WO2010038393A1 - 脳内情報計測装置 - Google Patents

脳内情報計測装置 Download PDF

Info

Publication number
WO2010038393A1
WO2010038393A1 PCT/JP2009/004877 JP2009004877W WO2010038393A1 WO 2010038393 A1 WO2010038393 A1 WO 2010038393A1 JP 2009004877 W JP2009004877 W JP 2009004877W WO 2010038393 A1 WO2010038393 A1 WO 2010038393A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
brain
subject
head
measurement
Prior art date
Application number
PCT/JP2009/004877
Other languages
English (en)
French (fr)
Inventor
徳田崇
太田淳
Original Assignee
国立大学法人奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人奈良先端科学技術大学院大学 filed Critical 国立大学法人奈良先端科学技術大学院大学
Priority to US13/121,506 priority Critical patent/US8874201B2/en
Priority to JP2010531721A priority patent/JP5224482B2/ja
Publication of WO2010038393A1 publication Critical patent/WO2010038393A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • A61B5/293Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • A61B5/0086Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/388Nerve conduction study, e.g. detecting action potential of peripheral nerves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain

Definitions

  • the present invention relates to a brain information measuring apparatus that collects information in a brain of a subject that is a variety of animals such as humans, laboratory animals, livestock, and pets.
  • the invasive type involves some kind of surgical operation such as incision of the scalp or skull of a subject in order to bring an electrode or the like into direct contact with the brain.
  • the non-invasive type refers to accessing the brain indirectly from the outside of the subject's head (that is, through the scalp, skull, etc.) and extracting some information in the brain.
  • such a conventional invasive intracerebral information measuring device is basically mounted with the brain of the subject incised and the brain exposed.
  • it is necessary to cut the skull in a wide area.
  • Such a surgical operation involving the incision of the skull is itself a large-scale operation, and the burden on the subject is very large. There is also a high risk of infection.
  • non-invasive brain function measurement excellent measurement technologies such as f-MRI (functional magnetic resonance) imaging and optical topography have been developed and have achieved great results in the field of diagnosis and research.
  • f-MRI functional magnetic resonance
  • optical topography measurement method it is possible to measure changes in the local blood volume of the subject's brain, which is useful for diagnosing cerebrovascular disorders and the like (see Patent Document 1, etc.).
  • it is difficult to improve performance such as resolution and sensitivity because such measurement is limited to indirect measurement.
  • the accuracy of information near the surface of the brain is relatively high, it is difficult to acquire information in the deep part of the brain.
  • the conventional optical measurement method cannot acquire information on the deep part of the brain.
  • the present invention has been made in view of the above problems, and the main object of the present invention is that it can be mounted without requiring a large-scale surgical operation, and is less invasive to a subject. It is an object to provide a brain information measuring apparatus that can perform high-sensitivity and high-resolution measurement while reducing the burden on the patient and reducing the risk.
  • the present invention made to achieve the above object is a brain information measuring device for collecting information in the brain of a subject, a) A probe unit that is inserted into the brain or inserted into the brain groove through a through-hole drilled in the skull of the subject, and has an electrode that captures at least the surrounding electrical signal, and is provided integrally with the end of the probe unit.
  • An in-vivo mounting portion comprising: a head portion having a signal sending portion that is sandwiched between a skull and a scalp of a subject and at least transmits an electric signal captured by the electrode to the outside of the scalp; b) an external measurement unit that is installed outside the scalp of the subject and receives a signal transmitted from the signal transmission unit of the head unit through the scalp; It is characterized by having.
  • Subjects here include not only humans but also various animals such as laboratory animals, livestock, and pets.
  • one form of the outer shape of the body mounting portion is a thumbtack (push pin) -like or a nail-like.
  • the probe portion may be rigid or flexible.
  • a part of the scalp of the subject is cut open, and a through hole having a diameter slightly larger than the diameter of the probe is drilled in the skull.
  • the probe part is inserted into the perforated hole thus drilled, and the tip of the probe part is inserted into the brain or inserted into the brain groove.
  • the insertion or insertion position may be determined in advance by X-ray photography or the like. Further, the depth of insertion into the brain can be adjusted by the length of the probe portion, and can be inserted to the deep portion of the brain or into the brain surface (for example, cerebral cortex) as necessary. In any case, the probe portion is pushed into the brain until the head portion contacts the skull, and the scalp is returned and sutured so as to cover the head portion as necessary.
  • the extracorporeal measurement unit is installed outside the subject, usually close to the scalp where the head unit is located.
  • the electrode of the probe part captures a weak electrical signal (typically an electroencephalogram) emitted by the surrounding brain, and The provided signal transmission unit transmits this signal wirelessly.
  • This signal passes through the scalp and is received by an extracorporeal measurement unit installed outside the scalp to reproduce the electrical signal emitted by the brain.
  • an electrical signal in the deep part of the brain for example, action potential of nerve tissue
  • the cortical field potential in the brain can be detected by adopting a structure in which the electrode is exposed in a wide range of the peripheral surface of the probe portion.
  • the signal transmission unit can be configured to perform signal transmission utilizing re-radiation from the head unit housing. According to this configuration, since it is not necessary to provide an electric circuit for signal transmission in the head portion, the configuration and structure are simple and low-cost, and failure and the like are unlikely to occur. In addition, since there is no electrical circuit in the body, the risk to the subject in the event of a failure or breakage of the body mounting portion can be reduced.
  • the signal transmission unit includes a conversion processing unit that converts an electrical signal captured by the electrode into a predetermined format, and an antenna that radiates the converted signal. It can also be set as the structure containing these.
  • an electric circuit is built in the head portion, and an electric signal such as an electroencephalogram obtained by the electrode is wirelessly transmitted to the outside by the operation of the electric circuit.
  • the conversion processing unit includes a modulation unit that performs modulation so as to be suitable for radio wave transmission through an antenna. Further, when the electrical signal obtained from the electrodes is digitized and transmitted, an analog / digital conversion unit or the like may be included. According to this configuration, when information is transmitted from the in-body wearing part to the in-vitro measuring part, it is less susceptible to noise and the like, which is advantageous for measuring with higher sensitivity and higher resolution.
  • the extracorporeal measurement unit can be installed at a certain distance from the scalp, and the degree of freedom of installation is increased. As a result, the degree of freedom of action of the subject increases.
  • the head unit In the case of the second mode, driving power for driving the electric circuit built in the head portion is required.
  • a battery may be built in the head unit, but considering the weight reduction and long-term use of the head unit, the head unit has a power supply unit that generates electric power by receiving radio waves emitted from the extracorporeal measurement unit.
  • the generated power is used as drive power for the signal transmission unit.
  • This power transmission can utilize what is used for a passive IC tag (RFID).
  • RFID passive IC tag
  • the brain information measuring apparatus can perform not only electrical measurement such as electroencephalogram but also optical measurement corresponding to optical topography etc. simultaneously or in time division. That is, the intracerebral information measuring device according to the present invention is preferably configured such that the head unit has an optical opening, and the probe unit has a light guide path optically coupled to the optical opening. Good.
  • the extracorporeal measurement unit may include an irradiation unit that irradiates near-infrared light for optical topography measurement on the head unit of the in-vivo mounting unit mounted on the subject via the scalp of the subject. .
  • near-infrared light when near-infrared light is irradiated to the scalp from the outside of the scalp by the irradiation unit of the extracorporeal measurement unit, the light passes through the scalp and is taken into the optical opening of the head unit located immediately below the scalp. Then, the light reaches the brain through the light guide and irradiates the brain with near infrared light.
  • near-infrared light is emitted from the outside of the head, so that only reflected, scattered or passed light can be obtained near the brain surface.
  • light can be irradiated particularly to the deep part of the brain.
  • the light guide also has a function to receive light reflected, scattered or passed through the brain and guide it to the head. Therefore, the light received by the probe part of the internal mounting part provided at a certain distance apart from the internal mounting part used for the light irradiation described above is guided to the head part through the light guide path, and the optical part of the head part The light is emitted from the opening. Then, the light intensity may be measured by receiving this light through the scalp with, for example, an optical sensor provided in another extracorporeal measurement unit.
  • the head unit may include a photoelectric conversion unit that receives light coming from the probe unit side through the light guide path and converts the light into an electric signal.
  • a photoelectric conversion unit that receives light coming from the probe unit side through the light guide path and converts the light into an electric signal.
  • the in-vivo mounting part serves as an electrical and optical access point for the deep part in the brain. Therefore, as described above, electrical information in the deep part of the brain can be extracted and optical information can also be extracted. Furthermore, conversely, electrical stimulation can be applied to the deep part of the brain using electrodes, or optical stimulation can be applied to the deep part of the brain through the light guide. By combining this, it is possible to acquire changes in the electroencephalogram when an optical stimulus is applied as electrical information, and conversely, acquire changes in the blood flow when an electrical stimulus is applied as optical information. You can also.
  • the brain information measuring apparatus can achieve the following various effects.
  • (1) When mounting the in-vivo mounting portion on the head of the subject, a simple surgical operation is sufficient because a small-diameter hole through which the probe portion can penetrate is formed in the skull. Therefore, it is easy to mount and it does not take time to mount, and the burden on the subject such as a patient or laboratory animal at the time of mounting can be greatly reduced. Thereby, the biological activity of the subject after wearing becomes smooth, and the stability and accuracy of measurement are improved.
  • FIG. 1 is an external view showing a basic configuration of a brain information measuring apparatus according to an embodiment of the present invention.
  • FIG. FIG. 3 is a schematic cross-sectional view showing an example of three typical forms of the probe unit 2.
  • FIG. 8 is a schematic diagram illustrating an example of measurement using the in-vivo mounting unit and the external measurement unit illustrated in FIGS.
  • FIG. 1 is an external view showing the basic configuration of the intracerebral information measuring apparatus of the present embodiment
  • FIG. 2 is a schematic sectional view showing a state in which the intracerebral information measuring apparatus of the present embodiment is mounted on the head of a subject.
  • the intracerebral information measuring apparatus includes a pointed and elongated probe portion 2 and a substantially disc-shaped head portion 3 having an outer diameter larger than the outer diameter of the probe portion 2.
  • the in-vivo mounting part 1 and the extracorporeal measurement part 10 which is a separate body.
  • the in-body mounting portion 1 has a thumbtack-like shape.
  • the in-body mounting portions 1A and 1B have small-diameter holes that are slightly larger than the outer diameters of the probe portions 2A and 2B in the skull 102 with the scalp 101 of the subject's head 100 open.
  • the probe portions 2A and 2B are inserted through the holes until the head portions 3A and 3B come into contact with the outside of the skull 102. After that, the head portion 3A, 3B is sandwiched between the scalp 101 and the skull 102 by covering the head portion 3A, 3B with the head portion 3A and sewing it.
  • the probe portion 2A may be inserted into the cerebrum 104 directly at the tip of the cerebral cortex 103 or when the probe portion 2B is inserted into the cerebral groove 105.
  • the extracorporeal measurement units 10A and 10B are generally arranged as close as possible to the outside of the head units 3A and 3B with the scalp 101 interposed therebetween, but may be arranged in a more distant place depending on circumstances. .
  • FIG. 3 is a schematic cross-sectional view showing examples of three typical forms of the probe unit 2.
  • FIG. 3A shows a uniaxial probe structure in which the entire probe portion 2 is an electrode 21 that is a conductor.
  • the conductor is preferably made of a metal that does not easily corrode, and stainless steel or an alloy mainly made of stainless steel can be considered.
  • the electrode 21 measures the cortical field potential in the vicinity of the inserted intracerebral region or in the vicinity of the inserted cerebral sulcus.
  • FIG. 3B shows a uniaxial sheath probe structure in which a thin electrode 22 extending to the tip of the tip of the probe portion 2 is covered with a light guide portion 23 such as a transparent synthetic resin or quartz glass.
  • the electrode 22 is exposed only at the tip, and measures the local potential in the inserted brain or in the deep part of the inserted sulcus.
  • the light guide unit 23 is a kind of optical fiber that guides light (near infrared light) introduced from the head unit 3 to irradiate the inside of the brain or the sulcus, and from the inside of the brain or the sulcus.
  • the reflected light, scattered light, transmitted light, etc. are received and sent to the head unit 3. Since the peripheral surface of the light guide unit 23 is exposed, a part of the light that passes through the light guide unit 23 and hits the inner peripheral surface at an angle smaller than the total reflection angle is transmitted outward and irradiates the surroundings. To do.
  • FIG. 3C shows a biaxial probe structure in which an electrode 24, which is a cylindrical conductor, surrounds the light guide portion 23 of the uniaxial sheath probe structure. That is, the light guide portion 23 is filled between the central electrode 22 and the outer cylindrical electrode 24, and the outer electrode 24 is interrupted near the tip of the probe portion 2 so that the light guide portion 23 has a pointed shape. Exposed. Therefore, the light guided from the head unit 3 through the light guide unit 23 is emitted outward near the tip of the probe unit 2.
  • the outer electrode 24 can measure the cortical field potential of the entire vicinity of the inserted intracerebral region or the entire vicinity of the inserted cerebral sulcus.
  • the electrode 22 can measure the local potential in the inserted brain or deep in the inserted sulcus.
  • the probe section 2 can be selected from either a needle-like rigidity or a flexible and appropriately bendable one. .
  • the outer diameter of the probe portion 2 can be set to 100 to 500 ⁇ m.
  • the length of the probe unit 2 can be appropriately determined according to the type of the subject, the depth of the region to be measured, and the like.
  • FIG. 4 is a schematic cross-sectional view of the in-vivo mounting portion 1a using the single-axis sheath probe structure shown in FIG.
  • this configuration is called a passive type in the sense that there is no active electric circuit inside the head portion 3.
  • the head unit 3 has a hollow casing 31 made of metal (or other conductor), and the casing 31 and the electrode 22 are electrically connected.
  • a substantially conical micro optical lens (corresponding to an optical opening in the present invention) 32 is provided in the housing 31, and the top side end of the micro optical lens 32 is connected to the light guide 23 of the probe unit 2. Optically connected, the bottom spherical surface portion is exposed outside the housing 31. As shown in FIG. 4, in a state where the in-body mounting portion 1 is disposed between the scalp 101 and the skull 102, the spherical portion of the micro optical lens 32 is in close contact with (or close to) the back surface of the scalp 101. .
  • the electrode 22 of the probe part 2 inserted into the brain or inserted into the sulcus picks up the action potential of, for example, nerve tissue in the brain or deep part of the sulcus, and thereby causes electrical vibration. Is amplified by the re-radiation phenomenon of the casing 31 and is emitted as a weak electromagnetic wave.
  • This electromagnetic wave passes through the scalp and is received by an extracorporeal measuring unit 10 (not shown) installed outside the scalp to reproduce an electrical signal.
  • the extracorporeal measurement unit 10 be installed as close to the casing 31 as possible with the scalp 101 interposed therebetween.
  • near-infrared light is irradiated from the extracorporeal measurement unit 10 to the scalp 101 as shown in FIG. It is sent. Then, the near infrared light is irradiated into the brain or the sulcus through the light guide 23. Reflected light, scattered light, and transmitted light in the brain and cerebral sulcus according to near-infrared light emitted from the probe part 2 of a certain in-body mounting part 1a are light guide parts of the probe part 2 of another in-body mounting part 1a. When the light enters the light 23, the light is guided to the micro optical lens 32 through the light guide 23, and the light is emitted to the outside through the scalp 101. Optical topography measurement can be performed by receiving this light by the extracorporeal measurement unit 10 and analyzing the intensity change in real time.
  • FIG. 5 is a schematic cross-sectional view of the in-body mounting portion 1b having another configuration using the biaxial probe structure shown in FIG. 3 (c).
  • this configuration is referred to as an active type in contrast to the passive type in the sense that an active electric circuit is provided inside the head unit 3.
  • the head part 3 includes an electric circuit part 33, an antenna 34, and an optical sensor 36.
  • the micro optical lens 32 returns from the probe part 2 side through the light guide part 23.
  • a mirror 35 for reflecting the reflected light and introducing it into the optical sensor 36 is embedded.
  • the electrodes 22, 24 and the optical sensor 36 are electrically connected to the electric circuit unit 33.
  • FIG. 6 is a schematic block configuration diagram of the electric circuit unit 33.
  • FIG. 7 is a schematic block diagram of the extracorporeal measuring unit 10 used corresponding to the in-vivo mounting unit 1b.
  • the electrical circuit unit 33 includes a transmission / reception unit 331 including an antenna driving unit 332, a modulation unit 334, and a demodulation unit 333, a power supply unit 335, a control unit 336, a signal processing unit 337, and an ID storage unit 338.
  • Each of the plurality of in-body mounting units 1 has unique identification information (ID), and the identification information is stored in advance in the ID storage unit 338.
  • the extracorporeal measurement unit 10 includes a transmission / reception unit 12 including an antenna drive unit 13, a modulation unit 15, and a demodulation unit 14, a power supply unit 16, a control unit 17, and a signal processing unit 18.
  • the power supply unit 16 drives the antenna 11 via the antenna drive unit 13 so as to radiate electromagnetic waves having a predetermined frequency from the antenna 11.
  • the electric power supply unit 335 of the electric circuit unit 33 receives the electromagnetic wave via the antenna 34 to generate electric power, and supplies the electric power to each unit of the electric circuit unit 33. That is, the electric circuit unit 33 does not have a power source such as a battery, but has a circuit similar to a so-called passive IC tag that generates necessary power based on electromagnetic waves received from the outside via the antenna 34. ing.
  • a battery may be built in the electric circuit unit 33, but it is disadvantageous for weight reduction and longer life.
  • the control signal from the control unit 17 is modulated into a predetermined format (such as a frequency band suitable for radio wave transmission through the antennas 11 and 34) by the modulation unit 15, and is transmitted from the antenna 11 via the antenna driving unit 13. Sent out.
  • the electric circuit unit 33 receives the above signal via the antenna 34 and demodulates it by the demodulating unit 333 to extract the original control signal, and the control unit 336 generates a signal processing unit 337 and an ID storage unit based on the control signal. 338 and the like are controlled.
  • the ID read from the ID storage unit 338 is modulated into a predetermined format by the modulation unit 334 and sent from the antenna 34 via the antenna drive unit 332.
  • the electrical signal picked up by the electrodes 22 and 24 and the electrical signal generated by photoelectric conversion by the optical sensor 36 are amplified by the signal processing unit 337, and multiplexing such as frequency multiplexing and time division multiplexing is performed as necessary. Is called. Then, the signal is modulated into a predetermined format by the modulation unit 334 and transmitted from the antenna 34 via the antenna driving unit 332.
  • the radio wave transmitted from the in-body mounting unit 1 is received by the antenna 11 as described above, demodulated by the demodulation unit 14, processed by the signal processing unit 18, and the ID and each of the electrodes 22, 24.
  • the electric signals obtained by the optical sensor 36 are separated and taken out.
  • FIG. 8 is a schematic diagram showing an example of measurement using the in-body mounting part and the in-vitro measurement part shown in FIGS.
  • the extracorporeal measurement unit 10A emits near-infrared light, and the light is taken into the head unit 3A of the in-body mounting unit 1A through the scalp 101 and guided into the brain through the light guide path in the probe unit 2A. Then, near-infrared light is irradiated into the brain from the vicinity of the tip of the probe unit 2A.
  • the light is reflected and scattered in the brain and is transmitted while a part reaches the tip of the probe portion 2B of the in-body mounting portion 1B, is taken into the light guide, is sent to the head portion 3B, and is converted into an electric signal by the optical sensor 36. Is done. That is, this electrical signal includes information such as blood flow in the brain.
  • the in-body mounting portions 1A and 1B capture electrical signals in the brain with the electrodes 22 and 24 of the probe portions 2A and 2B, respectively.
  • the electrical signals in the brain captured by the electrodes 22 and 24 of the probe unit 2A of the in-body mounting unit 1A are transmitted as radio waves by the electric circuit unit 33 and the antenna 34 incorporated in the head unit 3A as described above, so that the extracorporeal measurement unit Received at 10A.
  • the electrical signals in the brain captured by the electrodes 22 and 24 of the probe unit 2B of the body mounting unit 1B and the electrical signals generated by photoelectric conversion by the optical sensor 36 are incorporated in the head unit 3B as described above. Radio waves are transmitted by the electric circuit unit 33 and the antenna 34 and received by the extracorporeal measurement unit 10B. In this way, collection of electrical information such as brain waves and collection of optical information such as optical topography are performed in parallel.
  • near-infrared light irradiated on the scalp 101 can be sent into the brain or deep in the sulcus.
  • Conventional non-invasive optical topography measurement can only measure the brain surface, but according to this configuration, high-resolution optical topography measurement deep in the brain can be realized.
  • an electric signal or the like can be amplified on the electric circuit portion 33 side, and noise mixed during transmission is removed by signal processing on the extracorporeal measurement portion side. Therefore, a high-quality signal can be obtained compared to the passive type shown in FIG. 4, which is advantageous in improving measurement sensitivity and resolution. Further, since both power transmission and signal transmission can be performed at a certain distance, it is not always necessary to provide the extracorporeal measurement unit 10 in the vicinity of the in-vivo mounting unit 1 as shown in FIG.
  • the signals obtained by the electrodes 22 and 24 in the electric circuit unit 33 may be digitized and sent as digital data.
  • each in-vivo mounting part can be identified by the ID, so only one in-vitro measurement unit is provided, and thus all in-vivo mounting parts are provided. It is also possible to control the mounting part and perform signal processing.
  • in-vitro measuring units even when a plurality of in-vitro measuring units are provided, by configuring the in-vitro measuring units to communicate with each other, it is possible to perform measurement in cooperation with a plurality of in-vivo mounting units. For example, it is possible to perform measurement by shifting the time in a predetermined pattern for a large number of in-body mounting parts arranged so as to cover the entire brain, in addition to performing simultaneous measurement in all in-body mounting parts. In this way, by performing a measurement in which a plurality of in-body mounting portions are networked, a complicated and advanced measurement that cannot be achieved by a conventional device is possible.
  • only one light guide path is provided in the probe portion of the in-vivo mounting portion.
  • two light guide paths are provided in parallel (in this case, however, two light guide paths are provided).
  • the incidence side and the emission side may be separated from each other (no interference of light passing therethrough). As a result, measurement corresponding to optical topography can be performed with one in-vivo mounting portion mounted on the subject.
  • Modulation unit 335 ... Power supply unit 336 ; Control unit 337 ... Signal processing unit 338 ... ID storage unit 100 ... Head 101 ... Scalp 102 ; skull 103 ... cerebral cortex 104 ... cerebrum 105 ... sulcus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Psychology (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

 簡単な手術で被検体の頭部に装着可能であり、低侵襲性で且つ高感度、高分解能の計測が可能な脳内情報計測装置を提供する。体内装着部(1A)は、被検体の頭蓋骨(102)に穿孔された小径の孔を通して脳内に刺入されるプローブ部(2A)と、それと一体で頭蓋骨(102)と頭皮(101)との間に配置されるヘッド部(3A)とからなる。プローブ部(2A)はアクションポテンシャル等を拾う電極を含み、ヘッド部(3A)はそれによる信号を無線で外部へ送出する送出部を含む。頭部(100)の外側には、ヘッド部(3A)から送出される信号を受信して再現する体外計測部(10A)が設置される。体内装着部(1A)を装着する際に大掛かりな開頭手術は不要であり、被検体に対する負担やリスクが小さく、直接、脳内から信号を取り出せるので高感度、高分解能化も達成できる。

Description

脳内情報計測装置
 本発明は、人間や実験動物、家畜類、ペット等の各種動物である被検体の脳内の情報を収集する脳内情報計測装置に関する。
 近年の脳科学や医療用計測技術の進展は目覚ましく、脳内の情報を収集するための各種のセンシングデバイスや新しい脳機能イメージング技術が実現されている。脳内情報計測用のデバイスは、大別して侵襲型と非侵襲型とに区分される。侵襲型とは電極などを直接的に脳に接触させるために、被検体の頭皮や頭蓋骨の切開など、何らかの外科的手術をも伴うものである。これに対し、非侵襲型とは被検体の頭部の外側から間接的に(つまり頭皮や頭蓋骨などを通して)脳にアクセスし、何らかの脳内情報を取り出すものである。
 侵襲型脳内情報計測デバイスとしては、例えば米国ミシガン大学で開発されたいわゆるミシガン電極、米国ユタ大学で開発されたいわゆるユタ電極といったものが古くから報告されている。これら電極では脳内の細胞レベルでの多点計測が可能である。また、我が国において、てんかんなどの臨床治療用としても認可されているものとして、ユニークメディカル社の頭蓋内電極がある(非特許文献1参照)。
 しかしながら、こうした従来の侵襲型脳内情報計測デバイスは、基本的に、被検体の頭蓋骨を切開して脳を露出させた状態で装着するものである。特に脳全体の広い範囲をカバーする計測を行いたい場合には、頭蓋骨も広い領域で切開する必要がある。こうした頭蓋骨の切開を伴う外科的手術はそれ自体が大掛かりであるとともに、被検体に与える負担も非常に大きい。また、感染症などのリスクも大きい。
 これに対し、非侵襲型脳機能計測としては、f-MRI(functional magnetic resonance imaging) や光トポグラフィなどの優れた計測技術が開発され、診断や研究の分野で大きな成果を挙げている。例えば光トポグラフィ計測法を用いれば被験者の脳の局所的血液量変化などの測定を行うことができるので、脳血管障害などの診断に有用である(特許文献1など参照)。しかしながら、こうした計測はあくまでも間接的な計測であるという制約があるために、分解能や感度などの性能を高めるのが難しい。また、脳の表面近傍の情報の精度は比較的高いものの、脳の深部における情報の取得は困難である。
特開2007-289224号公報
「頭蓋内電極」、[online]、株式会社ユニークメディカル、[平成20年9月3日検索]、インターネット<URL http://www.mmjp.or.jp/unique-medical/newuzncatNo1018b.pdf>
 現在の多様化・高度化した脳科学のニーズに応えるべく高分解能、高感度を実現するには非侵襲型の計測では限界があり、脳への直接的なアクセスが必要であるものの、装置の装着の容易性や被検体への負担の軽減の観点から、侵襲性をできるだけ抑えることが重要である。さらには、計測の用途や目的によって、局所性の高い計測が必要になる場合と、脳全体のような広い範囲をカバーした計測が必要になる場合とがあるため、両者に対応できることが望ましい。
 また、電気的計測と光トポグラフィ計測などの光学的計測とでは得られる情報が異なるため、両計測を併用することは、疾患の診断などのために有用である。しかしながら、上述のように従来の光学的計測法では脳の深部の情報を取得できない。
 本発明は上記課題に鑑みて成されたものであり、その主な目的とするところは、大掛かりな外科的手術を必要とせずに装着することが可能であり、侵襲性を抑えて被検体への負担の軽減やリスク軽減を図りながら、高感度、高分解能の計測を行うことができる脳内情報計測装置を提供することにある。
 さらに本発明の他の目的とするところは、局所的な計測、広い範囲の計測のいずれにも対応でき、且つ長期間の計測にも好適な脳内情報計測装置を提供することにある。
 さらに本発明の他の目的とするところは、脳の深部の電気的計測と光学的計測とを並行して行うことができる脳内情報計測装置を提供することにある。
 上記目的を達成するために成された本発明は、被検体の脳内の情報を収集する脳内情報計測装置であって、
 a)被検体の頭蓋骨に穿孔された貫通孔を通して脳に刺入され又は脳溝に挿入され、少なくとも周囲の電気信号を捉える電極を有するプローブ部と、該プローブ部の端部に一体に設けられて被検体の頭蓋骨と頭皮との間に挟持され、少なくとも前記電極で捕捉された電気信号を無線で頭皮の外側に送出する信号送出部を有するヘッド部と、から成る体内装着部と、
 b)被検体の頭皮の外側に設置され、その頭皮を通して前記ヘッド部の信号送出部から送出される信号を受信する体外計測部と、
 を備えることを特徴としている。
 ここでいう被検体とは、人間のみならず実験動物、家畜類、ペット等の各種動物を含む。
 本発明に係る脳内情報計測装置において、体内装着部の外形の一形態は、画鋲(押しピン)様又は釘様である。プローブ部は剛性を有するものでも可撓性を有するものでもよい。
 体内装着部を被検体に装着する際には、被検体の頭皮を一部切開して頭蓋骨にプローブの直径よりも若干大きな径の貫通孔を穿孔する。これは外科的手術ではあるが、頭蓋骨を切開する開頭手術に比べれば遙かに容易で時間も短くて済む。そうして穿孔した貫通孔にプローブ部を挿入し、そのプローブ部の先端を脳に刺入するか或いは脳溝に挿入する。刺入又は挿入の位置は予めX線撮影などにより決めておけばよい。また、脳内への刺入深さはプローブ部の長さにより調節でき、必要に応じて脳の深部まで刺入したり脳表面(例えば大脳皮質)に刺入したりすることができる。いずれにしても、ヘッド部が頭蓋骨に当接するまでプローブ部を脳内に押し入れ、必要に応じてそのヘッド部を被覆するように頭皮を戻して縫合する。
 即ち、体内装着部の中でプローブ部のみが被検体の頭蓋骨内に位置し、ヘッド部は体内ではあるが被検体の頭蓋骨外に位置する。さらに、体外計測部は被検体の外側、通常は、ヘッド部が位置する頭皮に近接して設置される。上述のように体内装着部が被検体の頭部に装着された状態では、プローブ部の電極はその周囲に存在する脳が発する微弱な電気信号(典型的には脳波)を捉え、ヘッド部に設けられた信号送出部がこの信号を無線で送出する。この信号は頭皮を通過し、その頭皮の外側に設置された体外計測部により受信され、脳が発した電気信号が再現される。
 特にプローブ部の先端部のみで電極が露出するような構造を採ることにより、脳内深部の電気信号(例えば神経組織のアクションポテンシャル)を検出することができる。また、プローブ部の周面の広い範囲で電極が露出するような構造を採ることにより、脳内の皮質フィールドポテンシャルを検出することができる。
 本発明に係る脳内情報計測装置の第1の態様として、前記信号送出部は、ヘッド部筐体からの再輻射を利用した信号送出を行う構成とすることができる。この構成によれば、ヘッド部に信号送出のための電気回路を設ける必要がないため、構成・構造が簡素で低コストであり、故障なども起こりにくい。また、体内に電気回路が存在しないので、体内装着部の故障・破損などの際の被検体に対するリスクも小さくて済む。
 本発明に係る脳内情報計測装置の第2の態様として、前記信号送出部は、前記電極で捕捉された電気信号を所定の形式に変換する変換処理部と、変換された信号を放射するアンテナと、を含む構成とすることもできる。
 第2の態様の構成は、ヘッド部に電気回路を内蔵し、その電気回路の動作により、電極で得られた脳波などの電気信号を外部へ無線伝送するものである。上記変換処理部は、アンテナを通した電波伝送に適したように変調を施する変調部を含む。また、電極で得られた電気信号をデジタル化して送出する場合には、アナログ/デジタル変換部などを含むようにすることもできる。この構成によれば、体内装着部から体外計測部に情報を伝送する際に、ノイズなどの影響を受けにくくなり、より高感度、高分解能の計測を行うのに有利である。また、伝送可能距離が長くなるので、体外計測部を頭皮から或る程度離して設置することが可能になり、設置の自由度が大きくなる。ひいては、被検体の行動の自由度が高まる。
 第2の態様の場合、ヘッド部に内蔵した電気回路を駆動するための駆動電力が必要となる。ヘッド部にバッテリを内蔵してもよいが、ヘッド部の軽量化や長期間の使用を考慮すると、前記ヘッド部は、前記体外計測部から発せられる電波を受けて電力を生成する電力供給部を有し、生成した電力を前記信号送出部の駆動電力とする構成とするのが好ましい。この電力伝送は、パッシブ型ICタグ(RFID)に用いられているものを利用することができる。
 また本発明に係る脳内情報計測装置では、脳波などの電気的計測のみならず、光トポグラフィなどに相当する光学的計測を同時に又は時分割で行えるようにすることができる。即ち、本発明に係る脳内情報計測装置は、好ましくは、前記ヘッド部は光学的開口部を有し、前記プローブ部は前記光学的開口部と光学的に結合された導光路を有する構成とするとよい。一方、前記体外計測部は、被検体の頭皮を介して該被検体に装着された体内装着部のヘッド部に、光トポグラフィ計測用の近赤外光を照射する照射部を有する構成とするとよい。
 例えば体外計測部の照射部により、頭皮の外側から頭皮に近赤外光を照射すると、その光は頭皮を透過して、その直下に位置するヘッド部の光学的開口部に取り込まれる。そして、導光路を経て脳内に至り、脳内に近赤外光を照射する。従来の光トポグラフィ計測では頭部の外側から近赤外光を照射するため、脳表面近くで反射、散乱又は通過した光しか得ることができなかったが、この構成では、プローブ部の刺入深さなどに応じて特に脳の深部に光を照射することができる。
 導光路は脳内で反射、散乱又は通過した光を受けてヘッド部まで案内する機能も有する。したがって、上記の光照射に用いた体内装着部とは別の、或る程度離れた位置に設けた体内装着部のプローブ部で受けた光を導光路を通してヘッド部まで導き、ヘッド部の光学的開口部から出射させる。そして、この光を頭皮を通して例えば別の体外計測部に設けた光センサで受光して光強度を測定すればよい。
 また、前記ヘッド部は、前記導光路を経てプローブ部側から到来した光を受光して電気信号に変換する光電変換部を有する構成としてもよい。こうして光電変換部で電気信号に変換した後には、上述したような電気回路により構成される信号送出部を通して、体外計測部に信号を送ることができる。これにより、光学的な計測についても、感度や分解能の向上が図れる。
 本発明に係る脳内情報計測装置では、体内装着部は、脳内の深部に対する電気的及び光学的なアクセスポイントとなる。したがって、上述したように、脳内深部の電気的情報を取り出すことができるとともに、光学的情報も取り出すことができる。さらにまた、逆に電極を利用して脳内深部に電気的刺激を加えたり、導光路を通して脳内深部に光学的刺激を加えたりすることができる。これを組み合わせることにより、光学的刺激を加えたときの脳波の変化などを電気的情報として取得したり、反対に、電気的刺激を加えたときの血流の変化などを光学的情報として取得したりすることもできる。
 本発明に係る脳内情報計測装置によれば、次のような様々な効果が達成できる。
 (1)体内装着部を被検体の頭部に装着する際に、プローブ部が貫通可能な程度の細径の孔を頭蓋骨に穿設すればよいので、簡単な外科的手術で済む。したがって、装着が容易で装着に時間が掛からなくて済むだけでなく、装着時における患者や実験動物等の被検体に与える負担を大幅に軽減することができる。それにより、装着後の被検体の生体活動が円滑になり、計測の安定性、正確性が向上する。
 (2)脳内には電気配線や回路などのハイリスク因子が存在せず、残されたリスク因子も頭蓋骨の外側に配設される。そのため、体内装着部に故障や破損が生じた場合でも、脳内組織に対する悪影響を最小限に留めることができる。
 (3)直接的に脳内部や脳溝に対して電気的な計測や光学的な計測が行え、特に従来は困難であった脳深部の光学的な計測も行えるので、得られる信号の品質(例えばSN比)が良好であり、高感度や高分解能の計測が可能である。そのため、本発明に係る脳内情報計測装置により収集した情報に基づいて被検体の脳障害や脳疾患の診断を行う場合に、従来に比べて診断の精度や確度を高めることができるとともに、従来では見つけることが困難であったような障害や疾患を見つけることも可能になる。それにより、脳に関する障害や疾患の早期治療にも有用である。
 (4)体内装着部と体外計測部との間では無線による信号伝送が行われるため、被検体の行動の自由度が高く、そうした自由な行動の下での有意義な計測が可能となる。被検体の行動によっても体内装着部が外れることがなく、破損するおそれも少ないので、長期間の計測が可能である。
本発明の一実施例である脳内情報計測装置の基本構成を示す外観図。 本実施例の脳内情報計測装置を被検体に装着した状態を示す概略断面図。 プローブ部2の3つの代表的な形態の例を示す概略断面図。 1軸シースプローブ構造を利用した体内装着部の一形態(パッシブ型)の概略断面図。 2軸プローブ構造を利用した体内装着部の一形態(アクティブ型)の概略断面図。 ヘッド部に内蔵される電気回路部の概略ブロック構成図。 体外計測部の概略ブロック構成図。 図5~図7に示した体内装着部及び体外計測部を用いた計測の一例を示す概略図。
 以下、本発明に係る脳内情報計測装置の一実施例について、添付図面を参照して詳細に説明する。図1は本実施例の脳内情報計測装置の基本構成を示す外観図、図2は本実施例の脳内情報計測装置を被検体の頭部に装着した状態を示す概略断面図である。
 本実施例による脳内情報計測装置は、図1に示すように、先尖細長形状のプローブ部2とプローブ部2の外径よりも大きな外径を有する略円盤形状のヘッド部3とが一体になった体内装着部1と、それとは別体の体外計測部10と、から成る。図示するように、体内装着部1は画鋲様の形状である。
 体内装着部1A、1Bは、図2に示すように、被検体の頭部100の頭皮101を開放した状態で頭蓋骨102にプローブ部2A、2Bの外径よりも僅かに大きい程度の小径の孔を穿設し、ヘッド部3A、3Bが頭蓋骨102の外側に当接するまで孔にプローブ部2A、2Bを貫通させるようにして装着される。そのあと、頭皮101をヘッド部3A、3Bに被覆して縫合することで、ヘッド部3A、3Bは頭皮101と頭蓋骨102との間に挟持される。プローブ部2Aはその先端が大脳皮質103を刺衝し大脳104に直接刺入される場合と、プローブ部2Bが脳溝105にちょうど挿入されるようにする場合とが考えられる。一方、体外計測部10A、10Bは、一般的に、頭皮101を挟んだヘッド部3A、3Bの外側、できるだけ直近に配置されるが、場合によっては、より離れた場所に配設することもできる。
 図3は、プローブ部2の3つの代表的な形態の例を示す概略断面図である。
 図3(a)は、プローブ部2の全体が導電体である電極21となっている1軸プローブ構造である。導電体は、腐食しにくい金属とすることが好ましく、ステンレス又はステンレスを主材とする合金などが考えられる。この電極21は、刺入された脳内部位付近全体又は挿入された脳溝付近全体の皮質フィールドポテンシャルを計測するものである。
 図3(b)は、プローブ部2の先尖先端まで延伸する細い電極22の周囲を透明な合成樹脂又は石英ガラスなどの導光部23で被覆した1軸シースプローブ構造である。電極22は先端のみが露出しており、刺入された脳内の又は挿入された脳溝の深部の局所的な電位を計測するものである。また、導光部23は一種の光ファイバであり、ヘッド部3から導入された光(近赤外光)を案内して脳内や脳溝内を照射するとともに、脳内や脳溝内からの反射光、散乱光、透過光などを受けてヘッド部3へと送る機能を有する。導光部23の周面は露出しているため、導光部23内部を通り全反射角よりも小さな角度で内周面に当たった光はその一部が外方へ透過し、周囲を照射する。
 図3(c)は、上記1軸シースプローブ構造の導光部23の周囲を円筒形状の導電体である電極24が取り囲んだ2軸プローブ構造である。即ち、中心部の電極22と外側の筒状の電極24との間に導光部23が充填され、プローブ部2の先端付近で外側の電極24が途切れて導光部23が先尖形状に露出している。したがって、ヘッド部3から導光部23を通して案内された光はプローブ部2の先端付近で外方へと出射する。外側の電極24では図3(a)の電極21と同様に、刺入された脳内部位付近全体又は挿入された脳溝付近全体の皮質フィールド電位を計測することができる。また同時に、電極22では、刺入された脳内の又は挿入された脳溝の深部の局所的な電位を計測することができる。
 図3(a)~(c)のいずれの形態でも、プローブ部2は、針状に剛性を持つもの、又は、可撓性を有し適度に屈曲可能なもの、のいずれかを選択し得る。また、おおよそのサイズとしては、プローブ部2の外径を100~500μmとすることができる。プローブ部2の長さは、被検体の種類、計測対象の部位の深さなどに応じて適宜に決めることができる。
 続いて、体内装着部1の具体的な形態の例を説明する。図4は図3(b)に示した1軸シースプローブ構造を利用した体内装着部1aの概略断面図である。ここでは、ヘッド部3の内部に能動的な電気回路を持たないという意味で、この構成をパッシブ型と呼ぶ。
 ヘッド部3は金属(又は他の導電体)からなる中空の筐体31を有し、この筐体31と電極22とは電気的に接続されている。また、筐体31内には略円錐形状のマイクロ光学レンズ(本発明における光学的開口部に相当)32が設けられ、マイクロ光学レンズ32の頂部側端部はプローブ部2の導光部23と光学的に接続され、底面側の球面状部は筐体31の外側に露出している。図4に示すように、この体内装着部1が頭皮101と頭蓋骨102との間に配設された状態では、マイクロ光学レンズ32の球面状部が頭皮101裏面に密着(又は近接)している。
 この体内装着部1aにおいて、脳内に刺入された又は脳溝に挿入されたプローブ部2の電極22は脳内又は脳溝深部の例えば神経組織のアクションポテンシャルを拾い、それによる電気的な振動が筐体31の再輻射現象により増幅され、微弱な電磁波として放射される。この電磁波は頭皮を通過し、頭皮の外側に設置された図示しない体外計測部10において受信され、電気信号が再現される。この場合、筐体31から放射される電磁波はかなり微弱であるので、体外計測部10は頭皮101を挟んでできるだけ筐体31に近い位置に設置することが好ましい。
 また、体外計測部10から図4に示すように頭皮101に近赤外光を照射すると、この光は頭皮101を透過し、その直下のマイクロ光学レンズ32により集光されて導光部23に送り込まれる。そして、導光部23を通して近赤外光は脳内又は脳溝内に照射される。或る体内装着部1aのプローブ部2から出射した近赤外光に応じた脳内や脳溝での反射光、散乱光、透過光が別の体内装着部1aのプローブ部2の導光部23に入射すると、この導光部23を通ってマイクロ光学レンズ32にまで光は案内され、頭皮101と通してその外側に光が放出される。体外計測部10でこの光を受光し、その強度変化をリアルタイムで解析することにより、光トポグラフィ計測を行うことができる。
 図5は、図3(c)に示した2軸プローブ構造を利用した別の構成の体内装着部1bの概略断面図である。ここでは、ヘッド部3の内部に能動的な電気回路を持つという意味で、この構成を上記パッシブ型に対比してアクティブ型と呼ぶ。
 この体内装着部1bにおいて、ヘッド部3には電気回路部33とアンテナ34と光センサ36とが内蔵され、マイクロ光学レンズ32中には、導光部23を経てプローブ部2側から戻って来た光を反射させて光センサ36に導入するミラー35が埋設されている。電極22、24、及び光センサ36は電気回路部33と電気的に接続されている。
 図6は電気回路部33の概略ブロック構成図である。また、図7はこの体内装着部1bに対応して利用される体外計測部10の概略ブロック構成図である。
 電気回路部33は、アンテナ駆動部332、変調部334、復調部333を含む送受信部331と、電力供給部335と、制御部336と、信号処理部337と、ID記憶部338と、を備える。複数の体内装着部1はそれぞれ固有の識別情報(ID)を有しており、その識別情報がID記憶部338に予め格納されている。一方、体外計測部10は、アンテナ駆動部13、変調部15、復調部14を含む送受信部12と、電力供給部16と、制御部17と、信号処理部18と、を備える。
 体外計測部10において電力供給部16は、所定周波数の電磁波をアンテナ11から放射するように、アンテナ駆動部13を介してアンテナ11を駆動する。電気回路部33の電力供給部335はアンテナ34を介して上記電磁波を受けて電力を生成し、これを電気回路部33の各部に供給する。即ち、この電気回路部33は自らはバッテリなどの電源を有さず、外部からアンテナ34を介して受ける電磁波に基づいて必要な電力を生成する、いわゆるパッシブ型ICタグと同様の回路を有している。もちろん、電気回路部33にバッテリを内蔵してもよいが、軽量化や長寿命化には不利である。
 体外計測部10において、制御部17による制御信号は変調部15で所定形式(アンテナ11、34を通した電波伝送に適した周波数帯域など)に変調され、アンテナ駆動部13を介してアンテナ11から送出される。電気回路部33はアンテナ34を介して上記信号を受信し、復調部333で復調することで元の制御信号を抽出し、制御部336はこの制御信号に基づいて信号処理部337やID記憶部338などの動作を制御する。基本的には、ID記憶部338から読み出されたIDが変調部334により所定形式に変調され、アンテナ駆動部332を介してアンテナ34から送出される。さらに、電極22,24で拾われた電気信号や光センサ36で光電変換により生成された電気信号が信号処理部337で増幅され、必要に応じて周波数多重、時分割多重などの多重化が行われる。そして、変調部334により所定形式に変調され、アンテナ駆動部332を介してアンテナ34から送出される。
 体外計測部10では、上記のように体内装着部1から送出される電波をアンテナ11で受信し、復調部14で復調した後に信号処理部18で処理して、IDや、各電極22、24、光センサ36で得られた各電気信号を分離して取り出す。
 図8は図5~図7に示した体内装着部及び体外計測部を用いた計測の一例を示す概略図である。ここでは、2つの体内装着部1A、1B及び体外計測部10A、10Bのみを描出しているが、任意の数だけ体内装着部及び体外計測部を設けることができる。体外計測部10Aは近赤外光を出射し、その光は頭皮101を通して体内装着部1Aのヘッド部3Aに取り込まれ、プローブ部2A内の導光路を通して脳内に案内される。そして、プローブ部2Aの先端付近から脳内に近赤外光が照射される。光は脳内で反射、散乱しながら透過し、一部が体内装着部1Bのプローブ部2B先端に達して導光路に取り込まれ、ヘッド部3Bに送られ、そして光センサ36で電気信号に変換される。即ち、この電気信号は、脳内の血流などの情報を含む。
 一方、体内装着部1A、1Bはそれぞれ、プローブ部2A、2Bの電極22、24で脳内の電気信号を捉える。体内装着部1Aのプローブ部2Aの電極22、24で捉えられた脳内の電気信号は、上述したようにヘッド部3Aに内蔵された電気回路部33、アンテナ34により電波伝送され、体外計測部10Aで受信される。体内装着部1Bのプローブ部2Bの電極22、24で捉えられた脳内の電気信号、及び、光センサ36で光電変換により生成された電気信号は、上述したようにヘッド部3Bに内蔵された電気回路部33、アンテナ34により電波伝送され、体外計測部10Bで受信される。このようにして、脳波等の電気的情報の収集と光トポグラフィなどの光学的情報の収集とが並行して行われる。
 特に図3(c)に示した2軸プローブ構造を利用した体内装着部を用いることにより、頭皮101に照射した近赤外光を脳内又は脳溝の深部に送り込むことができる。従来の非侵襲型の光トポグラフィ計測では脳表面の計測しか行うことができなかったが、この構成によれば、脳内深部の高解像の光トポグラフィ計測を実現することができる。
 また、図5に示したアクティブ型の体内装着部1bでは、電気信号などを電気回路部33側で増幅することができるとともに、伝送途中で混入したノイズを体外計測部側で信号処理により除去することができるので、図4に示したパッシブ型に比べて高品位な信号を得ることができ、計測の感度向上、分解能向上に有利である。また、電力伝送、信号伝送ともに、或る程度離れた位置でも伝送が可能であるため、必ずしも図8に示すように体外計測部10を体内装着部1の至近に設ける必要はない。
 また、この構成では、電気回路部33で電極22、24などで得られた信号をデジタル化し、デジタルデータとして送出するようにしてもよい。また、被検体の頭部に多数の体内装着部が装着された場合でも、各体内装着部をIDにより識別することが可能となるので、体外計測部を1つのみ設け、これにより全ての体内装着部の制御や信号処理を行うことも可能である。
 さらにまた、複数の体外計測部を設ける場合でも、その体外計測部同士で相互に通信が可能な構成としておくことにより、複数の体内装着部で連携した計測が可能となる。例えば、全ての体内装着部で同時に計測を行うほか、脳全体をカバーするように配置した多数の体内装着部を所定のパターンで時間をずらして計測を行うようなことも可能である。このように複数の体内装着部をネットワーク化した計測を行うことにより、従来のデバイスでは達成し得ない複雑で高度な計測が可能となる。
 また、上記実施例では、体内装着部のプローブ部に1本の導光路のみが設けられていたが、2本の導光路を平行に配設し(但し、その場合には2本の導光路中を通る光の干渉が起きないようにして)、入射側と出射側とを分離するようにしてもよい。これにより、1つの体内装着部を被検体に装着した状態で光トポグラフィに相当する計測が可能となる。
 なお、上記各実施例は一例であって、本発明の趣旨の範囲で適宜変形や修正を行っても、本願の請求の範囲に包含されることは明らかである。
1、1A、1B、1a、1b…体内装着部
2、2A、2B…プローブ部
3、3A、3B…ヘッド部
10、10A、10B…体外計測部
11、34…アンテナ
12…送受信部
13…アンテナ駆動部
14…復調部
15…変調部
16…電力供給部
17…制御部
18…信号処理部
21、22、24…電極
23…導光部
31…筐体
32…マイクロ光学レンズ
33…電気回路部
35…ミラー
36…光センサ
331…送受信部
332…アンテナ駆動部
333…復調部
334…変調部
335…電力供給部
336…制御部
337…信号処理部
338…ID記憶部
100…頭部
101…頭皮
102…頭蓋骨
103…大脳皮質
104…大脳
105…脳溝

Claims (7)

  1.  被検体の脳内の情報を収集する脳内情報計測装置であって、
     a)被検体の頭蓋骨に穿孔された貫通孔を通して脳に刺入され又は脳溝に挿入され、少なくとも周囲の電気信号を捉える電極を有するプローブ部と、該プローブ部の端部に一体に設けられて被検体の頭蓋骨と頭皮との間に挟持され、少なくとも前記電極で捕捉された電気信号を無線で頭皮の外側に送出する信号送出部を有するヘッド部と、から成る体内装着部と、
     b)被検体の頭皮の外側に設置され、その頭皮を通して前記ヘッド部の信号送出部から送出される信号を受信する体外計測部と、
     を備えることを特徴とする脳内情報計測装置。
  2.  請求項1に記載の脳内情報計測装置であって、
     前記信号送出部は、ヘッド部筐体からの再輻射を利用した信号送出を行うものであることを特徴とする脳内情報計測装置。
  3.  請求項1に記載の脳内情報計測装置であって、
     前記信号送出部は、前記電極で捕捉された電気信号を所定の形式に変換する変換処理部と、変換された信号を放射するアンテナと、を含むことを特徴とする脳内情報計測装置。
  4.  請求項3に記載の脳内情報計測装置であって、
     前記ヘッド部は、前記体外計測部から発せられる電波を受けて電力を生成する電力供給部を有し、生成した電力を前記信号送出部の駆動電力とすることを特徴とする脳内情報計測装置。
  5.  請求項1~4のいずれかに記載の脳内情報計測装置であって、
     前記ヘッド部は光学的開口部を有し、前記プローブ部は前記光学的開口部と光学的に結合された導光路を有することを特徴とする脳内情報計測装置。
  6.  請求項5に記載の脳内情報計測装置であって、
     前記体外計測部は、被検体の頭皮を介して該被検体に装着された体内装着部のヘッド部に、光トポグラフィ計測用の近赤外光を照射する照射部を有することを特徴とする脳内情報計測装置。
  7.  請求項5又は6に記載の脳内情報計測装置であって、
     前記ヘッド部は、前記導光路を経てプローブ部側から到来した光を受光して電気信号に変換する光電変換部を有することを特徴とする脳内情報計測装置。
PCT/JP2009/004877 2008-09-30 2009-09-25 脳内情報計測装置 WO2010038393A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/121,506 US8874201B2 (en) 2008-09-30 2009-09-25 Intracerebral information measuring device
JP2010531721A JP5224482B2 (ja) 2008-09-30 2009-09-25 脳内情報計測装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-251964 2008-09-30
JP2008251964 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010038393A1 true WO2010038393A1 (ja) 2010-04-08

Family

ID=42073177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004877 WO2010038393A1 (ja) 2008-09-30 2009-09-25 脳内情報計測装置

Country Status (3)

Country Link
US (1) US8874201B2 (ja)
JP (1) JP5224482B2 (ja)
WO (1) WO2010038393A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011133490A1 (en) * 2010-04-20 2011-10-27 Med-Elektromedizinische Geraete Gmbh Electrode configuration and measuring device for measuring the electrical activity in electrically active tissue
JP2014079387A (ja) * 2012-10-17 2014-05-08 Nara Institute Of Schience And Technology 脳機能計測装置及び計測方法
JP2016049342A (ja) * 2014-09-01 2016-04-11 国立大学法人 奈良先端科学技術大学院大学 生体組織用イメージングデバイス及び生体組織用イメージング方法
KR101645852B1 (ko) * 2015-02-05 2016-08-04 한양대학교 산학협력단 나사형 전극 및 나사형 전극을 이용한 뇌파 측정 장치 및 방법
WO2016204084A1 (ja) * 2015-06-17 2016-12-22 国立大学法人東北大学 神経電極システム
TWI568421B (zh) * 2015-01-23 2017-02-01 Skull surgery device
TWI577348B (zh) * 2015-01-23 2017-04-11 Skull surgery positioning system
KR101798640B1 (ko) 2016-08-31 2017-11-16 주식회사 유메딕스 뇌파 획득 장치 및 이를 이용한 행동 패턴 실험 장치
WO2020095396A1 (ja) * 2018-11-07 2020-05-14 特定非営利活動法人ニューロクリアティブ研究会 電極および信号測定装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170122928A1 (en) * 2013-05-05 2017-05-04 The Trustees Of Boston College Coaxial electrode arrays and methods thereof
CN106037804A (zh) * 2016-06-27 2016-10-26 中国科学院苏州生物医学工程技术研究所 一种脑部病变区域的定位系统
CN111655143A (zh) 2018-01-31 2020-09-11 京瓷株式会社 陶瓷引导件、陶瓷引导件装置以及陶瓷引导件模块
CN115551418A (zh) 2020-05-15 2022-12-30 京瓷株式会社 生物体用管以及生物体测定装置
CN112259570B (zh) * 2020-10-22 2022-08-23 杭州电子科技大学温州研究院有限公司 用于神经记录和光刺激的柔性脑皮层电极及其制备方法
CN113180677B (zh) * 2021-04-27 2023-05-16 清华大学 脑电信号获取装置以及脑电信号获取方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040006264A1 (en) * 2001-11-20 2004-01-08 Mojarradi Mohammad M. Neural prosthetic micro system
US20040082875A1 (en) * 2002-10-24 2004-04-29 Brown University Research Foundation Microstructured arrays for cortex interaction and related methods of manufacture and use
US20050015128A1 (en) * 2003-05-29 2005-01-20 Rezai Ali R. Excess lead retaining and management devices and methods of using same
US20050113744A1 (en) * 2003-11-21 2005-05-26 Cyberkinetics, Inc. Agent delivery systems and related methods under control of biological electrical signals
US20050203366A1 (en) * 2004-03-12 2005-09-15 Donoghue John P. Neurological event monitoring and therapy systems and related methods
US20060009814A1 (en) * 2004-07-07 2006-01-12 Alfred E. Mann Foundation For Scientific Research Brian implant device
US20060167530A1 (en) * 2005-01-06 2006-07-27 Flaherty J C Patient training routine for biological interface system
JP2006230955A (ja) * 2005-02-28 2006-09-07 Tohoku Univ 神経インプラント装置
US20060206172A1 (en) * 2005-03-14 2006-09-14 Dimauro Thomas M Red light implant for treating Parkinson's Disease

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1684861B1 (en) * 2003-10-21 2014-12-03 The Regents Of The University Of Michigan Intracranial neural interface system
JP2007289224A (ja) 2006-04-21 2007-11-08 Hitachi Ltd 生体計測装置および生体計測方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040006264A1 (en) * 2001-11-20 2004-01-08 Mojarradi Mohammad M. Neural prosthetic micro system
US20040082875A1 (en) * 2002-10-24 2004-04-29 Brown University Research Foundation Microstructured arrays for cortex interaction and related methods of manufacture and use
US20050015128A1 (en) * 2003-05-29 2005-01-20 Rezai Ali R. Excess lead retaining and management devices and methods of using same
US20050113744A1 (en) * 2003-11-21 2005-05-26 Cyberkinetics, Inc. Agent delivery systems and related methods under control of biological electrical signals
US20050203366A1 (en) * 2004-03-12 2005-09-15 Donoghue John P. Neurological event monitoring and therapy systems and related methods
US20060009814A1 (en) * 2004-07-07 2006-01-12 Alfred E. Mann Foundation For Scientific Research Brian implant device
US20060167530A1 (en) * 2005-01-06 2006-07-27 Flaherty J C Patient training routine for biological interface system
JP2006230955A (ja) * 2005-02-28 2006-09-07 Tohoku Univ 神経インプラント装置
US20060206172A1 (en) * 2005-03-14 2006-09-14 Dimauro Thomas M Red light implant for treating Parkinson's Disease

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8774892B2 (en) 2007-06-05 2014-07-08 Med-El Elektromedizinische Geraete Gmbh Electrode configuration and measuring device for measuring the electrical activity in electrically active tissue
WO2011133490A1 (en) * 2010-04-20 2011-10-27 Med-Elektromedizinische Geraete Gmbh Electrode configuration and measuring device for measuring the electrical activity in electrically active tissue
JP2014079387A (ja) * 2012-10-17 2014-05-08 Nara Institute Of Schience And Technology 脳機能計測装置及び計測方法
JP2016049342A (ja) * 2014-09-01 2016-04-11 国立大学法人 奈良先端科学技術大学院大学 生体組織用イメージングデバイス及び生体組織用イメージング方法
TWI568421B (zh) * 2015-01-23 2017-02-01 Skull surgery device
TWI577348B (zh) * 2015-01-23 2017-04-11 Skull surgery positioning system
KR101645852B1 (ko) * 2015-02-05 2016-08-04 한양대학교 산학협력단 나사형 전극 및 나사형 전극을 이용한 뇌파 측정 장치 및 방법
WO2016204084A1 (ja) * 2015-06-17 2016-12-22 国立大学法人東北大学 神経電極システム
JPWO2016204084A1 (ja) * 2015-06-17 2018-04-26 国立大学法人東北大学 神経電極システム
KR101798640B1 (ko) 2016-08-31 2017-11-16 주식회사 유메딕스 뇌파 획득 장치 및 이를 이용한 행동 패턴 실험 장치
WO2020095396A1 (ja) * 2018-11-07 2020-05-14 特定非営利活動法人ニューロクリアティブ研究会 電極および信号測定装置

Also Published As

Publication number Publication date
US20110178422A1 (en) 2011-07-21
JPWO2010038393A1 (ja) 2012-03-01
JP5224482B2 (ja) 2013-07-03
US8874201B2 (en) 2014-10-28

Similar Documents

Publication Publication Date Title
JP5224482B2 (ja) 脳内情報計測装置
US6324418B1 (en) Portable tissue spectroscopy apparatus and method
EP1219241B1 (en) Stethoscope
US11116409B2 (en) Devices and methods for detection of internal bleeding and hematoma
JP5738752B2 (ja) 非侵襲的光学センサ
US20170127975A1 (en) Injectable sensors and methods of use
US11241187B2 (en) Electromagnetic wave sensing and modulating of neuronal activities
JP6089568B2 (ja) 脳機能計測装置及び計測方法
US11490814B2 (en) Tunable detectors
EP2330979A1 (en) Apparatus, system, and method for ultrasound powered neurotelemetry
WO2000027279A1 (en) fMRI COMPATIBLE ELECTRODE AND ELECTRODE PLACEMENT TECHNIQUES
CN106037804A (zh) 一种脑部病变区域的定位系统
KR101465046B1 (ko) 의료용 센서 부착장치
CN108553110B (zh) 测量人体血液成分含量的方法及其装置
JP5416283B2 (ja) 脊椎骨の脊髄の活動を測定するための装置
CN206063165U (zh) 一种脑部病变区域的定位系统
US20150208925A1 (en) Photoacoustic Needle Insertion Platform
CN209661662U (zh) 可检测脑深部核团血氧水平的脑深部刺激电极
US20200054258A1 (en) Medical system
Yurtsever et al. Pocket PC based wireless continuous wave near infrared spectroscopy system for functional imaging of human brain
JP6590277B2 (ja) 生体情報取得装置
JP2014534012A (ja) 埋め込み可能なイメージング構成およびそれを使用する方法
Song et al. Appendix A Antennas and Sensors for Medical Applications: A Representative Literature Review
Sarmiento Injectable Capsules for Physiological Monitoring on Animals
JP2004041656A (ja) 音響性及び非音響性耳小骨筋活動検出用トランスデューサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531721

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13121506

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817436

Country of ref document: EP

Kind code of ref document: A1