WO2010032414A1 - Coolant heating device - Google Patents

Coolant heating device Download PDF

Info

Publication number
WO2010032414A1
WO2010032414A1 PCT/JP2009/004555 JP2009004555W WO2010032414A1 WO 2010032414 A1 WO2010032414 A1 WO 2010032414A1 JP 2009004555 W JP2009004555 W JP 2009004555W WO 2010032414 A1 WO2010032414 A1 WO 2010032414A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
tube
refrigerant
peripheral surface
heat transfer
Prior art date
Application number
PCT/JP2009/004555
Other languages
French (fr)
Japanese (ja)
Inventor
若嶋真博
下田順一
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2010032414A1 publication Critical patent/WO2010032414A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/142Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating

Definitions

  • the present invention relates to a refrigerant heating device that heats a refrigerant flowing through a refrigerant pipe.
  • an induction heater (hereinafter referred to as IH heater) is convenient in that the refrigerant can be rapidly heated using induction heating.
  • IH heater for heating a refrigerant can induce induction heating by exciting a pipe through which the refrigerant flows or a magnetic material inside and outside the pipe by an induction heating coil, thereby heating the refrigerant in the pipe. It is.
  • copper is usually adopted as the material of the piping constituting the refrigerant circuit in consideration of aspects such as thermal conductivity, workability, or material cost.
  • a magnetic material such as stainless steel in order to efficiently perform electromagnetic induction heating. Therefore, like the IH heater described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-174054), magnetic coating or powder is coated on the outer periphery of the copper tube so that induction heating can be efficiently performed even for the copper tube. I have to.
  • a stainless steel pipe as a pipe through which the refrigerant flows inside the IH heater.
  • the stainless steel pipe heated by the IH heater and other refrigerant circuits are considered. Since the material is different from that of the copper pipe constituting the wire, it is necessary to braze different pipes, and there is a possibility that defects (such as cracks) occur in the manufacturing cost and the brazed part. It is also possible to insert a copper tube inside the stainless steel tube to make a double tube, but even if a copper tube having the same outer diameter is inserted into the inner diameter of the stainless steel tube, the stainless steel tube and the copper tube are good.
  • the subject of this invention is providing the refrigerant
  • the refrigerant heating device of the first invention includes an inner tube through which a refrigerant flows, an outer tube, and an induction heating coil.
  • the outer tube surrounds the inner tube and is made of a magnetic material.
  • the induction heating coil surrounds the periphery of the outer tube and induction-heats the outer tube.
  • a heat transfer agent having a higher thermal conductivity than air is disposed between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube.
  • a heat transfer agent having a higher thermal conductivity than air is disposed between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube.
  • the refrigerant heating device of the second invention is the refrigerant heating device of the first invention, and the heat transfer agent is in a gel form.
  • the heat transfer agent is in a gel form, it is easy to form a heat transfer agent layer having a desired film thickness simply by applying the gel heat transfer agent to the outer peripheral surface of the inner tube or the inner peripheral surface of the outer tube. Can be secured.
  • the refrigerant heating device of the third invention is the refrigerant heating device of the first invention or the second invention, and the heat transfer agent is a silicone resin.
  • the heat transfer agent is a silicone resin.
  • the refrigerant heating device of the fourth invention is the refrigerant heating device of the first invention, wherein irregularities are formed on the inner peripheral surface of the outer tube and / or the outer peripheral surface of the inner tube.
  • the irregularities are formed on the inner peripheral surface of the outer tube and / or the outer peripheral surface of the inner tube, the contact area of both the tubes increases, and heat transfer from the outer tube to the inner tube that is induction-heated, As a result, heat transfer to the refrigerant is improved.
  • a method for manufacturing a refrigerant heating apparatus comprising: a covering step of covering an outer peripheral surface of an inner tube with a heat transfer agent; an inserting step of inserting the inner tube into the outer tube; Expansion process for expanding the pipe.
  • the outer peripheral surface of the inner tube is coated with a heat transfer agent, it is inserted into the outer tube and expanded, so that the heat transfer from the outer tube that is induction-heated to the inner tube is improved. Heat transfer is improved. Moreover, it is easy to manufacture.
  • the heat transfer agent having a higher thermal conductivity than air is disposed between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube, the outer tube that is induction-heated The heat transfer from the pipe to the inner pipe is improved, and as a result, the heat transfer to the refrigerant is improved.
  • the second invention it is possible to easily secure a layer of the heat transfer agent having a desired film thickness.
  • thermal conductivity and adhesion between the inner tube and the outer tube are improved.
  • the contact area between the two tubes is increased, and heat transfer from the outer tube to the inner tube that is induction-heated, and thus heat transfer to the refrigerant, is improved.
  • the heat transfer from the outer tube that is induction-heated to the inner tube is improved, and as a result, the heat transfer to the refrigerant is improved. Moreover, it is easy to manufacture.
  • FIG. 2 is a front view of the IH heater assembly of FIG. 1.
  • FIG. 2 is a cross-sectional view of the IH heater assembly of FIG. 1.
  • Cross-sectional explanatory drawing which shows the insertion process in the manufacturing method of the IH heater assembly of FIG.
  • Cross-sectional explanatory drawing which shows the pipe expansion process in the manufacturing method of the IH heater assembly of FIG.
  • Sectional explanatory drawing which shows the bobbin mounting process in the manufacturing method of the IH heater assembly of FIG.
  • coated process in the manufacturing method of the IH heater assembly of FIG. The expanded sectional view which shows the insertion process in the manufacturing method of the IH heater assembly of FIG.
  • the outdoor unit 2 and the indoor unit 4 are connected to the liquid refrigerant communication pipe 6 and the gas refrigerant as shown in FIG.
  • a refrigerant circuit 11 configured to be connected by a communication pipe 7 is provided.
  • Each refrigerant pipe of the refrigerant circuit 11 is usually made of copper.
  • the refrigerant circuit 11 includes, in the outdoor unit 2, a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24 including an electronic expansion valve with adjustable throttle, An IH heater assembly 30 and an accumulator 25 are provided.
  • the refrigerant circuit 11 includes an indoor heat exchanger 26 and the like inside the indoor unit 4 as shown in FIG.
  • the four-way selector valve 22 has shown the switching connection state in the case of performing heating operation in FIG.
  • the refrigerant flowing in the refrigerant circuit 11 is not particularly limited in the present invention, and is, for example, HFC (R410A or the like), carbon dioxide refrigerant, or the like.
  • the refrigerant circuit 11 includes a discharge pipe A, an indoor gas pipe B, an indoor liquid pipe C, an outdoor liquid pipe D, an outdoor gas pipe E, an accumulator pipe F, and a suction pipe G. ing.
  • the connection state of each refrigerant pipe will be described in the order of the flow path where the refrigerant discharged from the compressor 21 flows out and is sucked into the compressor 21 again.
  • the discharge pipe A connects the discharge side of the compressor 21 and the four-way switching valve 22.
  • the indoor side gas pipe B connects the four-way switching valve 22 and the gas side of the indoor heat exchanger 26.
  • the indoor side liquid pipe C connects the liquid side of the indoor heat exchanger 26 and the expansion valve 24.
  • the indoor side liquid pipe C includes a liquid refrigerant communication pipe 6 that connects the outdoor unit 2 and the indoor unit 4.
  • the outdoor liquid pipe D connects the expansion valve 24 and the liquid side of the outdoor heat exchanger 23.
  • the outdoor gas pipe E connects the gas side of the outdoor heat exchanger 23 and the four-way switching valve 22.
  • the accumulator pipe F connects the four-way switching valve 22 and the accumulator 25.
  • the suction pipe G connects the accumulator 25 and the suction side of the compressor 21.
  • the IH heater assembly 30 is an IH heater composed of a double tube, and includes an inner tube 31, an outer tube 32, a silicon resin 43, an induction heating coil 33, A bobbin 34, a pair of lids 35, a pair of nuts 36, a plurality of ferrite blocks 37, a ferrite holder 38, and a sheet metal cover 39 are provided.
  • the inner pipe 31 is made of copper, which is the same material as the refrigerant pipe 5, and the refrigerant flows through the inner pipe 31.
  • the outer tube 32 is made of stainless steel, which is a magnetic material, and is disposed around the inner tube 31. Specifically, by expanding the inner tube 31, the outer peripheral surface of the inner tube 31 and the inner peripheral surface of the outer tube are in close contact with each other.
  • the material of the outer tube 32 is not limited to stainless steel.
  • an alloy containing a conductor such as iron, copper, aluminum, chromium, nickel and at least two metals selected from these groups. Etc.
  • Examples of stainless steel include at least one of ferrite and martensite, or a combination thereof.
  • the silicon resin 43 is disposed between the outer peripheral surface 31 a of the inner tube 31 and the inner peripheral surface 32 b of the outer tube 32.
  • the silicon resin 43 is the heat transfer agent of the present invention and has a higher thermal conductivity than air. Therefore, heat transfer from the outer tube 32 that is induction-heated to the inner tube 31 is improved, and as a result, heat transfer to the refrigerant H is improved.
  • 8 is a gel-like silicon resin with good adhesion. Therefore, by simply applying the gel-like silicon resin 43 to the outer peripheral surface 31a of the inner tube 31 or the inner peripheral surface 32b of the outer tube 32, a layer of the silicon resin 43 having a desired film thickness can be easily secured.
  • the gel-like silicon resin 43 can be applied by various methods, but is applied by, for example, a brush or a roller. Furthermore, by using the silicon resin 43 as the heat transfer agent, the thermal conductivity and adhesion between the inner tube 31 and the outer tube 32 are good.
  • the induction heating coil 33 surrounds the outer tube 32 and induction-heats the outer tube 32.
  • the induction heating coil 33 is arranged so as to surround the outer periphery of the outer tube 32 in a state of being wound around a bobbin 34 which is a separate member from the outer tube 32.
  • the bobbin 34 is a cylindrical member whose both ends are open, and the induction heating coil 33 is wound around the side peripheral surface thereof.
  • the pair of lids 35 has an opening 35 a at the center and is fitted to the outer periphery of the outer tube 32.
  • the pair of lids 35 is fixed from both the upper and lower sides by a C-shaped ferrite holder 38 to be described later while being attached to the bobbin 34.
  • the pair of nuts 36 is a combination of the bobbin 34, the lid 35, the ferrite holder 38, and the nut 36 of the IH heater assembly 30 in advance by being screwed into male screw portions 32a formed on the outer periphery near both ends of the outer tube 32. Is fixed to the outer periphery of the outer tube 32.
  • the plurality of ferrite blocks 37 are mounted side by side on a C-shaped ferrite holder 38 in order to reduce leakage magnetic flux to the outside of the sheet metal cover 39 of the IH heater assembly 30.
  • the ferrite holder 38 is attached from the outside of the induction heating coil 33 from the four sides of the bobbin 34. As shown in FIGS.
  • the sheet metal cover 39 is a cover made of a thin metal plate and is screwed to the outside of the ferrite holder 38.
  • the sheet metal cover 39 has a cylindrical shape or a polygonal shape so as to surround the cylindrical bobbin 34, and has an integrated shape or a shape divided into two or more.
  • the inner pipe 31 is made of the same kind of copper as the other refrigerant pipes F, the inner pipe 31 and the refrigerant pipe F can be easily joined (manufactured easily).
  • efficient induction heating is possible by the outer tube 32 made of a magnetic material such as stainless steel.
  • the structure which supports the bobbin 34 with the induction heating coil 33 wound around the thick outer tube 32 is adopted, the overall strength of the IH heater assembly 30 is improved.
  • the IH heater assembly 30 is provided in the middle of the portion of the accumulator pipe F that connects the four-way switching valve 22 and the accumulator 25, so that as shown in FIG.
  • the IH heater assembly 30 that receives the high-frequency alternating current from the high-frequency power source 60 via the intake air, the intake gas refrigerant that is directed from the four-way switching valve 22 to the accumulator 25 can be warmed, and the heating capacity can be improved.
  • the compressor 21 may not be sufficiently warmed.
  • the IH heater assembly 30 generates heat, so that the gas from the four-way switching valve 22 toward the accumulator 25 is generated.
  • the refrigerant can be heated, and the lack of capacity at the start-up can be compensated.
  • the gas refrigerant heated through the IH heater assembly 30 is used.
  • the copper inner pipe 31 constituting a part of the refrigerant pipe of the refrigerant circuit 11 is inserted into the stainless steel outer pipe 32 made of a magnetic material ( Insertion process).
  • the inner diameter of the outer tube 32 is set so as to obtain a clearance between the inner tube 31 and the convex portion 31b of the inner tube 31 and the silicon resin 43 layer.
  • the inner pipe 31 is press-fitted into the inner pipe 31 so that the outer diameter of the inner pipe 31 increases. By being enlarged, it fits inside the outer pipe 32 (pipe expansion process).
  • the silicon resin 43 enters the recess 32c of the outer tube 32 by being pressed against the inner periphery 32b of the outer tube 32 in which the recess 32c is previously formed in the inner periphery 32b. Therefore, the silicon resin 43 can completely adhere to the inner peripheral surface 32b of the outer tube 32 in which the concave portion 32c is formed and the outer peripheral surface 31a of the inner tube 31 in which the convex portion 31b is formed, as compared with the case where there is no unevenness. A wide contact area is obtained. Therefore, the heat transfer performance is greatly improved corresponding to a wide contact area.
  • a combination of the bobbin 34, the lid 35, the ferrite holder 38 and the nut 36 of the IH heater assembly 30 in advance is inserted into the outer periphery of the outer tube 32 with the nut 36 loosened, After that, the nut 36 is tightened to the outer tube 32, and is pressed against the C-shaped ring 43 in the inner diameter direction, whereby the bobbin 34 and other main parts are mounted (bobbin mounting step). Thereby, the manufacture of the IH heater assembly 30 is completed.
  • a silicon resin 43 is disposed between the outer peripheral surface 31a of the inner tube 31 and the inner peripheral surface 32b of the outer tube 32 as a heat transfer agent having a higher thermal conductivity than air. Therefore, the heat transfer from the outer tube 32 that is induction-heated to the inner tube 31 is improved, and as a result, the heat transfer to the refrigerant H is improved.
  • the gel-like silicon resin 43 by adopting the gel-like silicon resin 43, the gel-like silicon resin 43 is simply applied to the outer peripheral surface 31a of the inner tube 31 or the inner peripheral surface 32b of the outer tube 32. A layer of silicon resin 43 having a thickness can be easily secured.
  • the silicon resin 43 as the heat transfer agent, the thermal conductivity and adhesion between the inner tube 31 and the outer tube 32 are good.
  • the inner peripheral surface 32b of the outer tube 32 and the outer peripheral surface 31a of the inner tube 31 are respectively formed with the concave portion 32c and the convex portion 31b.
  • the heat transfer from the outer tube 32 to the inner tube 31 that is induction-heated, and thus the heat transfer to the refrigerant is improved.
  • the outer peripheral surface 31a of the inner tube 31 is coated with the silicon resin 43 and then inserted into the outer tube 32 to expand the tube, the heat transfer from the outer tube 32 that is induction-heated to the inner tube 31 is improved. , Heat transfer to the refrigerant is improved. Moreover, since both the tubes can be firmly coupled with good adhesion simply by inserting the inner tube 31 into the outer tube 32 and expanding the tube, a process for fixing such as brazing between the two tubes becomes unnecessary after the tube expansion. Is very easy.
  • the gel-like silicon resin 43 is employed as the heat transfer agent, but the present invention is not limited to this, and various heat transfer agents can be employed. .
  • a silicon resin spray or the like that can spray a liquid silicon resin agent may be used.
  • the silicon resin agent can be easily sprayed on the outer peripheral surface 31a of the inner tube 31, and a thin film can be used. Thickness can be easily obtained.
  • various forms The present invention is not particularly limited. Therefore, for example, a plurality of dot-like concave portions and convex portions, or a plurality of grooves and ridges extending continuously in a straight line shape or a spiral shape may be used.
  • the present invention can be variously applied to the field of refrigerant heating devices for induction heating. .

Abstract

Provided is a coolant heating device which can improve the heat transmission from an external pipe to an internal pipe.  The coolant heating device (30) includes: the internal pipe (31) through which coolant flows, the external pipe (32), and an induction heating coil (33).  The external pipe (32) surrounds the internal pipe (31) and is made from a magnetic material.  The induction heating coil (33) surrounds the external pipe (32) and inductively heats the external pipe (32).  A heat transmission agent (43) having a higher thermal conductivity than the air is arranged between the external circumferential surface (31a) of the internal pipe (31) and the internal circumferential surface (32b) of the external pipe (32).

Description

冷媒加熱装置Refrigerant heating device
 本発明は、冷媒配管を流れる冷媒を加熱する冷媒加熱装置に関する。 The present invention relates to a refrigerant heating device that heats a refrigerant flowing through a refrigerant pipe.
 従来より、冷媒回路中の冷媒を加熱するために種々の方法があるが、誘導加熱ヒータ(以下、IHヒータという)は、誘導加熱を利用して冷媒を迅速に加熱できる点で便利である。
 このような冷媒加熱用のIHヒータは、冷媒が流れる配管または配管内外の磁性体を誘導加熱コイルによって励磁することにより、誘導加熱を生じさせ、これにより、配管中の冷媒を加熱することが可能である。
Conventionally, there are various methods for heating the refrigerant in the refrigerant circuit, but an induction heater (hereinafter referred to as IH heater) is convenient in that the refrigerant can be rapidly heated using induction heating.
Such an IH heater for heating a refrigerant can induce induction heating by exciting a pipe through which the refrigerant flows or a magnetic material inside and outside the pipe by an induction heating coil, thereby heating the refrigerant in the pipe. It is.
 ここで、冷媒回路を構成する配管の材質は、通常、熱伝導性、加工性、または材料費等の面を考慮して銅が採用されている。しかし、IHヒータによって加熱される配管の材質としては、電磁誘導加熱を効率的に行うためステンレス鋼などの磁性体を採用するのが好ましい。
 そこで、特許文献1(特開2001―174054号公報)記載のIHヒータのように、銅管外周に磁性体塗料または粉末をコーティングすることにより、銅管であっても誘導加熱を効率よくできるようにしている。
Here, copper is usually adopted as the material of the piping constituting the refrigerant circuit in consideration of aspects such as thermal conductivity, workability, or material cost. However, as the material of the pipe heated by the IH heater, it is preferable to employ a magnetic material such as stainless steel in order to efficiently perform electromagnetic induction heating.
Therefore, like the IH heater described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-174054), magnetic coating or powder is coated on the outer periphery of the copper tube so that induction heating can be efficiently performed even for the copper tube. I have to.
 ここで、誘導加熱の効率をさらに向上させるために、IHヒータ内部における冷媒が流れる管としてステンレス管を採用することが考えられるが、この場合、IHヒータによって加熱されるステンレス管とその他の冷媒回路を構成する銅管とでは材質が異なるため、異なる配管同士をろう付けする作業をしなければならず、製造コストやろう付け部分に欠陥(クラックなど)が発生する可能性ある。
 また、ステンレス管内部に銅管を挿入して二重管にすることも考えられるが、ステンレス管の内径にほぼ同じ外径を有する銅管を挿入しても、ステンレス管と銅管との良好な接触状態を得ることが難しいという問題がある。このため、誘導加熱されるステンレス管から銅管への伝熱を向上させることも困難である。
 本発明の課題は、外管から内管への伝熱を向上させることが可能な冷媒加熱装置を提供することにある。
Here, in order to further improve the efficiency of induction heating, it is conceivable to employ a stainless steel pipe as a pipe through which the refrigerant flows inside the IH heater. In this case, the stainless steel pipe heated by the IH heater and other refrigerant circuits are considered. Since the material is different from that of the copper pipe constituting the wire, it is necessary to braze different pipes, and there is a possibility that defects (such as cracks) occur in the manufacturing cost and the brazed part.
It is also possible to insert a copper tube inside the stainless steel tube to make a double tube, but even if a copper tube having the same outer diameter is inserted into the inner diameter of the stainless steel tube, the stainless steel tube and the copper tube are good. There is a problem that it is difficult to obtain a proper contact state. For this reason, it is also difficult to improve the heat transfer from the stainless steel tube heated by induction to the copper tube.
The subject of this invention is providing the refrigerant | coolant heating apparatus which can improve the heat transfer from an outer tube | pipe to an inner tube | pipe.
 第1発明の冷媒加熱装置は、冷媒が流れる内管と、外管と、誘導加熱コイルとを備えている。外管は、内管の周囲を取り巻き、磁性体からなる。誘導加熱コイルは、外管の周囲を取り巻き、外管を誘導加熱する。内管の外周面と外管の内周面との間には、空気よりも熱伝導率が高い伝熱剤が配設されている。
 ここでは、内管の外周面と外管の内周面との間には、空気よりも熱伝導率が高い伝熱剤が配設されているので、誘導加熱される外管から内管への伝熱性が向上し、その結果、冷媒への伝熱が良くなる。
The refrigerant heating device of the first invention includes an inner tube through which a refrigerant flows, an outer tube, and an induction heating coil. The outer tube surrounds the inner tube and is made of a magnetic material. The induction heating coil surrounds the periphery of the outer tube and induction-heats the outer tube. A heat transfer agent having a higher thermal conductivity than air is disposed between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube.
Here, since a heat transfer agent having a higher thermal conductivity than air is disposed between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube, the outer tube heated by induction is transferred from the outer tube to the inner tube. As a result, the heat transfer to the refrigerant is improved.
 第2発明の冷媒加熱装置は、第1発明の冷媒加熱装置であって、伝熱剤は、ゲル状である。
 ここでは、伝熱剤がゲル状であるので、ゲル状の伝熱剤を内管の外周面または外管の内周面に塗布するだけで、所望の膜厚の伝熱剤の層を容易に確保できる。
The refrigerant heating device of the second invention is the refrigerant heating device of the first invention, and the heat transfer agent is in a gel form.
Here, since the heat transfer agent is in a gel form, it is easy to form a heat transfer agent layer having a desired film thickness simply by applying the gel heat transfer agent to the outer peripheral surface of the inner tube or the inner peripheral surface of the outer tube. Can be secured.
 第3発明の冷媒加熱装置は、第1発明または第2発明の冷媒加熱装置であって、伝熱剤は、シリコン樹脂である。
ここでは、伝熱剤としてシリコン樹脂を用いることにより、内管と外管との間における熱伝導性および付着性が良い。
The refrigerant heating device of the third invention is the refrigerant heating device of the first invention or the second invention, and the heat transfer agent is a silicone resin.
Here, by using silicon resin as the heat transfer agent, the thermal conductivity and adhesion between the inner tube and the outer tube are good.
 第4発明の冷媒加熱装置は、第1発明の冷媒加熱装置であって、外管の内周面および/または内管の外周面には、凹凸が形成されている。
 ここでは、外管の内周面および/または内管の外周面には、凹凸が形成されているので、両管の接触面積が増え、誘導加熱される外管から内管への伝熱、ひいては冷媒への伝熱が良くなる。
The refrigerant heating device of the fourth invention is the refrigerant heating device of the first invention, wherein irregularities are formed on the inner peripheral surface of the outer tube and / or the outer peripheral surface of the inner tube.
Here, since the irregularities are formed on the inner peripheral surface of the outer tube and / or the outer peripheral surface of the inner tube, the contact area of both the tubes increases, and heat transfer from the outer tube to the inner tube that is induction-heated, As a result, heat transfer to the refrigerant is improved.
 第5発明の冷媒加熱装置の製造方法は、内管の外周面に伝熱剤を被覆する被覆工程と、内管を外管の内部に挿入する挿入工程と、内管を所定の外径まで拡管する拡管工程とを含む。
 ここでは、内管の外周面に伝熱剤を被覆した後、外管に挿入して拡管するので、誘導加熱される外管から内管への伝熱性が向上し、その結果、冷媒への伝熱が良くなる。しかも、製造が容易である。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a refrigerant heating apparatus comprising: a covering step of covering an outer peripheral surface of an inner tube with a heat transfer agent; an inserting step of inserting the inner tube into the outer tube; Expansion process for expanding the pipe.
Here, after the outer peripheral surface of the inner tube is coated with a heat transfer agent, it is inserted into the outer tube and expanded, so that the heat transfer from the outer tube that is induction-heated to the inner tube is improved. Heat transfer is improved. Moreover, it is easy to manufacture.
 第1発明によれば、内管の外周面と外管の内周面との間には、空気よりも熱伝導率が高い伝熱剤が配設されているので、誘導加熱される外管から内管への伝熱性が向上し、その結果、冷媒への伝熱が良くなる。
 第2発明によれば、所望の膜厚の伝熱剤の層を容易に確保できる。
 第3発明によれば、内管と外管との間における熱伝導性および付着性が向上する。
 第4発明によれば、両管の接触面積が増え、誘導加熱される外管から内管への伝熱、ひいては冷媒への伝熱が良くなる。
 第5発明によれば、誘導加熱される外管から内管への伝熱性が向上し、その結果、冷媒への伝熱が良くなる。しかも、製造が容易である。
According to the first invention, since the heat transfer agent having a higher thermal conductivity than air is disposed between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube, the outer tube that is induction-heated The heat transfer from the pipe to the inner pipe is improved, and as a result, the heat transfer to the refrigerant is improved.
According to the second invention, it is possible to easily secure a layer of the heat transfer agent having a desired film thickness.
According to the third invention, thermal conductivity and adhesion between the inner tube and the outer tube are improved.
According to the fourth aspect of the present invention, the contact area between the two tubes is increased, and heat transfer from the outer tube to the inner tube that is induction-heated, and thus heat transfer to the refrigerant, is improved.
According to the fifth aspect of the invention, the heat transfer from the outer tube that is induction-heated to the inner tube is improved, and as a result, the heat transfer to the refrigerant is improved. Moreover, it is easy to manufacture.
本発明の実施形態に係わるIHヒータアセンブリが取り付けられた空気調和機の回路図。The circuit diagram of the air conditioner to which the IH heater assembly concerning the embodiment of the present invention was attached. 図1の室外機の機械室部分の拡大斜視図。The expansion perspective view of the machine room part of the outdoor unit of FIG. 図1のIHヒータアセンブリの正面図。FIG. 2 is a front view of the IH heater assembly of FIG. 1. 図1のIHヒータアセンブリの断面図。FIG. 2 is a cross-sectional view of the IH heater assembly of FIG. 1. 図1のIHヒータアセンブリの製造方法における挿入工程を示す断面説明図。Cross-sectional explanatory drawing which shows the insertion process in the manufacturing method of the IH heater assembly of FIG. 図1のIHヒータアセンブリの製造方法における拡管工程を示す断面説明図。Cross-sectional explanatory drawing which shows the pipe expansion process in the manufacturing method of the IH heater assembly of FIG. 図1のIHヒータアセンブリの製造方法におけるボビン装着工程を示す断面説明図。Sectional explanatory drawing which shows the bobbin mounting process in the manufacturing method of the IH heater assembly of FIG. 図1の内管と外管との接触面の拡大断面図。The expanded sectional view of the contact surface of the inner tube | pipe and outer tube | pipe of FIG. 図1のIHヒータアセンブリの製造方法における被覆工程を示す拡大断面図。The expanded sectional view which shows the coating | coated process in the manufacturing method of the IH heater assembly of FIG. 図1のIHヒータアセンブリの製造方法における挿入工程を示す拡大断面図。The expanded sectional view which shows the insertion process in the manufacturing method of the IH heater assembly of FIG. 図1のIHヒータアセンブリの製造方法における拡管工程を示す拡大断面図The expanded sectional view which shows the pipe expansion process in the manufacturing method of the IH heater assembly of FIG.
 つぎに本発明の冷媒加熱装置の実施形態を図面を参照しながら説明する。
〔実施形態〕
<基本構成>
 図1に示される冷媒加熱装置30(以下、IHヒータアセンブリ30という)を含む空気調和機1では、図1に示すように、室外機2と室内機4とを液冷媒連絡配管6およびガス冷媒連絡配管7で接続して構成される冷媒回路11を備えている。冷媒回路11の各冷媒配管は、通常、銅によって構成されている。
 冷媒回路11は、図1~2に示されるように、室外機2内部に、圧縮機21、四路切換弁22、室外熱交換器23、絞り調整可能な電子膨張弁からなる膨張弁24、IHヒータアセンブリ30およびアキュームレータ25等を備えている。また、冷媒回路11は、室内機4内部には、図1に示されるように、室内熱交換器26等を備えている。なお、四路切換弁22は、図1では、暖房運転を行う場合の切換接続状態を示している。
Next, an embodiment of the refrigerant heating device of the present invention will be described with reference to the drawings.
Embodiment
<Basic configuration>
In the air conditioner 1 including the refrigerant heating device 30 (hereinafter referred to as the IH heater assembly 30) shown in FIG. 1, the outdoor unit 2 and the indoor unit 4 are connected to the liquid refrigerant communication pipe 6 and the gas refrigerant as shown in FIG. A refrigerant circuit 11 configured to be connected by a communication pipe 7 is provided. Each refrigerant pipe of the refrigerant circuit 11 is usually made of copper.
As shown in FIGS. 1 and 2, the refrigerant circuit 11 includes, in the outdoor unit 2, a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24 including an electronic expansion valve with adjustable throttle, An IH heater assembly 30 and an accumulator 25 are provided. In addition, the refrigerant circuit 11 includes an indoor heat exchanger 26 and the like inside the indoor unit 4 as shown in FIG. In addition, the four-way selector valve 22 has shown the switching connection state in the case of performing heating operation in FIG.
 ここで、冷媒回路11内を流れる冷媒は、本発明ではとくに限定するものではないが、例えば、HFC(R410A等)や二酸化炭素冷媒等である。
 冷媒回路11は、図1に示すように、吐出管A、室内側ガス管B、室内側液管C、室外側液管D、室外側ガス管E、アキューム管Fおよび吸入管Gを有している。
 以下、圧縮機21から吐出された冷媒が流れ出て再び圧縮機21に吸入される流路の順に、各冷媒配管の接続状態を説明する。
 吐出管Aは、圧縮機21の吐出側と四路切換弁22とを接続している。
 室内側ガス管Bは、四路切換弁22と室内熱交換器26のガス側とを接続している。
 室内側液管Cは、室内熱交換器26の液側と膨張弁24とを接続している。ここで、室内側液管Cには、室外機2と室内機4とを連絡する液冷媒連絡配管6を含んで構成されている。
Here, the refrigerant flowing in the refrigerant circuit 11 is not particularly limited in the present invention, and is, for example, HFC (R410A or the like), carbon dioxide refrigerant, or the like.
As shown in FIG. 1, the refrigerant circuit 11 includes a discharge pipe A, an indoor gas pipe B, an indoor liquid pipe C, an outdoor liquid pipe D, an outdoor gas pipe E, an accumulator pipe F, and a suction pipe G. ing.
Hereinafter, the connection state of each refrigerant pipe will be described in the order of the flow path where the refrigerant discharged from the compressor 21 flows out and is sucked into the compressor 21 again.
The discharge pipe A connects the discharge side of the compressor 21 and the four-way switching valve 22.
The indoor side gas pipe B connects the four-way switching valve 22 and the gas side of the indoor heat exchanger 26.
The indoor side liquid pipe C connects the liquid side of the indoor heat exchanger 26 and the expansion valve 24. Here, the indoor side liquid pipe C includes a liquid refrigerant communication pipe 6 that connects the outdoor unit 2 and the indoor unit 4.
 室外側液管Dは、膨張弁24と室外熱交換器23の液側とを接続している。
 室外側ガス管Eは、室外熱交換器23のガス側と四路切換弁22とを接続している。
 アキューム管Fは、四路切換弁22とアキュームレータ25とを接続している。
 吸入管Gは、アキュームレータ25と圧縮機21の吸入側とを接続している。
 このようにして、冷媒回路11は構成されており、上述した向きに冷媒が循環して流れることで、暖房運転を行うことができる。なお、四路切換弁22の接続状態を切り換えることで、冷房運転を行うこともできる。
 アキューム管Fの途中には、後述するIHヒータアセンブリ30がろう付けによって接続されている。
<IHヒータアセンブリ30の構成>
 図3~4および図8に示されるように、IHヒータアセンブリ30は、二重管からなるIHヒータであり、内管31と、外管32と、シリコン樹脂43と、誘導加熱コイル33と、ボビン34と、一対の蓋35と、一対のナット36と、複数のフェライトブロック37と、フェライトホルダ38と、板金カバー39とを備えている。
The outdoor liquid pipe D connects the expansion valve 24 and the liquid side of the outdoor heat exchanger 23.
The outdoor gas pipe E connects the gas side of the outdoor heat exchanger 23 and the four-way switching valve 22.
The accumulator pipe F connects the four-way switching valve 22 and the accumulator 25.
The suction pipe G connects the accumulator 25 and the suction side of the compressor 21.
In this way, the refrigerant circuit 11 is configured, and heating operation can be performed by circulating the refrigerant in the above-described direction. The cooling operation can also be performed by switching the connection state of the four-way switching valve 22.
In the middle of the accumulator tube F, an IH heater assembly 30 described later is connected by brazing.
<Configuration of IH heater assembly 30>
As shown in FIGS. 3 to 4 and FIG. 8, the IH heater assembly 30 is an IH heater composed of a double tube, and includes an inner tube 31, an outer tube 32, a silicon resin 43, an induction heating coil 33, A bobbin 34, a pair of lids 35, a pair of nuts 36, a plurality of ferrite blocks 37, a ferrite holder 38, and a sheet metal cover 39 are provided.
 内管31は、冷媒配管5と同じ材料である銅で製造されており、その内部を冷媒が流れる。
 外管32は、磁性体であるステンレス鋼で製造されており、内管31の周囲に取り巻いて配置されている。具体的には、内管31を拡管することにより、内管31の外周面と外管の内周面とが密着している。
 なお、外管32の材質は、ステンレス鋼に限定されるものではなく、例えば、鉄、銅、アルミ、クロム、ニッケル等の導体およびこれらの群から選ばれる少なくとも2種以上の金属を含有する合金等とすることができる。また、ステンレス鋼としては、例えば、フェライト系、マルテンサイト系の少なくとも1種またはこれらの組合せが例として挙げられる。
The inner pipe 31 is made of copper, which is the same material as the refrigerant pipe 5, and the refrigerant flows through the inner pipe 31.
The outer tube 32 is made of stainless steel, which is a magnetic material, and is disposed around the inner tube 31. Specifically, by expanding the inner tube 31, the outer peripheral surface of the inner tube 31 and the inner peripheral surface of the outer tube are in close contact with each other.
The material of the outer tube 32 is not limited to stainless steel. For example, an alloy containing a conductor such as iron, copper, aluminum, chromium, nickel and at least two metals selected from these groups. Etc. Examples of stainless steel include at least one of ferrite and martensite, or a combination thereof.
 図8に示されるように、シリコン樹脂43は、内管31の外周面31aと外管32の内周面32bとの間に配設されている。シリコン樹脂43は、本発明の伝熱剤であり、空気よりも熱伝導率が高い。そのため、誘導加熱される外管32から内管31への伝熱性が向上し、その結果、冷媒Hへの伝熱が良くなる。
 また、図8のシリコン樹脂43は、密着性のよいゲル状のシリコン樹脂である。したがって、ゲル状のシリコン樹脂43を内管31の外周面31aまたは外管32の内周面32bに塗布するだけで、所望の膜厚のシリコン樹脂43の層を容易に確保できる。ゲル状のシリコン樹脂43は、種々の方法で塗布可能であるが、例えば刷毛やローラなどで塗布される。
 さらに、伝熱剤としてシリコン樹脂43を用いることにより、内管31と外管32との間における熱伝導性および付着性が良い。
As shown in FIG. 8, the silicon resin 43 is disposed between the outer peripheral surface 31 a of the inner tube 31 and the inner peripheral surface 32 b of the outer tube 32. The silicon resin 43 is the heat transfer agent of the present invention and has a higher thermal conductivity than air. Therefore, heat transfer from the outer tube 32 that is induction-heated to the inner tube 31 is improved, and as a result, heat transfer to the refrigerant H is improved.
8 is a gel-like silicon resin with good adhesion. Therefore, by simply applying the gel-like silicon resin 43 to the outer peripheral surface 31a of the inner tube 31 or the inner peripheral surface 32b of the outer tube 32, a layer of the silicon resin 43 having a desired film thickness can be easily secured. The gel-like silicon resin 43 can be applied by various methods, but is applied by, for example, a brush or a roller.
Furthermore, by using the silicon resin 43 as the heat transfer agent, the thermal conductivity and adhesion between the inner tube 31 and the outer tube 32 are good.
 また、外管32の内周面32bおよび内管31の外周面31aには、凹部32cおよび凸部31bがそれぞれ形成されているので、両管の接触面積が増え、誘導加熱される外管32から内管31への伝熱、ひいては冷媒への伝熱が良くなる。
 誘導加熱コイル33は、外管32の周囲を取り巻き、外管32を誘導加熱する。誘導加熱コイル33は、外管32と別部材のボビン34に巻き付けられた状態で、外管32の外周を取り巻くように配置されている。
 ボビン34は、両端が開放された円筒状の部材であり、その側周面に誘導加熱コイル33が巻き付けられている。
 一対の蓋35は、中央に開口35aが開口され、外管32の外周に嵌合している。また、一対の蓋35は、ボビン34に取り付けられた状態で、後述するC字状のフェライトホルダ38によって上下両側から固定されている。
Moreover, since the recessed part 32c and the convex part 31b are each formed in the inner peripheral surface 32b of the outer tube | pipe 32 and the outer peripheral surface 31a of the inner tube | pipe 31, the contact area of both tubes increases and the outer tube | pipe 32 induction-heated. The heat transfer from the pipe to the inner pipe 31 and thus the heat transfer to the refrigerant is improved.
The induction heating coil 33 surrounds the outer tube 32 and induction-heats the outer tube 32. The induction heating coil 33 is arranged so as to surround the outer periphery of the outer tube 32 in a state of being wound around a bobbin 34 which is a separate member from the outer tube 32.
The bobbin 34 is a cylindrical member whose both ends are open, and the induction heating coil 33 is wound around the side peripheral surface thereof.
The pair of lids 35 has an opening 35 a at the center and is fitted to the outer periphery of the outer tube 32. In addition, the pair of lids 35 is fixed from both the upper and lower sides by a C-shaped ferrite holder 38 to be described later while being attached to the bobbin 34.
 一対のナット36は、外管32の両端付近の外周に形成された雄ねじ部32aに螺合することにより、IHヒータアセンブリ30のボビン34、蓋35、フェライトホルダ38およびナット36をあらかじめ組み合わせたものを、外管32の外周に固定している。
 複数のフェライトブロック37は、IHヒータアセンブリ30の板金カバー39の外側への漏れ磁束の低減のために、C字状のフェライトホルダ38に並べて取り付けられている。フェライトホルダ38は、ボビン34の四方から誘導加熱コイル33の外方から取り付けられている。
 板金カバー39は、図2および図4に示されるように、金属薄板からなるカバーであり、フェライトホルダ38の外側にネジ止めされている。板金カバー39は、円筒状のボビン34を取り巻くように、円筒形または多角形状をしており、一体形状であったり、2分割またはそれ以上に分割された形状をしている。
The pair of nuts 36 is a combination of the bobbin 34, the lid 35, the ferrite holder 38, and the nut 36 of the IH heater assembly 30 in advance by being screwed into male screw portions 32a formed on the outer periphery near both ends of the outer tube 32. Is fixed to the outer periphery of the outer tube 32.
The plurality of ferrite blocks 37 are mounted side by side on a C-shaped ferrite holder 38 in order to reduce leakage magnetic flux to the outside of the sheet metal cover 39 of the IH heater assembly 30. The ferrite holder 38 is attached from the outside of the induction heating coil 33 from the four sides of the bobbin 34.
As shown in FIGS. 2 and 4, the sheet metal cover 39 is a cover made of a thin metal plate and is screwed to the outside of the ferrite holder 38. The sheet metal cover 39 has a cylindrical shape or a polygonal shape so as to surround the cylindrical bobbin 34, and has an integrated shape or a shape divided into two or more.
 これにより、内管31が他の冷媒配管Fと同種の銅製なので、内管31と冷媒配管Fとの接合が容易(製造容易)となる。しかも、ステンレス鋼などの磁性体からなる外管32により効率的な誘導加熱が可能である。
 また、厚みのある外管32に誘導加熱コイル33が巻き付いたボビン34を支持させる構造を採用しているので、IHヒータアセンブリ30の全体の強度が向上する。
 以上のように、IHヒータアセンブリ30が四路切換弁22とアキュームレータ25とを接続しているアキューム管Fの部分の途中に設けられていることにより、図1に示されるように、電源線71を介して高周波電源60から高周波交流電流を受けたIHヒータアセンブリ30によって、四路切換弁22からアキュームレータ25に向かう吸入ガス冷媒を暖めることができ、暖房能力を向上させることができる。
Thereby, since the inner pipe 31 is made of the same kind of copper as the other refrigerant pipes F, the inner pipe 31 and the refrigerant pipe F can be easily joined (manufactured easily). Moreover, efficient induction heating is possible by the outer tube 32 made of a magnetic material such as stainless steel.
Moreover, since the structure which supports the bobbin 34 with the induction heating coil 33 wound around the thick outer tube 32 is adopted, the overall strength of the IH heater assembly 30 is improved.
As described above, the IH heater assembly 30 is provided in the middle of the portion of the accumulator pipe F that connects the four-way switching valve 22 and the accumulator 25, so that as shown in FIG. By the IH heater assembly 30 that receives the high-frequency alternating current from the high-frequency power source 60 via the intake air, the intake gas refrigerant that is directed from the four-way switching valve 22 to the accumulator 25 can be warmed, and the heating capacity can be improved.
 また、暖房運転の起動時においては、圧縮機21が十分に暖まっていない状態の場合もあるが、ここでは、IHヒータアセンブリ30が発熱することで、四路切換弁22からアキュームレータ25に向かうガス冷媒を加熱することができ、起動時の能力不足を補うことができる。
 さらに、四路切換弁22を冷房運転用の状態に切り換えて、室外熱交換器23に付着した霜を除去するデフロスト運転を行う場合には、IHヒータアセンブリ30を通過して暖められたガス冷媒を圧縮機21でさらに圧縮することができるため、圧縮機21から吐出するホットガスの温度を上げることができる。これにより、デフロスト運転によって霜を解凍させるのに必要とされる時間を短縮化させることができる。これにより、暖房運転中に適時デフロスト運転を行うことが必要となる場合であっても、できるだけ早く暖房運転に復帰させることができ、ユーザの快適性を向上させることができる。
<IHヒータアセンブリ30の製造方法>
 本実施形態のIHヒータアセンブリ30を製造する場合、まず図9に示されるように、内管31の外周面31aにゲル状のシリコン樹脂43を塗布する(被覆工程)。なお、内管31の外周面31aのうち、シリコン樹脂43が塗布される領域には、凸部31があらかじめ形成されている。
In addition, when the heating operation is started, the compressor 21 may not be sufficiently warmed. Here, the IH heater assembly 30 generates heat, so that the gas from the four-way switching valve 22 toward the accumulator 25 is generated. The refrigerant can be heated, and the lack of capacity at the start-up can be compensated.
Further, when the four-way switching valve 22 is switched to the state for cooling operation and the defrost operation for removing the frost attached to the outdoor heat exchanger 23 is performed, the gas refrigerant heated through the IH heater assembly 30 is used. Can be further compressed by the compressor 21, so that the temperature of the hot gas discharged from the compressor 21 can be increased. Thereby, the time required to thaw frost by defrost operation can be shortened. Thereby, even if it is necessary to perform a defrost operation in a timely manner during the heating operation, the operation can be returned to the heating operation as soon as possible, and the user's comfort can be improved.
<Method for Manufacturing IH Heater Assembly 30>
When manufacturing the IH heater assembly 30 of this embodiment, first, as shown in FIG. 9, the gel-like silicon resin 43 is applied to the outer peripheral surface 31a of the inner tube 31 (covering step). In addition, the convex part 31 is previously formed in the area | region where the silicon resin 43 is apply | coated among the outer peripheral surfaces 31a of the inner pipe | tube 31.
 ついで、図5および図10に示されるように、冷媒回路11の冷媒配管の一部を構成する銅製の内管31が、磁性体からなるステンレス鋼製の外管32の内部に挿入される(挿入工程)。なお、外管32の内径は、内管31との間で、内管31の凸部31bおよびシリコン樹脂43の層を破損しない程度のクリアランスが得られるように、設定される。
 そして、図6および図11に示されるように、内管31の内部にその内径より少し大きい外径を有する拡管ビレット41を圧入することによって、内管31が、その外径が拡大する方向へ拡大されることにより、外管32の内部に嵌合する(拡管工程)。このとき、内管31を拡管するときに、あらかじめ内周面32bに凹部32cが形成された外管32の内周面32bに押しつけられることにより、シリコン樹脂43が外管32の凹部32cに入り込むので、シリコン樹脂43は、凹部32cが形成された外管32の内周面32bと凸部31bが形成された内管31の外周面31aに完全に密着でき、凹凸がない場合と比較して広い接触面積が得られる。したがって、広い接触面積に対応して、伝熱性能も大幅に向上する。
Next, as shown in FIG. 5 and FIG. 10, the copper inner pipe 31 constituting a part of the refrigerant pipe of the refrigerant circuit 11 is inserted into the stainless steel outer pipe 32 made of a magnetic material ( Insertion process). The inner diameter of the outer tube 32 is set so as to obtain a clearance between the inner tube 31 and the convex portion 31b of the inner tube 31 and the silicon resin 43 layer.
Then, as shown in FIG. 6 and FIG. 11, the inner pipe 31 is press-fitted into the inner pipe 31 so that the outer diameter of the inner pipe 31 increases. By being enlarged, it fits inside the outer pipe 32 (pipe expansion process). At this time, when the inner tube 31 is expanded, the silicon resin 43 enters the recess 32c of the outer tube 32 by being pressed against the inner periphery 32b of the outer tube 32 in which the recess 32c is previously formed in the inner periphery 32b. Therefore, the silicon resin 43 can completely adhere to the inner peripheral surface 32b of the outer tube 32 in which the concave portion 32c is formed and the outer peripheral surface 31a of the inner tube 31 in which the convex portion 31b is formed, as compared with the case where there is no unevenness. A wide contact area is obtained. Therefore, the heat transfer performance is greatly improved corresponding to a wide contact area.
 その後、図7に示されるように、IHヒータアセンブリ30のボビン34、蓋35、フェライトホルダ38およびナット36をあらかじめ組み合わせたものを、ナット36を緩めた状態で外管32の外周に挿入し、その後、ナット36を外管32に締め付けることにより、C字型リング43に内径方向に押し付けられることにより、ボビン34その他の主要部が装着される(ボビン装着工程)。これにより、IHヒータアセンブリ30の製造が完了する。
<実施形態の特徴>
(1)
 実施形態のIHヒータアセンブリ30では、空気よりも熱伝導率が高い伝熱剤として、シリコン樹脂43が内管31の外周面31aと外管32の内周面32bとの間に配設されているので、誘導加熱される外管32から内管31への伝熱性が向上し、その結果、冷媒Hへの伝熱が良くなる。
(2)
 また、本実施形態では、ゲル状のシリコン樹脂43を採用することにより、ゲル状のシリコン樹脂43を内管31の外周面31aまたは外管32の内周面32bに塗布するだけで、所望の膜厚のシリコン樹脂43の層を容易に確保できる。
(3)
 また、実施形態のIHヒータアセンブリ30では、伝熱剤としてシリコン樹脂43を用いることにより、内管31と外管32との間における熱伝導性および付着性が良い。
Thereafter, as shown in FIG. 7, a combination of the bobbin 34, the lid 35, the ferrite holder 38 and the nut 36 of the IH heater assembly 30 in advance is inserted into the outer periphery of the outer tube 32 with the nut 36 loosened, After that, the nut 36 is tightened to the outer tube 32, and is pressed against the C-shaped ring 43 in the inner diameter direction, whereby the bobbin 34 and other main parts are mounted (bobbin mounting step). Thereby, the manufacture of the IH heater assembly 30 is completed.
<Features of the embodiment>
(1)
In the IH heater assembly 30 of the embodiment, a silicon resin 43 is disposed between the outer peripheral surface 31a of the inner tube 31 and the inner peripheral surface 32b of the outer tube 32 as a heat transfer agent having a higher thermal conductivity than air. Therefore, the heat transfer from the outer tube 32 that is induction-heated to the inner tube 31 is improved, and as a result, the heat transfer to the refrigerant H is improved.
(2)
Further, in the present embodiment, by adopting the gel-like silicon resin 43, the gel-like silicon resin 43 is simply applied to the outer peripheral surface 31a of the inner tube 31 or the inner peripheral surface 32b of the outer tube 32. A layer of silicon resin 43 having a thickness can be easily secured.
(3)
Moreover, in the IH heater assembly 30 of the embodiment, by using the silicon resin 43 as the heat transfer agent, the thermal conductivity and adhesion between the inner tube 31 and the outer tube 32 are good.
(4)
 また、実施形態のIHヒータアセンブリ30では、外管32の内周面32bおよび内管31の外周面31aには、凹部32cおよび凸部31bがそれぞれ形成されているので、両管の接触面積が増え、誘導加熱される外管32から内管31への伝熱、ひいては冷媒への伝熱が良くなる。
(5)
 また、実施形態のIHヒータアセンブリ30の製造方法では、内管31の外周面31aにシリコン樹脂43を被覆する被覆工程と、内管31を外管32の内部に挿入する挿入工程と、内管31を所定の外径まで拡管する拡管工程とを含んでいる。
 したがって、内管31の外周面31aにシリコン樹脂43を被覆した後、外管32に挿入して拡管するので、誘導加熱される外管32から内管31への伝熱性が向上し、その結果、冷媒への伝熱が良くなる。しかも、内管31を外管32に挿入して拡管するだけで両管を密着性よく強固に結合できるので、拡管後に両管同士のろう付けなどの固定のための工程が不要になり、製造が非常に容易である。
<変形例>
(A)
 上記の実施形態では、伝熱剤として、ゲル状のシリコン樹脂43を採用しているのが、本発明はこれに限定されるものではなく、種々の伝熱剤を採用することが可能である。例えば、シリコン樹脂スプレーなどのように、液状のシリコン樹脂剤を噴霧できるようなものでもよく、この場合、内管31の外周面31aにシリコン樹脂剤を容易に吹き付けることができ、しかも、薄い膜厚を容易に得られる。
(B)
 なお、外管32の内周面32bおよび内管31の外周面31aにそれぞれ形成された凹部32cおよび凸部31bについては、シリコン樹脂43との接触面積が拡大できる形状であれば、種々の形態を採用することが可能であり、本発明はとくに限定するものではない。したがって、例えば、複数の点状の凹部および凸部でもよいし、直線状または螺旋状に連続して延びる複数の溝および突条でもよい。
(4)
Further, in the IH heater assembly 30 of the embodiment, the inner peripheral surface 32b of the outer tube 32 and the outer peripheral surface 31a of the inner tube 31 are respectively formed with the concave portion 32c and the convex portion 31b. As a result, the heat transfer from the outer tube 32 to the inner tube 31 that is induction-heated, and thus the heat transfer to the refrigerant is improved.
(5)
In the manufacturing method of the IH heater assembly 30 of the embodiment, the covering step of covering the outer peripheral surface 31a of the inner tube 31 with the silicon resin 43, the inserting step of inserting the inner tube 31 into the outer tube 32, and the inner tube And a tube expanding step for expanding the tube 31 to a predetermined outer diameter.
Therefore, since the outer peripheral surface 31a of the inner tube 31 is coated with the silicon resin 43 and then inserted into the outer tube 32 to expand the tube, the heat transfer from the outer tube 32 that is induction-heated to the inner tube 31 is improved. , Heat transfer to the refrigerant is improved. Moreover, since both the tubes can be firmly coupled with good adhesion simply by inserting the inner tube 31 into the outer tube 32 and expanding the tube, a process for fixing such as brazing between the two tubes becomes unnecessary after the tube expansion. Is very easy.
<Modification>
(A)
In the above embodiment, the gel-like silicon resin 43 is employed as the heat transfer agent, but the present invention is not limited to this, and various heat transfer agents can be employed. . For example, a silicon resin spray or the like that can spray a liquid silicon resin agent may be used. In this case, the silicon resin agent can be easily sprayed on the outer peripheral surface 31a of the inner tube 31, and a thin film can be used. Thickness can be easily obtained.
(B)
In addition, about the recessed part 32c and the convex part 31b which were formed in the inner peripheral surface 32b of the outer tube | pipe 32 and the outer peripheral surface 31a of the inner tube | pipe 31, respectively, as long as the contact area with the silicon resin 43 can be expanded, various forms The present invention is not particularly limited. Therefore, for example, a plurality of dot-like concave portions and convex portions, or a plurality of grooves and ridges extending continuously in a straight line shape or a spiral shape may be used.
 本発明は、誘導加熱するための冷媒加熱装置の分野に種々適用することが可能である。
The present invention can be variously applied to the field of refrigerant heating devices for induction heating.
.
1 空気調和機
2 室外機
4 室内機
6 液冷媒連絡配管
7 ガス冷媒連絡配管
11 冷媒回路
21 圧縮機
22 四路切換弁
23 室外熱交換器
24 膨張弁
25 アキュームレータ
26 室内熱交換器
30 IHヒータアセンブリ(冷媒加熱装置)
31 内管
31a 外周面
31b 凸部
32 外管
32a 雄ねじ部
32b 内周面
32c 凹部
33 誘導加熱コイル
34 ボビン
35 蓋
36 ナット
37 フェライトブロック、
38 フェライトホルダ
39 板金カバー
41 拡管ビレット
43 シリコン樹脂(伝熱剤)
A 吐出管
B 室内側ガス管
C 室内側液管
D 室外側液管
E 室外側ガス管
F アキューム管
G 吸入管
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 4 Indoor unit 6 Liquid refrigerant communication piping 7 Gas refrigerant communication piping 11 Refrigerant circuit 21 Compressor 22 Four-way switching valve 23 Outdoor heat exchanger 24 Expansion valve 25 Accumulator 26 Indoor heat exchanger 30 IH heater assembly (Refrigerant heating device)
31 Inner tube 31a Outer peripheral surface 31b Convex portion 32 Outer tube 32a Male threaded portion 32b Inner peripheral surface 32c Concave 33 Induction heating coil 34 Bobbin 35 Lid 36 Nut 37 Ferrite block
38 Ferrite holder 39 Sheet metal cover 41 Expanded billet 43 Silicon resin (heat transfer agent)
A discharge pipe B indoor side gas pipe C indoor side liquid pipe D outdoor side liquid pipe E outdoor side gas pipe F accumulator pipe G suction pipe
特開2001―174054号公報Japanese Patent Laid-Open No. 2001-174054

Claims (5)

  1.  冷媒が流れる内管(31)と、
     前記内管(31)の周囲を取り巻き、磁性体からなる外管(32)と、
     前記外管(32)の周囲を取り巻き、前記外管(32)を誘導加熱する誘導加熱コイル(33)と
    を備えており、
     前記内管(31)の外周面と前記外管(32)の内周面との間には、空気よりも熱伝導率が高い伝熱剤(43)が配設されている、
    冷媒加熱装置(30)。
    An inner pipe (31) through which the refrigerant flows;
    Surrounding the inner pipe (31), and an outer pipe (32) made of a magnetic material;
    An induction heating coil (33) surrounding the outer tube (32) and for induction heating the outer tube (32);
    Between the outer peripheral surface of the inner pipe (31) and the inner peripheral surface of the outer pipe (32), a heat transfer agent (43) having a higher thermal conductivity than air is disposed.
    Refrigerant heating device (30).
  2.  前記伝熱剤(43)は、ゲル状である、
    請求項1に記載の冷媒加熱装置(30)。
    The heat transfer agent (43) is in a gel form.
    The refrigerant heating device (30) according to claim 1.
  3.  前記伝熱剤(43)は、シリコン樹脂である、
    請求項1または2に記載の冷媒加熱装置(30)。
    The heat transfer agent (43) is a silicone resin.
    The refrigerant heating device (30) according to claim 1 or 2.
  4.  前記外管(32)の内周面および/または前記内管(31)の外周面には、凹凸が形成されている、
    請求項1に記載の冷媒加熱装置(30)。
    Concavities and convexities are formed on the inner peripheral surface of the outer tube (32) and / or the outer peripheral surface of the inner tube (31).
    The refrigerant heating device (30) according to claim 1.
  5.  請求項1に記載の冷媒加熱装置(30)の製造方法であって、
    前記内管(31)の外周面に前記伝熱剤(43)を被覆する被覆工程と、
    前記内管(31)を前記外管(32)の内部に挿入する挿入工程と、
    前記内管(31)を所定の外径まで拡管する拡管工程と
    を含む冷媒加熱装置(30)の製造方法。
    It is a manufacturing method of the refrigerant heating device (30) according to claim 1,
    A covering step of covering the outer peripheral surface of the inner pipe (31) with the heat transfer agent (43);
    An insertion step of inserting the inner tube (31) into the outer tube (32);
    The manufacturing method of a refrigerant heating apparatus (30) including the pipe expansion process which expands the said inner pipe (31) to a predetermined | prescribed outer diameter.
PCT/JP2009/004555 2008-09-17 2009-09-14 Coolant heating device WO2010032414A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008238720A JP2011247428A (en) 2008-09-17 2008-09-17 Refrigerant heater
JP2008-238720 2008-09-17

Publications (1)

Publication Number Publication Date
WO2010032414A1 true WO2010032414A1 (en) 2010-03-25

Family

ID=42039264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004555 WO2010032414A1 (en) 2008-09-17 2009-09-14 Coolant heating device

Country Status (2)

Country Link
JP (1) JP2011247428A (en)
WO (1) WO2010032414A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339876A (en) * 1989-07-06 1991-02-20 Tokyo Erekutoron Kyushu Kk Heat exchanger apparatus
JP2001108332A (en) * 1999-10-01 2001-04-20 Daikin Ind Ltd Refrigerant heater
JP2001174054A (en) * 1999-12-14 2001-06-29 Daikin Ind Ltd Induction heating apparatus
JP2001174055A (en) * 1999-12-14 2001-06-29 Daikin Ind Ltd Induction heating apparatus
JP2001280700A (en) * 2000-03-30 2001-10-10 Toto Ltd Water heater and hygiene cleaning equipment having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339876A (en) * 1989-07-06 1991-02-20 Tokyo Erekutoron Kyushu Kk Heat exchanger apparatus
JP2001108332A (en) * 1999-10-01 2001-04-20 Daikin Ind Ltd Refrigerant heater
JP2001174054A (en) * 1999-12-14 2001-06-29 Daikin Ind Ltd Induction heating apparatus
JP2001174055A (en) * 1999-12-14 2001-06-29 Daikin Ind Ltd Induction heating apparatus
JP2001280700A (en) * 2000-03-30 2001-10-10 Toto Ltd Water heater and hygiene cleaning equipment having the same

Also Published As

Publication number Publication date
JP2011247428A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
US9648983B2 (en) Helical dynamic flow through heater
WO2010032420A1 (en) Outdoor unit of air conditioner
US20130269914A1 (en) Heat Exchanger for Refrigeration Cycle and Manufacturing Method for Same
WO2018107501A1 (en) Vehicle electric motor stator assembly with high thermal conductivity based on 3d phase transition heat pipe technology
JP2016081913A (en) High frequency induction heating coil, and pipe brazing device and method
JP2011021757A (en) Heat exchanger and heat pump system
WO2010032421A1 (en) Electromagnetic induction heating unit and air-conditioning apparatus
JP5110167B2 (en) Mounting structure for refrigerant heating device assembly
WO2010032415A1 (en) Refrigerant heating apparatus manufacturing method
WO2010032414A1 (en) Coolant heating device
JP2010071529A (en) Refrigerant heater
JP2000220912A (en) Refrigerant heater
US10384253B2 (en) Spinning forming device
JP2004144430A (en) Heat exchange pipe and heat exchanger
JP4016546B2 (en) Fluid heating device
JP2008267757A (en) Heat exchanger and refrigerating circuit using the heat exchanger
WO2010116730A1 (en) Heat exchanger and method for producing the same
KR20130084841A (en) A heat exchanger and manufacturing method the same
JP2004218945A (en) Heat exchanger and method of manufacturing the same
JP2004144343A (en) Heat exchanger
JP7315864B2 (en) Pressure reducing valve, heat exchanger, air conditioner, and method for manufacturing heat exchanger
JP2010071516A (en) Outdoor unit for air conditioner
JP2014229486A (en) Induction heating apparatus
JP2010096484A (en) Outdoor unit of air conditioner
JP2010145023A (en) Refrigerant heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09814259

Country of ref document: EP

Kind code of ref document: A1