WO2010032313A1 - Secondary-battery mounted mobile unit - Google Patents

Secondary-battery mounted mobile unit Download PDF

Info

Publication number
WO2010032313A1
WO2010032313A1 PCT/JP2008/067012 JP2008067012W WO2010032313A1 WO 2010032313 A1 WO2010032313 A1 WO 2010032313A1 JP 2008067012 W JP2008067012 W JP 2008067012W WO 2010032313 A1 WO2010032313 A1 WO 2010032313A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
duct
exhaust gas
mobile unit
port
Prior art date
Application number
PCT/JP2008/067012
Other languages
French (fr)
Japanese (ja)
Inventor
巧 大矢
橋本 勉
克雄 橋▲崎▼
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2008/067012 priority Critical patent/WO2010032313A1/en
Publication of WO2010032313A1 publication Critical patent/WO2010032313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/308Detachable arrangements, e.g. detachable vent plugs or plug systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/392Arrangements for facilitating escape of gases with means for neutralising or absorbing electrolyte; with means for preventing leakage of electrolyte through vent holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/003Component temperature regulation using an air flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/523Removing gases inside the secondary cell, e.g. by absorption by recombination on a catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a mobile body equipped with a secondary battery, and more particularly to an exhaust gas treatment device for a secondary battery mounted on the mobile body.
  • a rechargeable secondary battery may be mounted as a drive source.
  • a non-aqueous electrolyte type secondary battery containing an organic solvent as an electrolytic solution such as a lithium secondary battery
  • the battery may be deteriorated, or the internal pressure may rise due to evaporation of the organic solvent and the battery may burst. Therefore, such secondary batteries are provided with safety measures when the internal temperature rises.
  • Japanese Patent Application Laid-Open No. 11-31540 discloses a non-aqueous electrolyte secondary battery characterized by containing a substance that absorbs hydrogen inside the battery. According to the description of Japanese Patent Application Laid-Open No. 11-31540, if hydrogen is present inside the battery, the hydrogen and the positive electrode material react to produce water and deteriorate the battery, but contain a substance that absorbs hydrogen. Water is not generated and the battery does not deteriorate.
  • Japanese Patent Laid-Open No. 7-192775 discloses that a gas adsorbent is disposed between a safety valve and a battery lid in a non-aqueous electrolyte secondary battery including a safety valve inside the battery lid.
  • Japanese Patent Application Laid-Open No. 2003-68266 discloses a power storage device in which a plurality of secondary batteries having a safety valve on the upper surface are incorporated in a rack, each of which has a channel groove formed inside a partition member of the rack. An opening communicating with the flow path groove is formed in each partition member of the rack opposite to the rack, and suction means connected to the flow path groove is connected to the rack via an adsorption tank filled with an adsorbent. Is described.
  • gas is released from the secondary battery to the outside.
  • the gas at this time may contain a gas generated by a chemical change of the organic solvent at a high temperature. If such a gas is discharged to the outside as it is, it can be considered to affect the surrounding environment, so it is necessary to take measures in consideration of the influence on the surroundings.
  • a secondary battery mounted on a mobile body requires a large capacity, so a large-sized secondary battery is used.
  • a large amount of gas may be ejected in an emergency such as an increase in internal temperature. Therefore, in a mobile body equipped with a secondary battery, in consideration of an emergency, it is necessary to have a configuration that does not affect the surroundings even if a large amount of gas is ejected.
  • an object of the present invention is to provide a technique capable of further improving safety in an emergency in a mobile body equipped with a secondary battery.
  • the secondary battery mounted moving body of the present invention is connected to the jet port (2) when a vehicle and a secondary battery module provided in the vehicle body and having a jet port for jetting exhaust gas are mounted.
  • the vehicle body is provided with an exhaust port.
  • the first duct is connected to the exhaust port. According to this invention, when the exhaust gas is exhausted from the secondary battery module to the first duct in an emergency, the exhaust gas in the first duct is rendered harmless by the detoxification section.
  • the exhaust gas can be exhausted in a state in which it is rendered harmless outside the vehicle.
  • the secondary battery mounted moving body of the present invention further includes a second duct that is provided in the vehicle body and arranged to spray a cooling fluid onto the secondary battery module.
  • the secondary battery module is cooled by spraying the cooling fluid onto the secondary battery module.
  • the detoxification part preferably includes a cooling part for cooling the exhaust gas.
  • the vehicle body is provided with a first air intake for taking in air from the outside of the vehicle, the first duct is connected to the first air intake, and the cooling unit is the first air intake. It is preferable to provide a fan provided in the middle of the first duct so as to generate an air flow from the outlet to the exhaust port.
  • the cooling unit includes a cooling gas cylinder (13) connected to the first duct.
  • the cooling unit preferably includes a radiator interposed in the first duct between the jet port and the exhaust port.
  • the mobile unit equipped with the secondary battery of the present invention further includes a temperature sensor that measures the temperature of the exhaust gas or the secondary battery module, and a control device that controls the operation of the cooling unit based on the measurement result of the temperature sensor. It is preferable.
  • the detoxification section preferably includes a dilution section that dilutes the exhaust gas sent to the first duct.
  • the vehicle body is provided with a first air intake for taking in air from the outside of the vehicle, the first duct is connected to the first air intake, and the diluting portion is the first air intake. It is preferable to provide a fan provided in the middle of the first duct so as to generate an air flow from the opening to the exhaust opening.
  • the dilution section includes a dilution gas cylinder connected to the first duct.
  • the mobile unit equipped with the secondary battery of the present invention further includes a concentration sensor that measures the exhaust gas concentration in the first duct, and a dilution unit control device that controls the operation of the dilution unit based on the measurement result of the concentration sensor. It is preferable.
  • the dilution section is preferably provided with a combustion catalyst layer that is interposed between the jet outlet and the exhaust outlet in the first duct and burns the exhaust gas.
  • the dilution section is preferably provided with an adsorbent material layer that is interposed between the jet outlet and the exhaust outlet in the first duct and adsorbs the exhaust gas.
  • An exhaust gas treatment method for a secondary battery includes a step of ejecting exhaust gas from a secondary battery module mounted on a moving body in an emergency, a step of detoxifying exhaust gas ejected in the step of ejecting, and And exhausting the exhaust gas detoxified in the detoxifying step to the outside of the vehicle.
  • a technology capable of further improving safety in an emergency in a mobile body equipped with a secondary battery.
  • FIG. 1 is a schematic diagram showing a secondary battery mounted moving body according to the first embodiment.
  • FIG. 2 is a schematic view showing a secondary battery mounted moving body according to the second embodiment.
  • FIG. 3 is a schematic diagram showing a secondary battery mounted moving body according to the third embodiment.
  • FIG. 4 is a schematic diagram showing a secondary battery mounted moving body according to the fourth embodiment.
  • FIG. 1 is a schematic configuration diagram of a mobile unit equipped with a secondary battery according to the present embodiment.
  • the secondary battery mounted mobile body of this embodiment is exemplified by an electric vehicle and a battery forklift.
  • This secondary battery-equipped moving body includes a vehicle body and an exhaust gas treatment device provided in the vehicle body.
  • the exhaust gas treatment apparatus includes a first duct 3 and a second duct 9 (9A, 9B).
  • the first duct 3 and the second duct 9 are provided with a fan 11 and a fan 8, respectively.
  • a battery storage chamber 18 is provided in the vehicle body.
  • a plurality of secondary battery modules (1-1 to 1-3) are mounted as driving sources for the moving body.
  • the vehicle body is provided with a first air intake port 5, a second air intake port 7, a first exhaust port 4, and a second exhaust port 12.
  • Each of the plurality of secondary battery modules (1-1 to 1-3) includes a lithium secondary battery containing lithium ions as an electrolyte and using an organic solvent as an electrolyte.
  • Each secondary battery module 1 is provided with a spout 2 to which a safety valve 6 is attached.
  • the safety valve 6 is for releasing the accumulated internal pressure when the internal pressure is accumulated in the battery. When the internal pressure in the battery is normal, the safety valve 6 is closed and the secondary battery module is sealed. On the other hand, when the internal pressure in the battery exceeds the pressure at which the safety valve 6 operates, the safety valve 6 is opened, and the exhaust gas is ejected from the battery through the ejection port 2.
  • the first duct 3 is connected to the first air intake port 5 at one end and to the first exhaust port 4 at the other end.
  • the first duct 3 is branched between the first air intake port 5 and the first exhaust port 4, and is connected to the jet outlet 2 of each secondary battery module 1 at the branched point.
  • the gas ejected to the first duct 3 through the ejection port 2 is usually at a high pressure and a high flow velocity, depending on the specifications of the safety valve 6. It is not preferable that high-pressure, high-flow-rate gas is exhausted outside the vehicle. Therefore, it is preferable that the first duct 3 is designed so that the pressure and flow velocity of the exhaust gas are sufficiently reduced. Specifically, it is preferable that the inner diameter is designed in consideration of the diameter of the ejection port 2 and the specification of the safety valve 6.
  • the first duct 3 is preferably laid out so that the pressure of the exhaust gas does not face the cabin side in order to protect the cabin (not shown) in the vehicle body from the pressure due to the exhaust gas.
  • the first duct 3 is preferably composed of a metal tube having alkali resistance.
  • the exhaust gas of the lithium secondary battery may contain a lithium ion component and is considered to have alkalinity. If the 1st duct 3 is comprised with the metal pipe which has alkali resistance, corrosion of piping by alkaline exhaust gas can be prevented.
  • An example of such an alkaline metal tube is a stainless steel tube.
  • the fan 11 is provided to generate an air flow in the first duct 3.
  • air is taken into the first duct 3 from the first air intake 5.
  • the air flowing through the first duct 3 is exhausted from the exhaust port 4 to the outside.
  • the second duct 9 is provided to cool the plurality of secondary battery modules 2.
  • the second duct 9 includes a second duct portion 9A that communicates between the second air intake port 7 and the battery storage chamber 18, and a second duct portion 9B that communicates between the battery storage chamber 18 and the exhaust port 12. .
  • the fan 8 is provided to generate an air flow in the second duct 9.
  • air is taken into the second duct portion 9 ⁇ / b> A from the second air intake 7 and sent to the battery storage chamber 18.
  • the air introduced into the battery storage chamber 18 is blown to each secondary battery module 1 to cool each secondary battery module 1.
  • the air that has passed through the battery storage chamber 18 is exhausted from the exhaust port 12 to the outside of the vehicle via the second duct portion 9B.
  • a secondary battery module 1 generates heat due to a collapse due to an accident or a short circuit due to overcharge. Then, the internal temperature of the secondary battery module 1 rises rapidly. At this time, gas is generated when the organic solvent that is the electrolytic solution evaporates or the constituent members of the secondary battery module 1 burn. Due to the generation of gas, the internal pressure of the secondary battery module 1 increases. When the internal pressure of the secondary battery module 1 reaches the pressure at which the safety valve 6 operates, the safety valve 6 operates. As a result, the gas in the secondary battery module 1 is ejected into the first duct 3. At this time, the gas (exhaust gas) introduced into the first duct 3 has a relatively high concentration and a high temperature.
  • the air is taken into the first duct 3 by the fan 11.
  • the exhaust gas introduced from the secondary battery module 1 into the first duct 3 is cooled and diluted by the air taken in by the fan 11. Thereby, exhaust gas is rendered harmless.
  • the exhaust gas rendered harmless in the first duct 3 is exhausted to the outside through the first exhaust port 4. Since this exhaust gas is detoxified, it does not affect the environment around the moving body.
  • each secondary battery module 1 is also cooled by the second duct 9. That is, when the fan 8 is operated, air is blown to each secondary battery module 1 in the battery storage chamber 18 to cool each secondary battery module. As a result, an increase in the internal temperature of each secondary battery module 1 is suppressed, and the exhaust gas itself is prevented from being ejected.
  • first duct 3 and the second duct 9 are completely separated.
  • the first duct 3 and the second duct 9 may share one air intake port.
  • FIG. 2 is a schematic diagram showing the configuration of the mobile unit equipped with the secondary battery of the present embodiment.
  • a temperature sensor 15, a cooling unit control device 16, a cooling gas cylinder 13, a valve 14, and a radiator 17 are added as compared with the first embodiment.
  • the first air intake 5 in the first embodiment is not provided. Since other points can be the same as those in the first embodiment, a detailed description thereof will be omitted.
  • the cooling gas cylinder 13 is connected to the first duct 3 via a valve 14.
  • the cooling gas cylinder 13 is filled with a cooling gas.
  • the valve 14 is closed, but in an emergency, the valve 14 is opened and the cooling gas is introduced into the first duct 3.
  • Carbon dioxide has a large heat specific gravity and has a digestive action. Due to the large thermal specific gravity, the temperature of the exhaust gas introduced into the first duct 3 can be quickly lowered. Moreover, even if the exhaust gas introduce
  • the radiator 17 is provided to lower the temperature of the exhaust gas by heat exchange.
  • the radiator 17 for example, a water-cooled type is used.
  • the radiator 17 includes a cooling portion, a heat radiating portion, and a pump for circulating cooling water between the cooling portion and the heat radiating portion.
  • the cooling portion is interposed in the first duct 3 between the ejection port 2 and the exhaust port 4 of each secondary battery module 1. That is, the cooling unit of the radiator 17 is disposed on the downstream side of the ejection port 2 of each secondary battery module 1.
  • the heat radiating part is arranged at a position where heat is taken away by the outside air.
  • the exhaust gas in the first duct 3 is cooled by passing through the cooling portion of the radiator 17.
  • the temperature sensor 15 is provided so as to measure the temperature in the first duct 3 in the vicinity of the spout 2 of each secondary battery module 1.
  • the exhaust gas temperature at the time of ejection from each secondary battery module 1 is measured by the temperature sensor 15.
  • the measurement result by the temperature sensor 15 is notified to the cooling unit control device 16.
  • the cooling unit control device 16 is, for example, a computer including a CPU and a memory, and realizes its function by an installed program.
  • the cooling unit control device 16 opens and closes the valve 14 based on the result notified from the temperature sensor 15. Specifically, when the temperature notified from the temperature sensor 15 exceeds a preset temperature, it is determined that the exhaust gas is ejected into the first duct 3 and the valve 14 is opened. Further, when the temperature exceeds a preset temperature, the pump of the radiator 17 is operated, and the gas in the first duct 3 is cooled by the radiator 17.
  • the exhaust gas treatment apparatus of the present embodiment operates as follows in an emergency.
  • each secondary battery module 1 rises and the safety valve 6 is opened, high-temperature exhaust gas is introduced from each secondary battery module 1 into the first duct 3.
  • the temperature of the jet outlet 2 in the first duct 3 is increased by the exhaust gas.
  • the cooling unit control device 16 detects an increase in temperature via the temperature sensor 15.
  • the cooling unit control device 16 opens the valve 14. Thereby, the cooling gas is introduced into the first duct 3 from the cooling gas cylinder 13.
  • the cooling unit control device 16 operates the pump of the radiator 17.
  • the exhaust gas in the first duct 3 is cooled by the cooling gas and is also cooled by passing through the cooling part of the radiator 17.
  • the exhaust gas rendered harmless by being cooled is exhausted from the exhaust port 4 to the outside.
  • the exhaust gas in the first duct 3 is cooled and rendered harmless by the cooling gas introduced from the cooling gas cylinder 13 and the radiator 17.
  • the cooling unit control device 16 automatically opens the valve 14 and operates the radiator 17 by the temperature sensor 15, so that the exhaust gas enters the first duct 3 from each secondary battery module 1. When introduced, the exhaust gas can be immediately cooled.
  • the cooling unit control device 16 determines the opening degree of the valve 14 and the time for opening the valve 14 based on the difference between the temperature notified from the temperature sensor 15 and the preset temperature. May be controlled. That is, when the temperature in the first duct 3 is sufficiently lowered after the valve 14 is opened, the opening degree of the valve 14 may be decreased or closed. In this way, the amount of the cooling gas introduced into the first duct 3 can be set to an amount necessary for lowering the temperature of the exhaust gas, and the introduction of the cooling gas is prevented. .
  • the temperature sensor 15 is each secondary battery module 1. It may be provided to measure its own temperature. By measuring the temperature of each secondary battery module 1 itself, it is possible to detect an emergency state before exhaust gas is ejected from each secondary battery module 1. As a result, the cooling gas can be introduced into the first duct 3 before the safety valve 6 is opened, and the exhaust gas in the first duct 3 can be cooled more reliably. Further, the temperature sensor 15 may be provided in the vicinity of the exhaust port 4 so as to measure the gas temperature exhausted from the exhaust port 4. If the temperature sensor 15 is disposed at such a position, the cooling unit control device 16 can monitor whether or not the exhaust gas is normally cooled.
  • the cooling unit control device 16 controls the valve 14 and the radiator 17 .
  • the cooling unit control device 16 may be configured to control the rotation speed of the fan 11. Even with such a configuration, it is possible to automatically detect that the exhaust gas has been ejected into the first duct 3 and cool the exhaust gas.
  • FIG. 3 is a schematic diagram showing the configuration of the mobile unit equipped with the secondary battery of the present embodiment. As shown in FIG. 3, a combustion catalyst layer 20 is added as compared to the first embodiment. Since other points can be the same as those in the first embodiment, a detailed description thereof will be omitted.
  • the combustion catalyst layer 20 is a layer for detoxifying the exhaust gas in the first duct 3 by burning it.
  • the combustion catalyst layer 20 is provided between the jet port 2 and the exhaust port 4 in the first duct 3.
  • Examples of the combustion catalyst layer 20 include a material having a high specific surface area porous material such as alumina, zirconia, silica alumina, and silica as a carrier and a noble metal such as palladium or platinum supported thereon.
  • the exhaust gas ejected into the first duct 3 in an emergency is burned by the combustion catalyst layer 20 and exhausted from the exhaust port 4.
  • components of exhaust gas ejected from the secondary battery module 1 in an emergency components of particulate matter (PM) such as carbon dioxide, carbon monoxide, methane, propane, hydrocarbon, ethylmethyl carbonate, carbon black, and the like are conceivable.
  • Exhaust gas containing these components is burned and decomposed by passing through the combustion catalyst layer 20. As a result, the concentration of components of harmful substances in the exhaust gas can be reduced (diluted) to make the exhaust gas harmless.
  • an adsorbent material layer 21 for adsorbing exhaust gas components may be provided.
  • Examples of such an adsorbent material layer 21 include activated carbon.
  • the provision of the adsorbent material layer 21 can also reduce the concentration of harmful components in the exhaust gas and make the exhaust gas harmless. Further, both the combustion catalyst layer 20 and the adsorbent material layer 21 may be disposed in the first duct 3.
  • FIG. 4 is a schematic diagram showing the configuration of the mobile unit equipped with the secondary battery of the present embodiment. As shown in FIG. 4, as compared with the first embodiment, a dilution gas cylinder 22, a valve 23, a dilution unit control device 25, and a concentration sensor 24 are added. Further, the first air intake 5 is not provided. Since other points can be the same as those in the first embodiment, a detailed description thereof will be omitted.
  • the dilution gas cylinder 22 is connected to the first duct 3 via a valve 23.
  • the dilution gas cylinder 22 is filled with a dilution gas for reducing the concentration of exhaust gas. Carbon dioxide is exemplified as the dilution gas.
  • the valve 23 When the valve 23 is opened, the dilution gas is supplied from the dilution gas cylinder 22 to the first duct 3.
  • the exhaust gas When the exhaust gas is ejected into the first duct 3, the exhaust gas is diluted with the dilution gas, and the harmful components in the exhaust gas are reduced in concentration.
  • the concentration sensor 24 is attached in the vicinity of the exhaust port 4 so as to measure the concentration of the gas exhausted from the exhaust port 4. The measurement result by the concentration sensor 24 is notified to the dilution unit control device 25.
  • the concentration sensor 24 measures the concentration of harmful components (for example, carbon monoxide and hydrocarbons) and combustible components (for example, oxygen) in the exhaust gas of the secondary battery module 1.
  • the dilution unit control device 25 is provided for operating the valve 23 based on the measurement result notified from the concentration sensor 24. Specifically, if the value of the gas concentration notified from the concentration sensor 24 is a value that exceeds a preset gas concentration, it is determined that exhaust gas is being ejected from the secondary battery module 1, Valve 23 is opened.
  • the dilution unit control device 25 can be configured by a computer including a CPU, a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, for example.
  • the exhaust gas ejected from the secondary battery module 1 in an emergency is introduced into the first duct 3.
  • the dilution unit control device 25 Based on the measurement result by the concentration sensor 24, the dilution unit control device 25 detects that the exhaust gas has been ejected into the first duct 3, and opens the valve 23.
  • the valve 23 When the valve 23 is opened, the dilution gas is introduced into the first duct 3 from the dilution gas cylinder 22, and the exhaust gas in the first duct 3 is diluted. Dilution reduces the concentration of harmful components in the exhaust gas and renders the exhaust gas harmless.
  • the harmless exhaust gas is exhausted from the exhaust port 4 to the outside. This prevents the surroundings from being affected. It is also possible to prevent combustible components from burning and burning to surrounding constituent materials.
  • the dilution unit control device 25 may control the opening / closing operation of the valve 23 so that the harmful component concentration is set to a predetermined value or less based on the measurement result of the harmful component concentration. For example, when the concentration of harmful components is high, the opening degree of the valve 23 is increased so that a large amount of dilution gas is introduced into the first gas. Thus, by controlling the opening / closing operation of the valve 23, the concentration of harmful components can be reliably reduced. Further, if the opening of the valve 23 is made small when the harmful component concentration becomes sufficiently low, it is possible to prevent the dilution gas from being introduced into the first duct more than necessary.
  • the dilution unit control device 25 may control the opening / closing operation of the valve 23 so that the exhaust gas concentration in the first duct 3 is lower than the concentration in the combustible range based on the concentration measurement result of the combustible component.
  • the secondary battery loaded mobile body of the first embodiment may be provided with the dilution unit control device 25 and the concentration sensor 24 described in the fourth embodiment.
  • the dilution unit control device 25 can dilute the exhaust gas by controlling the amount of rotation of the fan 11 and the like to send air into the first duct 3 as a dilution gas.

Abstract

Provided is a technique for a mobile unit, which can enhance the safety of the mobile unit carrying a secondary battery, to a higher level in an emergency. The mobile unit comprises a vehicle body, a first duct disposed in the vehicle body, having an ejection port for ejecting an exhaust gas, and connected to the exhaust port when a secondary battery module is mounted, and a harm-preventing unit for making the exhaust gas in the first duct harmless. The first duct is connected to an exhaust port for discharging the exhaust gas ejected from the ejection port, to the outside of the vehicle body.

Description

二次電池搭載移動体Mobile unit with secondary battery
 本発明は、二次電池を搭載した移動体に関し、特に、移動体に搭載される二次電池の排ガス処理装置に関する。 The present invention relates to a mobile body equipped with a secondary battery, and more particularly to an exhaust gas treatment device for a secondary battery mounted on the mobile body.
 電気自動車(EV)やバッテリーフォークなどの移動体には、駆動源として、充放電可能な二次電池が搭載されることがある。二次電池としては、例えばリチウム二次電池のように、電解液として有機溶媒を含む非水電解質型の二次電池が挙げられる。このような非水電解質型二次電池において、万が一、過充電や圧壊により内部温度が上昇すると、電池が劣化したり、有機溶媒の蒸発によって内圧が上昇して電池が破裂することがある。そのため、こうした二次電池には、内部温度が上昇したときの安全対策が施されている。 In mobile vehicles such as electric vehicles (EV) and battery forks, a rechargeable secondary battery may be mounted as a drive source. As the secondary battery, for example, a non-aqueous electrolyte type secondary battery containing an organic solvent as an electrolytic solution, such as a lithium secondary battery, may be used. In such a non-aqueous electrolyte type secondary battery, if the internal temperature rises due to overcharge or collapse, the battery may be deteriorated, or the internal pressure may rise due to evaporation of the organic solvent and the battery may burst. Therefore, such secondary batteries are provided with safety measures when the internal temperature rises.
 電池が劣化することを防止する技術として、特開平11-312540号公報には、電池の内部に水素を吸収する物質を含有することを特徴とする非水電解質二次電池が開示されている。特開平11-312540号公報の記載によれば、電池内部に水素が存在すると水素と正極材料とが反応して水を生じ電池を劣化させるが、水素を吸収する物質を含有していることにより水が生成せず、電池が劣化しない。 As a technique for preventing the battery from deteriorating, Japanese Patent Application Laid-Open No. 11-31540 discloses a non-aqueous electrolyte secondary battery characterized by containing a substance that absorbs hydrogen inside the battery. According to the description of Japanese Patent Application Laid-Open No. 11-31540, if hydrogen is present inside the battery, the hydrogen and the positive electrode material react to produce water and deteriorate the battery, but contain a substance that absorbs hydrogen. Water is not generated and the battery does not deteriorate.
 一方、内圧の上昇による破裂を防止するために、二次電池に安全弁を取り付けることが知られている。 On the other hand, it is known to attach a safety valve to the secondary battery in order to prevent rupture due to an increase in internal pressure.
 特開平7-192775号公報には、電池蓋の内側に安全弁を備える非水電解液二次電池において、安全弁と電池蓋の間にガス吸着剤を配設することが記載されている。 Japanese Patent Laid-Open No. 7-192775 discloses that a gas adsorbent is disposed between a safety valve and a battery lid in a non-aqueous electrolyte secondary battery including a safety valve inside the battery lid.
 また、特開2003-68266号公報には、上面に安全弁を有する二次電池をラックに複数組み込んだ蓄電装置において、ラックの仕切部材の内部に流路溝を夫々形成し、二次電池の安全弁と対向するラックの仕切り部材に流路溝と連通する開口部を夫々形成し、吸着剤を充填した吸着槽を介して流路溝と連絡する吸引手段をラックに連結したことを特徴とすることが記載されている。 Japanese Patent Application Laid-Open No. 2003-68266 discloses a power storage device in which a plurality of secondary batteries having a safety valve on the upper surface are incorporated in a rack, each of which has a channel groove formed inside a partition member of the rack. An opening communicating with the flow path groove is formed in each partition member of the rack opposite to the rack, and suction means connected to the flow path groove is connected to the rack via an adsorption tank filled with an adsorbent. Is described.
 安全弁の設けられた二次電池において、安全弁が作動したときに、ガスは二次電池から外部へ逃がされる。このときのガスは、高温時に有機溶媒が化学変化を起こして発生したガスを含んでいることがある。このようなガスをそのまま外部へ排出すると、周囲の環境に対して影響を与えることが考えられるので、周囲への影響を考慮して対策を施す必要がある。 In a secondary battery equipped with a safety valve, when the safety valve is activated, gas is released from the secondary battery to the outside. The gas at this time may contain a gas generated by a chemical change of the organic solvent at a high temperature. If such a gas is discharged to the outside as it is, it can be considered to affect the surrounding environment, so it is necessary to take measures in consideration of the influence on the surroundings.
 特に、移動体に搭載される二次電池では、大容量が要求されるために、大型の二次電池が用いられる。大型の二次電池では、内部温度の上昇などの非常時に、大量のガスが噴出する可能性がある。従って、二次電池を搭載した移動体においては、非常時を考慮して、大量のガスが噴出されても周囲に影響を与えないような構成とする必要がある。 In particular, a secondary battery mounted on a mobile body requires a large capacity, so a large-sized secondary battery is used. In a large secondary battery, a large amount of gas may be ejected in an emergency such as an increase in internal temperature. Therefore, in a mobile body equipped with a secondary battery, in consideration of an emergency, it is necessary to have a configuration that does not affect the surroundings even if a large amount of gas is ejected.
 そこで本発明の目的は、二次電池の搭載された移動体において、非常時における安全性を更に高めることのできる技術を提供することにある。 Therefore, an object of the present invention is to provide a technique capable of further improving safety in an emergency in a mobile body equipped with a secondary battery.
 本発明の二次電池搭載移動体は、車体と、その車体内に設けられ、排ガスを噴出するための噴出口を有する二次電池モジュールが搭載されたときに噴出口(2)に連結される第1ダクトと、その第1ダクト内の排ガスを無害化する無害化部と、を具備する。その車体には、排気口が設けられている。その第1ダクトは、排気口に連結されている。この発明によれば、非常時において二次電池モジュールから第1ダクトへ排ガスが排気されたとき、無害化部により第1ダクト中の排ガスが無害化される。排ガスを、車外へ無害化された状態で排気することができる。 The secondary battery mounted moving body of the present invention is connected to the jet port (2) when a vehicle and a secondary battery module provided in the vehicle body and having a jet port for jetting exhaust gas are mounted. A first duct and a detoxifying section that detoxifies the exhaust gas in the first duct. The vehicle body is provided with an exhaust port. The first duct is connected to the exhaust port. According to this invention, when the exhaust gas is exhausted from the secondary battery module to the first duct in an emergency, the exhaust gas in the first duct is rendered harmless by the detoxification section. The exhaust gas can be exhausted in a state in which it is rendered harmless outside the vehicle.
 本発明の二次電池搭載移動体は、更に、その車体内に設けられ、二次電池モジュールに冷却用流体を吹き付けるように配置された第2ダクトを具備することが好ましい。この発明によれば、二次電池モジュールに冷却用流体が吹き付けられることで、二次電池モジュールが冷却される。これにより、二次電池モジュールの内部温度が上昇することを防止でき、二次電池モジュールが排ガスを発生すること自体を防止することができる。 It is preferable that the secondary battery mounted moving body of the present invention further includes a second duct that is provided in the vehicle body and arranged to spray a cooling fluid onto the secondary battery module. According to the present invention, the secondary battery module is cooled by spraying the cooling fluid onto the secondary battery module. Thereby, it can prevent that the internal temperature of a secondary battery module raises, and can prevent that a secondary battery module generate | occur | produces waste gas itself.
 その無害化部は、その排ガスを冷却する冷却部を備えていることが好ましい。 The detoxification part preferably includes a cooling part for cooling the exhaust gas.
 一観点から、その車体には、車外から空気を取り入れるための第1空気取り入れ口が設けられており、第1ダクトは、第1空気取り入れ口に連結され、冷却部は、第1空気取り入れ口から排気口へ空気流を生成するように第1ダクトの途中に設けられたファンを備えていることが好ましい。 From one point of view, the vehicle body is provided with a first air intake for taking in air from the outside of the vehicle, the first duct is connected to the first air intake, and the cooling unit is the first air intake. It is preferable to provide a fan provided in the middle of the first duct so as to generate an air flow from the outlet to the exhaust port.
 他の一観点から、冷却部は、第1ダクトに連結された冷却用ガスボンベ(13)を備えていることが好ましい。 From another viewpoint, it is preferable that the cooling unit includes a cooling gas cylinder (13) connected to the first duct.
 冷却部は、その噴出口とその排気口との間で第1ダクトに介装されたラジエータを備えることが好ましい。 The cooling unit preferably includes a radiator interposed in the first duct between the jet port and the exhaust port.
 本発明の二次電池搭載移動体は、更に、排ガス又は二次電池モジュールの温度を測定する温度センサと、温度センサの測定結果に基づいて冷却部の動作を制御する制御装置と、を具備することが好ましい。 The mobile unit equipped with the secondary battery of the present invention further includes a temperature sensor that measures the temperature of the exhaust gas or the secondary battery module, and a control device that controls the operation of the cooling unit based on the measurement result of the temperature sensor. It is preferable.
 無害化部は、第1ダクトに送られた排ガスを希釈する希釈部を備えていることが好ましい。 The detoxification section preferably includes a dilution section that dilutes the exhaust gas sent to the first duct.
 一観点から、その車体には、車外から空気を取り入れるための第1空気取り入れ口が設けられており、第1ダクトは、第1空気取り入れ口に連結され、その希釈部は、第1空気取り入れ口から排気口へ空気流を生成するように第1ダクトの途中に設けられたファン、を備えていることが好ましい。 From one point of view, the vehicle body is provided with a first air intake for taking in air from the outside of the vehicle, the first duct is connected to the first air intake, and the diluting portion is the first air intake. It is preferable to provide a fan provided in the middle of the first duct so as to generate an air flow from the opening to the exhaust opening.
 他の一観点から、希釈部は、第1ダクトに連結された希釈用ガスボンベを備えていることが好ましい。 From another viewpoint, it is preferable that the dilution section includes a dilution gas cylinder connected to the first duct.
 本発明の二次電池搭載移動体は、更に、第1ダクト内の排ガス濃度を測定する濃度センサと、濃度センサの測定結果に基づいて希釈部の動作を制御する希釈部制御装置とを具備することが好ましい。 The mobile unit equipped with the secondary battery of the present invention further includes a concentration sensor that measures the exhaust gas concentration in the first duct, and a dilution unit control device that controls the operation of the dilution unit based on the measurement result of the concentration sensor. It is preferable.
 希釈部は、第1ダクトにおいて噴出口と排気口との間に介装され、排ガスを燃焼させる燃焼用触媒層を備えていることが好ましい。 The dilution section is preferably provided with a combustion catalyst layer that is interposed between the jet outlet and the exhaust outlet in the first duct and burns the exhaust gas.
 希釈部は、第1ダクトにおいて噴出口と排気口との間に介装され、排ガスを吸着させる吸着性材料層を備えていることが好ましい。 The dilution section is preferably provided with an adsorbent material layer that is interposed between the jet outlet and the exhaust outlet in the first duct and adsorbs the exhaust gas.
 本発明に係る二次電池の排ガス処理方法は、非常時に、移動体に搭載された二次電池モジュールから排ガスを噴出させるステップと、その噴出させるステップにおいて噴出された排ガスを無害化するステップと、その無害化するステップで無害化された排ガスを車外に排気するステップと、を具備する。 An exhaust gas treatment method for a secondary battery according to the present invention includes a step of ejecting exhaust gas from a secondary battery module mounted on a moving body in an emergency, a step of detoxifying exhaust gas ejected in the step of ejecting, and And exhausting the exhaust gas detoxified in the detoxifying step to the outside of the vehicle.
 本発明によれば、二次電池の搭載された移動体において、非常時における安全性が更に高めることのできる技術が提供される。 According to the present invention, there is provided a technology capable of further improving safety in an emergency in a mobile body equipped with a secondary battery.
図1は、第1の実施形態に係る二次電池搭載移動体を示す概略図である。FIG. 1 is a schematic diagram showing a secondary battery mounted moving body according to the first embodiment. 図2は、第2の実施形態に係る二次電池搭載移動体を示す概略図である。FIG. 2 is a schematic view showing a secondary battery mounted moving body according to the second embodiment. 図3は、第3の実施形態に係る二次電池搭載移動体を示す概略図である。FIG. 3 is a schematic diagram showing a secondary battery mounted moving body according to the third embodiment. 図4は、第4の実施形態に係る二次電池搭載移動体を示す概略図である。FIG. 4 is a schematic diagram showing a secondary battery mounted moving body according to the fourth embodiment.
(第1の実施形態)
 本発明の第1の実施形態について、図面を参照しつつ説明する。
(First embodiment)
A first embodiment of the present invention will be described with reference to the drawings.
 図1は、本実施形態の二次電池搭載移動体の概略構成図である。本実施形態の二次電池搭載移動体は、電気自動車やバッテリフォークリフトに例示される。この二次電池搭載移動体は、車体と、車体内に設けられた排ガス処理装置とを備えている。排ガス処理装置は、第1ダクト3と、第2ダクト9(9A、9B)とを備えている。第1ダクト3及び第2ダクト9には、それぞれ、ファン11及びファン8が設けられている。また、車体内には、電池収納室18が設けられている。電池収納室18内には、移動体の駆動源として、複数の二次電池モジュール(1-1~1ー3)が搭載されている。車体には、第1空気取り入れ口5、第2空気取り入れ口7、第1排気口4、及び第2排気口12が設けられている。 FIG. 1 is a schematic configuration diagram of a mobile unit equipped with a secondary battery according to the present embodiment. The secondary battery mounted mobile body of this embodiment is exemplified by an electric vehicle and a battery forklift. This secondary battery-equipped moving body includes a vehicle body and an exhaust gas treatment device provided in the vehicle body. The exhaust gas treatment apparatus includes a first duct 3 and a second duct 9 (9A, 9B). The first duct 3 and the second duct 9 are provided with a fan 11 and a fan 8, respectively. Further, a battery storage chamber 18 is provided in the vehicle body. In the battery storage chamber 18, a plurality of secondary battery modules (1-1 to 1-3) are mounted as driving sources for the moving body. The vehicle body is provided with a first air intake port 5, a second air intake port 7, a first exhaust port 4, and a second exhaust port 12.
 複数の二次電池モジュール(1-1~1-3)の各々は、電解質としてリチウムイオンを含み、電解液として有機溶媒が用いられたリチウム二次電池を含んでいる。各二次電池モジュール1には、安全弁6の取り付けられた噴出口2が設けられている。安全弁6は、電池内に内圧が蓄積された際に、蓄積された内圧を開放するためのものである。電池内の内圧が平常であるとき、安全弁6は閉じており、二次電池モジュール内は密閉される。一方、電池内の内圧が安全弁6の動作する圧力を超えると、安全弁6が開放され、電池内から排ガスが噴出口2を介して噴出される。 Each of the plurality of secondary battery modules (1-1 to 1-3) includes a lithium secondary battery containing lithium ions as an electrolyte and using an organic solvent as an electrolyte. Each secondary battery module 1 is provided with a spout 2 to which a safety valve 6 is attached. The safety valve 6 is for releasing the accumulated internal pressure when the internal pressure is accumulated in the battery. When the internal pressure in the battery is normal, the safety valve 6 is closed and the secondary battery module is sealed. On the other hand, when the internal pressure in the battery exceeds the pressure at which the safety valve 6 operates, the safety valve 6 is opened, and the exhaust gas is ejected from the battery through the ejection port 2.
 第1ダクト3は、一端で第1空気取り入れ口5に接続され、他端で第1排気口4に接続されている。また、第1ダクト3は、第1空気取り入れ口5と第1排気口4との間で分岐しており、分岐した先で各二次電池モジュール1の噴出口2に接続されている。このような構成により、非常時には、噴出口2からの排ガスが第1ダクト3内に導入される。第1ダクト3内に導入された排ガスは、第1排気口4より車外に排気される。 The first duct 3 is connected to the first air intake port 5 at one end and to the first exhaust port 4 at the other end. The first duct 3 is branched between the first air intake port 5 and the first exhaust port 4, and is connected to the jet outlet 2 of each secondary battery module 1 at the branched point. With such a configuration, in an emergency, exhaust gas from the jet outlet 2 is introduced into the first duct 3. The exhaust gas introduced into the first duct 3 is exhausted from the first exhaust port 4 to the outside of the vehicle.
 噴出口2を介して第1ダクト3に噴出するガスは、安全弁6の仕様に依存するが、通常高圧であり高流速である。車外へ高圧高流速のガスが排気されることは好ましくない。従って、第1ダクト3は、排ガスの圧力及び流速が十分に低減されるように設計されていることが好ましい。具体的には、その内径が、噴出口2の口径と安全弁6の仕様とを考慮して設計されていることが好ましい。 The gas ejected to the first duct 3 through the ejection port 2 is usually at a high pressure and a high flow velocity, depending on the specifications of the safety valve 6. It is not preferable that high-pressure, high-flow-rate gas is exhausted outside the vehicle. Therefore, it is preferable that the first duct 3 is designed so that the pressure and flow velocity of the exhaust gas are sufficiently reduced. Specifically, it is preferable that the inner diameter is designed in consideration of the diameter of the ejection port 2 and the specification of the safety valve 6.
 また、第1ダクト3は、車体内のキャビン(図示せず)を排ガスによる圧力などから守るため、排ガスの圧力がキャビン側に向かないようにレイアウトされていることが好ましい。 The first duct 3 is preferably laid out so that the pressure of the exhaust gas does not face the cabin side in order to protect the cabin (not shown) in the vehicle body from the pressure due to the exhaust gas.
 第1ダクト3は、耐アルカリ性を有する金属管により構成されていることが好ましい。リチウム二次電池の排ガスは、リチウムイオン成分を含む可能性があり、アルカリ性を有すると考えられる。第1ダクト3が耐アルカリ性を有する金属管により構成されていれば、アルカリ性の排ガスによる配管の腐食が防止できる。そのようなアルカリ性を有する金属管としては、例えばステンレス管が挙げられる。 The first duct 3 is preferably composed of a metal tube having alkali resistance. The exhaust gas of the lithium secondary battery may contain a lithium ion component and is considered to have alkalinity. If the 1st duct 3 is comprised with the metal pipe which has alkali resistance, corrosion of piping by alkaline exhaust gas can be prevented. An example of such an alkaline metal tube is a stainless steel tube.
 ファン11は、第1ダクト3内に空気流を生成するために設けられている。ファン11が駆動することにより、第1空気取り入れ口5から空気が第1ダクト3内に取り込まれる。第1ダクト3内を流れた空気は、排気口4から外部へ排気される。 The fan 11 is provided to generate an air flow in the first duct 3. When the fan 11 is driven, air is taken into the first duct 3 from the first air intake 5. The air flowing through the first duct 3 is exhausted from the exhaust port 4 to the outside.
 第2ダクト9は、複数の二次電池モジュール2を冷却するために設けられている。第2ダクト9は、第2空気取り入れ口7と電池収納室18とを連絡する第2ダクト部分9Aと、電池収納室18と排気口12とを連絡する第2ダクト部分9Bとを備えている。 The second duct 9 is provided to cool the plurality of secondary battery modules 2. The second duct 9 includes a second duct portion 9A that communicates between the second air intake port 7 and the battery storage chamber 18, and a second duct portion 9B that communicates between the battery storage chamber 18 and the exhaust port 12. .
 ファン8は、第2ダクト9内に空気流を生成するために設けられている。ファン8が駆動すると、第2空気取り入れ口7から空気が第2ダクト部分9Aに取り込まれ、電池収納室18に送られる。電池収納室18に導入された空気は、各二次電池モジュール1に吹き付けられ、各二次電池モジュール1を冷却する。電池収納室18内を通った空気は、第2ダクト部分9Bを介して、排気口12から車外へ排気される。 The fan 8 is provided to generate an air flow in the second duct 9. When the fan 8 is driven, air is taken into the second duct portion 9 </ b> A from the second air intake 7 and sent to the battery storage chamber 18. The air introduced into the battery storage chamber 18 is blown to each secondary battery module 1 to cool each secondary battery module 1. The air that has passed through the battery storage chamber 18 is exhausted from the exhaust port 12 to the outside of the vehicle via the second duct portion 9B.
 本実施形態の排ガス処理装置の動作について説明する。 The operation of the exhaust gas treatment apparatus of this embodiment will be described.
 事故による圧壊や、過充電による短絡などにより、ある二次電池モジュール1が発熱したとする。すると、その二次電池モジュール1の内部温度が急激に上昇する。このとき、電解液である有機溶媒が蒸発したり、その二次電池モジュール1の構成部材が燃焼するなどすると、ガスが発生する。ガスの発生により、その二次電池モジュール1の内圧が上昇する。その二次電池モジュール1の内圧が、安全弁6の動作する圧力に達すると、安全弁6が動作する。その結果、二次電池モジュール1内のガスが、第1ダクト3に噴出する。このとき、第1ダクト3に導入されたガス(排ガス)は、比較的に、高濃度であり高温である。 Suppose that a secondary battery module 1 generates heat due to a collapse due to an accident or a short circuit due to overcharge. Then, the internal temperature of the secondary battery module 1 rises rapidly. At this time, gas is generated when the organic solvent that is the electrolytic solution evaporates or the constituent members of the secondary battery module 1 burn. Due to the generation of gas, the internal pressure of the secondary battery module 1 increases. When the internal pressure of the secondary battery module 1 reaches the pressure at which the safety valve 6 operates, the safety valve 6 operates. As a result, the gas in the secondary battery module 1 is ejected into the first duct 3. At this time, the gas (exhaust gas) introduced into the first duct 3 has a relatively high concentration and a high temperature.
 第1ダクト3内には、ファン11によって、空気が取り込まれる。二次電池モジュール1から第1ダクト3内に導入された排ガスは、ファン11によって取り込まれた空気により冷却されるとともに、希釈される。これにより、排ガスが無害化される。第1ダクト3内において無害化された排ガスは、第1排気口4を介して外部に排気される。この排ガスは無害化されているので、移動体の周囲の環境に影響を与えない。 The air is taken into the first duct 3 by the fan 11. The exhaust gas introduced from the secondary battery module 1 into the first duct 3 is cooled and diluted by the air taken in by the fan 11. Thereby, exhaust gas is rendered harmless. The exhaust gas rendered harmless in the first duct 3 is exhausted to the outside through the first exhaust port 4. Since this exhaust gas is detoxified, it does not affect the environment around the moving body.
 上述のようにして排ガスが無害化される一方で、第2ダクト9によって各二次電池モジュール1の冷却も行われる。すなわち、ファン8が動作することにより電池収納室18内の各二次電池モジュール1に空気が吹き付けられ、各二次電池モジュールが冷却される。その結果、各二次電池モジュール1の内部温度が上昇することが抑制され、排ガスが噴出すること自体が防止される。 While the exhaust gas is rendered harmless as described above, each secondary battery module 1 is also cooled by the second duct 9. That is, when the fan 8 is operated, air is blown to each secondary battery module 1 in the battery storage chamber 18 to cool each secondary battery module. As a result, an increase in the internal temperature of each secondary battery module 1 is suppressed, and the exhaust gas itself is prevented from being ejected.
 尚、本実施形態では、第1ダクト3と第2ダクト9が完全に別々である例について説明したが、第1ダクト3と第2ダクト9とで一部の流路が共有されていてもよい。例えば、第1ダクト3と第2ダクト9とで、一つの空気取り入れ口が共有されてもよい。 In the present embodiment, the example in which the first duct 3 and the second duct 9 are completely separated has been described. However, even if a part of the flow path is shared by the first duct 3 and the second duct 9. Good. For example, the first duct 3 and the second duct 9 may share one air intake port.
(第2の実施形態)
 続いて、本発明の第2の実施形態について説明する。
(Second Embodiment)
Subsequently, a second embodiment of the present invention will be described.
 図2は、本実施形態の二次電池搭載移動体の構成を示す概略図である。図2に示されるように、第1の実施形態と比較して、温度センサ15、冷却部制御装置16、冷却用ガスボンベ13、バルブ14、及びラジエータ17が追加されている。また、第1の実施形態における第1空気取り入れ口5は設けられていない。その他の点については、第1の実施形態と同様とすることができるので、詳細な説明は省略する。 FIG. 2 is a schematic diagram showing the configuration of the mobile unit equipped with the secondary battery of the present embodiment. As shown in FIG. 2, a temperature sensor 15, a cooling unit control device 16, a cooling gas cylinder 13, a valve 14, and a radiator 17 are added as compared with the first embodiment. Further, the first air intake 5 in the first embodiment is not provided. Since other points can be the same as those in the first embodiment, a detailed description thereof will be omitted.
 冷却用ガスボンベ13は、バルブ14を介して第1ダクト3に接続されている。冷却用ガスボンベ13内には、冷却用ガスが充填されている。平常時にはバルブ14は閉じられているが、非常時にはバルブ14が開かれて、冷却用ガスが第1ダクト3内に導入される。 The cooling gas cylinder 13 is connected to the first duct 3 via a valve 14. The cooling gas cylinder 13 is filled with a cooling gas. During normal times, the valve 14 is closed, but in an emergency, the valve 14 is opened and the cooling gas is introduced into the first duct 3.
 その冷却用ガスとしては、二酸化炭素を用いることが好ましい。二酸化炭素は、熱比重が大きく、消化作用を有している。熱比重が大きいことにより、第1ダクト3内に導入された排ガスの温度を速やかに下げることができる。また、消化作用を有していることにより、第1ダクト3内に導入された排ガスが可燃性であったとしても、発火することを防止できる。 It is preferable to use carbon dioxide as the cooling gas. Carbon dioxide has a large heat specific gravity and has a digestive action. Due to the large thermal specific gravity, the temperature of the exhaust gas introduced into the first duct 3 can be quickly lowered. Moreover, even if the exhaust gas introduce | transduced in the 1st duct 3 is combustible by having a digestive action, it can prevent firing.
 ラジエータ17は、熱交換により排ガスの温度を下げるために設けられている。ラジエータ17としては、例えば、水冷式のものが用いられる。例えば、ラジエータ17は、冷却部分と、放熱部分と、冷却部分と放熱部分との間で冷却水を循環させるためのポンプとを備えている。その冷却部分は、各二次電池モジュール1の噴出口2と排気口4との間で、第1ダクト3に介装されている。すなわち、ラジエータ17の冷却部は、各二次電池モジュール1の噴出口2よりも下流側に配置されている。放熱部分は、熱が外気によって奪われるような位置に配置されている。第1ダクト3内の排ガスは、ラジエータ17の冷却部分を通過することにより、冷却される。 The radiator 17 is provided to lower the temperature of the exhaust gas by heat exchange. As the radiator 17, for example, a water-cooled type is used. For example, the radiator 17 includes a cooling portion, a heat radiating portion, and a pump for circulating cooling water between the cooling portion and the heat radiating portion. The cooling portion is interposed in the first duct 3 between the ejection port 2 and the exhaust port 4 of each secondary battery module 1. That is, the cooling unit of the radiator 17 is disposed on the downstream side of the ejection port 2 of each secondary battery module 1. The heat radiating part is arranged at a position where heat is taken away by the outside air. The exhaust gas in the first duct 3 is cooled by passing through the cooling portion of the radiator 17.
 温度センサ15は、各二次電池モジュール1の噴出口2近傍における第1ダクト3内の温度を測定するように設けられている。温度センサ15により、各二次電池モジュール1から噴出された時点での排ガス温度が測定される。温度センサ15による測定結果は、冷却部制御装置16に通知される。 The temperature sensor 15 is provided so as to measure the temperature in the first duct 3 in the vicinity of the spout 2 of each secondary battery module 1. The exhaust gas temperature at the time of ejection from each secondary battery module 1 is measured by the temperature sensor 15. The measurement result by the temperature sensor 15 is notified to the cooling unit control device 16.
 冷却部制御装置16は、例えば、CPUやメモリを備えるコンピュータであり、インストールされたプログラムによってその機能を実現する。冷却部制御装置16は、温度センサ15から通知された結果に基づいて、バルブ14の開閉を行う。具体的には、温度センサ15から通知された温度が、予め設定された温度を超えているときには、排ガスが第1ダクト3内に噴出されていると判断し、バルブ14を開にする。また、予め設定された温度を超えているときに、ラジエータ17のポンプを動作させて、ラジエータ17により第1ダクト3内のガスを冷却する。 The cooling unit control device 16 is, for example, a computer including a CPU and a memory, and realizes its function by an installed program. The cooling unit control device 16 opens and closes the valve 14 based on the result notified from the temperature sensor 15. Specifically, when the temperature notified from the temperature sensor 15 exceeds a preset temperature, it is determined that the exhaust gas is ejected into the first duct 3 and the valve 14 is opened. Further, when the temperature exceeds a preset temperature, the pump of the radiator 17 is operated, and the gas in the first duct 3 is cooled by the radiator 17.
 本実施形態の排ガス処理装置は、非常時において、以下のように動作する。 The exhaust gas treatment apparatus of the present embodiment operates as follows in an emergency.
 非常時において、各二次電池モジュール1の内圧が上昇し安全弁6が開放されると、各二次電池モジュール1から高温の排ガスが第1ダクト3内に導入される。第1ダクト3における噴出口2の温度は、排ガスによって上昇する。すると、温度センサ15を介して冷却部制御装置16が温度の上昇を検知する。冷却部制御装置16は、バルブ14を開にする。これにより、冷却用ガスボンベ13から冷却用ガスが第1ダクト3内に導入される。また、冷却部制御装置16は、ラジエータ17のポンプを動作させる。第1ダクト3内の排ガスは、冷却用ガスにより冷却されるとともに、ラジエータ17の冷却部を通過することによっても冷却される。冷却されることで無害化された排ガスは、排気口4から外部へ排気される。 In an emergency, when the internal pressure of each secondary battery module 1 rises and the safety valve 6 is opened, high-temperature exhaust gas is introduced from each secondary battery module 1 into the first duct 3. The temperature of the jet outlet 2 in the first duct 3 is increased by the exhaust gas. Then, the cooling unit control device 16 detects an increase in temperature via the temperature sensor 15. The cooling unit control device 16 opens the valve 14. Thereby, the cooling gas is introduced into the first duct 3 from the cooling gas cylinder 13. The cooling unit control device 16 operates the pump of the radiator 17. The exhaust gas in the first duct 3 is cooled by the cooling gas and is also cooled by passing through the cooling part of the radiator 17. The exhaust gas rendered harmless by being cooled is exhausted from the exhaust port 4 to the outside.
 以上説明したように、本実施形態によれば、冷却用ガスボンベ13から導入される冷却用ガス、及びラジエータ17により、第1ダクト3内の排ガスが冷却されて無害化される。 As described above, according to the present embodiment, the exhaust gas in the first duct 3 is cooled and rendered harmless by the cooling gas introduced from the cooling gas cylinder 13 and the radiator 17.
 また、本実施形態によれば、温度センサ15によって冷却部制御装置16が自動的にバルブ14を開にし、ラジエータ17を動作させるので、排ガスが各二次電池モジュール1から第1ダクト3内に導入された際に、すぐに排ガスの冷却を行うことができる。 Further, according to the present embodiment, the cooling unit control device 16 automatically opens the valve 14 and operates the radiator 17 by the temperature sensor 15, so that the exhaust gas enters the first duct 3 from each secondary battery module 1. When introduced, the exhaust gas can be immediately cooled.
 尚、本実施形態において、冷却部制御装置16は、温度センサ15から通知された温度と、予め設定された温度との差分に基づいて、バルブ14の開度及びバルブ14を開状態にする時間を制御してもよい。すなわち、バルブ14を開にした後で十分に第1ダクト3内の温度が下がった場合、バルブ14の開度を減少させるか閉状態にしてもよい。このようにすれば、第1ダクト3内に導入される冷却用ガスの量を、排ガスの温度を下げるのに必要な量とすることができ、冷却用ガスが導入され続けることが防止される。 In this embodiment, the cooling unit control device 16 determines the opening degree of the valve 14 and the time for opening the valve 14 based on the difference between the temperature notified from the temperature sensor 15 and the preset temperature. May be controlled. That is, when the temperature in the first duct 3 is sufficiently lowered after the valve 14 is opened, the opening degree of the valve 14 may be decreased or closed. In this way, the amount of the cooling gas introduced into the first duct 3 can be set to an amount necessary for lowering the temperature of the exhaust gas, and the introduction of the cooling gas is prevented. .
 また、本実施形態では、温度センサ15によって各二次電池モジュール1の噴出口2近傍の第1ダクト3の温度が測定される場合について説明したが、温度センサ15は、各二次電池モジュール1自身の温度を測定するように設けられていてもよい。各二次電池モジュール1自身の温度を測定すれば、各二次電池モジュール1から排ガスが噴出される前に非常状態であることを検知することができる。その結果、安全弁6が開放される前に冷却用ガスを第1ダクト3内に導入することも可能となり、より確実に第1ダクト3内の排ガスを冷却することができる。
 また、温度センサ15が、排気口4から排気されるガス温度を測定するように、排気口4の近傍に設けられていてもよい。このような位置に温度センサ15を配置すれば、冷却部制御装置16において、排ガスの冷却が正常に行われているか否かを監視することも可能となる。
Moreover, although this embodiment demonstrated the case where the temperature sensor 15 measured the temperature of the 1st duct 3 near the jet nozzle 2 of each secondary battery module 1, the temperature sensor 15 is each secondary battery module 1. It may be provided to measure its own temperature. By measuring the temperature of each secondary battery module 1 itself, it is possible to detect an emergency state before exhaust gas is ejected from each secondary battery module 1. As a result, the cooling gas can be introduced into the first duct 3 before the safety valve 6 is opened, and the exhaust gas in the first duct 3 can be cooled more reliably.
Further, the temperature sensor 15 may be provided in the vicinity of the exhaust port 4 so as to measure the gas temperature exhausted from the exhaust port 4. If the temperature sensor 15 is disposed at such a position, the cooling unit control device 16 can monitor whether or not the exhaust gas is normally cooled.
 また、本実施形態では、冷却部制御装置16が、バルブ14及びラジエータ17を制御する例について説明した。しかし、本実施形態を第1の実施形態と組み合わせることも可能である。すなわち、冷却部制御装置16がファン11の回転数を制御するように構成されていてもよい。このような構成としても、排ガスが第1ダクト3内に噴出されたことを自動的に検知して、排ガスを冷却することができる。 Further, in the present embodiment, the example in which the cooling unit control device 16 controls the valve 14 and the radiator 17 has been described. However, it is possible to combine this embodiment with the first embodiment. That is, the cooling unit control device 16 may be configured to control the rotation speed of the fan 11. Even with such a configuration, it is possible to automatically detect that the exhaust gas has been ejected into the first duct 3 and cool the exhaust gas.
(第3の実施形態)
 続いて、本発明の第3の実施形態について説明する。
(Third embodiment)
Subsequently, a third embodiment of the present invention will be described.
 図3は、本実施形態の二次電池搭載移動体の構成を示す概略図である。図3に示されるように、第1の実施形態と比較して、燃焼用触媒層20が追加されている。その他の点については、第1の実施形態と同様とすることができるので、詳細な説明は省略する。 FIG. 3 is a schematic diagram showing the configuration of the mobile unit equipped with the secondary battery of the present embodiment. As shown in FIG. 3, a combustion catalyst layer 20 is added as compared to the first embodiment. Since other points can be the same as those in the first embodiment, a detailed description thereof will be omitted.
 燃焼用触媒層20は、第1ダクト3内の排ガスを燃焼させることにより、無害化させるための層である。燃焼用触媒層20は、第1ダクト3内において、噴出口2と排気口4との間に設けられている。燃焼用触媒層20としては、例えば、アルミナ、ジルコニア、シリカアルミナ、シリカ等の高比表面積多孔体を担体とし、これにパラジウムや白金などの貴金属を担持させたものが挙げられる。 The combustion catalyst layer 20 is a layer for detoxifying the exhaust gas in the first duct 3 by burning it. The combustion catalyst layer 20 is provided between the jet port 2 and the exhaust port 4 in the first duct 3. Examples of the combustion catalyst layer 20 include a material having a high specific surface area porous material such as alumina, zirconia, silica alumina, and silica as a carrier and a noble metal such as palladium or platinum supported thereon.
 本実施形態によれば、非常時に第1ダクト3に噴出された排ガスは、燃焼用触媒層20により燃焼され、排気口4から排気される。非常時に二次電池モジュール1から噴出される排ガスの成分としては、二酸化炭素、一酸化炭素、メタン、プロパン、ハイドロカーボン、エチルメチルカーボネート、カーボンブラックなど微粒子(PM;Particle matter)の成分が考えられる。これらの成分を含む排ガスが、燃焼用触媒層20を通過することにより燃焼されて分解される。その結果、排ガス中の有害物質の成分の濃度を下げ(希釈し)、排ガスを無害化することができる。 According to this embodiment, the exhaust gas ejected into the first duct 3 in an emergency is burned by the combustion catalyst layer 20 and exhausted from the exhaust port 4. As components of exhaust gas ejected from the secondary battery module 1 in an emergency, components of particulate matter (PM) such as carbon dioxide, carbon monoxide, methane, propane, hydrocarbon, ethylmethyl carbonate, carbon black, and the like are conceivable. . Exhaust gas containing these components is burned and decomposed by passing through the combustion catalyst layer 20. As a result, the concentration of components of harmful substances in the exhaust gas can be reduced (diluted) to make the exhaust gas harmless.
 尚、本実施形態における燃焼用触媒層20に代えて、排ガス成分を吸着するための吸着性材料層21を設けてもよい。このような吸着性材料層21としては、例えば活性炭を挙げることができる。吸着性材料層21を設けることによっても、排ガス中の有害成分の濃度を下げ、排ガスを無害化することができる。
 また、燃焼用触媒層20と吸着性材料層21との双方を第1ダクト3内に配置してもよい。
Instead of the combustion catalyst layer 20 in this embodiment, an adsorbent material layer 21 for adsorbing exhaust gas components may be provided. Examples of such an adsorbent material layer 21 include activated carbon. The provision of the adsorbent material layer 21 can also reduce the concentration of harmful components in the exhaust gas and make the exhaust gas harmless.
Further, both the combustion catalyst layer 20 and the adsorbent material layer 21 may be disposed in the first duct 3.
(第4の実施形態)
 続いて、本発明の第4の実施形態について説明する。
(Fourth embodiment)
Subsequently, a fourth embodiment of the present invention will be described.
 図4は、本実施形態の二次電池搭載移動体の構成を示す概略図である。図4に示されるように、第1の実施形態と比較して、希釈用ガスボンベ22、バルブ23、希釈部制御装置25、及び濃度センサ24が追加されている。また、第1空気取り入れ口5は設けられていない。その他の点については、第1の実施形態と同様とすることができるので、詳細な説明は省略する。 FIG. 4 is a schematic diagram showing the configuration of the mobile unit equipped with the secondary battery of the present embodiment. As shown in FIG. 4, as compared with the first embodiment, a dilution gas cylinder 22, a valve 23, a dilution unit control device 25, and a concentration sensor 24 are added. Further, the first air intake 5 is not provided. Since other points can be the same as those in the first embodiment, a detailed description thereof will be omitted.
 希釈用ガスボンベ22は、バルブ23を介して第1ダクト3に接続されている。希釈用ガスボンベ22には、排ガスの濃度を下げるための希釈用ガスが充填されている。その希釈用ガスとして、二酸化炭素が例示される。バルブ23が開かれると、希釈用ガスボンベ22から第1ダクト3へ希釈用ガスが供給される。第1ダクト3内に排ガスが噴出されている場合、希釈用ガスにより排ガスが希釈され、排ガス中の有害成分が低濃度化される。 The dilution gas cylinder 22 is connected to the first duct 3 via a valve 23. The dilution gas cylinder 22 is filled with a dilution gas for reducing the concentration of exhaust gas. Carbon dioxide is exemplified as the dilution gas. When the valve 23 is opened, the dilution gas is supplied from the dilution gas cylinder 22 to the first duct 3. When the exhaust gas is ejected into the first duct 3, the exhaust gas is diluted with the dilution gas, and the harmful components in the exhaust gas are reduced in concentration.
 濃度センサ24は、排気口4から排気されるガスの濃度を測定するように、排気口4の近傍に取り付けられている。濃度センサ24による測定結果は、希釈部制御装置25に通知される。濃度センサ24は、二次電池モジュール1の排ガス中の有害成分(例えば、一酸化炭素、ハイドロカーボン)や、可燃成分(例えば、酸素)の濃度を測定する。 The concentration sensor 24 is attached in the vicinity of the exhaust port 4 so as to measure the concentration of the gas exhausted from the exhaust port 4. The measurement result by the concentration sensor 24 is notified to the dilution unit control device 25. The concentration sensor 24 measures the concentration of harmful components (for example, carbon monoxide and hydrocarbons) and combustible components (for example, oxygen) in the exhaust gas of the secondary battery module 1.
 希釈部制御装置25は、濃度センサ24から通知された測定結果に基づいて、バルブ23を操作するために設けられている。具体的には、濃度センサ24から通知されたガス濃度の値が予め設定されたガス濃度を超える値であった場合には、二次電池モジュール1から排ガスが噴出されているものと判断し、バルブ23を開にする。 The dilution unit control device 25 is provided for operating the valve 23 based on the measurement result notified from the concentration sensor 24. Specifically, if the value of the gas concentration notified from the concentration sensor 24 is a value that exceeds a preset gas concentration, it is determined that exhaust gas is being ejected from the secondary battery module 1, Valve 23 is opened.
 希釈部制御装置25は、例えば、CPU、ROM(Read Only Memory)、及びRAM(Random Access Memory)などを備えるコンピュータにより構成することができる。 The dilution unit control device 25 can be configured by a computer including a CPU, a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, for example.
 本実施形態では、非常時に二次電池モジュール1から噴出された排ガスは、第1ダクト3に導入される。濃度センサ24による測定結果により、希釈部制御装置25は排ガスが第1ダクト3内に噴出されたことを検知し、バルブ23を開にする。バルブ23が開くと、希釈用ガスボンベ22から第1ダクト3内に希釈用ガスが導入され、第1ダクト3内の排ガスが希釈される。希釈により、排ガス中の有害成分が低濃度化され、排ガスは無害化される。無害化された排ガスが排気口4から外部へ排気される。これにより、周囲に影響を与えることが防止される。また、可燃成分が燃焼し、周囲の構成材料に燃え移ることも防止できる。 In this embodiment, the exhaust gas ejected from the secondary battery module 1 in an emergency is introduced into the first duct 3. Based on the measurement result by the concentration sensor 24, the dilution unit control device 25 detects that the exhaust gas has been ejected into the first duct 3, and opens the valve 23. When the valve 23 is opened, the dilution gas is introduced into the first duct 3 from the dilution gas cylinder 22, and the exhaust gas in the first duct 3 is diluted. Dilution reduces the concentration of harmful components in the exhaust gas and renders the exhaust gas harmless. The harmless exhaust gas is exhausted from the exhaust port 4 to the outside. This prevents the surroundings from being affected. It is also possible to prevent combustible components from burning and burning to surrounding constituent materials.
 尚、希釈部制御装置25は、有害成分の濃度測定結果に基づいて、有害成分濃度を予め定められた規定値以下とするように、バルブ23の開閉動作を制御してもよい。例えば、有害成分の濃度が高い場合には、バルブ23の開度を上昇させ、大量の希釈用ガスが第1ガスに導入されるようにする。このように、バルブ23の開閉動作を制御することにより、有害成分の濃度を確実に低濃度化させることができる。また、有害成分濃度が十分に低くなった場合に、バルブ23の開度を小さくするようにすれば、必要以上に希釈用ガスが第1ダクト内に導入されてしまうことも防止できる。 In addition, the dilution unit control device 25 may control the opening / closing operation of the valve 23 so that the harmful component concentration is set to a predetermined value or less based on the measurement result of the harmful component concentration. For example, when the concentration of harmful components is high, the opening degree of the valve 23 is increased so that a large amount of dilution gas is introduced into the first gas. Thus, by controlling the opening / closing operation of the valve 23, the concentration of harmful components can be reliably reduced. Further, if the opening of the valve 23 is made small when the harmful component concentration becomes sufficiently low, it is possible to prevent the dilution gas from being introduced into the first duct more than necessary.
 また、希釈部制御装置25は、可燃成分の濃度測定結果に基づいて、第1ダクト3内の排ガス濃度が可燃範囲の濃度を下回るように、バルブ23の開閉動作を制御してもよい。このようにバルブ23の開閉動作を制御すれば、排ガスが引火してしまうことを確実に防止できる。 Further, the dilution unit control device 25 may control the opening / closing operation of the valve 23 so that the exhaust gas concentration in the first duct 3 is lower than the concentration in the combustible range based on the concentration measurement result of the combustible component. By controlling the opening / closing operation of the valve 23 in this way, it is possible to reliably prevent the exhaust gas from being ignited.
 以上、本発明について第1~第4の実施形態について説明したが、これらは矛盾のない範囲内で組み合わせて使用することもできる。
 例えば、第1の実施形態の二次電池搭載移動体において、第4の実施形態で説明した希釈部制御装置25及び濃度センサ24を設けてもよい。このとき、希釈部制御装置25は、ファン11の回転量などを制御することで、第1ダクト3内に空気を希釈用ガスとして送り込み、排ガスを希釈することができる。
Although the first to fourth embodiments of the present invention have been described above, they can be used in combination within a consistent range.
For example, the secondary battery loaded mobile body of the first embodiment may be provided with the dilution unit control device 25 and the concentration sensor 24 described in the fourth embodiment. At this time, the dilution unit control device 25 can dilute the exhaust gas by controlling the amount of rotation of the fan 11 and the like to send air into the first duct 3 as a dilution gas.

Claims (15)

  1.  排気口を有する車体と、
     排ガスを噴出するための噴出口を有する二次電池モジュールが搭載されたときに、前記排気口と前記噴出口とを連通させる第1ダクトと、
     前記第1ダクト内の排ガスを無害化する無害化部と、
    を具備する
    二次電池搭載移動体。
    A vehicle body having an exhaust port;
    A first duct that connects the exhaust port and the jet port when a secondary battery module having a jet port for jetting exhaust gas is mounted;
    A detoxifying part for detoxifying the exhaust gas in the first duct;
    A mobile unit equipped with a secondary battery.
  2.  請求の範囲1に記載された二次電池搭載移動体であって、
    更に、
     前記車体内に設けられ、前記二次電池モジュールに冷却用流体を吹き付けるように配置された第2ダクト、
    を具備する
    二次電池搭載移動体。
    A mobile unit equipped with a secondary battery according to claim 1,
    Furthermore,
    A second duct provided in the vehicle body and arranged to spray a cooling fluid to the secondary battery module;
    A mobile unit equipped with a secondary battery.
  3.  請求の範囲1又は2に記載された二次電池搭載移動体であって、
     前記無害化部は、前記排ガスを冷却する冷却部を備えている
    二次電池搭載移動体。
    A mobile unit equipped with a secondary battery according to claim 1 or 2,
    The detoxification section is a secondary battery-equipped moving body that includes a cooling section that cools the exhaust gas.
  4.  請求の範囲3に記載された二次電池搭載移動体であって、
     前記車体には、車外から空気を取り入れるための第1空気取り入れ口が設けられており、
     前記第1ダクトは、更に別の他端で前記第1空気取り入れ口に連結され、
     前記冷却部は、前記第1空気取り入れ口から前記排気口へ空気流を生成するように前記第1ダクトの途中に設けられたファン、を備えている
    二次電池搭載移動体。
    A mobile unit equipped with a secondary battery according to claim 3,
    The vehicle body is provided with a first air intake for taking in air from outside the vehicle,
    The first duct is connected to the first air intake at the other end,
    The cooling unit includes a secondary battery mounted moving body including a fan provided in the middle of the first duct so as to generate an air flow from the first air intake port to the exhaust port.
  5.  請求の範囲3に記載された二次電池搭載移動体であって、
     前記冷却部は、前記第1ダクトに連結された冷却用ガスボンベを備えている
    二次電池搭載移動体。
    A mobile unit equipped with a secondary battery according to claim 3,
    The cooling unit is a secondary battery-equipped moving body including a cooling gas cylinder connected to the first duct.
  6.  請求の範囲3乃至5のいずれかに記載された二次電池搭載移動体であって、
     前記冷却部は、前記噴出口と前記排気口との間で前記第1ダクトに介装されたラジエータを備える
    二次電池搭載移動体。
    A mobile unit equipped with a secondary battery according to any one of claims 3 to 5,
    The cooling unit is a secondary battery-equipped moving body including a radiator interposed in the first duct between the jet port and the exhaust port.
  7.  請求の範囲3乃至6のいずれかに記載された二次電池搭載移動体であって、
    更に、
     前記排ガス又は前記二次電池モジュールの温度を測定する温度センサと、
     前記温度センサの測定結果に基づいて前記冷却部の動作を制御する制御装置と、を具備する
    二次電池搭載移動体。
    A mobile unit equipped with a secondary battery according to any one of claims 3 to 6,
    Furthermore,
    A temperature sensor for measuring the temperature of the exhaust gas or the secondary battery module;
    And a control device that controls an operation of the cooling unit based on a measurement result of the temperature sensor.
  8.  請求の範囲1又は2に記載された二次電池搭載移動体であって、
     前記無害化部は、前記第1ダクト内の排ガスを希釈する希釈部を備えている
    二次電池搭載移動体。
    A mobile unit equipped with a secondary battery according to claim 1 or 2,
    The detoxifying part is a secondary battery-equipped moving body provided with a dilution part for diluting the exhaust gas in the first duct.
  9.  請求の範囲8に記載された二次電池搭載移動体であって、
     前記車体には、車外から空気を取り入れるための第1空気取り入れ口が設けられており、
     前記第1ダクトは、前記第1空気取り入れ口に連結され、
     前記希釈部は、前記第1空気取り入れ口から前記第排気口へ空気流を生成するように前記第1ダクトの途中に設けられたファン、を備えている
    二次電池搭載移動体。
    A mobile unit equipped with a secondary battery according to claim 8,
    The vehicle body is provided with a first air intake for taking in air from outside the vehicle,
    The first duct is connected to the first air intake;
    The dilution unit includes a secondary battery-equipped moving body including a fan provided in the middle of the first duct so as to generate an air flow from the first air intake port to the exhaust port.
  10.  請求の範囲8又は9に記載された二次電池搭載移動体であって、
     前記希釈部は、前記第1ダクトに連結された希釈用ガスボンベを備えている
    二次電池搭載移動体。
    A secondary battery-mounted mobile unit according to claim 8 or 9,
    The dilution unit is a secondary battery-equipped moving body including a dilution gas cylinder connected to the first duct.
  11.  請求の範囲8乃至10のいずれかに記載された二次電池搭載移動体であって、
    更に、
     前記第1ダクト内の排ガス濃度を測定する濃度センサと、
     前記濃度センサの測定結果に基づいて前記希釈部の動作を制御する希釈部制御装置と、を具備する
    二次電池搭載移動体。
    A movable body mounted with a secondary battery according to any one of claims 8 to 10,
    Furthermore,
    A concentration sensor for measuring an exhaust gas concentration in the first duct;
    A mobile unit equipped with a secondary battery, comprising: a dilution unit control device that controls an operation of the dilution unit based on a measurement result of the concentration sensor.
  12.  請求の範囲8乃至11のいずれかに記載された二次電池搭載移動体であって、
     前記希釈部は、前記噴出口と前記第排気口との間で前記第1ダクトに介装され、前記排ガスを燃焼させる燃焼用触媒層を備えている
    二次電池搭載移動体。
    A movable body mounted with a secondary battery according to any one of claims 8 to 11,
    The diluting unit is a secondary battery-equipped moving body that includes a combustion catalyst layer that is interposed in the first duct between the jet outlet and the first exhaust port and burns the exhaust gas.
  13.  請求の範囲8乃至12のいずれかに記載された二次電池搭載移動体であって、
     前記希釈部は、前記噴出口と前記第排気口との間で前記第1ダクトに介装され、前記排ガスの成分を吸着する吸着性材料層を備えている
    二次電池搭載移動体。
    A movable body mounted with a secondary battery according to any one of claims 8 to 12,
    The dilution unit is a secondary battery-equipped moving body that includes an adsorbent material layer that is interposed in the first duct between the jet outlet and the first exhaust port and that adsorbs the components of the exhaust gas.
  14.  排ガスを噴出するための噴出口を有する二次電池モジュールが搭載されたときに前記噴出口に連結される第1ダクトと、
     前記第1ダクト内の排ガスを無害化する無害化部と、
    を具備し、
     前記第1ダクトは、前記排ガスを外部に排気するための排気口に連結されている
    二次電池の排ガス処理装置。
    A first duct connected to the spout when a secondary battery module having a spout for ejecting exhaust gas is mounted;
    A detoxifying part for detoxifying the exhaust gas in the first duct;
    Comprising
    The first duct is a secondary battery exhaust gas treatment apparatus connected to an exhaust port for exhausting the exhaust gas to the outside.
  15.  非常時に、移動体に搭載された二次電池モジュールから排ガスを噴出させるステップと、
     前記噴出させるステップにおいて噴出された排ガスを無害化するステップと、
     前記無害化するステップで無害化された排ガスを車外に排気するステップと、
    を具備する
    二次電池の排ガス処理方法。
    In an emergency, ejecting exhaust gas from the secondary battery module mounted on the moving body;
    Detoxifying the exhaust gas ejected in the ejecting step;
    Exhausting the exhaust gas detoxified in the detoxifying step outside the vehicle;
    An exhaust gas treatment method for a secondary battery comprising:
PCT/JP2008/067012 2008-09-19 2008-09-19 Secondary-battery mounted mobile unit WO2010032313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/067012 WO2010032313A1 (en) 2008-09-19 2008-09-19 Secondary-battery mounted mobile unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/067012 WO2010032313A1 (en) 2008-09-19 2008-09-19 Secondary-battery mounted mobile unit

Publications (1)

Publication Number Publication Date
WO2010032313A1 true WO2010032313A1 (en) 2010-03-25

Family

ID=42039167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/067012 WO2010032313A1 (en) 2008-09-19 2008-09-19 Secondary-battery mounted mobile unit

Country Status (1)

Country Link
WO (1) WO2010032313A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049038A (en) * 2010-08-27 2012-03-08 Toshiba Corp Secondary battery device
JP2014149959A (en) * 2013-01-31 2014-08-21 Honda Motor Co Ltd Cooling structure of power storage device
EP2942226A1 (en) * 2014-05-06 2015-11-11 Airbus Operations GmbH Aircraft battery exhaust system
DE102014212173A1 (en) 2014-06-25 2016-01-14 Robert Bosch Gmbh Gas cleaning unit for lithium cell
CN108346817A (en) * 2017-01-25 2018-07-31 松下知识产权经营株式会社 Battery system
WO2020116089A1 (en) * 2018-12-04 2020-06-11 パナソニックIpマネジメント株式会社 Battery pack and power supply system
JP2020198738A (en) * 2019-06-04 2020-12-10 株式会社Subaru Battery gas discharge device
JP7316167B2 (en) 2019-09-25 2023-07-27 株式会社Subaru vehicle battery pack
JP7419539B2 (en) 2020-03-02 2024-01-22 寧徳時代新能源科技股▲分▼有限公司 Exhaust gas treatment systems and equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312920A (en) * 2003-04-09 2004-11-04 Toyota Motor Corp Battery box exhaust system, car equipped with it, and computer-readable recording medium recording program for making computer execute exhaust control in battery box exhaust system
JP2005243580A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Electric power storage system
JP2006103365A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd Electric vehicle
JP2006187181A (en) * 2004-12-28 2006-07-13 Toyota Motor Corp Exhaust device for vehicle power supply
JP2007012486A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Power supply device
JP2007230475A (en) * 2006-03-03 2007-09-13 Nissan Motor Co Ltd Exhaust gas purification system for hybrid vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312920A (en) * 2003-04-09 2004-11-04 Toyota Motor Corp Battery box exhaust system, car equipped with it, and computer-readable recording medium recording program for making computer execute exhaust control in battery box exhaust system
JP2005243580A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Electric power storage system
JP2006103365A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd Electric vehicle
JP2006187181A (en) * 2004-12-28 2006-07-13 Toyota Motor Corp Exhaust device for vehicle power supply
JP2007012486A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Power supply device
JP2007230475A (en) * 2006-03-03 2007-09-13 Nissan Motor Co Ltd Exhaust gas purification system for hybrid vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049038A (en) * 2010-08-27 2012-03-08 Toshiba Corp Secondary battery device
JP2014149959A (en) * 2013-01-31 2014-08-21 Honda Motor Co Ltd Cooling structure of power storage device
US10074880B2 (en) 2013-01-31 2018-09-11 Honda Motor Co., Ltd. Cooling structure of electricity storage device
CN105098116A (en) * 2014-05-06 2015-11-25 空中客车作业有限公司 Aircraft battery exhaust system
EP2942226A1 (en) * 2014-05-06 2015-11-11 Airbus Operations GmbH Aircraft battery exhaust system
DE102014212173A1 (en) 2014-06-25 2016-01-14 Robert Bosch Gmbh Gas cleaning unit for lithium cell
CN108346817A (en) * 2017-01-25 2018-07-31 松下知识产权经营株式会社 Battery system
WO2020116089A1 (en) * 2018-12-04 2020-06-11 パナソニックIpマネジメント株式会社 Battery pack and power supply system
JP7382586B2 (en) 2018-12-04 2023-11-17 パナソニックIpマネジメント株式会社 power system
JP2020198738A (en) * 2019-06-04 2020-12-10 株式会社Subaru Battery gas discharge device
JP7339778B2 (en) 2019-06-04 2023-09-06 株式会社Subaru battery gas release device
JP7316167B2 (en) 2019-09-25 2023-07-27 株式会社Subaru vehicle battery pack
JP7419539B2 (en) 2020-03-02 2024-01-22 寧徳時代新能源科技股▲分▼有限公司 Exhaust gas treatment systems and equipment

Similar Documents

Publication Publication Date Title
WO2010032313A1 (en) Secondary-battery mounted mobile unit
JP5383689B2 (en) Secondary battery mounted mobile body and secondary battery gas treatment device
JP7403665B2 (en) box, battery and equipment
JP4537313B2 (en) Fuel cell device
US10734621B2 (en) Battery structure, battery system and vehicle
WO2012014348A1 (en) Cell module and cell pack
US20170331130A1 (en) Method for controlling fuel cell vehicle
KR20210008543A (en) Automatic fire extinguishing system for exclusive use of electric vehicle battery frame using liquid nitrogen
CN218299895U (en) Battery and power consumption device
JP2019521497A (en) Water and carbon dioxide management system in the electrochemical cell
CN114515402B (en) Passivation fire-extinguishing explosion-suppression system and method for lithium battery energy storage system
JP2014529861A (en) Method for cooling a fuel cell
JP5144899B2 (en) Closed fuel cell system
JP2023518586A (en) Firefighting device, housing assembly, battery, power consumption device, and battery manufacturing method
JP5265846B2 (en) Fuel cell system
JP2004225895A (en) Hydrogen gas flow controller for hydrogen reservoir
CN217391442U (en) Vehicle-mounted fire retardant gas, fire extinguishing agent and fire water combined type fire fighting device
JP2009245948A (en) Fuel cell device
JP4949619B2 (en) Fuel cell system and operation method thereof
JP2005268054A (en) Fuel cell system
CN203711019U (en) Reactor
JPH06104007A (en) Disaster prevention device in sodium-sulfur battery
JP2007173060A (en) Fuel cell system
JP2003056800A (en) Boil off-gas treating device
US20230330460A1 (en) Systems for fire suppression with encapsulated suppressant agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08811033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08811033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP