WO2010034863A1 - Uso de inhibidores de quinasas para la elaboración de composiciones farmacéuticas para el tratamiento de la enfermedad de parkinson, composiciones farmacéuticas y procedimiento de diagnóstico de enfermedad de parkinson - Google Patents

Uso de inhibidores de quinasas para la elaboración de composiciones farmacéuticas para el tratamiento de la enfermedad de parkinson, composiciones farmacéuticas y procedimiento de diagnóstico de enfermedad de parkinson Download PDF

Info

Publication number
WO2010034863A1
WO2010034863A1 PCT/ES2009/070385 ES2009070385W WO2010034863A1 WO 2010034863 A1 WO2010034863 A1 WO 2010034863A1 ES 2009070385 W ES2009070385 W ES 2009070385W WO 2010034863 A1 WO2010034863 A1 WO 2010034863A1
Authority
WO
WIPO (PCT)
Prior art keywords
cdk5
parkin
protein
casein kinase
disease
Prior art date
Application number
PCT/ES2009/070385
Other languages
English (en)
French (fr)
Inventor
Sabine Navarro Hilfiker
Elena Rubio De La Torre Gil
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2010034863A1 publication Critical patent/WO2010034863A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/485Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2835Movement disorders, e.g. Parkinson, Huntington, Tourette

Definitions

  • Parkinson's disease is the second most prevalent neurodegenerative disorder, affecting 2% of individuals with an age close to 65 years.
  • the main clinical symptoms include tremor, stiffness, bradykinesia and postural instability.
  • the symptoms appear as a consequence of a selective and progressive degeneration of the dopaminergic neurons of the pars compacta black substance.
  • a pathological marker that accompanies cell death is the appearance of Lewy bodies in the surviving neurons.
  • Lewy bodies are ubiquitinated intraneuronal inclusions, rich in alpha-synuclein (Shults,
  • Parkinson's disease is a mostly sporadic disorder, there are genes related to hereditary forms of the disease (Farrer, 2006).
  • PARK2 the gene that codes for the parkin protein (Kitada et al., 1998). Mutations in this gene are responsible for a high percentage of autosomal recessive juvenile parkinson (Abbas et al., 1999; Lucking et al., 2000).
  • Parkina functions as an E3 protein-ubiquitin-ligase (Shimura et al., 2000).
  • the inactivation of its catalytic activity could lead to a toxic accumulation of its substrates, thus directly or indirectly affecting the mitochondrial function, and as a consequence, causing cell death.
  • Recent studies suggest that changes in the solubility of parkin could be the main mechanism by which it would lose its activity, both in sporadic and genetic parkinsons. For example, a wide range of pathological point mutations result in a loss of their solubility and promote their aggregation (Cookson et al., 2003; Sriram et al., 2005; Hampe et al., 2006).
  • Protein phosphorylation is a post-translational modification that has recently been linked to the mechanisms underlying parkinson's disease (Cookson et al., 2007). Since protein kinases are good therapeutic targets, these findings could help in the design of new therapeutic strategies. It has been described that parkin is phosphorylated by cyclin 5 dependent kinase (cdk5) and casein kinase I (CKI), which produces moderate changes in its activity as E3 ubiquitin ligase in both cases (Yamamoto et al., 2005; Avraham et al., 2007).
  • cdk5 cyclin 5 dependent kinase
  • CKI casein kinase I
  • An aspect of the present invention constitutes the use of a compound that inhibits casein kinase I protein or cdk5 protein kinase, or both, hereinafter use of a compound of the present invention, for the preparation of a medicament or composition Pharmaceutical useful for the treatment of a disease associated with Lewy bodies, preferably for the treatment of Parkinson's disease.
  • a particular aspect of the invention constitutes the use of a compound of the invention in which the inhibitor compound is an inhibitor of the casein kinase I enzyme belonging, by way of illustration and without limiting the scope of the invention, to the following group: IC261 (Bain et al., 2007), CKI-7 (Bain et al., 2007) and D4476 (Rena et al., 2004). While IC261 has been described that has some specificity against the delta and epsilon isoforms of casein kinase I, the remaining inhibitors such as CK1-7 do not have specificity for the different casein kinase isoforms (Knippschild et al., CeII. Signal. 27, 675-689 (2005)). Therefore, the described compounds are related to the inhibition of all the described isoforms of casein kinase I.
  • Another particular aspect of the invention constitutes the use of a compound of the invention in which the inhibitor compound is an inhibitor of the cdk5 enzyme, belonging, by way of illustration and without limiting the scope of the invention, to the following group: R- roscovitine (Meijer et al., 1997) also known as CYC202 or seliciclib), BMI-1026 (bis (aminopyrimidine)) (Braak, H, 2004), Aloisin A (a synthetic pyrrolopyrazine) (Braak, H, 2004) and GW8510 (Johnson et al., 2005).
  • R-roscovitine Meijer et al., 1997) also known as CYC202 or seliciclib
  • BMI-1026 bis (aminopyrimidine)
  • Aloisin A a synthetic pyrrolopyrazine
  • GW8510 Johnson et al., 2005
  • Another particular aspect of the invention constitutes the use of a compound of the invention which the inhibitor compound is a nucleic acid or polynucleotide that prevents or decreases the expression of the gene coding for, at less, one of the human casein kinase I or cdk5 enzymes and that includes at least one nucleotide sequence selected from:
  • shRNAi interference RNA
  • composition of the invention which comprises a therapeutically effective amount of a compound or agent inhibiting the casein kinase I or cdk5 enzyme, or of both, together with, optionally, one or more pharmaceutically acceptable adjuvants and / or vehicles.
  • Another object of the present invention constitutes a method of diagnosis and prognosis of diseases associated with Lewy bodies or aggregates, preferably of Parkinson's disease, ex vivo, hereinafter diagnostic procedure of the invention, based on the determination in vitro in cells of the central nervous system, in a biological sample, of the expression at least one of the following proteins: phosphorylated parkin, p35 and Cdk5, and comprising the following steps: a) taking a biological sample of the central nervous system, b) identification or determination of the levels of at least one of the aforementioned proteins - phosphorylated parkin protein, p35 and Cdk5, in the sample of the central nervous system of a) , and c) comparison of said determination observed in b) with a control sample, and where its increased presence is indicative of a disease associated with Lewy bodies.
  • Another particular object of the invention constitutes the diagnostic procedure of the invention where the biological sample of a) is obtained from neurons belonging to an autonomous plexus.
  • Another particular object of the invention constitutes the diagnostic method of the invention where the determination of b) is carried out with at least one specific antibody of the phosphorylated parkin protein, more preferably, a specific phospho-state phosphorylated parking residue antibody belonging , by way of illustration, to the following group: phospho-state specific antibody phospho-Ser101 (P-101), phospho-Ser378 (P-378) and phospho-Ser127 (P127).
  • a particular embodiment of the invention constitutes the diagnostic procedure of the invention where the biological sample of a) is obtained from neurons belonging to an autonomous plexus and where the determination of b) is carried out by means of a specific phospho-state antibody of the Parkin residue phospho-Ser101 (P-101). Detailed description
  • the present invention is based on the fact that the inventors have observed that the parkin protein, an essential protein for the survival of dopaminergic neurons, is regulated by phosphorylation in vitro and in cell cultures. More specifically, it has been observed that said phosphorylation by casein kinase I and cyclin-dependent kinase 5 (cyclin-dependent kinase, cdk5) increases its insolubility, promoting its aggregation, and as a consequence, its inactivation. However, and although phosphorylation does not modify the ubiquitin-ligase E3 activity of parkin, an increase in its aggregation decreases the amount of soluble parkin protein available to exert its neuroprotective role (Feany and Pallanck, 2003).
  • cdk5 and p35 / p25 have been described to accumulate in the Lewy bodies of the brains of patients with Parkinson's disease (Nakamura et al., 1997). Additionally, it should be noted that an increase in the levels and activity of cdk5 has been described in a mouse model with MPTP-induced parkinson's disease (Smith et al., 2003), and also, that several neurotoxic aggressions induce a generation of p25 from p35 (Lee et al., 2000). These data indicate that cdk5 activity can play a key role in the pathogenesis of the sporadic form of the disease (Smith et al., 2004).
  • the inhibition combined of both kinases produced a decrease in the number of cells that had large perinuclear aggregates, and a concomitant increase in the number of cells that presented only small aggregates, thus demonstrating the beneficial effects of said inhibition in the modulation of aggregation, even in mutations pathological of the disease, and therefore in the progression of the disease.
  • the results indicate that the regulation of the state of parkin phosphorylation has a beneficial effect in the reduction of parkin aggregation and as a consequence, in its inactivation, affecting both the wild form of the protein and the forms whose mutations induce autosomal recessive juvenile parkinson.
  • These findings indicate that the casein kinase I and cdk5 proteins represent therapeutic targets for the treatment of Parkinson's disease, using inhibitors of their activity, as well as possible gene inhibitors.
  • the inventors analyzed samples of the caudate nucleus, cortex and cerebellum of brain of control patients and Parkinson's patients. In this way, they observed an increased phosphorylation of the protein in Parkinson's patients with respect to the control group, in the caudate nucleus (Example 3.1.) - However, phosphorylated parkin could not be detected in cerebellum of control patients, nor in patients With the disease.
  • the neuroanatomic differences found in the location of phosphorylated Parkin between controls and patients is related to the extent to which different areas of the brain are affected in the course of the disease and demonstrate an alteration of the phosphorylation state of the specific parkin protein of Ia Parkinson's disease (Braak et al., 2004), thus indicating that the abnormal phosphorylation of parkin, whose consequence is its inactivation, It can contribute to the neuronal degeneration produced in the sporadic parkinson.
  • one aspect of the present invention constitutes the use of an inhibitor compound of the casein kinase I protein or of the cdk5 protein kinase, or both, hereinafter use of a compound of the present invention, for the preparation of a medicament or pharmaceutical composition useful for the treatment of a disease associated with Lewy bodies, preferably for the treatment of Parkinson's disease.
  • compound / inhibitory agent refers to a molecule that when bound or interacts with the human casein kinase I and / or cdk5 protein, or with functional fragments thereof, decreases or eliminates the intensity or duration of its phosphorylating biological activity and aggregator of the parkin protein.
  • This definition also includes those compounds that prevent or decrease the expression of the gene coding for the human casein kinase I or cdk5 protein, that is, that prevent or diminish the transcription of the gene, the maturation of the mRNA, the translation of the mRNA and Ia post-translational modification.
  • An inhibitory agent may be constituted by a peptide, a protein, a nucleic acid or polynucleotide, a carbohydrate, an antibody, a chemical compound or any other type of molecule that diminishes or eliminates the effect and / or the function of the human casein kinase I or cdk5 protein.
  • said polynucleotide can be a polynucleotide that encodes a specific antisense sequence of the gene or mRNA sequence of the human casein kinase I or cdk5 protein, or a polynucleotide encoding a specific ribozyme of the casein kinase protein mRNA I or human cdk5, or a polynucleotide encoding a specific mRNA aptamer of the human casein kinase I or cdk5 protein, or a polynucleotide encoding an interference RNA ("small interference RNA" or siRNA) specific to the mRNA of Ia human casein kinase I or cdk5 protein, or a polynucleotide that encodes a specific microRNA of the human casein kinase I or cdk5 protein mRNA.
  • interference RNA small interference RNA
  • siRNA small interference RNA
  • Casein Kinase I isoforms seven mammalian Casein Kinase I isoforms have been described ( ⁇ , ⁇ 1, ⁇ 2, ⁇ 3, ⁇ and ⁇ ), as well as different variants have been characterized by splicing. All Casein Kinase I isoforms are highly conserved in their kinase domains, differing in length and primary sequence in the non-catalytic domains of the N and C-terminal ends.
  • human casein protein kinase I refers to a protein with one of the following reference sequences: Casein kinase I alpha, human (NM001025105, SEQ ID NO1), Casein kinase I beta (not yet described in humans, although in cattle), Human gammal casein kinase I (NM022048, SEQ ID NO2), Human casein kinase I gamma2 (NM001319, SEQ ID NO3), Human casein kinase I gamma3 (NM004384, SEQ ID NO4), Casein human delta kinase I (NM001893, SEQ ID NO5), Casein Human epsilon kinase I (NM001894, SEQ ID NO6), or a functionally equivalent variant thereof.
  • cdk refers to a protein with the following reference sequence (human sequence, NP004926, SEQ ID NO7) or a functionally equivalent variant thereof.
  • “functionally equivalent variant” means, in the context of the present invention, any protein that can be obtained from human casein kinase I or human cdk5, respectively, previously indicated by the substitution, deletion or insertion of one or more amino acids and that substantially maintains the function of the original protein.
  • the determination of the function of both human proteins can be carried out using conventional methods widely known to the person skilled in the art, among which are those used in the present invention.
  • a particular aspect of the invention constitutes the use of a compound of the invention in which the inhibitor compound is an inhibitor of the casein kinase I enzyme belonging, by way of illustration and without limiting the scope of the invention, to the following group: IC261 (Bain et al., 2007), CKI-7 (Bain et al., 2007) and D4476 (Rena et al., 2004). While IC261 has been described that has some specificity against the delta and epsilon isoforms of casein kinase I, the remaining inhibitors such as CK1-7 do not have specificity for the different casein kinase isoforms (Knippschild et al., CeII. Signal.
  • the described compounds are related to the inhibition of all the described isoforms of casein kinase I.
  • Another particular aspect of the invention constitutes the use of a compound of the invention in which the inhibitor compound is an inhibitor of the cdk5 enzyme, belonging, by way of illustration and without limiting the scope of the invention, to the following group: R- roscovitine (Meijer et al., 1997) also known as CYC202 or seliciclib), BMI-1026 (bis (aminopyrimidine)) (Braak, H, 2004), Aloisin A (a synthetic pyrrolopyrazine) (Braak, H, 2004) and GW8510 (Johnson et al., 2005).
  • Another particular aspect of the invention constitutes the use of a compound of the invention which the inhibitor compound is a nucleic acid or polynucleotide that prevents or decreases the expression of the gene coding for at least one of the casein kinase I or cdk5 enzymes human and that includes at least one nucleotide sequence selected from:
  • shRNAi interference RNA
  • these techniques of gene inhibition, and more specifically the vehiculization of the compounds - antisense oligonucleotides, iRNA, ribozymes or aptamers - can be carried out through the use of nanoparticles that increase the success of said transfer (Lu PV and Woodle MC , Adv Genet 54: 117-42, 2005; Hawker CJ and Wooley KL, Science 19 (309): 1200-5, 2005).
  • polynucleotides mentioned can be used in a gene therapy process in which, by any technique or procedure, their integration into the cells, preferably cells of a sick human patient, is allowed.
  • This objective can be achieved by administering to the neuronal cells a gene construct comprising one of the aforementioned polynucleotides, in order to transform said cells, allowing their expression inside them so that the expression of the protein is inhibited.
  • Casein kinase I or cdk5 together or separately.
  • said gene construct may be included within a vector, such as an expression vector or a transfer vector.
  • vector refers to systems used in the process of transferring an exogenous gene or an exogenous gene construct into a cell, thus allowing the vehiculization of genes and gene constructs.
  • exogenous Said vectors can be non-viral vectors or viral vectors (Pfeifer A, Verma IM (2001) Gene therapy: promises and problems. Annu Rev Genomics Hum Genet 2: 177-211) and their administration can be prepared by an expert in the field of function of the needs and specificities of each case.
  • Another particular aspect of the invention constitutes the use of a compound of the invention in which the inhibitor compound is a specific antibody against the human and functionally active Casein Kinase I or cdk5 protein, which prevents or decreases the biological activity thereof, either monoclonal or polyclonal.
  • the term "functionally active antibody” refers to a recombinant antibody that maintains its antigen binding capacity, including mini-antibodies, which are defined as fragments derived from antibodies constructed by recombinant DNA technology, which, despite their smaller size, they retain the antigen binding capacity since they maintain at least one variable immunoglobulin domain where the antigen binding zones reside, and which belongs, by way of illustration and without limiting the scope of the invention, to following group: polyclonal antisera, purified IgG molecules, supernatants or ascites containing monoclonal antibodies, Fv, Fab, Fab 'and F (ab') 2 fragments, ScFvdiabodies, recombinant monodomain antibodies (dAbs), humanized triabodies and tetrabodies antibodies.
  • mini-antibodies are defined as fragments derived from antibodies constructed by recombinant DNA technology, which, despite their smaller size, they retain the antigen binding capacity since they maintain at least one variable immunoglobulin domain where the
  • recombinant monodomain antibodies and / or immunoglobulin-like domains with independent binding and recognition capacity are understood, both to the heavy chain variable domains (VH), to the light chain variable domains (VL) , to recombinant camelid (VHH) antibodies, recombinant humanized camelid antibodies, recombinant antibodies of other camelized species, IgNAR monodomain antibodies of cartilaginous fish; that is, that both domains that are naturally monodomain (case of VHH and IgNAR) are included, as well as engineering antibodies that have been altered so that by themselves they are able to interact with the antigen and improve its stability properties and solubility.
  • Any modification of the recombinant antibodies such as their multimerization or fusion to any molecule (eg toxins, enzymes, antigens, other antibody fragments, etc.) is included in this definition.
  • composition of the invention which comprises a therapeutically effective amount of a compound or agent inhibiting the casein kinase I or cdk5 enzyme, or of both, together with, optionally, one or more pharmaceutically acceptable adjuvants and / or vehicles.
  • compositions are the adjuvants and vehicles known to those skilled in the art and commonly used in the elaboration of therapeutic compositions.
  • the expression “therapeutically effective amount” refers to the amount of the agent or compound that inhibits the activity of the parkin protein, calculated to produce the desired effect and, in general, will be determined, among other causes. , due to the characteristics of the compounds, including the age, condition of the patient, the severity of the alteration or disorder, and the route and frequency of administration.
  • said therapeutic composition is prepared in the form of a solid form or aqueous suspension, in a pharmaceutically acceptable diluent.
  • the therapeutic composition provided by this invention can be administered by any route of administration. appropriate, for which said composition will be formulated in the pharmaceutical form appropriate to the route of administration chosen.
  • the administration of the therapeutic composition provided by this invention is carried out parenterally, orally, intraperitoneally, subcutaneously, etc.
  • Another particular aspect of the present invention constitutes the pharmaceutical composition of the invention in which the inhibitor compound is an inhibitor compound of the phosphorylating activity of the casein kinase I protein belonging, by way of illustration and without limiting the scope of the invention, to the following group: IC261 (Bain et al., 2007), CKI-7 (Bain et al., 2007) and D4476 (Rena et al., 2004).
  • the inhibitor compound is an inhibitor compound of the phosphorylating activity of the casein kinase I protein belonging, by way of illustration and without limiting the scope of the invention, to the following group: IC261 (Bain et al., 2007), CKI-7 (Bain et al., 2007) and D4476 (Rena et al., 2004).
  • Another particular aspect of the present invention constitutes the pharmaceutical composition of the invention in which the inhibitor compound is an inhibitor compound of the phosphorylating activity of the cdk5 protein belonging, by way of illustration and without limiting the scope of the invention, to the following group: R-roscovitine (Meijer et al., 1997) also known as CYC202 or seliciclib), BMI-1026 (bis (aminopyrimidine)) (Braak, H, 2004), Aloisin A (a synthetic pyrrolopyrazine) (Braak, H, 2004) and GW8510 (Johnson et al., 2005).
  • R-roscovitine Meijer et al., 1997) also known as CYC202 or seliciclib
  • BMI-1026 bis (aminopyrimidine)
  • Aloisin A a synthetic pyrrolopyrazine
  • GW8510 Johnson et al., 2005.
  • Another particular aspect of the present invention constitutes the pharmaceutical composition of the invention in which the inhibitor compound is a nucleic acid or polynucleotide that prevents or decreases the expression of the gene coding for the protein casein kinase I and / or human cdk ⁇ and that includes a nucleotide sequence selected from:
  • iRNA interference RNA
  • iRNA interference microRNA
  • Another particular aspect of the present invention constitutes the pharmaceutical composition of the invention in which the inhibitor compound is a specific antibody to the casein kinase I or cdk5 protein.
  • Another aspect of the present invention constitutes the use of the pharmaceutical composition of the invention in a method of treating a mammal, preferably a human being, affected by a neurological disease, preferably Parkinson's disease, hereinafter use of the pharmaceutical composition of the present invention, consisting of the administration of said therapeutic composition that inhibits the neuropathological process.
  • a mammal preferably a human being
  • a neurological disease preferably Parkinson's disease
  • Another object of the present invention constitutes a method of diagnosis and prognosis of diseases associated with Lewy bodies or aggregates, preferably of the disease of Parkinson, ex vivo, hereinafter diagnostic procedure of the invention, based on in vitro determination in cells of the central nervous system, in a biological sample, of the expression at least one of the following proteins: phosphorylated parkin, p35 and Cdk5, and that includes the following stages:
  • disease associated with Lewy bodies refers to diseases belonging to the following group: Dementia of Lewy bodies and Parkinson's disease.
  • the taking of a biological sample of the central nervous system of a) can be taken from a human being in different anatomical locations, either cranial or extracranial. and subsequently ex vivo, the presence or absence of said proteins is identified, and in the case of parkin, their phosphorylation levels, which would correlate with the diagnosis of a disease associated with Lewy bodies, preferably, of Parkinson's disease, which It would allow the definition and execution of a therapeutic or diagnostic approach and / or prognosis.
  • the taking of a biological sample of an autonomous plexus, peripheral non-cranial locations of neurons of the nervous system central can allow the identification of Lewy bodies that have phosphorylated parkin protein.
  • Another particular object of the invention constitutes the diagnostic procedure of the invention where the biological sample of a) is obtained from neurons belonging to an autonomous plexus.
  • Another particular object of the invention constitutes the diagnostic method of the invention where the determination of b) is carried out with at least one specific antibody of the phosphorylated parkin protein, more preferably, a specific phospho-state phosphorylated parking residue antibody belonging , by way of illustration, to the following group: phospho-state specific antibody phospho-Ser101 (P-101), phospho-Ser378 (P-378) and phospho-Ser127 (P127).
  • a particular embodiment of the invention constitutes the diagnostic procedure of the invention where the biological sample of a) is obtained from neurons belonging to an autonomous plexus and where the determination of b) is carried out by means of a specific phospho-state antibody of the Parkin residue phospho-Ser101 (P-101).
  • Figure 1 Phosphorylation of Parkin protein by casein kinase I in vitro and in cells
  • the different truncated forms of the protein that were used in in vitro phosphorylation assays are represented below (complete, N1-N3 and C1-C3)
  • (b) The different truncated forms of Parkin were purified as described in Materials and Methods and analyzed by SDS-PAGE and Coomassie staining to check its purity. Complete parkina, as well as the truncated forms N1 and C3 are indicated with arrows.
  • Bacterial Hsp70 which copurified with complete parkin, was determined by mass spectroscopy and is indicated with a triangle, (c) wild complete Parkina is catalytically active. The activity was tested in vitro by autoubiquitinization in the presence of ubiquitin (Ub) or ubiquitin lacking lysine (LL-Ub), which lacks the necessary residues for the conjugation of the polyubiquitin chain.
  • Ub ubiquitin
  • LL-Ub ubiquitin lacking lysine
  • Figure 2. Multiple phosphorylation of Parkin in vitro and in vivo,
  • HEK293T cells were transfected with complete parkin (wt) or the S131 E mutant, and the same amount of cell extract was analyzed for parkin phosphorylation by phospho-state-specific antibodies.
  • HEK293T cells were transfected with Parkin and treated or not with roscovitine (1 ⁇ M) for 12 hours.
  • Figure 3 Parkina phosphomimetic mutants show slight changes in their activity as E3 ligase and important changes in their aggregative properties
  • HEK293T cells were transfected with Parkina 101 E / 127E / 131 E / 378E mutants and treated with 5 ⁇ M of MG-132 for 12 hours before carrying out the immunocytochemistry, using antibody 844 (green) .
  • the nuclei were stained with DAPI.
  • HEK293T cells were transfected with wild Parkina (wt) and its different mutants, treated with 5 ⁇ M of MG-132 for 12 hours before carrying out the immunocytochemistry as described above.
  • Figure 4. Selective increase of parkin phosphorylation and p25 levels in different areas of the brain of patients with idiopathic Parkinson's.
  • Figure 5 The inhibition of Parkina phosphorylation decreases the aggregation of its mutants.
  • FIG. 6 In vitro phosphorylation of Parkin by additional protein kinases, (a) Recombinant complete Parkin or GST-parkin (arrows) was subjected to in vitro phosphorylation assays using Kinase-dependent kinase.
  • AMP-cyclic (PKA) protein kinase C (PKC), Calcium-dependent kinase and calmodulin Il (CaM Kinase II), Glycogen synthase kinase 3 ⁇ (GSK-3 ⁇ ) and ASK-1.
  • PKA AMP-cyclic
  • PLC protein kinase C
  • CaM Kinase II Calcium-dependent kinase and calmodulin Il
  • Glycogen synthase kinase 3 ⁇ Glycogen synthase kinase 3 ⁇
  • ASK-1 As a positive control, various proteins (synapsin, Tau and myelin basic protein (MBP) respectively) were used.
  • Figure 7. Levels of Casein Kinase l ⁇ (CKI ⁇ ), CdK5 and p35 in different areas of the brain of patients with idiopathic Parkinson's.
  • Figure 8.- Example of an experiment using Parkin C289G mutant, in which the percentage of cells that have inclusions (left), the percentage of cells that have at least one large perinuclear inclusion (center) and The mean number of inclusions per cell (right) was quantified in the absence (-) and in the presence (+) of different kinase inhibitors or combinations of both, 12 hours before the fixation.
  • the inhibitors used are roscovitine (0.5 ⁇ M), GW8510 (0.25 ⁇ M), IC261 (50 ⁇ M), CKI-7 (150 ⁇ M) and D4476 (17.5 ⁇ M).
  • Error bars are only shown when they are larger than the lines of the columns, (b) Quantification of the percentage of cells that present aggregates of the Parkina C289G mutant (left), percentage of cells that show at least one large perinuclear inclusion (cen ⁇ ro) and average number of inclusions per cell (right), in absence (-) and presence roscovitine (0.5 ⁇ M), IC261 (50 ⁇ M) or a combination of both.
  • Figure 9. Example of the staining of a postmortem sample of an autonomous plexus of a patient with Parkinson's. Samples were prepared and analyzed as previously described (Minguez-Castellanos et al., Neurology, 2007), using the phospho-Ser-101 antibody at a 1: 250 dilution.
  • Example 1 Parkin phosphorylation increases aggregation in intracellular inclusion bodies
  • Parkin protein is also susceptible to being phosphorylated by cyclin-dependent kinase 5 (CdK5) in residue S131 (Avraham et al., 2007).
  • CdK5 cyclin-dependent kinase 5
  • Similar findings were observed in cells, using the specific phospho-esiate antibodies.
  • the muted form of parkin S131 E, which mimics the consi-positive phosphorylation by cdk5 showed an increase in casein kinase I phosphorylation with respect to parkina silves ⁇ re (w ⁇ ) (Fig. 2c).
  • Parkin phosphorylation could regulate its E3 ubiquitin ligase activity or modulate its insolubility, with effect on the survival of dopaminergic cells in both cases.
  • in vitro autoubiquitination assays were carried out, in which different phospho-mimetic mutants of the protein were used (Fig. 3 and Figure 7).
  • the phospho-mimetic parkin mutant for CdK5 (S131 E) showed an activity similar to the wild form, while its non-phosphorylable mutant (S131A) was slightly more acidic, as previously described (Avraham e ⁇ al., 2007 ) (Fig. 3a).
  • HEK293T cells were transfected with the phospho-mimetic and non-phosphorylatable mutants, the cells were treated with the MG-132 proteasome inhibitor and the amount of parkin inclusion bodies was determined by immunocytochemistry (Fig. 3e).
  • the three mutants showed a greater tendency to form intracellular aggregates in the absence of proteasome inhibitors, with C289G> R275W> R256C (Fig. 5a).
  • the three pathological mutants showed no significant differences in their ubiquitin-ligase E3 activity (Fig. 5b) and were phosphorylated in vitro by Casein Kinase I and CdK5 (Fig. 5c), which indicates that the main pathological mechanism of action seems to involve increase in aggregation (Cookson et al., 2003; Sriram et al., 2005; Hampe et al., 2006). Parallel to their reduced detergent extraction, it was observed that they were highly phosphorylated in the fraction insoluble in Triton (Fig. 5d). Therefore, it was then studied whether the inhibition of Casein Kinase I and CdK5 activity could modulate the aggregative properties of these mutants.
  • the cells were transfected with the aggregative mutant R256C and analyzed 72 hours after transfection. About 15% of the transfected cells showed large perinuclear inclusions.
  • Example 3 Phosphorylated forms of Parkin in the central nervous system represent a prognostic marker and diagnosis of Parkinson's disease.
  • p25 levels were significantly higher in patients with Parkinson's disease compared to control in caudate, but not in the cortex (Fig. 4b, c).
  • the observed increase in phosphorylated parkin levels in Parkinson's disease compared to the control group may, at least partially, be due to changes in p25 levels in the different areas of the brain analyzed, with concomitant changes in cdk5 activity, accompanied by phosphorylation and aggregation of parkin.
  • the phospho-Ser-101 antibody stains Lewy bodies and Lewy neurites in postmortem sections of the CNS of brains of Parkinson's patients, in addition to showing granular cytoplasmic staining in some neurons ( Figure 9). This staining is similar to that found with two non-phospho-specific antibodies to parkin (Ab-cam and 844), however, phospho-specific staining is much more sensitive.
  • the antibody shows a granular staining in some neurons, similar to that found for ⁇ -alpha-synuclein (Minguez-Castellanos et al., Neurology, 2007, 2012-2018).
  • the phospho-Ser-378 antibody gives a weaker signal than the phospho-Ser-101, but shows the pattern of granular staining in some neurons of the autonomous plexus. Therefore, the use of these specific phospho-state antibodies for the detection of phospho-parkin levels could serve as a new tool for the diagnosis of disorders with Lewy bodies.
  • Cyclin 5-dependent kinase phosphorylation (CdK5) (20 ng of complete CdK5 (Upsatate)) was carried out in 8 mM MOPS / NaOH, 0.2 ⁇ M EDTA, 10 mM Mg-acetate, pH 7.0, using 500 ng Histone H1 as a positive control. Unless specified, all reactions were carried out in a final volume of 40 ⁇ l and were initiated by adding ATP to a final concentration of 100 ⁇ M, with traces of [ 32 P] ATP (GEHealthcare, specific activity 150 mCi / ml). After 30 minutes with stirring (450 rpm), the reactions were terminated by adding 0.2 volumes of 5x loading buffer and boiling for 5 minutes at 95 ° C.
  • Proteins were separated by SDS-PAGE in 10% polyacrylamide gels. (or 12.5% to separate the N1 or C3 forms) and subsequently stained with blue Coomassie dye.
  • the incorporation of 32 P was quantified using a Phosphorlmager (Molecular Dynamics) and correcting the values with respect to the background.
  • the differences in the amount of protein were quantified in the gels stained with Coomassie, using the QuantityOne (Bio-Rad) program, and corrected with respect to the background value.
  • the quantified radioactivity values were corrected for the amount of protein used. Reactions carried out using additional kinases that do not phosphorylate parkin are described in supplementary methods. Autoubiquitination reactions
  • the samples were separated in 7.5% polyacrylamide gels and subsequently incubated with an anti-ubiquitin monoclonal antibody (clone 6C1, Sigma), in a 1: 1000 dilution, overnight at 4 0 C. To verify that had loaded the same amount of protein, the samples were independently incubated with an anti-parkin antibody (844), in a 1: 1000 dilution, overnight at 4 0 C.
  • an anti-ubiquitin monoclonal antibody clone 6C1, Sigma
  • the anti-parkin and anti-phospho-parkin antibodies were generated in collaboration with PhosphoSolutions (USA). Briefly, the antibodies were produced in rabbits, using peptides with the human parkin sequence (around amino acid 400) (844) or chemically phosphorylated peptides at positions S101 and S378. Specific phospho-state antibodies were affinity purified, sequentially through two chromatographic columns, one with the phosphorylated peptide and one with the unphosphorylated peptide.
  • HEK293T cells were cultured in 100 mm dishes and grown at 37 0 C in 5% CO2.
  • the culture medium was DMEM (Dulbecco's modified Eagle's medium) supplemented with 4 mM Glutamine, non-essential amino acids (Sigma), 10% heat-inactivated fetal serum (Invitrogen), penicillin (100 units / ml) and streptomycin (100 units / ml)
  • DMEM Dulbecco's modified Eagle's medium
  • Glutamine non-essential amino acids
  • Invitrogen 10% heat-inactivated fetal serum
  • penicillin 100 units / ml
  • streptomycin 100 units / ml
  • the cells were transfected with a confluence of 50-60%, using 8 ⁇ g of the plasmid of interest and 80 ⁇ l of the PolyFect transfection reagent (Qiagen), for a 100 mm plate, following the manufacturer's instructions. 4 hours after transfection, the culture medium was replaced by fresh medium.
  • the cells were collected 48 hours after transfection. Before collecting them, they were treated with 1 ⁇ M of roscovitine (Calbiochem) for 12 hours, to inhibit the endogenous activity of CdK5 or with 50 ⁇ M of IC261 (3 - [(2,4,6-trimethoxyphenyl) methylidenyl] indolin-2- one) (Calbiochem), for 3 or 12 hours, to inhibit the endogenous activity of casein kinase I. Where indicated, the cells were treated with 0.5 ⁇ M okaidic acid (Alomone Labs), for one hour before being processed, to inhibit endogenous phosphatase activity.
  • the cells were washed once with cold PBS and resuspended in 1-1.5 ml of lysis buffer per 100 mm plate (1% SDS, 1 mM PMSF, 1 mM Na 3 VO 4 and 5 mM NaF in PBS) .
  • the resuspended cells were incubated for 15 minutes at 4 o C on a rotary shaker, sonicated twice (2 pulses of 1 second) and centrifuged at 13,500 rpm for 10 minutes at 4 o C.
  • the protein concentration of the supernatants was determined by BCA assay (Pierce) and then 0.2 volumes of 5x loading buffer were added.
  • the cells were collected 72 hours after the transfection, washed once with cold PBS, resuspended in 4 ml of cold PBS and divided into two tubes. The cells were collected by 5 minutes of centrifugation (1,500 rpm, 4 ° C), and resuspended in 400 ⁇ l of buffer (50 mM Tris-HCI, pH 8.0, 300 mM NaCI, 1.5 mM MgCI 2 , 2 Dg / ml chymostatin, 100 u / ml aprotinin, 1 mM PMSF, 1 mM NaSVO 4 and 5 mM NaF) containing either 1% SDS for the total fraction or 1% Triton X-100.
  • buffer 50 mM Tris-HCI, pH 8.0, 300 mM NaCI, 1.5 mM MgCI 2 , 2 Dg / ml chymostatin, 100 u / ml aprotinin, 1 mM PMSF
  • HEK293T or HEK293T / 17 cells were cultured in 6-well plates with a confluence of 40%, the transfection was carried out the next day when the confluence was 60%, using 2 ⁇ g of DNA and 20 ⁇ l of the PolyFect transfection reagent, according to the manufacturer's instructions. The next day, the cells were passed 1: 2-1: 3 in covers and were processed for immunocytochemistry two days later. When indicated, the cells were treated with 5 ⁇ M of MG-132 (carbobenzoxy-L-leucyl-L-leucinal) (Calbiochem) for 12 hours, to inhibit proteasome activity, which facilitates the formation of aggregates.
  • MG-132 carbobenzoxy-L-leucyl-L-leucinal
  • the cells were fixed with 4% paraformaldehyde in PBS, for 30 minutes at 37 ° C. They were permeabilized with PBS / 0.5% Triton X-100 (3 washes of 5 minutes) and incubated in blocking buffer (10 % goat serum in PBS with 0.5% Triton X-100 (Vector Laboratories) for 1 hour at room temperature.
  • the primary antibody (rabbit anti-parkin 844) was diluted with 1: 1000 blocking buffer and incubated with it for 1 hour at room temperature.
  • the cells were washed with PBS / 0.5% Triton X-100 and incubated with a secondary goat anti-rabbit antibody AlexaFluor-488-conjugate (1: 1000, Invitrogen) for one hour at room temperature.
  • the cells were subsequently washed with PBS / 0.5% Triton X-100, PBS, water and 70% ethanol. Once the cells were fixed, they were mounted using a mounting medium with DAPI (Vector Laboratories) and visualized in a Zeiss microscope using 4Ox and 100x oil immersion objectives. Using this technique, the transfection levels achieved were always around 60%.
  • DAPI Vector Laboratories
  • Frozen brain samples were provided by the Neurological Tissue Bank of Bellvitge Hospital, Spain.
  • the samples of the deceased human subjects were collected during the autopsy, performed under the informed consent of the relatives, and under a protocol approved by a local ethics committee.
  • the brain regions of each control patient or with Parkinson's disease analyzed were cortex, cerebellum and caudate.
  • the variables age, sex and time elapsed from death to tissue collection for pathological analysis were known for each patient.
  • tissue blocks were added to 700 Dl of lysis bufffer (1% SDS, 1 mM PMSF, 1 mM Na 3 VO 4 and 5 mM NaF) and were used using a Dounce homogenizer with a Teflon pistil.
  • the lysis was carried out by applying slow pulses for a maximum of one minute.
  • two additional sonication pulses (1 second each) were necessary for the complete solubilization of the tissue.
  • the homogenates were subsequently centrifuged 10 minutes at 13,500 rpm at 4 o C.
  • the protein concentration was determined by BCA assay (Pierce). 0.2 volumes of 5x loading buffer were added and the samples were boiled for 5 minutes at 95 ° C.
  • the extracts should be prepared with a high concentration (more than 5 mg / ml), so that phospho-parkin levels could be detected using mini-gels.
  • the samples must be analyzed directly by western-blot to detect phosphorylated parkin, and 80-100 ⁇ g of total protein must be loaded to ensure a sensitive detection of phospho-parkin.
  • the proteins were separated by SDS-PAGE, transferred to a PVDF membrane (Hybond, GEHealthcare) and incubated with the corresponding primary antibodies overnight at 4 0 C.
  • the antibodies used were: Polyclonal rabbit anti-parkin rabbit (1: 1000 , for cell and brain extracts, ab6177, Abcam), an antibody made to order 844 (1: 1000, for recombinant proteins), an anti-parkin-phospho-S101 antibody (1: 200 for cell and brain extracts), an anti-parkin-phospho-S378 antibody (1: 500 for cell extracts, 1: 5000 for recombinate protein), an anti-p35 (1: 100, C-19, Santa Cruz Biotechnology), an anti-cdk5 (1 : 400, DC17, Santa Cruz Biotechnology), an anti-casein kinase l ⁇ (1: 250, BD Transduction Laboratories), an anti-alpha-tubulin (1: 5000, clone DM1 A, Sigma) and an anti-actin (1 : 100, Sigma).
  • the membranes were washed and incubated with secondary antibodies (HRP-conjugate anti-rabbit antibody (1: 2000) or HRP-conjugate anti-mouse antibody (1: 2000) (Dako Cytomation)) for 90 minutes at room temperature. Detection was carried out with the ECL reagent (Amersham).
  • the complete human parkin was amplified by PCR (primer sequence: 5'-TTA TGA ATT CAT ATA GTG TTT GTC AGG TTC AAC-3 'and 5'-TTT AAA GCT TTT ACA CGT CGA ACC AGT GGT CCC-3') from a piTrex construct containing the human parkin cDNA and cloned into the EcoRI / HindIII restriction sites of the pGex-KG 1 vector.
  • the constructs encoding the different parkin domains (N1, N2, N3, C1, C2, C3) were generated by PCR of the plasmid piTrex with the parkin cDNA as a template and were subcloned into pGex-KG as described above.
  • the cell precipitate is resuspended in 12 ml (per liter of culture) in resuspension buffer (PBS with 1% TX-100, 1 mM PMSF, 1 mM DTT, 50 ⁇ g / ml RNAse, 50 ⁇ g / ml DNAse and 100 ⁇ g / ml lysozyma).
  • PBS resuspension buffer
  • the resuspended cells were incubated for 30 minutes at 4 o C with shaking and sonicated on ice 3 times (3 sonication pulses each time, with 30 seconds rest between each pulse). They were then centrifuged at 16O00 g for 20 minutes at 4 o C.
  • the soluble fraction was filtered through a 0.22 ⁇ m filter and diluted with 6 ml of PBS containing 1% TX-100, 1 mM PMSF and 1 mM DTT (per liter of culture).
  • the proteins were bound to a glutathione sepharose resin (Pharmacia) (750 ⁇ l of resin per liter of culture) for 2 hours at 4 o C.
  • the resin was washed twice with PBS / 1% TX-100, 2 times with PBS and 2 times with the buffer elution buffer (50 mM Tris-HCI pH 8, 150 mM NaCI, 2.5 mM CaCI 2 , 0.1% (v / v) beta-mercaptoethanol).
  • the centrifuged resin was diluted 50% with buffer for elution with thrombin, the protein was eluted with 50 thrombin units (bovine plasma, Sigma), per liter of culture, for 1 hour at 4 0 C.
  • the purified proteins were dialyzed in PBS with 1 mM DTT for 1 hour at 4 0 C.
  • the dialysate was frozen in small aliquots and frozen at -20 ° C.
  • the protein concentration was determined by BCA (Pierce), according to the manufacturer's instructions.
  • the purity of all purified proteins was determined by staining with Coomassie blue dye, in most cases it was 80-90%. In the majority of cases, the enzymatic activity of the complete protein was tested by in vitro autoubiquitination, before the protein was used in other assays.
  • Phosphorylation by casein kinase Il (1 ⁇ g of recombinant human casein kinase Il (New England Biolabs)) was carried out in a buffer containing 20 mM Tris-HCI, 50 mM KCI, 10 mM MgCI 2 , pH 7.5, using 20 ng of casein as a positive control.
  • Cyclic AMP-dependent kinase (PKA) phosphorylation (2.5 units of recombinant mouse PKA (New England Biolabs)) was carried out in a buffer containing 50 mM Tris-HCI, 10 mM MgCI 2 , pH 7.5 using 1 ⁇ g synapsin I bovine as a positive control.
  • Phosphorylation by glycogen synthase kinase 3beta (1 ⁇ g of recombinant human GSK3beta Calbiochem) was carried out in a buffer containing 25 mM Tris-HCI pH 7.5, 5 mM beta-glycerolphosphate, 12 mM MgCI 2 , 2 mM DTT , 100 ⁇ M NaSVO 4 , using 100 ng of human Tau protein (Calbiochem) as a positive control.
  • Phosphorylation with 1 ⁇ g protein kinase C was carried out in a buffer containing 50 mM HEPES pH 7.4, 10 mM Mg-acetate, 1 mM EGTA, 1 mM EDTA, 1.5 mM CaCI 2 , 1 mM DTT, 50 ⁇ g / ml phosphatidylserine and 4 ⁇ g / ml diacylglycerol.
  • PHC protein kinase C
  • CaMKII calcium-dependent kinase and calmodulin Il
  • 2.5 units of rat recombinant CaMKII were used.
  • the kinase was activated by incubation for 10 minutes at 30 ° C in a buffer containing 50 mM Tris-HCI pH 7.5, 10 mM MgCI 2 , 2 mM DTT, 0.1 mM EDTA, 100 ⁇ M ATP, 1.2 ⁇ M calmodulin and 2 mM CaCI 2 .
  • 1 ⁇ g of recombinant Parkin was diluted in that same buffer and supplemented with 200 ⁇ M of ATP.
  • bovine synapsin I 1 ⁇ g of bovine synapsin I was used as a positive control.
  • Phosphorylation by the regulatory kinase of apoptosis 1 signals (ASK-1) was carried out in 8 mM MOPS / NaOH, 0.2 ⁇ M EDTA, 10 mM Mg-acetate, pH 7.0, using 1 ⁇ g of myelin basic protein ( MBP, Sigma) mouse, as a positive control.
  • Pramstaller PP et al. (2005) Lewy body Parkinson's disease in a large pedigree with 77 parkin mutation carriers.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Neurosurgery (AREA)
  • Analytical Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Psychology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La presente invención describe Ia relación directa entre Ia fosforilación de Ia proteína parkina y Ia formación de agregados intracelulares en neuronas. Así, inhibidores de Ia caseína quinasa I y Cdk5 pueden ser útiles compuestos farmacéuticos para el tratamiento de enfermedades asociadas a cuerpos de Lewy, como son Ia enfermedad de Parkinson y Ia demencia de cuerpos de Lewy. Por otro lado, Ia identificación de parking fosforilada en muestras biológicas del sistema nervioso central, preferentemente de un plexo autónomo extracraneal, es una herramienta útil para el diagnóstico, incluso precoz, de las enfermedades mencionadas.

Description

USO DE INHIBIDORES DE QUINASAS PARA LA ELABORACIÓN DE COMPOSICIONES FARMACÉUTICAS PARA EL TRATAMIENTO DE LA ENFERMEDAD DE PARKINSON, COMPOSICIONES FARMACÉUTICAS Y PROCEDIMIENTO DE DIAGNÓSTICO DE ENFERMEDAD DE PARKINSON
SECTOR DE LA TÉCNICA
Métodos para el diagnóstico, Ia prevención y tratamiento de trastornos neurológicos asociados a cuerpos de Lewy, incluyendo Ia enfermedad de Parkinson.
ESTADO DE LA TÉCNICA
La enfermedad de Parkinson es el segundo trastorno neurodegenerativo más prevalente, afectando a un 2% de los individuos con una edad cercana a los 65 años. Los síntomas clínicos principales incluyen temblor, rigidez, bradiquinesia e inestabilidad postural. Los síntomas aparecen como consecuencia de una degeneración selectiva y progresiva de las neuronas dopaminérgicas de Ia sustancia negra pars compacta. Un marcador patológico que acompaña a Ia muerte celular, es Ia aparición de cuerpos de Lewy en las neuronas sobrevivientes. Los cuerpos de Lewy son inclusiones intraneuronales ubiquitinadas, ricas en alpha-sinucleína (Shults,
2006).
A pesar de que Ia enfermedad de Parkinson es un trastorno mayoritariamente esporádico, existen genes relacionados con las formas hereditarias de Ia enfermedad (Farrer, 2006). Uno de los genes implicados es PARK2, el gen que codifica para Ia proteína parkina (Kitada et al., 1998). Mutaciones en este gen son responsables de un elevado porcentaje de parkinson juvenil autosómico recesivo (Abbas et al., 1999; Lucking et al., 2000).
Se han descrito una gran variedad de mutaciones homocigóticas y heterocigóticas compuestas. Mientras que las mutaciones que reducen, pero no abolen Ia función de parkina, están acompañadas de Ia muerte de neuronas dopaminérgicas y cuerpos de Lewy (Farrer et al., 2001 ; Pramstaller et al., 2005), las mutaciones homocigotos que conllevan una pérdida de Ia función, parecen estar asociadas con Ia ausencia de cuerpos de Lewy (Hayashi et al., 2000), planteando así Ia posibilidad de una posible implicación de parkina en Ia biogénesis de estos cuerpos. Además, parkina podría desempeñar un papel en el Parkinson esporádico, dado que se encuentra presente en los cuerpos de Lewy de pacientes con este trastorno (Shimura et al., 1999; Schlossmacher et al., 2002).
Parkina funciona como una E3 proteín-ubiquitín-ligasa (Shimura et al., 2000). La inactivación de su actividad catalítica podría conducir a una acumulación tóxica de sus sustratos, afectando así de forma directa o indirecta a Ia función mitocondrial, y como consecuencia, produciendo muerte celular. Estudios recientes sugieren que los cambios en Ia solubilidad de parkina podrían suponer el mecanismo principal por el cual ésta perdería su actividad, tanto en el parkinson esporádico como en el genético. Por ejemplo, un amplio rango de mutaciones puntuales patológicas resultan en una pérdida de su solubilidad y promueven su agregación (Cookson et al., 2003; Sriram et al., 2005; Hampe et al., 2006). De forma adicional, un conjunto de estresantes oxidativos (Wang et al., 2005), así como ciertas modificaciones post-traduccionales, como Ia modificación por dopamina (LaVoie et al., 2005) y Ia S-nitrosilación (Chung et al., 2004; Yao et al., 2004), producen cambios dramáticos en Ia solubilidad de parkina, elucidando así el mecanismo por el cual la disfunción de parkina juega un papel en Ia patogénesis del parkinson idiopático.
La fosforilación de proteínas es una modificación post-traduccional que ha sido recientemente ligada a los mecanismos que subyacen a Ia enfermedad de parkinson (Cookson et al., 2007). Ya que las proteína- quinasas son buenas dianas terapéuticas, estos hallazgos podrían ayudar en el diseño de nuevas estrategias terapéuticas. Se ha descrito que parkina es fosforilada por quinasa dependiente de ciclina 5 (cdk5) y por caseína quinasa I (CKI), Io que produce cambios moderados en su actividad como E3 ubiquitín ligasa en ambos casos (Yamamoto et al., 2005; Avraham et al., 2007). Dado que Ia hiperfosforilación de proteínas puede tener efectos significativos en sus propiedades agregativas, se pretende determinar si Ia fosforilación de parkina por estas quinasas modulaba us propiedades agregativas. La hipótesis se basa en que los cambios inducidos por dicha fosforilación pueden contribuir de forma directa a Ia inactivación de parkina, reduciendo así Ia supervivencia de las neuronas dopaminérgicas en Ia forma esporádica de Ia enfermedad de Parkinson.
DESCRIPCIÓN DE LA INVENCIÓN
Descripción Breve
Un aspecto de Ia presente invención Io constituye el uso de un compuesto inhibidor de Ia proteína caseína quinasa I o de Ia proteína quinasa cdk5, o de ambos, en adelante uso de un compuesto de Ia presente invención, para Ia elaboración de un medicamento o composición farmacéutica útil para el tratamiento de una enfermedad asociada a cuerpos de Lewy, preferentemente para el tratamiento de Ia enfermedad de Parkinson. Un aspecto particular de Ia invención Io constituye el uso de un compuesto de Ia invención en que el compuesto inhibidor es un inhibidor de Ia enzima caseína quinasa I perteneciente, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: IC261 (Bain et al., 2007), CKI-7 (Bain et al., 2007) y D4476 (Rena et al., 2004). Mientras que se ha descrito IC261 que presenta alguna especificidad frente a las isoformas delta y epsilon de Ia caseína quinasa I, los restantes inhibidores como CK1-7 no presentan especificidad para las distintas isoformas de caseína quinasa (Knippschild et al., CeII. Signal. 27, 675-689 (2005)). Por Io tanto, los compuestos descritos se relacionan con Ia inhibición de todas las isoformas descritas de Ia caseína quinasa I.
Otro aspecto particular de Ia invención Io constituye el uso de un compuesto de Ia invención en que el compuesto inhibidor es un inhibidor de Ia enzima cdk5, perteneciente, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: R-roscovitina (Meijer et al., 1997) también conocido como CYC202 o seliciclib), BMI-1026 (bis(aminopirimidina)) (Braak, H, 2004), Aloisina A (una pirrolopirazina sintética) (Braak, H, 2004) y GW8510 (Johnson et al., 2005). En el caso del inhibidor R-roscovitina se ha iniciado un ensayo clínico en fase Il para el tratamiento de cáncer. Por otro lado, se ha descrito que roscovitina puede inhibir Ia Caseína Quinasa I en ciertas condiciones (ver Chemistry and Biology, 2000, 7:411-422 and Nature Biotechnology, 2005, 23:329-336, supplementary tables), con Io que con este compuesto podría producir una inhibición de ambas quinasas (Io cual es consistente con el leve efecto aditivo observado en células en cultivo).
Otro aspecto particular de Ia invención Io constituye el uso de un compuesto de Ia invención el cual el compuesto inhibidor es un ácido nucleico o polinucleótido que impide o disminuye Ia expresión del gen codificante de, al menos, una de las enzimas caseína quinasa I o cdk5 humana y que incluye, al menos, una secuencia de nucleótidos seleccionada entre:
a) una secuencia de nucleótidos antisentido especifica de Ia secuencia del gen o del mRNA de Ia enzima caseína quinasa I o cdk5, b) una ribozima específica del mRNA de Ia proteína caseína quinasa I o cdk5, c) un aptámero específico del mRNA de Ia enzima caseína quinasa I o cdk5, d) un RNA de interferencia (shRNAi) específico del mRNA de Ia enzima caseína quinasa I o cdk5, y e) un microRNA específico del mRNA de Ia enzima caseína quinasa I o cdk5.
Otro aspecto de Ia invención Io constituye una composición farmacéutica útil para el tratamiento de Ia enfermedad de Parkinson, en adelante composición farmacéutica de Ia invención, que comprende una cantidad terapéuticamente efectiva de un compuesto o agente inhibidor de Ia enzima caseína quinasa I o cdk5, o de ambas, junto con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables.
Finalmente, otro objeto de Ia presente invención Io constituye un procedimiento de diagnóstico y pronóstico de enfermedades asociadas con cuerpos o agregados de Lewy, preferentemente de Ia enfermedad de Parkinson, ex vivo, en adelante procedimiento de diagnóstico de Ia invención, basado en Ia determinación in vitro en células del sistema nervioso central, en una muestra biológica, de Ia expresión al menos una de las siguientes proteínas: parkina fosforilada, p35 y Cdk5, y que comprende las siguientes etapas: a) toma de una muestra biológica del sistema nervioso central, b) identificación o determinación de los niveles de, al menos, de una de las proteínas mencionadas - proteína parkina fosforilada, p35 y Cdk5, en Ia muestra del sistema nervioso central de a), y c) comparación de dicha determinación observada en b) con una muestra control, y donde su presencia incrementada es indicativa de una enfermedad asociada a cuerpos de Lewy.
Otro objeto particular de Ia invención Io constituye el procedimiento de diagnóstico de Ia invención donde Ia muestra biológica de a) se obtiene de neuronas pertenecientes a un plexo autónomo.
Otro objeto particular de Ia invención Io constituye el procedimiento de diagnóstico de Ia invención donde Ia determinación de b) se realiza al menos con un anticuerpo específico de Ia proteína parkina fosforilada, más preferentemente, un anticuerpo fosfo-estado específico de residuos fosforilados de parking perteneciente, a título ilustrativo, al siguiente grupo: anticuerpo fosfo-estado específico fosfo-Ser101 (P-101 ), fosfo-Ser378 (P-378) y fosfo-Ser127 (P127).
Una realización particular de Ia invención Io constituye el procedimiento de diagnóstico de Ia invención donde Ia muestra biológica de a) se obtiene de neuronas pertenecientes a un plexo autónomo y donde Ia determinación de b) se lleva a cabo mediante un anticuerpo fosfo-estado específico del residuo de parkina fosfo-Ser101 (P-101 ). Descripción Detallada
La presente invención se basa en que los inventores han observado que Ia proteína parkina, una proteína esencial para Ia supervivencia de las neuronas dopaminérgicas, está regulada mediante fosforilación in vitro y en cultivos celulares. Más concretamente, se ha observado que dicha fosforilación mediante caseína quinasa I y Ia quinasa dependiente de ciclina 5 (cyclin-dependent kinase, cdk5) incrementa su insolubilidad, promoviendo su agregación, y como consecuencia, su inactivación. Sin embargo, y aunque Ia fosforilación no modifica Ia actividad E3 ubiquitín-ligasa de parkina, un incremento en su agregación disminuye Ia cantidad de Ia proteína parkina soluble disponible para ejercer su papel neuroprotector (Feany and Pallanck, 2003). Además, sólo Ia fosforilación simultánea, y no de forma individual, por caseína quinasa I y cdk5, parece alterar Ia solubilidad de Ia proteína parking incrementando Ia agregación en cuerpos de inclusión (Ejemplo 1.2). Al mismo tiempo, Ia fosforilación de parkina por una de estas quinasas, parece aumentar su susceptibilidad como sustrato para Ia otra quinasa, por Io que Ia activación simultánea de ambas quinasas puede contribuir de forma cooperativa a Ia inactivación de parking (Ejemplo 1.1 ).
Adicionalmente, se estudió si el incremento en Ia fosforilación de parkina en cerebros de enfermos de Parkinson estaba relacionado con un incremento de los niveles de cdk5, de su activador p25/p35, o de Ia proteína caseína quinasa I. Aunque no se observaron diferencias en los niveles de cdk5 y de caseína quinasa ID, si se observó un incremento en los niveles de p25 en el caudado, sin diferencias significativas en Ia corteza en pacientes con enfermedad de Parkinson comparado con el grupo control, no detectando p25 en las muestras provenientes de cerebelo. (Figura 4). Se sabe que el incremento en los niveles de p25 induce una activación prolongada de cdk5 (Patrick et al., 1999). En este contexto, es interesante destacar que se ha descrito que cdk5 y p35/p25 se acumulan en los cuerpos de Lewy de los cerebros de pacientes con enfermedad de Parkinson (Nakamura et al., 1997). De forma adicional cabe destacar que ha sido descrito un incremento en los niveles y en Ia actividad de cdk5 en un modelo de ratón con enfermedad de parkinson inducida por MPTP (Smith et al., 2003), y también, que varias agresiones neurotóxicas inducen una generación de p25 a partir de p35 (Lee et al., 2000). Estos datos indican que Ia actividad de cdk5 puede desempeñar un papel clave en Ia patogénesis de Ia forma esporádica de Ia enfermedad (Smith et al., 2004). Sin embargo, hasta Ia fecha se conoce muy poco sobre Ia desregulación de Ia actividad de caseína quinasa I durante el proceso de neurodegeneración (Flajolet et al., 2007), salvo que Ia mayoría de las isoformas de Caseína quinasa I parecen estar basalmente activas (Knippschild et al., 2005). Los datos obtenidos sugieren que un incremento en Ia fosforilación de parkina mediado por cdk5 podría conducir a un incremento concomitante en Ia fosforilación mediada por Ia Caseína quinasa I, tal como se ha detectado usando anticuerpos fosfo-estado-específicos de parkina, generándose así una proteína parkina hiperfosforilada cuya solubilidad está disminuida.
Para determinar si Ia inhibición de Caseína quinasa I y de CdK5 tiene un efecto beneficioso sobre las propiedades agregativas de parkina, se analizó el efecto de tal inhibición sobre tres mutantes patológicos cuya solubilidad se ha descrito que está disminuida (Cookson et al., 2003; Sriram et al., 2005; Hampe et al., 2006) (Ejemplo 2). Utilizando una combinación de inhibidores contra caseína quinasa I y cdk5, se disminuyó el número de células que presentaban agregados de parkina en dos de las tres mutantes analizados (R256C y R275W). Para Ia tercera mutación (C289G), con Ia que las células presentan un fenotipo de agregación extrema, Ia inhibición combinada de ambas quinasas produjo una disminución del número de células que presentaban agregados grandes perinucleares, y un incremento concomitante del número de células que presentaron únicamente agregados pequeños, evidenciando así los efectos beneficiosos de dicha inhibición en Ia modulación de Ia agregación, incluso en las mutaciones patológicas de Ia enfermedad, y por tanto en Ia progresión de Ia enfermedad.
En resumen, los resultados indican que Ia regulación del estado de fosforilación de parkina tiene un efecto beneficioso en Ia reducción de Ia agregación de parkina y como consecuencia, en su inactivación, afectando tanto a Ia forma salvaje de Ia proteína como a las formas cuyas mutaciones inducen parkinson juvenil autosómico recesivo. Estos hallazgos indican que las proteínas caseína quinasa I y cdk5 representan dianas terapéuticas para el tratamiento de Ia enfermedad de Parkinson, utilizando inhibidores de Ia actividad de las mismas, así como posibles inhibidores génicos.
Para valorar si Ia fosforilación de parkina tiene lugar en humanos, los inventores analizaron muestras del núcleo caudado, corteza y cerebelo de cerebro de pacientes control y de enfermos de Parkinson. De esta manera observaron una fosforilación de Ia proteína incrementada en enfermos de Parkinson con respecto al grupo control, en el núcleo caudado (Ejemplo 3.1.)- Sin embargo, parkina fosforilada no pudo ser detectada en cerebelo de pacientes control, ni en el de pacientes con Ia enfermedad. Las diferencias neuroanatómicas halladas en Ia localización de Parkina fosforilada entre controles y enfermos está relacionada con Ia extensión en Ia que diferentes áreas del cerebro se ven afectadas en el transcurso de Ia enfermedad y demuestran una alteración del estado de fosforilación de Ia proteína parkina específica de Ia enfermedad de Parkinson (Braak et al., 2004), indicando así que Ia fosforilación anormal de parkina, cuya consecuencia es su inactivación, puede contribuir a Ia degeneración neuronal producida en el parkinson esporádico.
Por otro lado, el incremento de parkina fosforilada en diferentes zonas de cerebro, así como el incremento de los niveles de p25/p35, un activador de cdk5, podría permitir el desarrollo de nuevos procedimientos de diagnóstico precoz de enfermedad de Parkinson, habiéndose demostrado Ia utilidad de analizar Ia fosforilación de parkina y de otras proteínas implicadas en su fosforilación en plexos autónomos como marcador diagnóstico de cuerpos de Lewy, como los que aparecen en Ia enfermedad de Parkinson (Figura 9, ejemplo 4).
Por Io tanto, un aspecto de Ia presente invención Io constituye el uso de un compuesto inhibidor de Ia proteína caseína quinasa I o de Ia proteína quinasa cdk5, o de ambos, en adelante uso de un compuesto de Ia presente invención, para Ia elaboración de un medicamento o composición farmacéutica útil para el tratamiento de una enfermedad asociada a cuerpos de Lewy, preferentemente para el tratamiento de Ia enfermedad de Parkinson.
Tal como es utilizado en Ia presente invención el término
"compuesto/agente inhibidor" se refiere a una molécula que cuando se une o interactúa con Ia proteína caseína quinasa I y/o cdk5 humana, o con fragmentos funcionales de Ia misma, disminuye o elimina Ia intensidad o Ia duración de su actividad biológica fosforilante y agregante de Ia proteína parkina. En esta definición se incluye además aquellos compuestos que impiden o disminuyen Ia expresión del gen codificante de Ia proteína caseína quinasa I o cdk5 humana, es decir, que impiden o diminuyen Ia transcripción del gen, Ia maduración del RNAm, Ia traducción del RNAm y Ia modificación post-traduccional. Un agente inhibidor puede estar constituido por un péptido, una proteína, un ácido nucleico o polinucleótido, un carbohidrato, un anticuerpo, un compuesto químico o cualquier otro tipo de molécula que disminuya o elimine el efecto y/o Ia función de Ia proteína caseína quinasa I o cdk5 humana.
A modo ilustrativo, dicho polinucleótido puede ser un polinucleótido que codifica una secuencia antisentido específica de Ia secuencia del gen o del mRNA de Ia proteína caseína quinasa I o cdk5 humana, o bien un polinucleótido que codifica una ribozima específica del mRNA de Ia proteína caseína quinasa I o cdk5 humana, o bien un polinucleótido que codifica un aptámero específico del mRNA de Ia proteína caseína quinasa I o cdk5 humana, o bien un polinucleótido que codifica un RNA de interferencia ("small interference RNA" o siRNA) específico del mRNA de Ia proteína caseína quinasa I o cdk5 humana, o bien, un polinucleótido que codifica un microRNA específico del mRNA de Ia proteína caseína quinasa I o cdk5 humana.
Hasta Ia fecha, siete isoformas de Caseína Quinasa I de mamíferos han sido descritas (αβ, γ1 , γ2, γ3, δ y ε), así como han sido caracterizadas diferentes variantes por splicing. Todas las isoformas de Caseína Quinasa I se encuentran altamente conservadas en sus dominios quinasa, difiriendo en Ia longitud y en Ia secuencia primaria en los dominios no catalíticos de los extremos N y C-terminal. Tal como se utiliza en Ia presente invención "proteína caseína quinasa I humana" se refiere a una proteína con unas de las secuencias de referencia siguiente: Caseína quinasa I alpha, humana (NM001025105, SEQ ID NO1 ), Caseína quinasa I beta (todavía no descrita en humanos, aunque si en bovinos), Caseína quinasa I gammal humana (NM022048, SEQ ID NO2), Caseína quinasa I gamma2 humana (NM001319, SEQ ID NO3), Caseína quinasa I gamma3 humana (NM004384, SEQ ID NO4), Caseína quinasa I delta humana (NM001893, SEQ ID NO5), Caseína quinasa I epsilon humana (NM001894, SEQ ID NO6), o una variante funcionalmente equivalente de Ia misma.
Tal como se utiliza en Ia presente invención "cdk5", se refiere a una proteína con Ia secuencia de referencia siguiente (secuencia humana, NP004926, SEQ ID NO7) o una variante funcionalmente equivalente de Ia misma.
Por "variante funcionalmente equivalente" se entiende, en el contexto de Ia presente invención, toda proteína que se pueda obtener a partir de Ia caseína quinasa I o cdk5 humana, respectivamente, anteriormente indicadas mediante Ia sustitución, deleción o inserción de uno o más aminoácidos y que mantiene sustancialmente Ia función de Ia proteína original. La determinación de Ia función de ambas proteínas humanas se puede llevar a cabo usando métodos convencionales ampliamente conocidos para el experto en Ia materia, entre los cuales están los utilizados en Ia presente invención.
Por tanto, un aspecto particular de Ia invención Io constituye el uso de un compuesto de Ia invención en que el compuesto inhibidor es un inhibidor de Ia enzima caseína quinasa I perteneciente, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: IC261 (Bain et al., 2007), CKI-7 (Bain et al., 2007) y D4476 (Rena et al., 2004). Mientras que se ha descrito IC261 que presenta alguna especificidad frente a las isoformas delta y epsilon de Ia caseína quinasa I, los restantes inhibidores como CK1-7 no presentan especificidad para las distintas isoformas de caseína quinasa (Knippschild et al., CeII. Signal. 27, 675-689 (2005)). Por Io tanto, los compuestos descritos se relacionan con Ia inhibición de todas las isoformas descritas de Ia caseína quinasa I. Otro aspecto particular de Ia invención Io constituye el uso de un compuesto de Ia invención en que el compuesto inhibidor es un inhibidor de Ia enzima cdk5, perteneciente, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: R-roscovitina (Meijer et al., 1997) también conocido como CYC202 o seliciclib), BMI-1026 (bis(aminopirimidina)) (Braak, H, 2004), Aloisina A (una pirrolopirazina sintética) (Braak, H, 2004) y GW8510 (Johnson et al., 2005). En el caso del inhibidor R-roscovitina se ha iniciado un ensayo clínico en fase Il para el tratamiento de cáncer. Por otro lado, se ha descrito que roscovitina puede inhibir Ia Caseína Quinasa I en ciertas condiciones (ver Chemistry and Biology, 2000, 7:41 1-422 and Nature Biotechnology, 2005, 23:329-336, supplementary tables), con Io que con este compuesto podría producir una inhibición de ambas quinasas (Io cual es consistente con el leve efecto aditivo observado en células en cultivo).
Otro aspecto particular de Ia invención Io constituye el uso de un compuesto de Ia invención el cual el compuesto inhibidor es un ácido nucleico o polinucleótido que impide o disminuye Ia expresión del gen codificante de, al menos, una de las enzimas caseína quinasa I o cdk5 humana y que incluye, al menos, una secuencia de nucleótidos seleccionada entre:
a) una secuencia de nucleótidos antisentido especifica de Ia secuencia del gen o del mRNA de Ia enzima caseína quinasa I o cdk5, b) una ribozima específica del mRNA de Ia proteína caseína quinasa I o cdk5, c) un aptámero específico del mRNA de Ia enzima caseína quinasa I o cdk5, d) un RNA de interferencia (shRNAi) específico del mRNA de Ia enzima caseína quinasa I o cdk5, y e) un microRNA específico del mRNA de Ia enzima caseína quinasa I o cdk5. Por otro lado, estas técnicas de inhibición génica, y más concretamente Ia vehiculización de los compuestos -oligonucleótidos antisentido, iRNA, ribozimas o aptameros- puede llevarse a cabo mediante el uso de nanopartículas que incrementen el éxito de dicha transferencia (Lu PV and Woodle MC, Adv Genet 54: 117-42, 2005; Hawker CJ and Wooley KL, Science 19 (309): 1200-5, 2005).
Estos polinucleótidos mencionados pueden ser utilizados en un proceso de terapia génica en el que, mediante cualquier técnica o procedimiento, se permita Ia integración de los mismos en las células, preferentemente, células de un paciente humano enfermo. Este objetivo puede conseguirse mediante Ia administración a las células neuronales de una construcción génica que comprenda uno de los polinucleótidos mencionados, con el fin de transformar dichas células, permitiendo su expresión en el interior de las mismas de manera que se inhiba Ia expresión de Ia proteína caseína quinasa I o de Ia cdk5, juntas o por separado. Ventajosamente, dicha construcción génica puede estar incluida dentro de un vector, como por ejemplo, un vector de expresión o un vector de transferencia.
Tal como se utiliza en Ia presente invención el término "vector" se refiere a sistemas utilizados en el proceso de transferencia de un gen exógeno o de una construcción génica exógena al interior de una célula, permitiendo de este modo Ia vehiculización de genes y construcciones génicas exógenas. Dichos vectores pueden ser vectores no virales o vectores virales (Pfeifer A, Verma IM (2001 ) Gene therapy: promises and problems. Annu Rev Genomics Hum Genet 2: 177-211 ) y su administración puede ser preparada por un experto en Ia materia en función de las necesidades y especificidades de cada caso. Otro aspecto particular de Ia invención Io constituye el uso de un compuesto de Ia invención en el que el compuesto inhibidor sea un anticuerpo específico contra Ia proteína Caseína Quinasa I o cdk5 humana y funcionalmente activo, que impida o disminuya Ia actividad biológica de las mismas, ya sea monoclonal o policlonal.
Tal como se utiliza en Ia presente invención el término "anticuerpo funcionalmente activo" se refiere a un anticuerpo recombinante que mantiene su capacidad de unión a antígeno, incluyendo minianticuerpos, que se definen como fragmentos derivados de anticuerpos construidos por tecnología de ADN recombinante, que, pese a su menor tamaño, conservan Ia capacidad de unión al antígeno ya que mantienen al menos un dominio variable de inmunoglobulina donde residen las zonas de unión a antígenos, y que pertenece, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: antisueros policlonales, moléculas de IgG purificadas, sobrenadantes o líquido ascítico que contiene anticuerpos monoclonales, fragmentos Fv, Fab, Fab' y F(ab')2, ScFvdiabodies, anticuerpos recombinantes monodominio (dAbs), triabodies y tetrabodies anticuerpos humanizados. En el marco de Ia presente invención, se entiende por anticuerpos recombinantes monodominio y/o dominios tipo inmunoglobulina con capacidad de unión y reconocimiento independiente, tanto a los dominios variables de cadena pesada (VH), a los dominios variables de cadena ligera (VL), a los anticuerpos recombinantes de camélidos (VHH), los anticuerpos recombinantes de camélidos humanizados, los anticuerpos recombinantes de otras especies camelizados, los anticuerpos monodominio IgNAR de peces cartilaginosos; es decir, que se incluyen tanto dominios que de forma natural son monodominio (caso de VHH e IgNAR), como anticuerpos que por ingeniería se han alterado para que por sí solos sean capaces de interaccionar con el antígeno y mejorar sus propiedades de estabilidad y solubilidad. Se incluye en esta definición cualquier modificación de los anticuerpos recombinantes como su multimerización o Ia fusión a cualquier molécula (p. ej. toxinas, enzimas, antígenos, otros fragmentos de anticuerpos, etc.).
Otro aspecto de Ia invención Io constituye una composición farmacéutica útil para el tratamiento de Ia enfermedad de Parkinson, en adelante composición farmacéutica de Ia invención, que comprende una cantidad terapéuticamente efectiva de un compuesto o agente inhibidor de Ia enzima caseína quinasa I o cdk5, o de ambas, junto con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables.
Los adyuvantes y vehículos farmacéuticamente aceptables que pueden ser utilizados en dichas composiciones son los adyuvantes y vehículos conocidos por los técnicos en Ia materia y utilizados habitualmente en Ia elaboración de composiciones terapéuticas.
En el sentido utilizado en esta descripción, Ia expresión "cantidad terapéuticamente efectiva" se refiere a Ia cantidad del agente o compuesto inhibidor de Ia actividad de Ia proteína parkina, calculada para producir el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de los compuestos, incluyendo Ia edad, estado del paciente, Ia severidad de Ia alteración o trastorno, y de Ia ruta y frecuencia de administración.
En una realización particular, dicha composición terapéutica se prepara en forma de una forma sólida o suspensión acuosa, en un diluyente farmacéuticamente aceptable. La composición terapéutica proporcionada por esta invención puede ser administrada por cualquier vía de administración apropiada, para Io cual dicha composición se formulará en Ia forma farmacéutica adecuada a Ia vía de administración elegida. En una realización particular, Ia administración de Ia composición terapéutica proporcionada por esta invención se efectúa por vía parenteral, por vía oral, por vía intraperitoneal, subcutánea, etc. Una revisión de las distintas formas farmacéuticas de administración de medicamentos y de los excipientes necesarios para Ia obtención de las mismas puede encontrarse, por ejemplo, en el "Tratado de Farmacia Galénica", C. Faulí i Trillo, 1993, Luzán 5, S.A. Ediciones, Madrid.
Otro aspecto particular de Ia presente invención Io constituye Ia composición farmacéutica de Ia invención en Ia que el compuesto inhibidor es un compuesto inhibidor de Ia actividad fosforilante de Ia proteína caseína quinasa I perteneciente, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: IC261 (Bain et al., 2007), CKI-7 (Bain et al., 2007) y D4476 (Rena et al., 2004).
Otro aspecto particular de Ia presente invención Io constituye Ia composición farmacéutica de Ia invención en Ia que el compuesto inhibidor es un compuesto inhibidor de Ia actividad fosforilante de Ia proteína cdk5 perteneciente, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: R-roscovitina (Meijer et al., 1997) también conocido como CYC202 o seliciclib), BMI-1026 (bis(aminopirimidina)) (Braak, H, 2004), Aloisina A (una pirrolopirazina sintética) (Braak, H, 2004) y GW8510 (Johnson et al., 2005).
Otro aspecto particular de Ia presente invención Io constituye Ia composición farmacéutica de Ia invención en Ia que el compuesto inhibidor es un ácido nucleico o polinucleótido que impide o disminuye Ia expresión del gen codificante de Ia proteína caseína quinasa I y/o cdkδhumana y que incluye una secuencia de nucleótidos seleccionada entre:
a) una secuencia de nucleótidos antisentido especifica de Ia secuencia del gen o del mRNA de Ia proteína caseína quinasa I o cdkδ, b) una ribozima específica del mRNA de Ia proteína caseína quinasa I o cdk5, c) un aptámero específico del mRNA de Ia proteína caseína quinasa I o cdk5, d) un RNA de interferencia (iRNA) específico del mRNA de Ia proteína caseína quinasa I o cdk5, y e) un microRNA de interferencia (iRNA) específico del mRNA de Ia proteína caseína quinasa I o cdk5.
Otro aspecto particular de Ia presente invención Io constituye Ia composición farmacéutica de Ia invención en Ia que el compuesto inhibidor es un anticuerpo específico de Ia proteína caseína quinasa I o cdk5.
Otro aspecto de Ia presente invención Io constituye el uso de Ia composición farmacéutica de Ia invención en un método de tratamiento de un mamífero, preferentemente un ser humano, afectado por una enfermedad neurológica, preferentemente Ia enfermedad de Parkinson, en adelante uso de Ia composición farmacéutica de Ia presente invención, consistente en Ia administración de dicha composición terapéutica que inhibe el proceso neuropatológico.
Finalmente, otro objeto de Ia presente invención Io constituye un procedimiento de diagnóstico y pronóstico de enfermedades asociadas con cuerpos o agregados de Lewy, preferentemente de Ia enfermedad de Parkinson, ex vivo, en adelante procedimiento de diagnóstico de Ia invención, basado en Ia determinación in vitro en células del sistema nervioso central, en una muestra biológica, de Ia expresión al menos una de las siguientes proteínas: parkina fosforilada, p35 y Cdk5, y que comprende las siguientes etapas:
a) toma de una muestra biológica del sistema nervioso central, b) identificación o determinación de los niveles de, al menos, de una de las proteínas mencionadas - proteína parkina fosforilada, p35 y Cdk5, en Ia muestra del sistema nervioso central de a), y c) comparación de dicha determinación observada en b) con una muestra control, y donde su presencia incrementada es indicativa de una enfermedad asociada a cuerpos de Lewy.
Tal como se utiliza en Ia presente invención el término "enfermedad asociada a cuerpos de Lewy" se refiere a enfermedades pertenecientes al siguiente grupo: Demencia de cuerpos de Lewy y enfermedad de Parkinson.
La toma de una muestra biológica del sistema nervioso central de a) puede ser tomada de un ser humano en distintos localizaciones anatómicas, ya sea craneal o extracraneal. y posteriormente ex vivo identificarse Ia presencia o no dichas proteínas, y en el caso de Ia parkina, sus niveles de fosforilación, que se correlacionaría con el diagnóstico de una enfermedad asociada a cuerpos de Lewy, preferentemente, de Ia enfermedad de Parkinson, Io que permitiría Ia definición y Ia ejecución de una aproximación terapéutica o de diagnóstico y/o pronóstico. En Ia presente invención se ha demostrado que Ia toma de una muestra biológica de un plexo autónomo, localizaciones periféricas no craneales de neuronas del sistema nervioso central, puede permitir Ia identificación de cuerpos de Lewy que presentan Ia proteína parkina fosforilada.
Otro objeto particular de Ia invención Io constituye el procedimiento de diagnóstico de Ia invención donde Ia muestra biológica de a) se obtiene de neuronas pertenecientes a un plexo autónomo.
Otro objeto particular de Ia invención Io constituye el procedimiento de diagnóstico de Ia invención donde Ia determinación de b) se realiza al menos con un anticuerpo específico de Ia proteína parkina fosforilada, más preferentemente, un anticuerpo fosfo-estado específico de residuos fosforilados de parking perteneciente, a título ilustrativo, al siguiente grupo: anticuerpo fosfo-estado específico fosfo-Ser101 (P-101 ), fosfo-Ser378 (P-378) y fosfo-Ser127 (P127).
Una realización particular de Ia invención Io constituye el procedimiento de diagnóstico de Ia invención donde Ia muestra biológica de a) se obtiene de neuronas pertenecientes a un plexo autónomo y donde Ia determinación de b) se lleva a cabo mediante un anticuerpo fosfo-estado específico del residuo de parkina fosfo-Ser101 (P-101 ).
DESCRIPCIÓN DE LAS FIGURAS
Figura 1.- Fosforilación de Ia proteína Parkina por Ia caseína quinasa I in vitro y en células, (a) Representación esquemática de Ia estructura en dominios de Parkina. El límite de cada dominio está indicado con el número del aminoácido arriba. Las diferentes formas truncadas de Ia proteína que fueron utilizadas en ensayos de fosforilación in vitro están representadas debajo (completa, N1-N3 y C1-C3) (b) Las diferentes formas truncadas de parkina fueron purificadas como se describe en Materiales y Métodos y analizadas por SDS-PAGE y tinción con Coomassie para comprobar su pureza. Parkina completa, así como las formas truncadas N1 y C3 están indicadas con flechas. Hsp70 de bacteria, que copurificada con parkina completa, fue determinada por espectroscopia de masas y es indicada con un triángulo, (c) Parkina completa silvestre es catalíticamente activa. La actividad fue ensayada in vitro mediante autoubiquitinización en presencia de ubiquitina (Ub) o de ubiquitina carente de lisina (LL-Ub), Ia cual carece de los residuos necesarios para Ia conjugación de Ia cadena de poliubiquitina. Cuando Ia reacción fue llevada a cabo con LL-Ub, los niveles de ubiquitinación detectados fueron menores, indicando que Ia parkina recombinante posee actividad poliubiquitín ligasa y múltiple mono-ubiquitín ligasa hacia ella misma, (d) parkina recombinante completa (forma silvestre, wt), o Ia misma cantidad de diferentes formas mutadas (S101A, n=4; S127A, n=4; S131A, n=4; S378A, n=4; S101A/S127A/S378A, n=3), fueron sometidas a ensayos de fosforilación in vitro utilizando caseína quinasa I, siendo Ia cantidad de fosfato incorporada cuantificada mediante Phosphorlmager (media +/- SEM). *, p < 0.05). Destacar que el muíante S101A mostró un incremento en Ia incorporación de fosfato comparado con parkina silvestre (wt), reflejando así el efecto de posibles cambios conformacionales. (e) La forma truncada N1 wt y Ia misma cantidad de los mutantes puntuales indicados (S101A, n=6; S127A, n=4; S131A, n=2; S101A/S127A, n=2), fueron sometidos a ensayos de fosforilación in vitro, usando caseína quinasa I. La incorporación de fosfato fue cuantificada utilizando un phosphorlmager (mean +/- SEM). * p < 0.05. (f) Ejemplo de un ensayo de fosforilación in vitro utilizando Parkina recombinante completa silvestre (wt) o el muíante triple S101A/S127A/S378A. (g) Los aníicuerpos fosfo-esíado específicos fosfo-Ser101 (P-101 ) y fosfo-Ser378 (P- 378) reconocen parkina recombinaníe compleía sólo si ésía ha sido fosforilada in viíro por Caseína quinasa I (CKI). (h) Parkina es constitutivamente fosforilada en los residuos S101 y S378. Células HEK293T fueron transfectadas con parkina humana (+transf.), y tratadas con 500 nM de Ácido Okaidico durante una hora antes de Ia lisis para estabilizar los sitios de fosforilación de parkina. (i) La fosforilación de Parkina en las posiciones S101 y S378 cuando es expresada en células HEK293T disminuye bajo el tratamiento de éstas con IC261 (50 DM), un inhibidor específico de Caseína quinasa I.
Figura 2.- Fosforilación múltiple de Parkina in vitro e in vivo, (a) Ejemplo de un ensayo de fosforilación in vitro usando parkina recombinante completa (wt) y los mutantes puntuales S131A y S131 E y Caseína quinasa I. (b) Ejemplo de ensayo de fosforilación in vitro usando parkina recombinante completa silvestre (wt) y los mutantes puntuales S101A/S127A/S378A y S101 E/S127E/S378E y CdK5. Las flechas indican parkina completa y los diferentes mutantes, el triángulo señala Ia Hsp70 bacteriana, (c) Células HEK293T fueron transfectadas con parkina completa (wt) o Ia muíante S131 E, y Ia misma cantidad de extracto celular fue analizado para Ia fosforilación de parkina mediante anticuerpos fosfo-estado-específicos. (d) Células HEK293T fueron transfectadas con Parkina y tratadas o no con roscovitina (1 μM) durante 12 horas. Los niveles de fosforilación de Parkina fueron analizados usando Ia misma cantidad de extracto celular y los anticuerpos fosfo-estado específicos, (e) Esquema con el modelo el cual muestra como Ia fosforilación de una quinasa puede incrementar Ia susceptibilidad a servir como sustrato de Ia otra, alcanzándose así un estado de múltiple fosforilación.
Figura 3.- Los mutantes fosfomiméticos de Parkina muestran ligeros cambios en su actividad como E3 ligasa y cambios importantes en sus propiedades agregativas, (a) Ejemplo de un ensayo de autoubiquitinación, en el cual se utilizó proteína parkina silvestre (wt) y los mutantes 131A y 131 E. El muíante 131 A mostró una actividad incrementada respecto al wt. (b) Ejemplo de un ensayo de autoubiquitinación in vitro usando proteína Parkina silvestre (wt) y los mutantes AAA, 101A/127A/378A; EEE, 101 E/127E/378E; 131 A-AAA, 101A/127A/131A/378A; 131 E-EEE, 101 E/127E/131 E/378E y ubiquitina (Ub) o ubiquitina carente de usinas (LL-Ub) para ensayar poli y monoubiquitinación, respectivamente, (c) La escalera obtenida utilizando el anticuerpo antiubiquitina, parkina wt y los diversos mutantes de ésta (131 E, n=3; 131A, n=2; AAA, n=3; EEE, n=3; 131 A-AAA, n=4; 131 E-EEE, n=4) fue cuantificada. Las diferencias fueron corregidas respecto a Ia cantidad de proteína total empleada empleando un anticuerpo anti-parkina (Ab-cam) y normalizados respecto al valor de proteína parkina silvestre (wt). Las barras muestran media +/- SEM. *, p < 0.05. (d) La escalera reactiva para ubiquitina obtenida con los diferentes mutantes de Parkina (AAA, n=3; EEE, n=3; 131A- AAA, n=4; 131 E-EEE, n=4) y ubiquitina carente de usinas, Ia cual refleja múltiple monoubiquitinación, fue cuantificada, corregida respecto a las cantidades totales de parkina usada y normalizada respecto al valor de preoteína parkina silvestre. Las barras muestran media +/- SEM. *, p < 0.05. (e) Células HEK293T fueron transfectadas con los mutantes de Parkina 101 E/127E/131 E/378E y tratadas con 5 μM de MG-132 durante 12 horas antes de llevar a cabo Ia inmunocitoquímica, utilizando para ella el anticuerpo 844 (verde). Los núcleos fueron teñidos con DAPI. (f) Células HEK293T fueron transfectadas con Parkina silvestre (wt) y sus diferentes mutantes, tratadas con 5 μM de MG-132 durante 12 horas antes de llevar a cabo Ia inmunocitoquímica como se describe arriba. El porcentaje de células transfectadas que muestran inclusiones perinucleares grandes fue determinado por un investigador no consciente del tratamiento de cada grupo, (g) Incremento global en el número de células transfectadas que muestran inclusiones perinucleares grandes comparado con células que expresan Ia proteína Parkina silvestre (AAA, n=3; EEE, n=4; 131A-AAA, n=4; 131 E-EEE; n=4). Las barras muestran Ia media +/- SEM. *, p < 0.05. (h) Análisis de Ia distribución de parkina salvaje (wt) o sus mutantes en Ia fracción soluble en Tritón X-100 (S) y en Ia fracción insoluble pellet (P). Los extractos de células HEK293T fueron analizados utilizando un anticuerpo anti-parkina (Ab-cam) y un anticuerpo anti-actina (SIGMA).
Figura 4.- Incremento selectivo de Ia fosforilación de parkina y de los niveles de p25 en diferentes áreas del cerebro de pacientes con Parkinson idiopático. (a) Niveles relativos de parkina total, CKIε, CdK5, p25 y p35 en tres regiones diferentes del cerebro de un paciente control. Tubulina fue utilizada como control de carga, (b) Los niveles de fosfo-parkina (P-S101 ), parkina, p25/p35 y de tubulina como control de carga, fueron analizados en caudado, corteza y cerebelo de cuatro pacientes control y cuatro pacientes con enfermedad de Parkinson. Los pacientes fueron emparejados según el tiempo transcurrido entre Ia muerte del paciente y Ia recogida del tejido, (c) Los niveles de Parkina fosforilada, Parkina total y p25 fueron normalizados respecto a tubulina y representados en un histograma (n=4; media +/- SEM, *,P < 0,05).
Figura 5. La inhibición de Ia fosforilación de Parkina disminuye Ia agregación de sus mutantes. (a) Porcentaje de células transfectadas que muestran agregados cuando son transfectadas con Parkina silvestre o tres de sus mutantes patogénicos (wt, n=5; R256C, n=6; R275W, n=11 ; C289G, n=10). Las barras muestran Ia media ± SEM. (b) Ejemplo de un ensayo de autoubiquitinación in vitro, utilizando los mutantes de parkina anteriormente indicados y ubiquitina (Ub) o ubiquitina carente de lisina (LL-Ub). (c) Ejemplo de un ensayo de fosforilación in vitro usando Parkina silvestre completa (wt) y los mutantes anteriormente indicados, como quinasas se utilizaron CKI (arriba) o CdK5 (abajo), (d) Análisis de Ia distribución de Parkina silvestre (wt) y de sus mutantes en Ia fracción total (T), en Ia fracción soluble en TX-100 (S) y en Ia fracción insoluble pellet (P) cuando es sobre-expresada en células HEK293T. Las fracciones fueron analizadas con el anticuerpo fosfo-estado específico (P-378), un anticuerpo anti-parkina (Ab-cam) y un anticuerpo anti- actina. Destacar que Ia fosforilación de parkina silvestre en Ia fracción soluble e insoluble sólo pudo ser detectada en presencia de ácido okaidico (datos no mostrados), (e) Ejemplo de un experimento donde el porcentaje de células transfectadas con el muíante de parkina R256C que mostraban agregados fue cuantificado en ausencia (-) y en presencia (+) de diversos inhibidores, o combinaciones de ellos, añadidos 12 horas antes de Ia fijación. Entre los inhibidores usados se incluye Roscovitina (0,5 μM), GW8510 (0,25 μM), CKI-7 (150 μM) y D4476 (17,5 μM). (f) Cuantificación del porcentaje de células transfectadas con los mutantes de Parkina R256C, R275W y C289G que contienen agregados, en ausencia (-) o en presencia (+) de 0,25 DM de GW8510 y 17,5 DM de D4476 (R256C, n=5; R275W, n=3; C289G, n=4). Las barras muestran Ia media ± SEM. *, p < 0.1 ; **, p < 0.01. Las barras de error solo se muestran cuando son mayores que las líneas de las columnas, (g) Ejemplo de un experimento usando Parkina mutada en C289G donde se muestra el porcentaje de células con inclusiones (izquierda), el porcentaje de esas células que tiene, al menos, un agregado perinuclear grande (centro) y Ia media del número de inclusiones por célula (derecha). El experimento fue realizado en ausencia (-) y en presencia (+) de 0,5 μM de roscovitina y 150 μM de CKI-7, 12 horas antes de Ia fijación (12 h), 24 y 12 horas antes de Ia fijación (24 h) o 36, 24 y 12 horas antes de Ia fijación (36 h).
Figura 6.- Fosforilación in vitro de Parkina por proteína quinasas adicionales, (a) Parkina completa recombinante o GST-parkina (flechas) fue sometida a ensayos de fosforilación in vitro usando Quinasa dependiente de AMP-cíclico (PKA), proteína quinasa C (PKC), Quinasa dependiente de calcio y calmodulina Il (CaM Kinase II), Glucógeno sintasa quinasa 3β (GSK-3β) y ASK-1. Como control positivo, se utilizaron diversas proteínas (sinapsina, Tau y Proteína básica de Ia mielina (MBP) respectivamente). Ninguna de estas quinasas fosforiló parkina de forma significativa, (b) Ejemplo de un ensayo de autoubiquitinación utilizando parking silvestre (wt), los mutantes 378A y 378E y ubiquitina (Ub) o ubiquitina carente de usinas (LL-Ub), para analizar Ia actividad poli versus monoubiquitín ligasa respectivamente, (c) Cuantificación de experimentos como los mostrados en (b), mostrando como los mutantes independientes no producen ningún cambio en Ia actividad ubiquitín ligasa de parkina. (d) Cuantificación de experimentos como los mostrados en (b) en Ia cual se muestra que los mutantes independientes no tienen efectos significativos sobre Ia actividad monoubiquitín ligasa de parkina. N.A: No analizado, (e) Ejemplo de un experimento donde células HEK293T fueron transfectadas con Parkina silvestre o con diversos mutantes individuales, tratadas con 5 μM de MG-132 durante 12 horas y posterior inmunocitoquímica. (f) Ejemplo de un experimento donde parkina silvestre o diferentes formas combinadas de sus mutantes fueron transfectadas en células HEK293T, tratadas con 5 μM de MG-132 durante 12 horas y posterior inmunocitoquímica. Ninguna de las combinaciones ensayadas mostró cambios significativos en el número de células transfectadas con inclusiones, indicando que solo el muíante cuádruple de Parkina que mimetiza Ia fosforilación compuesta de Parkina por caseína quinasa I y CdK5 muestra una tendencia a agregar de forma incrementada, (g) Para asegurarse que los niveles de expresión de parkina silvestre (wt) y de los diferentes mutantes en células HEK293T eran los mismos, células HEK293T fueron transfectadas y 72 horas después de Ia transfección, 50 Dg de extracto celular fue analizado por Western-blot usando un anticuerpo anti-parkina (Ab-cam) o anti-tubulina, como control de carga. Las construcciones de parkina silvestre (wt) y sus diferentes mutantes se expresan en igual medida.
Figura 7.- Niveles de Caseína Quinasa lε (CKIε), CdK5 y p35 en diferentes áreas del cerebro de pacientes con Parkinson idiopático. (a) Sexo, edad con Ia que murieron (en años) e intervalo post-morten (PMI, hr) de los 8 cerebros humanos analizados en Ia Figura 4. (b) Los niveles de Caseína Quinasa lε (CKIε), CdK5 y tubulina como control de carga fueron analizados en caudado, corteza y cerebelo de cuatro pacientes control y cuatro enfermos de parkinson, los cuales fueron emparejados en función del tiempo transcurrido desde Ia muerte hasta Ia recogida del tejido, (c) Niveles de CKIε, cdk5 y p35, normalizados con tubulina y representados en un histograma (n=4; media ± SEM). Las barras de error sólo se muestran cuando son mayores que las líneas de las columnas.
Figura 8.- (a) Ejemplo de un experimento utilizando el muíante C289G de parkina, en el cual el porcentaje de células que presentan inclusiones (izquierda), el porcentaje de células que tiene, al menos, una inclusión perinuclear grande (centro) y Ia media del número de inclusiones por célula (derecha) se cuantificó en ausencia (-) y en presencia (+) de diferentes inhibidores de quinasas o de combinaciones de ambos, 12 horas antes de Ia fijación. Entre los inhibidores utilizados se encuentran roscovitina (0.5 μM), GW8510 (0.25 μM), IC261 (50 μM), CKI-7 (150 μM) y D4476 (17.5 μM). Las barras de error sólo se muestran cuando son mayores que las líneas de las columnas, (b) Cuantificación del porcentaje de células que presentan agregados del muíante C289G de Parkina (izquierda), porcentaje de células que muesíran, al menos, una inclusión grande perinuclear (ceníro) y media del número de inclusiones por célula (derecha), en ausencia (-) y presencia de roscovitina (0.5 μM), de IC261 (50 μM) o de una combinación de ambos. Las barras muestran media ± SEM, n=5. * p < 0.1 ; ** p < 0.05.
Figura 9.- Ejemplo de Ia tinción de una muestra postmortem de un plexo autónomo de un paciente con Parkinson. Las muestras fueron preparadas y analizadas como ha sido previamente descrito (Minguez-Castellanos et al., Neurology, 2007), usando el anticuerpo fosfo-Ser-101 a una dilución 1 :250.
EJEMPLOS DE REALIZACIÓN
Ejemplo 1.- La fosforilación de Parkina incrementa Ia agregación en cuerpos de inclusión intracelulares
1.1.- La múltiple fosforilación de Ia proteína parkina in vitro y en células es llevada a cabo de forma sinérgica por Caseina quinasa I y Cdk5
En un principio, se llevaron a cabo ensayos de fosforilación in vitro, en los cuales se utilizó un conjunto de quinasas purificadas, proteína parkina completa recombinante silvestre o diferentes formas truncadas de Ia misma (Fig. 1a, b). Parkina completa silvestre purificada presentó tanto actividad mono como poliubiquitín ligasa in vitro (Fig. 1c) y fue fosforilada por caseína quinasa I (Fig. 1d-f), como ya se ha publicado (Yamamoto et al., 2005). Sin embargo, Ia parkina silvestre no fue fosforilada por otras quinasas (Figura 6). Los sitios de fosforilación de parkina por Caseína Quinasa I, han sido confirmados mediante mutagénesis dirigida en las posiciones S101 y S378 (Yamamoto et al., 2005), y se identificó un nuevo sitio de fosforilación en el residuo S127 (Fig. 1d, e). De hecho, las mutaciones de estos 3 residuos de serina a alanina, casi eliminan completamente Ia fosforilación, indicando que estos residuos son los principales sitios de fosforilación por caseína quinasa I in vitro (Fig. 1d, f).
Para valorar Ia fosforilación de parkina en células, se generaron anticuerpos específicos de los sitios de fosforilación contra los residuos fosfo- S101 y fosfo-S378, respectivamente. Su especificidad contra estos residuos fosforilados fue confirmada usando parkina recombinante fosforilada in vitro (Fig. 1g). Además, Ia fosforilación constitutiva de parkina en dichas posiciones fue detectada en células HEK293T transfectadas con parkina humana, especialmente cuando Ia fosforilación era estabilizada mediante el empleo de ácido okaidico, el cual inhibe a las fosfatasas 1 , 2A y 2B (Fig. 1 h). El tratamiento de las células transfectadas con IC261 , un inhibidor selectivo de caseína quinasa I (Bain et al., 2007), provocó un descenso significativo del estado de fosforilación de ambos residuos S101 y S378 (Fig. 1i), confirmando que estos residuos son fosforilados por caseína quinasa I en células intactas.
Además de caseína quinasas I, Ia proteína Parkina también es susceptible de ser fosforilada por quinasa dependiente de ciclina 5 (CdK5) en el residuo S131 (Avraham et al., 2007). El muíante fosfo-mimético de esta posición mostró un incremento en Ia fosforilación por caseína quinasa I, comparado con Ia parking silvestre, in vitro (307 ± 12%; media ± s.e.m., n=5) (Fig. 2a). Además, el muíante que mimetiza Ia fosforilación en los íres residuos que fosforila caseína quinasa I, es mejor susíraío para CdK5 que parkina silvesíre (wí) in vitro (540 ± 240%; mean ± s.e.m., n=3) (Fig. 2b). Hallazgos similares fueron observados en células, uíilizando los aníicuerpos fosfo-esíado específicos. La forma muíada de parkina S131 E, que mimeíiza Ia fosforilación consíiíuíiva por cdk5, mosíró un incremenío en Ia fosforilación por caseína quinasa I con respecío a parkina silvesíre (wí) (Fig. 2c). Por oíro lado, el bloqueo de Ia acíividad de Ia quinasa cdk5 medianíe el íraíamienío con roscovitina, un inhibidor altamente específico de cdk5 (Meijer et al., 1997), de células HEK293T transfectadas, redujo Ia fosforilación en los residuos de parkina que son específicos de caseína quinasa I (hasta un 47 ± 10%; media ± s.e.m., n=4) (Fig. 2d). De forma conjunta, estos datos indican que Ia fosforilación de parkina por Ia quinasa cdk5 incrementa Ia propensión de ésta para servir como sustrato de caseína quinasa I y vice versa (Fig. 2e).
1.2.- Efecto de Ia fosforilación de Parkina sobre su capacidad de agregación en cuerpos de inclusión.
La fosforilación de Parkina podría regular su actividad E3 ligasa de ubiquitina o modular su insolubilidad, con efecto en Ia supervivencia de células dopaminérgicas en ambos casos. Para determinar si Ia fosforilación de parkina afecta su actividad catalítica, se llevaron a cabo ensayos de autoubiquitinación in vitro, en los cuales se emplearon diferentes mutantes fosfo-mimético de Ia proteína (Fig. 3 y Figura 7). El muíante fosfo-mimético de parkina para CdK5 (S131 E) mostró una actividad similar a Ia forma silvestre, mientras que su muíante no fosforilable (S131A), fue ligeramente más acíivo, como ya se había descriío previameníe (Avraham eí al., 2007) (Fig. 3a). El muíaníe fosfo-miméíico de caseína quinasa I (101 E/127E/378E) o el muíaníe fosfo-miméíico para Ia fosforilación por ambas quinasas (101 E/127E/131 E/378E), mosíraron una acíividad ligerameníe incremeníada respecío a Ia forma silvesíre (wí). Sin embargo, el modesío incremenío en Ia acíividad fue íambién observado en sus muíaníes no fosforilables (101A/127A/378A y 101A/127A/131A/378A), por Io que no parece reflejar efecíos específicos relacionados con Ia fosforilación de parkina (Fig. 3b-d).
Lo siguieníe que se analizó fue si Ia fosforilación de parkina podía modificar su íendencia a formar agregados en culíivos celulares, y como consecuencia, alterar su solubilidad en detergente. Para ello, se transfectaron células HEK293T con los mutantes fosfo-mimético y los no fosforilables, se trataron las células con el inhibidor del proteosoma MG-132 y Ia cantidad de cuerpos de inclusión de parkina fue determinada por inmunocitoquímica (Fig. 3e). Las células transfectadas con el mutante de parkina que mimetiza Ia fosforilación sólo por caseína quinasa I (101 E/127E/378E) o el que Ia mimetiza sólo para CdK5 (S131 E), no mostraron un incremento significativo en el número de inclusiones de parkina, comparado con Ia forma silvestre (wt). Sin embargo, se detectó un incremento de hasta 6 veces (6.2 ± 2, mean ± s.e.m., n=4) en el número de células con inclusiones de parkina, cuando se transfectaron con el mutante que mimetiza Ia fosforilación por ambas quinasas (101 E/127E/131 E/378E) (Fig. 3f, g). Tal incremento no fue observado en Ia forma no fosforilable (101A/127A/131A/378A) (Fig. 3f, g), y sólo se vio cuando se mimetizaba Ia fosforilación en los cuatro residuos de serina (Figura 7), indicando así que el efecto es específico sólo si se mimetiza Ia fosforilación con ambas quinasas, caseína quinasa I y CdK5.
El aumento de Ia propensión de parkina a ser confinada en agregados intracelulares, se vería reflejado en cambios en su extractabilidad por detergentes, como ya se ha descrito previamente para diferentes mutantes patológicos y para las alteraciones de parkina inducidas por estrés (Cookson et al., 2003; Sriram et al., 2005; Hampe et al., 2006; Wang et al., 2005; LaVoie et al., 2005; Chung et al., 2004). Mientras que Ia proteína Parkina salvaje fue encontrada en su mayor parte en Ia fracción soluble en Tritón X-100, el mutante cuádruple que mimetiza Ia fosforilación compuesta (pero no su forma no fosforilable), mostró una solubilidad menor en esta fracción y también fue detectado en Ia fracción insoluble en Tritón (Fig. 3h). Todos estos datos indican que Ia fosforilación simultanea de parkina por caseína quinasa I y por CdK5 facilita enormemente su agregación en cuerpos de inclusión. Ejemplo 2.- Compuestos inhibidores de caseína quinasa I y cdk5, de forma aislada o conjunta, inhiben Ia agregación de parkina.
Ya que el incremento en Ia fosforilación de parkina parece estar relacionado con el Parkinson esporádico in vivo y además, promueve Ia agregación de parkina en células en cultivo, Ia inhibición de caseína quinasa I y de CdK5 debería tener efectos beneficiosos en Ia prevención de dicha agregación. En primer lugar, se cuantificó el número de agregados en células transfectadas con los tres mutantes patológicos de parkina (R256C, R275W y C289G), los cuales se ha descrito anteriormente que muestran propiedades agregativas incrementadas en comparación con Ia proteína parkina silvestre (Cookson et al., 2003; Sriram et al., 2005; Hampe et al., 2006). De hecho, los tres mutantes mostraron una mayor tendencia a formar agregados intracelulares en ausencia de inhibidores del proteosoma, con C289G > R275W > R256C (Fig. 5a). Los tres mutantes patológicos no mostraron diferencias significativas en su actividad E3 ubiquitín-ligasa (Fig. 5b) y fueron fosforilados in vitro por Caseína Quinasa I y CdK5 (Fig. 5c), Io que indica que el principal mecanismo patológico de actuación parece implicar un incremento en Ia agregación (Cookson et al., 2003; Sriram et al., 2005; Hampe et al., 2006). De forma paralela a su reducida extracción en detergentes, se observó que estaban altamente fosforilados en Ia fracción insoluble en Tritón (Fig. 5d). Por Io tanto, a continuación se estudio si Ia inhibición de Ia actividad de Caseína Quinasa I y CdK5 podría modular las propiedades agregativas de estos mutantes.
Las células se transfectaron con el muíante agregativo R256C y fueron analizadas 72 horas después de Ia transfección. Cerca de un 15% de las células transfectadas mostraban inclusiones perinucleares de gran tamaño. El tratamiento de estas células durante las últimas 12 horas con dos inhibidores específicos de CdK5 estructuralmente diferentes (roscovitina (Meijer et al., 1997) y GW8510 (Johnson et al., 2005)) o con dos inhibidores específicos de Caseína quinasa I (CKI-7 y D4476 (Bain et al., 2007; Rena et al., 2004)), disminuyó en gran medida el número de células con agregados de parkina mutada R256C (Fig. 5e). Se observaron efectos aditivos en Ia disminución del número de células con agregados cuando se usó una combinación de un inhibidor específico de CdK5 y otro inhibidor específico de Caseína quinasa I (Fig. 5e), Io que indica que los efectos obtenidos son el resultado de Ia inhibición de las dos proteínas quinasas. El alcance del efecto aditivo fue relativamente pequeño, Io que concuerda con los resultados observados in vitro en Ia fosforilación de parkina por Caseína Quinasa I y CdK5 (Fig. 2). La inhibición combinada de Ia actividad de CdK5 y Caseína quinasa I resultó en una fuerte disminución del 70% para el muíante R256C, de un 25% para R275W, mientras que no se observaron efectos en el muíante C289G (Fig. 5f).
Ya que el mutaníe C289G se acumula en agregados perinucleares en prácíicameníe íodas las células íransfecíadas (Fig. 5a,f), se dedujo que los efecíos en Ia inhibición de Ia fosforilación de Parkina se esíudiarían mejor analizando el número y íamaño de los agregados en esíe muíaníe. De hecho, mieníras que el íraíamienío de las células íransfecíadas duraníe las úlíimas 12 horas con inhibidores de CdK5, inhibidores de Caseína quinasa I o una combinación de ambos, no disminuyó el número de células con inclusiones de parkina, si que se observó una disminución en el número de células con agregados perinucleares grandes, con un aumenío paralelo del número de agregados por célula (Fig. 8).
El efecío de cada inhibidor de forma independieníe fue significaíivo por si mismo, y se pudieron observar pequeños efecíos adiíivos con Ia combinación de ambos inhibidores, con una reducción cercana al 40% en el número de células con agregados perinucleares grandes, y el incremento paralelo en el número de células con agregados pequeños de parkina C289G (Fig. 8). De forma adicional, Ia incubación prolongada y repetitiva de las células con una mezcla de inhibidores específicos de Caseína quinasa I y de CdK5 resultó en efectos beneficiosos adicionales con el tiempo, sobre Ia disminución del número de células con agregados grandes de parkina-C289G (Fig. 5g). Todos estos datos juntos muestran que Ia inhibición combinada de Ia fosforilación de parkina puede regular sus propiedades agregativas en cultivo, Io que indicaría que tal tratamiento es útil en el mantenimiento de Ia actividad protectora de parkina en células en cultivo.
Ejemplo 3.- Las formas fosforiladas de Parkina en sistema nervioso central representan un marcador prognóstico y diagnóstico de enfermedad de Parkinson.
3.1.- Incremento de Ia forma fosforilada de parkina en diferentes áreas del cerebro de pacientes con Parkinson idiopático.
Para determinar si parkina es fosforilada en cerebro humano y en cerebros de pacientes con Parkinson esporádico, se analizó los niveles de parkina y de parkina fosforilada en diferentes zonas del cerebro, que han sido previamente descritas que se ven afectadas de forma diferente por esta patología (Braak et al., 2004). Para cada paciente tanto control como enfermo de Parkinson, se dispuso de tres zonas de cerebro disponibles y éstas fueron emparejadas según el tiempo transcurrido entre Ia muerte y Ia recogida del tejido, el procesamiento de Ia muestra y las condiciones de almacenaje, como variables importantes para Ia comparación. Los niveles de parkina total fueron similares en núcleo caudado, corteza y cerebelo (Fig. 4a), y no hubo diferencias en los niveles de parkina total entre los controles sanos y los casos con enfermedad de Parkinson en ninguna de las tres regiones cerebrales analizadas (Fig. 4b). Sin embargo, se encontraron incrementos estadísticamente significativos en los niveles de parkina fosforilada en pacientes con enfermedad de Parkinson con respecto a los controles (Fig. 4b, c). Este incremento fue detectado en caudado, conocida como un área particularmente afectada por Ia presencia de cuerpos de Lewy y neuritas de Lewy en los estadios tempranos del desarrollo de Ia enfermedad (Braak et al., 2004). No se detectó cambios en los niveles de fosfo-parkina en Ia corteza en pacientes con Ia enfermedad de Parkinson respecto a los controles (Fig. 4b, c), y Ia fosfo-parkina no pudo ser detectada en cerebelo, una área del cerebro en Ia que no se encuentran ni cuerpos de Lewy ni neuritas de Lewy en Ia enfermedad de Parkinson (Braak et al., 2004). De forma conjunta, estos datos demuestran una alteración del estado de fosforilación de Ia proteína parkina específica de Ia enfermedad de Parkinson y asociada a Ia localización neuroanatómica de dicha enfermedad.
Como primer paso en Ia identificación de los mecanismos que subyacen las diferencias en los niveles de fosfo-parkina entre pacientes con enfermedad de Parkinson y personas control, se analizaron los niveles totales de caseína quinasa I, CdK5 y de p25/p35, el activador de CdK5. Mientras que los niveles de caseína quinasa I y de CdK5 fueron similares en las tres zonas del cerebro, los niveles de p25 no fueron detectables en cerebelo en comparación con caudado y corteza (Fig. 4a). No se detectaron diferencias en los niveles de caseína quinasa lε y de CdK5 en pacientes control respecto a pacientes con Ia enfermedad (Fig. 4b, c). Sin embargo, los niveles de p25 fueron significativamente mayores en pacientes con enfermedad de Parkinson respecto a control en caudado, pero no en Ia corteza (Fig. 4b, c). Así, el incremento observado de los niveles de parkina fosforilada en Ia enfermedad de Parkinson en comparación con el grupo control puede, al menos parcialmente, ser debido a cambios en los niveles de p25 en las diferentes áreas del cerebro analizadas, con cambios concomitantes en Ia actividad cdk5, acompañados de Ia fosforilación y agregación de parkina.
3.2.- Detección de fosfo-parkina en el sistema nervioso central y en plexos autónomos. Valor diagnóstico de Ia enfermedad de Parkinson.
El anticuerpo fosfo-Ser-101 tiñe cuerpos de Lewy y neuritas de Lewy en secciones postmortem del SNC de cerebros de pacientes con Parkinson, además de mostrar una tinción citoplasmática granular en algunas neuronas (Figura 9). Esta tinción es similar a Ia encontrada con dos anticuerpos no fosfo-específicos para parkina (Ab-cam y 844), sin embargo, Ia tinción con el fosfo-específico es mucho más sensible.
Cabe destacar que en los plexos autónomos, el anticuerpo muestra una tinción granular en algunas neuronas, similar a Ia encontrada para αlfa- sinucleína (Minguez-Castellanos et al., Neurology, 2007, 2012-2018). De forma similar, el anticuerpo fosfo-Ser-378 da una señal más débil que el fosfo- Ser-101 , pero muestra el patrón de tinción granular en algunas neuronas de los plexos autónomos. Por Io tanto, el empleo de estos anticuerpos fosfo- estado específicos para Ia detección de los niveles de fosfo-parkina podría servir como una nueva herramienta para el diagnóstico de desórdenes con cuerpos de Lewy.
MATERIALES Y MÉTODOS
Ensayos de fosforilación in vitro: 1 μg de parkina recombinante silvestre (wt), diferentes mutantes puntuales de ella, así como diversas formas truncadas (generadas y purificadas como se describe en materiales y métodos suplementarios) fueron sometidas a ensayos de fosforilación in vitro con las enzimas y las condiciones descritas a continuación. Fosforilación mediante caseína quinasa I (0.5 unidades de caseína quinasa I recombinante de rata (New England Biolabs)) fue llevada a cabo en un buffer que contiene 5OmM Tris-HCI, 5 mM DTT, 10 mM MgCl2, pH 7.5, utilizando 20 ng de caseína como control positivo. La fosforilación por Quinasa dependiente de Ciclina 5 (CdK5) (20 ng de CdK5 completa (Upsatate)) fue llevada a cabo en 8 mM MOPS/NaOH, 0.2 μM EDTA, 10 mM Mg-acetate, pH 7.0, utilizando 500 ng de Histona H1 como control positivo. A no ser que se especifique, todas las reacciones fueron llevadas a cabo en un volumen final de 40 μl y fueron iniciadas mediante Ia adición de ATP a una concentración final de 100 μM, con trazas de [32P]ATP (GEHealthcare, actividad específica 150 mCi/ml). Después de 30 minutos con agitación (450 rpm), las reacciones fueron finalizadas añadiendo 0,2 volúmenes de buffer de carga 5x e hirviendo durante 5 minutos a 950C. Las proteínas fueron separadas por SDS-PAGE en geles de poliacrilamida del 10% (o del 12,5% para separar las formas N1 o C3) y posteriormente teñidas con tinte Coomassie azul. La incorporación de 32P se cuantificó utilizando un Phosphorlmager (Molecular Dynamics) y corrigiendo los valores respecto al fondo. Las diferencias en Ia cantidad de proteína fueron cuantificadas en los geles teñidos con Coomassie, utilizando el programa QuantityOne (Bio-Rad), y corregidas respecto al valor de fondo. Los valores de radioactividad cuantificados fueron corregidos respecto a los valores de cantidad de proteína utilizada. Las reacciones llevadas a cabo usando quinasas adicionales que no fosforilan parkina, están descritas en métodos suplementarios. Reacciones de Autoubiquitinación
1 μg de parkina recombinante completa se incubó con 80-150 ng de enzima E1 (His-E1 , Biomol), 2 μg de enzima E2 (His-UbcH7, Biomol) y 5 μg de ubiquitina (Sigma) o ubiquitina carente de lisina o ubiquitina metilada (BostonBiochem). El buffer de reacción contenía 50 mM Tris-HCI pH 7.4, 2 mM ATP, 1 mM DTT y 5 mM MgCl2. Las reacciones se llevaron a cabo a 3O0C durante 30 minutos y con agitación (450 rpm) y fueron terminadas mediante Ia adición de 0,2 volúmenes de buffer de carga 5x y hervidas a 950C durante 5 minutos. Las muestras se separaron en geles de poliacrilamida del 7,5% y fueron incubadas posteriormente con un anticuerpo monoclonal anti-ubiquitina (clone 6C1 , Sigma), en una dilución 1 :1000, toda Ia noche a 40C. Para comprobar que se había cargado Ia misma cantidad de proteína, las muestras fueron incubadas de forma independiente con un anticuerpo anti-parkina (844), en una dilución 1 :1000, toda Ia noche a 40C.
Generación de anticuerpos anti-parkina y anti-fosfo-parkina.
Los anticuerpos anti-parkina y anti-fosfo-parkina fueron generados en colaboración con PhosphoSolutions (USA). Brevemente, los anticuerpos fueron producidos en conejos, utilizando péptidos con Ia secuencia de parkina humana (alrededor del aminoácido 400) (844) o péptidos químicamente fosforilados en las posiciones S101 y S378. Los anticuerpos fosfo-estado específicos fueron purificados por afinidad, de forma secuencial a través de dos columnas cromatográficas, una con el péptido fosforilado y otra con el péptido sin fosforilar.
Cultivo celular, transfección y lisis de las células. Las células HEK293T fueron cultivadas en placas de 100 mm y crecidas a 370C en 5% de CO2. El medio de cultivo fue DMEM (Dulbecco's modified Eagle's médium) complementado con 4 mM de Glutamina, aminoácidos no esenciales (Sigma), 10% de suero fetal inactivado por calor (Invitrogen), penicilina (100 unidades/ml) y estreptomicina (100 unidades/ml). Una vez confluentes, las células fueron recogidas empleando tripsina al 0,05% con 0,02 mM de EDTA en PBS y diluidas entre 1 :4 y 1 :6 para el siguiente cultivo. Las células se transfectaron con una confluencia del 50- 60%, usando 8 μg del plásmido de interés y 80 μl del reactivo de transfección PolyFect (Qiagen), para una placa de 100 mm, siguiendo las instrucciones del fabricante. 4 horas después de Ia transfección, el medio de cultivo era sustituido por medio fresco.
Para Ia preparación de extractos, las células eran recogidas 48 horas después de Ia transfección. Antes de recogerlas, eran tratadas con 1 μM de roscovitina (Calbiochem) durante 12 horas, para inhibir Ia actividad endógena de CdK5 o con 50 μM de IC261 (3-[(2,4,6- trimethoxyphenyl)methylidenyl]indolin-2-one) (Calbiochem), durante 3 ó 12 horas, para inhibir Ia actividad endógena de caseína quinasa I. Donde esté indicado, las células fueron tratadas con 0.5 μM de ácido okaidico (Alomone Labs), durante una hora antes de ser procesadas, para inhibir Ia actividad fosfatasa endógena. Las células fueron lavadas una vez con PBS frío y resuspendidas en 1-1 ,5 mi de buffer de lisis por cada placa de 100 mm (1% SDS, 1 mM PMSF, 1 mM Na3VO4 y 5 mM NaF in PBS). Las células resuspendidas fueron incubadas durante 15 minutos a 4o C en un agitador rotatorio, sonicadas dos veces (2 pulsos de 1 segundo) y centrifugadas a 13'500 rpm durante 10 minutos a 4o C. La concentración de proteínas de los sobrenadantes se determinó por ensayo de BCA (Pierce) y a continuación se añadieron 0,2 volúmenes de buffer de carga 5x. Después fueron hervidas 5 minutos a 95° C y analizadas directamente por western-blot ya que Ia congelación-descongelación de las muestras impide Ia detección de fosfo- parkina. A no ser que se especifique, se cargaron 80-100 μg de extracto total por línea para asegurar Ia detección de fosfo-parkina.
Para los estudios de fraccionamiento secuencial, las células se recogieron 72 horas después de Ia transfección, se lavaron una vez con PBS frío, se resuspendieron en 4 mi de PBS frío y se dividieron en dos tubos. Las células se recogieron mediante 5 minutos de centrifugación (1'500 rpm, 4°C), y se resuspendieron en 400 μl de buffer (50 mM Tris-HCI, pH 8.0, 300 mM NaCI, 1.5 mM MgCI2, 2 Dg/ml chymostatin, 100 u/ml aprotinin, 1 mM PMSF, 1 mM NaSVO4 y 5 mM NaF) que contenía o un 1% de SDS para Ia fracción total o un 1 % de Tritón X-100. Éste último tubo se incubó durante 10 minutos en un agitador rotario a 40C y fue centrifugada durante 20 minutos a 82O00 g y a 40C. El sobrenadante (fracción soluble en Tritón) fue guardado y el pellet fue resuspendido en 200 Dl con 1 % de SDS y sonicado hasta obtener una solubilización completa (Tritón insoluble). La concentración de proteínas fue estimada por BCA (Pierce). Se cargaron en el gel 40 μg de Ia fracción total y de Ia fracción soluble en Tritón y 20 μg de Ia fracción insoluble en Tritón. Se separaron por SDS-PAGE y fueron analizadas mediante western blot. Los analizados fueron analizados de forma independiente con un anticuerpo anti- actina de conejo (Sigma, 1 :100) como control de carga.
Inmunocitoquímica
Células HEK293T o HEK293T/17 fueron cultivadas en placas de 6 pocilios con una confluencia del 40%, Ia transfección se llevó a cabo al día siguiente cuando Ia confluencia era del 60%, utilizando 2 μg de DNA y 20 μl del reactivo de transfección PolyFect, según las instrucciones del fabricante. Al día siguiente, las células fueron pasadas 1 :2-1 :3 en cubres y fueron procesadas para inmunocitoquímica dos días después. Cuando se indique, las células fueron tratadas con 5 μM de MG-132 (carbobenzoxy-L-leucyl-L- leucinal) (Calbiochem) durante 12 horas, para inhibir Ia actividad del proteosoma, Io que facilita Ia formación de agregados. Las células se fijaron con paraformaldehído al 4% en PBS, durante 30 minutos a 370C. Se permeabilizaron con PBS/0,5% de Tritón X-100 (3 lavados de 5 minutos) y se incubaron en buffer de bloqueo (10% de suero de cabra en PBS con 0,5% de Tritón X-100 (Vector Laboratories)) durante 1 hora a temperatura ambiente. El anticuerpo primario (anti-parkin 844 de conejo), se diluyó con buffer de bloqueo 1 :1000 y se incubó con él durante 1 hora a temperatura ambiente. Las células se lavaron con PBS/0,5% de Tritón X-100 y se incubaron con un anticuerpo secundario de cabra anti-conejo AlexaFluor-488-conjugado (1 :1000, Invitrogen) por una hora a temperatura ambiente. Posteriormente las células se lavaron con PBS/0,5% Tritón X-100, PBS, agua y etanol al 70%. Una vez fijadas las células, se montaron utilizando un medio de montaje con DAPI (Vector Laboratories) y visualizadas en un microscopio Zeiss utilizando los objetivos 4Ox y 100x de inmersión en aceite. Utilizando esta técnica, los niveles de transfección conseguidos rondaron siempre el 60%.
Para determinar el porcentaje de células transfectadas que contenían inclusiones, las células que sobrexpresaban parkina fueron separadas en células que mostraban una tinción citoplasmática difusa o las que mostraban agregados teñidos. Además, las que mostraban agregados, fueron separadas según mostraban al menos un agregado perinuclear grande de parkina, o múltiples agregados pequeños. Estos valores se emplearon para determinar el porcentaje de células que presentan al menos un agregado grande y el porcentaje de células con agregados pequeños. De forma independiente, se confirmó que los agregados perinucleares eran agregosomas mediante tinción con un anticuerpo monoclonal anti-vimentina (1 :400, clone V9, Sigma). Para todas las determinaciones realizadas se contaron entre 250 y 1000 células y en todos los casos, se llevó a cabo un análisis adicional por un observador no consciente de las condiciones empleadas.
Tejido humano y Ia preparación de las muestras
Las muestras de cerebro congeladas fueron proporcionadas por el Banco de tejidos neurológicos del Hospital Bellvitge, España. Las muestras de los sujetos humanos difuntos fueron recogidas durante Ia autopsia, realizada bajo el consentimiento informado de los familiares, y bajo un protocolo aprobado por un comité local de ética. Las regiones del cerebro de cada paciente control o con enfermedad de parkinson analizadas fueron corteza, cerebelo y caudado. Las variables edad, sexo y tiempo transcurrido desde Ia muerte hasta Ia recolección del tejido para el análisis patológico eran conocidas para cada paciente.
Pequeñas secciones de los bloques de tejido fueron añadidas a 700 Dl de bufffer de lisis (1 % SDS, 1 mM PMSF, 1 mM Na3VO4 y 5 mM NaF) y fueron usadas utilizando un homogenizador Dounce con un pistilo de teflón. La lisis se llevó a cabo aplicando impulsos lentos durante un minuto como máximo. Para las muestras de cerebelo, fueron necesarios dos pulsos adicionales de sonicación (1 segundo cada uno) para Ia completa solubilización del tejido. Los homogeneizados fueron posteriormente centrifugados 10 minutos a 13'500 rpm a 4o C. La concentración de proteínas se determinó por ensayo de BCA (Pierce). Se añadieron 0,2 volúmenes de buffer de carga 5x y las muestras fueron hervidas durante 5 minutos a 95° C. Los extractos debían prepararse con una concentración alta (más de 5 mg/ml), para que los niveles de fosfo-parkina pudiesen ser detectados utilizando mini-geles. Como ya se ha mencionado anteriormente para los extractos celulares, las muestras deben ser analizadas directamente por western-blot para poder detectar parkina fosforilada, y se deben cargar entre 80-100 μg de proteína total para asegurar una detección sensible de fosfo- parkina.
Western blotting
Las proteínas fueron separadas por SDS-PAGE, transferidas a una membrana de PVDF (Hybond, GEHealthcare) e incubadas con los correspondientes anticuerpos primarios toda Ia noche a 40C. Los anticuerpos utilizados fueron: Policlonal de conejo anti-parkina (1 :1000, para extractos de células y cerebro, ab6177, Abcam), un anticuerpo hecho por encargo 844 (1 :1000, para proteínas recombinante), un anticuerpo anti-parkina-fosfo-S101 (1 :200 para extractos de células y cerebro), un anticuerpo anti-parkina-fosfo- S378 (1 :500 para extractos de células, 1 :5000 para proteína recombinate), un anti-p35 (1 :100, C-19, Santa Cruz Biotechnology), un anti-cdk5 (1 :400, DC17, Santa Cruz Biotechnology), un anti-caseína quinasa lε (1 :250, BD Transduction Laboratories), un anti-alfa-tubulina (1 :5000, clone DM1 A, Sigma) y un anti-actina (1 :100, Sigma). Las membranas se lavaron y se incubaron con anticuerpos secundarios (anticuerpo anti-conejo HRP-conjugado (1 :2000) o anticuerpo anti-ratón HRP-conjugado (1 :2000) (Dako Cytomation)) durante 90 minutos a temperatura ambiente. La detección se llevó a cabo con el reactivo ECL (Amersham).
Construcción de plásmidos La parkina completa humana fue amplificada por PCR (secuencia de los cebadores: 5'-TTA TGA ATT CAT ATA GTG TTT GTC AGG TTC AAC-3' and 5'-TTT AAA GCT TTT ACA CGT CGA ACC AGT GGT CCC-3') a partir de una construcción piTrex que contenía el cDNA de parkina humana y clonada en los sitios de restricción EcoRI/HindIII del vector pGex-KG1. Las construcciones que codifican para los diferentes dominios de parkina (N1 , N2, N3, C1 , C2, C3) se generaron mediante PCR del plásmido piTrex con el cDNA de parkina como plantilla y fueron subclonadas en pGex-KG como se describe arriba.
Para Ia expresión de Parkina en células de mamífero en cultivo, parkina completa humana fue amplificada por PCR y subclonada en los sitos de restricción EcoRI/Xbal del vector pCMV5-SV40-hGH2. Las mutaciones puntuales fueron introducidas usando el kit de mutagénesis dirigida de Stratagene, siguiendo las indicaciones del fabricante. Las secuencias codificantes completas de todas las construcciones empleadas en este estudio, fueron verificadas mediante secuenciación de DNA. Las secuencias de todos los cebadores utilizados están disponibles bajo petición al autor.
Purificación de proteínas
Todas las proteínas recombinantes de parkina fueron expresadas con una proteína de fusión (GST) en su extremo N-terminal en bacterias E.coli BL21 DE3, y purificadas como se ha descrito3, incluyendo algunas modificaciones que se detallan a continuación. Un cultivo de 5ml que ha estado toda Ia noche a 37° C se diluye 200 veces y se crece a 370C hasta que Ia densidad óptica a 600 nm es de 0,6. Posteriormente se incuba a 16° C durante 15 minutos y se induce con 0,1 mM de IPTG durante 16-20 horas. Las bacterias se recogen mediante centrifugación a 10O00 g, 10 minutos a 4o C. El precipitado de células es resuspendido en 12 mi (por litro de cultivo) en buffer de resuspensión (PBS con 1 % TX-100, 1 mM PMSF, 1 mM DTT, 50 μg/ml RNAse, 50 μg/ml DNAse y 100 μg/ml lysozyma). Las células resuspendidas se incubaron durante 30 minutos a 4o C con agitación y se sonicaron en hielo 3 veces (3 pulsos de sonicación cada vez, con descanso de 30 segundos entre cada pulso). A continuación se centrifugaron a 16O00 g 20 minutos a 4o C. La fracción soluble se filtro a través de un filtro de 0.22 μm y se diluyó con 6 mi de PBS que contenía 1 % TX-100, 1 mM PMSF y 1 mM DTT (por litro de cultivo). Las proteínas se unieron a una resina de glutatión sefarosa (Pharmacia) (750 μl de resina por litro de cultivo) durante 2 horas a 4o C. La resina se lavó 2 veces con PBS/1% TX-100, 2 veces con PBS y 2 veces con el buffer de elución buffer (50 mM Tris-HCI pH 8, 150 mM NaCI, 2.5 mM CaCI2, 0.1 % (v/v) beta-mercaptoethanol). La resina centrifugada fue diluida un 50% con buffer para Ia elución con trombina, Ia proteína se eluyó con 50 unidades de trombina (de plasma bovino, Sigma), por litro de cultivo, durante 1 hora a 40C. Las proteínas purificadas se dializaron en PBS con 1 mM de DTT durante 1 hora a 40C. El dializado se congeló en pequeñas alícuotas y se congeló a -20° C. La concentración de proteína se determinó mediante BCA (Pierce), según las instrucciones del fabricante. La pureza de todas las proteínas purificadas se determinó mediante tinción con colorante Coomassie azul, en Ia mayoría de los casos fue del 80-90%. En Ia mayoría de los casos, Ia actividad enzimática de Ia proteína completa se ensayó mediante autoubiquitinación in Vitro, antes de que Ia proteína fuera utilizada en otros ensayos.
Ensayos de fosforilación in vitro adicionales
Fosforilación por caseína quinasa Il (1 μg de caseína quinasa Il recombinante humana (New England Biolabs)), fue llevado a cabo en un buffer que contiene 20 mM Tris-HCI, 50 mM KCI, 10 mM MgCI2, pH 7.5, utilizando 20 ng de caseína como control positivo. Fosforilación por quinasa dependiente de AMP cíclico (PKA) (2.5 unidades de PKA de ratón recombinante (New England Biolabs)) fue llevado a cabo en un buffer que contiene 50 mM Tris-HCI, 10 mM MgCI2, pH 7.5 usando 1 μg sinapsina I bovina como control positivo. Fosforilación mediante Glucógeno sintasa quinasa 3beta (1 μg de his-tagged GSK3beta humana recombinante Calbiochem), fue llevado a cabo en un buffer que contiene 25 mM Tris-HCI pH 7.5, 5 mM beta-glycerolphosphate, 12 mM MgCI2, 2 mM DTT, 100 μM NaSVO4, utilizando 100 ng de proteína Tau humana (Calbiochem) como control positivo. La fosforilación con 1 μg de proteína quinasa C (PKC) se llevó a cabo en un buffer que contenía 50 mM HEPES pH 7.4, 10 mM Mg- acetato, 1 mM EGTA, 1 mM EDTA, 1.5 mM CaCI2, 1 mM DTT, 50 μg/ml fosfatidilserina y 4 μg/ml diacilglicerol. Como control positivo se utilizó 1 μg de sinapsina I bovina. Para Ia fosforilación con quinasa dependiente de calcio y calmodulina Il (CaMKII), se utilizaron 2,5 unidades de CaMKII recombinante de rata (New England Biolabs). La quinasa se activó mediante incubación de 10 minutos a 30° C en un buffer que contenía 50 mM Tris-HCI pH 7.5, 10 mM MgCI2, 2 mM DTT, 0.1 mM EDTA, 100 μM ATP, 1.2 μM calmodulina y 2 mM CaCI2. 1 μg de Parkina recombinante fue diluida en ese mismo buffer y suplementada con 200 μM de ATP. 1 μg de sinapsina I bovina fue utilizada como control positivo. La fosforilación por Ia quinasa reguladora de señales de apoptosis 1 (ASK-1 ) se llevó a cabo en 8 mM MOPS/NaOH, 0.2 μM EDTA, 10 mM Mg-acetato, pH 7.0, utilizando 1 μg de proteína básica de Ia mielina (MBP, Sigma) de ratón, como control positivo.
Análisis estadístico Los experimentos se realizaron el número de veces indicado, el análisis se realizó mediante el test de Ia t de Student emparejado.
Referencias
Abbas N, et al. (1999) A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. Hum Mol
Genet 8: 567-574.
Avraham E, Rott R, Liani E, Szargel R, Engelender S (2007) Phosphorylation of parkin by the cyclin-dependent kinase 5 at the linker región modulates its ubiquitin-ligase activity and aggregation. J BIoI Chem 282: 12842-
12850. Bain J, et al. (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408: 297-315. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson's disease-related pathology. Ce// Tissue
Res. 318: 121 -134. Chung KK, et al. (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304: 1328-1331 . Cookson MR, et al. (2003) RING finger 1 mutations in parkin produce altered localization of the protein. Hum Mol Genet 12: 2957-2965. Cookson MR, et al. (2007) The roles of kinases in familial Parkinson's disease. J Neurosci 27: 1 1865-11868.
Farrer M, et al. (2001 ) Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 50: 293-300.
Farrer, MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7: 306-318. Feany MB, Pallanck LJ (2003) Parkin: a multipurpose neuroprotective agent?
Neu ron 38: 13-16. Flajolet M, et al. (2007) Regulation of Alzheimer's disease amyloid-D formation by casein kinase I. Proc Nati Acad Sci USA 104: 4159-4164. Hampe C, Ardila-Osorio H, Fournier M, Brice A, Corti O (2006) Biochemical analysis of Parkinson's disease-causing varients of parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. Hum Mol Genet
15: 2059-2075. Hayashi S, et al. (2000) An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov
Disord 15: 884-888. Johnson K, et al. (2005) Inhibition of neuronal apoptosis by the cyclin- dependent kinase inhibitor GW8510: Identification of 3' substituted indolones as a scaffold for the development of neuroprotective drugs. J
Neurochem 93: 538-548.
Kitada T, et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605-608.
Knippschild U, et al. (2005) The casein kinase 1 family: participation in múltiple cellular processes in eukaryoates. Ce// Signal 17: 675-689. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ
(2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 1 1 : 1214-1221 .
Lee M, et al. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain.
Nature 405: 360-364. Lucking CB, et al. (2000) Association between early-onset Parkinson's disease and mutations in the parkin gene. N Engl J Med 342: 1560-1567. Meijer L, et al. (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243: 527-536. Nakamura S, Kawamoto Y, Nakano S, Akiguchi I, Kimura J (1997) p35nck5a and cyclin-dependent kinase 5 colocalize in Lewy bodies of brains with
Parkinson's disease. Acta Neuropathol 94: 153-157.
Patrick GN, et al. (1999) Conversión of p35 to p25 deregulates cdk5 activity and promotes neurodegeneration. Nature 402: 615-622.
Pramstaller PP, et al. (2005) Lewy body Parkinson's disease in a large pedigree with 77 parkin mutation carriers. Ann Neurol 58: 411-422. Rena G, Bain J, Elliott M, Cohén P (2004) D4476, a cell-permeant inhibitor of
CK1 , suppresses the site-specific phosphorylation and nuclear exclusión of FOXOIa. EMBO Rep 5: 60-65.
Schlossmacher MC, et al. (2002) Parkin localizes to the Lewy bodies of
Parkinson disease and dementia with Lewy bodies. Am J Pathol 160:
1655-1667.
Shimura H, et al. (1999) Immunohistochemical and subcellular localization of parkin protein: absence of protein in autosomal recessive juvenile parkinsonism patients. Ann Neurol 45: 668-672. Shimura H, et al. (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet 25: 302-305. Shults, CW (2006) Lewy bodies. Proc Nati Acad Sci USA 103: 1661-1668. Smith PD, et al. (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease.
Proc Nati Acad Sci USA 100: 13650-13655. Smith PD, O'Hare MJ, Park, DS (2004) CDKs: taking on a role as mediators of dopaminergic loss in Parkinson's disease. Trends Mol Med 10: 445-451. Sriram SR, et al. (2005) Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin.
Hum Mol Genet 14: 2571-2586. Wang C, et al. (2005) Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. Hum
Mol Genet λ 4: 3885-3897.
Yamamoto A, et al. (2005) Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J BIoI Chem 280: 3390-3399.
Yao D, et al. (2004) Nitrosative stress linked to sporadic Parkinson's disease:
S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc
Nati Acad Sci USA 101 : 10810-10814.
Guan, K. L. & Dixon, J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusión proteins with glutathione-S-transferase. Anal. Biochem. 192, 262-267 (1991 ). Fdez, E. et al. A role for SNARE complex dimerization during neurosecretion.
Mol. BIoI. CeII, in the press.
Luzón-Toro, B., Rubio de Ia Torre, E., Delgado, A., Pérez-Tur, J. & Hilfiker, S. Mechanistic insight into the dominant mode of the Parkinson's disease- associated G2019S LRRK2 mutation. Hum. Mol. Genet. 16, 2031-2039
(2007).

Claims

REIVINDICACIONES
1 .- Uso de un compuesto inhibidor de Ia proteína caseína quinasa I o de Ia proteína quinasa cdk5, o de ambos para Ia elaboración de un medicamento o composición farmacéutica útil para el tratamiento de una enfermedad asociada a cuerpos de Lewy, preferentemente para el tratamiento de Ia enfermedad de Parkinson.
2.- Uso de un compuesto según Ia reivindicación 1 caracterizado porque el compuesto inhibidor es un inhibidor de Ia enzima caseína quinasa I perteneciente al siguiente grupo: IC261 , CKI-7 y D4476.
3.- Uso de un compuesto según Ia reivindicación 1 caracterizado porque el compuesto inhibidor es un inhibidor de Ia enzima cdk5, perteneciente al siguiente grupo: R-roscovitina, bis(aminopirimidina, Aloisina A y GW8510
A - Uso de un compuesto según Ia reivindicación 1 caracterizado porque el compuesto inhibidor es un ácido nucleico o polinucleótido que impide o disminuye Ia expresión del gen codificante de, al menos, una de las enzimas caseína quinasa I o cdk5 humana y que incluye, al menos, una secuencia de nucleótidos seleccionada entre:
a) una secuencia de nucleótidos antisentido especifica de Ia secuencia del gen o del mRNA de Ia enzima caseína quinasa I o cdk5, b) una ribozima específica del mRNA de Ia proteína caseína quinasa I o cdk5, c) un aptámero específico del mRNA de Ia enzima caseína quinasa I o cdk5, d) un RNA de interferencia (shRNAi) específico del mRNA de Ia enzima caseína quinasa I o cdk5, y e) un microRNA específico del mRNA de Ia enzima caseína quinasa I o cdk5.
5.- Uso de un compuesto según Ia reivindicación 1 caracterizado porque el compuesto inhibidor es un anticuerpo específico contra Ia proteína Caseína Quinasa I o cdk5 humana y funcionalmente activo, que impida o disminuya Ia actividad biológica de las mismas, ya sea monoclonal o policlonal.
6.- Composición farmacéutica útil para el tratamiento de una enfermedad asociada a cuerpos de Lewy, preferentemente para el tratamiento de Ia enfermedad de Parkinson, caracterizada porque comprende una cantidad terapéuticamente efectiva de un compuesto o agente inhibidor de Ia enzima caseína quinasa I o cdk5, o de ambas, junto con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables.
7.- Composición farmacéutica según Ia reivindicación 6 caracterizada porque el compuesto inhibidor es un compuesto inhibidor de Ia actividad fosforilante de Ia proteína caseína quinasa I perteneciente al siguiente grupo: IC261 , CKI- 7 y D4476.
8.- Composición farmacéutica según Ia reivindicación 6 caracterizada porque el compuesto inhibidor es un compuesto inhibidor de Ia actividad fosforilante de Ia proteína cdk5 perteneciente al siguiente grupo: R-roscovitina, bis(aminopirimidina), Aloisina A y GW8510.
9.- Composición farmacéutica según Ia reivindicación 6 caracterizada porque el compuesto inhibidor es un ácido nucleico o polinucleótido que impide o disminuye Ia expresión del gen codificante de Ia proteína caseína quinasa I y/o cdk5 humana y que incluye una secuencia de nucleótidos seleccionada entre:
a) una secuencia de nucleótidos antisentido especifica de Ia secuencia del gen o del mRNA de Ia proteína caseína quinasa I o cdk5, b) una ribozima específica del mRNA de Ia proteína caseína quinasa I o cdk5, c) un aptámero específico del mRNA de Ia proteína caseína quinasa I o cdk5, d) un RNA de interferencia (iRNA) específico del mRNA de Ia proteína caseína quinasa I o cdk5, y e) un microRNA de interferencia (iRNA) específico del mRNA de Ia proteína caseína quinasa I o cdk5.
10.- Composición farmacéutica según Ia reivindicación 6 caracterizada porque el compuesto inhibidor es un anticuerpo específico de Ia proteína caseína quinasa I o cdk5.
11.- Uso de Ia composición farmacéutica de Ia invención en un método de tratamiento de un mamífero, preferentemente un ser humano, afectado por una enfermedad neurológica asociada a cuerpos de Lewy, preferentemente Ia enfermedad de Parkinson, consistente en Ia administración de una composición terapéutica según las reivindicaciones 6 a Ia 10.
12.- Procedimiento de diagnóstico y pronóstico de enfermedades asociadas con cuerpos o agregados de Lewy, preferentemente de Ia enfermedad de Parkinson, ex vivo, caracterizado porque se basa en Ia determinación in vitro en células del sistema nervioso central de Ia expresión, al menos, una de las siguientes proteínas: parkina fosforilada, p35 y Cdk5, y porque comprende las siguientes etapas:
a) toma de una muestra biológica del sistema nervioso central, b) identificación o determinación de los niveles de, al menos, de una de las proteínas mencionadas - proteína parkina fosforilada, p35 y Cdk5, en Ia muestra del sistema nervioso central de a), y c) comparación de dicha determinación observada en b) con una muestra control, y donde su presencia incrementada es indicativa de una enfermedad asociada a cuerpos de Lewy.
13.- Procedimiento según Ia reivindicación 12 caracterizado porque Ia enfermedad asociada a cuerpos de Lewy se refiere a enfermedades pertenecientes al siguiente grupo: Demencia de cuerpos de Lewy y enfermedad de Parkinson.
14.- Procedimiento según las reivindicaciones 12 y 13 caracterizado porque Ia muestra biológica de a) se obtiene de neuronas pertenecientes a un plexo autónomo.
15.- Procedimiento según las reivindicaciones 12 y 13 caracterizado porque Ia determinación de b) se realiza al menos con un anticuerpo específico de Ia proteína parkina fosforilada, más preferentemente, un anticuerpo fosfo-estado específico de residuos fosforilados de parking perteneciente, a título ilustrativo, al siguiente grupo: anticuerpo fosfo-estado específico fosfo-Ser101 (P-101 ), fosfo-Ser378 (P-378) y fosfo-Ser127 (P127).
16.- Procedimiento según las reivindicaciones 12 y 13 caracterizado porque Ia muestra biológica de a) se obtiene de neuronas pertenecientes a un plexo autónomo y porque Ia determinación de b) se lleva a cabo mediante un anticuerpo fosfo-estado específico del residuo de parkina fosfo-Ser101 (P- 101 ).
PCT/ES2009/070385 2008-09-23 2009-09-16 Uso de inhibidores de quinasas para la elaboración de composiciones farmacéuticas para el tratamiento de la enfermedad de parkinson, composiciones farmacéuticas y procedimiento de diagnóstico de enfermedad de parkinson WO2010034863A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200802696 2008-09-23
ES200802696 2008-09-23

Publications (1)

Publication Number Publication Date
WO2010034863A1 true WO2010034863A1 (es) 2010-04-01

Family

ID=42059297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070385 WO2010034863A1 (es) 2008-09-23 2009-09-16 Uso de inhibidores de quinasas para la elaboración de composiciones farmacéuticas para el tratamiento de la enfermedad de parkinson, composiciones farmacéuticas y procedimiento de diagnóstico de enfermedad de parkinson

Country Status (1)

Country Link
WO (1) WO2010034863A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111228266A (zh) * 2020-03-09 2020-06-05 北京大学 Gw8510在制备哺乳动物自然衰老时延长寿命、提高认知能力等药物中的应用
CN111410693A (zh) * 2020-04-15 2020-07-14 山西农业大学 一种抗cdk5纳米抗体及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007118984A1 (fr) * 2006-03-30 2007-10-25 Neurokin Utilisation de la ( s ) -roscovitine pour la prevention et/ou le traitement de maladies neurologiques

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007118984A1 (fr) * 2006-03-30 2007-10-25 Neurokin Utilisation de la ( s ) -roscovitine pour la prevention et/ou le traitement de maladies neurologiques

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AVRAHAM, E. ET AL.: "Phosphorylation of parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 282, no. 17, 27 April 2007 (2007-04-27), pages 12842 - 12850 *
CHERGUI, K. ET AL.: "Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum", P.N.A.S., vol. 101, no. 7, 17 February 2004 (2004-02-17), pages 2191 - 2196 *
RUBIO, E. ET AL.: "Combined kinase inhibition modulates parkin inactivation", HUMAN MOLECULAR GENETICS., vol. 18, no. 5, 1 March 2009 (2009-03-01), pages 809 - 823 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111228266A (zh) * 2020-03-09 2020-06-05 北京大学 Gw8510在制备哺乳动物自然衰老时延长寿命、提高认知能力等药物中的应用
WO2021179952A1 (zh) * 2020-03-09 2021-09-16 北京大学 Gw8510在制备哺乳动物自然衰老时延长寿命、提高认知能力等药物中的应用
CN111228266B (zh) * 2020-03-09 2023-05-09 北京大学 Gw8510在制备哺乳动物自然衰老时延长寿命、提高认知能力等药物中的应用
CN111410693A (zh) * 2020-04-15 2020-07-14 山西农业大学 一种抗cdk5纳米抗体及其应用
CN111410693B (zh) * 2020-04-15 2020-12-22 山西农业大学 一种抗cdk5纳米抗体及其应用

Similar Documents

Publication Publication Date Title
Xu et al. Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model
ES2415665T3 (es) Procedimientos de cribado usando c-abl, fyn y sky en combinación con la proteína tau
Ploia et al. JNK plays a key role in tau hyperphosphorylation in Alzheimer's disease models
Biskup et al. Zeroing in on LRRK2-linked pathogenic mechanisms in Parkinson's disease
Vogt‐Eisele et al. KIBRA (KIdney/BRAin protein) regulates learning and memory and stabilizes Protein kinase Mζ
Takalo et al. High-fat diet increases tau expression in the brain of T2DM and AD mice independently of peripheral metabolic status
Duan et al. Phosphorylation of tau by death-associated protein kinase 1 antagonizes the kinase-induced cell apoptosis
Michel et al. Spatial restriction of PDK1 activation cascades by anchoring to mAKAPα
Nozal et al. Tau Tubulin Kinase 1 (TTBK1), a new player in the fight against neurodegenerative diseases
Mendoza et al. Global analysis of phosphorylation of tau by the checkpoint kinases Chk1 and Chk2 in vitro
Giusto et al. Pathways to Parkinson’s disease: a spotlight on 14-3-3 proteins
Chu et al. The influence of 5-lipoxygenase on Alzheimer’s disease-related tau pathology: in vivo and in vitro evidence
Bickel et al. Src family kinase phosphorylation of the motor domain of the human kinesin‐5, Eg5
Chu et al. 5-Lipoxygenase pharmacological blockade decreases tau phosphorylation in vivo: involvement of the cyclin-dependent kinase-5
Bao et al. Mechanisms of regulation and diverse activities of tau-tubulin kinase (TTBK) isoforms
Rahman et al. PP2B isolated from human brain preferentially dephosphorylates Ser-262 and Ser-396 of the Alzheimer disease abnormally hyperphosphorylated tau
EP3325100A1 (en) Combination therapy using pdk1 and pi3k inhibitors
JP2006504434A (ja) 神経系疾患及び癌における非定型プロテインキナーゼcアイソフォーム
WO2010034863A1 (es) Uso de inhibidores de quinasas para la elaboración de composiciones farmacéuticas para el tratamiento de la enfermedad de parkinson, composiciones farmacéuticas y procedimiento de diagnóstico de enfermedad de parkinson
Lee et al. Development of tau-directed small molecule modulators for Alzheimer’s disease: A recent patent review (2014–2018)
Sayas Tau-based therapies for Alzheimer’s disease: Promising novel neuroprotective approaches
EP1633883B1 (en) Method for assaying lkb1 phosphorylation activity
Wang et al. Inhibition of melatonin biosynthesis induces neurofilament hyperphosphorylation with activation of cyclin-dependent kinase 5
Tabassum et al. Identification of a reciprocal negative feedback loop between tau-modifying proteins MARK2 kinase and CBP acetyltransferase
US10300107B2 (en) Compositions and methods for CaMKII inhibitors and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09815706

Country of ref document: EP

Kind code of ref document: A1