WO2010032738A1 - Exhaust gas purifying device - Google Patents

Exhaust gas purifying device Download PDF

Info

Publication number
WO2010032738A1
WO2010032738A1 PCT/JP2009/066131 JP2009066131W WO2010032738A1 WO 2010032738 A1 WO2010032738 A1 WO 2010032738A1 JP 2009066131 W JP2009066131 W JP 2009066131W WO 2010032738 A1 WO2010032738 A1 WO 2010032738A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
nox
path
nox catalyst
exhaust
Prior art date
Application number
PCT/JP2009/066131
Other languages
French (fr)
Japanese (ja)
Inventor
徹 待田
横山 哲也
井上 剛
文哉 古東
和睦 鬼追
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008238195A external-priority patent/JP5465408B2/en
Priority claimed from JP2008238194A external-priority patent/JP5465407B2/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2010032738A1 publication Critical patent/WO2010032738A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2885Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with exhaust silencers in a single housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/10Parameters used for exhaust control or diagnosing said parameters being related to the vehicle or its components
    • F01N2900/104Battery status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification device for purifying exhaust gas in an internal combustion engine (engine) such as a diesel engine.
  • diesel A plurality of diesel generators are provided that are a combination of an engine and a generator that generates electricity by driving the diesel engine (see, for example, Patent Document 1).
  • Diesel engine is known to be one of the most energy efficient among internal combustion engines, and the amount of carbon dioxide contained in exhaust gas per unit output is small. In addition, since a low-quality fuel such as heavy oil can be used, there is an advantage that it is economically excellent.
  • the exhaust gas of a diesel engine contains a large amount of nitrogen oxides, sulfur oxides and particulate matter in addition to carbon dioxide. These are mainly derived from heavy oil, which is a fuel, and are harmful substances that hinder environmental conservation.
  • nitrogen oxides hereinafter referred to as NOx
  • NOx nitrogen oxides
  • the present invention is intended to meet such a demand.
  • An exhaust gas purification apparatus is a NOx catalyst that promotes reduction of NOx in exhaust gas from a plurality of engines, and a reducing agent supply unit that supplies a reducing agent for NOx reduction to the exhaust gas.
  • NOx detecting means for detecting the NOx concentration in the exhaust gas, and the exhaust paths of the engines merge into one collective path, and the collective path in order from the upstream side
  • a reducing agent supply unit and the NOx catalyst are arranged, and a bypass path for bypassing the NOx catalyst is provided between the joining part of the most downstream exhaust path in the collecting path and the NOx catalyst.
  • Branch connection is made, and a path switching member that opens and closes each path is provided on the downstream side of the branch path to the bypass path in the collective path and on the inlet side of the bypass path. It is.
  • the exhaust gas purifying apparatus is configured to adjust a reducing agent supply amount from the reducing agent supply unit based on detection information of the NOx detecting means. Is.
  • each exhaust path is provided with an opening / closing member for opening / closing the exhaust path.
  • the casing housing the NOx catalyst is provided with a silencer for attenuating exhaust noise of the exhaust gas.
  • the outlet side of the bypass path is connected in communication with the silencer of the casing.
  • a compressed gas from a gas supply source toward the NOx catalyst is disposed upstream of the NOx catalyst in a casing housing the NOx catalyst.
  • the casing containing the NOx catalyst is urged to oxidize excess reducing agent supplied downstream from the NOx catalyst.
  • a slip treatment catalyst is arranged.
  • the NOx detecting means detects an amount of electric power of a generator that generates electric power by driving each engine, and in the exhaust gas based on the detection result. It is configured to indirectly obtain the NOx concentration.
  • a NOx catalyst that promotes reduction of NOx in exhaust gas from a plurality of engines, a reducing agent supply unit that supplies a reducing agent for NOx reduction to the exhaust gas, and NOx in the exhaust gas NOx detection means for detecting the concentration, and the exhaust paths of the engines merge into one collective path, so that the exhaust structure in the case of having a plurality of engines can be simplified.
  • the reducing agent supply unit and the NOx catalyst are arranged in order from the upstream side in the collecting path, and between the joining part of the collecting path with the most downstream exhaust path and the NOx catalyst.
  • the bypass path for bypassing the NOx catalyst is branched and connected to the downstream side of the branch path to the bypass path and the inlet side of the bypass path.
  • the invention of claim 2 since it is configured to adjust the reducing agent supply amount from the reducing agent supply unit based on the detection information of the NOx detecting means, an amount commensurate with the NOx concentration in the exhaust gas.
  • the reducing agent can be supplied to the collecting route. Therefore, NOx in the exhaust gas can be efficiently decomposed into nitrogen and water by the action of the NOx catalyst.
  • each exhaust path is provided with an opening and closing member for opening and closing the exhaust path, by opening and closing the corresponding opening and closing member according to the state of each engine, It is possible to easily and reliably prevent the exhaust gas from flowing backward from the collecting path toward the stopped engine.
  • the casing containing the NOx catalyst is equipped with a silencer for attenuating exhaust noise of the exhaust gas, so the NOx catalyst and the silencer are combined in a single casing. It can be packaged, and the downstream side of the exhaust structure can be made compact.
  • the outlet side of the bypass path is connected to the silencer of the casing, the exhaust gas purified by passing through the NOx catalyst and the NOx catalyst are bypassed.
  • the exhaust gas passing through the bypass path can be sent to the same silencer. Therefore, the exhaust structure can be simplified and the manufacturing cost can be reduced.
  • the casing containing the NOx catalyst is provided with an squirting section that ejects compressed gas from a gas supply source toward the NOx catalyst on the upstream side of the NOx catalyst.
  • the squirting part By the action of the squirting part, the dust accumulated in the NOx catalyst can be forcibly removed after a long period of use.
  • the slip treatment catalyst that promotes the oxidation treatment of the excessively supplied reducing agent is disposed upstream of the NOx catalyst in the casing that houses the NOx catalyst. It is possible to prevent the excess reducing agent that tries to pass through the NOx catalyst unreacted from leaking out as it is.
  • the downstream side of the exhaust structure can be made compact.
  • the NOx detecting means is configured to detect a power generation amount of a power generator that generates power by driving each engine, and indirectly determine the NOx concentration in the exhaust gas based on the detection result. Therefore, a sensor dedicated to NOx concentration detection is not required, and the configuration can be simplified and the manufacturing cost can be reduced.
  • the ship 1 is provided in a hull 2, a cabin 4 provided in a rear part on the deck 3 in the hull 2, a funnel 5 (chimney) arranged behind the cabin 4, and a lower rear part of the hull 2.
  • the propeller 6 and the rudder 7 are provided.
  • Installed at the rear of the hull 2 are a main engine 8 (diesel engine in the embodiment) and a speed reducer 9 which are driving sources of the propeller 6, and a power generator 10 for supplying power to the electrical system in the ship 2.
  • the propeller 6 is rotationally driven by the rotational power from the main engine 8 via the speed reducer 9.
  • the power generation apparatus 10 includes a plurality of diesel generators 11 (three in the embodiment) that combine a power generation diesel engine 12 (hereinafter referred to as a power generation engine) and a power generator 13 that generates power by driving the power generation engine 12. ).
  • These diesel generators 11 are configured to operate efficiently in accordance with the required power amount in the ship 2. For example, all the diesel generators 11 are operated at the time of navigation that consumes a large amount of power, and an arbitrary number of diesel generators 11 are operated at the time of berthing where the power consumption is relatively low.
  • the generated power generated by driving each generator 13 is supplied to the electrical system in the ship 2.
  • Each generator 13 is electrically connected to a power transducer 15 in the generator control panel 14.
  • the power transducer 15 is for detecting the power generated by each generator 13. Based on the detection information of the power transducer 15, the drive of each power generation engine 12 is controlled so that the generated power matches the target power set in advance on the generator control panel 14.
  • the power transducer 15 is also electrically connected to a controller 55 of a reducing agent supply device 43 described later.
  • a fuel tank 16 for storing fuel (heavy oil) of each power generation engine 12 is installed in the hull 2.
  • One supply pipe 17 is connected to the fuel tank 16.
  • a fuel inlet valve 18, a fuel filter 19, and a fuel flow meter 20 are provided on the upstream side of the supply pipeline 17.
  • the fuel flow meter 20 is electrically connected to a controller 55 of a reducing agent supply device 43 described later.
  • a plurality of feed pipes 21 extend from the downstream side of the fuel flow meter 20 in the supply pipe 17 and are connected to the fuel pump 16 of the corresponding power generation engine 12. Yes.
  • the fuel sent to the fuel pump 16 is injected into a combustion chamber (not shown) for each cylinder in the power generation engine 12 by a fuel injection device (not shown) provided in the power generation engine 12. .
  • a return chamber 22 is provided in the middle of each feed line 21.
  • a return line 23 extending from the fuel injection device to the outside of the power generation engine 12 is connected to the fuel tank 16 via a return chamber 22. Accordingly, unused surplus fuel in the power generation engine 12 is returned to the fuel tank 16 through the return line 23.
  • a check valve 24 is provided downstream of the return chamber 22 in the return line 23.
  • Each power generation engine 12 is connected to an intake path (not shown) for air intake and an exhaust path 25 for exhaust gas discharge.
  • the air taken in through the intake path is sent into each cylinder of the power generation engine 12 (inside the cylinder in the intake stroke).
  • the fuel sucked up from the fuel tank 16 is pumped into the combustion chamber (sub chamber) for each cylinder by the fuel injection device, so that the air-fuel mixture is self-ignited in each combustion chamber.
  • An expansion stroke accompanying combustion is performed.
  • the collecting path 26 extends to the funnel 5, and a post-processing device 27 that mainly purifies exhaust gas is provided in the middle of the collecting path 26.
  • the exhaust gases sent from the plurality of power generation engines 12 to the exhaust passages 25 are collected in the collecting passage 26 and released to the outside of the ship 1 via the post-processing device 27. Will be.
  • Each exhaust passage 25 is provided with an air-operated opening / closing valve 28 as an opening / closing member for opening / closing it.
  • Each on-off valve 28 is opened and closed according to the state of the corresponding power generation engine 12. That is, the open / close valve 28 for the power generation engine 12 being driven is opened, and the open / close valve 28 corresponding to the stopped power generation engine 12 is closed. For this reason, it is possible to easily and reliably prevent the exhaust gas from flowing backward from the collecting path 26 toward the stopped power generation engine 12.
  • bypass path 29 is connected.
  • the outlet side of the bypass path 29 is connected to the rear portion of the post-processing device 27, specifically, to the downstream side of the NOx catalyst 62 and the slip processing catalyst 63 described later.
  • a gas-operated collective switching valve 30 is provided as a path switching member for opening and closing the part of the collective path 26 downstream of the branch part to the bypass path 29 (between the branch part and the post-processing device 27). Is provided. Further, a gas-operated bypass side switching valve 31 as a path switching member is provided on the inlet side of the bypass path 29.
  • These switching valves 30 and 31 are for selecting a path through which the exhaust gas passes, and have a relationship that when one is opened, the other is closed.
  • the collecting side switching valve 30 In a state where the collecting side switching valve 30 is opened and the bypass side switching valve 31 is closed, the exhaust gas collected in the collecting path 26 passes through the NOx catalyst 62 and the slip processing catalyst 63 in the aftertreatment device 27 and is purified. After being processed, it is discharged out of the ship 1.
  • the bypass side switching valve 31 is opened and the collecting side switching valve 30 is closed, the exhaust gas collected in the collecting path 26 is purified by bypassing the NOx catalyst 62 and the slip processing catalyst 63 in the aftertreatment device 27. It is discharged out of the ship 1 without processing.
  • each valve 28, 30, 31 is a gas-operated type, and each drive unit is connected to a gas trunk line 33 extending from a gas supply source 32 via a gas branch line 34.
  • the gas supply source 32 of the embodiment is for supplying air (which may be nitrogen gas) as compressed gas for operating the valves 28, 30 and 31.
  • a gate valve 35 and a pressure reducing valve 36 are provided in the middle of each gas branch line 34 in order from the upstream side.
  • the outlet side of the gas trunk line 33 is connected to a front part of the post-processing device 27, specifically, to a squirting nozzle 37 as a squirting part provided at a portion upstream of the NOx catalyst 62 and the slip processing catalyst 63 described later. It is connected.
  • the jet nozzle 37 blows the compressed gas from the gas supply source 32 toward the NOx catalyst 62 and the slip treatment catalyst 63, and the action of the jet nozzle 37 accumulates in the post-treatment device 27 over a long period of use. It becomes possible to forcibly remove dust.
  • a gate valve 38, a pressure reducing valve 39, an air filter 40, a reducer 41, and a squirting electromagnetic valve 42 are arranged between the most downstream air branch pipe 34 and the squirting nozzle 37 in the gas trunk line 33 in order from the upstream side. Is provided.
  • the fusible solenoid valve 42 is electrically connected to a controller 55 of a reducing agent supply device 43 described later, and is configured to open and close based on control information from the controller 55.
  • the reducing agent supply device 43 is for supplying a reducing agent for NOx reduction to the exhaust gas in the collecting path 26, and includes a reducing agent supply passage 44 and a reducing agent control panel 45.
  • One end side of the reducing agent supply passage 44 is connected to a urea water tank 46 for storing a urea aqueous solution (hereinafter referred to as urea water) as a reducing agent, while the other end side is switched to the bypass side in the collective path 26.
  • urea water injection nozzle 47 as a reducing agent supply unit provided between the valve 31 and the post-processing device 27.
  • a urea water inlet valve 48, a reducer 49, a feed pump 50, a urea water filter 51, a urea water flow meter 52, an electromagnetic solenoid valve 53 for injection, and the like are provided in this order from the upstream side.
  • the feed pump 50 sucks up urea water in the urea water tank 46 and discharges it toward the urea water injection nozzle 47.
  • An electric motor 54 is connected to the feed pump 50.
  • the urea water supply amount from the feed pump 50 is adjusted by adjusting the rotational drive amount of the electric motor 54 based on control information from the controller 55 described later via the inverter 56.
  • the injection solenoid valve 53 is electrically connected to a controller 55 described later, and is configured to open and close based on control information from the controller 55.
  • the reducing agent control panel 45 includes a controller 55 as a control means, an inverter 56, a temperature controller 57, and a pressure sensor 58 as a clogging detection means for detecting a clogged state of the post-processing device 27.
  • the controller 55 mainly performs a reducing agent adjustment control to operate the feed pump 50 and the injection electromagnetic valve 53 so that an appropriate amount of urea water corresponding to the NOx concentration in the exhaust gas is supplied to the collecting path 26. To do.
  • the controller 55 includes a CPU for executing various arithmetic processes and controls, a ROM for storing control programs and data, a RAM for temporarily storing control programs and data, and an input / output It has an interface.
  • the controller 55 is electrically connected to the electric motor 54 via the inverter 56, while the temperature sensor 59 for detecting the exhaust gas temperature in the collective path 26 is electrically connected via the temperature regulator 57.
  • the controller 55 includes a power transducer 15 of the generator control panel 14, a fuel flow meter 20, a urea water flow meter 52, a pressure sensor 58, a urea water amount sensor 60 for detecting a urea water storage amount, a fumarole electromagnetic valve 42, and
  • the injection solenoid valve 53 is also electrically connected.
  • the pressure sensor 58 as clogging detection means is provided at the front portion of the post-processing device 27, specifically, at the upstream side of the NOx catalyst 62 and the slip processing catalyst 63, which will be described later, in the same manner as the above-described nozzle 35. ing.
  • the pressure (reference pressure value) on the upstream side of the NOx catalyst 62 in a new state in which dust is not accumulated in the post-processing device 27 is stored in advance in the ROM of the controller 55 and the like at the same measurement location.
  • the current pressure is detected by the pressure sensor 58, a pressure difference between the reference pressure value and the detected value of the pressure sensor 58 is obtained, and the amount of dust accumulated in the post-processing device 27 is converted based on the pressure difference.
  • the jet solenoid valve 42 When the pressure difference becomes equal to or larger than the set value, the jet solenoid valve 42 is opened by a command from the controller 55, compressed gas is sent from the gas supply source 32 to the jet nozzle 37, and the NOx catalyst 62 and slip are sent from the jet nozzle 37. The compressed gas is blown toward the processing catalyst 63.
  • pressure sensors may be arranged on the upstream and downstream sides of the collecting path 26 with the post-processing device 27 interposed therebetween, and the dust accumulation amount of the post-processing device 27 may be converted from the difference between the detected values.
  • the temperature sensor 59 for detecting the exhaust gas temperature in the collecting path 26 is provided between the urea water injection nozzle 47 and the post-processing device 27 in the collecting path 26.
  • the injection solenoid valve 53 is opened by a command from the controller 55, and the urea pump is driven from the urea water tank 46 by driving the feed pump 50.
  • Urea water is sent to the water injection nozzle 47, and urea water is injected from the urea water injection nozzle 47 into the collecting path 26.
  • the urea water amount sensor 60 for detecting the urea water storage amount is a float type sensor and is disposed in the urea water tank 46. In this case, the urea water storage amount in the urea water tank 46 is detected based on the change in the vertical height position of the urea water amount sensor 60.
  • the controller 55 is configured to adjust the amount of urea water supplied from the feed pump 50 by adjusting the rotational drive amount of the electric motor 54 via the inverter 56 based on the generated power amount detected by the power transducer 15.
  • the controller 55 is configured to adjust the amount of urea water supplied from the feed pump 50 by adjusting the rotational drive amount of the electric motor 54 via the inverter 56 based on the generated power amount detected by the power transducer 15.
  • the urea water supply amount (reducing agent supply amount) necessary for NOx reduction is proportional to the total power generation amount, that is, the NOx concentration in the exhaust gas.
  • the controller 55 for example, ROM
  • the controller 55 for example, ROM
  • the controller 55 obtains the urea water supply amount necessary for the reduction of NOx from the total amount of generated power detected by the power transducer 15 and the map or function table stored in advance in the controller 55, and obtains the obtained amount.
  • the electric motor 54 is rotationally driven to adjust the operation amount of the feed pump 50 so as to inject the supplied amount of urea water from the urea water injection nozzle 47 within the appropriate time.
  • the power transducer 15 of the embodiment corresponds to NOx detection means. That is, the power transducer 15 detects the total amount of power generated by the group of generators 13 and indirectly determines the NOx concentration in the exhaust gas based on the detection result of the power transducer 15.
  • the NOx detection means is not limited to the power transducer 15 and may be one that detects the output of each power generation engine 12 or may be one that detects the load of each power generation engine 12 from the fuel injection amount. Alternatively, the NOx concentration in the exhaust gas may be directly detected.
  • the post-treatment device 27 was supplied in excess from a NOx catalyst 62 for promoting the reduction of NOx in the exhaust gas in order from the upstream side in the post-treatment casing 61 made of a heat-resistant metal material formed in a substantially cylindrical shape.
  • the slip treatment catalyst 63 that promotes the oxidation treatment of the reducing agent (in the embodiment, ammonia after hydrolysis) and the silencer 64 that attenuates the exhaust sound of the exhaust gas are accommodated in series.
  • Each of the catalysts 62 and 63 has a honeycomb structure composed of a large number of cells partitioned by porous (filterable) partition walls, and has a catalytic metal such as alumina, zirconia, vanadia / titania, or zeolite. is doing.
  • the NOx catalyst 62 uses the ammonia produced by the hydrolysis of the urea water from the urea water injection nozzle 47 as a reducing agent to selectively reduce NOx in the exhaust gas, whereby the exhaust gas sent into the aftertreatment device 27. Is to purify.
  • the slip treatment catalyst 63 oxidizes unreacted (surplus) ammonia flowing out of the NOx catalyst 62 to harmless nitrogen.
  • the silencer 64 is formed on the rear side of the post-processing casing 61.
  • the rear side of the post-processing casing 61 is closed by two cover plates 65 and 66, and a substantially cylindrical discharge pipe 67 passes through both the cover plates 65 and 66.
  • the outlet side of the discharge pipe 67 communicates with the outlet of the post-processing casing 61.
  • the front and rear cover plates 65, 66 of the discharge pipe 67 are closed by a closing plate 68, and a plurality of communication holes 69, 70 are formed in the peripheral wall portions on both sides of the discharge pipe 67 with the closing plate 68 interposed therebetween. Is formed.
  • Between the lid plates 65 and 66 in the post-processing casing 61 is a resonance chamber 71 that communicates with the inside of the discharge pipe 67 via a plurality of communication holes 69 and 70.
  • the exhaust gas that has entered the upstream side of the discharge pipe 67 passes through the downstream side of the discharge pipe 67 via the upstream side communication hole 69, the resonance chamber 71, and the downstream side communication hole 70, and is outside the post-processing casing 61. Will be released.
  • the outlet side of the bypass path 29 is connected between the slip treatment catalyst 63 and the front lid plate 65 in the post-treatment casing 61. For this reason, as shown in FIG. 6A, when the collecting side switching valve 30 is opened and the bypass side switching valve 31 is closed, the exhaust gas collected in the collecting path 26 becomes the NOx catalyst 62 and the slip treatment catalyst 63. It goes through the purification process. The exhaust gas after the purification treatment enters the downstream side of the exhaust pipe 67 from the upstream side of the exhaust pipe 67 via the upstream communication hole 69, the resonance chamber 71, and the downstream communication hole 70. It is discharged out of the processing casing 61 and out of the ship 1.
  • the exhaust gas collected in the collecting path 26 passes through the NOx catalyst 62 and the slip treatment catalyst 63. It enters the upstream side of the discharge pipe 67 without detouring and purifying. Then, the exhaust gas passes through the downstream side of the discharge pipe 67 via the upstream side communication hole 69, the resonance chamber 71, and the downstream side communication hole 70, and is discharged outside the post-processing casing 61 and thus outside the ship 1.
  • the exhaust gas purification process is required by switching the open / close state of both switching valves 30 and 31 (for example, while navigating within the regulated sea area), and when the purification process is not necessary (for example, navigating outside the regulated sea area). In the middle), the route through which the exhaust gas passes can be easily selected, and the exhaust gas can be processed efficiently.
  • each power generation engine 12 merges into one collective path 26, so that the exhaust structure when a plurality of power generation engines 12 are provided can be simplified.
  • a urea water injection nozzle 47 and a NOx catalyst 62 as a reducing agent supply unit are arranged in order from the upstream side in the collecting path 26, and exhaust gas is extracted from the total amount of generated power detected by the power transducer 15. Since the NOx concentration in the gas, and hence the urea water supply amount (reducing agent supply amount) necessary for NOx reduction, is grasped, an amount of urea water corresponding to the NOx concentration in the exhaust gas can be supplied to the collecting path 26.
  • NOx in the exhaust gas can be efficiently decomposed into nitrogen and water by the action of the NOx catalyst 62 in the aftertreatment device 27. Further, since urea water in an amount corresponding to the NOx concentration in the exhaust gas is supplied to the collecting path 26, ammonia slip that releases unreacted (excess amount) ammonia to the outside can be suppressed.
  • Each exhaust passage 25 is provided with an air-operated opening / closing valve 28 as an opening / closing member for opening / closing the exhaust passage 25, so that the corresponding opening / closing valve 28 is opened / closed according to the state of each power generation engine 12. Further, it is possible to easily and reliably prevent the exhaust gas from flowing backward from the collective path 26 toward the stopped power generation engine 12.
  • a blast nozzle 37 is provided as a squirting section that ejects compressed gas from the gas supply source 32 toward the NOx catalyst 62.
  • the action of the blow nozzle 37 can forcibly remove the dust accumulated in the NOx catalyst 62 over a long period of use.
  • a slip treatment catalyst 63 that promotes the oxidation treatment of the extra supplied reducing agent (in the embodiment, ammonia after hydrolysis) is disposed downstream of the NOx catalyst 62. Therefore, the excess reducing agent (ammonia) that is about to pass through the NOx catalyst 62 without being reacted can be rendered harmless by oxidizing it with nitrogen, and the possibility of ammonia remaining in the exhaust gas can be reliably avoided.
  • the NOx catalyst 62 and the slip treatment catalyst 63 can be packaged, and the downstream side of the exhaust structure can be configured compactly.
  • the power transducer 15 as the NOx detecting means detects the total amount of power generated by the generator 13 group, and the NOx concentration in the exhaust gas is indirectly obtained based on the detection result of the power transducer 15. Therefore, there is no need for a dedicated sensor for NOx concentration detection, and the configuration can be simplified and the manufacturing cost can be reduced.
  • a bypass path 29 for bypassing the NOx catalyst 62 is branched and connected between a portion where the exhaust path 25 in the collecting path 26 joins with the downstream exhaust path 25 and the aftertreatment device 27.
  • 26 are provided with switching valves 30 and 31 as path switching members for opening and closing the paths 26 and 29 on the downstream side of the branching portion to the bypass path 29 and the inlet side of the bypass path 29.
  • the post-treatment casing 61 that accommodates the NOx catalyst 62 includes a silencer 64 for attenuating exhaust noise of the exhaust gas, the NOx catalyst 62, the slip treatment catalyst 63, and the silencer 64 are treated as a single post-treatment.
  • the casing 61 can be packaged, and the downstream side of the exhaust structure can be configured compactly.
  • the outlet side of the bypass path 29 is connected to the silencer 64 of the post-processing casing 61, the exhaust gas purified by passing through the NOx catalyst 62 and the slip processing catalyst 63, the NOx catalyst 62, and the slip
  • the exhaust gas that bypasses the processing catalyst 63 and passes through the bypass path 29 can be sent to the same silencer 64. Therefore, the exhaust structure can be simplified and the manufacturing cost can be reduced.

Abstract

An exhaust gas purifying device is provided with a NOx catalyst (62) for promoting reduction of NOx in exhaust gas from electric power generating engines (12), an aqueous urea solution discharge nozzle (47) for supplying a NOx reducing aqueous urea solution to the exhaust gas, and an electric power transducer (15).  Exhaust routes (25) of the electric power generating engines (12) are merged into a single collecting route (26).  The collecting route (26) is provided with the aqueous urea solution discharge nozzle (47) and the NOx catalyst (62) which are arranged in that order from the upstream side.  A bypass route (29) is connected in a branched manner between a post-processing device (27) and that portion of the collecting route (26) at which the collecting route (26) joins the downstream-most exhaust route (25).  Switching valves (30, 31) are provided to the entrance side of the bypass route (29) and to the downstream side of that portion of the collecting route (26) at which the collecting route (26) is branched to the bypass route (29).

Description

排気ガス浄化装置Exhaust gas purification device
 本願発明は、ディーゼルエンジンのような内燃機関(エンジン)において、排気ガスを浄化処理するための排気ガス浄化装置に関するものである。 The present invention relates to an exhaust gas purification device for purifying exhaust gas in an internal combustion engine (engine) such as a diesel engine.
 従来、例えばタンカーや輸送船等の船舶においては、各種補機、荷役装置、照明、空調その他の機器類の消費する電力量が膨大であり、これらの電気系統に電力を供給するために、ディーゼルエンジンと、当該ディーゼルエンジンの駆動にて発電する発電機とを組み合わせてなるディーゼル発電機を複数備えている(例えば特許文献1等参照)。 Conventionally, in a ship such as a tanker or a transport ship, the amount of electric power consumed by various auxiliary machines, cargo handling devices, lighting, air conditioning and other equipment is enormous. In order to supply electric power to these electric systems, diesel A plurality of diesel generators are provided that are a combination of an engine and a generator that generates electricity by driving the diesel engine (see, for example, Patent Document 1).
 ディーゼルエンジンは、内燃機関の中で最もエネルギー効率の高いものの1つであることが知られており、単位出力当りの排気ガスに含まれる二酸化炭素量が少ない。しかも、例えば重油のような低質の燃料を使用できるため経済的にも優れるという利点がある。 Diesel engine is known to be one of the most energy efficient among internal combustion engines, and the amount of carbon dioxide contained in exhaust gas per unit output is small. In addition, since a low-quality fuel such as heavy oil can be used, there is an advantage that it is economically excellent.
特開2006-341742号公報JP 2006-341742 A
 ところで、ディーゼルエンジンの排気ガス中には、二酸化炭素以外に、窒素酸化物、硫黄酸化物及び粒子状物質等も多く含まれている。これらは、主に燃料である重油に由来して生成されるものであり、環境保全の妨げになる有害物質である。特に、窒素酸化物(以下、NOxという)は人体に有害で且つ強い酸性を呈するものであり、酸性雨の原因とも考えられている。 By the way, the exhaust gas of a diesel engine contains a large amount of nitrogen oxides, sulfur oxides and particulate matter in addition to carbon dioxide. These are mainly derived from heavy oil, which is a fuel, and are harmful substances that hinder environmental conservation. In particular, nitrogen oxides (hereinafter referred to as NOx) are harmful to human bodies and exhibit strong acidity, and are considered to be the cause of acid rain.
 従って、例えば船舶のように、複数台のディーゼル発電機(ディーゼルエンジン)を駆動させる機械においては、NOxの排出量が極めて多く、地球環境に与える負担が大きいと解される。地球環境に配慮すれば、排気ガス中のNOxをできるだけ取り除くことが必要であり、このためには、簡単な構成で且つ効率よく、NOxを還元処理して無害化することが要請される。 Therefore, for example, in a machine that drives a plurality of diesel generators (diesel engines) such as a ship, it is understood that the amount of NOx emission is extremely large and the burden on the global environment is large. In consideration of the global environment, it is necessary to remove NOx in the exhaust gas as much as possible. For this purpose, it is required to reduce NOx and make it harmless with a simple configuration and efficiently.
 本願発明は、このような要請に応えることを目的とするものである。 The present invention is intended to meet such a demand.
 請求項1の発明に係る排気ガス浄化装置は、複数台のエンジンからの排気ガス中にあるNOxの還元を促すNOx触媒と、前記排気ガスにNOx還元用の還元剤を供給する還元剤供給部と、前記排気ガス中のNOx濃度を検出するNOx検出手段とを備えており、前記各エンジンの排気経路は1つの集合経路に合流しており、前記集合経路には、上流側から順に、前記還元剤供給部と前記NOx触媒とが配置されており、前記集合経路のうち最下流の排気経路との合流部分と前記NOx触媒との間には、前記NOx触媒を迂回するためのバイパス経路が分岐接続されており、前記集合経路のうち前記バイパス経路への分岐部分より下流側と、前記バイパス経路の入口側とには、前記各経路を開閉する経路切換部材が設けられているというものである。 An exhaust gas purification apparatus according to claim 1 is a NOx catalyst that promotes reduction of NOx in exhaust gas from a plurality of engines, and a reducing agent supply unit that supplies a reducing agent for NOx reduction to the exhaust gas. And NOx detecting means for detecting the NOx concentration in the exhaust gas, and the exhaust paths of the engines merge into one collective path, and the collective path in order from the upstream side A reducing agent supply unit and the NOx catalyst are arranged, and a bypass path for bypassing the NOx catalyst is provided between the joining part of the most downstream exhaust path in the collecting path and the NOx catalyst. Branch connection is made, and a path switching member that opens and closes each path is provided on the downstream side of the branch path to the bypass path in the collective path and on the inlet side of the bypass path. It is.
 請求項2の発明は、請求項1に記載した排気ガス浄化装置において、前記NOx検出手段の検出情報に基づいて前記還元剤供給部からの還元剤供給量を調節するように構成されているというものである。 According to a second aspect of the present invention, the exhaust gas purifying apparatus according to the first aspect is configured to adjust a reducing agent supply amount from the reducing agent supply unit based on detection information of the NOx detecting means. Is.
 請求項3の発明は、請求項1又は2に記載した排気ガス浄化装置において、前記各排気経路には、これを開閉するための開閉部材が設けられているというものである。 According to a third aspect of the present invention, in the exhaust gas purifying apparatus according to the first or second aspect, each exhaust path is provided with an opening / closing member for opening / closing the exhaust path.
 請求項4の発明は、請求項1に記載した排気ガス浄化装置において、前記NOx触媒を収容するケーシングには、排気ガスの排気音を減衰させるための消音器を備えているというものである。 According to a fourth aspect of the present invention, in the exhaust gas purifying apparatus according to the first aspect, the casing housing the NOx catalyst is provided with a silencer for attenuating exhaust noise of the exhaust gas.
 請求項5の発明は、請求項4に記載した排気ガス浄化装置において、前記バイパス経路の出口側は前記ケーシングの前記消音器に連通接続されているというものである。 According to a fifth aspect of the present invention, in the exhaust gas purifying apparatus according to the fourth aspect, the outlet side of the bypass path is connected in communication with the silencer of the casing.
 請求項6の発明は、請求項2に記載した排気ガス浄化装置において、前記NOx触媒を収容するケーシングのうち前記NOx触媒より上流側には、前記NOx触媒に向けて気体供給源からの圧縮気体を噴出する噴気部が設けられているというものである。 According to a sixth aspect of the present invention, in the exhaust gas purifying apparatus according to the second aspect, a compressed gas from a gas supply source toward the NOx catalyst is disposed upstream of the NOx catalyst in a casing housing the NOx catalyst. There is a fumarole part for ejecting the gas.
 請求項7の発明は、請求項2に記載した排気ガス浄化装置において、前記NOx触媒を収容するケーシング内には、前記NOx触媒より下流側に、余分に供給された還元剤の酸化処理を促すスリップ処理触媒が配置されているというものである。 According to a seventh aspect of the present invention, in the exhaust gas purifying apparatus according to the second aspect, the casing containing the NOx catalyst is urged to oxidize excess reducing agent supplied downstream from the NOx catalyst. A slip treatment catalyst is arranged.
 請求項8の発明は、請求項2に記載した排気ガス浄化装置において、前記NOx検出手段は前記各エンジンの駆動にて発電する発電機の電力量を検出し、当該検出結果に基づき排気ガス中のNOx濃度を間接的に求めるように構成されているというものである。 According to an eighth aspect of the present invention, in the exhaust gas purifying apparatus according to the second aspect, the NOx detecting means detects an amount of electric power of a generator that generates electric power by driving each engine, and in the exhaust gas based on the detection result. It is configured to indirectly obtain the NOx concentration.
 本願発明によると、複数台のエンジンからの排気ガス中にあるNOxの還元を促すNOx触媒と、前記排気ガスにNOx還元用の還元剤を供給する還元剤供給部と、前記排気ガス中のNOx濃度を検出するNOx検出手段とを備えており、前記各エンジンの排気経路は1つの集合経路に合流しているので、エンジンを複数台有する場合の排気構造を簡素化できる。 According to the present invention, a NOx catalyst that promotes reduction of NOx in exhaust gas from a plurality of engines, a reducing agent supply unit that supplies a reducing agent for NOx reduction to the exhaust gas, and NOx in the exhaust gas NOx detection means for detecting the concentration, and the exhaust paths of the engines merge into one collective path, so that the exhaust structure in the case of having a plurality of engines can be simplified.
 また、前記集合経路には、上流側から順に、前記還元剤供給部と前記NOx触媒とが配置されており、前記集合経路のうち最下流の排気経路との合流部分と前記NOx触媒との間には、前記NOx触媒を迂回するためのバイパス経路が分岐接続されており、前記集合経路のうち前記バイパス経路への分岐部分より下流側と、前記バイパス経路の入口側とには、前記各経路を開閉する経路切換部材が設けられているから、前記両経路切換部材の開閉状態を切り換えることによって、排気ガスの浄化処理が必要な場合(例えば規制海域内での航行中)と、浄化処理が不要な場合(例えば規制海域外での航行中)とにおいて、排気ガスの通過する経路を簡単に選択できる。従って、排気ガスの効率よい処理が可能になるという効果を奏する。 In addition, the reducing agent supply unit and the NOx catalyst are arranged in order from the upstream side in the collecting path, and between the joining part of the collecting path with the most downstream exhaust path and the NOx catalyst. The bypass path for bypassing the NOx catalyst is branched and connected to the downstream side of the branch path to the bypass path and the inlet side of the bypass path. When the exhaust gas purification process is required by switching the open / closed state of both the path switch members (for example, during navigation in a regulated sea area), the purification process is performed. When unnecessary (for example, during navigation outside the regulated sea area), the route through which the exhaust gas passes can be easily selected. Therefore, there is an effect that the exhaust gas can be efficiently processed.
 請求項2の発明によると、前記NOx検出手段の検出情報に基づいて前記還元剤供給部からの還元剤供給量を調節するように構成されているので、排気ガス中のNOx濃度に見合った量の還元剤を前記集合経路に供給できる。従って、前記NOx触媒の作用にて、排気ガス中のNOxを窒素と水とに効率よく分解できる。 According to the invention of claim 2, since it is configured to adjust the reducing agent supply amount from the reducing agent supply unit based on the detection information of the NOx detecting means, an amount commensurate with the NOx concentration in the exhaust gas. The reducing agent can be supplied to the collecting route. Therefore, NOx in the exhaust gas can be efficiently decomposed into nitrogen and water by the action of the NOx catalyst.
 請求項3の発明によると、前記各排気経路には、これを開閉するための開閉部材が設けられているので、前記各エンジンの状態に応じて、それぞれ対応する開閉部材を開閉することにより、前記集合経路から停止中のエンジンに向けて排気ガスが逆流するのを簡単且つ確実に防止できる。 According to the invention of claim 3, since each exhaust path is provided with an opening and closing member for opening and closing the exhaust path, by opening and closing the corresponding opening and closing member according to the state of each engine, It is possible to easily and reliably prevent the exhaust gas from flowing backward from the collecting path toward the stopped engine.
 請求項4の発明によると、前記NOx触媒を収容するケーシングには、排気ガスの排気音を減衰させるための消音器を備えているから、前記NOx触媒及び前記消音器を単一の前記ケーシングにパッケージ化でき、排気構造の下流側をコンパクトに構成できる。 According to the invention of claim 4, the casing containing the NOx catalyst is equipped with a silencer for attenuating exhaust noise of the exhaust gas, so the NOx catalyst and the silencer are combined in a single casing. It can be packaged, and the downstream side of the exhaust structure can be made compact.
 請求項5の発明によると、前記バイパス経路の出口側は前記ケーシングの前記消音器に連通接続されているから、前記NOx触媒を通過して浄化された排気ガスと、前記NOx触媒を迂回して前記バイパス経路を経由した排気ガスとを、同じ前記消音器に送り込めることになる。従って、排気構造を簡単化して製造コストの低減に寄与できるという効果を奏する。 According to the invention of claim 5, since the outlet side of the bypass path is connected to the silencer of the casing, the exhaust gas purified by passing through the NOx catalyst and the NOx catalyst are bypassed. The exhaust gas passing through the bypass path can be sent to the same silencer. Therefore, the exhaust structure can be simplified and the manufacturing cost can be reduced.
 請求項6の発明によると、前記NOx触媒を収容するケーシングのうち前記NOx触媒より上流側には、前記NOx触媒に向けて気体供給源からの圧縮気体を噴出する噴気部が設けられているから、前記噴気部の作用により、長期間の使用で前記NOx触媒内に溜まった煤塵を強制的に除去できる。 According to the sixth aspect of the present invention, the casing containing the NOx catalyst is provided with an squirting section that ejects compressed gas from a gas supply source toward the NOx catalyst on the upstream side of the NOx catalyst. By the action of the squirting part, the dust accumulated in the NOx catalyst can be forcibly removed after a long period of use.
 請求項7の発明によると、前記NOx触媒を収容するケーシング内には、前記NOx触媒より上流側に、余分に供給された還元剤の酸化処理を促すスリップ処理触媒が配置されているから、前記NOx触媒を未反応のまま通過しようとする余剰の還元剤がそのまま外部に漏れ出すのを防止できる。また、前記NOx触媒と前記スリップ処理触媒とをパッケージ化するので、排気構造の下流側をコンパクトに構成できる。 According to the seventh aspect of the present invention, since the slip treatment catalyst that promotes the oxidation treatment of the excessively supplied reducing agent is disposed upstream of the NOx catalyst in the casing that houses the NOx catalyst. It is possible to prevent the excess reducing agent that tries to pass through the NOx catalyst unreacted from leaking out as it is. In addition, since the NOx catalyst and the slip treatment catalyst are packaged, the downstream side of the exhaust structure can be made compact.
 請求項8の発明によると、前記NOx検出手段は前記各エンジンの駆動にて発電する発電機の発電量を検出し、当該検出結果に基づき排気ガス中のNOx濃度を間接的に求めるように構成されているから、NOx濃度検出専用のセンサが要らず、構成を簡素化して製造コストの低減に寄与できる。 According to an eighth aspect of the present invention, the NOx detecting means is configured to detect a power generation amount of a power generator that generates power by driving each engine, and indirectly determine the NOx concentration in the exhaust gas based on the detection result. Therefore, a sensor dedicated to NOx concentration detection is not required, and the configuration can be simplified and the manufacturing cost can be reduced.
船舶の全体側面図である。It is the whole ship side view. 発電装置の概略系統図である。It is a schematic system diagram of a power generator. 発電装置における燃料系統の説明図である。It is explanatory drawing of the fuel system | strain in an electric power generating apparatus. 発電装置の排気系統と還元剤供給装置との説明図である。It is explanatory drawing of the exhaust system of a generator, and a reducing agent supply apparatus. 触媒装置の側面断面図である。It is side surface sectional drawing of a catalyst apparatus. 触媒装置への排気ガスの流れを説明する側面断面図である。It is side surface sectional drawing explaining the flow of the exhaust gas to a catalyst apparatus.
 以下に、本願発明を具体化した実施形態を、船舶に搭載された複数台のディーゼル発電機に適用した場合の図面(図1~図6)に基づいて説明する。 Hereinafter, an embodiment embodying the present invention will be described with reference to drawings (FIGS. 1 to 6) in a case where the present invention is applied to a plurality of diesel generators mounted on a ship.
 (1).船舶の概要
 まず初めに、図1を参照しながら、船舶1の概要について説明する。
(1). Outline of Ship First, an outline of the ship 1 will be described with reference to FIG.
 実施形態の船舶1は、船体2と、船体2におけるデッキ3上の後部に設けられたキャビン4と、キャビン4の後方に配置されたファンネル5(煙突)と、船体2の後方下部に設けられたプロペラ6及び舵7とを備えている。船体2内の後部には、プロペラ6の駆動源である主エンジン8(実施形態ではディーゼルエンジン)及び減速機9と、船舶2内の電気系統に電力を供給するための発電装置10とが設置されている。主エンジン8から減速機9を経由した回転動力にて、プロペラ6が回転駆動することになる。 The ship 1 according to the embodiment is provided in a hull 2, a cabin 4 provided in a rear part on the deck 3 in the hull 2, a funnel 5 (chimney) arranged behind the cabin 4, and a lower rear part of the hull 2. The propeller 6 and the rudder 7 are provided. Installed at the rear of the hull 2 are a main engine 8 (diesel engine in the embodiment) and a speed reducer 9 which are driving sources of the propeller 6, and a power generator 10 for supplying power to the electrical system in the ship 2. Has been. The propeller 6 is rotationally driven by the rotational power from the main engine 8 via the speed reducer 9.
 (2).発電装置の構造
 次に、図2を参照しながら、発電装置10の構造について説明する。
(2). Next, the structure of the power generation device 10 will be described with reference to FIG.
 発電装置10は、発電用ディーゼルエンジン12(以下、発電用エンジンという)と、発電用エンジン12の駆動にて発電する発電機13とを組み合わせたディーゼル発電機11を複数台(実施形態では3台)備えたものである。これらディーゼル発電機11は、船舶2内の必要電力量に対応して効率的に稼働するように構成されている。例えば大量の電力を消費する航行時には、全てのディーゼル発電機11を稼働させ、比較的電力消費の少ない停泊時には、任意の台数のディーゼル発電機11を稼働させる。 The power generation apparatus 10 includes a plurality of diesel generators 11 (three in the embodiment) that combine a power generation diesel engine 12 (hereinafter referred to as a power generation engine) and a power generator 13 that generates power by driving the power generation engine 12. ). These diesel generators 11 are configured to operate efficiently in accordance with the required power amount in the ship 2. For example, all the diesel generators 11 are operated at the time of navigation that consumes a large amount of power, and an arbitrary number of diesel generators 11 are operated at the time of berthing where the power consumption is relatively low.
 各発電機13の駆動にて生じた発電電力は船舶2内の電気系統に供給される。各発電機13は、発電機制御盤14内の電力トランスデューサ15に電気的に接続されている。電力トランスデューサ15は各発電機13による発電電力を検出するためのものである。電力トランスデューサ15の検出情報に基づき発電電力が発電機制御盤14にて予め設定された目標電力と一致するように、各発電用エンジン12の駆動は制御される。電力トランスデューサ15は、後述する還元剤供給装置43のコントローラ55にも電気的に接続されている。 The generated power generated by driving each generator 13 is supplied to the electrical system in the ship 2. Each generator 13 is electrically connected to a power transducer 15 in the generator control panel 14. The power transducer 15 is for detecting the power generated by each generator 13. Based on the detection information of the power transducer 15, the drive of each power generation engine 12 is controlled so that the generated power matches the target power set in advance on the generator control panel 14. The power transducer 15 is also electrically connected to a controller 55 of a reducing agent supply device 43 described later.
 (3).発電装置の燃料系統
 次に、図2及び図3を参照しながら、発電装置10の燃料系統について説明する。
(3). Next, the fuel system of the power generation apparatus 10 will be described with reference to FIGS. 2 and 3.
 船体2内には、各発電用エンジン12の燃料(重油)を貯留する燃料タンク16が設置されている。燃料タンク16には1本の供給管路17が接続されている。供給管路17の上流側には、燃料入口バルブ18と燃料フィルタ19と燃料流量計20とが設けられている。燃料流量計20は、後述する還元剤供給装置43のコントローラ55に電気的に接続されている。 A fuel tank 16 for storing fuel (heavy oil) of each power generation engine 12 is installed in the hull 2. One supply pipe 17 is connected to the fuel tank 16. A fuel inlet valve 18, a fuel filter 19, and a fuel flow meter 20 are provided on the upstream side of the supply pipeline 17. The fuel flow meter 20 is electrically connected to a controller 55 of a reducing agent supply device 43 described later.
 供給管路17のうち燃料流量計20より下流側からは、複数の送り管路21(実施形態では3本)が延びており、それぞれが対応する発電用エンジン12の燃料ポンプ16に接続されている。燃料ポンプ16に送られた燃料は、発電用エンジン12に設けられた燃料噴射装置(図示省略)にて、発電用エンジン12における気筒毎の燃焼室(図示省略)内に噴射されることになる。 A plurality of feed pipes 21 (three in the embodiment) extend from the downstream side of the fuel flow meter 20 in the supply pipe 17 and are connected to the fuel pump 16 of the corresponding power generation engine 12. Yes. The fuel sent to the fuel pump 16 is injected into a combustion chamber (not shown) for each cylinder in the power generation engine 12 by a fuel injection device (not shown) provided in the power generation engine 12. .
 各送り管路21の中途部にはリターンチャンバー22が設けられている。燃料噴射装置から発電用エンジン12外に延びる戻し管路23は、リターンチャンバー22を介して燃料タンク16に接続されている。従って、発電用エンジン12において未使用の余剰燃料は、戻し管路23を通じて燃料タンク16に戻されることになる。戻し管路23のうちリターンチャンバー22より下流側には逆止弁24が設けられている。 A return chamber 22 is provided in the middle of each feed line 21. A return line 23 extending from the fuel injection device to the outside of the power generation engine 12 is connected to the fuel tank 16 via a return chamber 22. Accordingly, unused surplus fuel in the power generation engine 12 is returned to the fuel tank 16 through the return line 23. A check valve 24 is provided downstream of the return chamber 22 in the return line 23.
 (4).発電装置の吸排気系統
 次に、図2及び図4を参照しながら、発電装置10の吸排気系統について説明する。
(4). Next, an intake / exhaust system of the power generation apparatus 10 will be described with reference to FIGS. 2 and 4.
 各発電用エンジン12には、空気取り込み用の吸気経路(図示省略)と排気ガス排出用の排気経路25とが接続されている。吸気経路を通じて取り込まれた空気は、発電用エンジン12の各気筒内(吸気行程の気筒内)に送られる。そして、各気筒の圧縮行程完了時に、燃料タンク16から吸い上げられた燃料を燃料噴射装置にて気筒毎の燃焼室(副室)内に圧送することにより、各燃焼室にて混合気の自己着火燃焼に伴う膨張行程が行われることになる。 Each power generation engine 12 is connected to an intake path (not shown) for air intake and an exhaust path 25 for exhaust gas discharge. The air taken in through the intake path is sent into each cylinder of the power generation engine 12 (inside the cylinder in the intake stroke). When the compression stroke of each cylinder is completed, the fuel sucked up from the fuel tank 16 is pumped into the combustion chamber (sub chamber) for each cylinder by the fuel injection device, so that the air-fuel mixture is self-ignited in each combustion chamber. An expansion stroke accompanying combustion is performed.
 各発電用エンジン12の排気経路25は、いずれも1本の集合経路26に合流している。このように、発電用エンジン12を複数台有する場合の排気構造が簡素化されている。集合経路26はファンネル5まで延びており、集合経路26の中途部には、主として排気ガスの浄化処理をする後処理装置27が設けられている。膨張行程後の排気行程において、複数台の発電用エンジン12から各排気経路25に送られた排気ガスは、集合経路26にてまとめられ、後処理装置27を経由して船舶1外に放出されることになる。 All the exhaust paths 25 of each power generation engine 12 merge into one collective path 26. Thus, the exhaust structure in the case of having a plurality of power generation engines 12 is simplified. The collecting path 26 extends to the funnel 5, and a post-processing device 27 that mainly purifies exhaust gas is provided in the middle of the collecting path 26. In the exhaust stroke after the expansion stroke, the exhaust gases sent from the plurality of power generation engines 12 to the exhaust passages 25 are collected in the collecting passage 26 and released to the outside of the ship 1 via the post-processing device 27. Will be.
 各排気経路25には、これを開閉する開閉部材として、空気作動式の開閉バルブ28が設けられている。各開閉バルブ28は、それぞれ対応する発電用エンジン12の状態に応じて開閉させる。すなわち、駆動中の発電用エンジン12に対する開閉バルブ28は開き、停止中の発電用エンジン12に対応する開閉バルブ28は閉じることになる。このため、集合経路26から停止中の発電用エンジン12に向けて排気ガスが逆流するのを簡単且つ確実に防止できる。 Each exhaust passage 25 is provided with an air-operated opening / closing valve 28 as an opening / closing member for opening / closing it. Each on-off valve 28 is opened and closed according to the state of the corresponding power generation engine 12. That is, the open / close valve 28 for the power generation engine 12 being driven is opened, and the open / close valve 28 corresponding to the stopped power generation engine 12 is closed. For this reason, it is possible to easily and reliably prevent the exhaust gas from flowing backward from the collecting path 26 toward the stopped power generation engine 12.
 集合経路26のうち最下流の排気経路25との合流部分と後処理装置27との間には、後処理装置27内のNOx触媒62及びスリップ処理触媒63(詳細は後述する)を迂回するためのバイパス経路29が接続されている。バイパス経路29の出口側は、後処理装置27の後部、具体的には、後述するNOx触媒62及びスリップ処理触媒63より下流側の部位に接続されている。 In order to bypass the NOx catalyst 62 and the slip treatment catalyst 63 (details will be described later) in the post-treatment device 27 between the joining path 26 and the post-treatment device 27 in the collecting passage 26. The bypass path 29 is connected. The outlet side of the bypass path 29 is connected to the rear portion of the post-processing device 27, specifically, to the downstream side of the NOx catalyst 62 and the slip processing catalyst 63 described later.
 集合経路26のうちバイパス経路29への分岐部分より下流側(分岐部分と後処理装置27との間)には、当該部分を開閉する経路切換部材として、気体作動式の集合側切換バルブ30が設けられている。また、バイパス経路29の入口側には、経路切換部材としての気体作動式のバイパス側切換バルブ31が設けられている。 A gas-operated collective switching valve 30 is provided as a path switching member for opening and closing the part of the collective path 26 downstream of the branch part to the bypass path 29 (between the branch part and the post-processing device 27). Is provided. Further, a gas-operated bypass side switching valve 31 as a path switching member is provided on the inlet side of the bypass path 29.
 これら切換バルブ30,31は排気ガスの通過する経路を選択するためのものであり、一方を開けば他方を閉じるという関係になっている。集合側切換バルブ30を開いてバイパス側切換バルブ31を閉じた状態では、集合経路26にてまとめられた排気ガスは、後処理装置27内のNOx触媒62及びスリップ処理触媒63を通過して浄化処理をされてから、船舶1外に放出される。バイパス側切換バルブ31を開いて集合側切換バルブ30を閉じた状態では、集合経路26にてまとめられた排気ガスは、後処理装置27内のNOx触媒62及びスリップ処理触媒63を迂回して浄化処理をすることなく、船舶1外に放出される。 These switching valves 30 and 31 are for selecting a path through which the exhaust gas passes, and have a relationship that when one is opened, the other is closed. In a state where the collecting side switching valve 30 is opened and the bypass side switching valve 31 is closed, the exhaust gas collected in the collecting path 26 passes through the NOx catalyst 62 and the slip processing catalyst 63 in the aftertreatment device 27 and is purified. After being processed, it is discharged out of the ship 1. In a state where the bypass side switching valve 31 is opened and the collecting side switching valve 30 is closed, the exhaust gas collected in the collecting path 26 is purified by bypassing the NOx catalyst 62 and the slip processing catalyst 63 in the aftertreatment device 27. It is discharged out of the ship 1 without processing.
 前述の通り、各バルブ28,30,31は気体作動式のものであり、それぞれの駆動部が気体枝管路34を介して気体供給源32から延びる気体幹管路33に接続されている。実施形態の気体供給源32は、バルブ28,30,31作動用の圧縮気体としての空気(窒素ガスでもよい)を供給するためのものである。各気体枝管路34の中途部には、上流側から順に、ゲートバルブ35と減圧バルブ36とが設けられている。 As described above, each valve 28, 30, 31 is a gas-operated type, and each drive unit is connected to a gas trunk line 33 extending from a gas supply source 32 via a gas branch line 34. The gas supply source 32 of the embodiment is for supplying air (which may be nitrogen gas) as compressed gas for operating the valves 28, 30 and 31. A gate valve 35 and a pressure reducing valve 36 are provided in the middle of each gas branch line 34 in order from the upstream side.
 気体幹管路33の出口側は、後処理装置27の前部、具体的には、後述するNOx触媒62及びスリップ処理触媒63より上流側の部位に設けられた噴気部としての噴気ノズル37に接続されている。噴気ノズル37は、気体供給源32からの圧縮気体をNOx触媒62及びスリップ処理触媒63に向けて吹き付けるものであり、当該噴気ノズル37の作用により、長期間の使用で後処理装置27内に溜まった煤塵を強制的に除去することが可能になる。 The outlet side of the gas trunk line 33 is connected to a front part of the post-processing device 27, specifically, to a squirting nozzle 37 as a squirting part provided at a portion upstream of the NOx catalyst 62 and the slip processing catalyst 63 described later. It is connected. The jet nozzle 37 blows the compressed gas from the gas supply source 32 toward the NOx catalyst 62 and the slip treatment catalyst 63, and the action of the jet nozzle 37 accumulates in the post-treatment device 27 over a long period of use. It becomes possible to forcibly remove dust.
 気体幹管路33のうち最下流の空気枝管路34と噴気ノズル37との間には、上流側から順に、ゲートバルブ38、減圧バルブ39、エアフィルタ40、レジューサ41及び噴気用電磁弁42が設けられている。噴気用電磁弁42は、後述する還元剤供給装置43のコントローラ55に電気的に接続されていて、コントローラ55からの制御情報に基づいて開閉作動するように構成されている。 A gate valve 38, a pressure reducing valve 39, an air filter 40, a reducer 41, and a squirting electromagnetic valve 42 are arranged between the most downstream air branch pipe 34 and the squirting nozzle 37 in the gas trunk line 33 in order from the upstream side. Is provided. The fusible solenoid valve 42 is electrically connected to a controller 55 of a reducing agent supply device 43 described later, and is configured to open and close based on control information from the controller 55.
 (5).還元剤供給装置の構造
 次に、図2及び図4を参照しながら、還元剤供給装置43の構造について説明する。
(5). Next, the structure of the reducing agent supply device 43 will be described with reference to FIGS. 2 and 4.
 還元剤供給装置43は、集合経路26内の排気ガスにNOx還元用の還元剤を供給するためのものであり、還元剤供給通路44と還元剤制御盤45とを備えている。還元剤供給通路44の一端側は、還元剤としての尿素水溶液(以下、尿素水という)を貯留する尿素水タンク46に接続されている一方、他端側は、集合経路26のうちバイパス側切換バルブ31と後処理装置27との間に設けられた還元剤供給部としての尿素水噴射ノズル47に接続されている。 The reducing agent supply device 43 is for supplying a reducing agent for NOx reduction to the exhaust gas in the collecting path 26, and includes a reducing agent supply passage 44 and a reducing agent control panel 45. One end side of the reducing agent supply passage 44 is connected to a urea water tank 46 for storing a urea aqueous solution (hereinafter referred to as urea water) as a reducing agent, while the other end side is switched to the bypass side in the collective path 26. It is connected to a urea water injection nozzle 47 as a reducing agent supply unit provided between the valve 31 and the post-processing device 27.
 還元剤供給通路44には、上流側から順に、尿素水入口バルブ48、レジューサ49、フィードポンプ50、尿素水フィルタ51、尿素水流量計52及び噴射用電磁弁53等が設けられている。フィードポンプ50は、尿素水タンク46内の尿素水を吸い上げて尿素水噴射ノズル47に向けて吐出するためのものである。フィードポンプ50には電動モータ54が連結されている。後述するコントローラ55からインバータ56を経由した制御情報に基づき電動モータ54の回転駆動量を調節することにより、フィードポンプ50からの尿素水供給量を調節する構成になっている。噴射用電磁弁53は後述するコントローラ55に電気的に接続されていて、コントローラ55からの制御情報に基づいて開閉作動するように構成されている。 In the reducing agent supply passage 44, a urea water inlet valve 48, a reducer 49, a feed pump 50, a urea water filter 51, a urea water flow meter 52, an electromagnetic solenoid valve 53 for injection, and the like are provided in this order from the upstream side. The feed pump 50 sucks up urea water in the urea water tank 46 and discharges it toward the urea water injection nozzle 47. An electric motor 54 is connected to the feed pump 50. The urea water supply amount from the feed pump 50 is adjusted by adjusting the rotational drive amount of the electric motor 54 based on control information from the controller 55 described later via the inverter 56. The injection solenoid valve 53 is electrically connected to a controller 55 described later, and is configured to open and close based on control information from the controller 55.
 還元剤制御盤45は、制御手段としてのコントローラ55と、インバータ56と、温度調節器57と、後処理装置27の詰り状態を検出する詰り検出手段としての圧力センサ58とを備えている。コントローラ55は主として、排気ガス中のNOx濃度に応じた適切な量の尿素水を集合経路26に供給するように、フィードポンプ50と噴射用電磁弁53とを作動させるという還元剤調節制御を実行するものである。 The reducing agent control panel 45 includes a controller 55 as a control means, an inverter 56, a temperature controller 57, and a pressure sensor 58 as a clogging detection means for detecting a clogged state of the post-processing device 27. The controller 55 mainly performs a reducing agent adjustment control to operate the feed pump 50 and the injection electromagnetic valve 53 so that an appropriate amount of urea water corresponding to the NOx concentration in the exhaust gas is supplied to the collecting path 26. To do.
 詳細は図示しないが、コントローラ55は、各種演算処理や制御を実行するCPUの他、制御プログラムやデータを記憶させるためのROM、制御プログラムやデータを一時的に記憶させるためのRAM、及び入出力インターフェイス等を備えている。 Although details are not shown, the controller 55 includes a CPU for executing various arithmetic processes and controls, a ROM for storing control programs and data, a RAM for temporarily storing control programs and data, and an input / output It has an interface.
 コントローラ55には、インバータ56を介して電動モータ54に電気的に接続されている一方、温度調節器57を介して、集合経路26内の排気ガス温度を検出する温度センサ59が電気的に接続されている。また、コントローラ55には、発電機制御盤14の電力トランスデューサ15、燃料流量計20、尿素水流量計52、圧力センサ58、尿素水貯留量を検出する尿素水量センサ60、噴気用電磁弁42及び噴射用電磁弁53も電気的に接続されている。 The controller 55 is electrically connected to the electric motor 54 via the inverter 56, while the temperature sensor 59 for detecting the exhaust gas temperature in the collective path 26 is electrically connected via the temperature regulator 57. Has been. Further, the controller 55 includes a power transducer 15 of the generator control panel 14, a fuel flow meter 20, a urea water flow meter 52, a pressure sensor 58, a urea water amount sensor 60 for detecting a urea water storage amount, a fumarole electromagnetic valve 42, and The injection solenoid valve 53 is also electrically connected.
 詰り検出手段としての圧力センサ58は、前述した噴気ノズル37と同様に、後処理装置27の前部、具体的には、後述するNOx触媒62及びスリップ処理触媒63より上流側の部位に設けられている。実施形態では、後処理装置27内に煤塵が堆積していない新品状態でのNOx触媒62上流側の圧力(基準圧力値)を、コントローラ55のROM等に予め記憶させておき、同じ測定箇所における現在の圧力を圧力センサ58にて検出し、基準圧力値と圧力センサ58の検出値との圧力差を求め、当該圧力差に基づいて後処理装置27の煤塵堆積量が換算される。 The pressure sensor 58 as clogging detection means is provided at the front portion of the post-processing device 27, specifically, at the upstream side of the NOx catalyst 62 and the slip processing catalyst 63, which will be described later, in the same manner as the above-described nozzle 35. ing. In the embodiment, the pressure (reference pressure value) on the upstream side of the NOx catalyst 62 in a new state in which dust is not accumulated in the post-processing device 27 is stored in advance in the ROM of the controller 55 and the like at the same measurement location. The current pressure is detected by the pressure sensor 58, a pressure difference between the reference pressure value and the detected value of the pressure sensor 58 is obtained, and the amount of dust accumulated in the post-processing device 27 is converted based on the pressure difference.
 そして、圧力差が設定値以上になると、コントローラ55からの指令にて噴気用電磁弁42が開き、気体供給源32から噴気ノズル37に圧縮気体が送られ、噴気ノズル37からNOx触媒62及びスリップ処理触媒63に向けて圧縮気体が吹き付けられることになる。なお、集合経路26のうち後処理装置27を挟んで上下流側に、それぞれ圧力センサを配置し、両者の検出値の差から後処理装置27の煤塵堆積量を換算するようにしてもよい。 When the pressure difference becomes equal to or larger than the set value, the jet solenoid valve 42 is opened by a command from the controller 55, compressed gas is sent from the gas supply source 32 to the jet nozzle 37, and the NOx catalyst 62 and slip are sent from the jet nozzle 37. The compressed gas is blown toward the processing catalyst 63. In addition, pressure sensors may be arranged on the upstream and downstream sides of the collecting path 26 with the post-processing device 27 interposed therebetween, and the dust accumulation amount of the post-processing device 27 may be converted from the difference between the detected values.
 集合経路26内の排気ガス温度を検出する温度センサ59は、集合経路26のうち尿素水噴射ノズル47と後処理装置27との間に設けられている。実施形態では、温度センサ59の検出温度が所定温度(例えば305℃)以上になると、コントローラ55からの指令にて噴射用電磁弁53が開き、フィードポンプ50の駆動にて尿素水タンク46から尿素水噴射ノズル47に尿素水が送られ、尿素水噴射ノズル47から集合経路26内に尿素水が噴射される。 The temperature sensor 59 for detecting the exhaust gas temperature in the collecting path 26 is provided between the urea water injection nozzle 47 and the post-processing device 27 in the collecting path 26. In the embodiment, when the temperature detected by the temperature sensor 59 reaches a predetermined temperature (for example, 305 ° C.) or more, the injection solenoid valve 53 is opened by a command from the controller 55, and the urea pump is driven from the urea water tank 46 by driving the feed pump 50. Urea water is sent to the water injection nozzle 47, and urea water is injected from the urea water injection nozzle 47 into the collecting path 26.
 尿素水貯留量を検出する尿素水量センサ60はフロート式のものであり、尿素水タンク46内に配置されている。この場合、尿素水量センサ60の上下高さ位置の変化に基づき、尿素水タンク46内の尿素水貯留量が検出される。 The urea water amount sensor 60 for detecting the urea water storage amount is a float type sensor and is disposed in the urea water tank 46. In this case, the urea water storage amount in the urea water tank 46 is detected based on the change in the vertical height position of the urea water amount sensor 60.
 コントローラ55は、電力トランスデューサ15にて検出された発電電力量に基づき、インバータ56を介して電動モータ54の回転駆動量を調節して、フィードポンプ50からの尿素水供給量を調節するように構成されている。これは、排気ガス中のNOx濃度が、ディーゼル発電機11群の合計発電電力量(発電用エンジン12群の合計出力(又は合計負荷)でもよい)と比例関係にあるためである。従って、NOxの還元に必要な尿素水供給量(還元剤供給量)は、合計発電電力量、すなわち排気ガス中のNOx濃度に比例することになる。ここで、図示は省略するが、NOxの還元に必要な尿素水供給量と発電電力量との関係は、例えばマップ形式又は関数表形式にて、コントローラ55(例えばROM等)に予め記憶されている。 The controller 55 is configured to adjust the amount of urea water supplied from the feed pump 50 by adjusting the rotational drive amount of the electric motor 54 via the inverter 56 based on the generated power amount detected by the power transducer 15. Has been. This is because the NOx concentration in the exhaust gas is proportional to the total amount of power generated by the diesel generator 11 group (or the total output (or total load) of the power generation engine 12 group). Therefore, the urea water supply amount (reducing agent supply amount) necessary for NOx reduction is proportional to the total power generation amount, that is, the NOx concentration in the exhaust gas. Here, although illustration is omitted, the relationship between the amount of urea water supply and the amount of generated power necessary for NOx reduction is stored in advance in the controller 55 (for example, ROM) in a map format or a function table format, for example. Yes.
 この場合、コントローラ55は、電力トランスデューサ15にて検出された合計発電電力量と、コントローラ55に予め記憶されたマップ又は関数表とから、NOxの還元に必要な尿素水供給量を求め、当該求められた供給量の尿素水を尿素水噴射ノズル47から適宜時間内に噴射するように電動モータ54を回転駆動させ、フィードポンプ50の作動量を調節している。 In this case, the controller 55 obtains the urea water supply amount necessary for the reduction of NOx from the total amount of generated power detected by the power transducer 15 and the map or function table stored in advance in the controller 55, and obtains the obtained amount. The electric motor 54 is rotationally driven to adjust the operation amount of the feed pump 50 so as to inject the supplied amount of urea water from the urea water injection nozzle 47 within the appropriate time.
 実施形態の電力トランスデューサ15はNOx検出手段に相当するものである。すなわち電力トランスデューサ15は発電機13群の合計発電電力量を検出し、当該電力トランスデューサ15の検出結果に基づき、排気ガス中のNOx濃度が間接的に求められるのである。なお、NOx検出手段は、電力トランスデューサ15に限らず、各発電用エンジン12の出力を検出するものでもよいし、燃料噴射量から各発電用エンジン12の負荷を検出するものでもよい。また、排気ガス中のNOx濃度を直接検出するものでもよい。 The power transducer 15 of the embodiment corresponds to NOx detection means. That is, the power transducer 15 detects the total amount of power generated by the group of generators 13 and indirectly determines the NOx concentration in the exhaust gas based on the detection result of the power transducer 15. The NOx detection means is not limited to the power transducer 15 and may be one that detects the output of each power generation engine 12 or may be one that detects the load of each power generation engine 12 from the fuel injection amount. Alternatively, the NOx concentration in the exhaust gas may be directly detected.
 (6).後処理装置の構造
 次に、図2及び図4~図6を参照しながら、後処理装置27の構造について説明する。
(6). Structure of Post-Processing Device Next, the structure of the post-processing device 27 will be described with reference to FIGS. 2 and 4 to 6.
 後処理装置27は、略筒型に形成された耐熱金属材料製の後処理ケーシング61内に、上流側から順に、排気ガス中のNOxの還元を促進させるNOx触媒62と、余分に供給された還元剤(実施形態では加水分解後のアンモニア)の酸化処理を促進させるスリップ処理触媒63と、排気ガスの排気音を減衰させる消音器64とを直列に並べて収容したものである。各触媒62,63は、多孔質な(ろ過可能な)隔壁にて区画された多数個のセルからなるハニカム構造になっており、例えばアルミナ、ジルコニア、バナジア/チタニア又はゼオライト等の触媒金属を有している。 The post-treatment device 27 was supplied in excess from a NOx catalyst 62 for promoting the reduction of NOx in the exhaust gas in order from the upstream side in the post-treatment casing 61 made of a heat-resistant metal material formed in a substantially cylindrical shape. The slip treatment catalyst 63 that promotes the oxidation treatment of the reducing agent (in the embodiment, ammonia after hydrolysis) and the silencer 64 that attenuates the exhaust sound of the exhaust gas are accommodated in series. Each of the catalysts 62 and 63 has a honeycomb structure composed of a large number of cells partitioned by porous (filterable) partition walls, and has a catalytic metal such as alumina, zirconia, vanadia / titania, or zeolite. is doing.
 NOx触媒62は、尿素水噴射ノズル47からの尿素水の加水分解にて生じたアンモニアを還元剤として、排気ガス中のNOxを選択還元することにより、後処理装置27内に送られた排気ガスを浄化するものである。また、スリップ処理触媒63は、NOx触媒62から流出した未反応(余剰)のアンモニアを酸化して無害な窒素にするものである。この場合、後処理ケーシング61内では下記の反応式:
 (NHCO+HO → 2NH+CO(加水分解)
  NO+NO+2NH→ 2N+3HO(NOx触媒62での反応)
  4NH+3O→ 2N+6HO(スリップ処理触媒63での反応)
が生ずることになる。
The NOx catalyst 62 uses the ammonia produced by the hydrolysis of the urea water from the urea water injection nozzle 47 as a reducing agent to selectively reduce NOx in the exhaust gas, whereby the exhaust gas sent into the aftertreatment device 27. Is to purify. The slip treatment catalyst 63 oxidizes unreacted (surplus) ammonia flowing out of the NOx catalyst 62 to harmless nitrogen. In this case, in the post-processing casing 61, the following reaction formula:
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 (hydrolysis)
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (reaction with NOx catalyst 62)
4NH 3 + 3O 2 → 2N 2 + 6H 2 O (reaction at slip treatment catalyst 63)
Will occur.
 消音器64は後処理ケーシング61の後部側に形成されている。後処理ケーシング61の後部側は2枚の蓋板65,66にて塞がれていて、これら両蓋板65,66を略筒型の排出パイプ67が貫通している。排出パイプ67の出口側は後処理ケーシング61の出口に連通している。排出パイプ67における前後両蓋板65,66の間は閉鎖板68にて閉鎖されており、排出パイプ67のうち閉鎖板68を挟んで両側の周壁部には、それぞれ複数の連通穴69,70が形成されている。後処理ケーシング61における両蓋板65,66の間は、排出パイプ67内に複数の連通穴69,70を介して連通する共鳴室71になっている。 The silencer 64 is formed on the rear side of the post-processing casing 61. The rear side of the post-processing casing 61 is closed by two cover plates 65 and 66, and a substantially cylindrical discharge pipe 67 passes through both the cover plates 65 and 66. The outlet side of the discharge pipe 67 communicates with the outlet of the post-processing casing 61. The front and rear cover plates 65, 66 of the discharge pipe 67 are closed by a closing plate 68, and a plurality of communication holes 69, 70 are formed in the peripheral wall portions on both sides of the discharge pipe 67 with the closing plate 68 interposed therebetween. Is formed. Between the lid plates 65 and 66 in the post-processing casing 61 is a resonance chamber 71 that communicates with the inside of the discharge pipe 67 via a plurality of communication holes 69 and 70.
 従って、排出パイプ67の上流側に入り込んだ排気ガスは、上流側の連通穴69、共鳴室71、下流側の連通穴70を介して排出パイプ67の下流側を通過し、後処理ケーシング61外に放出されることになる。 Therefore, the exhaust gas that has entered the upstream side of the discharge pipe 67 passes through the downstream side of the discharge pipe 67 via the upstream side communication hole 69, the resonance chamber 71, and the downstream side communication hole 70, and is outside the post-processing casing 61. Will be released.
 後処理ケーシング61のうちスリップ処理触媒63と前蓋板65との間には、バイパス経路29の出口側が接続されている。このため、図6(a)に示すように、集合側切換バルブ30を開いてバイパス側切換バルブ31を閉じると、集合経路26にてまとめられた排気ガスは、NOx触媒62及びスリップ処理触媒63を通過して浄化処理をされる。そして、浄化処理後の排出ガスは、排出パイプ67の上流側から、上流側の連通穴69、共鳴室71、下流側の連通穴70を経由して、排出パイプ67の下流側に入り、後処理ケーシング61外ひいては船舶1外に放出される。 The outlet side of the bypass path 29 is connected between the slip treatment catalyst 63 and the front lid plate 65 in the post-treatment casing 61. For this reason, as shown in FIG. 6A, when the collecting side switching valve 30 is opened and the bypass side switching valve 31 is closed, the exhaust gas collected in the collecting path 26 becomes the NOx catalyst 62 and the slip treatment catalyst 63. It goes through the purification process. The exhaust gas after the purification treatment enters the downstream side of the exhaust pipe 67 from the upstream side of the exhaust pipe 67 via the upstream communication hole 69, the resonance chamber 71, and the downstream communication hole 70. It is discharged out of the processing casing 61 and out of the ship 1.
 また、図6(b)に示すように、バイパス側切換バルブ31を開いて集合側切換バルブ30を閉じると、集合経路26にてまとめられた排気ガスは、NOx触媒62及びスリップ処理触媒63を迂回して浄化処理をすることなく、排出パイプ67の上流側に入る。そして、排気ガスは、上流側の連通穴69、共鳴室71、下流側の連通穴70を経由して、排出パイプ67の下流側を通過し、後処理ケーシング61外ひいては船舶1外に放出される。 Further, as shown in FIG. 6B, when the bypass side switching valve 31 is opened and the collecting side switching valve 30 is closed, the exhaust gas collected in the collecting path 26 passes through the NOx catalyst 62 and the slip treatment catalyst 63. It enters the upstream side of the discharge pipe 67 without detouring and purifying. Then, the exhaust gas passes through the downstream side of the discharge pipe 67 via the upstream side communication hole 69, the resonance chamber 71, and the downstream side communication hole 70, and is discharged outside the post-processing casing 61 and thus outside the ship 1. The
 従って、両切換バルブ30,31の開閉状態の切換により、排気ガスの浄化処理が必要な場合(例えば規制海域内での航行中)と、浄化処理が不要な場合(例えば規制海域外での航行中)とにおいて、排気ガスの通過する経路を簡単に選択でき、排気ガスの効率よい処理が可能なのである。 Therefore, the exhaust gas purification process is required by switching the open / close state of both switching valves 30 and 31 (for example, while navigating within the regulated sea area), and when the purification process is not necessary (for example, navigating outside the regulated sea area). In the middle), the route through which the exhaust gas passes can be easily selected, and the exhaust gas can be processed efficiently.
 (7).作用及び効果
 以上の構成によると、各発電用エンジン12の排気経路25は1つの集合経路26に合流しているので、発電用エンジン12を複数台有する場合の排気構造を簡素化できる。また、集合経路26には、上流側から順に、還元剤供給部としての尿素水噴射ノズル47とNOx触媒62とが配置されており、電力トランスデューサ15にて検出された合計発電電力量から、排気ガス中のNOx濃度、ひいては、NOxの還元に必要な尿素水供給量(還元剤供給量)を把握するので、排気ガス中のNOx濃度に見合った量の尿素水を集合経路26に供給できる。従って、後処理装置27内のNOx触媒62の作用にて、排気ガス中のNOxを効率よく窒素と水とに分解できる。また、排気ガス中のNOx濃度に見合った量の尿素水を集合経路26に供給するので、未反応(過剰な量)のアンモニアを外部に放出するアンモニアスリップを抑制できる。
(7). Operation and Effect According to the above configuration, the exhaust path 25 of each power generation engine 12 merges into one collective path 26, so that the exhaust structure when a plurality of power generation engines 12 are provided can be simplified. Further, a urea water injection nozzle 47 and a NOx catalyst 62 as a reducing agent supply unit are arranged in order from the upstream side in the collecting path 26, and exhaust gas is extracted from the total amount of generated power detected by the power transducer 15. Since the NOx concentration in the gas, and hence the urea water supply amount (reducing agent supply amount) necessary for NOx reduction, is grasped, an amount of urea water corresponding to the NOx concentration in the exhaust gas can be supplied to the collecting path 26. Therefore, NOx in the exhaust gas can be efficiently decomposed into nitrogen and water by the action of the NOx catalyst 62 in the aftertreatment device 27. Further, since urea water in an amount corresponding to the NOx concentration in the exhaust gas is supplied to the collecting path 26, ammonia slip that releases unreacted (excess amount) ammonia to the outside can be suppressed.
 各排気経路25には、これを開閉する開閉部材として、空気作動式の開閉バルブ28が設けられているので、各発電用エンジン12の状態に応じてそれぞれ対応する開閉バルブ28を開閉することにより、集合経路26から停止中の発電用エンジン12に向けて排気ガスが逆流するのを簡単且つ確実に防止できる。 Each exhaust passage 25 is provided with an air-operated opening / closing valve 28 as an opening / closing member for opening / closing the exhaust passage 25, so that the corresponding opening / closing valve 28 is opened / closed according to the state of each power generation engine 12. Further, it is possible to easily and reliably prevent the exhaust gas from flowing backward from the collective path 26 toward the stopped power generation engine 12.
 NOx触媒62を収容する後処理ケーシング61のうちNOx触媒62より上流側には、NOx触媒62に向けて気体供給源32からの圧縮気体を噴出する噴気部としての噴気ノズル37が設けられているから、当該噴気ノズル37の作用により、長期間の使用でNOx触媒62内に溜まった煤塵を強制的に除去できる。 In the post-processing casing 61 that accommodates the NOx catalyst 62, on the upstream side of the NOx catalyst 62, a blast nozzle 37 is provided as a squirting section that ejects compressed gas from the gas supply source 32 toward the NOx catalyst 62. Thus, the action of the blow nozzle 37 can forcibly remove the dust accumulated in the NOx catalyst 62 over a long period of use.
 NOx触媒62を収容する後処理ケーシング61内には、NOx触媒62より下流側に、余分に供給された還元剤(実施形態では加水分解後のアンモニア)の酸化処理を促すスリップ処理触媒63が配置されているから、NOx触媒62を未反応のまま通過しようとする余剰の還元剤(アンモニア)を、窒素に酸化処理して無害化でき、排気ガス中にアンモニアが残存するおそれを確実に回避できる。また、NOx触媒62とスリップ処理触媒63とをパッケージ化でき、排気構造の下流側をコンパクトに構成できる。 In the post-treatment casing 61 that accommodates the NOx catalyst 62, a slip treatment catalyst 63 that promotes the oxidation treatment of the extra supplied reducing agent (in the embodiment, ammonia after hydrolysis) is disposed downstream of the NOx catalyst 62. Therefore, the excess reducing agent (ammonia) that is about to pass through the NOx catalyst 62 without being reacted can be rendered harmless by oxidizing it with nitrogen, and the possibility of ammonia remaining in the exhaust gas can be reliably avoided. . Further, the NOx catalyst 62 and the slip treatment catalyst 63 can be packaged, and the downstream side of the exhaust structure can be configured compactly.
 更に、NOx検出手段としての電力トランスデューサ15は発電機13群の合計発電電力量を検出し、当該電力トランスデューサ15の検出結果に基づき、排気ガス中のNOx濃度が間接的に求められる構成になっているから、NOx濃度検出専用のセンサが要らず、構成を簡素化して製造コストの低減に寄与できる。 Further, the power transducer 15 as the NOx detecting means detects the total amount of power generated by the generator 13 group, and the NOx concentration in the exhaust gas is indirectly obtained based on the detection result of the power transducer 15. Therefore, there is no need for a dedicated sensor for NOx concentration detection, and the configuration can be simplified and the manufacturing cost can be reduced.
 実施形態では、集合経路26のうち最下流の排気経路25との合流部分と後処理装置27との間には、NOx触媒62を迂回するためのバイパス経路29が分岐接続されており、集合経路26のうちバイパス経路29への分岐部分より下流側と、バイパス経路29の入口側とには、これら各経路26,29を開閉する経路切換部材としての切換バルブ30,31が設けられているから、両切換バルブ30,31の開閉状態の切換により、排気ガスの浄化処理が必要な場合(例えば規制海域内での航行中)と、浄化処理が不要な場合(例えば規制海域外での航行中)とにおいて、排気ガスの通過する経路を簡単に選択でき、排気ガスの効率よい処理が可能である。 In the embodiment, a bypass path 29 for bypassing the NOx catalyst 62 is branched and connected between a portion where the exhaust path 25 in the collecting path 26 joins with the downstream exhaust path 25 and the aftertreatment device 27. 26 are provided with switching valves 30 and 31 as path switching members for opening and closing the paths 26 and 29 on the downstream side of the branching portion to the bypass path 29 and the inlet side of the bypass path 29. When the switching operation of both switching valves 30 and 31 is switched, the exhaust gas needs to be purified (for example, while navigating in the regulated sea area), or the purification process is not necessary (for example, navigating outside the regulated sea area). ), The route through which the exhaust gas passes can be easily selected, and the exhaust gas can be processed efficiently.
 NOx触媒62を収容する後処理ケーシング61には、排気ガスの排気音を減衰させるための消音器64を備えているから、NOx触媒62、スリップ処理触媒63及び消音器64を単一の後処理ケーシング61にパッケージ化でき、排気構造の下流側をコンパクトに構成できる。 Since the post-treatment casing 61 that accommodates the NOx catalyst 62 includes a silencer 64 for attenuating exhaust noise of the exhaust gas, the NOx catalyst 62, the slip treatment catalyst 63, and the silencer 64 are treated as a single post-treatment. The casing 61 can be packaged, and the downstream side of the exhaust structure can be configured compactly.
 また、バイパス経路29の出口側は、後処理ケーシング61の消音器64に連通接続されているから、NOx触媒62及びスリップ処理触媒63を通過して浄化された排気ガスと、NOx触媒62及びスリップ処理触媒63を迂回してバイパス経路29を経由した排気ガスとを、同じ消音器64に送り込めることになる。従って、排気構造を簡単化して製造コストの低減に寄与できるのである。 Further, since the outlet side of the bypass path 29 is connected to the silencer 64 of the post-processing casing 61, the exhaust gas purified by passing through the NOx catalyst 62 and the slip processing catalyst 63, the NOx catalyst 62, and the slip The exhaust gas that bypasses the processing catalyst 63 and passes through the bypass path 29 can be sent to the same silencer 64. Therefore, the exhaust structure can be simplified and the manufacturing cost can be reduced.
 なお、各部の構成は図示の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更が可能である。 The configuration of each part is not limited to the illustrated embodiment, and various modifications can be made without departing from the spirit of the present invention.
1 船舶
10 発電装置
11 ディーゼル発電機
12 発電用ディーゼルエンジン
13 発電機
14 発電機制御盤
15 電力トランスデューサ
25 排気経路
26 集合経路
27 後処理装置
28 開閉バルブ
29 バイパス経路
30 集合側切換バルブ
31 バイパス側切換バルブ
32 気体供給源
42 噴気用電磁弁
43 還元剤供給装置
44 還元剤供給通路
45 還元剤制御盤
46 尿素水タンク
47 尿素水噴射ノズル
50 フィードポンプ
53 噴射用電磁弁
54 電動モータ
55 制御手段としてのコントローラ
58 圧力センサ
59 温度センサ
61 後処理ケーシング
62 NOx触媒
63 スリップ処理触媒
64 消音器
DESCRIPTION OF SYMBOLS 1 Ship 10 Power generator 11 Diesel generator 12 Diesel engine 13 Power generator 14 Generator control panel 15 Power transducer 25 Exhaust path 26 Collecting path 27 Post-processing device 28 Open / close valve 29 Bypass path 30 Collecting side switching valve 31 Bypass side switching Valve 32 Gas supply source 42 Pneumatic valve 43 Reducing agent supply device 44 Reducing agent supply passage 45 Reducing agent control panel 46 Urea water tank 47 Urea water injection nozzle 50 Feed pump 53 Injection electromagnetic valve 54 Electric motor 55 As a control means Controller 58 Pressure sensor 59 Temperature sensor 61 Aftertreatment casing 62 NOx catalyst 63 Slip treatment catalyst 64 Silencer

Claims (8)

  1.  複数台のエンジンからの排気ガス中にあるNOxの還元を促すNOx触媒と、前記排気ガスにNOx還元用の還元剤を供給する還元剤供給部と、前記排気ガス中のNOx濃度を検出するNOx検出手段とを備えており、
     前記各エンジンの排気経路は1つの集合経路に合流しており、前記集合経路には、上流側から順に、前記還元剤供給部と前記NOx触媒とが配置されており、
     前記集合経路のうち最下流の排気経路との合流部分と前記NOx触媒との間には、前記NOx触媒を迂回するためのバイパス経路が分岐接続されており、前記集合経路のうち前記バイパス経路への分岐部分より下流側と、前記バイパス経路の入口側とには、前記各経路を開閉する経路切換部材が設けられている、
    排気ガス浄化装置。
    NOx catalyst for promoting reduction of NOx in exhaust gas from a plurality of engines, a reducing agent supply unit for supplying a reducing agent for NOx reduction to the exhaust gas, and NOx for detecting NOx concentration in the exhaust gas Detection means,
    The exhaust paths of the engines merge into one collecting path, and the reducing agent supply unit and the NOx catalyst are arranged in the collecting path in order from the upstream side,
    A bypass path for bypassing the NOx catalyst is branched and connected between a portion where the exhaust path on the most downstream side of the collective path joins with the NOx catalyst, and to the bypass path of the collective path. A path switching member that opens and closes each of the paths is provided on the downstream side of the branch portion and on the inlet side of the bypass path.
    Exhaust gas purification device.
  2.  前記NOx検出手段の検出情報に基づいて前記還元剤供給部からの還元剤供給量を調節するように構成されている、
    請求項1に記載した排気ガス浄化装置。
    The reducing agent supply amount from the reducing agent supply unit is adjusted based on detection information of the NOx detecting means.
    The exhaust gas purification apparatus according to claim 1.
  3.  前記各排気経路には、これを開閉するための開閉部材が設けられている、
    請求項1又は2に記載した排気ガス浄化装置。
    Each exhaust path is provided with an opening and closing member for opening and closing it.
    The exhaust gas purification apparatus according to claim 1 or 2.
  4.  前記NOx触媒を収容するケーシングには、排気ガスの排気音を減衰させるための消音器を備えている、
    請求項1に記載した排気ガス浄化装置。
    The casing containing the NOx catalyst is equipped with a silencer for attenuating the exhaust sound of the exhaust gas.
    The exhaust gas purification apparatus according to claim 1.
  5.  前記バイパス経路の出口側は前記ケーシングの前記消音器に連通接続されている、
    請求項4に記載した排気ガス浄化装置。
    The outlet side of the bypass path is connected in communication with the silencer of the casing,
    The exhaust gas purification apparatus according to claim 4.
  6.  前記NOx触媒を収容するケーシングのうち前記NOx触媒より上流側には、前記NOx触媒に向けて気体供給源からの圧縮気体を噴出する噴気部が設けられている、
    請求項2に記載した排気ガス浄化装置。
    In the casing containing the NOx catalyst, on the upstream side of the NOx catalyst, an air blowing part for ejecting compressed gas from a gas supply source toward the NOx catalyst is provided.
    The exhaust gas purifier according to claim 2.
  7.  前記NOx触媒を収容するケーシング内には、前記NOx触媒より下流側に、余分に供給された還元剤の酸化処理を促すスリップ処理触媒が配置されている、
    請求項2に記載した排気ガス浄化装置。
    In the casing that houses the NOx catalyst, a slip treatment catalyst that promotes an oxidation treatment of the reducing agent supplied in excess is disposed downstream of the NOx catalyst.
    The exhaust gas purifier according to claim 2.
  8.  前記NOx検出手段は前記各エンジンの駆動にて発電する発電機の電力量を検出し、当該検出結果に基づき排気ガス中のNOx濃度を間接的に求めるように構成されている、
    請求項2に記載した排気ガス浄化装置。
    The NOx detection means is configured to detect the amount of power of a generator that generates electricity by driving each engine, and indirectly determine the NOx concentration in the exhaust gas based on the detection result.
    The exhaust gas purifier according to claim 2.
PCT/JP2009/066131 2008-09-17 2009-09-16 Exhaust gas purifying device WO2010032738A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008238195A JP5465408B2 (en) 2008-09-17 2008-09-17 Exhaust gas purification device for ship use
JP2008238194A JP5465407B2 (en) 2008-09-17 2008-09-17 Exhaust gas purification device for ship use
JP2008-238194 2008-09-17
JP2008-238195 2008-09-17

Publications (1)

Publication Number Publication Date
WO2010032738A1 true WO2010032738A1 (en) 2010-03-25

Family

ID=42039562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066131 WO2010032738A1 (en) 2008-09-17 2009-09-16 Exhaust gas purifying device

Country Status (1)

Country Link
WO (1) WO2010032738A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2799678A4 (en) * 2011-12-27 2015-08-19 Doosan Infracore Co Ltd Exhaust gas after-treatment apparatus having improved durability and exhaust gas after-treatment method
FR3037101A1 (en) * 2015-06-08 2016-12-09 Peugeot Citroen Automobiles Sa EXHAUST LINE OF A THERMAL ENGINE
CN106555643A (en) * 2015-09-28 2017-04-05 中国船舶重工集团公司第七研究院 Ship machine SCR multichannel jet control systems
US20170101914A1 (en) * 2015-10-13 2017-04-13 Clark Equipment Company Remote fluid supply for an engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648310U (en) * 1987-07-07 1989-01-18
JP2003269149A (en) * 2002-03-15 2003-09-25 Mitsubishi Heavy Ind Ltd Denitrification device
JP2004060596A (en) * 2002-07-31 2004-02-26 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648310U (en) * 1987-07-07 1989-01-18
JP2003269149A (en) * 2002-03-15 2003-09-25 Mitsubishi Heavy Ind Ltd Denitrification device
JP2004060596A (en) * 2002-07-31 2004-02-26 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2799678A4 (en) * 2011-12-27 2015-08-19 Doosan Infracore Co Ltd Exhaust gas after-treatment apparatus having improved durability and exhaust gas after-treatment method
US9346014B2 (en) 2011-12-27 2016-05-24 Doosan Infracore Co., Ltd. Exhaust gas after-treatment apparatus having improved durability and exhaust gas after-treatment method
FR3037101A1 (en) * 2015-06-08 2016-12-09 Peugeot Citroen Automobiles Sa EXHAUST LINE OF A THERMAL ENGINE
CN106555643A (en) * 2015-09-28 2017-04-05 中国船舶重工集团公司第七研究院 Ship machine SCR multichannel jet control systems
US20170101914A1 (en) * 2015-10-13 2017-04-13 Clark Equipment Company Remote fluid supply for an engine
EP3156621A1 (en) * 2015-10-13 2017-04-19 Clark Equipment Company Remote fluid supply for an engine
US10113463B2 (en) 2015-10-13 2018-10-30 Clark Equipment Company Remote fluid supply for an engine
US20190024558A1 (en) * 2015-10-13 2019-01-24 Clark Equipment Company Remote fluid supply for an engine
US10801386B2 (en) 2015-10-13 2020-10-13 Clark Equipment Company Remote fluid supply for an engine

Similar Documents

Publication Publication Date Title
JP5465407B2 (en) Exhaust gas purification device for ship use
JP5465408B2 (en) Exhaust gas purification device for ship use
JP6162383B2 (en) Exhaust gas purification device
JP5308179B2 (en) Exhaust gas purification system
KR101810521B1 (en) Exhaust gas purification system and ship using same
JP5788439B2 (en) Exhaust gas purification device for ship use
WO2010032738A1 (en) Exhaust gas purifying device
JP5503160B2 (en) Exhaust gas purification system for ships
JP2013032777A (en) Exhaust gas purifying apparatus to be mounted in ship
JP5654084B2 (en) Exhaust gas purification system for ships
JP6114803B2 (en) Exhaust gas purification device for ship use
JP2013015149A (en) Exhaust gas purifier for mounting in ship
JP6250206B2 (en) Exhaust gas purification device for ship use
JP5535353B2 (en) Exhaust gas purification system for ships
JP2015086727A (en) Exhaust emission control system for ship
JP2014062549A (en) Shipboard exhaust gas purification device
JP5667345B2 (en) Exhaust gas purification system for ships
JP5404084B2 (en) Exhaust gas purification system for ships
JP5856218B2 (en) Exhaust gas purification device for ship use
JP5535354B2 (en) Exhaust gas purification device for ship use
JP2016084818A (en) Exhaust emission control system in vessel
JP5856217B2 (en) Exhaust gas purification system for ships
JP6249869B2 (en) Ship exhaust gas purification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814583

Country of ref document: EP

Kind code of ref document: A1