JP5856217B2 - Exhaust gas purification system for ships - Google Patents

Exhaust gas purification system for ships Download PDF

Info

Publication number
JP5856217B2
JP5856217B2 JP2014088312A JP2014088312A JP5856217B2 JP 5856217 B2 JP5856217 B2 JP 5856217B2 JP 2014088312 A JP2014088312 A JP 2014088312A JP 2014088312 A JP2014088312 A JP 2014088312A JP 5856217 B2 JP5856217 B2 JP 5856217B2
Authority
JP
Japan
Prior art keywords
ship
exhaust gas
engine
exhaust
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014088312A
Other languages
Japanese (ja)
Other versions
JP2014134206A (en
Inventor
文哉 古東
文哉 古東
和睦 鬼追
和睦 鬼追
徹 待田
徹 待田
井上 剛
剛 井上
横山 哲也
哲也 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2014088312A priority Critical patent/JP5856217B2/en
Publication of JP2014134206A publication Critical patent/JP2014134206A/en
Application granted granted Critical
Publication of JP5856217B2 publication Critical patent/JP5856217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、ディーゼルエンジンのような内燃機関(エンジン)を搭載した船舶において、排気ガス中の有害成分を除去するための排気ガス浄化システムに関するものである。   The present invention relates to an exhaust gas purification system for removing harmful components in exhaust gas in a ship equipped with an internal combustion engine (engine) such as a diesel engine.

従来、例えばタンカーや輸送船等の船舶においては、各種補機、荷役装置、照明、空調その他の機器類の消費する電力量が膨大であり、これらの電気系統に電力を供給するために、ディーゼルエンジンと、当該ディーゼルエンジンの駆動にて発電する発電機とを組み合わせてなるディーゼル発電機を複数備えている(例えば特許文献1等参照)。   Conventionally, in a ship such as a tanker or a transport ship, the amount of electric power consumed by various auxiliary machines, cargo handling devices, lighting, air conditioning and other equipment is enormous. In order to supply electric power to these electric systems, diesel A plurality of diesel generators are provided that are a combination of an engine and a generator that generates electricity by driving the diesel engine (see, for example, Patent Document 1).

ディーゼルエンジンは、内燃機関の中で最もエネルギー効率の高いものの1つであることが知られており、単位出力当りの排気ガスに含まれる二酸化炭素量が少ない。しかも、例えば重油のような低質の燃料を使用できるため経済的にも優れるという利点がある。   Diesel engines are known to be one of the most energy efficient types of internal combustion engines, and the amount of carbon dioxide contained in exhaust gas per unit output is small. In addition, since a low-quality fuel such as heavy oil can be used, there is an advantage that it is economically excellent.

特開2006−341742号公報JP 2006-341742 A

ところで、ディーゼルエンジンの排気ガス中には、二酸化炭素以外に、窒素酸化物、硫黄酸化物及び粒子状物質等も多く含まれている。これらは、主にディーゼルエンジンの燃焼形態や、燃料である重油に由来して生成されるものであり、環境保全の妨げになる有害物質である。特に、窒素酸化物(以下、NOxという)は人体に有害で且つ強い酸性を呈するものであり、酸性雨の原因とも考えられている。   By the way, the exhaust gas of a diesel engine contains a large amount of nitrogen oxide, sulfur oxide, particulate matter, and the like in addition to carbon dioxide. These are produced mainly from the combustion mode of diesel engines and heavy oil as fuel, and are harmful substances that hinder environmental conservation. In particular, nitrogen oxides (hereinafter referred to as NOx) are harmful to human bodies and exhibit strong acidity, and are considered to be the cause of acid rain.

従って、例えば船舶のように、複数台のディーゼル発電機(ディーゼルエンジン)を駆動させる機械においては、NOxの排出量が極めて多く、地球環境に与える負担が大きいと解される。地球環境に配慮すれば、排気ガス中のNOxをできるだけ取り除くべきであり、簡単な構成で且つ効率よく、NOxを還元処理して無害化することが望まれている。   Therefore, for example, in a machine that drives a plurality of diesel generators (diesel engines) such as a ship, it is understood that the amount of NOx emission is extremely large and the burden on the global environment is large. Considering the global environment, NOx in the exhaust gas should be removed as much as possible, and it is desired to make NOx harmless by reducing the NOx with a simple structure and efficiency.

本願発明は、簡単な構成で且つ効率よくNOxを還元処理して無害化できる船舶における排気ガス浄化システムの提供を目的とするものである。   An object of the present invention is to provide an exhaust gas purification system in a ship that has a simple configuration and can efficiently detoxify NOx and render it harmless.

請求項1の発明は、船舶(1)に搭載したエンジン(12)からの排気ガス中にあるNOxを取り除くための後処理装置(27)を、前記エンジン(12)の排気経路(25)に備えている排気ガス浄化システムにおいて、前記エンジン(12)の排気経路(25)は、外部に直接連通する主排気路(29)と、前記主排気路(29)から分岐した分岐排気路(30)とを備え、前記分岐排気路(30)の下流側に前記後処理装置(27)を配置し、前記主排気路(29)と前記分岐排気路(30)とには、前記各排気路(29)(30)を開閉するための開閉部材(28a)(28b)を設け、自船の現在位置を特定できる自船位置検出手段(88)を備え、前記自船位置検出手段(88)で排気ガスの規制海域と自船の現在位置との位置関係を特定し、前記船舶(1)が前記規制海域内に進入するのを前記自船位置検出手段(88)が検出した場合は、前記分岐排気路(30)の開閉部材(28b)を開放して前記主排気路(29)の開閉部材(28a)を閉止させ、前記船舶(1)が前記規制海域外に進出するのを前記自船位置検出手段(88)が検出した場
合は、前記主排気路(29)の開閉部材(28a)を開放して前記分岐排気路(30)の開閉部材(28b)を閉止させるように、前記両開閉部材(28a)(28b)を連動して開閉させる制御を実行するコントローラ(80)を備えており、停止中のエンジン(12)に対しては、少なくとも前記分岐排気路(30)側の前記開閉部材(28b)が閉じるように構成されているものである。
According to the first aspect of the present invention, an aftertreatment device (27) for removing NOx in the exhaust gas from the engine (12) mounted on the ship (1) is provided in the exhaust path (25) of the engine (12). In the exhaust gas purification system provided, the exhaust path (25) of the engine (12) includes a main exhaust path (29) directly communicating with the outside and a branched exhaust path (30) branched from the main exhaust path (29). ), And the post-processing device (27) is disposed downstream of the branch exhaust passage (30), and the main exhaust passage (29) and the branch exhaust passage (30) are connected to the exhaust passages. (29) Open / close members (28a) (28b) for opening and closing the ship (30) are provided, and provided with own ship position detecting means (88) capable of specifying the current position of the own ship, the own ship position detecting means (88) The position of the regulated sea area of exhaust gas and the current position of the ship When the ship position detecting means (88) detects that the ship (1) enters the restricted sea area, the opening / closing member (28b) of the branch exhaust passage (30) is opened. When the opening / closing member (28a) of the main exhaust passage (29) is closed and the ship position detecting means (88) detects that the ship (1) has advanced outside the restricted sea area, The opening and closing members (28a) and (28b) are opened and closed in conjunction with each other so that the opening and closing member (28a) of the main exhaust passage (29) is opened and the opening and closing member (28b) of the branch exhaust passage (30) is closed. And a controller (80) that executes control for causing the engine (12) that is stopped to close at least the opening / closing member (28b) on the branch exhaust passage (30) side . Is.

本願発明によると、船舶(1)に搭載したエンジン(12)からの排気ガス中にあるNOxを取り除くための後処理装置(27)を、前記エンジン(12)の排気経路(25)に備えている排気ガス浄化システムにおいて、前記エンジン(12)の排気経路(25)は、外部に直接連通する主排気路(29)と、前記主排気路(29)から分岐した分岐排気路(30)とを備え、前記分岐排気路(30)の下流側に前記後処理装置(27)を配置し、前記主排気路(29)と前記分岐排気路(30)とには、前記各排気路(29)(30)を開閉するための開閉部材(28a)(28b)を設け、自船の現在位置を特定できる自船位置検出手段(88)を備え、前記自船位置検出手段(88)で排気ガスの規制海域と自船の現在位置との位置関係を特定し、前記船舶(1)が前記規制海域内に進入するのを前記自船位置検出手段(88)が検出した場合は、前記分岐排気路(30)の開閉部材(28b)を開放して前記主排気路(29)の開閉部材(28a)を閉止させ、前記船舶(1)が前記規制海域外に進出するのを前記自船位置検出手段(88)が検出した場合は、前記主排気路(29)の開閉部材(28a)を開放して前記分岐排気路(30)の開閉部材(28b)を閉止させるように、前記両開閉部材(28a)(28b)を連動して開閉させる制御を実行するコントローラ(80)を備えているから、規制海域に進入する前や規制海域を出た後といった状況に応じて、自動的且つ的確に排気ガスの通過する経路を選択でき、NOx規制を遵守して環境汚染に配慮できる。また、前記船舶(1)が規制海域外か規制海域内かの監視を省略できるから、船員の負担軽減に効果が高い。   According to the present invention, the exhaust passage (25) of the engine (12) is provided with the aftertreatment device (27) for removing NOx in the exhaust gas from the engine (12) mounted on the ship (1). In the exhaust gas purification system, the exhaust path (25) of the engine (12) includes a main exhaust path (29) communicating directly with the outside, and a branch exhaust path (30) branched from the main exhaust path (29). The post-processing device (27) is disposed downstream of the branch exhaust passage (30), and the exhaust passage (29) is provided between the main exhaust passage (29) and the branch exhaust passage (30). ) Open / close members (28a) (28b) for opening and closing (30) are provided, and provided with own ship position detecting means (88) capable of specifying the current position of the own ship, and exhausted by the own ship position detecting means (88). The location of the regulated gas area and the current position of the ship When the ship position detecting means (88) detects that the ship (1) enters the restricted sea area, the opening / closing member (28b) of the branch exhaust passage (30) is opened. When the opening / closing member (28a) of the main exhaust passage (29) is closed and the ship position detecting means (88) detects that the ship (1) has advanced outside the restricted sea area, The opening and closing members (28a) and (28b) are opened and closed in conjunction with each other so that the opening and closing member (28a) of the main exhaust passage (29) is opened and the opening and closing member (28b) of the branch exhaust passage (30) is closed. Since the controller (80) for executing the control is provided, the route through which the exhaust gas passes can be selected automatically and accurately according to the situation such as before entering the regulated sea area or after leaving the regulated sea area. Comply with regulations and consider environmental pollutionMoreover, since the monitoring of whether the ship (1) is outside the regulated sea area or inside the regulated sea area can be omitted, it is highly effective in reducing the burden on seafarers.

排気ガスの浄化処理が必要な場合は、排気ガスを確実に前記後処理装置(27)側に誘導できる。また、浄化処理が不要な場合は、前記後処理装置(27)を避けて前記主排気路(29)側に排気ガスを確実に誘導して、排気効率のよい状態を維持できる。従って、前記各エンジン(12)の出力低下を回避できる。   When exhaust gas purification processing is required, the exhaust gas can be reliably guided to the post-treatment device (27). Further, when the purification process is unnecessary, the exhaust gas can be reliably guided to the main exhaust passage (29) side by avoiding the post-treatment device (27), and the state of good exhaust efficiency can be maintained. Accordingly, it is possible to avoid a decrease in the output of each engine (12).

船舶の全体側面図である。It is the whole ship side view. 発電装置の概略系統図である。It is a schematic system diagram of a power generator. 発電装置における燃料系統の説明図である。It is explanatory drawing of the fuel system | strain in an electric power generating apparatus. 発電装置の排気系統と還元剤供給装置との説明図である。It is explanatory drawing of the exhaust system of a generator, and a reducing agent supply apparatus. 後処理装置の側面断面図である。It is side surface sectional drawing of a post-processing apparatus. コントローラ群の関係を示す機能ブロック図である。It is a functional block diagram which shows the relationship of a controller group. 航行中の船舶の概念図である。It is a conceptual diagram of the ship in navigation. 切換制御の一例を示すフローチャートである。It is a flowchart which shows an example of switching control. 割り込み制御の一例を示すフローチャートである。It is a flowchart which shows an example of interruption control.

以下に、本願発明を具体化した実施形態を、船舶に搭載された複数台のディーゼル発電機に適用した場合の図面に基づいて説明する。   Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings in a case where the present invention is applied to a plurality of diesel generators mounted on a ship.

(1).船舶の概要
まず始めに、図1を参照しながら、船舶1の概要について説明する。
(1). Outline of Ship First, an outline of the ship 1 will be described with reference to FIG.

実施形態の船舶1は、船体2と、船体2におけるデッキ3上の後部に設けられたキャビン4と、キャビン4の後方に配置されたファンネル5(煙突)と、船体2の後方下部に設けられたプロペラ6及び舵7とを備えている。船体2内の後部には、プロペラ6の駆動源である主エンジン8(実施形態ではディーゼルエンジン)及び減速機9と、船体2内の電気系統に電力を供給するための発電装置10とが設置されている。主エンジン8から減速機9を経由した回転動力にて、プロペラ6が回転駆動することになる。   The ship 1 according to the embodiment is provided in a hull 2, a cabin 4 provided in a rear part on the deck 3 in the hull 2, a funnel 5 (chimney) arranged behind the cabin 4, and a lower rear part of the hull 2. The propeller 6 and the rudder 7 are provided. Installed at the rear of the hull 2 are a main engine 8 (diesel engine in the embodiment) and a speed reducer 9 which are driving sources of the propeller 6, and a power generator 10 for supplying power to the electrical system in the hull 2. Has been. The propeller 6 is rotationally driven by the rotational power from the main engine 8 via the speed reducer 9.

(2).発電装置の構造
次に、図2を参照しながら、発電装置10の構造について説明する。
(2). Next, the structure of the power generation device 10 will be described with reference to FIG.

発電装置10は、発電用ディーゼルエンジン12(以下、発電用エンジンという)と、発電用エンジン12の駆動にて発電する発電機13とを組み合わせたディーゼル発電機11を複数台(実施形態では3台)備えたものである。これらディーゼル発電機11は基本的に、船体2内の必要電力量に対応して効率的に稼働するように構成されている。例えば大量の電力を消費する航行時等には、全てのディーゼル発電機11を稼働させ、比較的電力消費の少ない停泊時等には、任意の台数のディーゼル発電機11を稼働させる。   The power generation apparatus 10 includes a plurality of diesel generators 11 (three in the embodiment) that combine a power generation diesel engine 12 (hereinafter referred to as a power generation engine) and a power generator 13 that generates power by driving the power generation engine 12. ). These diesel generators 11 are basically configured to operate efficiently in accordance with the required power amount in the hull 2. For example, all the diesel generators 11 are operated at the time of sailing or the like that consumes a large amount of power, and an arbitrary number of diesel generators 11 are operated at a berth when the power consumption is relatively low.

各発電機13の駆動にて生じた発電電力は船体2内の電気系統に供給される。各発電機13は、発電機制御盤14内の電力トランスデューサ15に電気的に接続されている。電力トランスデューサ15は各発電機13による発電電力を検出するためのものである。電力トランスデューサ15の検出情報に基づき発電電力が発電機制御盤14にて予め設定された目標電力と一致するように、各発電用エンジン12の駆動がエンジン制御手段としてのエンジンコントローラ80(詳細は後述する)にて制御される。電力トランスデューサ15は、後述する還元剤供給装置43の還元コントローラ55にも電気的に接続されている。   The generated power generated by driving each generator 13 is supplied to the electrical system in the hull 2. Each generator 13 is electrically connected to a power transducer 15 in the generator control panel 14. The power transducer 15 is for detecting the power generated by each generator 13. An engine controller 80 as engine control means is driven by each power generation engine 12 so that the generated power matches the target power set in advance on the generator control panel 14 based on the detection information of the power transducer 15 (details will be described later). Control). The power transducer 15 is also electrically connected to a reduction controller 55 of the reducing agent supply device 43 described later.

(3).発電装置の燃料系統
次に、図2及び図3を参照しながら、発電装置10の燃料系統について説明する。
(3). Next, the fuel system of the power generation apparatus 10 will be described with reference to FIGS. 2 and 3.

船体2内には、硫黄含有量の多い一般燃料としてのC重油を貯留する一般燃料タンク16aと、硫黄含有量の少ない低硫黄燃料としてのA重油を貯留する低硫黄燃料タンク16bとが設置されている。一般燃料タンク16aの燃料系統と低硫黄燃料タンク16bの燃料系統とはそれぞれ別個に構成されている。   In the hull 2, a general fuel tank 16a for storing C heavy oil as a general fuel having a high sulfur content and a low sulfur fuel tank 16b for storing A heavy oil as a low sulfur fuel having a low sulfur content are installed. ing. The fuel system of the general fuel tank 16a and the fuel system of the low sulfur fuel tank 16b are configured separately.

これら燃料系統の構成は基本的に同様になっており、ここでは、一般燃料タンク16aの燃料系統について詳述する。なお、図2及び図3において、両燃料系統の構成のうち機能が同じもの同士には符号として同じ数字を付し、その上で、一般燃料タンク16a側のものにアルファベットの「a」を、低硫黄燃料タンク16b側のものアルファベットの「b」を添えている。   The configurations of these fuel systems are basically the same. Here, the fuel system of the general fuel tank 16a will be described in detail. 2 and 3, components having the same function among the configurations of both fuel systems are denoted by the same reference numerals, and the alphabet "a" is added to the one on the side of the general fuel tank 16a. The letter “b” on the low sulfur fuel tank 16b side is attached.

一般燃料タンク16aは1本の供給管路17aに接続されている。供給管路17aの上流側には、燃料フィルタ19aと燃料流量計20aとが設けられている。燃料流量計20aは、後述する還元剤供給装置43の還元コントローラ55に電気的に接続されている。供給管路17aのうち燃料流量計20aより下流側からは、複数の送り管路21a(実施形態では3本)が延びている。各送り管路21aは、燃料切換手段としての供給切換電磁弁81を介して、それぞれ対応する発電用エンジン12の燃料ポンプ18に接続されている。燃料ポンプ18に送られた燃料は、発電用エンジン12に設けられた燃料噴射装置83(図6参照)にて、発電用エンジン12における気筒毎の燃焼室(図示省略)内に噴射されることになる。供給切換電磁弁81は、後述するエンジンコントローラ80に電気的に接続されていて、エンジンコントローラ80からの制御情報に基づいて切換作動するように構成されている。   The general fuel tank 16a is connected to one supply line 17a. A fuel filter 19a and a fuel flow meter 20a are provided on the upstream side of the supply pipe 17a. The fuel flow meter 20a is electrically connected to a reduction controller 55 of a reducing agent supply device 43 described later. A plurality of feed pipes 21a (three in the embodiment) extend from the supply pipe 17a on the downstream side of the fuel flow meter 20a. Each feed line 21a is connected to the corresponding fuel pump 18 of the power generation engine 12 via a supply switching electromagnetic valve 81 as fuel switching means. The fuel sent to the fuel pump 18 is injected into a combustion chamber (not shown) for each cylinder in the power generation engine 12 by a fuel injection device 83 (see FIG. 6) provided in the power generation engine 12. become. The supply switching electromagnetic valve 81 is electrically connected to an engine controller 80 described later, and is configured to perform a switching operation based on control information from the engine controller 80.

各送り管路21aの中途部にはリターンチャンバー22aが設けられている。燃料噴射装置83から発電用エンジン12外に延びる戻し管路23aは、リターンチャンバー22aを介して戻し切換電磁弁82に接続され、当該戻し切換電磁弁82から一般燃料タンク16aに接続されている。発電用エンジン12において未使用の余剰燃料は、戻し管路23aを通じて一般燃料タンク16aに戻されることになる。戻し管路23aのうちリターンチャンバー22aより下流側には逆止弁24aが設けられている。各戻し切換電磁弁82は、後述するエンジンコントローラ80に電気的に接続されていて、エンジンコントローラ80からの制御情報に基づいて切換作動するように構成されている。   A return chamber 22a is provided in the middle of each feed line 21a. A return line 23a extending from the fuel injection device 83 to the outside of the power generation engine 12 is connected to a return switching electromagnetic valve 82 via a return chamber 22a, and is connected to the general fuel tank 16a from the return switching electromagnetic valve 82. Unused surplus fuel in the power generation engine 12 is returned to the general fuel tank 16a through the return line 23a. A check valve 24a is provided downstream of the return chamber 22a in the return line 23a. Each return switching electromagnetic valve 82 is electrically connected to an engine controller 80 described later, and is configured to perform switching operation based on control information from the engine controller 80.

各供給切換電磁弁81には、一般燃料タンク16aからの送り管路21aだけでなく、低硫黄燃料タンク16bからの送り管路21bも接続されている。供給切換電磁弁81の切換作動により、発電用エンジン12への供給燃料をC重油かA重油かに切り換えることになる。また同様に、各戻し切換電磁弁82には、一般燃料タンク16aへの戻し管路23aだけでなく、低硫黄燃料タンク16bへの戻し管路23bも接続されている。戻し切換電磁弁82の切換作動により、発電用エンジン12からの余剰燃料の戻し先を一般燃料タンク16aか低硫黄燃料タンク16bかに切り換えることになる。   Each supply switching electromagnetic valve 81 is connected not only to the feed line 21a from the general fuel tank 16a but also to the feed line 21b from the low sulfur fuel tank 16b. By the switching operation of the supply switching electromagnetic valve 81, the fuel supplied to the power generation engine 12 is switched between C heavy oil and A heavy oil. Similarly, each return switching electromagnetic valve 82 is connected not only to the return line 23a to the general fuel tank 16a but also to the return line 23b to the low sulfur fuel tank 16b. By the switching operation of the return switching electromagnetic valve 82, the return destination of the surplus fuel from the power generation engine 12 is switched to the general fuel tank 16a or the low sulfur fuel tank 16b.

(4).発電装置の吸排気系統
次に、図2を参照しながら、発電装置10の吸排気系統について説明する。
(4). Next, the intake / exhaust system of the power generator 10 will be described with reference to FIG.

各発電用エンジン12には、空気取り込み用の吸気経路(図示省略)と排気ガス排出用の排気経路25とが接続されている。吸気経路を通じて取り込まれた空気は、発電用エンジン12の各気筒内(吸気行程の気筒内)に送られる。そして、各気筒の圧縮行程完了時に、燃料タンク16から吸い上げられた燃料を燃料噴射装置にて気筒毎の燃焼室(副室)内に圧送することにより、各燃焼室にて混合気の自己着火燃焼に伴う膨張行程が行われることになる。   Each power generation engine 12 is connected to an intake path (not shown) for air intake and an exhaust path 25 for exhaust gas discharge. The air taken in through the intake path is sent into each cylinder of the power generation engine 12 (inside the cylinder in the intake stroke). When the compression stroke of each cylinder is completed, the fuel sucked up from the fuel tank 16 is pumped into the combustion chamber (sub chamber) for each cylinder by the fuel injection device, so that the air-fuel mixture is self-ignited in each combustion chamber. An expansion stroke accompanying combustion is performed.

各発電用エンジン12の排気経路25は、ファンネル5まで延びた主排気路29と、主排気路29の中途部から分岐した分岐排気路30とを有している。前述の通り、各主排気路29はファンネル5まで延びていて、外部に直接連通するように構成されている。各分岐排気路30はいずれも1つの集合経路26に合流している。集合経路26のうち最下流の分岐排気路30より更に下流側には、主として排気ガスの浄化処理(NOx還元処理)をする後処理装置27が設けられている。   The exhaust passage 25 of each power generation engine 12 has a main exhaust passage 29 extending to the funnel 5 and a branch exhaust passage 30 branched from a middle portion of the main exhaust passage 29. As described above, each main exhaust passage 29 extends to the funnel 5 and is configured to communicate directly with the outside. Each of the branch exhaust passages 30 merges into one collective passage 26. A post-processing device 27 that mainly performs exhaust gas purification processing (NOx reduction processing) is provided on the downstream side of the most downstream branch exhaust passage 30 in the collecting passage 26.

各排気経路25における主排気路29と分岐排気路30には、それぞれを開閉する開閉部材として、気体作動式の開閉バルブ28a,28bが設けられている(実施形態では3組、計6個)。これら開閉バルブ28a,28bは、排気ガスの通過する経路を選択するためのものであり、一方を開けば他方を閉じるという関係になっている。また、詳細は後述するが、各開閉バルブ28a,28bは、それぞれ対応する発電用エンジン12の状態及び使用燃料の種類に応じて開閉させるように構成されている。   The main exhaust passage 29 and the branch exhaust passage 30 in each exhaust passage 25 are provided with gas-operated on-off valves 28a and 28b as opening and closing members for opening and closing each (three in the embodiment, a total of six). . These on-off valves 28a and 28b are for selecting a path through which the exhaust gas passes, and have a relationship that when one is opened, the other is closed. In addition, as will be described in detail later, the open / close valves 28a and 28b are configured to open and close according to the state of the corresponding power generation engine 12 and the type of fuel used.

第2開閉バルブ28bが閉じて第1開閉バルブ28aが開いた状態では、膨張行程後の排気行程において、複数台の発電用エンジン12から各排気経路25に送られた排気ガスが、各主排気路29を経由して(後処理装置27を通過せずに)、直接船舶1外に放出される。第1開閉バルブ28aが閉じて第2開閉バルブ28bが開いた状態では、排気ガスが各分岐排気路30を介して集合経路26にてまとめられ、後処理装置27を経由して浄化処理をされた後、船舶1外に放出される。   In a state where the second on-off valve 28b is closed and the first on-off valve 28a is opened, the exhaust gas sent from the plurality of power generation engines 12 to the exhaust passages 25 in the exhaust stroke after the expansion stroke is supplied to the main exhaust. It is discharged directly out of the ship 1 via the route 29 (without passing through the post-processing device 27). In a state where the first opening / closing valve 28a is closed and the second opening / closing valve 28b is opened, the exhaust gas is collected in the collecting passage 26 through the branch exhaust passages 30 and is purified through the post-processing device 27. After that, it is discharged out of the ship 1.

このように、各排気経路25における主排気路29と分岐排気路30とに、各排気路29,30を開閉する開閉部材としての開閉バルブ28a,28bが設けられていると、例えば規制海域内の航行時と規制海域外の航行時のように、排気ガスの浄化処理が必要な場合と不要な場合とにおいて、両開閉バルブ28a,28bの開閉状態を切り換えるだけで、排気ガスの通過する経路を適宜選択できる。従って、排気ガスの効率よい処理が可能になる。また、例えば排気ガスの浄化処理が不要な場合は、後処理装置27を避けて外部に直接連通する主排気路29側に排気ガスを誘導できる。このため、排気効率のよい状態を維持でき、各発電用エンジン12の出力低下の回避が可能になる。更に、排気ガスの浄化処理が不要な場合は、後処理装置27(後述するNOx触媒62)が排気ガスにさらされないから、後処理装置27(後述するNOx触媒62)の寿命延長にも寄与するのである。   Thus, if the main exhaust passage 29 and the branch exhaust passage 30 in each exhaust passage 25 are provided with the opening / closing valves 28a and 28b as opening and closing members for opening and closing the exhaust passages 29 and 30, for example, in the regulated sea area The path through which the exhaust gas passes is simply switched between the open / close states of both the open / close valves 28a and 28b, when the exhaust gas purification process is necessary and when it is not necessary, such as when navigating and outside the restricted sea area. Can be appropriately selected. Therefore, the exhaust gas can be processed efficiently. For example, when the exhaust gas purification process is unnecessary, the exhaust gas can be guided to the main exhaust passage 29 side directly communicating with the outside by avoiding the post-processing device 27. For this reason, a state with good exhaust efficiency can be maintained, and it becomes possible to avoid a decrease in output of each power generation engine 12. Further, when the exhaust gas purification process is unnecessary, the post-treatment device 27 (NOx catalyst 62 described later) is not exposed to the exhaust gas, which contributes to extending the life of the post-treatment device 27 (NOx catalyst 62 described later). It is.

停止中の発電用エンジン12に対する開閉バルブ28a,28bは、少なくとも分岐排気路側の第2開閉バルブ28bが閉じるように構成されている。このため、集合経路26から停止中の発電用エンジン12に向けて排気ガスが逆流するのを簡単且つ確実に防止できる。もちろん、第1開閉バルブ28aが第2開閉バルブ28bと共に閉じても構わない。   The on-off valves 28a and 28b for the power generation engine 12 that is stopped are configured so that at least the second on-off valve 28b on the branch exhaust passage side is closed. For this reason, it is possible to easily and reliably prevent the exhaust gas from flowing backward from the collecting path 26 toward the stopped power generation engine 12. Of course, the first opening / closing valve 28a may be closed together with the second opening / closing valve 28b.

前述の通り、各開閉バルブ28a,28bは気体作動式のものであり、気体の供給がない場合は開き状態に保持される(ノーマリーオープン形式)。各開閉バルブ28a,28bの駆動部は気体枝管路34を介して気体供給源32から延びる気体幹管路33に接続されている。気体供給源32は、各開閉バルブ28a,28b作動用の圧縮気体である空気(窒素ガスでもよい)を供給するためのものである。各気体枝管路34の中途部には、上流側から順に、ゲート電磁弁35と減圧バルブ36とが設けられている。各ゲート電磁弁35は、後述するエンジンコントローラ80に電気的に接続されている。そして、各ゲート電磁弁35は、エンジンコントローラ80からの制御情報に基づいて開閉作動し、対応する開閉バルブ28a,28bの駆動部に圧縮気体を供給したり停止したりするように構成されている。   As described above, the open / close valves 28a and 28b are of the gas-operated type, and are kept open when there is no gas supply (normally open type). The drive part of each on-off valve 28a, 28b is connected to a gas trunk line 33 extending from the gas supply source 32 via a gas branch line 34. The gas supply source 32 is for supplying air (which may be nitrogen gas) which is a compressed gas for operating the on-off valves 28a and 28b. A gate electromagnetic valve 35 and a pressure reducing valve 36 are provided in the middle of each gas branch line 34 in order from the upstream side. Each gate electromagnetic valve 35 is electrically connected to an engine controller 80 described later. Each gate electromagnetic valve 35 is configured to open and close based on control information from the engine controller 80, and to supply or stop compressed gas to the drive units of the corresponding open / close valves 28a and 28b. .

気体幹管路33の出口側は、後処理装置27の前部、具体的には、後述するNOx触媒62及びスリップ処理触媒63より上流側の部位に設けられた噴気部としての噴気ノズル37に接続されている。噴気ノズル37は、気体供給源32からの圧縮気体をNOx触媒62及びスリップ処理触媒63に向けて吹き付けるものであり、当該噴気ノズル37の作用により、長期間の使用で後処理装置27内に溜まった煤塵を強制的に除去することが可能になる。   The outlet side of the gas trunk line 33 is connected to a front part of the post-processing device 27, specifically, to a squirting nozzle 37 as a squirting part provided at a portion upstream of the NOx catalyst 62 and the slip processing catalyst 63 described later. It is connected. The jet nozzle 37 blows the compressed gas from the gas supply source 32 toward the NOx catalyst 62 and the slip treatment catalyst 63, and the action of the jet nozzle 37 accumulates in the post-treatment device 27 over a long period of use. It becomes possible to forcibly remove dust.

気体幹管路33のうち最下流の気体枝管路34と噴気ノズル37との間には、上流側から順に、ゲートバルブ38、減圧バルブ39、エアフィルタ40、レジューサ41及び噴気用電磁弁42が設けられている。噴気用電磁弁42は、後述する還元剤供給装置43の還元コントローラ55に電気的に接続されていて、還元コントローラ55からの制御情報に基づいて開閉作動するように構成されている。   A gate valve 38, a pressure reducing valve 39, an air filter 40, a reducer 41, and a squirting electromagnetic valve 42 are arranged in this order from the upstream side between the most downstream gas branch line 34 and the squirting nozzle 37. Is provided. The fusible electromagnetic valve 42 is electrically connected to a reduction controller 55 of a reducing agent supply device 43 described later, and is configured to open and close based on control information from the reduction controller 55.

(5).還元剤供給装置の構造
次に、図2、図4及び図6を参照しながら、還元剤供給装置43の構造について説明する。
(5). Next, the structure of the reducing agent supply device 43 will be described with reference to FIGS. 2, 4, and 6.

船舶1に搭載された還元剤供給装置43は、集合経路26内の排気ガスにNOx還元用の還元剤を供給するためのものであり、還元剤供給通路44と還元剤制御盤45とを備えている。還元剤供給通路44の一端側は、還元剤としての尿素水溶液(以下、尿素水という)を貯留する尿素水タンク46に接続されている一方、他端側は、集合経路26のうちバイパス側切換バルブ31と後処理装置27との間に設けられた還元剤供給部としての尿素水噴射ノズル47に接続されている。   The reducing agent supply device 43 mounted on the ship 1 is for supplying a reducing agent for NOx reduction to the exhaust gas in the collecting path 26, and includes a reducing agent supply passage 44 and a reducing agent control panel 45. ing. One end side of the reducing agent supply passage 44 is connected to a urea water tank 46 for storing a urea aqueous solution (hereinafter referred to as urea water) as a reducing agent, while the other end side is switched to the bypass side in the collective path 26. It is connected to a urea water injection nozzle 47 as a reducing agent supply unit provided between the valve 31 and the post-processing device 27.

還元剤供給通路44には、上流側から順に、尿素水入口バルブ48、レジューサ49、フィードポンプ50、尿素水フィルタ51、尿素水流量計52及び噴射用電磁弁53等が設けられている。フィードポンプ50は、尿素水タンク46内の尿素水を吸い上げて尿素水噴射ノズル47に向けて吐出するためのものである。フィードポンプ50には電動モータ54が連結されている。後述する還元コントローラ55からインバータ56を経由した制御情報に基づいて電動モータ54の回転駆動量を調節することにより、フィードポンプ50からの尿素水供給量を調節する構成になっている。噴射用電磁弁53は後述する還元コントローラ55に電気的に接続されていて、還元コントローラ55からの制御情報に基づいて開閉作動するように構成されている。   In the reducing agent supply passage 44, a urea water inlet valve 48, a reducer 49, a feed pump 50, a urea water filter 51, a urea water flow meter 52, an injection electromagnetic valve 53, and the like are provided in this order from the upstream side. The feed pump 50 sucks up urea water in the urea water tank 46 and discharges it toward the urea water injection nozzle 47. An electric motor 54 is connected to the feed pump 50. The urea water supply amount from the feed pump 50 is adjusted by adjusting the rotational drive amount of the electric motor 54 based on control information from the reduction controller 55 described later via the inverter 56. The injection solenoid valve 53 is electrically connected to a reduction controller 55 described later, and is configured to open and close based on control information from the reduction controller 55.

還元剤制御盤45は、NOx制御手段としての還元コントローラ55と、インバータ56と、温度調節器57と、後処理装置27の詰り状態を検出する詰り検出手段としての圧力センサ58とを備えている。還元コントローラ55は主として、排気ガス中のNOx濃度に応じた適切な量の尿素水を集合経路26に供給するように、フィードポンプ50と噴射用電磁弁53とを作動させるという還元剤調節制御を実行するものである。   The reducing agent control panel 45 includes a reduction controller 55 as NOx control means, an inverter 56, a temperature controller 57, and a pressure sensor 58 as clogging detection means for detecting the clogging state of the post-processing device 27. . The reduction controller 55 mainly performs a reducing agent adjustment control to operate the feed pump 50 and the injection electromagnetic valve 53 so as to supply an appropriate amount of urea water corresponding to the NOx concentration in the exhaust gas to the collecting path 26. It is something to execute.

詳細は図示しないが、還元コントローラ55は、各種演算処理や制御を実行するCPUの他、制御プログラムやデータを記憶させるためのROM、制御プログラムやデータを一時的に記憶させるためのRAM、及び入出力インターフェイス等を備えている。   Although not shown in detail, the reduction controller 55 includes a CPU for executing various arithmetic processes and controls, a ROM for storing control programs and data, a RAM for temporarily storing control programs and data, and an input An output interface is provided.

図6に詳細に示すように、還元コントローラ55には、インバータ56を介して電動モータ54に電気的に接続されている一方、温度調節器57を介して、集合経路26内の排気ガス温度を検出する温度検出手段としての温度センサ59が電気的に接続されている。また、還元コントローラ55には、発電機制御盤14の電力トランスデューサ15、燃料流量計20、尿素水流量計52、圧力センサ58、尿素水貯留量を検出する尿素水量センサ60、噴気用電磁弁42及び噴射用電磁弁53も電気的に接続されている。   As shown in detail in FIG. 6, the reduction controller 55 is electrically connected to the electric motor 54 via the inverter 56, while the exhaust gas temperature in the collective path 26 is adjusted via the temperature controller 57. A temperature sensor 59 as a temperature detecting means for detecting is electrically connected. Further, the reduction controller 55 includes a power transducer 15 of the generator control panel 14, a fuel flow meter 20, a urea water flow meter 52, a pressure sensor 58, a urea water amount sensor 60 that detects a urea water storage amount, and a fumarole electromagnetic valve 42. The injection solenoid valve 53 is also electrically connected.

詰り検出手段としての圧力センサ58は、前述した噴気ノズル37と同様に、後処理装置27の前部、具体的には、後述するNOx触媒62及びスリップ処理触媒63より上流側の部位に設けられている。実施形態では、後処理装置27内に煤塵が堆積していない新品状態でのNOx触媒62上流側の圧力(基準圧力値)を、還元コントローラ55のROM等に予め記憶させておき、同じ測定箇所における現在の圧力を圧力センサ58にて検出し、基準圧力値と圧力センサ58の検出値との圧力差を求め、当該圧力差に基づいて後処理装置27の煤塵堆積量が換算される。   The pressure sensor 58 as clogging detection means is provided at the front portion of the post-processing device 27, specifically, at the upstream side of the NOx catalyst 62 and the slip processing catalyst 63, which will be described later, in the same manner as the fusible nozzle 37 described above. ing. In the embodiment, the pressure (reference pressure value) on the upstream side of the NOx catalyst 62 in a new state in which dust does not accumulate in the post-processing device 27 is stored in advance in the ROM or the like of the reduction controller 55, and the same measurement location. Is detected by the pressure sensor 58, a pressure difference between the reference pressure value and the detected value of the pressure sensor 58 is obtained, and the amount of dust accumulated in the post-processing device 27 is converted based on the pressure difference.

そして、圧力差が設定値以上になると、還元コントローラ55からの指令にて噴気用電磁弁42が開き、気体供給源32から噴気ノズル37に圧縮気体が送られ、噴気ノズル37からNOx触媒62及びスリップ処理触媒63に向けて圧縮気体が吹き付けられることになる。なお、集合経路26のうち後処理装置27を挟んで上下流側に、それぞれ圧力センサを配置し、両者の検出値の差から後処理装置27の煤塵堆積量を換算するようにしてもよい。   When the pressure difference becomes equal to or larger than the set value, the jet solenoid valve 42 is opened by a command from the reduction controller 55, the compressed gas is sent from the gas supply source 32 to the jet nozzle 37, and the NOx catalyst 62 and The compressed gas is blown toward the slip treatment catalyst 63. In addition, pressure sensors may be arranged on the upstream and downstream sides of the collecting path 26 with the post-processing device 27 interposed therebetween, and the dust accumulation amount of the post-processing device 27 may be converted from the difference between the detected values.

集合経路26内の排気ガス温度を検出する温度センサ59は、集合経路26のうち尿素水噴射ノズル47と後処理装置27との間に設けられている。実施形態では、温度センサ59の検出温度が設定上限温度(例えば305℃)以上になると、還元コントローラ55からの指令にて噴射用電磁弁53が開き、フィードポンプ50の駆動にて尿素水タンク46から尿素水噴射ノズル47に尿素水が送られ、尿素水噴射ノズル47から集合経路26内に尿素水が噴射される。   A temperature sensor 59 for detecting the exhaust gas temperature in the collecting path 26 is provided between the urea water injection nozzle 47 and the post-processing device 27 in the collecting path 26. In the embodiment, when the temperature detected by the temperature sensor 59 reaches a set upper limit temperature (for example, 305 ° C.) or higher, the injection solenoid valve 53 is opened by a command from the reduction controller 55, and the urea water tank 46 is driven by driving the feed pump 50. The urea water is sent from the urea water injection nozzle 47 to the urea water injection nozzle 47, and the urea water is injected from the urea water injection nozzle 47 into the collecting path 26.

尿素水貯留量を検出する尿素水量センサ60はフロート式のものであり、尿素水タンク46内に配置されている。この場合、尿素水量センサ60の上下高さ位置の変化に基づき、尿素水タンク46内の尿素水貯留量が検出される。   The urea water amount sensor 60 for detecting the urea water storage amount is of a float type and is disposed in the urea water tank 46. In this case, the urea water storage amount in the urea water tank 46 is detected based on the change in the vertical height position of the urea water amount sensor 60.

還元コントローラ55は、電力トランスデューサ15にて検出された発電電力量に基づき、インバータ56を介して電動モータ54の回転駆動量を調節して、フィードポンプ50からの尿素水供給量を調節するように構成されている。これは、排気ガス中のNOx濃度が、ディーゼル発電機11群の合計発電電力量(発電用エンジン12群の合計出力(又は合計負荷)でもよい)と概ね比例関係にあるためである。従って、NOxの還元に必要な尿素水供給量(還元剤供給量)は、合計発電電力量、ひいては排気ガス中のNOx濃度に概ね比例することになる。ここで、図示は省略するが、NOxの還元に必要な尿素水供給量と発電電力量との関係は、例えばマップ形式又は関数表形式にて、還元コントローラ55(例えばROM等)に予め記憶されている。   The reduction controller 55 adjusts the amount of urea water supplied from the feed pump 50 by adjusting the rotational drive amount of the electric motor 54 via the inverter 56 based on the generated power amount detected by the power transducer 15. It is configured. This is because the NOx concentration in the exhaust gas is generally proportional to the total amount of power generated by the 11 groups of diesel generators (which may be the total output (or total load) of the 12 groups of power generation engines). Therefore, the urea water supply amount (reducing agent supply amount) necessary for NOx reduction is approximately proportional to the total power generation amount and, in turn, the NOx concentration in the exhaust gas. Here, although illustration is omitted, the relationship between the urea water supply amount necessary for NOx reduction and the amount of generated power is stored in advance in the reduction controller 55 (for example, ROM) in a map format or a function table format, for example. ing.

この場合、還元コントローラ55は、電力トランスデューサ15にて検出された合計発電電力量と、還元コントローラ55に予め記憶されたマップ又は関数表とから、NOxの還元に必要な尿素水供給量を求め、当該求められた供給量の尿素水を尿素水噴射ノズル47から適宜時間内に噴射するように電動モータ54を回転駆動させ、フィードポンプ50の作動量を調節している。   In this case, the reduction controller 55 obtains the urea water supply amount required for NOx reduction from the total generated power amount detected by the power transducer 15 and the map or function table stored in advance in the reduction controller 55, The electric motor 54 is rotationally driven to adjust the operation amount of the feed pump 50 so as to inject the determined supply amount of urea water from the urea water injection nozzle 47 in a timely manner.

実施形態の電力トランスデューサ15はNOx検出手段に相当するものである。すなわち電力トランスデューサ15は発電機13群の合計発電電力量を検出し、当該電力トランスデューサ15の検出結果に基づき、排気ガス中のNOx濃度が間接的に把握されることになる。なお、NOx検出手段は、電力トランスデューサ15に限らず、各発電用エンジン12の出力を検出するものでもよいし、燃料噴射量から各発電用エンジン12の負荷を検出するものでもよい。また、排気ガス中のNOx濃度を直接検出するものでもよい。   The power transducer 15 of the embodiment corresponds to NOx detection means. That is, the power transducer 15 detects the total amount of power generated by the group of generators 13, and the NOx concentration in the exhaust gas is indirectly grasped based on the detection result of the power transducer 15. The NOx detection means is not limited to the power transducer 15 and may be one that detects the output of each power generation engine 12 or may be one that detects the load of each power generation engine 12 from the fuel injection amount. Alternatively, the NOx concentration in the exhaust gas may be directly detected.

このように、NOx検出手段としての電力トランスデューサ15は発電機13群の合計発電電力量を検出し、当該電力トランスデューサ15の検出結果に基づき、排気ガス中のNOx濃度が間接的に把握される構成になっていると、NOx濃度検出専用のセンサが要らず、構成を簡素化して製造コストの低減に寄与できる。   In this way, the power transducer 15 as the NOx detecting means detects the total amount of generated power of the generator 13 group, and the NOx concentration in the exhaust gas is indirectly grasped based on the detection result of the power transducer 15. In this case, a sensor dedicated to NOx concentration detection is not required, and the configuration can be simplified to contribute to the reduction of the manufacturing cost.

(6).後処理装置の構造
次に、図2、図4及び図5を参照しながら、後処理装置27の構造について説明する。
(6). Structure of Post-Processing Device Next, the structure of the post-processing device 27 will be described with reference to FIGS. 2, 4 and 5.

後処理装置27は、略筒型に形成された耐熱金属材料製の後処理ケーシング61内に、上流側から順に、排気ガス中のNOxの還元を促進させるNOx触媒62と、余分に供給された還元剤(この場合は加水分解後のアンモニア)の酸化処理を促進させるスリップ処理触媒63と、排気ガスの排気音を減衰させる消音器64とを直列に並べて収容したものである。各触媒62,63は、多孔質な(ろ過可能な)隔壁にて区画された多数個のセルからなるハニカム構造になっており、例えばアルミナ、ジルコニア、バナジア/チタニア又はゼオライト等の触媒金属を有している。   The post-treatment device 27 was supplied in excess from a NOx catalyst 62 for promoting the reduction of NOx in the exhaust gas in order from the upstream side in the post-treatment casing 61 made of a heat-resistant metal material formed in a substantially cylindrical shape. A slip treatment catalyst 63 that promotes the oxidation treatment of the reducing agent (in this case, ammonia after hydrolysis) and a silencer 64 that attenuates the exhaust noise of the exhaust gas are accommodated in series. Each of the catalysts 62 and 63 has a honeycomb structure composed of a large number of cells partitioned by porous (filterable) partition walls, and has a catalytic metal such as alumina, zirconia, vanadia / titania, or zeolite. doing.

NOx触媒62は、尿素水噴射ノズル47からの尿素水の加水分解にて生じたアンモニアを還元剤として、排気ガス中のNOxを選択還元することにより、後処理装置27内に送られた排気ガスを浄化するものである。また、スリップ処理触媒63は、NOx触媒62から流出した未反応(余剰)のアンモニアを酸化して無害な窒素にするものである。この場合、後処理ケーシング61内では下記の反応式:
(NHCO+HO → 2NH+CO(加水分解)
NO+NO+2NH→ 2N+3HO(NOx触媒62での反応)
4NO+4NH+O→ 4N+6HO(NOx触媒62での反応)
6NO+8NH→ 7N+12HO(NOx触媒62での反応)
4NH+3O→ 2N+6HO(スリップ処理触媒63での反応)
が生ずることになる。
The NOx catalyst 62 uses the ammonia produced by the hydrolysis of the urea water from the urea water injection nozzle 47 as a reducing agent to selectively reduce NOx in the exhaust gas, whereby the exhaust gas sent into the aftertreatment device 27. Is to purify. The slip treatment catalyst 63 oxidizes unreacted (surplus) ammonia flowing out of the NOx catalyst 62 to harmless nitrogen. In this case, in the post-processing casing 61, the following reaction formula:
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 (hydrolysis)
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (reaction with NOx catalyst 62)
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (reaction at NOx catalyst 62)
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O (reaction with NOx catalyst 62)
4NH 3 + 3O 2 → 2N 2 + 6H 2 O (reaction at slip treatment catalyst 63)
Will occur.

消音器64は後処理ケーシング61の後部側に形成されている。後処理ケーシング61の後部側は2枚の蓋板65,66にて塞がれていて、これら両蓋板65,66を略筒型の排出パイプ67が貫通している。排出パイプ67の出口側は後処理ケーシング61の出口に連通している。排出パイプ67における前後両蓋板65,66の間は閉鎖板68にて閉鎖されており、排出パイプ67のうち閉鎖板68を挟んで両側の周壁部には、それぞれ複数の連通穴69,70が形成されている。後処理ケーシング61における両蓋板65,66の間は、排出パイプ67内に複数の連通穴69,70を介して連通する共鳴室71になっている。従って、排出パイプ67の上流側に入り込んだ排気ガスは、上流側の連通穴69、共鳴室71、下流側の連通穴70を介して排出パイプ67の下流側を通過し、後処理ケーシング61外に放出されることになる。   The silencer 64 is formed on the rear side of the post-processing casing 61. The rear side of the post-processing casing 61 is closed by two cover plates 65 and 66, and a substantially cylindrical discharge pipe 67 passes through both the cover plates 65 and 66. The outlet side of the discharge pipe 67 communicates with the outlet of the post-processing casing 61. The front and rear cover plates 65, 66 of the discharge pipe 67 are closed by a closing plate 68, and a plurality of communication holes 69, 70 are formed in the peripheral wall portions on both sides of the discharge pipe 67 with the closing plate 68 interposed therebetween. Is formed. Between the lid plates 65 and 66 in the post-processing casing 61 is a resonance chamber 71 that communicates with the inside of the discharge pipe 67 via a plurality of communication holes 69 and 70. Therefore, the exhaust gas that has entered the upstream side of the discharge pipe 67 passes through the downstream side of the discharge pipe 67 via the upstream side communication hole 69, the resonance chamber 71, and the downstream side communication hole 70, and is outside the post-processing casing 61. Will be released.

主排気路29側の第1開閉バルブ28aを閉じて分岐排気路30側の第2開閉バルブ28bを開いた状態において、各分岐排気路30を介して集合経路26にてまとめられた排気ガスは、後処理ケーシング61内に進入し、NOx触媒62及びスリップ処理触媒63を通過して浄化処理をされる。そして、浄化処理後の排出ガスは、排出パイプ67の上流側から、上流側の連通穴69、共鳴室71、下流側の連通穴70を経由して、排出パイプ67の下流側に入り、後処理ケーシング61外ひいては船舶1外に放出される。   In a state where the first opening / closing valve 28a on the main exhaust passage 29 side is closed and the second opening / closing valve 28b on the branch exhaust passage 30 side is opened, the exhaust gas collected in the collecting passage 26 via each branch exhaust passage 30 is Then, it enters the post-treatment casing 61 and passes through the NOx catalyst 62 and the slip treatment catalyst 63 to be purified. The exhaust gas after the purification treatment enters the downstream side of the exhaust pipe 67 from the upstream side of the exhaust pipe 67 via the upstream communication hole 69, the resonance chamber 71, and the downstream communication hole 70. It is discharged out of the processing casing 61 and out of the ship 1.

以上のように、NOx触媒62を収容する後処理ケーシング61内には、NOx触媒62より下流側に、余分に供給された還元剤(実施形態では加水分解後のアンモニア)の酸化処理を促すスリップ処理触媒63が配置されているから、NOx触媒62を未反応のまま通過しようとする余剰の還元剤(アンモニア)を、窒素に酸化処理して無害化でき、排気ガス中にアンモニアが残存するおそれを確実に回避できる。また、NOx触媒62とスリップ処理触媒63とをパッケージ化でき、排気構造の下流側をコンパクトに構成できる。   As described above, in the post-treatment casing 61 that accommodates the NOx catalyst 62, the slip that promotes the oxidation treatment of the reducing agent (ammonia after hydrolysis) supplied excessively downstream from the NOx catalyst 62. Since the treatment catalyst 63 is arranged, surplus reducing agent (ammonia) that passes through the NOx catalyst 62 without being reacted can be rendered harmless by oxidation treatment with nitrogen, and ammonia may remain in the exhaust gas. Can be avoided reliably. Further, the NOx catalyst 62 and the slip treatment catalyst 63 can be packaged, and the downstream side of the exhaust structure can be configured compactly.

また、NOx触媒62を収容する後処理ケーシング61には、排気ガスの排気音を減衰させるための消音器64を備えているから、NOx触媒62、スリップ処理触媒63及び消音器64を単一の後処理ケーシング61にパッケージ化でき、排気構造の下流側をコンパクトに構成できる。   Further, since the post-processing casing 61 that accommodates the NOx catalyst 62 is provided with a silencer 64 for attenuating exhaust noise of the exhaust gas, the NOx catalyst 62, the slip treatment catalyst 63, and the silencer 64 are provided as a single unit. The post-processing casing 61 can be packaged, and the downstream side of the exhaust structure can be configured compactly.

(7).エンジンコントローラの構造
次に、図6を参照しながら、エンジン制御手段としてのエンジンコントローラ80の構造について説明する。
(7). Next, the structure of the engine controller 80 as engine control means will be described with reference to FIG.

船舶1に搭載されたエンジンコントローラ80は、主として各発電用エンジン12の駆動制御を司るものである。詳細は図示しないが、エンジンコントローラ80も、還元コントローラ55と同様に、各種演算処理や制御を実行するCPUの他、制御プログラムやデータを記憶させるためのROM、制御プログラムやデータを一時的に記憶させるためのRAM、及び入出力インターフェイス等を備えている。   The engine controller 80 mounted on the ship 1 mainly controls drive control of each power generation engine 12. Although details are not shown, the engine controller 80 also temporarily stores a ROM for storing a control program and data, a control program and data, in addition to a CPU that executes various arithmetic processes and controls, like the reduction controller 55. RAM, an input / output interface, and the like are provided.

エンジンコントローラ80には、前述した供給切換電磁弁81及び各戻し切換電磁弁82と、各燃料ポンプ18に設けられた燃料噴射装置83と、各発電用エンジン12の回転数を検出する回転数検出手段としてのエンジン回転センサ84と、燃料噴射量を検出する噴射量検出センサ85とが電気的に接続されている。エンジンコントローラ80には、還元剤供給装置43の還元コントローラ55も電気的に接続されていて、コントローラ55,80同士が相互に制御情報を授受して各制御を実行するように構成されている。   The engine controller 80 includes the above-described supply switching solenoid valve 81 and each return switching solenoid valve 82, a fuel injection device 83 provided in each fuel pump 18, and a rotational speed detection that detects the rotational speed of each power generation engine 12. An engine rotation sensor 84 as means and an injection amount detection sensor 85 for detecting the fuel injection amount are electrically connected. The engine controller 80 is also electrically connected to a reduction controller 55 of the reducing agent supply device 43, and is configured such that the controllers 55 and 80 exchange control information with each other and execute each control.

また、エンジンコントローラ80には、人工衛星86や地上局87からの電波にて船舶1(自船)の現在位置を特定できる自船位置検出手段88を構成するGPSコントローラ89が電気的に接続されている。自船位置検出手段88は、例えば自動車用のものと同様に、全地球測位システム(GPS)を利用するものであり、前述のGPSコントローラ89と、これに接続されたGPSアンテナ90とを備えている。GPSアンテナ90は船舶1のキャビン4に突設されている。   The engine controller 80 is electrically connected to a GPS controller 89 that constitutes ship position detecting means 88 that can identify the current position of the ship 1 (own ship) by radio waves from the artificial satellite 86 and the ground station 87. ing. The own ship position detecting means 88 uses a global positioning system (GPS), for example, similar to that for automobiles, and includes the aforementioned GPS controller 89 and a GPS antenna 90 connected thereto. Yes. The GPS antenna 90 protrudes from the cabin 4 of the ship 1.

GPSコントローラ89は、GPSアンテナ90にて捕捉した人工衛星86又は地上局87からの電波(人工衛星86又は地上局87の現在位置情報等)から、船舶1の現在位置情報を算出するものであり、還元コントローラ55やエンジンコントローラ80と同様に、各種演算処理や制御を実行するCPUの他、制御プログラムやデータを記憶させるためのROM、制御プログラムやデータを一時的に記憶させるためのRAM、及び入出力インターフェイス等を備えている。   The GPS controller 89 calculates current position information of the ship 1 from radio waves from the artificial satellite 86 or the ground station 87 captured by the GPS antenna 90 (current position information of the artificial satellite 86 or the ground station 87). Like the reduction controller 55 and the engine controller 80, in addition to a CPU that executes various arithmetic processes and controls, a ROM for storing control programs and data, a RAM for temporarily storing control programs and data, and It has an input / output interface.

GPSコントローラ89には、NOx(窒素酸化物)やSOx(硫黄酸化物)の排出量を規制する規制海域についての規制海域情報がデジタルマップデータとして予め記憶されている。かかる規制海域情報のマップデータは地球全体の情報を網羅したものでもよいし、航海範囲が限定されていれば当該範囲(例えば、太平洋のみや東経○○〜△△度の範囲)に限っていてもよい。規制海域は変更される場合があるので、規制海域情報のマップデータは更新可能であるのが好ましい。   The GPS controller 89 stores in advance, as digital map data, regulatory sea area information regarding the regulatory sea area that regulates NOx (nitrogen oxide) and SOx (sulfur oxide) emissions. The map data of such regulated sea area information may cover the information of the entire earth, and if the voyage range is limited, it is limited to that range (for example, only the Pacific Ocean or the east longitude XX to △△ degree range). Also good. Since the regulated sea area may be changed, the map data of the regulated sea area information is preferably updatable.

なお、自船位置検出手段88はGPSを利用するものに限らず、例えばサテライトコンパスのように自船の位置を把握できるものであればよい。規制海域情報を記憶する手段は、例えば光ディスクのような外部記憶媒体でもよいし、ハードディスクのような内蔵型記憶媒体でもよい。また、規制海域情報を記憶する手段をエンジンコントローラ80側に設けることも可能である。   The own ship position detecting means 88 is not limited to the one using the GPS, and may be any apparatus capable of grasping the position of the own ship such as a satellite compass. The means for storing the regulated sea area information may be an external storage medium such as an optical disk or a built-in storage medium such as a hard disk. It is also possible to provide a means for storing the regulated sea area information on the engine controller 80 side.

(8).切換制御の具体例
次に、図8及び図9のフローチャートを参照しながら、規制海域との関係における切換制御の一例について説明する。実施形態のエンジンコントローラ80は、各発電用エンジン12の駆動制御以外に、排気ガスの通過する経路や使用燃料を自動的に切り換える切換制御(開閉バルブの開閉制御や燃料切換制御の総称)も実行可能に構成されている。ここで、船舶1は航行中であるものとする。
(8). Specific Example of Switching Control Next, an example of switching control in relation to the regulated sea area will be described with reference to the flowcharts of FIGS. 8 and 9. The engine controller 80 according to the embodiment also executes switching control (a general term for opening / closing control of the on-off valve and fuel switching control) for automatically switching the path through which the exhaust gas passes and the fuel to be used in addition to the drive control of each power generation engine 12. It is configured to be possible. Here, it is assumed that the ship 1 is sailing.

この場合、図8のフローチャートに示すように、自船位置検出手段88にて船舶1の現在位置を特定した後、当該現在位置と規制海域情報のマップデータとを比較照合し、船舶1が規制海域外にいるか規制海域内にいるかを判別する。言うまでもないが、船舶1が規制海域外にいれば、燃料としてC重油が使用され、排気ガスは各主排気路29を介して直接船舶1外に放出される状況下にある。船舶1が規制海域内にいれば、燃料としてA重油が使用され、排気ガスは各分岐排気路30、集合経路26及び後処理装置27を経由して、船舶1外に放出される状況下にある。   In this case, as shown in the flowchart of FIG. 8, after the current position of the ship 1 is specified by the own ship position detecting means 88, the current position is compared with the map data of the regulated sea area information, and the ship 1 is regulated. Determine whether you are outside the sea area or within the regulated sea area. Needless to say, if the ship 1 is outside the regulated sea area, C heavy oil is used as the fuel, and the exhaust gas is directly discharged to the outside of the ship 1 through each main exhaust passage 29. If the ship 1 is in the regulated sea area, heavy fuel oil A is used as fuel, and the exhaust gas is released to the outside of the ship 1 via each branch exhaust path 30, the collecting path 26, and the aftertreatment device 27. is there.

船舶1が規制海域外にいる場合は、船舶1の現在位置から規制海域の境界までの距離を求め、次いで、当該距離が予め設定されたターゲット距離内か否かを判別する。ターゲット距離は、使用燃料等の切換に要する時間に対応した距離に相当するものであり、切換に要する時間と船舶1の航行速度とから定められる。なお、ターゲット距離は航行速度に比例する変数に設定しておいてもよい(高速の場合は早く境界に到達するので、準備のためのターゲット距離は長くする必要がある)。   When the ship 1 is outside the regulated sea area, the distance from the current position of the ship 1 to the boundary of the regulated sea area is obtained, and then it is determined whether the distance is within a preset target distance. The target distance corresponds to the distance corresponding to the time required for switching the fuel used and is determined from the time required for switching and the navigation speed of the ship 1. Note that the target distance may be set to a variable proportional to the navigation speed (at the high speed, the boundary is reached quickly, so the target distance for preparation needs to be increased).

船舶1から境界までの距離がターゲット距離内であると、駆動中の発電用エンジン12に対する第1開閉バルブ28aを、これに対応するゲート電磁弁35の駆動に基づく圧縮気体の供給にて閉止させると共に、第2開閉バルブ28bを、これに対応するゲート電磁弁35の駆動に基づく圧縮気体の供給停止にて開放させ、排気ガスを後処理装置27に送り込む(排気ガスの通過経路を後処理装置27側に切り換える)。また、供給切換電磁弁81の切換駆動にて、駆動中の発電用エンジン12の燃料ポンプ18と低硫黄燃料タンク16bとを連通させ、使用燃料をC重油からA重油に切り換える。このとき、戻し切換電磁弁82も切換駆動して、戻し管路23を低硫黄燃料タンク16bに連通させることになる。   When the distance from the ship 1 to the boundary is within the target distance, the first opening / closing valve 28a for the power generation engine 12 being driven is closed by supplying compressed gas based on the driving of the corresponding gate electromagnetic valve 35. At the same time, the second open / close valve 28b is opened by stopping the supply of compressed gas based on the driving of the corresponding gate solenoid valve 35, and the exhaust gas is sent to the post-processing device 27 (the exhaust gas passage is connected to the post-processing device). Switch to 27 side). Further, the switching operation of the supply switching electromagnetic valve 81 causes the fuel pump 18 of the driving power generation engine 12 to communicate with the low sulfur fuel tank 16b to switch the fuel to be used from C heavy oil to A heavy oil. At this time, the return switching electromagnetic valve 82 is also switched to connect the return line 23 to the low sulfur fuel tank 16b.

その後、温度センサ59にて検出された排気ガス温度が設定上限温度(例えば305℃)以上になると、噴射用電磁弁53を開くと共に、フィードポンプ50の駆動にて尿素水タンク46から尿素水噴射ノズル47に尿素水を送り、尿素水噴射ノズル47から集合経路26内に尿素水を噴射するのである。   Thereafter, when the exhaust gas temperature detected by the temperature sensor 59 becomes equal to or higher than the set upper limit temperature (for example, 305 ° C.), the injection electromagnetic valve 53 is opened, and the urea pump is driven from the urea tank 46 by driving the feed pump 50. The urea water is sent to the nozzle 47, and the urea water is injected into the collecting path 26 from the urea water injection nozzle 47.

逆に、船舶1が規制海域内にいる場合は、その後、船舶1が規制海域の境界を超えてから、噴射用電磁弁53を閉じると共にフィードポンプ50の駆動を停止させ、尿素水の供給を停止する。そして、駆動中の発電用エンジン12に対する第1開閉バルブ28aを、これに対応するゲート電磁弁35の駆動に基づく圧縮気体の供給停止にて開放させると共に、第2開閉バルブ28bを、これに対応するゲート電磁弁35の駆動に基づく圧縮気体の供給にて閉止させ、排気ガスを各主排気路29から直接船舶1外に放出する。また、供給切換電磁弁81の切換駆動にて、駆動中の発電用エンジン12の燃料ポンプ18と一般燃料タンク16aとを連通させ、使用燃料をA重油からC重油に切り換えるのである。このとき、戻し切換電磁弁82も切換駆動して、戻し管路23を一般燃料タンク16aに連通させることになる。   On the contrary, when the ship 1 is in the regulated sea area, after the ship 1 exceeds the border of the regulated sea area, the injection solenoid valve 53 is closed and the drive of the feed pump 50 is stopped to supply urea water. Stop. Then, the first opening / closing valve 28a for the power generation engine 12 being driven is opened by stopping the supply of compressed gas based on the driving of the corresponding gate electromagnetic valve 35, and the second opening / closing valve 28b is corresponding to this. Then, it is closed by the supply of compressed gas based on the driving of the gate electromagnetic valve 35, and the exhaust gas is discharged directly from the main exhaust passage 29 to the outside of the ship 1. In addition, by the switching drive of the supply switching electromagnetic valve 81, the fuel pump 18 of the driving power generation engine 12 and the general fuel tank 16a are connected to switch the fuel to be used from A heavy oil to C heavy oil. At this time, the return switching electromagnetic valve 82 is also switched to connect the return line 23 to the general fuel tank 16a.

以上の説明から明らかなように、実施形態では、各発電用エンジン12の駆動制御を司るエンジン制御手段としてのエンジンコントローラ80が各開閉バルブ28a,28bの開閉制御を実行するように構成されているから、排気ガスの浄化処理(NOx還元処理)が必要な場合と不要な場合とにおいて、両開閉バルブ28a,28bの開閉状態を自動的に切り換えでき、排気ガスの通過する経路を簡単に選択できる。従って、船舶1の置かれた状況に応じて、排気ガスを効率よく処理できる。その上、両開閉バルブ28a,28bの開閉切換作業を自動化できるので、船員の負担軽減に効果的である。   As is apparent from the above description, in the embodiment, the engine controller 80 serving as an engine control unit that controls the driving of each power generation engine 12 is configured to execute the opening / closing control of each opening / closing valve 28a, 28b. Therefore, the open / close state of both the open / close valves 28a and 28b can be automatically switched between when the exhaust gas purification process (NOx reduction process) is required and when it is unnecessary, and the path through which the exhaust gas passes can be easily selected. . Therefore, the exhaust gas can be processed efficiently according to the situation where the ship 1 is placed. In addition, since the opening / closing switching operation of the both opening / closing valves 28a, 28b can be automated, it is effective in reducing the burden on the crew.

しかも、集合経路26内の排気ガス温度を検出する温度検出手段としての温度センサ59を備えており、駆動中の各発電用エンジン12に対する主排気路29側の第1開閉バルブ28aを閉じて分岐排気路30側の第2開閉バルブ28bを開いた状態において、温度センサ59にて検出された排気ガス温度が設定上限温度以上になると、還元剤供給部としての尿素水噴射ノズル47から還元剤である尿素水を供給するように構成されているから、NOx還元が効率よく進む温度域(約305℃以上)を使って排気ガスを浄化処理することになる。このため、後処理装置27でのNOx還元効果を高い状態に維持できる。また、尿素水を効率よく使用できるから、ランニングコストの抑制にも寄与する。   In addition, a temperature sensor 59 is provided as temperature detecting means for detecting the exhaust gas temperature in the collective path 26, and the first open / close valve 28a on the main exhaust path 29 side for each power generation engine 12 being driven is closed and branched. When the exhaust gas temperature detected by the temperature sensor 59 is equal to or higher than the set upper limit temperature in the state in which the second opening / closing valve 28b on the exhaust passage 30 side is opened, the urea water injection nozzle 47 serving as the reducing agent supply unit uses the reducing agent. Since it is configured to supply certain urea water, the exhaust gas is purified using a temperature range (about 305 ° C. or higher) in which NOx reduction proceeds efficiently. For this reason, the NOx reduction effect in the post-processing device 27 can be maintained in a high state. Moreover, since urea water can be used efficiently, it contributes also to suppression of running cost.

また、船舶1(自船)の現在位置を特定できる自船位置検出手段88を更に備えており、自船位置検出手段88には排気ガスの規制海域に関する規制海域情報が予め記憶されており、自船位置検出手段88にて、規制海域と船舶1の現在位置との位置関係が特定され、特定された位置関係情報に基づいて、エンジンコントローラ80が各開閉バルブ28a,28bを開閉させるように構成されているから、規制海域に進入する前や規制海域を出た後といった状況に応じて、自動的且つ的確に排気ガスの通過する経路を選択できることになる。従って、NOx規制を遵守して環境汚染に配慮できる。また、船舶1が規制海域外か規制海域内かの監視を省略できるから、船員の負担軽減に効果的である。   The ship further includes own ship position detecting means 88 that can identify the current position of the ship 1 (own ship), and the own ship position detecting means 88 stores in advance restriction sea area information relating to the restricted sea area of the exhaust gas. The own ship position detecting means 88 specifies the positional relationship between the regulated sea area and the current position of the ship 1 so that the engine controller 80 opens and closes the on-off valves 28a and 28b based on the specified positional relation information. Thus, the route through which the exhaust gas passes can be selected automatically and accurately according to the situation such as before entering the restricted sea area or after leaving the restricted sea area. Therefore, environmental pollution can be considered in compliance with NOx regulations. Further, since monitoring of whether the ship 1 is outside the regulated sea area or inside the regulated sea area can be omitted, it is effective in reducing the burden on seafarers.

特に、エンジンコントローラ80は、駆動中の各発電用エンジン12に対する両開閉バルブ28a,28b群について、船舶1が規制海域内に進入する際に、分岐排気路30側の第2開閉バルブ28bを開放して主排気路29側の第1開閉バルブ28aを閉止させ、船舶1が規制海域外に進出する際に、主排気路29側の第1開閉バルブ28aを開放して分岐排気路30側の第2開閉バルブ28aを閉止させるように制御するので、排気ガスの浄化処理が必要な場合は、排気ガスを確実に後処理装置27側に誘導できる。また、浄化処理が不要な場合は、後処理装置27を避けて外部に直接連通する主排気路29側に排気ガスを確実に誘導して、排気効率のよい状態を維持できる。従って、各発電用エンジン12の出力低下を回避できる。   In particular, the engine controller 80 opens the second opening / closing valve 28b on the side of the branch exhaust passage 30 when the ship 1 enters the restricted sea area with respect to the group of both opening / closing valves 28a, 28b for the respective power generation engines 12 being driven. Then, the first on-off valve 28a on the main exhaust passage 29 side is closed, and when the ship 1 moves out of the restricted sea area, the first on-off valve 28a on the main exhaust passage 29 side is opened to open the branch exhaust passage 30 side. Since the second opening / closing valve 28a is controlled to be closed, the exhaust gas can be reliably guided to the post-processing device 27 side when the exhaust gas purification process is required. Further, when the purification process is unnecessary, the exhaust gas can be reliably guided to the main exhaust passage 29 side that communicates directly with the outside, avoiding the post-processing device 27, and the state of good exhaust efficiency can be maintained. Accordingly, it is possible to avoid a decrease in the output of each power generation engine 12.

更に、実施形態では、各発電用エンジン12への燃料供給をA重油とC重油とに選択的に切り換える燃料切換手段としての供給切換電磁弁81を更に備えており、エンジンコントローラ80が供給切換電磁弁81による燃料切換制御を実行するように構成されているから、例えば規制海域内の航行時と規制海域外の航行時のように、A重油を使用する場合とC重油で済む場合とを、供給切換電磁弁81の切換駆動にて自動的に選択できることになる。従って、SOx排出規制に対処して環境汚染に配慮しながら、燃料コストの上昇を抑制できる。しかも、従来のような燃料切換作業を省略できるので、省力化及び船員の負担軽減にも貢献できる。   Furthermore, the embodiment further includes a supply switching electromagnetic valve 81 as fuel switching means for selectively switching the fuel supply to each power generation engine 12 between A heavy oil and C heavy oil, and the engine controller 80 is configured to supply the supply switching electromagnetic. Since the fuel switching control by the valve 81 is configured to be executed, for example, when using heavy oil A and when using heavy fuel oil C, such as when navigating within the restricted sea area and when navigating outside the restricted sea area, It can be automatically selected by switching driving of the supply switching electromagnetic valve 81. Therefore, it is possible to suppress an increase in fuel cost while dealing with SOx emission regulations and considering environmental pollution. In addition, since the conventional fuel switching operation can be omitted, it is possible to save labor and reduce the burden on the crew.

また、自船位置検出手段88にて、規制海域と船舶1の現在位置との位置関係が特定され、特定された位置関係情報に基づいてエンジンコントローラ80が供給切換電磁弁81を切換作動させるように構成されているから、規制海域に進入する前や規制海域を出た後といった状況に応じて、自動的且つ的確に使用燃料を選択・切り換えできることになる。従って、SOx排出規制を遵守して環境汚染の抑制に確実に寄与できる。   Further, the own ship position detecting means 88 specifies the positional relationship between the regulated sea area and the current position of the ship 1, and the engine controller 80 switches the supply switching electromagnetic valve 81 based on the specified positional relation information. Therefore, the fuel to be used can be selected and switched automatically and accurately in accordance with the situation such as before entering the regulated sea area or after leaving the regulated sea area. Therefore, it is possible to reliably contribute to the suppression of environmental pollution by complying with SOx emission regulations.

特に、実施形態のエンジンコントローラ80は、駆動中の各発電用エンジン12に対する両開閉バルブ28a,28bの開閉制御と、供給切換電磁弁81の切換制御とを相互に連動させて実行するから、NOx及びSOx排出規制の双方に的確に対処できるのである。   In particular, the engine controller 80 according to the embodiment executes the opening / closing control of the both opening / closing valves 28a, 28b and the switching control of the supply switching electromagnetic valve 81 for each power generation engine 12 being driven in conjunction with each other. And it can deal with both SOx emission regulations accurately.

さて、実施形態のエンジンコントローラ80は、船舶1が規制海域内にいてその境界を超えるまでの間、適宜時間間隔にて集合経路26内の排気ガス温度をチェックする割り込み診断処理をも実行し得るように構成されている。ここで、駆動中の各発電用エンジン12に対する主排気路29側の第1開閉バルブ28aは閉じており、分岐排気路30側の第2開閉バルブ28bは開いているものとする。   Now, the engine controller 80 of the embodiment can also execute an interrupt diagnosis process for checking the exhaust gas temperature in the collecting path 26 at appropriate time intervals until the ship 1 is in the restricted sea area and exceeds the boundary. It is configured as follows. Here, it is assumed that the first on-off valve 28a on the main exhaust passage 29 side for each power generation engine 12 being driven is closed, and the second on-off valve 28b on the branch exhaust passage 30 side is open.

この場合、図9のフローチャートに示すように、温度センサ59にて検出された排気ガス温度が設定下限温度(例えば300℃)以下になると、フィードポンプ50の駆動を抑えて尿素水の供給量を少なくするか、噴射用電磁弁53を閉じると共にフィードポンプ50の駆動を停止させ、尿素水の供給を停止する。次いで、発電用エンジン12の駆動台数を減らした上で、目標の発電電力量を維持するように、残り(駆動中)の発電用エンジン12のへの燃料噴射量を燃料噴射装置83にて増加させることにより、残りの発電用エンジン12への負荷を増大させる。なお、発電用エンジン12の駆動台数がもともと1台であれば、目標の発電電力量を維持するように、前記1台の発電用エンジン12への燃料噴射量を燃料噴射装置83にて増加させる。その結果、後処理装置27に向かう排気ガス温度が上昇することになる。   In this case, as shown in the flowchart of FIG. 9, when the exhaust gas temperature detected by the temperature sensor 59 falls below a set lower limit temperature (for example, 300 ° C.), the drive of the feed pump 50 is suppressed to reduce the supply amount of urea water. Or the electromagnetic valve 53 for injection is closed and the drive of the feed pump 50 is stopped, and the supply of urea water is stopped. Next, after reducing the number of power generation engines 12 to be driven, the fuel injection amount to the remaining (driving) power generation engine 12 is increased by the fuel injection device 83 so as to maintain the target power generation amount. As a result, the load on the remaining power generation engine 12 is increased. If the number of power generation engines 12 is originally one, the fuel injection amount to the one power generation engine 12 is increased by the fuel injection device 83 so as to maintain the target power generation amount. . As a result, the exhaust gas temperature toward the post-processing device 27 increases.

その後、排気ガス温度が設定上限温度(例えば305℃)以上になると、先に停止させた発電用エンジン12を駆動させて、発電用エンジン12の駆動台数を減らす前の台数(元の駆動台数)に戻し、燃料噴射装置83にて、各発電用エンジン12への燃料噴射量を目標の発電電力量供給に見合った量に戻す。そして、フィードポンプ50の駆動にて、尿素水の供給量を排気ガス温度低下前の状態まで戻すか、噴射用電磁弁53を開くと共にフィードポンプ50を駆動させ、尿素水の供給を再開するのである。   Thereafter, when the exhaust gas temperature becomes equal to or higher than the set upper limit temperature (for example, 305 ° C.), the number of power generation engines 12 that were previously stopped is driven to reduce the number of power generation engines 12 to be driven (original number of drives). The fuel injection device 83 returns the fuel injection amount to each power generation engine 12 to an amount commensurate with the target power generation amount supply. Then, by driving the feed pump 50, the urea water supply amount is returned to the state before the exhaust gas temperature is lowered, or the injection electromagnetic valve 53 is opened and the feed pump 50 is driven to restart the supply of urea water. is there.

上記の説明から明らかなように、実施形態では、駆動中の各発電用エンジン12に対する主排気路29側の第1開閉バルブ28aを閉じて分岐排気路30側の第2開閉バルブ28bを開いた状態において、温度センサ59にて検出された排気ガス温度が設定下限温度以下になると、発電用エンジン12の駆動台数を減らした上で、目標の発電電力量を維持するように、残り(駆動中)の発電用エンジン12のへの燃料噴射量を燃料噴射装置83にて増加させる構成になっているから、NOx還元は進行し難いがNOx発生量自体も少ない低温度域(約300℃以下)になったとしても、NOx還元が効率よく進む温度域(約305℃以上)に排気ガス温度を強制的に上昇できる。従って、後処理装置27でのNOx還元を高効率な状態に維持でき、排気ガスの浄化処理の確実性が向上することになる。   As is clear from the above description, in the embodiment, the first on-off valve 28a on the main exhaust passage 29 side is closed and the second on-off valve 28b on the branch exhaust passage 30 side is opened for each power generation engine 12 being driven. In this state, when the exhaust gas temperature detected by the temperature sensor 59 becomes equal to or lower than the set lower limit temperature, the number of the power generating engines 12 is reduced, and the remaining power is being maintained so as to maintain the target power generation amount. ) Is increased in the fuel injection device 83 by the fuel injection device 83, so that the NOx reduction hardly progresses but the NOx generation amount itself is low (about 300 ° C. or less). Even in this case, the exhaust gas temperature can be forcibly increased to a temperature range (about 305 ° C. or higher) in which NOx reduction proceeds efficiently. Therefore, NOx reduction in the post-treatment device 27 can be maintained in a highly efficient state, and the reliability of the exhaust gas purification process is improved.

なお、実施形態においては、上述のように「発電用エンジン12の駆動台数を減らす」の文言に「もともとの駆動台数が1台のみであればその1台の駆動を維持する」をいう意味を含めて使用していることを付言しておく。   In the embodiment, as described above, the phrase “reducing the number of driving engines 12 for power generation” means “maintaining the driving of one unit if the original number of driving units is only one”. It is added that it is used including.

また、排気ガス温度が設定下限温度以下になった場合は、還元剤供給部としての尿素水噴射ノズル47から還元剤(尿素水)の供給を少なくするか又は停止するように構成されているから、前述の低温度域(約300℃以下)では、排気ガスの浄化処理を積極的にしないことになる。このため、後処理装置27(NOx触媒62)の上流側に、還元剤が付着・残存するおそれを低減できる。特に実施形態のように、還元剤が尿素水であれば、後処理装置27(NOx触媒62)の上流側に、水分蒸発後の固体尿素が付着・残存するおそれは減るし、尿素の加水分解にて生ずるアンモニアと硫黄分との反応にて生成される硫酸アンモニウムに起因する害も抑制できる。更に、還元剤(尿素水)をより一層効率的に使用でき、ランニングコストの更なる抑制に貢献するのである。   Further, when the exhaust gas temperature becomes equal to or lower than the set lower limit temperature, the supply of the reducing agent (urea water) is reduced or stopped from the urea water injection nozzle 47 as the reducing agent supply unit. In the low temperature range (about 300 ° C. or less), the exhaust gas purification process is not actively performed. For this reason, a possibility that a reducing agent may adhere and remain on the upstream side of the aftertreatment device 27 (NOx catalyst 62) can be reduced. In particular, as in the embodiment, if the reducing agent is urea water, the possibility that solid urea after moisture evaporation will adhere to or remain on the upstream side of the post-treatment device 27 (NOx catalyst 62) is reduced, and urea hydrolysis is performed. The harm caused by ammonium sulfate produced by the reaction between ammonia and sulfur content generated in the above can also be suppressed. Furthermore, the reducing agent (urea water) can be used more efficiently, which contributes to further suppression of running costs.

更に、排気ガス温度が設定上限温度以上になった場合は、先に停止させた発電用エンジン12を駆動させて、発電用エンジン12の駆動台数を減らす前の台数(元の駆動台数)に戻し、各発電用エンジン12への燃料噴射量を目標の発電電力量供給に見合った量に戻すように構成されているから、排気ガス温度が設定上限温度以上になれば、各発電用エンジン12に過剰な負荷が掛かることはなく、排気ガス温度の強制上昇に伴う燃費の悪化を最小限に抑えられる。   Further, when the exhaust gas temperature becomes equal to or higher than the set upper limit temperature, the previously stopped power generation engine 12 is driven and returned to the number before the number of power generation engines 12 is reduced (original drive number). Since the fuel injection amount to each power generation engine 12 is configured to return to an amount commensurate with the target power generation power supply, if the exhaust gas temperature exceeds the set upper limit temperature, each power generation engine 12 Excessive load is not applied, and deterioration of fuel consumption due to forced increase in exhaust gas temperature can be minimized.

その上、発電用エンジン12の駆動台数を減らす前の台数(元の駆動台数)に戻し、各発電用エンジン12への燃料噴射量を目標の発電電力量供給に見合った量に戻す場合は、尿素水の供給を排気ガス温度低下前の元の量まで戻すか、尿素水の供給を再開するように構成されているから、尿素水の供給及び停止をスムーズに切り換えでき、排気ガス温度に応じて排気ガスの浄化処理を効率的に実行できるのである。なお、図9に示す割り込み診断処理においては、尿素水の供給制御を省略し、発電用エンジンの駆動台数及び燃料噴射量制御のみを実行するように構成してもよい。   In addition, when returning the number of driving engines 12 for power generation to the number before the reduction (original driving number) and returning the fuel injection amount to each power generation engine 12 to an amount corresponding to the target power generation amount supply, Since it is configured to return the urea water supply to the original amount before the exhaust gas temperature drops or restart the urea water supply, the supply and stop of the urea water can be switched smoothly, depending on the exhaust gas temperature Thus, the exhaust gas purification process can be executed efficiently. In the interrupt diagnosis process shown in FIG. 9, the urea water supply control may be omitted, and only the number of power generation engines driven and the fuel injection amount control may be executed.

その他、各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。   In addition, the structure of each part is not limited to embodiment of illustration, A various change is possible in the range which does not deviate from the meaning of this invention.

1 船舶
10 発電装置
11 ディーゼル発電機
12 発電用ディーゼルエンジン
13 発電機
15 電力トランスデューサ
25 排気経路
26 集合経路
27 後処理装置
28a,28b 開閉バルブ
29 主排気路
30 分岐排気路
35 ゲート電磁弁
43 還元剤供給装置
55 還元コントローラ
59 温度センサ
62 NOx触媒
80 エンジンコントローラ
81 供給切換電磁弁
82 戻し切換電磁弁
83 燃料噴射装置
84 エンジン回転センサ
88 自船位置検出手段
89 GPSコントローラ
90 GPSアンテナ
DESCRIPTION OF SYMBOLS 1 Ship 10 Power generator 11 Diesel generator 12 Diesel engine 13 Power generator 15 Power transducer 25 Exhaust path 26 Collecting path 27 Post-processing apparatus 28a, 28b Open / close valve 29 Main exhaust path 30 Branch exhaust path 35 Gate solenoid valve 43 Reducing agent Supply device 55 Reduction controller 59 Temperature sensor 62 NOx catalyst 80 Engine controller 81 Supply switching electromagnetic valve 82 Return switching electromagnetic valve 83 Fuel injection device 84 Engine rotation sensor 88 Own ship position detection means 89 GPS controller 90 GPS antenna

Claims (1)

船舶(1)に搭載したエンジン(12)からの排気ガス中にあるNOxを取り除くための後処理装置(27)を、前記エンジン(12)の排気経路(25)に備えている排気ガス浄化システムにおいて、
前記エンジン(12)の排気経路(25)は、外部に直接連通する主排気路(29)と、前記主排気路(29)から分岐した分岐排気路(30)とを備え、前記分岐排気路(30)の下流側に前記後処理装置(27)を配置し、前記主排気路(29)と前記分岐排気路(30)とには、前記各排気路(29)(30)を開閉するための開閉部材(28a)(28b)を設け、
自船の現在位置を特定できる自船位置検出手段(88)を備え、前記自船位置検出手段(88)で排気ガスの規制海域と自船の現在位置との位置関係を特定し、
前記船舶(1)が前記規制海域内に進入するのを前記自船位置検出手段(88)が検出した場合は、前記分岐排気路(30)の開閉部材(28b)を開放して前記主排気路(29)の開閉部材(28a)を閉止させ、前記船舶(1)が前記規制海域外に進出するのを前記自船位置検出手段(88)が検出した場合は、前記主排気路(29)の開閉部材(28a)を開放して前記分岐排気路(30)の開閉部材(28b)を閉止させるように、前記両開閉部材(28a)(28b)を連動して開閉させる制御を実行するコントローラ(80)を備えており、
停止中の前記エンジン(12)に対しては、少なくとも前記分岐排気路(30)側の開閉部材(28b)が閉じる、
船舶における排気ガス浄化システム。
An exhaust gas purification system provided with an aftertreatment device (27) for removing NOx in exhaust gas from an engine (12) mounted on a ship (1) in an exhaust path (25) of the engine (12). In
The exhaust path (25) of the engine (12) includes a main exhaust path (29) communicating directly with the outside and a branch exhaust path (30) branched from the main exhaust path (29), and the branch exhaust path The post-treatment device (27) is disposed downstream of (30), and the exhaust passages (29) and (30) are opened and closed between the main exhaust passage (29) and the branch exhaust passage (30). Opening and closing members (28a) (28b) for providing
Own ship position detecting means (88) capable of specifying the current position of the own ship, wherein the own ship position detecting means (88) specifies the positional relationship between the restricted sea area of the exhaust gas and the current position of the own ship;
When the ship position detecting means (88) detects that the ship (1) enters the restricted sea area, the main exhaust is opened by opening the opening / closing member (28b) of the branch exhaust passage (30). When the opening / closing member (28a) of the road (29) is closed and the ship position detecting means (88) detects that the ship (1) has advanced out of the restricted sea area, the main exhaust path (29 The opening / closing member (28a) is opened and the opening / closing member (28b) of the branch exhaust passage (30) is closed so that the both opening / closing members (28a) (28b) are opened and closed in conjunction with each other. A controller (80) ,
For the stopped engine (12), at least the opening / closing member (28b) on the branch exhaust passage (30) side is closed,
Exhaust gas purification system for ships.
JP2014088312A 2014-04-22 2014-04-22 Exhaust gas purification system for ships Active JP5856217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088312A JP5856217B2 (en) 2014-04-22 2014-04-22 Exhaust gas purification system for ships

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088312A JP5856217B2 (en) 2014-04-22 2014-04-22 Exhaust gas purification system for ships

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013045822A Division JP5535353B2 (en) 2013-03-07 2013-03-07 Exhaust gas purification system for ships

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015241229A Division JP2016084818A (en) 2015-12-10 2015-12-10 Exhaust emission control system in vessel

Publications (2)

Publication Number Publication Date
JP2014134206A JP2014134206A (en) 2014-07-24
JP5856217B2 true JP5856217B2 (en) 2016-02-09

Family

ID=51412645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088312A Active JP5856217B2 (en) 2014-04-22 2014-04-22 Exhaust gas purification system for ships

Country Status (1)

Country Link
JP (1) JP5856217B2 (en)

Also Published As

Publication number Publication date
JP2014134206A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5308179B2 (en) Exhaust gas purification system
JP5465407B2 (en) Exhaust gas purification device for ship use
JP6162383B2 (en) Exhaust gas purification device
JP5788439B2 (en) Exhaust gas purification device for ship use
JP5465408B2 (en) Exhaust gas purification device for ship use
JP6232257B2 (en) Exhaust gas purification system and ship equipped with the same
JP5503160B2 (en) Exhaust gas purification system for ships
JP5654084B2 (en) Exhaust gas purification system for ships
JP5535353B2 (en) Exhaust gas purification system for ships
JP2013032777A (en) Exhaust gas purifying apparatus to be mounted in ship
WO2010032738A1 (en) Exhaust gas purifying device
JP6114803B2 (en) Exhaust gas purification device for ship use
JP2013015149A (en) Exhaust gas purifier for mounting in ship
JP5667345B2 (en) Exhaust gas purification system for ships
JP5404084B2 (en) Exhaust gas purification system for ships
JP6250206B2 (en) Exhaust gas purification device for ship use
JP2016084818A (en) Exhaust emission control system in vessel
JP5856217B2 (en) Exhaust gas purification system for ships
JP5856218B2 (en) Exhaust gas purification device for ship use
JP5535354B2 (en) Exhaust gas purification device for ship use
EP3163040A1 (en) Exhaust purifier
JP2014062549A (en) Shipboard exhaust gas purification device
EP3163039A1 (en) Exhaust purifier
JP6249869B2 (en) Ship exhaust gas purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151210

R150 Certificate of patent or registration of utility model

Ref document number: 5856217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350