JP2021028542A (en) Coil spring assembly
WO2016157881A1 (en) Spring sheet member and spring assembly
JP2007315356A (en) Valve gear for internal combustion engine
WO2017221502A1 (en) Airflow control valve structure
US20180010662A1 (en) Spring end cap with improved retention
JP4730225B2 (en) Damper device
JPS6319644Y2 (en)
JP2007016900A (en) Shock absorber
JP7091636B2 (en) Valve spring
JP5827637B2 (en) Coil spring
JPH027320Y2 (en)
JPH09203487A (en) Exhaust pipe joint
JP2018178845A (en) Valve spring and internal combustion engine
JP2019094782A (en) Internal combustion engine and saddle type vehicle including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817755

Country of ref document: EP

Kind code of ref document: A1