WO2010038510A1 - 表示装置、及びタッチパネル - Google Patents

表示装置、及びタッチパネル Download PDF

Info

Publication number
WO2010038510A1
WO2010038510A1 PCT/JP2009/060198 JP2009060198W WO2010038510A1 WO 2010038510 A1 WO2010038510 A1 WO 2010038510A1 JP 2009060198 W JP2009060198 W JP 2009060198W WO 2010038510 A1 WO2010038510 A1 WO 2010038510A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
substrate
optical sensor
semi
Prior art date
Application number
PCT/JP2009/060198
Other languages
English (en)
French (fr)
Inventor
敏弘 牛田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010038510A1 publication Critical patent/WO2010038510A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/0035User-machine interface; Control console
    • H04N1/00405Output means
    • H04N1/00408Display of information to the user, e.g. menus
    • H04N1/00411Display of information to the user, e.g. menus the display also being used for user input, e.g. touch screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback

Definitions

  • the present invention relates to a display device provided with an optical sensor and a touch panel.
  • display devices equipped with optical sensors have been developed.
  • these display devices can be provided with an input function, a backlight dimming function, or a security function such as fingerprint authentication.
  • S / N ratio it is necessary to increase the size of the light receiving portion of the optical sensor or increase the amount of light incident on the light receiving portion.
  • the method of increasing the size of the light receiving unit has a problem in that the light transmittance of the display device is reduced.
  • a method of increasing the amount of light incident on the light receiving portion of the optical sensor such as the liquid crystal display device described in Patent Document 1, is adopted as a more preferable one.
  • a light-transmitting substrate provided with a microlens is further bonded to the outer surface of the array substrate, and incident light is applied to the light receiving portion of the optical sensor.
  • the sensitivity of the optical sensor is improved by condensing light.
  • the configuration of the above conventional liquid crystal display device has a problem that the thickness of the liquid crystal panel increases by the thickness of the translucent substrate provided with the microlens, and it is difficult to reduce the thickness of the device.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve the sensitivity of a photosensor without substantially changing the thickness of the display device or touch panel provided with the photosensor. Is to provide.
  • a display device is a light-transmitting substrate, light disposed between the light-transmitting substrate and the optical sensor, and light incident through the light-transmitting substrate. And a light condensing means for condensing the light on the optical sensor.
  • a display device includes a light-transmitting substrate, a substrate facing the light-transmitting substrate, a photosensor disposed between the substrates, and the light-transmitting property.
  • a light condensing unit disposed between the substrate and the optical sensor, and condensing the light incident through the translucent substrate on the optical sensor, and a liquid crystal layer disposed between the substrates. It is characterized by that.
  • a touch panel according to the present invention is arranged between a light-transmitting substrate and the light-transmitting substrate and the optical sensor, and receives light incident through the light-transmitting substrate. And condensing means for condensing light on the optical sensor.
  • the optical sensor can be formed without substantially changing the thickness of the display device, the liquid crystal display device, and the touch panel device. There is an effect that sensitivity can be improved.
  • the display device and the touch panel according to the present invention are provided with the light collecting means between the light-transmitting substrate and the optical sensor, so that the sensitivity of the optical sensor is improved without substantially changing the thickness of the device. There is an effect that can be realized.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a main part of a display device according to an embodiment of the present invention. It is a figure explaining the function of the semiconvex lens in the display apparatus shown in FIG. The other embodiment of this invention is shown and it is sectional drawing which shows the principal part structure of a display apparatus. It is sectional drawing which shows the principal part structure of the conventional liquid crystal display device provided with the optical sensor.
  • the display device 1 is configured as a liquid crystal display device having a touch panel function that detects that a light-shielding object 31 such as a finger or a touch pen is in contact with or approaching the display surface. ing.
  • FIG. 1 is a cross-sectional view showing a main configuration of the display device 1.
  • the display device 1 includes a TFT side substrate 12, a liquid crystal layer 16, a color filter side substrate (hereinafter referred to as “CF side substrate”) 11, a backlight unit (illumination). Device) 22 and a liquid crystal display device.
  • the TFT side substrate 12 and the CF side substrate 11 are both translucent glass substrates, and are disposed so as to face each other with the liquid crystal layer 16 interposed therebetween.
  • the backlight unit 22 is disposed so as to face the surface opposite to the surface facing the CF side substrate 11 of the TFT side substrate 12.
  • the surface on which the TFT side substrate 12 and the CF side substrate 11 face each other is referred to as an inner surface, and the surface opposite to the inner surface is referred to as an outer surface.
  • an optical sensor 20 is provided on the inner side surface of the TFT side substrate 12.
  • the optical sensor 20 is, for example, a pin-type photodiode, and includes a p + layer, an i layer (low-concentration semiconductor layer), and an n + layer (each layer is not shown).
  • the optical sensor 20 is a photoelectric conversion element, and generates a current (photocurrent) corresponding to the intensity of light incident on the i layer. That is, in the optical sensor 20, the i layer functions as a light receiving unit. On the side of the optical sensor 20 facing the backlight unit 22, a light shielding film 21 formed so as to cover at least the i layer with the insulating film layer 23 interposed therebetween is provided. Therefore, the backlight emitted from the backlight unit 22 is not directly incident on the optical sensor 20.
  • an interlayer insulating film 19, an organic film 18, and a pixel electrode 17 are provided in this order on the optical sensor 20 on the inner surface of the TFT side substrate 12.
  • the TFT side substrate 12 is provided with a TFT (Thin Film Transistor) for controlling driving of each pixel and a storage unit, and the storage unit is connected to the pixel electrode 17.
  • the optical sensor 20 is provided separately from these pixel drive circuits, and is arranged at a ratio of one for a plurality of pixels (for example, around 10 pixels).
  • the photocurrent generated in the optical sensor 20 is charged in a sensor storage unit (not shown), and the voltage is applied to a sensor TFT (not shown) to take out the output to the outside. This output signal is detected and fed back by the recognition circuit. For example, when the touch panel type input button displayed on the outer surface of the CF side substrate 11 is touched with a finger, the next screen corresponding to the input is displayed.
  • the photosensors are arranged more densely (for example, each pixel It is preferable to increase the resolution).
  • a color filter 13, a semi-convex lens (condensing means) 14, and a transparent electrode 15 are formed in this order on the inner surface of the CF side substrate 11. That is, the semi-convex lens 14 is disposed between the CF side substrate 11 and the optical sensor 20, and condenses the light incident through the CF side substrate 11 on the optical sensor 20.
  • the semi-convex lens 14 is provided so as to protrude toward the liquid crystal layer 16 side.
  • the semi-convex lens 14 may be formed on the optical path of the incident light incident on the light receiving portion of the optical sensor 20 from the outside of the display device 1, but is preferably formed directly on the light receiving portion. More precisely, the semi-convex lens 14 is preferably formed such that its center of curvature is located on a straight line that passes through the center of the light receiving portion of the optical sensor 20 and is orthogonal to the CF side substrate 11. Further, from the viewpoint of improving the light collection efficiency and facilitating the alignment between the semi-convex lens 14 and the optical sensor 20, when viewed from the light incident side (the outer surface side of the CF side substrate 11), The convex lens 14 is preferably formed larger than the light receiving portion of the corresponding optical sensor 20.
  • FIG. 1 shows a cross section of a part of the display device 1 including one photosensor 20, but a plurality of photosensors (for example, in a matrix) are disposed on the TFT side substrate 12.
  • a plurality of semi-convex lenses 14 corresponding to each of the plurality of photosensors are formed on the CF side substrate 11.
  • the method of forming the semi-convex lens 14 is not particularly limited, and for example, any one of the following methods may be employed.
  • a thin layer made of a translucent resin is formed on the color filter 13, and the thin layer of the resin is left only at a place where the semi-convex lens 14 is formed by a photoetching method.
  • the resin is cured into a lens shape by heat treatment and then cured.
  • a translucent and thermosetting resin material is sprayed onto the color filter 13 by an ink jet method to form fine resin dots, and then cured by heat treatment.
  • An arrangement pattern of the semi-convex lens 14 is formed on the roller surface, a translucent resin material is attached to the roller surface, and the resin pattern is transferred by rolling on the color filter 13.
  • the resin is formed into a lens shape by heat treatment and then cured.
  • a semi-convex lens may be formed on the glass substrate by any one of the above methods 1) to 3).
  • a glass substrate having a convex portion corresponding to the semi-convex lens 14 formed on one surface may be used as the CF side substrate.
  • Such a glass substrate can be manufactured by a known glass processing method.
  • the method of providing the transparent electrode 15 so as to cover the convex surface of the semi-convex lens 14 is not particularly limited.
  • a conductive film having transparency such as ITO (indium tin oxide) may be formed by sputtering or the like. That's fine.
  • FIG. 2 is a schematic explanatory diagram showing a state in which a light-shielding object 31 such as a finger or a touch pen is close to or in contact with the display device 1 shown in FIG.
  • the object 31 is close to or in contact with the outer surface of the CF side substrate 11 that also functions as a sensor surface of the touch panel.
  • the backlight emitted from the backlight unit 22 sequentially passes through the TFT side substrate 12, the liquid crystal layer 16, and the CF side substrate 11, and partially reaches the object 31.
  • the backlight that has reached the object 31 is incident on the CF-side substrate 11 again as reflected light from the object 31.
  • a part of the reflected light enters the semi-convex lens 14 and is condensed on the light receiving portion of the optical sensor 20. For this reason, more reflected light is incident on the optical sensor 20.
  • FIG. 2 is a schematic explanatory diagram showing a configuration in which the semi-convex lens 14 is not provided, and is shown as a reference example.
  • the semi-convex lens 14 since the semi-convex lens 14 is not provided, the amount of reflected light incident on the light receiving portion of the photosensor is relatively small as compared with the case of (a) in FIG.
  • the display device 1 also functions as a touch panel that recognizes the object 31 by detecting a photocurrent when light enters the light receiving portion of the photosensor 20.
  • the ratio (S / N ratio) between the total current (bright current) that flows when light is incident on the light receiving portion of the optical sensor 20 and the total current (dark current) that flows when light is not incident is larger. Sensitivity is improved.
  • the semi-convex lens 14 is provided, and the reflected light from the object 31 is condensed on the light receiving portion of the optical sensor 20, thereby increasing the bright current and improving the S / N ratio.
  • liquid crystal display device with a built-in optical sensor in which a microlens (light condensing means) is provided on the outer surface side of the substrate. 12 (specifically, the inner side of the CF side substrate 11).
  • a microlens light condensing means
  • the display device 1 has at least the following advantages 1) to 3) as compared with the conventional configuration. That is, 1) The sensitivity of the optical sensor 20 can be improved without substantially changing the thickness of the apparatus. 2) Even when an impact is applied from the outside, there is a possibility that the condensing means (half-convex lens 14) may be damaged. Low. Therefore, it is difficult to cause a decrease in sensitivity of the optical sensor 20 due to a decrease in light collecting performance. In particular, when used as a touch panel, there is a high possibility that the microlens is damaged by contact with an object in the conventional configuration, but there is no problem in the display device 3) When used as a touch panel, the micro configuration is provided on the sensor surface of the touch panel in the conventional configuration. Sensitivity decreases due to the presence of the lens. On the other hand, in the display device 1, since the sensor surface (the outer surface of the CF side substrate 11) is smooth, the detection sensitivity is good.
  • the display device 1 in which the semi-convex lens 14 is provided on the inner side surface of the CF side substrate 11 is illustrated.
  • the semi-convex lens may be provided on the inner side surface of the TFT side substrate.
  • a configuration in which a semi-convex lens is provided on a substrate on which light to be detected enters (CF-side substrate 11) as in the display device 1 is preferable from the viewpoint of improving the light collection efficiency.
  • the display device 1 including the backlight unit 22 is illustrated as an illumination device for display and detection of the object 31, but the display device according to the present invention is for display and / or detection of the object 31. It is good also as a structure which uses natural light and other external lights for illumination.
  • a liquid crystal display device is exemplified as the display device 1, but the display device according to the present invention may be, for example, an organic electroluminescence display device, a plasma display device, or the like.
  • the substrate on which the light condensed on the photosensor is incident may be different from the substrate on which the current generated according to the incident light is propagated.
  • the substrate constituting the sensor surface and the substrate constituting the image display surface may be different.
  • the image displayed on the display surface may be an image of the object itself that is close to or close to the sensor surface.
  • the semi-convex lens 14 is used as the light collecting means.
  • a light collecting film, a multiple reflection film, or the like may be used as the light collecting means.
  • the semi-convex lens 14 can be made of a resin material that selectively transmits only light of a specific wavelength, and the semi-convex lens can be provided with a filter function for condensing only light having a wavelength at which the sensor sensitivity is most enhanced. .
  • the color resin at a specific location is made thicker than the color resin at other locations, and the thick portion has the function of a semi-convex lens. May be. According to this configuration, since a part of the color filter can be used as the light collecting means, it is not necessary to separately provide the light collecting means.
  • This configuration can be formed by a combination of a photolithography process and a development process, as in a normal color filter pattern, by appropriately changing the photolithography pattern.
  • the display device 1 having a touch panel function has been exemplified, but the present invention can also be applied to a touch panel having no display function.
  • the touch panel is disposed between the light-transmitting substrate, the light sensor, and the light-transmitting substrate and the light sensor, and condenses the light incident through the light-transmitting substrate on the light sensor.
  • the object is in contact with or close to the surface (outer surface) of the translucent substrate opposite to the side on which the optical sensor and the light collecting means are disposed. It is a touch panel sensor for sensing.
  • FIG. 3 is a cross-sectional view illustrating a main configuration of the display device 101 according to the present embodiment.
  • the semi-convex lens 14 is provided on the CF side substrate 11 and the optical sensor 20 is provided on the TFT side substrate 12 (see FIG. 1).
  • Means) 14 ′ and the optical sensor 20 are both provided on the TFT side substrate 12.
  • the color filter 13 and the transparent electrode 15 ' are formed in this order on the inner surface of the CF side substrate 11.
  • an interlayer insulating film 19 and an organic film 18 are provided in this order on the optical sensor 20 having the light shielding film 21.
  • a semi-convex lens 14 ′ is provided on the organic film 18, and a pixel electrode 17 ′ is provided so as to cover the semi-convex lens 14 ′.
  • the semi-convex lens 14 ′ is disposed between the CF side substrate (translucent substrate) 11 and the optical sensor 20 and is incident through the CF side substrate 11. It functions as a condensing means for condensing the light to the optical sensor 20.
  • the semi-convex lens 14 ′ is provided so as to protrude toward the liquid crystal layer 16.
  • the semi-convex lens 14 ′ may be formed on the optical path of the incident light incident on the light receiving portion of the optical sensor 20 from the outside of the display device 101, but is preferably formed immediately above the light receiving portion. More precisely, the semi-convex lens 14 ′ is preferably formed so that the center of curvature is located on a straight line that passes through the center of the light receiving portion of the optical sensor 20 and is orthogonal to the CF side substrate 11. Further, from the viewpoint of improving the light collection efficiency, the semi-convex lens 14 ′ is formed larger than the light receiving part of the corresponding optical sensor 20 when viewed from the light incident side (the outer surface side of the CF side substrate 11). Preferably it is.
  • the opposing substrates TFT side substrate 12 and CF side substrate 11
  • FIG. 3 shows a cross section of a part of the display device 101 including one optical sensor 20.
  • the TFT side substrate 12 corresponds to each of the plurality of optical sensors 20 and each of the plurality of optical sensors 20.
  • the formation of the semi-convex lens 14 ′ can be performed with reference to the method for forming the semi-convex lens 14 described in the first embodiment. Specifically, for example, a thin layer made of a translucent resin is formed on the organic film 18, and the thin layer of the resin is left only at a place where the semi-convex lens 14 ′ is formed by a photoetching method, and then heated. The resin may be cured after being formed into a lens shape by treatment.
  • the method of providing the pixel electrode 17 ′ so as to cover the convex surface of the semi-convex lens 14 ′ is not particularly limited.
  • a transparent conductive film such as ITO (indium tin oxide) is formed by a sputtering method or the like.
  • a film is formed and patterned into a necessary shape by a photoetching method or the like.
  • the present invention can be suitably used for a touch panel and a display device having a function of detecting an external object.
  • it can be particularly suitably used for a liquid crystal display device having a touch panel function.
  • Display device 11 CF side substrate (translucent substrate) 14
  • Semi-convex lens (condensing means) 14 'semi-convex lens (condensing means)
  • TFT side substrate (opposite substrate) 16
  • Liquid crystal layer 20
  • Optical sensor 101 Display device

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 光センサを備えた表示装置において、当該装置の厚みを実質的に変えることなく光センサの検出感度を向上させるために、表示装置(1)では、CF側基板(11)と光センサ(20)との間に、CF側基板(11)から入射した光を光センサ(20)に集光する半凸レンズ(14)が設けられる。

Description

表示装置、及びタッチパネル
 本発明は、光センサを備えた表示装置、及びタッチパネルに関する。
 近年、光センサを備えた表示装置が開発されている。光センサを利用して、これらの表示装置に、入力機能、バックライトの調光機能、又は指紋認証などのセキュリティ機能、等をもたせることができる。
 上記の表示装置では、光の入射時に流れる明電流と、光が入射していないときに流れる暗電流との比(S/N比)を大きくして、光センサの感度を向上させることが重要な課題である。S/N比を大きくするためには、光センサの受光部のサイズをより大きくするか、又は受光部への入射光量を増加させる必要がある。このうち、受光部のサイズを大きくする方法は、表示装置の光透過率の低下を招来する問題がある。
 そこで、特許文献1に記載の液晶表示装置等のように、光センサの受光部への入射光量を増加させる方法がより好適なものとして採用されている。具体的には、当該液晶表示装置では、図4に示すように、アレイ基板の外側面上に、マイクロレンズを設けた透光性基板をさらに貼り合せて、入射光を光センサの受光部に集光することで当該光センサの感度向上を図っている。
日本国公開特許公報「特開2005-10228号(2005年1月13日公開)」
 しかしながら、上記従来の液晶表示装置の構成では、マイクロレンズを設けた透光性基板の厚み分だけ液晶パネルの厚みが増し、装置の薄型化が困難になる問題があった。
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、光センサを備えた表示装置又はタッチパネルにおいて、装置の厚みを実質的に変えることなく当該光センサの感度を向上させる構成を提供することにある。
 本発明に係る表示装置は、上記課題を解決するために、透光性の基板と、当該透光性の基板と光センサとの間に配され、透光性の基板を介して入射した光を光センサに集光する集光手段とを含んでなることを特徴としている。
 本発明に係る表示装置は、上記課題を解決するために、透光性の基板と、当該透光性の基板に対向する基板と、これら基板間に配された光センサと、当該透光性の基板と光センサとの間に配され、透光性の基板を介して入射した光を光センサに集光する集光手段と、これら基板間に配された液晶層と、を含んでなることを特徴としている。
 本発明に係るタッチパネルは、上記課題を解決するために、透光性の基板と、当該透光性の基板と光センサとの間に配され、透光性の基板を介して入射した光を光センサに集光する集光手段と、を含んでなることを特徴としている。
 上記の構成によれば、透光性の基板と光センサとの間に集光手段が設けられるので、表示装置、液晶表示装置、及びタッチパネルの装置の厚みを実質的に変えることなく光センサの感度向上が実現できるという効果を奏する。
 本発明の他の目的、特徴、及び優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
 本発明に係る表示装置及びタッチパネルは、以上のように、透光性の基板と光センサとの間に集光手段が設けられるので、装置の厚みを実質的に変えることなく光センサの感度向上が実現できるという効果を奏する。
本発明の一実施形態を示すものであり、表示装置の要部構成を示す断面図である。 図1に示す表示装置における、半凸レンズの機能を説明する図である。 本発明の他の実施形態を示すものであり、表示装置の要部構成を示す断面図である。 光センサを備えた従来の液晶表示装置の要部構成を示す断面図である。
 〔実施の形態1〕
 本発明の一実施形態について、図面に基づいて説明すれば以下のとおりである。
 (表示装置の構成)
 図1および図2に基づいて、まず、本実施形態に係る表示装置1の構成について説明する。本実施形態に係る表示装置1は、以下に説明するように、指やタッチペンなどの遮光性の物体31が表示面に接触又は接近したことを検知する、タッチパネル機能を有する液晶表示装置として構成されている。
 図1は、表示装置1の要部構成を示す断面図である。表示装置1は、概略的に言えば、TFT側基板12と、液晶層16と、カラーフィルタ側基板(以下「CF側基板」と称する:透光性の基板)11と、バックライトユニット(照明装置)22とを含む液晶表示装置として構成されている。ここで、TFT側基板12とCF側基板11とは、いずれも透光性のガラス基板であって、液晶層16を介して互いに対向するように配置されている。また、バックライトユニット22は、TFT側基板12のCF側基板11に対向する面とは反対側の面に対向するように配置されている。
 なお、以下の説明では、TFT側基板12とCF側基板11とが互いに対向する面のことを内側面、当該内側面とは反対側の面のことを外側面と称する。
 図1に示すように、TFT側基板12の内側面には、光センサ20が設けられる。光センサ20は、例えばpin型フォトダイオードであり、p+層、i層(低キャリヤ濃度の半導体層)、および、n+層を含んで構成されている(各層は図示せず)。
 光センサ20は光電変換素子であり、i層に入射した光の強度に応じた電流(光電流)を発生する。すなわち、光センサ20ではi層が受光部として機能する。なお、光センサ20のバックライトユニット22に対向する側には、絶縁膜層23を挟んで、少なくともi層を覆い隠すように形成された遮光膜21が設けられている。したがって、バックライトユニット22から発せられたバックライトが、光センサ20に直接入射されることはない。
 さらに、TFT側基板12の内側面には、光センサ20上に、層間絶縁膜19、有機膜18及び画素電極17がこの順に設けられている。また、TFT側基板12には、図示しないが、各画素の駆動を制御する為のTFT(Thin Film Transistor)及び蓄積部が設けられ、当該蓄積部は画素電極17に接続されている。光センサ20はこれら画素駆動回路とは別に設けられており、複数画素(例えば、10画素前後)に1つの割合で配置される。光センサ20で発生した光電流はセンサ用蓄積部(図示せず)に充電され、その電圧をセンサ用TFT(図示せず)に印加して出力を外部に取り出す。この出力信号は認識回路で検出されフィードバックされる。例えば、CF側基板11の外側面に表示されたタッチパネル式入力ボタンを指で触れると、その入力に対応した次画面が表示される構成である。
 なお、タッチパネルとしてのみ使用する目的であれば、上記の通り全画素に光センサを配置する必要は無いが、さらにスキャナー機能を持たせる場合には光センサの配置をより密にして(例えば各画素に対応して光センサを設ける)解像度を上げることが好ましい。
 また、図1に示したように、CF側基板11の内側面には、カラーフィルタ13、半凸レンズ(集光手段)14、及び透明電極15がこの順に形成されている。すなわち、半凸レンズ14は、CF側基板11と光センサ20との間に配され、CF側基板11を介して入射した光を光センサ20に集光する。なお、半凸レンズ14は液晶層16側に凸出するように設けられている。
 半凸レンズ14は、表示装置1の外部から光センサ20の受光部に入射する入射光の光路上に形成されていればよいが、当該受光部の直上に形成されることが好ましい。より正確に言うと、半凸レンズ14は、光センサ20の受光部の中心を通りCF側基板11に直交する直線上に、その曲率中心が位置するように形成されることが好ましい。また、集光効率の向上の観点、及び半凸レンズ14と光センサ20との位置合わせを容易とする観点では、光の入射側(CF側基板11の外側面側)から見た場合に、半凸レンズ14が、対応する光センサ20の受光部より大きく形成されていることが好ましい。
 なお、図1は、1つの光センサ20を含む表示装置1の一部分の断面を示しているが、TFT側基板12には、複数の光センサが(例えばマトリックス状に)配設されており、また、CF側基板11には、この複数の光センサの各々に対応する複数の半凸レンズ14が形成されている。
 ここで、半凸レンズ14の形成方法は特に限定されないが、例えば、以下の何れかの方法を採用すればよい。
1)透光性の樹脂からなる薄層をカラーフィルタ13上に形成し、フォトエッチング法により半凸レンズ14を形成する箇所にのみ当該樹脂の薄層を残す。次いで、加熱処理により当該樹脂をレンズ状に成形した後に硬化させる。
2)透光性かつ熱硬化性の樹脂材料をインクジェット方式にてカラーフィルタ13上に吹き付けて微小樹脂ドットを形成し、次いで加熱処理により硬化させる。
3)半凸レンズ14の配置パターンをローラ表面に形成し、透光性の樹脂材料を当該ローラ表面に付けてカラーフィルタ13上を転がすことで樹脂パターンを転写する。次いで、加熱処理により当該樹脂をレンズ状に形成した後に硬化させる。
 なお、カラーフィルタ13を設けない構成の場合は、例えば、上記1)~3)の何れかの方法にてガラス基板に対して半凸レンズを形成すればよい。又は、半凸レンズ14に相当する凸部が一表面に形成されたガラス基板をCF側基板として利用すればよい。このようなガラス基板は、公知のガラス加工法により製造できる。
 また、半凸レンズ14の凸面を被覆するように透明電極15を設ける方法は特に限定されず、例えば、ITO(インジウム錫酸化物)等の透明性を有する導電膜を、スパッタリング法等により成膜すればよい。
 (半凸レンズ14の機能)
 次に、表示装置1における、半凸レンズ14の機能について、図2に基づいて説明する。
 図2中の(a)は、図1に示す表示装置1に、指やタッチペン等の遮光性の物体31が近接又は接触した状態を示す概略の説明図である。ここで、物体31は、タッチパネルのセンサ面としても機能するCF側基板11の外側面に、近接又は接触している。
 バックライトユニット22から発せられたバックライトは、順次、TFT側基板12、液晶層16、及びCF側基板11を透過して、一部が物体31に達する。物体31に達したバックライトは、当該物体31からの反射光として再びCF側基板11に入射する。次いで、当該反射光の一部は半凸レンズ14に入射して、光センサ20の受光部に集光される。このため、光センサ20にはより多くの上記反射光が入射される。
 一方、図2中の(b)は、半凸レンズ14が設けられない構成を示す概略の説明図であり、参考例として示す。この参考例では、半凸レンズ14がないために、図2中の(a)の場合と比較して、光センサの受光部に入射される反射光の量が相対的に少なくなる。
 上述の通り表示装置1は、光センサ20の受光部に光が入射すると光電流が流れ、この光電流を検出して物体31を認識するタッチパネルとしても機能する。この場合、光センサ20の受光部に光が入射したときに流れる総電流(明電流)と、光が入射しないときに流れる総電流(暗電流)との比(S/N比)が大きいほど感度が良好となる。表示装置1では、半凸レンズ14を設けて、物体31からの反射光を光センサ20の受光部に集光することで、明電流を大きくしてS/N比を向上させている。
 また、従来、マイクロレンズ(集光手段)を基板の外側面側に設けた光センサ内蔵型の液晶表示装置はあるが、表示装置1では、半凸レンズ14を、CF側基板11とTFT側基板12との間(具体的にはCF側基板11の内側面側)に設ける。
 これにより、表示装置1では、上記従来構成と比較して、少なくとも、次の1)~3)の利点を有する。すなわち、1)装置の厚みを実質的に変えることなく光センサ20の感度を向上させることができる、2)外部から衝撃が加わった場合でも、集光手段(半凸レンズ14)が破損する虞が低い。よって、集光性能の低下による光センサ20の感度低下を招来し難い。特にタッチパネルとして利用する場合、従来構成では物体の接触によりマイクロレンズが破損する虞が高いが、表示装置1ではその問題がない、3)タッチパネルとして利用する場合、従来構成ではタッチパネルのセンサ面にマイクロレンズが存在するため検知感度が落ちる。一方、表示装置1では、センサ面(CF側基板11の外側面)が平滑なため検知感度が良好である。
 以上の説明では、半凸レンズ14をCF側基板11の内側面に設けた表示装置1を例示したが、実施の形態2に例示するように半凸レンズをTFT側基板の内側面側に設けてもよい。ただし、表示装置1のように、検出対象となる光が入射する側の基板(CF側基板11)に半凸レンズを設ける構成の方が、集光効率がより向上するという観点では好ましい。
 以上の説明では、表示用及び物体31の検知用の照明装置としてバックライトユニット22を備えた表示装置1を例示したが、本発明に係る表示装置は、表示用及び/又は物体31の検知用の照明に、自然光その他の外光を用いる構成としてもよい。
 以上の説明では表示装置1として液晶表示装置を例示したが、本発明に係る表示装置は、例えば、有機エレクトロルミネッセンス表示装置、プラズマ表示装置、等であってもよい。また、本発明に係る表示装置では、光センサに集光される光が入射する基板と、入射した光に応じて発生した電流を伝播する基板とが異なっていてもよい。すなわち、センサ面を構成する基板と、画像の表示面を構成する基板とが異なっていてもよい。さらに、表示面に表示される画像が、センサ面に接近又は近接した物体自身の画像であってもよい。
 以上の説明では、集光手段として半凸レンズ14を用いる場合を例示したが、例えば、集光フィルム、多重反射フィルム等を集光手段として用いるものであってもよい。また、特定波長の光のみを選択的に透過する樹脂材料で半凸レンズ14を構成し、センサ感度が最も上昇するような波長の光のみ集光するフィルタ機能を当該半凸レンズに持たせることもできる。
 また、CF側基板に、RGB3色のカラー樹脂によりカラーフィルタパターンを形成する際、特定箇所のカラー樹脂を他の箇所のカラー樹脂より肉厚とし、当該肉厚部分に半凸レンズの機能を持たせてもよい。この構成によれば、カラーフィルタの一部を集光手段として利用できるので、別途、集光手段を設ける必要がない。なお、この構成は、フォトリソグラフィーパターンを適宜変更することにより、通常のカラーフィルタパターンと同様に、フォトリソグラフィー工程と現像工程との組み合わせで形成可能である。
 以上の説明では、タッチパネル機能を有する表示装置1を例示したが、本発明は表示機能を有さないタッチパネルにも適用できる。当該タッチパネルは、透光性の基板と、光センサと、上記透光性の基板と光センサとの間に配され、当該透光性の基板を介して入射した光を光センサに集光する集光手段とを含んでなり、透光性の上記基板における、光センサや集光手段が配される側とは反対側の面(外側面)に対して物体が接触、又は接近したことを感知するタッチパネル式センサである。
 〔実施の形態2〕
 本発明の他の実施形態について、図面に基づいて説明すれば以下のとおりである。なお、実施の形態1にて説明した部材と同一の機能を持つ部材には同一の部材番号を付している。図3は、本実施形態に係る表示装置101の要部構成を示す断面図である。実施の形態1に係る表示装置1では、半凸レンズ14がCF側基板11に、光センサ20がTFT側基板12に設けられていたが(図1参照)、表示装置101では半凸レンズ(集光手段)14’と光センサ20とがいずれもTFT側基板12上に設けられる。
 具体的には、表示装置101では、CF側基板11の内側面に、カラーフィルタ13、及び透明電極15’がこの順に形成されている。一方、TFT側基板12の内側面には、遮光膜21を有する光センサ20上に、層間絶縁膜19、有機膜18がこの順に設けられている。そして、有機膜18上に半凸レンズ14’が設けられ、さらに当該半凸レンズ14’上を被覆するように画素電極17’が設けられる。
 すなわち、表示装置101でも、表示装置1と同様に、半凸レンズ14’はCF側基板(透光性の基板)11と光センサ20との間に配されて、CF側基板11を介して入射した光を光センサ20に集光する集光手段として機能する。なお、半凸レンズ14’は液晶層16側に凸出するように設けられている。
 半凸レンズ14’は、表示装置101の外部から光センサ20の受光部に入射する入射光の光路上に形成されていればよいが、当該受光部の直上に形成されることが好ましい。より正確に言うと、半凸レンズ14’は、光センサ20の受光部の中心を通りCF側基板11に直交する直線上に、その曲率中心が位置するように形成されることが好ましい。また、集光効率の向上の観点では、光の入射側(CF側基板11の外側面側)から見た場合に、半凸レンズ14’が、対応する光センサ20の受光部より大きく形成されていることが好ましい。
 表示装置101のように、半凸レンズ14’と光センサ20とが同じ基板(ここではTFT側基板12)に設けられる構成では、対向する基板(TFT側基板12とCF側基板11)同士の貼り合せ時に、半凸レンズ14’と光センサ20との位置ずれが生じる虞がない。
 なお、図3は、1つの光センサ20を含む表示装置101の一部分の断面を示しているが、TFT側基板12には、複数の光センサ20と、この複数の光センサ20の各々に対応する複数の半凸レンズ14’とが形成されている。
 なお、半凸レンズ14’の形成は、実施の形態1で記載した半凸レンズ14の形成方法を参照して行うことが出来る。具体的には、例えば、透光性の樹脂からなる薄層を有機膜18上に形成し、フォトエッチング法により半凸レンズ14’を形成する箇所にのみ当該樹脂の薄層を残し、次いで、加熱処理により当該樹脂をレンズ状に成形した後に硬化させればよい。
 また、半凸レンズ14’の凸面を被覆するように画素電極17’を設ける方法は特に限定されず、例えば、ITO(インジウム錫酸化物)等の透明性を有する導電膜を、スパッタリング法等により成膜し、これをフォトエッチング法等にて必要な形状にパターニングすればよい。
 本発明は上述した各実施形態、並びに各実施形態の組み合わせに限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、外部の物体を検知する機能を有するタッチパネル及び表示装置に好適に利用することができる。特に、タッチパネル機能を有する液晶表示装置などにとりわけ好適に利用することができる。
1    表示装置
11   CF側基板(透光性の基板)
14   半凸レンズ(集光手段)
14’  半凸レンズ(集光手段)
12   TFT側基板(対向する基板)
16   液晶層
20   光センサ
101  表示装置

Claims (3)

  1.  光センサを備えた表示装置であって、
     透光性の基板と、
     上記透光性の基板と光センサとの間に配され、当該透光性の基板を介して入射した光を光センサに集光する集光手段と、を含んでなることを特徴とする表示装置。
  2.  透光性の基板と、
     上記透光性の基板に対向する基板と、
     対向する一対の上記基板間に配された光センサと、
     上記透光性の基板と光センサとの間に配され、当該透光性の基板を介して入射した光を光センサに集光する集光手段と、
     対向する一対の上記基板間に配された液晶層と、を含んでなることを特徴とする表示装置。
  3.  光センサを備えたタッチパネルであって、
     透光性の基板と、
     上記透光性の基板と光センサとの間に配され、当該透光性の基板を介して入射した光を光センサに集光する集光手段と、を含んでなることを特徴とするタッチパネル。
PCT/JP2009/060198 2008-10-02 2009-06-03 表示装置、及びタッチパネル WO2010038510A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008257533 2008-10-02
JP2008-257533 2008-10-02

Publications (1)

Publication Number Publication Date
WO2010038510A1 true WO2010038510A1 (ja) 2010-04-08

Family

ID=42073286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060198 WO2010038510A1 (ja) 2008-10-02 2009-06-03 表示装置、及びタッチパネル

Country Status (1)

Country Link
WO (1) WO2010038510A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506730A (ja) * 2015-11-13 2018-03-08 シャオミ・インコーポレイテッド Oledパネル、端末及び感光制御方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070109239A1 (en) * 2005-11-14 2007-05-17 Den Boer Willem Integrated light sensitive liquid crystal display
JP2007156757A (ja) * 2005-12-02 2007-06-21 Sharp Corp 表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070109239A1 (en) * 2005-11-14 2007-05-17 Den Boer Willem Integrated light sensitive liquid crystal display
JP2007156757A (ja) * 2005-12-02 2007-06-21 Sharp Corp 表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506730A (ja) * 2015-11-13 2018-03-08 シャオミ・インコーポレイテッド Oledパネル、端末及び感光制御方法

Similar Documents

Publication Publication Date Title
TWI419090B (zh) 顯示裝置
JP4553002B2 (ja) 表示装置
US8451241B2 (en) Liquid crystal display device
JP5238475B2 (ja) タッチパネルを備えた表示装置、及び電子機器
JP5167234B2 (ja) タッチスクリーン内蔵型液晶表示装置
JP4650703B2 (ja) 表示パネルおよびモジュール並びに電子機器
JP5043204B2 (ja) 光強度センサ付き液晶表示装置
TWI399582B (zh) 液晶顯示裝置
JP4338845B2 (ja) タッチパネル及びタッチパネルを備えた表示装置及び表示装置を備えた電子機器
WO2010084640A1 (ja) エリアセンサ、およびエリアセンサ付き液晶表示装置
KR101598222B1 (ko) 액정 표시 장치 및 그 제조 방법
US20210232841A1 (en) Texture recognition device and driving method of texture recognition device
WO2010109715A1 (ja) タッチパネル入力システムおよび入力ペン
US10990795B2 (en) Fingerprint sensing device
WO2018188670A1 (zh) 一种检测装置及终端设备
US11410452B2 (en) Texture recognition device and manufacturing method thereof, color filter substrate and manufacturing method thereof
WO2010058629A1 (ja) 液晶表示装置、電子機器
JP2024513414A (ja) ディスプレイパネル、ディスプレイモジュール、および電子デバイス
KR20220021046A (ko) 표시 장치와 그의 구동 방법
US20220164561A1 (en) Display apparatus
WO2010038510A1 (ja) 表示装置、及びタッチパネル
JP2006079499A (ja) タッチ入力機能付き表示装置
JP2009151033A (ja) 表示装置
CN113486801B (zh) 感测装置
WO2010122619A1 (ja) 表示装置、電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP