WO2010037276A1 - 确定相关参数的方法、用户终端以及信号赋形方法、基站 - Google Patents

确定相关参数的方法、用户终端以及信号赋形方法、基站 Download PDF

Info

Publication number
WO2010037276A1
WO2010037276A1 PCT/CN2009/001319 CN2009001319W WO2010037276A1 WO 2010037276 A1 WO2010037276 A1 WO 2010037276A1 CN 2009001319 W CN2009001319 W CN 2009001319W WO 2010037276 A1 WO2010037276 A1 WO 2010037276A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
beam space
noise ratio
signal
space
Prior art date
Application number
PCT/CN2009/001319
Other languages
English (en)
French (fr)
Inventor
刘光毅
韩璐
沈晓冬
姜大洁
王启星
张勇
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Priority to EP09817190.3A priority Critical patent/EP2341637A4/en
Publication of WO2010037276A1 publication Critical patent/WO2010037276A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication

Definitions

  • the present invention relates to the field of computer and communication technologies, and in particular, to a method for determining related parameters in a beam space, a user terminal, a signal shaping method, and a base station.
  • Background Art Currently, in a Time Division Duplex (TDD) communication system, eigenbeamforming processing of downlink channel information can be performed by using uplink channel information using the symmetric characteristics of uplink and downlink channels.
  • TDD Time Division Duplex
  • the determination and feedback of the relevant parameters in each beam space for shaping the eigenbeams can be performed in the following two ways:
  • an antenna in the base station transmits a common pilot signal through a corresponding antenna port, and after receiving the common pilot signal, the user equipment (UE, User Equipment) determines each beam space according to the common pilot signal.
  • the relevant parameters are fed back to the base station, and the base station performs relevant shaping processing on the characteristic beam according to the relevant parameters fed back by the UE.
  • the disadvantages of the method are as follows: Since the UE only refers to the common pilot signal on one antenna when determining the relevant parameters of the eigenbeamforming, the UE is susceptible to the variation of the spatial fading characteristics, so that the relevant parameters determined by the UE are insufficient. It is accurate, and thus causes the base station to generate an error when performing correlation shaping processing on the eigenbeam according to the relevant parameters fed back by the UE.
  • the common pilot signal transmitted by all the antennas in the base station is processed by using a broadcast shaped antenna weight vector to obtain a shaped common pilot signal, and then the shaped common pilot signal is obtained through the antenna port.
  • Sending to the UE after receiving the shaped common pilot signal, the UE determines relevant parameters in each beam space according to the shaped common pilot signal, and feeds the determined related parameters to the base station, and the base station according to the feedback of the UE The parameter is sent after the eigenbeam is shaped and associated.
  • the disadvantages of this method are: due to the shaped common pilot signal received by the UE and each antenna There is a certain difference between the common pilot signals that are sent separately, and the related parameters in each beam space determined by the UE are not accurate enough, so that the base station performs related shaping on the eigenbeams according to relevant parameters fed back by the UE. When processing, an error occurs. Summary of the invention
  • the embodiments of the present invention provide a method for determining related parameters in a beam space, a user terminal, a signal shaping method, and a base station, which are used to solve the problem that the determination of related parameters in each beam space is not accurate enough in the prior art.
  • a method for determining related parameters in a beam space comprising: receiving, by a user terminal, a common pilot signal, where the common pilot signal is that the number of antennas that need to transmit a common pilot signal is not greater than the number of antenna ports, and the common pilot signal needs to be sent.
  • the antennas are simultaneously transmitted through the antenna ports; or when the common pilot signal is that the number of antennas that need to transmit the common pilot signal is greater than the number of antenna ports, the antennas are grouped.
  • each group of antennas is sent by the antenna port based on time division multiplexing, wherein the number of each group of antennas is not greater than the number of antenna ports; the user terminal determines each beam according to the received common pilot signals sent by at least two antennas.
  • a user terminal for determining related parameters in a beam space comprising: a receiving unit, configured to receive a common pilot signal, where the common pilot signal is that the number of at least two antennas that need to transmit a common pilot signal is not greater than the number of antenna ports, When the antennas are simultaneously transmitted through the antenna port, or when the common pilot signal is that the number of at least two antennas that need to transmit the common pilot signal is greater than the number of antenna ports, the antennas are grouped by the antennas And the number of antennas of each group is not greater than the number of antenna ports, and the determining unit is configured to determine each beam of the common pilot signal according to the at least two antennas received by the receiving unit.
  • the common pilot signal is that the number of at least two antennas that need to transmit a common pilot signal is not greater than the number of antenna ports
  • a method for shaping a signal in a beam space comprising: receiving, by a base station, a related shaping parameter in each beam space of a user terminal fed back by a user terminal, where the parameter is a user terminal according to Determining the common pilot signal transmitted by the two antennas separately; shaping the signal to be transmitted in the beam space of the user terminal according to the parameter.
  • a base station for shaping a signal in a beam space comprising: a receiving unit, configured to receive a related shaping parameter in each beam space of the user terminal fed back by the user terminal, where the parameter is that the user terminal separately according to at least two antennas
  • the transmitting common pilot signal determines; the shaping unit is configured to perform shaping processing on the signal to be transmitted in the beam space of the user terminal according to the parameter received by the receiving unit.
  • a method for feeding back related parameters in a beam space comprising: determining, by the user terminal, a signal to noise ratio on each antenna of the user terminal according to the received common pilot signal; and determining, according to the determined signal to noise ratio of each antenna of the user terminal, Determining an average signal to noise ratio on each antenna of the user terminal; feeding back the determined average signal to noise ratio on each antenna to the base station.
  • a method for feeding back related parameters in a beam space comprising: determining, by a user terminal, a downlink channel response matrix and an average signal to noise ratio on each antenna of a user terminal according to the received common pilot signal; performing singular values on the downlink channel response matrix Decomposing, obtaining eigenvalues in each beam space; for each beam space, the product of the signal-to-noise ratio and the eigenvalue squared in the beam space is taken as the effective signal-to-noise ratio on each beam space of the user terminal;
  • the effective signal-to-noise ratio in the mapping relationship between the effective signal-to-noise ratio and the modulation and coding mode information, finds the modulation and coding mode information available in the beam space; the user terminal determines that it can support according to the feature value in each beam space.
  • a user terminal for feeding back related parameters in a beam space comprising a first determining unit, configured to determine a downlink channel response matrix according to the received common pilot signal, and an average signal to noise ratio on each antenna of the user terminal; And performing singular value decomposition on the downlink channel response matrix to obtain feature values in each beam space; an effective signal to noise ratio determining unit, configured to determine an average signal to noise ratio of the first determining unit for each beam space And a product of squares of the eigenvalues in the beam space obtained by the decomposing unit as an effective signal to noise ratio in each beam space of the user terminal; a searching unit, configured to obtain the effective signal to noise ratio according to the effective signal to noise ratio determining unit , in effective signal-to-noise ratio and modulation In the mapping relationship table of the coding mode information, the modulation coding mode information available in the beam space is found; the second determining unit is configured to determine, according to the feature value in each beam space obtained by the decomposition unit, the user terminal can support The number of beam spaces; or used
  • a method for shaping a signal in a beam space comprising: receiving, by a base station, an average signal to noise ratio on each antenna of a user terminal fed back by a user terminal; determining an uplink channel response matrix of the user terminal according to the uplink channel echo signal; Performing transposition processing on the uplink channel response matrix to obtain a downlink channel response matrix; performing singular value decomposition on the downlink channel response matrix to obtain eigenvalues and beam space vectors in each beam space of the user terminal; And determining, according to the feature value, an effective signal to noise ratio in each beam space of the user terminal; and searching, according to the effective signal to noise ratio, in the mapping relationship between the effective signal to noise ratio and the modulation and coding mode information, finding the beam space Available modulation coding mode information; according to the number of beam spaces that the user terminal can support, for each beam space in the corresponding number of beam spaces, according to the modulation coding mode information and the beam space vector available in the beam space, the pair is to be The signal transmitted in the beam space is shaped
  • a base station for shaping a signal in a beam space comprising: a receiving unit, configured to receive an average signal to noise ratio on each antenna of the user terminal fed back by the user terminal; and a determining unit, configured to determine the user terminal according to the uplink channel echo signal
  • the uplink channel response matrix is configured to perform transposition processing on the uplink channel response matrix determined by the determining unit to obtain a downlink channel response matrix, and a decomposing unit configured to perform the downlink channel response matrix obtained by the transposition unit
  • the singular value decomposition is performed to obtain the eigenvalue and the beam space vector in each beam space of the user terminal.
  • the number determining unit is configured to determine the number of beam spaces that the user terminal can support according to the eigenvalues in each beam space obtained by the decomposing unit.
  • An effective signal to noise ratio determining unit configured to determine an effective signal to noise ratio in each beam space of the user terminal according to the feature value and the average signal to noise ratio; and a searching unit configured to determine according to the effective signal to noise ratio determining unit
  • a method for shaping a signal in a beam space comprising: receiving, by a base station, modulation modulation coding information available in each beam space of a user terminal fed back by a user terminal, and a number of beam spaces that the user terminal can support; An echo signal, determining an uplink channel response matrix of the user terminal; performing transposition processing on the determined uplink channel response matrix to obtain a downlink channel response matrix; performing singular value decomposition on the downlink channel response matrix to obtain each beam space of the user terminal a beam space vector; according to the number of beam spaces that the user terminal can support, for each beam space in the corresponding number of beam spaces, according to the modulation coding mode information and the beam space vector available in the beam space, the pair is to be in the beam space
  • the signal sent in is shaped.
  • a base station for shaping a signal in a beam space comprising: a receiving unit, configured to receive modulation and coding mode information available in each beam space fed back by the user terminal, and a number of beam spaces that the user terminal can support; Determining, according to the uplink channel echo signal, an uplink channel response matrix of the user terminal; the transposition unit is configured to perform transposition processing on the uplink channel response matrix determined by the determining unit to obtain a downlink channel response matrix; and the decomposing unit is configured to transpose Performing singular value decomposition on the downlink channel response matrix obtained by the unit to obtain a beam space vector in each beam space of the user terminal; the shaping unit is configured to: according to the number of beam spaces that the user terminal can receive according to the receiving unit, Each beam space in the corresponding number of beam spaces is transmitted in the beam space according to the modulation and coding mode information available in the beam space received by the receiving unit and the beam space vector in the beam space obtained by the decomposing unit.
  • Signal shaping Management configured to: according to the number of beam spaces
  • the embodiment of the present invention receives a common pilot signal separately sent by at least two antennas in the base station, where the common pilot signal is that the number of antennas that need to transmit the common pilot signal is not greater than the number of antenna ports, And respectively, when the common pilot signal is that the number of antennas that need to send the common pilot signal is greater than the number of antenna ports, the antennas are grouped, and each group of antennas is sent through the antenna port according to time division multiplexing. Of each group of antennas The number of antenna ports is not greater than the number of antenna ports; the user terminal determines the relevant parameters in each beam space according to the common pilot signals respectively sent by the received at least two antennas, so that the user terminal can receive at least two antennas simultaneously.
  • FIG. 1 is a schematic flowchart of a method for determining related parameters in a beam space according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a user terminal for determining related parameters in a beam space according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for forming a signal in a beam space according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of another method for forming a signal in a beam space according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of still another method for forming a signal in a beam space according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of another method for forming a signal in a beam space according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station for forming a signal in a beam space according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of another base station for forming a signal in a beam space according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of another base station for forming a signal in a beam space according to an embodiment of the present disclosure.
  • FIG. 10 is still another base station for shaping a signal in a beam space according to an embodiment of the present invention.
  • the embodiments of the present invention provide a method, a device, and a signal shaping method and apparatus for determining a shape parameter, which are used to solve the problem that the determination of channel quality information in the prior art is not accurate enough.
  • a specific process diagram of a method for determining related parameters in a beam space includes:
  • Step 11 The user terminal receives a common pilot signal, where the number of antennas that need to send the common pilot signal is not greater than the number of antenna ports, and the number of antennas that need to send the common pilot signal is at least two The antennas are respectively transmitted through the antenna port; or the common pilot signal is used to group the antennas when the number of antennas transmitting the common pilot signals is greater than the number of antenna ports, and each group of antennas is based on time division multiplexing. The number of antennas sent by the antenna port is not greater than the number of antenna ports;
  • Step 12 The user terminal determines related parameters in each beam space according to the common pilot signals sent by the at least two antennas.
  • the LTE Release 8 of the Time Division Duplexing Long Term Evolution is taken as an example.
  • the common pilot signal can be transmitted through the four existing antenna ports in the base station.
  • the antennas to transmit the common pilot signal when the number of antennas to transmit the common pilot signal is less than the number of antenna ports, that is, when the number of antennas to transmit the common pilot signal is less than 4, at least 2 ⁇ antennas pass through 2 antennas
  • the port directly sends a common pilot signal to the user terminal; when the number of antennas to transmit the common pilot signal is greater than the number of antenna ports, the antennas may be grouped, and some antennas form a group after grouping, for example, when the antenna root When the number is 8, the antenna can be divided into two groups, each group of antennas adopts time division multiplexing.
  • the adjacent time may be two different Transmission Time Intervals (TTI), or two different time slots in one TTI), which are sequentially transmitted through the four antenna ports to the user terminal.
  • TTI Transmission Time Intervals
  • the common pilot signal in this way, the user terminal can obtain the common pilot signal on the eight antennas in two consecutive times.
  • one group of antennas can transmit to the user terminal through the four antenna ports in one frame. Pilot signal, and in another frame, another set of antennas transmits a common pilot signal to the user terminal through 4 antenna ports; since each frame in the TDD LTE system includes 2 time slots, it can also be used in In the first time slot, one group of antennas transmits a common pilot signal to the user terminal through the four antenna ports, and in the second time slot of the second group, the other group antenna transmits the public to the user terminal through the four antenna ports. In this way, the pilot signal can be realized in one frame, and all of the eight antennas can transmit the common pilot signal to the user terminal.
  • the number of antennas transmitting the pilot signal is 6, and the antennas are divided into two groups, the number of antennas in one group is 2, and the number of antennas in the other group is 4, then In one , two antennas transmit a common pilot signal to the user terminal through two antenna ports, and in the other, the remaining four antennas transmit a common pilot signal to the user terminal through four antenna ports; In the first time slot of ⁇ , two antennas can transmit a common pilot signal to the user terminal through two antenna ports, and in the second time slot of ⁇ , the remaining four antennas pass four antennas. The port transmits a common pilot signal to the user terminal respectively.
  • the relevant parameters in the respective beam spaces of the user terminal are mainly the average signal to noise ratio on each antenna of the user terminal, the modulation and coding mode information available on each beam space of the user terminal, and the beam space that the user terminal can support.
  • the number, for different related parameters, the method for the user terminal to determine each relevant parameter is as follows:
  • the method for determining the average signal to noise ratio on each antenna of the user terminal is:
  • the user terminal respectively determines the signal to noise ratio on each antenna of the user terminal according to the received common pilot signal
  • the method for determining the modulation and coding mode information available on each beam space of the user terminal is:
  • the user terminal determines the downlink channel response matrix H according to the received common pilot signal, and the average signal to noise ratio SINR on each antenna of the user terminal;
  • SINR t SINR ⁇ ⁇ in each beam space of the user terminal.
  • SINRi the effective signal-to-noise ratio
  • the method for determining the number of beam spaces that the user terminal can support is:
  • the number of eigenbeams that the user terminal can support in each beam space can be determined according to 6 NR or ⁇ on each antenna of the user terminal, for example, , M can be determined by setting A, or SlNRi is greater than a certain threshold, where M is a positive integer.
  • the present invention provides a user terminal for determining relevant parameters in a beam space, which is used to solve the problem that the determination of channel quality information in the prior art is not accurate enough.
  • the specific structure of the user terminal is shown in FIG. 2 Show, including:
  • the receiving unit 21 is configured to receive a common pilot signal, where the common pilot signal is that the number of antennas that need to send the common pilot signal is not greater than the number of antenna ports, and the number of antennas that need to send the common pilot signal is at least two.
  • the antennas are simultaneously transmitted through the antenna ports; or the common pilot signals are used to group the antennas when the number of antennas transmitting the common pilot signals is greater than the number of antenna ports, and each group of antennas is based on time division multiplexing. Sent through the antenna port, each of which The number of group antennas is not greater than the number of antenna ports;
  • the determining unit 22 is configured to determine related parameters in each beam space according to the common pilot signals sent by the at least two antennas received by the receiving unit.
  • the determining unit 22 specifically includes: a signal to noise ratio determining module, configured to receive the common pilot signal according to the receiving unit 21 And determining a signal to noise ratio on each antenna of the user terminal, respectively; and an average signal to noise ratio determination module, configured to determine an average signal to noise ratio on each antenna of the user terminal according to a signal to noise ratio determined by the signal to noise ratio determination module.
  • the determining unit 22 specifically includes: a determining module, configured to receive the common pilot according to the receiving unit 21 a signal, a downlink channel response matrix, and an average signal to noise ratio in each beam space; a decomposition module, configured to perform singular value decomposition on the matrix determined by the determining module to obtain a feature value in each beam space;
  • An effective signal-to-noise ratio determining module is configured to, for each beam space, use a product value determined by the determining module and a product value obtained by decomposing the squared eigenvalues of the beam space as effective for each beam space of the user terminal.
  • a signal to noise ratio a searching module, configured to determine, according to the effective signal to noise ratio, the effective signal to noise ratio determined by the module, in the mapping relationship between the effective signal to noise ratio and the modulation and coding mode information, find the available modulation in the beam space Encoding mode information.
  • the determining unit 22 specifically includes: a first determining module, Determining, according to the common pilot signal received by the receiving unit 21, a downlink channel response matrix, and an average signal to noise ratio on each antenna of the user terminal; and a decomposing module, configured to perform singular value decomposition on the matrix determined by the first determining module Obtaining a feature value in each beam space; an effective signal-to-noise ratio determining module, configured, for each beam space, an average signal-to-noise ratio on each antenna of the user terminal determined by the first determining module and a feature value obtained by the decomposition module The squared product value is used as the effective signal-to-noise ratio on each beam space of the user terminal; the search module is determined according to the effective signal-to-noise ratio The effective signal-to-noise ratio determined by the module, in the mapping relationship
  • the embodiment of the present invention provides a method for forming a signal in the beam space, which is used to determine according to the method provided by the user terminal according to the foregoing embodiment. And the related parameters are fed back, and the signals to be transmitted in the beam space of the user terminal are accurately shaped.
  • the user terminal determines the relevant parameters in the beam space, only the modulation and coding mode information in the relevant parameters is fed back to the base station, and the base station further determines, according to the modulation and coding mode information, the information to be used in the user terminal.
  • the parameters of the signal sent in the beam space are shaped.
  • the user terminal is not limited to feeding only the modulation and coding mode information to the base station. For example, the user terminal may feed back the determined average signal to noise ratio of each antenna to the base station.
  • the base station After receiving the average signal to noise ratio, the base station determines, according to the average signal to noise ratio, Modulating the coding mode information, and determining the number of beam spaces and the shaping parameters that the user terminal can support according to the uplink channel echo signal, so that some functions required in the prior art in the user terminal are implemented by the base station, thereby reducing the user
  • the performance requirement of the terminal when the relevant parameter fed back to the base station by the user terminal is the modulation and coding mode information and the number of beam spaces that the user terminal can support, in this case, the base station only needs to determine the shaping parameter according to the uplink channel echo signal. Therefore, when this method is adopted, the performance requirements for the base station are lowered.
  • the process of the shaping process of the signal to be transmitted in the beam space of the user terminal is different according to the received related parameters sent by the user terminal. Therefore, the feedback of the user terminal is different for the user terminal.
  • Related parameters different methods for shaping signals in beam space are proposed. It should be noted that the user terminal feeds back to the base station itself.
  • the average signal-to-noise ratio or modulation and coding mode information on each antenna or the number of beam spaces that the user terminal can support may be, but is not limited to, generated by at least two antennas, for example, one according to the prior art.
  • the common pilot signal transmitted on the antenna obtains the determined relevant parameter, and therefore, the method for shaping the signal in the beam space by the subsequent base station according to the relevant parameter determined by the user terminal according to the common pilot signal transmitted on one antenna It is also within the scope of the invention.
  • a specific process diagram of a method for shaping a signal in a beam space according to an embodiment of the present invention is shown in FIG. 3, and includes:
  • Step 31 The base station receives an average signal to noise ratio SINR on each antenna of the user terminal fed back by the user terminal.
  • Step 32 The base station determines an uplink channel response matrix H1 of the user terminal according to the uplink channel echo signal .
  • Step 33 performing transposition processing to obtain a downlink channel response matrix H 2 ;
  • Step 36 SINR finds the MCSf in each beam space in the mapping relationship between TN and
  • Step 37 Determine, according to the feature value i in each beam space, the number of beam spaces M that the user terminal can support, or determine the number of beam spaces that the user terminal can support according to the effective signal-to-noise ratio (SINR) on each beam space of the user terminal.
  • SINR effective signal-to-noise ratio
  • Step 38 The number of beam spaces M that the user terminal can support, for each beam space in the corresponding number of beam spaces, according to the modulation and coding mode information MCSi and the beam space vector available in the beam space, the pair is to be in the beam space
  • the signal sent in is shaped.
  • FIG. 4 Another specific method for shaping a signal in a beam space provided by an embodiment of the present invention
  • Figure 4 The schematic diagram of the process is shown in Figure 4, including:
  • Step 41 The base station receives the modulation and coding mode information available in each beam space fed back by the user terminal, MC&;
  • Step 42 The base station determines, according to the uplink channel echo signal, an uplink channel response matrix of the user terminal;
  • Step 43 Perform transposition processing on the determined uplink channel response matrix to obtain a downlink channel response matrix H 2 ;
  • Step 45 Determine, according to the space in each beam space, the number of beam spaces that the user terminal can support, ⁇ ',
  • Step 46 According to the number of beam spaces that the user terminal can support, for each beam space in the corresponding number of beam spaces, according to the modulation and coding mode information MCSi and the beam space vector available in the beam space, the pair is to be in the beam space.
  • the transmitted signal is shaped.
  • FIG. 5 Another specific schematic diagram of a method for shaping a signal in a beam space according to an embodiment of the present invention is shown in FIG. 5, and includes:
  • Step 51 The base station receives the modulation and coding mode information MCSi available in each beam space fed back by the user terminal, and the number of beam spaces that the user terminal can support.
  • Step 52 The base station determines, according to the uplink channel echo signal, an uplink channel response matrix H1 of the user terminal ;
  • Step 53 Perform transposition processing to obtain a downlink channel response matrix 3 ⁇ 4;
  • Step 54 Perform singular value decomposition on H 2 to obtain a beam space vector on each beam space of the user terminal.
  • Step 55 The number of beam spaces M that the user terminal can support, for each beam space in the corresponding number of beam spaces, according to the modulation coding information available on the beam space MC& And a beam space vector that shapes the signal to be transmitted in the beam space.
  • FIG. 6 A specific flow chart of a method for shaping a signal in a beam space according to an embodiment of the present invention is shown in FIG. 6, and includes:
  • Step 61 The base station receives an average signal to noise ratio SINR on each antenna of the user terminal fed back by the user terminal.
  • Step 62 The base station determines, according to the uplink channel echo signal, an uplink channel response matrix ⁇ ⁇ of the user terminal ;
  • Step 63 performing transposition processing to obtain a downlink channel response matrix ⁇ 2 ;
  • Step 66 Determine an effective signal to noise ratio in each beam space of the user terminal according to the following formula:
  • SINR S earn ⁇ ⁇ ⁇
  • SINRi is the effective signal-to-noise ratio in each beam space of the user terminal
  • SINR is the average signal-to-noise ratio on each antenna of the user terminal, which is the eigenvalue in the beam space
  • Pi is the power value allocated to the beam space
  • P The sum of the powers allocated to each beam space, which is the number of beam spaces that the user terminal can support;
  • Step 67 According to the effective signal-to-noise ratio 6 NR,., in the mapping relationship between 6, . and MC&, find the MC3 ⁇ 4 on the beam space.
  • Step 68 According to the number of beam spaces M that the user terminal can support, for each beam space in the corresponding number of beam spaces, shape the signal to be transmitted in the beam space according to the beam space and the beam space vector. deal with.
  • the mapping relationship between MCSi and SINF is searched, and S/NR,. corresponding to MC&, can be obtained, and the feature values in each feature beam space are combined.
  • the SINR of the signal received by the user terminal can be further determined, and the formula for calculating the SINR is as follows:
  • SINR ⁇ ⁇ ⁇
  • the SINR can be derived by MCSi, and then the signal to be transmitted in the beam space is shaped according to the specific flow diagram shown in FIG. Describe the specific process.
  • an embodiment of the present invention provides a base station for shaping a signal in a beam space, and a specific structure diagram thereof is shown in FIG. 7 , including:
  • the receiving unit 71 is configured to receive an average signal to noise ratio on each antenna of the user terminal fed back by the user terminal, and the determining unit 72 is configured to determine an uplink channel response matrix of the user terminal according to the uplink channel echo signal.
  • the transposition unit 73 is configured to perform transposition processing on the uplink channel response matrix determined by the determining unit 72 to obtain a downlink channel response matrix.
  • a decomposing unit 74 configured to perform singular value decomposition on the downlink channel response matrix obtained by the transposition unit 73, to obtain feature values in each beam space of the user terminal, and a beam space vector;
  • the effective signal-to-noise ratio determining unit 75 is configured to, for each beam space, a product value of the average signal-to-noise ratio received by the receiving unit 71 and the squared feature value of the beam space obtained by the decomposing unit 74 as the beam space of the user terminal. Effective signal to noise ratio
  • the searching unit 76 is configured to: according to the effective signal to noise ratio determined by the effective signal to noise ratio determining unit 75, find a modulation and coding manner available in the beam space in a mapping relationship table between the effective signal to noise ratio and the modulation and coding mode information.
  • the number determining unit 77 is configured to determine, according to the feature value in each beam space obtained by the decomposing unit 74, the number of beam spaces that the user terminal can support, or according to the beam space of the user terminal determined by the effective signal to noise ratio determining unit 75. Effective signal to noise ratio, determining the number of beam spaces that the user terminal can support;
  • the shaping unit 78 is configured to: according to the number of the beam spaces determined by the number determining unit 77, for each beam space in the corresponding number of beam spaces, according to the modulation and coding mode information available on the beam space found by the searching unit 76 and
  • the beam space vector obtained by the decomposition unit 74 performs a shaping process on the signal to be transmitted in the beam space.
  • FIG. 8 Another specific structure diagram of a base station for shaping a signal in a beam space according to an embodiment of the present invention is shown in FIG. 8 and includes:
  • the receiving unit 81 is configured to receive modulation and coding mode information that is available in each beam space fed back by the user terminal;
  • a determining unit 82 configured to determine an uplink channel response matrix of the user terminal according to the uplink channel echo signal
  • the transposition unit 83 is configured to perform transposition processing on the uplink channel response matrix determined by the determining unit 82 to obtain a downlink channel response matrix.
  • a decomposing unit 84 configured to perform singular value decomposition on the downlink channel response matrix obtained by the transposition unit 83, to obtain an eigenvalue in each beam space of the user terminal, and a beam space vector;
  • the number determining unit 85 is configured to determine, according to the feature value in each beam space obtained by the decomposing unit 84, the number of beam spaces that the user terminal can support;
  • the shaping unit 86 is configured to: according to the number of the beam spaces determined by the number determining unit 85, for each beam space in the corresponding number of beam spaces, according to the modulation and coding mode information available on the beam space received by the receiving unit 81,
  • the beam space vector obtained by the decomposing unit 84 performs a shaping process on the signal to be transmitted in the beam space.
  • FIG. 9 A specific structure diagram of a base station for shaping a signal in a beam space according to the embodiment of the present invention is shown in FIG. 9 , and includes: mode information, and a number of beam spaces that the user terminal can support;
  • a determining unit 92 configured to determine an uplink channel response matrix of the user terminal according to the uplink channel echo signal
  • the transposition unit 93 is configured to perform transposition processing on the uplink channel response matrix determined by the determining unit 92, Obtaining a downlink channel response matrix;
  • the decomposing unit 94 is configured to perform singular value decomposition on the downlink channel response matrix obtained by the transposition unit 93 to obtain a beam space vector on each beam space of the user terminal;
  • the shaping unit 95 is configured to: according to the number of beam spaces that the user terminal can receive by the receiving unit 91, for each beam space in the corresponding number of beam spaces, according to the modulation code available on the beam space received by the receiving unit 91
  • the mode information, and the beam space vector obtained by the decomposition unit 94 shape the signal to be transmitted in the beam space.
  • FIG. 10 A specific structural diagram of a base station for shaping a signal in a beam space according to an embodiment of the present invention is shown in FIG. 10, and includes:
  • the receiving unit 101 is configured to receive, by the user terminal, the average signal to noise ratio on each antenna of the user terminal, and the determining unit 102 is configured to determine an uplink channel response matrix of the user terminal according to the uplink channel echo signal.
  • the transposition unit 103 is configured to perform transposition processing on the uplink channel response matrix determined by the determining unit 102 to obtain a downlink channel response matrix.
  • the decomposing unit 104 is configured to perform singular value decomposition on the downlink channel response matrix obtained by the transposition unit 103 to obtain feature values in each beam space of the user terminal, and a beam space vector.
  • the number determining unit 105 is configured to The feature value in each beam space obtained by the decomposing unit 104 determines the number of beam spaces that the user terminal can support;
  • the effective signal to noise ratio determining unit 106 is configured to determine an effective signal to noise ratio in each beam space of the user terminal according to the following formula:
  • the S7NR is an effective signal to noise ratio in each beam space of the user terminal, and the S/NR is an average signal to noise ratio of each antenna of the user terminal received by the receiving unit 101, and is an eigenvalue of the beam space obtained by the decomposing unit 104.
  • A is a power value allocated by the base station to the beam space, and the sum of the power allocated by the corpse to the respective beam spaces is the number of beam spaces that the user terminal can support for the number determining unit 105;
  • the searching unit 107 is configured to find, according to the effective signal to noise ratio determined by the effective signal to noise ratio determining unit 106, a modulation and coding manner available in the beam space in a mapping relationship table between the effective signal to noise ratio and the modulation and coding mode information. information;
  • the shaping unit 108 is configured to, according to the number of beam spaces that the user terminal can support according to the number determining unit 105, for each beam space in the corresponding number of beam spaces, according to the modulation code available on the beam space searched by the searching unit 107.
  • the base station receives parameters related to the shaping process sent by the user terminal (such as an average signal to noise ratio on each antenna of the user terminal, each The modulation and coding mode information available on the beam space and the number of beam spaces that the user terminal can support, etc., may be, but are not limited to, determined by the user terminal according to the common pilot signal transmitted by the at least two antennas, and the parameter received by the base station is It is also within the scope of the present invention to determine by the user terminal based on the common pilot signal transmitted by one antenna.
  • the uplink channel echo signal received by the base station may be fed back on the entire frequency band, or may be fed back on a part of the bandwidth obtained by dividing the full band, for example, dividing the full frequency band. 25 bandwidths, and feedback the uplink channel echo signals on the 5 bandwidths with better performance in the divided bandwidth, or divide the full frequency band into one bandwidth every 5 RBs, and select any multiple bandwidth pairs obtained by the division.
  • the uplink channel echo signal is fed back.
  • the uplink channel echo signal can be fed back on the appropriate bandwidth, thereby avoiding the use of the full frequency band to feedback the uplink channel echo signal.
  • the problem of a waste of resources is relatively large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

确定相关参数的方法、 用户终端以及信号赋形方法、 基站 技术领域
本发明涉及计算机与通信技术领域, 尤其涉及一种确定波束空间中相关 参数的方法、 用户终端以及信号赋形方法、 基站。 背景技术 目前, 在时分双工 (TDD, Time Division Duplex ) 通信系统中, 可以利 用上下行信道的对称特性, 利用上行信道信息进行下行信道信息的特征波束 赋形处理。
对于使用波束赋形的时分双工 TDD长期演进( LTE, Long Term Evolution ) 系统, 对特征波束进行赋形的各个波束空间中相关参数的确定和反馈可以采 用以下两种方式进行:
第一种方式, 基站中的一根天线通过对应的天线端口发送公共导频信号, 用户终端(UE, User Equipment )在接收到该公共导频信号后, 根据该公共导 频信号确定各个波束空间中的相关参数, 并将确定的相关参数反馈给基站, 基站根据 UE反馈的相关参数,对特征波束进行相关赋形处理后发送。该方法 存在的缺点是: 由于 UE在确定特征波束赋形的相关参数时,仅参考了一根天 线上的公共导频信号, 因此容易受到空间衰落特性变化的影响,使得 UE确定 的相关参数不够准确,从而也会使得基站在根据 UE反馈的相关参数,对特征 波束进行相关赋形处理时, 会产生误差。
第二种方式, 对基站中的所有天线分别发送的公共导频信号采用广播赋 形的天线加权向量进行处理, 得到一路赋形公共导频信号, 然后将得到赋形 公共导频信号通过天线端口发送给 UE, UE在接收到该赋形公共导频信号后, 根据该赋形公共导频信号确定各个波束空间中的相关参数, 并将确定的相关 参数反馈给基站, 基站根据 UE反馈的相关参数, 对特征波束进行相关赋形处 理后发送。 该方法的缺点是: 由于 UE接收到的赋形公共导频信号与各个天线 分别发送的公共导频信号之间存在一定的差异, 也会使得 UE确定的各个波束 空间中的相关参数不够准确, 从而也会使得基站在根据 UE反馈的相关参数, 对特征波束进行相关赋形处理时, 会产生误差。 发明内容
本发明实施例提供一种确定波束空间中相关参数的方法、 用户终端以及 信号赋形方法、 基站, 用以解决现有技术中存在的对各个波束空间中的相关 参数的确定不够准确的问题。
为此, 本发明采用以下技术方案:
一种确定波束空间中相关参数的方法, 包括用户终端接收公共导频信号 , 所述公共导频信号为需要发送公共导频信号的天线数量不大于天线端口数量, 且需要发送公共导频信号的天线数量至少为两根时, 由所述天线分别通过天 线端口同时发送的; 或者所述公共导频信号为需要发送公共导频信号的天线 数量大于天线端口数量时, 经对所述天线进行分组后由各组天线基于时分复 用方式通过天线端口发送的, 其中每组天线的数量不大于天线端口数量; 用 户终端根据接收到的至少两根天线发送的公共导频信号, 确定自身的各个波 束空间中的相关参数。
一种确定波束空间中相关参数的用户终端, 包括接收单元, 用于接收公 共导频信号, 所述公共导频信号为需要发送公共导频信号的至少两根天线数 量不大于天线端口数量时, 由所述天线分别通过天线端口同时发送的; 或者 所述公共导频信号为需要发送公共导频信号的至少两根天线数量大于天线端 口数量时, 经对所述天线进行分组后由各组天线基于时分复用方式通过天线 端口发送的, 其中每组天线的数量不大于天线端口数量; 确定单元, 用于根 据接收单元接收到的至少两根天线发送的公共导频信号, 确定自身的各个波 束空间中的相关参数。
一种对波束空间中的信号进行赋形的方法, 包括基站接收用户终端反馈 的用户终端的各个波束空间中的相关赋形参数, 所述参数为用户终端根据至 少两根天线分别发送的公共导频信号确定的; 根据所述参数对将要在用户终 端的波束空间中发送的信号进行赋形处理。
一种对波束空间中的信号进行赋形的基站, 包括接收单元, 用于接收用 户终端反馈的用户终端的各个波束空间中的相关赋形参数, 所述参数为用户 终端根据至少两根天线分別发送的公共导频信号确定的; 赋形单元, 用于根 据接收单元接收的所述参数, 对将要在用户终端的波束空间中发送的信号进 行赋形处理。
一种反馈波束空间中相关参数的方法, 包括用户终端根据接收到的公共 导频信号, 分别确定用户终端各天线上的信噪比; 根据确定的所述用户终端 各天线上的信噪比, 确定用户终端各天线上的平均信噪比; 将确定的各天线 上的平均信噪比反馈给基站。
一种反馈波束空间中相关参数的方法, 包括用户终端根据接收到的公共 导频信号, 确定下行信道响应矩阵以及用户终端各天线上的平均信噪比; 对 所述下行信道响应矩阵进行奇异值分解, 得到每个波束空间上的特征值; 针 对每一波束空间, 将该波束空间上的信噪比和特征值平方的乘积值作为用户 终端各波束空间上的有效信噪比; 以及根据所述有效信噪比, 在有效信噪比 与调制编码方式信息的映射关系表中, 查找到该波束空间上可用的调制编码 方式信息; 用户终端根据每个波束空间上的特征值, 确定可以支持的波束空 间数目, 或根据所述有效信噪比, 确定可以支持的波束空间数目; 将所述调 制编码方式信息以及所述波束空间数目反馈给基站。
一种反馈波束空间中相关参数的用户终端, 包括第一确定单元, 用于根 据接收到的公共导频信号, 确定下行信道响应矩阵, 以及用户终端各天线上 的平均信噪比; 分解单元, 用于对所述下行信道响应矩阵进行奇异值分解, 得到每个波束空间上的特征值; 有效信噪比确定单元, 用于针对每一波束空 间, 将第一确定单元确定的平均信噪比和由分解单元得到的该波束空间上的 特征值平方的乘积值作为用户终端各波束空间上的有效信噪比; 查找单元, 用于根据有效信噪比确定单元得到的所述有效信噪比, 在有效信噪比与调制 编码方式信息的映射关系表中, 查找到该波束空间上可用的调制编码方式信 息; 第二确定单元, 用于艮据分解单元得到的每个波束空间上的特征值, 确 定用户终端可以支持的波束空间数目; 或用于根据有效信噪比确定单元确定 的用户终端各天线上的所述有效信噪比, 确定用户终端可以支持的波束空间 数目; 反馈单元, 用于将查找单元查找到的调制编码方式信息, 以及第二确 定单元确定的所述波束空间数目反馈给基站。
一种对波束空间中的信号进行赋形的方法, 包括基站接收用户终端反馈 的用户终端各天线上的平均信噪比; 根据上行信道回声信号, 确定用户终端 的上行信道响应矩阵; 对确定的上行信道响应矩阵进行转置处理, 得到下行 信道响应矩阵; 对所述下行信道响应矩阵进行奇异值分解, 得到用户终端的 每个波束空间上的特征值和波束空间向量; 根据所述平均信噪比以及所述特 征值, 确定用户终端各波束空间上的有效信噪比; 根据所述有效信噪比, 在 有效信噪比与调制编码方式信息的映射关系表中, 查找到该波束空间上可用 的调制编码方式信息; 据用户终端可以支持的波束空间数目, 针对对应数 目波束空间中的每一波束空间, 按^该波束空间上可用的调制编码方式信息 和波束空间向量, 对将要在该波束空间中发送的信号进行赋形处理。
一种对波束空间中的信号进行赋形的基站, 包括接收单元, 用于接收用 户终端反馈的用户终端各天线上的平均信噪比; 确定单元, 用于根据上行信 道回声信号, 确定用户终端的上行信道响应矩阵; 转置单元, 用于对确定单 元确定的上行信道响应矩阵进行转置处理, 得到下行信道响应矩阵; 分解单 元, 用于对转置单元得到的所述下行信道响应矩阵进行奇异值分解, 得到用 户终端的每个波束空间上的特征值和波束空间向量; 数目确定单元, 用于根 据分解单元得到的每个波束空间上的特征值, 确定用户终端可以支持的波束 空间数目; 有效信噪比确定单元, 用于根据所述特征值和所述平均信噪比, 确定用户终端各波束空间上的有效信噪比; 查找单元, 用于根据有效信噪比 确定单元确定的所述有效信噪比, 在有效信噪比与调制编码方式信息的映射 关系表中, 查找到该波束空间上可用的调制编码方式信息; 赋形单元, 用于 根据数目确定单元确定的波束空间数目, 针对对应数目波束空间中的每一波 束空间, 按照查找单元找到到的该波束空间上可用的调制编码方式信息和分 解单元得到的波束空间向量, 对将要在该波束空间中发送的信号进行赋形处 理。
一种对波束空间中的信号进行赋形的方法, 包括: 基站接收由用户终端 反馈的用户终端的各个波束空间上可用的调制编码方式信息, 以及用户终端 可以支持的波束空间数目; 根据上行信道回声信号, 确定用户终端的上行信 道响应矩阵; 对确定的上行信道响应矩阵进行转置处理, 得到下行信道响应 矩阵; 对所述下行信道响应矩阵进行奇异值分解, 得到用户终端的每个波束 空间上的波束空间向量; 根据用户终端可以支持的波束空间数目, 针对对应 数目波束空间中的每一波束空间, 按照该波束空间上可用的调制编码方式信 息和波束空间向量, 对将要在该波束空间中发送的信号进行赋形处理。
一种对波束空间中的信号进行赋形的基站, 包括接收单元, 用于接收用 户终端反馈的各个波束空间上可用的调制编码方式信息, 以及用户终端可以 支持的波束空间数目; 确定单元, 用于根据上行信道回声信号, 确定用户终 端的上行信道响应矩阵; 转置单元, 用于对确定单元确定的上行信道响应矩 阵进行转置处理, 得到下行信道响应矩阵; 分解单元, 用于对转置单元得到 的所述下行信道响应矩阵进行奇异值分解, 得到用户终端的每个波束空间上 的波束空间向量; 赋形单元, 用于根据接收单元接收到的用户终端可以支持 的波束空间数目, 针对对应数目波束空间中的每一波束空间, 按照接收单元 接收到的该波束空间上可用的调制编码方式信息和分解单元得到的该波束空 间上的波束空间向量, 对将要在该波束空间中发送的信号进行赋形处理。
本发明实施例通过用户终端接收基站中的至少两根天线分别发送的公共 导频信号, 所述公共导频信号为需要发送公共导频信号的天线数量不大于天 线端口数量时, 由所述天线分别通过天线端口发送的; 或者所述公共导频信 号为需要发送公共导频信号的天线数量大于天线端口数量时, 对所述天线进 行分组, 由各组天线基于时分复用方式通过天线端口发送的, 其中每组天线 的数量不大于天线端口数量; 用户终端根据接收到的至少两根天线分别发送 的公共导频信号, 确定自身的各个波束空间中的相关参数, 使得用户终端同 时能接收至少两根天线发送的公共导频信号, 或者接收多组天线分别发送的 公共导频信号, 并根据接收到的公共导频信号进行各个波束空间中的相关参 数的确定, 从而解决了现有技术中存在的对各个波束空间中的相关参数的确 定不够准确的问题。 附图说明
图 1 为本发明实施例提供的一种确定波束空间中相关参数的方法的具体 流程示意图;
图 2 为本发明实施例提供的一种确定波束空间中相关参数的用户终端的 具体结构示意图;
图 3 为本发明实施例提供的一种对波束空间中的信号进行赋形的方法的 具体流程示意图;
图 4 为本发明实施例提供的另一种对波束空间中的信号进行赋形的方法 的具体流程示意图;
图 5 为本发明实施例提供的又一种对波束空间中的信号进行赋形的方法 的具体流程示意图;
图 6 为本发明实施例提供的再一种对波束空间中的信号进行赋形的方法 的具体流程示意图;
图 7 为本发明实施例提供的一种对波束空间中的信号进行赋形的基站的 具体结构示意图;
图 8 为本发明实施例提供的另一种对波束空间中的信号进行赋形的基站 的具体结构示意图;
图 9 为本发明实施例提供的另一种对波束空间中的信号进行赋形的基站 的具体结构示意图;
图 10为本发明实施例提供的再一种对波束空间中的信号进行赋形的基站 的具体结构示意图。 具体实施方式
本发明实施例提供一种确定赋形参数的方法、 装置以及信号赋形方法、 装置, 用以解决现有技术中存在的对信道质量信息的确定不够准确的问题。
下面结合各个附图对本发明实施例技术方案的主要实现原理、 具体实施 方式及其对应能够达到的有益效果进行详细的阐述。
如图 1 所示, 为本发明实施例提供的一种确定波束空间中相关参数的方 法的具体流程示意图, 包括:
步骤 11, 用户终端接收公共导频信号, 所述公共导频信号为需要发送公 共导频信号的天线数量不大于天线端口数量, 且需要发送公共导频信号的天 线数量至少为两 >时, 由所述天线分别通过天线端口同时发送的; 或者所述 公共导频信号为发送公共导频信号的天线数量大于天线端口数量时, 对所述 天线进行分组, 由各组天线基于时分复用方式通过天线端口发送的, 其中每 组天线的数量不大于天线端口数量;
步骤 12, 用户终端根据接收到至少两根天线发送的公共导频信号, 确定 自身的各个波束空间中的相关参数。
针对上述步骤 11 , 以时分双工长期演进系统 (TDD LTE, Time Division Duplexing Long Term Evolution ) 的 LTE Release 8为例, 现有技术中, 基站中 的天线在向用户终端发送公共导频信号时, 可以通过基站中已有的 4个天线 端口进行公共导频信号的发送, 因此, 为了保证后续用户终端在根据接收到 的公共导频信号后确定的用户终端自身的各个波束空间中的相关参数的准确 性, 一方面, 当要发送公共导频信号的天线个数小于天线端口的个数时, 即 要发送公共导频信号的天线个数小于 4时, 釆用至少 2 ^天线通过 2个天线 端口直接向用户终端发送公共导频信号; 而当要发送公共导频信号的天线根 数大于天线端口的个数时, 可对天线进行分组, 分组后部分天线形成一组, 比如, 当天线根数为 8时, 可将天线分成 2组, 每组天线通过时分复用方式 在相邻时刻 (比如, 该相邻时刻可以是两个不同的传输时间间隔 ( TTI, Transmission Time Interval ), 或者一个 TTI中的两个不同时隙)依次轮流通过 4个天线端口向用户终端发送公共导频信号, 通过这样的方式, 用户终端可以 在连续两个时刻内获得 8根天线上的公共导频信号。
因此, 按照上述的发送方式, 当要发送导频信号的天线根数为 8 时, 且 天线被分为两组时, 可以在一个 ΤΉ中, 一组天线通过 4个天线端口向用户 终端发送公共导频信号, 而在另一个 ΤΉ中, 另一组天线通过 4个天线端口 向用户终端发送公共导频信号; 由于在 TDD LTE系统的每个 ΤΤΙ均包含 2个 时隙, 因此也可以在 ΤΤΙ的第 1个时隙中, 一组天线通过 4个天线端口向用 户终端发送公共导频信号, 而在 ΤΉ的第 2个时隙中, 另一组天线通过 4个 天线端口向用户终端发送公共导频信号, 通过这样的方式, 可以实现在一个 ΤΤΙ内, 8根天线都可以发送公共导频信号给用户终端。
同理, 当发送导频信号的天线根数为 6, 且天线被分为两组, 其中一组中 的天线根数为 2, 另一组中的天线^^数为 4时, 则可以在一个 ΤΤΙ 中, 由 2 根天线通过 2个天线端口向用户终端发送公共导频信号, 而在另一个 ΤΉ中, 由其余的 4根天线通过 4个天线端口向用户终端发送公共导频信号; 也可以 在 ΤΉ的第 1个时隙中, 由 2根天线通过 2个天线端口向用户终端发送公共 导频信号, 而在 ΤΤΙ的第 2个时隙中, 由其余的 4根天线通过 4个天线端口 分别向用户终端发送公共导频信号。
针对上述步骤 12, 用户终端自身的各个波束空间中的相关参数主要有用 户终端各天线上的平均信噪比、 用户终端的各个波束空间上可用的调制编码 方式信息以及用户终端可以支持的波束空间数目, 针对不同的相关参数, 用 户终端确定各个相关参数的方法具体如下:
1、 对用户终端各天线上上的平均信噪比的确定方式为:
用户终端根据接收到的公共导频信号, 分别确定用户终端各天线上的信 噪比;
根据确定的用户终端各天线上的信噪比, 确定用户终端各天线上的平均 信噪比 SI R。
2、 对用户终端的各个波束空间上可用的调制编码方式信息的确定方式 为:
用户终端根据接收到的公共导频信号, 确定下行信道响应矩阵 H, 以及 用户终端各天线上的平均信噪比 SINR;
对下行信道响应矩阵 H 进行奇异值分解 ( SVD , Sigular Value Decomposition ), 得到每个波束空间上的特征值 I, ( i=\ , 2, …, N, N为波 束空间的个数);
针对每一波束空间, 计算用户终端各波束空间上的有效信噪比 SINRt = SINR · λ , 需要说明的是, 在本步骤中计算得到的 SINRi即为 CQI信 根据 CQI与调制编码方式信息 MC&.的映射关系表,分别找出每个特征波 束空间能够支持的 MC¾
3、 对用户终端可以支持的波束空间数目的确定方式为:
在按照上述方式确定了每个波束空间上的特征值 A,, 后, 可根据用户终端 各天线上的 6 NR,或 Λ,,确定用户终端可以支持各个波束空间的特征波束的数 目 Μ, 比如, 可以通过设定 A,或 SlNRi大于某个门限值来确定 M, 其中 M为 正整数。
相应地, 本发明提供了一种确定波束空间中相关参数的用户终端, 用以 解决现有技术中存在的对信道质量信息的确定不够准确的问题, 该用户终端 的具体结构示意图如图 2所示, 包括:
接收单元 21, 用于接收公共导频信号, 所述公共导频信号为需要发送公 共导频信号的天线数量不大于天线端口数量, 且需要发送公共导频信号的天 线数量至少为两根时, 由所述天线分别通过天线端口同时发送的; 或者所述 公共导频信号为发送公共导频信号的天线数量大于天线端口数量时, 对所述 天线进行分组, 由各组天线基于时分复用方式通过天线端口发送的, 其中每 组天线的数量不大于天线端口数量;
确定单元 22, 用于根据接收单元接收到的至少两根天线发送的公共导频 信号, 确定自身的各个波束空间中的相关参数。
其中, 针对确定单元 22:
1、 当需确定的波束空间中的相关参数为用户终端各天线上的平均信噪比 时, 确定单元 22具体包括: 信噪比确定模块, 用于根据接收单元 21接收到 的公共导频信号, 分别确定用户终端各天线上的信噪比; 平均信噪比确定模 块, 用于根据信噪比确定模块确定的信噪比, 确定所述用户终端各天线上的 平均信噪比。
2、 当需确定的波束空间中的相关参数为用户终端的各个波束空间上可用 的调制编码方式信息时, 确定单元 22具体包括: 确定模块, 用于根据接收单 元 21接收到的的公共导频信号, 确定下行信道响应矩阵, 以及各个波束空间 上的平均信噪比; 分解模块, 用于对确定模块确定的矩阵进行奇异值分解, 得到每个波束空间上的特征值;
有效信噪比确定模块, 用于针对每一波束空间, 将确定模块确定的平均 信噪比和由分解模块得到的该波束空间上的特征值平方的乘积值作为用户终 端各波束空间上的有效信噪比; 查找模块, 用于根据有效信噪比确定模块确 定的所述有效信噪比, 在有效信噪比与调制编码方式信息的映射关系表中, 查找到该波束空间上可用的调制编码方式信息。
3、 当需确定的波束空间中的相关参数为用户终端的各个波束空间上可用 的调制编码方式信息, 以及用户终端可以支持的波束空间数目时, 确定单元 22具体包括: 第一确定模块, 用于根据接收单元 21接收到的公共导频信号, 确定下行信道响应矩阵, 以及用户终端各天线上的平均信噪比; 分解模块, 用于对第一确定模块确定的所述矩阵进行奇异值分解, 得到每个波束空间上 的特征值; 有效信噪比确定模块, 用于针对每一波束空间, 将第一确定模块 确定的用户终端各天线上的平均信噪比和分解模块得到的特征值平方的乘积 值作为用户终端各波束空间上的有效信噪比; 查找模块, 根据有效信噪比确 定模块确定的所述有效信噪比, 在有效信噪比与调制编码方式信息的映射关 系表中, 查找到该波束空间上可用的调制编码方式信息; 第二确定模块, 用 于根据分解模块得到的每个波束空间上的特征值, 确定用户终端可以支持的 波束空间数目, 或根据有效信噪比确定模块确定的用户终端各波束空间上的 有效信噪比, 确定可以支持的波束空间数目。
当用户终端将确定的波束空间中的相关参数反馈给基站后, 本发明实施 例提供了一种对波束空间中的信号进行赋形的方法, 用于根据用户终端按照 上述实施例提供的方法确定并反馈的相关参数, 对将要在用户终端的波束空 间中发送的信号进行准确的赋形处理。
在现有技术中, 当用户终端确定得到波束空间中的相关参数后, 只将相 关参数中的调制编码方式信息反馈给基站, 由基站根据该调制编码方式信息, 进一步确定对将要在用户终端的波束空间中发送的信号进行赋形处理的参 数。 而在本发明实施例提供的一种对波束空间中的信号进行赋形的方法中, 用户终端不仅限于只向基站反馈调制编码方式信息。 比如, 用户终端可以将 确定得到的自身各天线上的平均信噪比反馈给基站, 在这种情况下, 基站在 接收到该平均信噪比后, ^艮据该平均信噪比, 确定得到调制编码方式信息, 并根据上行信道回声信号确定用户终端可支持的波束空间数目以及赋形参 数, 这就使得现有技术中需要在用户终端实现的一些功能由基站来实现, 从 而降低了对用户终端的性能要求; 而当用户终端向基站反馈的相关参数为调 制编码方式信息以及用户终端可支持的波束空间数目时, 在这种情况下, 基 站只需要根据上行信道回声信号确定出赋形参数, 因此, 采用这种方式时, 就降低了对基站的性能要求。
以下结合各个附图对本发明实施例提供的该方法做详细的说明。
由于基站根据接收到的由用户终端发送的相关参数的不同 , 对将要在用 户终端的波束空间中发送的信号进行赋形处理的过程也有所不同, 因此, 本 发明实施例针对用户终端反馈的不同相关参数, 提出了不同的对波束空间中 的信号进行赋形处理的方法。 需要说明的是, 用户终端向基站反馈的的自身 各天线上的平均信噪比或调制编码方式信息或用户终端可支持的波束空间数 目等相关参数可以但不限于是由至少两个天线发生的, 比如, 也可以是根据 现有技术中 1 根天线上发送的公共导频信号获确定的相关参数, 因此, 后续 基站根据用户终端反馈的根据 1 根天线上发送的公共导频信号获确定的相关 参数对波束空间中的信号进行赋形的方法也在本发明的保护范围之内。 本发 明实施例提供的一种对波束空间中的信号进行赋形的方法的具体流程示意图 如图 3所示, 包括:
步骤 31, 基站接收用户终端反馈的用户终端各天线上的平均信噪比 SINR;
步骤 32, 基站根据上行信道回声信号, 确定用户终端的上行信道响应矩 阵 H1 ;
步骤 33, 对 进行转置处理, 得到下行信道响应矩阵 H2;
步骤 34, 对 H2进行奇异值分解, 得到用户终端的每个波束空间上的特征 值 ,, i = l,2,...,N ,其中 为确定的下行信道响应的阶数,和波束空间向量 ; 步骤 35, 针对每一波束空间, 将平均信噪比 SINR和该波束空间上的特 征值平方的乘积值作为用户终端各波束空间上的有效信噪比 SINRi , 即 SINRi = SINR · i,2
步骤 36, SINR 在 TN 与 的映射关系表中, 查找到各个波 束空间上的 MCSf,
步驟 37, 根据每个波束空间上的特征值 i,, 确定用户终端可以支持的波 束空间数目 M, 或根据用户终端各波束空间上的有效信噪比 SINR 确定用户 终端可以支持的波束空间数目 M;
步骤 38, 居用户终端可以支持的波束空间数目 M, 针对对应数目波束 空间中的每一波束空间, 按照该波束空间上可用的调制编码方式信息 MCSi 和波束空间向量 ., 对将要在该波束空间中发送的信号进行赋形处理。
本发明实施例提供的另一种对波束空间中的信号进行赋形的方法的具体 流程示意图如图 4所示, 包括:
步骤 41 , 基站接收用户终端反馈的各个波束空间上可用的调制编码方式 信息 MC&;
步骤 42, 基站根据上行信道回声信号, 确定用户终端的上行信道响应矩 阵 ;
步骤 43 , 对确定的上行信道响应矩阵 进行转置处理, 得到下行信道响 应矩阵 H2;
步骤 44, 对所述下行信道响应矩阵进行奇异值分解, 得到用户终端的每 个波束空间上的特征值 ,, = 1,2,..., ,其中 为估计的下行信道响应的阶数, 和波束空间向量 ;
步骤 45, 根据每个波束空间上的 ,, 确定用户终端可以支持的波束空间 数目 Μ',
步骤 46, 根据用户终端可以支持的波束空间数目 Μ, 针对对应数目波束 空间中的每一波束空间, 按照该波束空间上可用的调制编码方式信息 MCSi 和波束空间向量 , 对将要在该波束空间中发送的信号进行赋形处理。
本发明实施例提供的又一种对波束空间中的信号进行赋形的方法的具体 流程示意图如图 5所示, 包括:
步骤 51, 基站接收用户终端反馈的各个波束空间上可用的调制编码方式 信息 MCSi, 以及用户终端可以支持的波束空间数目 M;
步骤 52, 基站根据上行信道回声信号, 确定用户终端的上行信道响应矩 阵 H1 ;
步骤 53 , 对 进行转置处理, 得到下行信道响应矩阵 ¾;
步骤 54, 对 H2进行奇异值分解, 得到用户终端的每个波束空间上的波束 空间向量 ;
步骤 55, 居用户终端可以支持的波束空间数目 M, 针对对应数目波束 空间中的每一波束空间, 按照该波束空间上可用的调制编码方式信息 MC& 和波束空间向量 , 对将要在该波束空间中发送的信号进行赋形处理。
本发明实施例提供的再一种对波束空间中的信号进行赋形的方法的具体 流程示意图如图 6所示, 包括:
步骤 61, 基站接收用户终端反馈的用户终端各天线上的平均信噪比 SINR;
步骤 62, 基站根据上行信道回声信号, 确定用户终端的上行信道响应矩 阵 ΗΙ ;
步骤 63 , 对 进行转置处理, 得到下行信道响应矩阵 Η2;
步骤 64, 对 Η2进行奇异值分解, 得到用户终端的每个波束空间上的特征 值 ,, z = l,2,..., N , 其中 为确定的下行信道响应的阶数,和波束空间向量 ; 步骤 65, 根据每个波束空间上的特征值 , 确定用户终端可以支持的波 束空间数目 M
步骤 66, 按照下述公式, 确定用户终端各波束空间上的有效信噪比:
SINR = S赚 · λ ·
' ' Ρ
其中, SINRi为用户终端各波束空间上的有效信噪比, SINR为用户终端各天线 上的平均信噪比, ,为波束空间上的特征值 , Pi为分配给波束空间上的功率值, P 为分配给各个波束空间上的功率总和, 为用户终端可以支持的波束空间 数目;
步骤 67, 根据有效信噪比 6 NR,., 在 6 ,.与 MC&的映射关系表中, 查 找到该波束空间上的 MC¾
步骤 68, 根据用户终端可以支持的波束空间数目 M, 针对对应数目波束 空间中的每一波束空间, 按照该波束空间上的 和波束空间向量 , 对将 要在该波束空间中发送的信号进行赋形处理。
需要说明的是, 由于根据接收到的 MCSi, 查找 MCSi与 SINF 的映射关系 表, 能得到与 MC&对应的 S/NR,., 再结合各个特征波束空间上的特征值 , 可以进一步地确定用户终端接收到的信号的 SINR, 计算 SINR的公式如下所 示:
SINR = ~~ Ί ~~
N -∑(S/NR, / i2 )
/=1
因此, 当用户终端上传的相关参数为 MCSt时, 可以由 MCSi推导得出 SINR, 再根据图 6所展示的具体流程示意图对将要在波束空间中发送的信号 进行赋形处理, 在此不再赘述该具体过程。
相应地, 本发明实施例提供一种对波束空间中的信号进行赋形的基站, 其具体结构示意图如图 7所示, 包括:
接收单元 71,用于接收用户终端反馈的用户终端各天线上的平均信噪比; 确定单元 72, 用于根据上行信道回声信号, 确定用户终端的上行信道响 应矩阵;
转置单元 73 ,用于对确定单元 72确定的上行信道响应矩阵进行转置处理, 得到下行信道响应矩阵;
分解单元 74,用于对转置单元 73得到的所述下行信道响应矩阵进行奇异 值分解, 得到用户终端的每个波束空间上的特征值, 和波束空间向量;
有效信噪比确定单元 75, 用于针对每一波束空间, 将接收单元 71接收到 的平均信噪比和分解单元 74得到的该波束空间上的特征值平方的乘积值作为 用户终端各波束空间上的有效信噪比;
查找单元 76, 用于根据有效信噪比确定单元 75确定的所述有效信噪比, 在有效信噪比与调制编码方式信息的映射关系表中, 查找到该波束空间上可 用的调制编码方式信息;
数目确定单元 77,用于根据分解单元 74得到的每个波束空间上的特征值, 确定用户终端可以支持的波束空间数目, 或根据有效信噪比确定单元 75确定 的用户终端各波束空间上的有效信噪比, 确定用户终端可以支持的波束空间 数目; 赋形单元 78, 用于根据数目确定单元 77确定的所述波束空间数目, 针对 对应数目波束空间中的每一波束空间, 按照查找单元 76找到到的该波束空间 上可用的调制编码方式信息和分解单元 74得到的波束空间向量, 对将要在该 波束空间中发送的信号进行赋形处理。
本发明实施例提供的另一种对波束空间中的信号进行赋形的基站的具体 结构示意图如图 8所示, 包括:
接收单元 81, 用于接收用户终端反馈的各个波束空间上可用的调制编码 方式信息;
确定单元 82, 用于根据上行信道回声信号, 确定用户终端的上行信道响 应矩阵;
转置单元 83 ,用于对确定单元 82确定的上行信道响应矩阵进行转置处理, 得到下行信道响应矩阵;
分解单元 84,用于对转置单元 83得到的所述下行信道响应矩阵进行奇异 值分解, 得到用户终端的每个波束空间上的特征值, 和波束空间向量;
数目确定单元 85 ,用于根据分解单元 84得到的每个波束空间上的特征值, 确定用户终端可以支持的波束空间数目;
赋形单元 86 , 用于根据数目确定单元 85确定的所述波束空间数目, 针对 对应数目波束空间中的每一波束空间, 按照接收单元 81接收到的该波束空间 上可用的调制编码方式信息, 和分解单元 84得到的波束空间向量, 对将要在 该波束空间中发送的信号进行赋形处理。
本发明实施例提供的又一种对波束空间中的信号进行赋形的基站的具体 结构示意图如图 9所示, 包括: 方式信息, 以及用户终端可以支持的波束空间数目;
确定单元 92, 用于 4艮据上行信道回声信号, 确定用户终端的上行信道响 应矩阵;
转置单元 93,用于对确定单元 92确定的上行信道响应矩阵进行转置处理, 得到下行信道响应矩阵;
分解单元 94,用于对转置单元 93得到的所述下行信道响应矩阵进行奇异 值分解, 得到用户终端的每个波束空间上的波束空间向量;
赋形单元 95,用于根据接收单元 91接收到的用户终端可以支持的波束空 间数目, 针对对应数目波束空间中的每一波束空间, 按照接收单元 91接收到 的该波束空间上可用的调制编码方式信息, 和分解单元 94得到的所述波束空 间向量, 对将要在该波束空间中发送的信号进行赋形处理。
本发明实施例提供的再一种对波束空间中的信号进行赋形的基站的具体 结构示意图如图 10所示, 包括:
接收单元 101 , 用于接收用户终端反馈用户终端各天线上的平均信噪比; 确定单元 102, 用于根据上行信道回声信号, 确定用户终端的上行信道响 应矩阵;
转置单元 103,用于对确定单元 102确定的上行信道响应矩阵进行转置处 理, 得到下行信道响应矩阵;
分解单元 104,用于对转置单元 103得到的所述下行信道响应矩阵进行奇 异值分解, 得到用户终端的每个波束空间上的特征值, 和波束空间向量; 数目确定单元 105,用于根据分解单元 104得到的每个波束空间上的特征 值, 确定用户终端可以支持的波束空间数目;
有效信噪比确定单元 106, 用于按照下述公式, 确定用户终端各波束空间 上的有效信噪比:
SINR ^ SINR - λ
' P
其中, S7NR,为用户终端各波束空间上的有效信噪比, S/NR 为接收单元 101 接收到的用户终端各天线上平均信噪比, ,为分解单元 104得到的波束空间 上的特征值, A为基站分配给波束空间上的功率值, 尸为基站分配给各个波束 空间上的功率总和, 为数目确定单元 105确定的用户终端可以支持的波束 空间数目; 查找单元 107,用于根据有效信噪比确定单元 106确定的所述有效信噪比, 在有效信噪比与调制编码方式信息的映射关系表中, 查找到该波束空间上可 用的调制编码方式信息;
赋形单元 108,用于根据数目确定单元 105确定的用户终端可以支持的波 束空间数目, 针对对应数目波束空间中的每一波束空间, 按照查找单元 107 查找到的该波束空间上可用的调制编码方式信息, 和分解单元 104得到的所 述波束空间向量, 对将要在该波束空间中发送的信号进行赋形处理。
需要说明的是, 上述的关于对波束空间中的信号进行赋形的方案中, 基 站接收到由用户终端发送的与赋形处理相关的参数(比如用户终端各天线上 的平均信噪比、 各波束空间上可用的调制编码方式信息以及用户终端可以支 持的波束空间数目等) 可以但不限于是由用户终端根据至少 2根天线发送的 公共导频信号确定的, 基站接收到的所述参数是由用户终端根据 1 根天线发 送的公共导频信号确定的同样在本发明的保护范围之内。
此外, 在本发明实施例中, 基站接收到的上行信道回声信号可以是在全 频带上进行反馈的, 也可以是在对全频带划分得到的部分带宽上进行反馈的, 比如, 将全频带划分为 25个带宽, 并将上行信道回声信号在划分得到的带宽 中性能较好的 5个带宽上进行反馈,或者将全频带划分为每 5RB为一个带宽, 并选择划分得到的任意多个带宽对上行信道回声信号进行反馈。 其中, 采用 将全频带进行划分并采用划分得到的部分带宽反馈上行信道回声信号的方 式, 可以在适合的带宽上反馈上行信道回声信号, 从而能够避免采用全频带 对上行信道回声信号进行反馈时造成资源浪费比较大的问题。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种确定波束空间中相关参数的方法, 其特征在于, 包括: 用户终端接收基站中的至少两根天线分别发送的公共导频信号, 其中所 述公共导频信号为需要发送公共导频信号的天线数量不大于天线端口数量 时, 由所述天线分別通过天线端口发送的; 或者所述公共导频信号为需要发 送公共导频信号的天线数量大于天线端口数量时, 经对所述天线进行分组后 由各组天线基于时分复用方式通过天线端口发送的, 其中每组天线的数量不 大于天线端口数量;
用户终端根据接收到的至少两根天线分别发送的公共导频信号, 确定自 身的各个波束空间中的相关参数。
2、 如权利要求 1所述的方法, 其特征在于, 所述波束空间中的相关参数 为用户终端各天线上的平均信噪比;
用户终端根据接收到的至少两根天线分别发送的公共导频信号, 确定各 个波束空间中的相关参数具体包括:
用户终端根据接收到的至少两根天线分别发送的公共导频信号, 分别确 定用户终端各天线上的信噪比; 以及
根据确定的所述用户终端各天线上的信噪比, 确定用户终端各天线上的 平均信噪比。
3、 如权利要求 1所述的方法, 其特征在于, 所述波束空间中的相关参数 为用户终端的各个波束空间上可用的调制编码方式信息;
用户终端根据接收到的至少两根天线分别发送的公共导频信号, 确定各 个波束空间中的相关参数具体包括: 行信道响应矩阵, 以及用户终端各天线上的平均信噪比;
对所述下行信道响应矩阵进行奇异值分解, 得到每个波束空间上的特征 值; 针对每一波束空间, 将所述平均信噪比和该波束空间上的特征值平方的 乘积值作为用户终端各波束空间上的有效信噪比; 以及
根据所述有效信噪比, 在有效信噪比与调制编码方式信息的映射关系表 中, 查找到该波束空间上可用的调制编码方式信息。
4、 如权利要求 1所述的方法, 其特征在于, 所述波束空间中的相关参数 为用户终端的各个波束空间上可用的调制编码方式信息, 以及用户终端可以 支持的波束空间数目;
用户终端根据接收到的至少两根天线分别发送的公共导频信号, 确定各 个波束空间中的相关参数具体包括: 行信道响应矩阵, 以及用户终端各天线上的平均信噪比;
对所述下行信道响应矩阵进行奇异值分解, 得到每个波束空间上的特征 值;
针对每一波束空间, 将用户终端各天线上的平均信噪比和特征值平方的 乘积值作为用户终端各波束空间上的有效信噪比; 以及
根据所述有效信噪比, 在有效信噪比与调制编码方式信息的映射关系表 中, 查找到该波束空间上可用的调制编码方式信息;
用户终端冲 据每个波束空间上的特征值, 确定可以支持的波束空间数目, 或根据所述有效信噪比, 确定可以支持的波束空间数目。
5、 一种确定波束空间中相关参数的用户终端, 其特征在于, 包括: 所述公共导频信号为需要发送公共导频信号的天线数量不大于天线端口数量 时, 由所述天线分别通过天线端口发送的; 或者所述公共导频信号为需要发 送公共导频信号的天线数量大于天线端口数量时, 经对所述天线进行分组后 由各组天线基于时分复用方式通过天线端口发送的, 其中每组天线的数量不 大于天线端口数量; 频信号, 确定自身的各个波束空间中的相关参数。
6、 如权利要求 5所述的用户终端, 其特征在于, 所述波束空间中的相关 参数为用户终端各天线上的平均信噪比;
所述确定单元具体包括:
信噪比确定模块, 用于根据接收单元接收到的至少两根天线分别发送的 公共导频信号, 分别确定用户终端各天线上的信噪比;
平均信噪比确定模块, 用于根据信噪比确定模块确定的用户终端各天线 上信噪比, 确定用户终端各天线上的平均信噪比。
7、 如权利要求 5所述的用户终端, 其特征在于, 所述波束空间中的相关 参数为用户终端的各个波束空间上可用的调制编码方式信息;
所述确定单元具体包括:
确定模块, 用于根据接收单元接收到的至少两根天线分别发送的公共导 频信号, 确定下行信道响应矩阵以及用户终端各天线上的平均信噪比;
分解模块, 用于对确定模块确定的所述矩阵进行奇异值分解, 得到每个 波束空间上的特征值;
有效信噪比确定模块, 用于针对每一波束空间, 将确定模块确定的平均 信噪比和由分解模块得到的该波束空间上的特征值平方的乘积值, 作为用户 终端各波束空间上的有效信噪比;
查找模块, 用于根据有效信噪比确定模块确定的有效信噪比, 在有效信 噪比与调制编码方式信息的映射关系表中, 查找到该波束空间上可用的调制 编码方式信息。
8、 如权利要求 5所述的用户终端, 其特征在于, 所述波束空间中的相关 可以支持的波束空间数目;
所述确定单元具体包括:
第一确定模块, 用于根据接收单元接收到的至少两根天线分别发送的公 共导频信号, 确定下行信道响应矩阵以及用户终端各天线上的平均信噪比; 分解模块, 用于对第一确定模块确定的所述矩阵进行奇异值分解, 得到 每个波束空间上的特征值;
有效信噪比确定模块, 用于针对每一波束空间, 将第一确定模块确定的 用户终端各天线上的平均信噪比和分解单元得到的特征值平方的乘积值, 作 为用户终端各波束空间上的有效信噪比;
查找模块, 根据有效信噪比确定模块确定的有效信噪比, 在有效信噪比 与调制编码方式信息的映射关系表中, 查找到该波束空间上可用的调制编码 方式信息;
第二确定模块, 用于根据分解模块得到的每个波束空间上的特征值, 确 定用户终端可以支持的波束空间数目, 或根据有效信噪比确定模块确定的用 户终端各波束空间上的有效信噪比, 确定用户终端可以支持的波束空间数目。
9、 一种对波束空间中的信号进行赋形的方法, 其特征在于, 包括: 基站接收用户终端反馈的用户终端的各个波束空间中的相关赋形参数, 根据所述参数对将要在用户终端的波束空间中发送的信号进行赋形处 理。
10、 如权利要求 9所述的方法, 其特征在于, 所述相关赋形参数为用户 终端各天线上的平均信噪比;
根据所述参数, 对将要在用户终端的波束空间中发送的信号进行赋形处 理具体包括:
基站根据上行信道回声信号, 确定用户终端的上行信道响应矩阵; 对确定的上行信道响应矩阵进行转置处理, 得到下行信道响应矩阵; 对所述下行信道响应矩阵进行奇异值分解, 得到用户终端的每个波束空 间上的特征值和波束空间向量;
针对每一波束空间, 将所述平均信噪比和该波束空间上的特征值平方的 乘积值, 作为用户终端各波束空间上的有效信噪比; 以及
根据所述有效信噪比, 在有效信噪比与调制编码方式信息的映射关系表 中, 查找到该波束空间上可用的调制编码方式信息;
根据每个波束空间上的特征值, 确定用户终端可以支持的波束空间数目, 或根据用户终端各波束空间上的有效信噪比, 确定用户终端可以支持的波束 空间数目;
根据用户终端可以支持的波束空间数目, 针对对应数目波束空间中的每 一波束空间, 按照该波束空间上可用的调制编码方式信息和波束空间向量, 对将要在该波束空间中发送的信号进行赋形处理。
11、 如权利要求 9 所述的方法, 其特征在于, 所述相关赋形参数为用户 终端的各个波束空间上可用的调制编码方式信息, 根据所述参数, 对将要在 用户终端的波束空间中发送的信号进行赋形处理具体包括:
基站根据上行信道回声信号, 确定用户终端的上行信道响应矩阵; 对确定的上行信道响应矩阵进行转置处理, 得到下行信道响应矩阵; 对所述下行信道响应矩阵进行奇异值分解, 得到用户终端的每个波束空 间上的特征值和波束空间向量;
根据每个波束空间上的特征值, 确定用户终端可以支持的波束空间数目; 根据用户终端可以支持的波束空间数目, 针对对应数目波束空间中的每 一波束空间, 按照该波束空间上可用的调制编码方式信息和波束空间向量, 对将要在该波束空间中发送的信号进行赋形处理。
12、 如权利要求 9所述的方法, 其特征在于, 所述相关赋形参数为用户 终端的各个波束空间上可用的调制编码方式信息, 以及用户终端可以支持的 波束空间数目;
根据所述参数, 对将要在用户终端的波束空间中发送的信号进行赋形处 理具体包括:
基站根据上行信道回声信号, 确定用户终端的上行信道响应矩阵; 对确定的上行信道响应矩阵进行转置处理, 得到下行信道响应矩阵; 对所述下行信道响应矩阵进行奇异值分解, 得到用户终端的每个波束空 间上的波束空间向量; 根据用户终端可以支持的波束空间数目, 针对对应数目波束空间中的每 一波束空间, 按照该波束空间上可用的调制编码方式信息和波束空间向量, 对将要在该波束空间中发送的信号进行赋形处理。
13、 如权利要求 9所述的方法, 其特征在于, 所述相关赋形参数为用户 终端各天线上的平均信噪比;
根据所述参数, 对将要在用户终端的波束空间中发送的信号进行赋形处 理具体包括:
基站根据上行信道回声信号, 确定用户终端的上行信道响应矩阵; 对确定的上 4于信道响应矩阵进行转置处理, 得到下行信道响应矩阵; 对所述下行信道响应矩阵进行奇异值分解, 得到用户终端的每个波束空 间上的特征值和波束空间向量;
根据每个波束空间上的特征值, 确定用户终端可以支持的波束空间数目; 按照下述公式, 确定用户终端各波束空间上的有效信噪比:
SINR 二 SINR · λ2 ' ^-^
' Ρ
其中, SINRi为用户终端各波束空间上的有效信噪比, SINR为户终端各天 线上的平均信噪比, .为波束空间上的特征值, 为分配给波束空间上的功率 值, P 为分配给各个波束空间上的功率总和, 为用户终端可以支持的波束 空间数目;
根据所述有效信噪比, 在有效信噪比与调制编码方式信息的映射关系表 中, 查找到该波束空间上可用的调制编码方式信息;
根据用户终端可以支持的波束空间数目, 针对对应数目波束空间中的每 一波束空间, 按照该波束空间上可用的调制编码方式信息和波束空间向量, 对将要在该波束空间中发送的信号进行赋形处理。
14、 一种对波束空间中的信号进行赋形的基站, 其特征在于, 包括: 接收单元, 用于接收用户终端反馈的用户终端的各个波束空间中的相关 确定的;
赋形单元, 用于 4艮据接收单元接收的所述参数, 对将要在用户终端的波 束空间中发送的信号进行赋形处理。
15、 如权利要求 14所述的基站, 其特征在于, 所述相关赋形参数为用户 终端各天线上的平均信噪比;
所述赋形单元具体包括:
确定模块, 用于根据上行信道回声信号, 确定用户终端的上行信道响应 矩阵;
转置模块, 用于对确定模块确定的上行信道响应矩阵进行转置处理, 得 到下行信道响应矩阵;
分解模块, 用于对转置模块得到的所述下行信道响应矩阵进行奇异值分 解, 得到用户终端的每个波束空间上的特征值和波束空间向量;
有效信噪比确定模块, 用于针对每一波束空间, 将接收单元接收到的所 述平均信噪比和分解模块得到的该波束空间上的特征值平方的乘积值, 作为 用户终端各波束空间上的有效信噪比;
查找模块, 用于根据有效信噪比确定模块确定的所述有效信噪比, 在有 效信噪比与调制编码方式信息的映射关系表中, 查找到该波束空间上可用的 调制编码方式信息;
数目确定模块, 用于根据分解模块得到的每个波束空间上的特征值, 确 定用户终端可以支持的波束空间数目, 或根据有效信噪比确定模块确定的每 个波束空间上的有效信噪比, 确定用户终端可以支持的波束空间数目;
赋形模块, 用于根据数目确定模块确定的波束空间数目, 针对对应数目 波束空间中的每一波束空间, 按照查找模块找到到的该波束空间上可用的调 制编码方式信息和分解模块得到的波束空间向量, 对将要在该波束空间中发 送的信号进行赋形处理。
16、 如权利要求 14所述的基站, 其特征在于, 所述相关赋形参数为用户 终端的各个波束空间上可用的调制编码方式信息; 所述赋形单元具体包括:
确定模块, 用于根据上行信道回声信号, 确定用户终端的上行信道响应 矩阵;
转置模块, 用于对确定模块确定的上行信道响应矩阵进行转置处理, 得 到下行信道响应矩阵;
分解模块, 用于对转置模块得到的所述下行信道响应矩阵进行奇异值分 解, 得到用户终端的每个波束空间上的特征值和波束空间向量;
数目确定模块, 用于根据分解模块得到的每个波束空间上的特征值, 确 定用户终端可以支持的波束空间数目;
赋形模块, 用于根据数目确定模块确定的波束空间数目, 针对对应数目 波束空间中的每一波束空间, 按照接收单元接收到的该波束空间上可用的调 制编码方式信息和分解模块得到的波束空间向量, 对将要在该波束空间中发 送的信号进行赋形处理。
17、 如权利要求 14所述的基站, 其特征在于, 所述相关赋形参数为用户 终端的各个波束空间上可用的调制编码方式信息, 以及用户终端可以支持的 波束空间数目;
所述赋形单元具体包括:
确定模块, 用于根据上行信道回声信号, 确定用户终端的上行信道响应 矩阵;
转置模块, 用于对确定模块确定的上行信道响应矩阵进行转置处理, 得 到下行信道响应矩阵;
分解模块, 用于对转置模块得到的所述下行信道响应矩阵进行奇异值分 解, 得到用户终端的每个波束空间上的波束空间向量;
赋形模块, 用于根据接收单元接收到的用户终端可以支持的波束空间数 目, 针对对应数目波束空间中的每一波束空间, 按照接收单元接收到的该波 束空间上可用的调制编码方式信息, 和分解模块得到的该波束空间上的波束 空间向量, 对将要在该波束空间中发送的信号进行赋形处理。
18、 如权利要求 14所述的基站, 其特征在于, 所述相关赋形参数为用户 终端各天线上的平均信噪比;
所述赋形单元具体包括:
确定模块, 用于根据上行信道回声信号, 确定用户终端的上行信道响应 矩阵;
转置模块, 用于对确定模块确定的上行信道响应矩阵进行转置处理, 得 到下行信道响应矩阵;
分解模块, 用于对转置模块得到的所述下行信道响应矩阵进行奇异值分 解, 得到用户终端的每个波束空间上的特征值和波束空间向量;
数目确定模块, 用于根据分解模块得到的每个波束空间上的特征值, 确 定用户终端可以支持的波束空间数目;
有效信噪比确定模块, 用于按照下述公式, 确定用户终端各波束空间上 的有效信噪比:
SINR = SINR - λ2
' Ρ
其中, S7NR,为用户终端各波束空间上的有效信噪比, SINR为接收单元接 收到的所述平均信噪比, 为分解模块得到的波束空间上的特征值, A为基站 分配给波束空间上的功率值, 为基站分配给各个波束空间上的功率总和, 为数目确定模块确定的用户终端可以支持的波束空间数目;
查找模块, 用于根据有效信噪比确定模块确定的有效信噪比, 在有效信 噪比与调制编码方式信息的映射关系表中, 查找到该波束空间上可用的调制 编码方式信息;
赋形单元, 用于根据数 确定模块确定的用户终端可以支持的波束空间 数目, 针对对应数目波束空间中的每一波束空间, 按照查找模块查找到的该 波束空间上可用的调制编码方式信息, 和分解模块得到的该波束空间上的波 束空间向量, 对将要在该波束空间中发送的信号进行赋形处理。
19、 一种反馈波束空间中相关参数的方法, 其特征在于, 包括: 用户终端根据接收到的公共导频信号, 分别确定用户终端各天线上的信 噪比;
根据确定的所述用户终端各天线上的信噪比, 确定用户终端各天线上的 平均信噪比;
将确定的各天线上的平均信噪比反馈给基站。
20、 一种反馈波束空间中相关参数的用户终端, 其特征在于, 包括: 信噪比确定单元, 用于根据接收到的公共导频信号, 分别确定用户终端 自身各天线上的信噪比;
平均信噪比确定单元, 用于根据信噪比确定单元确定的所述信噪比, 确 定用户终端自身各天线上的平均信噪比;
反馈单元, 用于将平均信噪比确定单元确定的所述平均信噪比反馈给基 站。
21、 一种反馈波束空间中相关参数的方法, 其特征在于, 包括: 用户终端根据接收到的公共导频信号, 确定下行信道响应矩阵以及用户 终端各天线上的平均信噪比;
对所述下行信道响应矩阵进行奇异值分解, 得到每个波束空间上的特征 值;
针对每一波束空间, 将用户终端各天线上的平均信噪比和特征值平方的 乘积值作为用户终端各波束空间上的有效信噪比; 以及
根据所述有效信噪比, 在有效信噪比与调制编码方式信息的映射关系表 中, 查找到该波束空间上可用的调制编码方式信息;
用户终端根据每个波束空间上的特征值, 确定可以支持的波束空间数目, 或根据所述有效信噪比, 确定可以支持的波束空间数目;
将所述调制编码方式信息以及所述波束空间数目反馈给基站。
22、 一种反馈波束空间中相关参数的用户终端, 其特征在于, 包括: 第一确定单元, 用于根据接收到的公共导频信号, 确定下行信道响应矩 阵以及用户终端各天线上的平均信噪比; 分解单元, 用于对所述下行信道响应矩阵进行奇异值分解, 得到每个波 束空间上的特征值;
有效信噪比确定单元, 用于针对每一波束空间, 将第一确定单元确定的 平均信噪比和由分解单元得到的该波束空间上的特征值平方的乘积值作为用 户终端各波束空间上的有效信噪比;
查找单元, 用于根据有效信噪比确定单元得到的所述有效信噪比, 在有 效信噪比与调制编码方式信息的映射关系表中, 查找到该波束空间上可用的 调制编码方式信息;
第二确定单元, 用于根据分解单元得到的每个波束空间上的特征值, 确 定用户终端可以支持的波束空间数目; 或用于根据有效信噪比确定单元确定 的用户终端各天线上的所述有效信噪比, 确定用户终端可以支持的波束空间 数目;
反馈单元, 用于将查找单元查找到的调制编码方式信息, 以及第二确定 单元确定的所述波束空间数目反馈给基站。
23、 一种对波束空间中的信号进行赋形的方法, 其特征在于, 包括: 基站接收用户终端反馈的用户终端各天线上的平均信噪比;
根据上行信道回声信号, 确定用户终端的上行信道响应矩阵;
对确定的上行信道响应矩阵进^ "转置处理, 得到下行信道响应矩阵; 对所述下行信道响应矩阵进行奇异值分解, 得到用户终端的每个波束空 间上的特征值和波束空间向量;
根据所述平均信噪比以及所述特征值, 确定用户终端各波束空间上的有 效信噪比;
根据所述有效信噪比, 在有效信噪比与调制编码方式信息的映射关系表 中, 查找到该波束空间上可用的调制编码方式信息;
根据用户终端可以支持的波束空间数目, 针对对应数目波束空间中的每 一波束空间, 按照该波束空间上可用的调制编码方式信息和波束空间向量, 对将要在该波束空间中发送的信号进行赋形处理。
24、 如权利要求 23所述的方法, 其特征在于, 针对每一波束空间, 将所 述平均信噪比和该波束空间上的特征值平方的乘积值, 作为用户终端各波束 空间上的有效信噪比。
25、 如权利要求 23所述的方法, 其特征在于, 按照下述公式, 确定用户 终端各波束空间上的有效信噪比:
Figure imgf000032_0001
其中, S賺 i为用户终端各波束空间上的有效信噪比, SINR为用户终端各 天线上平均信噪比, 为波束空间上的特征值, ?,为分配给波束空间上的功率 值, P 为分配给各个波束空间上的功率总和, 为用户终端可以支持的波束 空间数目。
26、 一种对波束空间中的信号进行赋形的基站, 其特征在于, 包括: 接收单元, 用于接收用户终端反馈的用户终端各天线上的平均信噪比; 确定单元, 用于根据上行信道回声信号, 确定用户终端的上行信道响应 矩阵;
转置单元, 用于对确定单元确定的上行信道响应矩阵进行转置处理, 得 到下行信道响应矩阵;
分解单元, 用于对转置单元得到的所述下行信道响应矩阵进行奇异值分 解, 得到用户终端的每个波束空间上的特征值和波束空间向量;
数目确定单元, 用于根据分解单元得到的每个波束空间上的特征值, 确 定用户终端可以支持的波束空间数目;
有效信噪比确定单元, 用于根据所述特征值和所述平均信噪比, 确定用 户终端各波束空间上的有效信噪比;
查找单元, 用于根据有效信噪比确定单元确定的所述有效信噪比, 在有 效信噪比与调制编码方式信息的映射关系表中, 查找到该波束空间上可用的 调制编码方式信息;
赋形单元, 用于根据数目确定单元确定的波束空间数目, 针对对应数目 波束空间中的每一波束空间, 按照查找单元找到到的该波束空间上可用的调 制编码方式信息和分解单元得到的波束空间向量, 对将要在该波束空间中发 送的信号进行赋形处理。
27、 一种对波束空间中的信号进行赋形的方法, 其特征在于, 包括: 基站接收由用户终端反馈的用户终端的各个波束空间上可用的调制编码 方式信息, 以及用户终端可以支持的波束空间数目;
根据上行信道回声信号, 确定用户终端的上行信道响应矩阵;
对确定的上行信道响应矩阵进行转置处理, 得到下行信道响应矩阵; 对所述下行信道响应矩阵进行奇异值分解, 得到用户终端的每个波束空 间上的波束空间向量;
根据用户终端可以支持的波束空间数目, 针对对应数目波束空间中的每 一波束空间, 按照该波束空间上可用的调制编码方式信息和波束空间向量, 对将要在该波束空间中发送的信号进行赋形处理。
28、 一种对波束空间中的信号进行赋形的基站, 其特征在于, 包括: 式信息, 以及用户终端可以支持的波束空间数目;
确定单元, 用于 4 据上行信道回声信号, 确定用户终端的上行信道响应 矩阵;
转置单元, 用于对确定单元确定的上行信道响应矩阵进行转置处理, 得 到下行信道响应矩阵;
分解单元, 用于对转置单元得到的所述下行信道响应矩阵进行奇异值分 解, 得到用户终端的每个波束空间上的波束空间向量;
赋形单元, 用于根据接收单元接收到的用户终端可以支持的波束空间数 目, 针对对应数目波束空间中的每一波束空间, 按照接收单元接收到的该波 束空间上可用的调制编码方式信息和分解单元得到的该波束空间上的波束空 间向量, 对将要在该波束空间中发送的信号进行赋形处理。
PCT/CN2009/001319 2008-09-25 2009-11-25 确定相关参数的方法、用户终端以及信号赋形方法、基站 WO2010037276A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09817190.3A EP2341637A4 (en) 2008-09-25 2009-11-25 METHOD AND USER TERMINAL USED TO DETERMINE ASSOCIATED PARAMETERS, METHOD AND BASE STATION USED TO FORM THE SIGNAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810223005.5 2008-09-25
CN 200810223005 CN101686500B (zh) 2008-09-25 2008-09-25 确定相关参数的方法、用户终端以及信号赋形方法、基站

Publications (1)

Publication Number Publication Date
WO2010037276A1 true WO2010037276A1 (zh) 2010-04-08

Family

ID=42049397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001319 WO2010037276A1 (zh) 2008-09-25 2009-11-25 确定相关参数的方法、用户终端以及信号赋形方法、基站

Country Status (3)

Country Link
EP (1) EP2341637A4 (zh)
CN (1) CN101686500B (zh)
WO (1) WO2010037276A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8315358B2 (en) 2009-06-04 2012-11-20 Nextray, Inc. Strain matching of crystals and horizontally-spaced monochromator and analyzer crystal arrays in diffraction enhanced imaging systems and related methods

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741508B (zh) * 2008-11-11 2013-04-03 中兴通讯股份有限公司 Lte发射模式7下cqi获取及使用的方法
CN103905102B (zh) * 2012-12-27 2017-02-08 中兴通讯股份有限公司 协作多点数据传输方法及基站
WO2014194525A1 (zh) * 2013-06-08 2014-12-11 华为技术有限公司 传输导频信号的方法、基站和用户设备
CN104184561B (zh) * 2014-01-13 2019-04-30 中兴通讯股份有限公司 预编码导频处理方法、装置、基站及终端
CN105207708B (zh) * 2015-09-06 2018-12-18 北京北方烽火科技有限公司 一种波束赋形权向量的生成方法及装置
WO2020062265A1 (zh) * 2018-09-30 2020-04-02 华为技术有限公司 通信方法、装置、网络设备、终端设备及系统
CN113395098B (zh) * 2021-04-13 2023-11-03 西安宇飞电子技术有限公司 一种多天线信号合并和发射信号赋形的方法及装置
CN113542170A (zh) * 2021-07-01 2021-10-22 北京九天微星科技发展有限公司 一种信号调制方式的检测方法、装置、系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030128160A1 (en) * 2001-12-18 2003-07-10 Lg Electronics Inc. Adaptive beamforming method for smart antenna system
EP1439526A2 (en) * 2003-01-17 2004-07-21 Samsung Electronics Co., Ltd. Adaptive beamforming method and apparatus using feedback structure
CN1658526A (zh) * 2004-02-17 2005-08-24 大唐移动通信设备有限公司 无线信道的下行波束赋形方法和装置
CN1739270A (zh) * 2002-12-11 2006-02-22 高通股份有限公司 Mimo通信系统中用于空间处理的特征向量的得到
CN1266856C (zh) * 2002-08-09 2006-07-26 华为技术有限公司 无线通信系统中基于时分双工的信号发射和接收方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1134922C (zh) * 2001-05-16 2004-01-14 华为技术有限公司 一种用于闭环分集模式1的权认证方法及装置
KR100896682B1 (ko) * 2002-04-09 2009-05-14 삼성전자주식회사 송/수신 다중 안테나를 포함하는 이동 통신 장치 및 방법
US7885228B2 (en) * 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
CN100452688C (zh) * 2003-06-27 2009-01-14 上海贝尔阿尔卡特股份有限公司 基于信道信息二阶统计的自适应调制和编码的方法及装置
KR100571138B1 (ko) * 2004-01-15 2006-04-13 삼성전자주식회사 파일럿 신호를 이용한 빔 형성 방법, 이를 수행하기 위한장치 및 시스템
CN101064557B (zh) * 2006-04-25 2012-10-17 上海原动力通信科技有限公司 基于智能天线获取下行信道质量信息的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030128160A1 (en) * 2001-12-18 2003-07-10 Lg Electronics Inc. Adaptive beamforming method for smart antenna system
CN1266856C (zh) * 2002-08-09 2006-07-26 华为技术有限公司 无线通信系统中基于时分双工的信号发射和接收方法
CN1739270A (zh) * 2002-12-11 2006-02-22 高通股份有限公司 Mimo通信系统中用于空间处理的特征向量的得到
EP1439526A2 (en) * 2003-01-17 2004-07-21 Samsung Electronics Co., Ltd. Adaptive beamforming method and apparatus using feedback structure
CN1658526A (zh) * 2004-02-17 2005-08-24 大唐移动通信设备有限公司 无线信道的下行波束赋形方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8315358B2 (en) 2009-06-04 2012-11-20 Nextray, Inc. Strain matching of crystals and horizontally-spaced monochromator and analyzer crystal arrays in diffraction enhanced imaging systems and related methods

Also Published As

Publication number Publication date
EP2341637A1 (en) 2011-07-06
CN101686500A (zh) 2010-03-31
EP2341637A4 (en) 2016-11-09
CN101686500B (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
WO2010037276A1 (zh) 确定相关参数的方法、用户终端以及信号赋形方法、基站
CN109952716B (zh) 用于高级csi反馈开销减少的可配置码本
CN107567695B (zh) 大规模天线系统中的资源分配设备和方法
US9496938B2 (en) Configurable spatial channel information feedback in wireless communication system
EP3641155A1 (en) Method for reporting channel state information in wireless communication system and device therefor
KR101252394B1 (ko) 고정빔 통신 시스템에서 주 그룹 스케줄링 방법 및 장치
CA2766526C (en) Method of performing link adaptation procedure
WO2020225642A1 (en) Csi omission rules for enhanced type ii csi reporting
WO2011059248A2 (ko) 무선랜 시스템에서의 mu-mimo 전송방법
JP7012845B2 (ja) 非プリコーダ行列インジケータ(pmi)チャネル状態情(csi)フィードバックのためのポートインデクスをシグナリングする方法及び装置
KR20170137124A (ko) 다중 안테나를 이용하는 무선 통신 시스템에서 송신 전력 제어 방법 및 장치
CN109478987B (zh) 用于处置通信的方法和用户设备
KR20140108246A (ko) 협력 다지점 송수신
WO2011017953A1 (zh) 一种确定小区参考信号位置的方法及装置
WO2011162936A1 (en) Method for channel quality feedback in wireless communication systems
WO2012092755A1 (zh) 一种下行多基站多输入多输出预编码的协调方法和装置
WO2013119382A1 (en) Gain normalization correction of pmi and cqi feedback for base station with antenna array
CN115836492A (zh) 辅助增强nr类型ii csi反馈的信令传输
TW201123938A (en) Antenna configuration for co-operative beamforming
KR20160031443A (ko) 무선 통신시스템의 채널 정보 피드백을 위한 장치 및 방법
WO2015172393A1 (zh) 信息处理方法、基站和用户设备
JP6364206B2 (ja) 無線基地局、ユーザ端末および無線通信方法
WO2016015225A1 (zh) 一种信道状态信息的反馈和接收方法、设备
CN111587556A (zh) 用户装置和无线通信方法
WO2018061570A1 (ja) 基地局装置、端末装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009817190

Country of ref document: EP