WO2010032304A1 - Piping device, and fluid carrying device - Google Patents

Piping device, and fluid carrying device Download PDF

Info

Publication number
WO2010032304A1
WO2010032304A1 PCT/JP2008/066847 JP2008066847W WO2010032304A1 WO 2010032304 A1 WO2010032304 A1 WO 2010032304A1 JP 2008066847 W JP2008066847 W JP 2008066847W WO 2010032304 A1 WO2010032304 A1 WO 2010032304A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat
tube
heat pipe
fluid
Prior art date
Application number
PCT/JP2008/066847
Other languages
French (fr)
Japanese (ja)
Inventor
久明 山蔭
雅人 花田
義人 山田
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2008/066847 priority Critical patent/WO2010032304A1/en
Priority to JP2010529536A priority patent/JP5183744B2/en
Publication of WO2010032304A1 publication Critical patent/WO2010032304A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L53/00Heating of pipes or pipe systems; Cooling of pipes or pipe systems
    • F16L53/30Heating of pipes or pipe systems
    • F16L53/32Heating of pipes or pipe systems using hot fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically

Definitions

  • the present invention relates to a piping device and a fluid conveyance device, and more particularly, to a piping device and a fluid conveyance device that apply heat to a fluid that is an object to be conveyed.
  • the temperature of the fluid may be controlled by heating the pipe.
  • a pipe that connects a vaporizer that vaporizes a liquid raw material and a reaction chamber that supplies the vaporized gaseous raw material to the substrate and forms a film on the surface of the substrate.
  • a tape heater or the like is wound around the pipe and the pipe is heated.
  • FIG. 23 is a block diagram showing a configuration of a conventional film forming apparatus.
  • 24 is a schematic diagram showing a configuration of a piping device used in the film forming apparatus shown in FIG.
  • the vaporizer 240 and the reaction chamber 250 are connected by a pipe 241.
  • a tape heater 243 for heating the pipe 241 is wound around the outer peripheral surface of the pipe 241 and temperature control is performed on the pipe 241 in order to prevent liquefaction of the gas vaporized by the vaporizer 240 and prevention of thermal decomposition.
  • the tape heater 243 In order to control the entire length of the pipe 241 to a uniform temperature, the tape heater 243 needs to be wound evenly around the outer peripheral surface of the pipe 241.
  • the temperature of the pipe 241 may vary due to the winding method of the tape heater 243 and the temperature unevenness of the tape heater 243 itself.
  • it takes time to rewind the tape heater 243 and it is difficult to reproduce the same winding method of the tape heater 243 as before rewinding. Therefore, there is a problem that the temperature distribution of the pipe 241 at the time of heating changes from the state before the disconnection of the tape heater 243 and affects the film forming performance.
  • the conventional heat pipe evacuates the inside of the tube and encloses an appropriate amount of working fluid, heats one end of the tube to evaporate the working fluid, and cools and condenses the vapor at the other end.
  • This is a device that transports a large amount of heat from one end side to the other end side of the tube by making it into a liquid.
  • narrow grooves, meshes or porous structures are arranged on the inner wall of the tube, and capillary action due to surface tension To return the working fluid to the high temperature side.
  • the present invention has been made in view of the above problems, and a main object of the present invention is to provide a piping device that can efficiently heat the piping for conveying the fluid and improve the uniformity of the temperature of the fluid flowing inside the piping. Is to provide. Another object of the present invention is to provide a low-cost fluid conveyance device including a heat pipe that heats a pipe for conveying a fluid.
  • the piping device is a piping device for transporting a fluid, and includes a tubular member and a heating unit that heats the tubular member. Inside the annular wall portion of the tubular member, there are a plurality of thin tube portions along the extending direction of the tubular member, a first connecting tube portion that connects one ends of the thin tube portions, and a second tube that connects the other ends of the thin tube portions. Two connecting pipe portions are provided.
  • the thin tube portion, the first connecting tube portion, and the second connecting tube portion constitute a loop-type thin tube heat pipe.
  • the tubular member includes an inner tube and an outer tube whose inner peripheral surface is in close contact with the outer peripheral surface of the inner tube.
  • the narrow tube portion is formed by forming irregularities on at least one of the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube.
  • the piping device further includes an outer tube that encloses the tubular member, and has a vacuum space between the outer peripheral surface of the tubular member and the inner peripheral surface of the outer tube.
  • the fluid conveyance device includes a first heating unit, a second heating unit, a tubular member that connects the first heating unit and the second heating unit, and a heat pipe that is in thermal contact with the tubular member.
  • the tubular member conveys fluid from the first heating unit to the second heating unit.
  • the heat pipe is heated by at least one of the first heating unit and the second heating unit.
  • thermal contact means that heat is directly transferred between the tubular member and the heat pipe, and that the heat transfer efficiency is sufficiently high.
  • the present invention is not limited to the case where the pipe is in contact with and directly in mechanical contact.
  • the tubular member and the heat pipe are integrated with each other, such as a structure in which the heat pipe is built in the tubular member, the tubular member and the heat pipe are indirectly interposed by interposing a substance having excellent heat conductivity.
  • the case where is in contact with each other is also included in the state of being in thermal contact.
  • the fluid conveyance device further includes an outer tube that encloses the tubular member and the heat pipe, and has a vacuum space between the outer peripheral surface of the tubular member and the inner peripheral surface of the outer tube.
  • the heat pipe is a loop type thin pipe heat pipe.
  • a plurality of thin tube portions along the extending direction of the tubular member, a first connecting tube portion that connects one ends of the thin tube portions, and a thin tube portion are disposed inside the annular wall portion of the tubular member.
  • a second connecting pipe portion that connects the other ends of the two.
  • the thin tube portion, the first connecting tube portion, and the second connecting tube portion constitute a loop-type thin tube heat pipe.
  • the piping device of the present invention it is possible to eliminate the contact thermal resistance caused by sticking the thin tube of the loop type thin tube heat pipe to the tubular member, so that the tubular member is efficiently heated and the fluid conveyed inside the tubular member The temperature uniformity can be improved.
  • the fluid conveyance device of the present invention since it is not necessary to newly provide a heat source for heating the heat pipe, it is possible to achieve cost reduction and miniaturization of the fluid conveyance device including the heat pipe.
  • FIG. 4 is a view showing a cross section of the heat pipe taken along line IV-IV shown in FIG. 3. It is a schematic diagram which shows the operating principle of a heat pipe. 4 is a graph showing a temperature change of a pipe that conveys a reaction gas of the fluid conveyance device according to the first embodiment. 6 is a schematic diagram illustrating a configuration of a fluid transport path according to Embodiment 2.
  • FIG. 6 is a schematic diagram illustrating a configuration of a fluid transport path according to a third embodiment. It is a schematic diagram explaining the structure and operating principle of a loop type thin tube heat pipe.
  • 10 is a schematic diagram illustrating an example of an arrangement of a fluid transportation path according to Embodiment 3.
  • FIG. It is a schematic diagram which shows the state which expand
  • FIG. 10 is a perspective view of a pipe according to a fourth embodiment.
  • FIG. 10 is a perspective view of a pipe according to a fifth embodiment.
  • FIG. 16 is a cross-sectional view of the pipe along the line XVI-XVI shown in FIG. 15.
  • FIG. 10 is a perspective view of a pipe according to a sixth embodiment.
  • FIG. 18 is a cross-sectional view of a pipe taken along line XVIII-XVIII shown in FIG.
  • It is a block diagram which shows schematic structure of the modification 1 of a substance supply system. It is a block diagram which shows schematic structure of the modification 2 of a substance supply system. It is a block diagram which shows schematic structure of the modification 3 of a substance supply system. It is a block diagram which shows schematic structure of the modification 4 of a substance supply system. It is a block diagram which shows the structure of the conventional film-forming apparatus. It is a schematic diagram which shows the structure of the piping apparatus used for the film-forming apparatus shown in FIG.
  • 1 material supply system 2 fluid transfer device, 10, 40, 50 piping, 10a, 40a outer peripheral surface, 10b one end, 10c other end, 11, 12 heat insulation wall, 13, 14 space, 20 heat pipe, 20a, 20b end , 21 outer pipe, 22 wick, 23 working fluid, 24 space, 27 high temperature part, 28 low temperature part, 30 loop type capillary heat pipe, 31 heating part, 32 cooling part, 33 liquid phase, 34 gas phase, 35 vapor bubble, 41 wall portion, 42 narrow tube portion, 43, 44 connecting tube, 51 outer tube, 51a inner peripheral surface, 52 inner tube, 52a outer peripheral surface, 60 outer covering tube, 60a inner peripheral surface, 61 vacuum space, 110 liquid raw material supply device 111, 114, 121, 124, 141, 144, 161a, 164a, fluid transport path, 112, 122, 142, 16 a, 162n valve, 113,123,143,146,163A, 163n heating unit, 120 a carrier gas supply unit, 130 control unit, 140 carburetor,
  • each component is not necessarily essential for the present invention unless otherwise specified.
  • the above number is an example, and the scope of the present invention is not necessarily limited to the number, amount, etc.
  • FIG. 1 is a block diagram showing a schematic configuration of a substance supply system for supplying a gaseous substance to a reaction chamber provided with a fluid conveyance device according to the present invention.
  • the substance supply system 1 heats the liquid raw material supplied from the liquid raw material supply apparatus 110 by receiving the liquid raw material from the outside and supplying the liquid raw material to the vaporizer 140.
  • a vaporizer 140 that is vaporized and vaporized, and a reaction chamber 150 in which a gaseous raw material is supplied and a predetermined reaction such as film formation on the surface of the substrate is performed.
  • the substance supply system 1 also includes a carrier gas supply device 120 that supplies the vaporizer 140 with a carrier gas that conveys the raw material vaporized in the vaporizer 140 toward the reaction chamber 150.
  • the liquid material supply device 110 and the vaporizer 140 are connected by a fluid transport path 111, a valve 112, and a fluid transport path 114.
  • the fluid transport paths 111 and 114 between the liquid raw material supply apparatus 110 and the vaporizer 140 are joined via a valve 112.
  • the carrier gas supply device 120 and the vaporizer 140 are connected by a fluid transport path 121, a valve 122, and a fluid transport path 124.
  • the fluid transport paths 121 and 124 between the carrier gas supply device 120 and the vaporizer 140 are joined via a valve 122.
  • the vaporizer 140 and the reaction chamber 150 are connected by a fluid transport path 141, a valve 142, and a fluid transport path 144.
  • the fluid transport paths 141 and 144 between the vaporizer 140 and the reaction chamber 150 are joined via a valve 142.
  • the liquid raw material supplied from the liquid raw material supply device 110 is heated in the vaporizer 140 to rise in temperature, and changes its state to gas when it reaches the boiling point.
  • the gaseous raw material vaporized by the vaporizer 140 (referred to as a reaction gas) passes through the fluid transport path 141, the valve 142, and the fluid transport path 144 by the carrier gas supplied from the carrier gas supply device 120.
  • a reaction gas is supplied to the reaction chamber 150.
  • the substance supply system 1 also includes a control unit 130.
  • the supply amount of the raw material from the liquid raw material supply device 110 to the vaporizer 140 is controlled by the control unit 130 in the opening degree of the valve 112 between the fluid transport paths 111 and 114 between the liquid raw material supply device 110 and the vaporizer 140. Is controlled.
  • the flow rate of the carrier gas is controlled by controlling the opening degree of the valve 122 between the fluid transport paths 121 and 124 between the carrier gas supply device 120 and the vaporizer 140 by the control unit 130.
  • the supply amount of the reaction gas is controlled by controlling the opening degree of the valve 142 between the fluid transport paths 141 and 144 between the vaporizer 140 and the reaction chamber 150 by the control unit 130.
  • the temperature inside the vaporizer 140 is controlled by the control unit 130 controlling the amount of heat supplied by a heating unit such as a heater (not shown) disposed inside the vaporizer 140.
  • the temperature inside the reaction chamber 150 is also controlled by controlling the amount of heat supplied by a heating unit (not shown) disposed inside the reaction chamber 150 by the control unit 130.
  • a dotted line arrow shown in FIG. 1 indicates a path of a control signal from the control unit 130.
  • FIG. 2 is a schematic diagram showing an example of the fluid conveyance device of the present invention.
  • FIG. 2 illustrates a fluid conveyance device 2 that includes a fluid conveyance path 141 that connects the vaporizer 140 and the valve 142 as an example of the fluid conveyance device.
  • the fluid conveyance device 2 includes a vaporizer 140 as a first heating unit, a heating unit 143 as a second heating unit, a pipe 10 as a tubular member, and a heat pipe 20 that covers the outer peripheral surface 10a of the pipe 10.
  • the pipe 10 conveys the gaseous raw material supplied from the liquid raw material supply device 110 and vaporized by the vaporizer 140 in the direction from the vaporizer 140 to the valve 142.
  • One end 10 b which is one end of the pipe 10 is connected to the vaporizer 140.
  • the other end 10 c, which is the other end of the pipe 10, is connected to the valve 142.
  • a heating unit 143 is disposed around the valve 142.
  • the heating unit 143 is provided so as to include the valve 142 and heats a portion including the valve 142.
  • the control unit 130 controls the temperature of the reaction gas passing through the valve 142 by controlling the amount of heat supplied from the heating unit 143 to the valve 142.
  • the pipe 10 connects the vaporizer 140 and the heating unit 143.
  • a heat insulating wall 11 is provided so as to surround one end 10 b of the pipe 10 joined to the vaporizer 140.
  • the pipe 10 in the vicinity of the one end 10b and the end 20a of the heat pipe 20 in the vicinity of the one end 10b are arranged in a space 13 surrounded by the outer wall of the vaporizer 140 and the heat insulating wall 11.
  • a heat insulating wall 12 is provided so as to surround the pipe 10 in the vicinity of the other end 10 c joined to the valve 142.
  • the pipe 10 in the vicinity of the other end 10 c and the end 20 b of the heat pipe 20 adjacent to the other end 10 c are disposed in a space 14 surrounded by the outer wall of the heating unit 143 and the heat insulating wall 12.
  • the heat flow HF is illustrated by the arrows in FIG.
  • the heat flow HF is transmitted from the vaporizer 140 and the heating unit 143 to the heat pipe 20 and indicates a heat flow released to the outside.
  • Heat is transmitted from the vaporizer 140 to the space 13 via the outer wall of the vaporizer 140, the space 13 is heated, and heat is applied from the space 13 to the vicinity of the end 20 a of the heat pipe 20.
  • heat is transmitted from the heating unit 143 to the space 14 via the outer wall of the heating unit 143, the space 14 is heated, and heat is transmitted from the space 14 to the vicinity of the end 20 b of the heat pipe 20.
  • the vicinity of the end portions 20a and 20b of the heat pipe 20 constitutes a high-temperature portion that has a relatively high atmospheric temperature and heats the heat pipe 20 to evaporate the working fluid.
  • the heat pipe 20 is not heated from the surroundings. In the vicinity of this intermediate point, heat is released from the heat pipe 20 to the outside. In the vicinity of an intermediate point between the vaporizer 140 and the heating unit 143, the ambient temperature is relatively low, and constitutes a low-temperature unit that condenses the working fluid by radiating heat from the heat pipe 20.
  • FIG. 3 is a perspective view showing the configuration of the heat pipe.
  • FIG. 4 is a view showing a cross section of the heat pipe taken along line IV-IV shown in FIG.
  • the outer tube 21 is made of a metal material such as copper, aluminum, or stainless steel.
  • a porous wick 22 having a capillary force is provided on the inner surface of the outer tube 21.
  • a wire mesh may be attached to the inner surface of the outer tube 21, and fine grooves may be formed on the inner surface of the outer tube 21.
  • a space 24 is formed between the outer peripheral surface of the pipe 10 and the inner peripheral surface of the outer tube 21.
  • the interior of the space 24 is evacuated and decompressed.
  • An appropriate amount of hydraulic fluid 23 is injected into this space 24. In this way, the structure of the heat pipe 20 can be provided between the pipe 10 and the outer pipe 21.
  • FIG. 5 is a schematic diagram showing the operating principle of the heat pipe.
  • a part of the heat pipe structure shown in FIGS. 3 and 4 is arranged in the high temperature part 27 having a relatively high ambient temperature, and the other part is arranged in the low temperature part 28 having a relatively low ambient temperature.
  • the high temperature part 27 is heated by, for example, a heater, and the temperature is higher than that of the low temperature part 28.
  • the outer tube 21 is heated by heat transfer from the surroundings in the high temperature portion 27. Therefore, the working fluid 23 sealed between the pipe 10 and the outer tube 21 is also heated, absorbing heat as latent heat, and the working fluid 23 evaporates into a gaseous state.
  • the vapor of the evaporated working fluid 23 flows from the high temperature portion 27 side to the low temperature portion 28 side as shown in the vapor flow SF, heat is carried as vapor in the direction in which the vapor flow SF flows.
  • the vapor of the working fluid 23 is condensed by releasing latent heat on the outer surface of the pipe 10 and the inner surface of the outer pipe 21, thereby heating the pipe 10 uniformly over its entire length.
  • the hydraulic fluid 23 condensed on the low temperature part 28 side is returned to the high temperature part 27 side by the capillary force of the wick 22 as shown in the liquid flow LF.
  • heat is radiated to the outside from the outer wall of the outer tube 21 transferred from the hydraulic fluid 23, as indicated by the heat flow HF.
  • the temperature of the reaction gas flowing in the pipe 10 is maintained at a constant temperature. That is, heat transport is performed by vaporization and liquefaction of the working fluid 23 between the pipe 10 and the outer pipe 21, and the temperature uniformity of the reaction gas can be improved over the entire length of the pipe 10.
  • FIG. 6 is a graph showing a change in temperature of the pipe that conveys the reaction gas of the fluid conveyance device of the first embodiment.
  • the vertical axis represents the temperature of the pipe.
  • the horizontal axis indicates the reaction gas path from the vaporizer 140 shown in FIG. 2 to the heating unit 143. 6 corresponds to a region inside the vaporizer 140 and the space 13 surrounded by the heat insulating wall 11 in the fluid conveyance device 2 shown in FIG.
  • Region B corresponds to the region from the exit of space 13 to the entrance of space 14 shown in FIG.
  • the area C corresponds to the area inside the space 14 surrounded by the heat insulating wall 12 shown in FIG. 2 and the area inside the heating unit 143.
  • the temperature of the piping is changed in the region A due to the heat transfer effect from the vaporizer 140 and in the region C due to the heat transfer effect from the heating unit 143.
  • the region B since the pipe 10 is uniformly heated over the entire length by the heat pipe 20 heated using the vaporizer 140 and the heating unit 143 as a heat source, the reaction gas flowing inside the pipe 10 from the region A toward the region C Therefore, it is possible to prevent re-liquefaction due to condensation of the reaction gas and to control the temperature of the reaction gas with high accuracy.
  • the fluid transport path 141 has a double-pipe structure, and the vacuum space 24 and the wick 22 are provided between the outer peripheral surface of the pipe 10 and the inner peripheral surface of the outer tube 21 to heat.
  • the heat pipe 20 is brought into contact with the outer surface of the pipe 10.
  • a heater such as a tape heater is not disposed over the entire length of the fluid transport path 141.
  • the temperature of the reaction gas flowing through the pipe 10 can be easily controlled with high accuracy.
  • the heat pipe 20 is heated by being transferred from the vaporizer 140 and the heating unit 143. Therefore, the fluid conveyance device 2 does not need to include another heat source such as a heater or hot water for heating the heat pipe 20 and evaporating the working liquid 23. That is, the fluid conveyance device 2 does not include a heating device only for the heat pipe 20. Therefore, the manufacturing cost and operating cost of the fluid transfer device 2 can be reduced, and the size of the fluid transfer device 2 can be reduced.
  • another heat source such as a heater or hot water for heating the heat pipe 20 and evaporating the working liquid 23. That is, the fluid conveyance device 2 does not include a heating device only for the heat pipe 20. Therefore, the manufacturing cost and operating cost of the fluid transfer device 2 can be reduced, and the size of the fluid transfer device 2 can be reduced.
  • the heat pipe 20 is heated from both the vaporizer 140 and the heating unit 143 and is radiated to the outside between the vaporizer 140 and the heating unit 143 has been described.
  • the heat pipe 20 may be heated by either the vaporizer 140 or the heating unit 143.
  • FIG. 7 is a schematic diagram illustrating a configuration of a fluid transport path according to the second embodiment.
  • FIG. 8 is a schematic view of the fluid transport path shown in FIG. 7 viewed from the end face side.
  • the outer periphery of the pipe 10 that conveys the gaseous reaction gas by forming the fluid transport path 141 into a double pipe structure and providing the wick 22 on the inner peripheral surface of the outer pipe 21 to form a heat pipe.
  • the example which provides the heat pipe 20 in the part was demonstrated.
  • a plurality of heat pipes 20 are affixed to the outer peripheral surface 10 a of the pipe 10, and the pipe 10 is connected by heat transport of these heat pipes 20. An example of soaking over the entire length is shown.
  • the configuration and operating principle of the heat pipe 20 are the same as those of the heat pipe 20 of the first embodiment described with reference to FIGS. 3 to 5, and the working liquid 23 is contained in the heat pipe 20 as in the first embodiment.
  • the working liquid 23 is contained in the heat pipe 20 as in the first embodiment.
  • a plurality of heat pipes 20 are attached to the outer peripheral surface of the pipe 10 to transfer heat from the heat pipe 20 to the pipe 10, without changing the structure of the existing pipe 10, The temperature of the reaction gas flowing inside the pipe 10 can be easily uniformed with high accuracy.
  • the fluid transport path 141 in which the heat pipe 20 is attached to the outer peripheral surface 10a of the pipe 10 and the heat pipe 20 directly contacts the pipe 10.
  • the fluid transport path 141 has a configuration in which a groove capable of storing the heat pipe 20 is processed in the extending direction of the pipe 10 on the outer peripheral surface 10a of the pipe 10, and the heat pipe 20 is stored in the groove. Also good.
  • the heat pipe 20 is attached to the outer peripheral surface 10a of the pipe 10 with a substance having high thermal conductivity interposed therebetween, and the heat pipe 20 and the pipe 10 are not in direct mechanical contact, but the heat pipe 20 to the pipe 10 It is good also as a structure by which the heat transfer performance to is ensured. That is, if the heat pipe 20 is the fluid transport path 141 in which the heat pipe 20 is in thermal contact with the outer peripheral surface 10a of the pipe 10, the temperature of the reaction gas flowing inside the pipe 10 can be made uniform with high accuracy.
  • FIG. 9 is a schematic diagram illustrating a configuration of a fluid transport path according to the third embodiment.
  • the heat pipe 20 for heating the pipe 10 is a conventional wick-type heat pipe.
  • a meandering loop type thin tube is attached to the outer peripheral surface 10a of the pipe 10 as shown in FIG. 9, and a two-phase condensable working fluid is sealed inside the loop type thin tube.
  • An example in which the heat pipe that is in thermal contact with the pipe 10 is a loop type thin pipe heat pipe 30 will be described.
  • FIG. 10 is a schematic diagram for explaining the configuration and operating principle of a loop type thin tube heat pipe.
  • FIG. 10 shows a state in which the pipe 10 shown in FIG. 9 is cut open in the extending direction and the tubular pipe 10 is developed in a flat plate shape.
  • FIG. 10 shows a state in which the loop thin tube heat pipe 30 arranged so as to be wound around the pipe 10 is two-dimensionally developed along the shape of the flat plate.
  • FIG. 10 there are a plurality of thin tubes that are working fluid flow paths between a heating unit 31 that inputs heat into the loop thin tube heat pipe 30 and a cooling unit 32 that dissipates heat from the loop thin tube heat pipe 30.
  • the book is arranged. Even numbers of the thin tubes are provided along the extending direction of the pipe 10 shown in FIG. One ends that are one end portions of the plurality of thin tubes and the other ends that are end portions on the other side of the thin tubes are connected by a connecting tube.
  • the loop type thin tube heat pipe 30 is formed in a meandering structure in which a thin tube is caused to repeat a number of turns between a heating unit 31 and a cooling unit 32 and the thin tube is reciprocated. Due to this meandering structure, the loop type thin tube heat pipe 30 has a large number of heat receiving portions that receive heat from the heating portion 31 and a large number of heat radiating portions that release heat to the cooling portion 32.
  • a gas-liquid two-phase working fluid is sealed inside the loop type thin tube heat pipe 30.
  • the working fluid is sealed inside the narrow tube after the inside of the narrow tube having a meandering structure is decompressed and evacuated. Therefore, the inside of the narrow tube is filled with liquid and gaseous working fluid while maintaining an equilibrium state.
  • FIG. 10 shows a liquid phase 33 filled with a liquid working fluid, a gas phase 34 and a vapor bubble 35 filled with a gaseous working fluid.
  • the liquid phase 33 When the amount of heat transferred to the loop type thin pipe heat pipe 30 is small, the liquid phase 33 is biased toward the cooling unit 32 and becomes a stationary U-shaped liquid column. As the amount of heat input from the heating unit 31 to the loop-type capillary tube heat pipe 30 increases, the liquid phase 33 absorbs heat and causes nucleate boiling in the liquid phase 33. Due to this nucleate boiling, a part of the liquid phase 33 changes from a liquid to a gas, and a vapor bubble 35 is generated in the liquid phase 33. The generated vapor bubbles 35 move in the narrow tube from the heating unit 31 side to the cooling unit 32 side. When the vapor bubbles 35 reach the cooling unit 32, the gas contained in the vapor bubbles 35 is cooled and condensed, and the phase changes from gas to liquid. Utilizing the movement of the vapor bubbles 35, the latent heat is transferred from the heating unit 31 to the cooling unit 32.
  • the liquid phase 33 in the narrow tube vibrates self-excited, and as shown by the double arrows in FIG.
  • the interface between 33 and the gas phase 34 moves along the extending direction of the thin tube.
  • the sensible heat is transferred from the heating unit 31 to the cooling unit 32.
  • the temperature difference between the heating unit 31 and the cooling unit 32 is used as a driving force to cause the movement of the vapor bubbles 35 and the vibration of the liquid phase 33.
  • the loop-type thin tube heat pipe 30 that operates as described above is also referred to as a self-excited vibration heat pipe, and is capable of transporting heat from the heating unit 31 to the cooling unit 32 regardless of the inclined posture. Moreover, in order to mix and transport latent heat and sensible heat, the loop type thin tube heat pipe 30 has a high heat transport capability. In addition, since the loop type thin tube heat pipe 30 uses a thin tube having no internal structure such as a wick, the thin tube can be bent freely, and the heat transport performance is not lowered by the bend. Can be realized at a cost.
  • the amount of heat transport can be increased or decreased by increasing or decreasing the meandering number of the narrow tubes, and a desired heat transport amount can be obtained over a wide range. That is, the heat transport efficiency from the heating unit 31 to the cooling unit 32 can be improved as the number of thin tubes is increased. Since it is necessary to arrange the meandering loop type narrow tubes in a limited space, it is preferable to have an even number of narrow tubes because the meandering structure can be formed efficiently. Moreover, it is good also as a structure which affixes a some loop type thin tube on the outer peripheral surface of the piping 10 according to desired heat transport amount.
  • the narrow tube constituting the loop type thin tube heat pipe 30 has an inner diameter of about 1 to 2 mm, and the outer diameter of the thin tube including the plate thickness is about 2 mm to 3 mm. Therefore, compared with the case where the conventional heat pipe 20 shown in FIG. 3 and FIG. 7 is brought into thermal contact with the outer peripheral surface of the pipe 10, the outer diameter of the piping device including the pipe 10 and the loop type thin pipe heat pipe 30 is reduced. Can be significantly smaller. Therefore, the reaction gas flowing in the pipe 10 can be heated by a smaller circuit, and it is possible to achieve downsizing of the entire apparatus.
  • FIG. 11 is a schematic diagram illustrating an example of the arrangement of the fluid transport path according to the third embodiment.
  • the fluid transport path shown in FIG. 11 is arranged in a top heat state in which the high temperature part 27 is arranged on the upper side and the low temperature part 28 is arranged on the lower side.
  • a meandering tubule constituting the loop type thin pipe heat pipe 30 is attached to the outer peripheral surface of the pipe 10. It is attached.
  • the loop type thin tube heat pipe 30 is used as a heat pipe that is in thermal contact with the pipe 10, heat transport is possible even in a top heat state where the height difference of the pipe 10 is large. It becomes. Therefore, it is possible to obtain the fluid conveyance device 2 that can perform heat transport regardless of the posture of the pipe 10, and to greatly improve the degree of design freedom related to the arrangement plan of the pipe 10.
  • FIG. 12 is a schematic diagram illustrating a state in which the pipe according to the fourth embodiment is expanded in a flat plate shape.
  • FIG. 13 is a view of the pipe developed in a flat plate shape from the direction of the arrow XIII shown in FIG.
  • FIG. 12 shows a view of the pipe developed in a flat plate shape from the direction of the arrow XII shown in FIG.
  • FIG. 14 is a perspective view of the piping according to the fourth embodiment.
  • a loop type thin tube heat pipe 30 is incorporated in a flat plate on which the piping 40 is developed. After manufacturing a flat plate incorporating a meandering loop type thin tube, the flat plate is bent to form a tubular pipe 40, whereby the pipe 40 incorporating the loop type thin tube heat pipe 30 can be obtained.
  • This piping 40 can be applied to the fluid conveyance device 2 in place of the piping 10 and the heat pipe 20 shown in FIG.
  • the pipe 40 as a tubular member shown in FIG. 14 has a wall portion 41 having an annular cross-sectional shape intersecting with the extending direction of the pipe 40. Inside the wall portion 41, there are provided a plurality of thin tube portions 42 along the extending direction of the pipe 40 and connecting tubes 43, 44 that connect the ends of the thin tube portions 42.
  • the connecting pipe 43 connects one end portions of the thin tube portion 42 to each other.
  • the connecting tube 44 connects the other ends of the thin tube portion 42.
  • the thin tube portion 42 and the connecting tubes 43 and 44 constitute a loop-shaped thin tube heat pipe 30 having a meandering structure that repeats many turns. Based on the principle of operation described with reference to FIG. 10, the vicinity of one of the connecting pipes 43 and 44 is the heating unit 31, and the other is the cooling unit 32. Heat transport to the cooling unit 32 can be performed.
  • the loop type thin tube heat pipe 30 is formed inside the pipe 40, and heat is applied to the pipe 40 from a heat source, and the pipe 40 is applied as a heating pipe that heats the fluid conveyed through the inside.
  • the reaction gas flowing inside the pipe 40 can be heated more efficiently. That is, when the loop-type thin tube heat pipe 30 shown in FIG. 9 is attached to the outer periphery of the pipe 10, the outer surface of the pipe and the surface of the thin tube are not completely adhered, and the outer surface of the pipe and the surface of the thin tube There is a gap between them. As a result, a large thermal resistance called contact thermal resistance is generated, and the heat transfer efficiency from the loop type thin tube heat pipe 30 to the pipe 10 is lowered.
  • the loop thin tube heat pipe 30 is formed in the wall surface, so that no contact thermal resistance is generated, and the pipe 40 is efficiently heated by the loop thin tube heat pipe 30. can do. Therefore, the uniformity of the temperature of the reaction gas flowing through the inside of the pipe 40 can be further improved by applying the pipe 40 to the piping device that transports the reaction gas.
  • the loop type thin tube heat pipe 30 when used, heat transport is possible even in a top heat state where the height difference of the pipe 40 is large. Therefore, it is possible to obtain the fluid conveyance device 2 that can transport heat regardless of the posture of the pipe 40.
  • FIG. 15 is a perspective view of a pipe according to the fifth embodiment.
  • 16 is a cross-sectional view of the piping along the line XVI-XVI shown in FIG.
  • the pipe 40 that bends a flat plate in which the loop type thin pipe heat pipe 30 is formed to be processed into a tubular shape has been described.
  • the pipe 50 of the fifth embodiment includes an outer pipe 51 and an inner pipe 52 as shown in FIGS. 15 and 16.
  • the inner peripheral surface 51 a of the outer tube 51 is in close contact with the outer peripheral surface 52 a of the inner tube 52.
  • the outer peripheral surface 52a of the inner tube 52 is grooved.
  • This groove shape includes a plurality of narrow grooves along the extending direction of the inner tube 52.
  • a narrow groove that becomes the thin tube portion 42 of the circuit of the loop thin tube heat pipe 30 is processed.
  • the groove formed in the outer peripheral surface 52a is evacuated and sealed with a working fluid, whereby the loop type thin tube heat pipe 30 is formed.
  • the piping 50 as a tubular member built in the inside can be configured.
  • FIG. 15 and 16 show an example in which grooves are formed on the outer peripheral surface 52a that is the outer surface of the inner tube 52.
  • FIG. After processing the groove on the inner peripheral surface 51a which is the inner surface of the outer tube 51, the inner tube 52 and the outer tube 51 are integrally joined to form a circuit of the loop type thin tube heat pipe 30 similar to the above. It may be. Further, after the groove pattern having the same pattern is formed on both the outer peripheral surface 52a of the inner tube 52 and the inner peripheral surface 51a of the outer tube 51, the inner tube 52 and the outer tube 51 are integrally joined, and the same as described above. A circuit of the loop type thin tube heat pipe 30 may be formed.
  • the narrow groove constituting the narrow tube portion 42 of the loop type thin tube heat pipe 30 may be formed on the inner peripheral surface 51a or the outer peripheral surface 52a.
  • at least one of the outer peripheral surface 52a of the inner tube 52 and the inner peripheral surface 51a of the outer tube 51 is formed with a concavo-convex shape on the inner peripheral surface 51a or the outer peripheral surface 52a, such as embossing, in addition to groove processing. You may make it form the circuit of the loop type thin tube heat pipe 30 by performing arbitrary uneven
  • the outer pipe 51 and the inner pipe 52 are formed, and these are integrated and joined, so that the pipe 50 incorporating the loop type thin pipe heat pipe 30 can be easily formed. Obtainable. Therefore, it is not necessary to bend the flat plate as shown in the fourth embodiment or to join the flat plate into a tubular shape after the bending, and the inner surface of the pipe 50 can be easily polished. Therefore, it is possible to obtain the pipe 50 including the loop type thin pipe heat pipe 30 that is easy to manufacture and low in cost.
  • FIG. 17 is a perspective view of a pipe according to the sixth embodiment.
  • 18 is a cross-sectional view of the piping along the line XVIII-XVIII shown in FIG.
  • the pipe shown in FIG. 17 further surrounds the pipe 40 described with reference to FIG.
  • the outer tube 60 includes a pipe 40 that houses the loop-type thin tube heat pipe 30.
  • a vacuum space 61 is formed between the outer peripheral surface 40 a of the pipe 40 and the inner peripheral surface 60 a of the outer tube 60.
  • the pipe 40 is vacuum-insulated, and heat radiation from the outer peripheral surface 40a of the pipe 40 to the outside is suppressed.
  • a structure that reduces energy loss from the pipe 40 to the surroundings can be obtained. Since the reaction gas flowing inside the pipe 40 is heated by a heat pipe, soaking of the entire pipe 40 is possible without providing a heating unit such as a tape heater on the outer surface of the pipe 40. It is easy to provide the vacuum space 61 on the outer peripheral surface 40a of 40.
  • the vacuum space 61 is formed using the outer tube 60 having an outer diameter equivalent to the outer diameter of the heat insulating material, a higher heat insulating performance can be obtained, so that a higher heat insulating property can be obtained in a limited space.
  • the heat insulation structure which has can be formed.
  • the piping described in the first to fifth embodiments is surrounded by the outer tube 60 to form the vacuum space 61 and is thermally insulated by vacuum, so that the heat insulating material can be eliminated and the apparatus can be downsized. It goes without saying that the effect of can be obtained.
  • the substance supply system shown in FIG. 19 includes n (n is an integer of 2 or more) reaction chambers 150a to 150n.
  • a joint 145 for branching the pipe is connected to the fluid transport path 144, and the periphery of the joint 145 is covered with a heating unit 146.
  • the fluid transport paths 161a and 164a from the joint 145 to the reaction chamber 150a are joined via a valve 162a for controlling the flow rate of the reaction gas.
  • the valve 162a is covered with a heating unit 163a, and the valve 162a is heated by heat transfer from the heating unit 163a.
  • the path from the junction 145 to the other reaction chamber 150n has the same configuration as described above.
  • the vaporizer 140 and the reaction chamber 150 are directly connected by the fluid transport path 141 and do not have the valve 142 for controlling the flow rate of the reaction gas.
  • the fluid transfer device according to any one of the first to sixth embodiments is applied to the fluid transport path 141, and the heat of the vaporizer 140 or the reaction chamber 150 is transferred to the heat pipe that heats the fluid transport path 141.
  • the temperature of the reaction gas from the vaporizer 140 to the reaction chamber 150 can be made uniform.
  • the substance supply system shown in FIG. 21 includes a heating unit 113 that heats the valve 112, and is capable of preheating the liquid raw material supplied from the liquid raw material supply apparatus 110 to the vaporizer 140 upstream of the vaporizer 140. It is said that. Even in this case, the fluid conveyance device according to any one of the first to sixth embodiments is applied to the fluid transport paths 111 and 114, and the heat of the heating unit 113 or the vaporizer 140 is applied to the heat pipe that heats the fluid transport paths 111 and 114. By conducting heat transfer, the temperature of the liquid raw material from the liquid raw material supply apparatus 110 to the vaporizer 140 can be made uniform. That is, the piping device and the fluid conveyance device of the present invention are not limited to a device that conveys gas, and can also be applied to a device that conveys liquid.
  • the substance supply system shown in FIG. 22 includes a heating unit 123 that heats the valve 122, and is configured to be able to preheat the carrier gas supplied from the carrier gas supply device 120 to the vaporizer 140 upstream of the vaporizer 140. ing. Even in this case, the fluid conveyance device according to any one of the first to sixth embodiments is applied to the fluid transportation paths 121 and 124, and the heat of the heating unit 123 or the vaporizer 140 is applied to the heat pipe that heats the fluid transportation paths 121 and 124. By conducting heat transfer, the temperature of the carrier gas from the carrier gas supply device 120 to the vaporizer 140 can be made uniform.
  • the pipe when it is desired to lower the temperature of the pipe during maintenance, etc., the pipe can be lowered at a uniform temperature at a higher speed, so the time required to lower the temperature of the pipe can be shortened and the maintenance time can be shortened. Can do.
  • a piping device and a fluid conveyance device of the present invention are, for example, a piping device that conveys a substance that requires high-precision temperature management, such as a reaction gas when a film formation target is formed on a semiconductor wafer, a liquid crystal glass substrate, or the like. It can be applied particularly advantageously to a fluid conveying device.

Abstract

Provided is a piping device, which can heat a fluid carrying pipe (40) efficiently thereby to improve the homogeneity of the temperature of the fluid to flow in the pipe (40). The piping device includes the pipe (40) and a heating portion disposed at the end portion of the pipe (40) for heating the pipe (40). Inside of the annular wall of the pipe (40), there are disposed a plurality of tubes (42) along the extending direction of the pipe (40), a connecting pipe (43) for connecting the one-side ends of the tubes (42) to each other, and a connecting pipe (44) for connecting the other ends of the tubes (42) to each other. The tubes (42), the connecting pipe (43) and the connecting pipe (44) constitute a looped thin heat pipe (30).

Description

配管装置および流体搬送装置Piping device and fluid transfer device
 本発明は、配管装置および流体搬送装置に関し、特に、被搬送物である流体に熱を加える配管装置および流体搬送装置に関する。 The present invention relates to a piping device and a fluid conveyance device, and more particularly, to a piping device and a fluid conveyance device that apply heat to a fluid that is an object to be conveyed.
 従来、流体を搬送するための配管において、配管内部を輸送される流体の高精度の温度管理を必要とするとき、配管を加熱することにより流体の温度を制御する場合がある。たとえば成膜装置において、液体状の原料を気化させる気化器と、気化された気体状の原料を基板に供給して基板の表面に成膜を行なう反応室とを連結する配管では、配管内部での反応ガスの再液化や熱分解を防止して反応室へ原料を安定して供給するために、たとえばテープヒータなどを配管に巻き、配管を加熱する。 Conventionally, when a pipe for transporting fluid requires high-precision temperature control of the fluid transported inside the pipe, the temperature of the fluid may be controlled by heating the pipe. For example, in a film forming apparatus, a pipe that connects a vaporizer that vaporizes a liquid raw material and a reaction chamber that supplies the vaporized gaseous raw material to the substrate and forms a film on the surface of the substrate. In order to prevent re-liquefaction and thermal decomposition of the reaction gas and stably supply the raw material to the reaction chamber, for example, a tape heater or the like is wound around the pipe and the pipe is heated.
 図23は、従来の成膜装置の構成を示すブロック図である。図24は、図23に示す成膜装置に用いられる配管装置の構成を示す模式図である。図23に示すように、従来の成膜装置においては、気化器240と反応室250とは配管241により連結されている。この配管241には、気化器240で気化したガスの再液化や熱分解の防止のために、配管241を加熱するテープヒータ243が配管241の外周面に巻かれて、温度制御が行なわれる。 FIG. 23 is a block diagram showing a configuration of a conventional film forming apparatus. 24 is a schematic diagram showing a configuration of a piping device used in the film forming apparatus shown in FIG. As shown in FIG. 23, in the conventional film forming apparatus, the vaporizer 240 and the reaction chamber 250 are connected by a pipe 241. A tape heater 243 for heating the pipe 241 is wound around the outer peripheral surface of the pipe 241 and temperature control is performed on the pipe 241 in order to prevent liquefaction of the gas vaporized by the vaporizer 240 and prevention of thermal decomposition.
 配管241の全長を均一の温度に制御するためには、配管241の外周面に均等にテープヒータ243を巻く必要がある。しかし、テープヒータ243の巻き方やテープヒータ243自身の温度ムラにより、配管241の温度のバラつきが発生することがある。また、テープヒータ243の一部が断線すると、断線したテープヒータ243を除去して、新たにテープヒータ243を巻き直す必要がある。しかしながら、テープヒータ243の巻き直しに時間がかかると共に、巻き直す前と同じテープヒータ243の巻き方を再現することは困難である。そのため、加熱時の配管241の温度分布がテープヒータ243断線前の状態から変化し、成膜の性能に影響を及ぼすという問題があった。 In order to control the entire length of the pipe 241 to a uniform temperature, the tape heater 243 needs to be wound evenly around the outer peripheral surface of the pipe 241. However, the temperature of the pipe 241 may vary due to the winding method of the tape heater 243 and the temperature unevenness of the tape heater 243 itself. Further, when a part of the tape heater 243 is disconnected, it is necessary to remove the disconnected tape heater 243 and to rewind the tape heater 243 again. However, it takes time to rewind the tape heater 243, and it is difficult to reproduce the same winding method of the tape heater 243 as before rewinding. Therefore, there is a problem that the temperature distribution of the pipe 241 at the time of heating changes from the state before the disconnection of the tape heater 243 and affects the film forming performance.
 そのため従来、配管の外壁をヒートパイプにより被覆して、配管の温度を所定の温度に均一性良く保持し、配管の全長にヒータを巻くことなく配管全体を高精度に温度管理する技術が提案されている(たとえば、特開平6-168877号公報(特許文献1)参照)。 For this reason, conventionally, a technology has been proposed in which the outer wall of a pipe is covered with a heat pipe, the temperature of the pipe is maintained at a predetermined temperature with good uniformity, and the temperature of the entire pipe is controlled with high accuracy without winding a heater around the entire length of the pipe. (For example, see JP-A-6-168877 (Patent Document 1)).
 ところで、従来のヒートパイプは、管の内部を真空に排気して作動流体を適量封入し、管の一方端側を加熱して作動流体を蒸発させ、その蒸気を他方端側で冷却し凝縮させて液体にすることで、管の一方端側から他方端側に大量の熱を輸送する装置である。低温側で凝縮した液体状の作動流体を高温側へ戻すために、管の内壁に細い溝やメッシュまたは多孔性状の構造(総称してウィックと呼ぶ)が配置されており、表面張力による毛管作用により作動流体を高温側へ還流させる。 By the way, the conventional heat pipe evacuates the inside of the tube and encloses an appropriate amount of working fluid, heats one end of the tube to evaporate the working fluid, and cools and condenses the vapor at the other end. This is a device that transports a large amount of heat from one end side to the other end side of the tube by making it into a liquid. In order to return the liquid working fluid condensed on the low temperature side to the high temperature side, narrow grooves, meshes or porous structures (collectively called wicks) are arranged on the inner wall of the tube, and capillary action due to surface tension To return the working fluid to the high temperature side.
 従来のヒートパイプでは、管の高温部の位置が低温部よりも高くなるトップヒート状態にある場合、凝縮した作動流体が下部側(低温側)に滞留し、ウィックの毛管力のみでは重力に抗して高温部に作動流体を十分に還流させることができない場合がある。このようなトップヒート状態においては、従来のヒートパイプでは十分な熱輸送が行なうことができない。そこで、重力の影響による熱輸送能力の変動を抑制する技術として、ループ型細管ヒートパイプが提案されている(たとえば、特開平4-190090号公報(特許文献2)参照)。
特開平6-168877号公報 特開平4-190090号公報
In the conventional heat pipe, when the hot part of the pipe is in a top heat state where the position of the hot part is higher than that of the cold part, the condensed working fluid stays on the lower side (cold side) and resists gravity with the wick capillary force alone Thus, the working fluid may not be sufficiently recirculated to the high temperature part. In such a top heat state, a conventional heat pipe cannot perform sufficient heat transport. In view of this, a loop-type thin tube heat pipe has been proposed as a technique for suppressing fluctuations in heat transport capacity due to the influence of gravity (see, for example, Japanese Patent Laid-Open No. Hei 4-190090 (Patent Document 2)).
JP-A-6-168877 Japanese Patent Laid-Open No. 4-190090
 流体を搬送するための配管の外表面にループ型細管ヒートパイプを貼り付けることにより、ループ型細管ヒートパイプから配管へ熱を伝達して、配管内部を流れる流体を加熱することができる。しかし、配管の外表面およびループ型細管ヒートパイプを構成する細管の表面には、凹凸な構造があり、接触面同士を完全に密着させることは困難である。空気など熱伝導率の小さい流体が接触面間の隙間に存在すると、接触熱抵抗と呼ばれる大きな熱抵抗が生じる。つまり、ループ型細管ヒートパイプを配管の外表面に接触させた場合、配管の外表面と細管の表面とが完全に密着しないことにより、ループ型細管ヒートパイプから配管への熱伝達は必ずしも十分とはいえず、更なる改良の余地がある。 By sticking the loop type thin tube heat pipe to the outer surface of the pipe for conveying the fluid, heat can be transmitted from the loop type thin pipe heat pipe to the pipe, and the fluid flowing in the pipe can be heated. However, the outer surface of the pipe and the surface of the thin tube constituting the loop-type thin tube heat pipe have an uneven structure, and it is difficult to bring the contact surfaces into close contact with each other. When a fluid with low thermal conductivity such as air exists in the gap between the contact surfaces, a large thermal resistance called contact thermal resistance is generated. In other words, when the loop type thin tube heat pipe is brought into contact with the outer surface of the pipe, the heat transfer from the loop type thin pipe heat pipe to the pipe is not necessarily sufficient because the outer surface of the pipe and the surface of the thin pipe are not completely adhered. No, there is room for further improvement.
 また、流体を搬送するための配管をヒートパイプを用いて加熱する場合、ヒートパイプに封入される作動流体を加熱するための熱源を別途設ける必要があるため、装置構成が複雑となり、装置の製造コストおよび運転費用が増大するという問題があった。 In addition, when a pipe for conveying a fluid is heated using a heat pipe, it is necessary to provide a separate heat source for heating the working fluid enclosed in the heat pipe. There was a problem that the cost and operating cost increased.
 本発明は上記の問題に鑑みてなされたものであり、その主たる目的は、流体を搬送するための配管を効率よく加熱し、配管内部を流れる流体の温度の均一性を向上できる、配管装置を提供することである。また、本発明の他の目的は、流体を搬送するための配管を加熱するヒートパイプを備えた、低コストな流体搬送装置を提供することである。 The present invention has been made in view of the above problems, and a main object of the present invention is to provide a piping device that can efficiently heat the piping for conveying the fluid and improve the uniformity of the temperature of the fluid flowing inside the piping. Is to provide. Another object of the present invention is to provide a low-cost fluid conveyance device including a heat pipe that heats a pipe for conveying a fluid.
 本発明に係る配管装置は、流体を搬送するための配管装置であって、管状部材と、管状部材を加熱する加熱部とを備える。管状部材の環状壁部の内部には、管状部材の延在方向に沿う複数の細管部と、細管部の一端同士を連結する第一連結管部と、細管部の他端同士を連結する第二連結管部とが設けられている。細管部、第一連結管部および第二連結管部は、ループ型細管ヒートパイプを構成する。 The piping device according to the present invention is a piping device for transporting a fluid, and includes a tubular member and a heating unit that heats the tubular member. Inside the annular wall portion of the tubular member, there are a plurality of thin tube portions along the extending direction of the tubular member, a first connecting tube portion that connects one ends of the thin tube portions, and a second tube that connects the other ends of the thin tube portions. Two connecting pipe portions are provided. The thin tube portion, the first connecting tube portion, and the second connecting tube portion constitute a loop-type thin tube heat pipe.
 上記配管装置において好ましくは、管状部材は、内側管と、内側管の外周面に内周面が密着する外側管とを含む。細管部は、内側管の外周面および外側管の内周面の少なくともいずれか一方が凹凸加工されて形成されている。 Preferably, in the above piping device, the tubular member includes an inner tube and an outer tube whose inner peripheral surface is in close contact with the outer peripheral surface of the inner tube. The narrow tube portion is formed by forming irregularities on at least one of the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube.
 上記配管装置において好ましくは、配管装置は、管状部材を内包する外覆管をさらに備え、管状部材の外周面と、外覆管の内周面との間に、真空空間を有する。 Preferably, in the above piping device, the piping device further includes an outer tube that encloses the tubular member, and has a vacuum space between the outer peripheral surface of the tubular member and the inner peripheral surface of the outer tube.
 本発明に係る流体搬送装置は、第一加熱部と、第二加熱部と、第一加熱部と第二加熱部とを連結する管状部材と、管状部材に熱的に接触するヒートパイプとを備える。管状部材は、第一加熱部から第二加熱部へ流体を搬送する。ヒートパイプは、第一加熱部および第二加熱部の少なくともいずれか一方により加熱される。 The fluid conveyance device according to the present invention includes a first heating unit, a second heating unit, a tubular member that connects the first heating unit and the second heating unit, and a heat pipe that is in thermal contact with the tubular member. Prepare. The tubular member conveys fluid from the first heating unit to the second heating unit. The heat pipe is heated by at least one of the first heating unit and the second heating unit.
 ここで、「熱的に接触」とは、管状部材とヒートパイプとの間において熱が直接的に伝達される、熱伝達効率が十分に高い状態とされていることをいい、管状部材とヒートパイプとが当接して直接機械的に接触している場合に限られない。たとえば、ヒートパイプを管状部材に内蔵する構成など、管状部材とヒートパイプとが互いに一体化されている場合、また、熱伝導性に優れた物質を中間に介在させ間接的に管状部材とヒートパイプとが接触している場合をも、熱的に接触している状態に含むものとする。 Here, “thermal contact” means that heat is directly transferred between the tubular member and the heat pipe, and that the heat transfer efficiency is sufficiently high. The present invention is not limited to the case where the pipe is in contact with and directly in mechanical contact. For example, when the tubular member and the heat pipe are integrated with each other, such as a structure in which the heat pipe is built in the tubular member, the tubular member and the heat pipe are indirectly interposed by interposing a substance having excellent heat conductivity. The case where is in contact with each other is also included in the state of being in thermal contact.
 上記流体搬送装置において好ましくは、管状部材およびヒートパイプを内包する外覆管をさらに備え、管状部材の外周面と、外覆管の内周面との間に、真空空間を有する。 Preferably, the fluid conveyance device further includes an outer tube that encloses the tubular member and the heat pipe, and has a vacuum space between the outer peripheral surface of the tubular member and the inner peripheral surface of the outer tube.
 上記流体搬送装置において好ましくは、ヒートパイプは、ループ型細管ヒートパイプである。 In the fluid conveying device, preferably, the heat pipe is a loop type thin pipe heat pipe.
 上記流体搬送装置において好ましくは、管状部材の環状壁部の内部には、管状部材の延在方向に沿う複数の細管部と、細管部の一端同士を連結する第一連結管部と、細管部の他端同士を連結する第二連結管部とが設けられている。細管部、第一連結管部および第二連結管部は、ループ型細管ヒートパイプを構成する。 Preferably, in the fluid conveyance device, a plurality of thin tube portions along the extending direction of the tubular member, a first connecting tube portion that connects one ends of the thin tube portions, and a thin tube portion are disposed inside the annular wall portion of the tubular member. And a second connecting pipe portion that connects the other ends of the two. The thin tube portion, the first connecting tube portion, and the second connecting tube portion constitute a loop-type thin tube heat pipe.
 本発明の配管装置によると、ループ型細管ヒートパイプの細管の管状部材への貼り付けによる接触熱抵抗をなくすことができるので、管状部材を効率よく加熱し、管状部材の内部を搬送される流体の温度の均一性を向上させることができる。本発明の流体搬送装置によると、ヒートパイプを加熱するための熱源を新たに設ける必要がないので、ヒートパイプを備える流体搬送装置のコスト低減および小型化を達成することができる。 According to the piping device of the present invention, it is possible to eliminate the contact thermal resistance caused by sticking the thin tube of the loop type thin tube heat pipe to the tubular member, so that the tubular member is efficiently heated and the fluid conveyed inside the tubular member The temperature uniformity can be improved. According to the fluid conveyance device of the present invention, since it is not necessary to newly provide a heat source for heating the heat pipe, it is possible to achieve cost reduction and miniaturization of the fluid conveyance device including the heat pipe.
本発明に係る流体搬送装置を備える、反応室へ気体状の物質を供給するための物質供給システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the substance supply system for supplying a gaseous substance to the reaction chamber provided with the fluid conveyance apparatus which concerns on this invention. 本発明の流体搬送装置の一例を示す模式図である。It is a schematic diagram which shows an example of the fluid conveying apparatus of this invention. ヒートパイプの構成を示す斜視図である。It is a perspective view which shows the structure of a heat pipe. 図3に示すIV-IV線に沿うヒートパイプの断面を示す図である。FIG. 4 is a view showing a cross section of the heat pipe taken along line IV-IV shown in FIG. 3. ヒートパイプの動作原理を示す模式図である。It is a schematic diagram which shows the operating principle of a heat pipe. 実施の形態1の流体搬送装置の反応ガスを搬送する配管の温度変化を示すグラフである。4 is a graph showing a temperature change of a pipe that conveys a reaction gas of the fluid conveyance device according to the first embodiment. 実施の形態2の流体輸送経路の構成を示す模式図である。6 is a schematic diagram illustrating a configuration of a fluid transport path according to Embodiment 2. FIG. 図7に示す流体輸送経路を端面側から視た模式図である。It is the schematic diagram which looked at the fluid conveyance path | route shown in FIG. 7 from the end surface side. 実施の形態3の流体輸送経路の構成を示す模式図である。FIG. 6 is a schematic diagram illustrating a configuration of a fluid transport path according to a third embodiment. ループ型細管ヒートパイプの構成および動作原理を説明する模式図である。It is a schematic diagram explaining the structure and operating principle of a loop type thin tube heat pipe. 実施の形態3の流体輸送経路の配置の一例を示す模式図である。10 is a schematic diagram illustrating an example of an arrangement of a fluid transportation path according to Embodiment 3. FIG. 実施の形態4の配管を平板状に展開した状態を示す模式図である。It is a schematic diagram which shows the state which expand | deployed piping of Embodiment 4 in flat form. 図12に示す矢印XIII方向から平板状に展開された配管を見た図である。It is the figure which looked at piping expanded in flat form from the arrow XIII direction shown in FIG. 実施の形態4の配管の斜視図である。FIG. 10 is a perspective view of a pipe according to a fourth embodiment. 実施の形態5の配管の斜視図である。FIG. 10 is a perspective view of a pipe according to a fifth embodiment. 図15に示すXVI-XVI線に沿う配管の断面図である。FIG. 16 is a cross-sectional view of the pipe along the line XVI-XVI shown in FIG. 15. 実施の形態6の配管の斜視図である。FIG. 10 is a perspective view of a pipe according to a sixth embodiment. 図17に示すXVIII-XVIII線に沿う配管の断面図である。FIG. 18 is a cross-sectional view of a pipe taken along line XVIII-XVIII shown in FIG. 物質供給システムの変形例1の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the modification 1 of a substance supply system. 物質供給システムの変形例2の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the modification 2 of a substance supply system. 物質供給システムの変形例3の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the modification 3 of a substance supply system. 物質供給システムの変形例4の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the modification 4 of a substance supply system. 従来の成膜装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional film-forming apparatus. 図23に示す成膜装置に用いられる配管装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the piping apparatus used for the film-forming apparatus shown in FIG.
符号の説明Explanation of symbols
 1 物質供給システム、2 流体搬送装置、10,40,50 配管、10a,40a 外周面、10b 一端、10c 他端、11,12 断熱壁、13,14 空間、20 ヒートパイプ、20a,20b 端部、21 外管、22 ウィック、23 作動液、24 空間、27 高温部、28 低温部、30 ループ型細管ヒートパイプ、31 加熱部、32 冷却部、33 液相、34 気相、35 蒸気泡、41 壁部、42 細管部、43,44 連結管、51 外側管、51a 内周面、52 内側管、52a 外周面、60 外覆管、60a 内周面、61 真空空間、110 液状原料供給装置、111,114,121,124,141,144,161a,164a 流体輸送経路、112,122,142,162a,162n バルブ、113,123,143,146,163a,163n 加熱部、120 キャリアガス供給装置、130 制御部、140 気化器、145 接合部、150,150a,150n 反応室。 1 material supply system, 2 fluid transfer device, 10, 40, 50 piping, 10a, 40a outer peripheral surface, 10b one end, 10c other end, 11, 12 heat insulation wall, 13, 14 space, 20 heat pipe, 20a, 20b end , 21 outer pipe, 22 wick, 23 working fluid, 24 space, 27 high temperature part, 28 low temperature part, 30 loop type capillary heat pipe, 31 heating part, 32 cooling part, 33 liquid phase, 34 gas phase, 35 vapor bubble, 41 wall portion, 42 narrow tube portion, 43, 44 connecting tube, 51 outer tube, 51a inner peripheral surface, 52 inner tube, 52a outer peripheral surface, 60 outer covering tube, 60a inner peripheral surface, 61 vacuum space, 110 liquid raw material supply device 111, 114, 121, 124, 141, 144, 161a, 164a, fluid transport path, 112, 122, 142, 16 a, 162n valve, 113,123,143,146,163A, 163n heating unit, 120 a carrier gas supply unit, 130 control unit, 140 carburetor, 145 junction, 150 and 150a, 150n reaction chamber.
 以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 なお、以下に説明する実施の形態において、各々の構成要素は、特に記載がある場合を除き、本発明にとって必ずしも必須のものではない。また、以下の実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、上記個数などは例示であり、本発明の範囲は必ずしもその個数、量などに限定されない。 In the embodiments described below, each component is not necessarily essential for the present invention unless otherwise specified. In the following embodiments, when referring to the number, amount, etc., unless otherwise specified, the above number is an example, and the scope of the present invention is not necessarily limited to the number, amount, etc.
 (実施の形態1)
 図1は、本発明に係る流体搬送装置を備える、反応室へ気体状の物質を供給するための物質供給システムの概略構成を示すブロック図である。図1に示すように、物質供給システム1は、外部より液体状の原料を受け入れて気化器140に供給する液状原料供給装置110と、液状原料供給装置110より供給された液体状の原料を加熱し気化させて気体状にする気化器140と、気体状の原料が供給されて、基板の表面への成膜などの所定の反応が行なわれる、反応室150とを備える。また物質供給システム1は、気化器140において気化された原料を反応室150へ向けて搬送するキャリアガスを気化器140へ供給する、キャリアガス供給装置120を備える。
(Embodiment 1)
FIG. 1 is a block diagram showing a schematic configuration of a substance supply system for supplying a gaseous substance to a reaction chamber provided with a fluid conveyance device according to the present invention. As shown in FIG. 1, the substance supply system 1 heats the liquid raw material supplied from the liquid raw material supply apparatus 110 by receiving the liquid raw material from the outside and supplying the liquid raw material to the vaporizer 140. A vaporizer 140 that is vaporized and vaporized, and a reaction chamber 150 in which a gaseous raw material is supplied and a predetermined reaction such as film formation on the surface of the substrate is performed. The substance supply system 1 also includes a carrier gas supply device 120 that supplies the vaporizer 140 with a carrier gas that conveys the raw material vaporized in the vaporizer 140 toward the reaction chamber 150.
 液状原料供給装置110と気化器140とは、流体輸送経路111、バルブ112および流体輸送経路114によって連結されている。液状原料供給装置110と気化器140間の流体輸送経路111,114は、バルブ112を介して接合されている。キャリアガス供給装置120と気化器140とは、流体輸送経路121、バルブ122および流体輸送経路124によって連結されている。キャリアガス供給装置120と気化器140間の流体輸送経路121,124は、バルブ122を介して接合されている。気化器140と反応室150とは、流体輸送経路141、バルブ142および流体輸送経路144によって連結されている。気化器140と反応室150間の流体輸送経路141,144は、バルブ142を介して接合されている。 The liquid material supply device 110 and the vaporizer 140 are connected by a fluid transport path 111, a valve 112, and a fluid transport path 114. The fluid transport paths 111 and 114 between the liquid raw material supply apparatus 110 and the vaporizer 140 are joined via a valve 112. The carrier gas supply device 120 and the vaporizer 140 are connected by a fluid transport path 121, a valve 122, and a fluid transport path 124. The fluid transport paths 121 and 124 between the carrier gas supply device 120 and the vaporizer 140 are joined via a valve 122. The vaporizer 140 and the reaction chamber 150 are connected by a fluid transport path 141, a valve 142, and a fluid transport path 144. The fluid transport paths 141 and 144 between the vaporizer 140 and the reaction chamber 150 are joined via a valve 142.
 液状原料供給装置110から供給された液体状の原料は、気化器140において熱を加えられて温度上昇し、沸点に到達することにより気体へと状態変化する。気化器140で気化した気体状の原料(これを反応ガスと称する)は、キャリアガス供給装置120から供給されるキャリアガスによって、流体輸送経路141、バルブ142、流体輸送経路144を経由して、反応ガスとして反応室150に供給される。 The liquid raw material supplied from the liquid raw material supply device 110 is heated in the vaporizer 140 to rise in temperature, and changes its state to gas when it reaches the boiling point. The gaseous raw material vaporized by the vaporizer 140 (referred to as a reaction gas) passes through the fluid transport path 141, the valve 142, and the fluid transport path 144 by the carrier gas supplied from the carrier gas supply device 120. A reaction gas is supplied to the reaction chamber 150.
 物質供給システム1はまた、制御部130を備える。液状原料供給装置110から気化器140への原料の供給量は、液状原料供給装置110と気化器140間の流体輸送経路111,114の間のバルブ112の開度を制御部130にて制御することにより、制御される。キャリアガスの流量は、キャリアガス供給装置120と気化器140間の流体輸送経路121,124の間のバルブ122の開度を制御部130にて制御することにより、制御される。反応ガスの供給量は、気化器140と反応室150間の流体輸送経路141,144の間のバルブ142の開度を制御部130にて制御することにより、制御される。 The substance supply system 1 also includes a control unit 130. The supply amount of the raw material from the liquid raw material supply device 110 to the vaporizer 140 is controlled by the control unit 130 in the opening degree of the valve 112 between the fluid transport paths 111 and 114 between the liquid raw material supply device 110 and the vaporizer 140. Is controlled. The flow rate of the carrier gas is controlled by controlling the opening degree of the valve 122 between the fluid transport paths 121 and 124 between the carrier gas supply device 120 and the vaporizer 140 by the control unit 130. The supply amount of the reaction gas is controlled by controlling the opening degree of the valve 142 between the fluid transport paths 141 and 144 between the vaporizer 140 and the reaction chamber 150 by the control unit 130.
 気化器140内部の温度は、気化器140の内部に配置された図示しないヒータなどの加熱部による熱供給量を制御部130にて制御することにより、制御される。反応室150内部の温度も、反応室150の内部に配置された図示しない加熱部による熱供給量を制御部130にて制御することにより、制御される。図1に示す点線矢印は、制御部130からの制御信号の経路を示している。 The temperature inside the vaporizer 140 is controlled by the control unit 130 controlling the amount of heat supplied by a heating unit such as a heater (not shown) disposed inside the vaporizer 140. The temperature inside the reaction chamber 150 is also controlled by controlling the amount of heat supplied by a heating unit (not shown) disposed inside the reaction chamber 150 by the control unit 130. A dotted line arrow shown in FIG. 1 indicates a path of a control signal from the control unit 130.
 図2は、本発明の流体搬送装置の一例を示す模式図である。図2には、流体搬送装置の一例として、気化器140とバルブ142とを連結する流体輸送経路141を含んで構成される、流体搬送装置2が図示されている。流体搬送装置2は、第一加熱部としての気化器140と、第二加熱部としての加熱部143と、管状部材としての配管10と、配管10の外周面10aを被覆するヒートパイプ20とを備える。配管10は、気化器140からバルブ142へ向かう方向に、液状原料供給装置110から供給され気化器140で気化された、気体状の原料を搬送する。 FIG. 2 is a schematic diagram showing an example of the fluid conveyance device of the present invention. FIG. 2 illustrates a fluid conveyance device 2 that includes a fluid conveyance path 141 that connects the vaporizer 140 and the valve 142 as an example of the fluid conveyance device. The fluid conveyance device 2 includes a vaporizer 140 as a first heating unit, a heating unit 143 as a second heating unit, a pipe 10 as a tubular member, and a heat pipe 20 that covers the outer peripheral surface 10a of the pipe 10. Prepare. The pipe 10 conveys the gaseous raw material supplied from the liquid raw material supply device 110 and vaporized by the vaporizer 140 in the direction from the vaporizer 140 to the valve 142.
 配管10の一方の端部である一端10bは、気化器140に連結されている。配管10の他方の端部である他端10cは、バルブ142に連結されている。バルブ142の周囲には、加熱部143が配設されている。加熱部143は、バルブ142を内包するように設けられており、バルブ142を含む箇所を加熱する。制御部130は、加熱部143よりバルブ142に供給される熱量を制御することにより、バルブ142を通過する反応ガスの温度を制御する。配管10は、気化器140と加熱部143とを連結している。 One end 10 b which is one end of the pipe 10 is connected to the vaporizer 140. The other end 10 c, which is the other end of the pipe 10, is connected to the valve 142. A heating unit 143 is disposed around the valve 142. The heating unit 143 is provided so as to include the valve 142 and heats a portion including the valve 142. The control unit 130 controls the temperature of the reaction gas passing through the valve 142 by controlling the amount of heat supplied from the heating unit 143 to the valve 142. The pipe 10 connects the vaporizer 140 and the heating unit 143.
 気化器140に接合された配管10の一端10bを囲うように、断熱壁11が設けられている。一端10b近傍の配管10と、一端10bに近接するヒートパイプ20の端部20aとは、気化器140の外壁および断熱壁11によって取り囲まれた空間13内に配置されている。また、バルブ142に接合された他端10c近傍の配管10を囲うように、断熱壁12が設けられている。他端10c近傍の配管10と、他端10cに近接するヒートパイプ20の端部20bとは、加熱部143の外壁および断熱壁12によって取り囲まれた空間14内に配置されている。 A heat insulating wall 11 is provided so as to surround one end 10 b of the pipe 10 joined to the vaporizer 140. The pipe 10 in the vicinity of the one end 10b and the end 20a of the heat pipe 20 in the vicinity of the one end 10b are arranged in a space 13 surrounded by the outer wall of the vaporizer 140 and the heat insulating wall 11. A heat insulating wall 12 is provided so as to surround the pipe 10 in the vicinity of the other end 10 c joined to the valve 142. The pipe 10 in the vicinity of the other end 10 c and the end 20 b of the heat pipe 20 adjacent to the other end 10 c are disposed in a space 14 surrounded by the outer wall of the heating unit 143 and the heat insulating wall 12.
 図2中の矢印によって、熱流HFが図示されている。熱流HFは、気化器140および加熱部143からヒートパイプ20へ伝わり、外部へ放出される熱の流れを示す。気化器140から、気化器140の外壁を経由して空間13へ熱が伝わり、空間13内部が加熱されて、空間13からヒートパイプ20の端部20a付近に熱が加えられる。また、加熱部143から、加熱部143の外壁を経由して空間14へ熱が伝わり、空間14内部が加熱されて、空間14からヒートパイプ20の端部20b付近に熱が伝えられる。ヒートパイプ20の端部20a,20b付近は、雰囲気温度が相対的に高くヒートパイプ20を加熱して作動流体を蒸発させる、高温部を構成している。 The heat flow HF is illustrated by the arrows in FIG. The heat flow HF is transmitted from the vaporizer 140 and the heating unit 143 to the heat pipe 20 and indicates a heat flow released to the outside. Heat is transmitted from the vaporizer 140 to the space 13 via the outer wall of the vaporizer 140, the space 13 is heated, and heat is applied from the space 13 to the vicinity of the end 20 a of the heat pipe 20. In addition, heat is transmitted from the heating unit 143 to the space 14 via the outer wall of the heating unit 143, the space 14 is heated, and heat is transmitted from the space 14 to the vicinity of the end 20 b of the heat pipe 20. The vicinity of the end portions 20a and 20b of the heat pipe 20 constitutes a high-temperature portion that has a relatively high atmospheric temperature and heats the heat pipe 20 to evaporate the working fluid.
 一方、気化器140と加熱部143との中間地点付近では、ヒートパイプ20は周囲から熱を加えられていない。この中間地点付近において、ヒートパイプ20から外部へ熱が放出されている。気化器140と加熱部143との中間地点付近は、雰囲気温度が相対的に低く、ヒートパイプ20から放熱されることにより作動流体を凝縮させる、低温部を構成している。 On the other hand, in the vicinity of an intermediate point between the vaporizer 140 and the heating unit 143, the heat pipe 20 is not heated from the surroundings. In the vicinity of this intermediate point, heat is released from the heat pipe 20 to the outside. In the vicinity of an intermediate point between the vaporizer 140 and the heating unit 143, the ambient temperature is relatively low, and constitutes a low-temperature unit that condenses the working fluid by radiating heat from the heat pipe 20.
 ヒートパイプ20の構成について以下説明する。図3は、ヒートパイプの構成を示す斜視図である。図4は、図3に示すIV-IV線に沿うヒートパイプの断面を示す図である。図3および図4に示すように、流体輸送経路141では、配管10の外部に外管21を設け、外管21内の中空空間内に配管10が挿通された、二重管構造が形成されている。外管21は、たとえば銅、アルミニウム、ステンレスなどの金属材料により形成されている。外管21の内面には、毛管力を有する多孔質のウィック22が設けられている。ウィック22としては、外管21の内表面に金網が取り付けられてもよく、外管21の内表面に細かい溝が形成されてもよい。 The configuration of the heat pipe 20 will be described below. FIG. 3 is a perspective view showing the configuration of the heat pipe. FIG. 4 is a view showing a cross section of the heat pipe taken along line IV-IV shown in FIG. As shown in FIGS. 3 and 4, in the fluid transport path 141, a double pipe structure is formed in which the outer pipe 21 is provided outside the pipe 10 and the pipe 10 is inserted into the hollow space inside the outer pipe 21. ing. The outer tube 21 is made of a metal material such as copper, aluminum, or stainless steel. A porous wick 22 having a capillary force is provided on the inner surface of the outer tube 21. As the wick 22, a wire mesh may be attached to the inner surface of the outer tube 21, and fine grooves may be formed on the inner surface of the outer tube 21.
 配管10の外周面と、外管21の内周面との間には、空間24が形成されている。空間24の内部は、真空に排気され減圧されている。この空間24に、作動液23を適量注入する。このようにして、配管10と外管21との間に、ヒートパイプ20の構造を設けることができる。 A space 24 is formed between the outer peripheral surface of the pipe 10 and the inner peripheral surface of the outer tube 21. The interior of the space 24 is evacuated and decompressed. An appropriate amount of hydraulic fluid 23 is injected into this space 24. In this way, the structure of the heat pipe 20 can be provided between the pipe 10 and the outer pipe 21.
 図5は、ヒートパイプの動作原理を示す模式図である。図3および図4に示すヒートパイプ構造の一部を、周囲の温度が相対的に高い高温部27に配置し、他の一部を周囲の温度が相対的に低い低温部28に配置する。高温部27は、たとえばヒータなどで加熱されており、低温部28に対して温度が高くなっている。熱流HFに示すように、高温部27において周囲から伝熱されることにより、外管21が加熱される。そのため、配管10と外管21との間に封入された作動液23も加熱され、潜熱として熱を吸収して作動液23は蒸発して気体状になる。 FIG. 5 is a schematic diagram showing the operating principle of the heat pipe. A part of the heat pipe structure shown in FIGS. 3 and 4 is arranged in the high temperature part 27 having a relatively high ambient temperature, and the other part is arranged in the low temperature part 28 having a relatively low ambient temperature. The high temperature part 27 is heated by, for example, a heater, and the temperature is higher than that of the low temperature part 28. As shown in the heat flow HF, the outer tube 21 is heated by heat transfer from the surroundings in the high temperature portion 27. Therefore, the working fluid 23 sealed between the pipe 10 and the outer tube 21 is also heated, absorbing heat as latent heat, and the working fluid 23 evaporates into a gaseous state.
 蒸発した作動液23の蒸気が、蒸気流SFに示すように、高温部27側から低温部28側へ流れることにより、熱が蒸気流SFの流れる方向に蒸気として運ばれる。このとき作動液23の蒸気は、配管10の外表面および外管21の内表面で潜熱を放出することで凝縮して、配管10をその全長にわたり均一に加熱する。低温部28側で凝縮した作動液23は、液流LFに示すように、ウィック22の毛管力によって高温部27側へ還流する。また、低温部28において、作動液23から伝熱された外管21の管外壁から、熱流HFに示すように外部への放熱が行なわれる。 As the vapor of the evaporated working fluid 23 flows from the high temperature portion 27 side to the low temperature portion 28 side as shown in the vapor flow SF, heat is carried as vapor in the direction in which the vapor flow SF flows. At this time, the vapor of the working fluid 23 is condensed by releasing latent heat on the outer surface of the pipe 10 and the inner surface of the outer pipe 21, thereby heating the pipe 10 uniformly over its entire length. The hydraulic fluid 23 condensed on the low temperature part 28 side is returned to the high temperature part 27 side by the capillary force of the wick 22 as shown in the liquid flow LF. Further, in the low temperature part 28, heat is radiated to the outside from the outer wall of the outer tube 21 transferred from the hydraulic fluid 23, as indicated by the heat flow HF.
 このようにして、配管10内を流れる反応ガスの温度は一定温度に維持される。つまり、配管10と外管21との間における作動液23の蒸気化および液化によって、熱輸送が行なわれ、配管10の全長に亘って反応ガスの温度の均一性を向上させることができる。 In this way, the temperature of the reaction gas flowing in the pipe 10 is maintained at a constant temperature. That is, heat transport is performed by vaporization and liquefaction of the working fluid 23 between the pipe 10 and the outer pipe 21, and the temperature uniformity of the reaction gas can be improved over the entire length of the pipe 10.
 図6は、実施の形態1の流体搬送装置の反応ガスを搬送する配管の温度変化を示すグラフである。図6において、縦軸は、配管の温度を示す。また横軸は、図2に示す気化器140から加熱部143へ至る反応ガスの経路を示す。図6の横軸に示す領域Aは、図2に示す流体搬送装置2において、気化器140の内部、および断熱壁11によって囲まれた空間13の内部の領域に相当する。領域Bは、図2に示す空間13の出口から空間14の入口へ至る領域に相当する。領域Cは、図2に示す断熱壁12によって囲まれた空間14の内部、および加熱部143の内部の領域に相当する。 FIG. 6 is a graph showing a change in temperature of the pipe that conveys the reaction gas of the fluid conveyance device of the first embodiment. In FIG. 6, the vertical axis represents the temperature of the pipe. In addition, the horizontal axis indicates the reaction gas path from the vaporizer 140 shown in FIG. 2 to the heating unit 143. 6 corresponds to a region inside the vaporizer 140 and the space 13 surrounded by the heat insulating wall 11 in the fluid conveyance device 2 shown in FIG. Region B corresponds to the region from the exit of space 13 to the entrance of space 14 shown in FIG. The area C corresponds to the area inside the space 14 surrounded by the heat insulating wall 12 shown in FIG. 2 and the area inside the heating unit 143.
 図6に示すように、領域Aでは気化器140からの伝熱影響によって、領域Cでは加熱部143からの伝熱影響によって、配管の温度が変化している。領域Bでは、気化器140および加熱部143を熱源として加熱されたヒートパイプ20により配管10が全長に亘って均一に加熱されるので、領域Aから領域Cへ向かう配管10の内部を流れる反応ガスの温度低下がなく、反応ガスの凝縮による再液化を防止でき、反応ガスの高精度な温度管理を可能としている。 As shown in FIG. 6, the temperature of the piping is changed in the region A due to the heat transfer effect from the vaporizer 140 and in the region C due to the heat transfer effect from the heating unit 143. In the region B, since the pipe 10 is uniformly heated over the entire length by the heat pipe 20 heated using the vaporizer 140 and the heating unit 143 as a heat source, the reaction gas flowing inside the pipe 10 from the region A toward the region C Therefore, it is possible to prevent re-liquefaction due to condensation of the reaction gas and to control the temperature of the reaction gas with high accuracy.
 以上説明したように、実施の形態1では、流体輸送経路141を二重管構造にし、配管10の外周面と外管21の内周面との間に真空の空間24およびウィック22を設けヒートパイプ化することにより、配管10の外表面にヒートパイプ20を接触させる。ヒートパイプ20の一部を加熱することで配管10の全長に亘っての均熱化を実現することができるので、流体輸送経路141の全長に亘りテープヒータなどのヒータを配置しなくても、容易に配管10内を流れる反応ガスを高精度に温度管理することができる。 As described above, in the first embodiment, the fluid transport path 141 has a double-pipe structure, and the vacuum space 24 and the wick 22 are provided between the outer peripheral surface of the pipe 10 and the inner peripheral surface of the outer tube 21 to heat. By making the pipe, the heat pipe 20 is brought into contact with the outer surface of the pipe 10. By heating a part of the heat pipe 20, it is possible to achieve soaking over the entire length of the pipe 10, so that a heater such as a tape heater is not disposed over the entire length of the fluid transport path 141. The temperature of the reaction gas flowing through the pipe 10 can be easily controlled with high accuracy.
 また、実施の形態1では、ヒートパイプ20は気化器140および加熱部143から伝熱されることにより加熱されている。そのため、流体搬送装置2は、ヒートパイプ20を加熱して作動液23を蒸発させるための、ヒータや温水などの別の熱源を備える必要がない。すなわち、流体搬送装置2は、ヒートパイプ20のためだけの加熱装置を備えていない。したがって、流体搬送装置2の製造コストおよび運転費用を低減することができ、かつ、流体搬送装置2の小型化を達成することができる。 In Embodiment 1, the heat pipe 20 is heated by being transferred from the vaporizer 140 and the heating unit 143. Therefore, the fluid conveyance device 2 does not need to include another heat source such as a heater or hot water for heating the heat pipe 20 and evaporating the working liquid 23. That is, the fluid conveyance device 2 does not include a heating device only for the heat pipe 20. Therefore, the manufacturing cost and operating cost of the fluid transfer device 2 can be reduced, and the size of the fluid transfer device 2 can be reduced.
 なお、図2に示す流体搬送装置2では、気化器140および加熱部143の双方からヒートパイプ20が加熱され、気化器140と加熱部143との間で外部へ放熱される例について説明したが、気化器140または加熱部143のいずれか一方によりヒートパイプ20が加熱される構成としてもよい。 In the fluid conveyance device 2 illustrated in FIG. 2, the example in which the heat pipe 20 is heated from both the vaporizer 140 and the heating unit 143 and is radiated to the outside between the vaporizer 140 and the heating unit 143 has been described. The heat pipe 20 may be heated by either the vaporizer 140 or the heating unit 143.
 (実施の形態2)
 図7は、実施の形態2の流体輸送経路の構成を示す模式図である。図8は、図7に示す流体輸送経路を端面側から視た模式図である。実施の形態1では、流体輸送経路141を二重管構造にして、外管21の内周面にウィック22を設けてヒートパイプ化することにより、気体状の反応ガスを搬送する配管10の外周部にヒートパイプ20を設ける例について説明した。これに対し、実施の形態2では、図7および図8に示すように、複数のヒートパイプ20が配管10の外周面10aに貼付されており、これらのヒートパイプ20の熱輸送によって配管10を全長に亘って均熱化する例が示されている。
(Embodiment 2)
FIG. 7 is a schematic diagram illustrating a configuration of a fluid transport path according to the second embodiment. FIG. 8 is a schematic view of the fluid transport path shown in FIG. 7 viewed from the end face side. In the first embodiment, the outer periphery of the pipe 10 that conveys the gaseous reaction gas by forming the fluid transport path 141 into a double pipe structure and providing the wick 22 on the inner peripheral surface of the outer pipe 21 to form a heat pipe. The example which provides the heat pipe 20 in the part was demonstrated. In contrast, in the second embodiment, as shown in FIGS. 7 and 8, a plurality of heat pipes 20 are affixed to the outer peripheral surface 10 a of the pipe 10, and the pipe 10 is connected by heat transport of these heat pipes 20. An example of soaking over the entire length is shown.
 ヒートパイプ20の構成および動作原理は、図3~図5を参照して説明した実施の形態1のヒートパイプ20と同じであり、実施の形態1と同様にヒートパイプ20内で作動液23の蒸気化および液化による熱輸送を行なうことによって、配管10の全長に亘る温度の均一化が可能である。実施の形態2では、配管10の外周面に複数のヒートパイプ20を貼付して、ヒートパイプ20から配管10へ伝熱させる構造とされており、既存の配管10の構造を変更することなく、配管10内部を流れる反応ガスの高精度な温度の均一化を容易に行なうことができる。 The configuration and operating principle of the heat pipe 20 are the same as those of the heat pipe 20 of the first embodiment described with reference to FIGS. 3 to 5, and the working liquid 23 is contained in the heat pipe 20 as in the first embodiment. By performing heat transport by vaporization and liquefaction, it is possible to make the temperature uniform over the entire length of the pipe 10. In the second embodiment, a plurality of heat pipes 20 are attached to the outer peripheral surface of the pipe 10 to transfer heat from the heat pipe 20 to the pipe 10, without changing the structure of the existing pipe 10, The temperature of the reaction gas flowing inside the pipe 10 can be easily uniformed with high accuracy.
 なお図7および図8では、ヒートパイプ20を配管10の外周面10aに貼り付けて、ヒートパイプ20が配管10に直接接触する流体輸送経路141が例示されている。流体輸送経路141はこのほか、配管10の外周面10aにヒートパイプ20を収納可能な溝を配管10の延在方向に加工して、この溝内にヒートパイプ20を収納するようにした構成としてもよい。 7 and 8 illustrate the fluid transport path 141 in which the heat pipe 20 is attached to the outer peripheral surface 10a of the pipe 10 and the heat pipe 20 directly contacts the pipe 10. In addition to this, the fluid transport path 141 has a configuration in which a groove capable of storing the heat pipe 20 is processed in the extending direction of the pipe 10 on the outer peripheral surface 10a of the pipe 10, and the heat pipe 20 is stored in the groove. Also good.
 また、熱伝導率の高い物質を介在させてヒートパイプ20が配管10の外周面10aに貼付され、ヒートパイプ20と配管10とは直接機械的に接触していないが、ヒートパイプ20から配管10への熱伝達性能が確保されている構成としてもよい。つまり、ヒートパイプ20が配管10の外周面10aに熱的に接触する流体輸送経路141であれば、配管10内部を流れる反応ガスの温度を高精度に均一化することが可能である。 Further, the heat pipe 20 is attached to the outer peripheral surface 10a of the pipe 10 with a substance having high thermal conductivity interposed therebetween, and the heat pipe 20 and the pipe 10 are not in direct mechanical contact, but the heat pipe 20 to the pipe 10 It is good also as a structure by which the heat transfer performance to is ensured. That is, if the heat pipe 20 is the fluid transport path 141 in which the heat pipe 20 is in thermal contact with the outer peripheral surface 10a of the pipe 10, the temperature of the reaction gas flowing inside the pipe 10 can be made uniform with high accuracy.
 (実施の形態3)
 図9は、実施の形態3の流体輸送経路の構成を示す模式図である。実施の形態1および2では、配管10を加熱するためのヒートパイプ20は、従来のウィック式のヒートパイプであった。これに対し、実施の形態3では、図9に示すように蛇行させたループ型細管が配管10の外周面10aに貼り付けられ、そのループ型細管の内部に2相凝縮性作動液が封入されており、配管10に熱的に接触するヒートパイプがループ型細管ヒートパイプ30である例について示す。
(Embodiment 3)
FIG. 9 is a schematic diagram illustrating a configuration of a fluid transport path according to the third embodiment. In the first and second embodiments, the heat pipe 20 for heating the pipe 10 is a conventional wick-type heat pipe. On the other hand, in the third embodiment, a meandering loop type thin tube is attached to the outer peripheral surface 10a of the pipe 10 as shown in FIG. 9, and a two-phase condensable working fluid is sealed inside the loop type thin tube. An example in which the heat pipe that is in thermal contact with the pipe 10 is a loop type thin pipe heat pipe 30 will be described.
 図10は、ループ型細管ヒートパイプの構成および動作原理を説明する模式図である。図10には、図9に示す配管10が延在方向に切り開かれ、管状の配管10が平板状に展開された状態を示している。配管10の周囲に巻回されるように配置されていたループ型細管ヒートパイプ30も、上記平板の形状に沿って二次元的に展開されている状態が、図10に図示されている。 FIG. 10 is a schematic diagram for explaining the configuration and operating principle of a loop type thin tube heat pipe. FIG. 10 shows a state in which the pipe 10 shown in FIG. 9 is cut open in the extending direction and the tubular pipe 10 is developed in a flat plate shape. FIG. 10 shows a state in which the loop thin tube heat pipe 30 arranged so as to be wound around the pipe 10 is two-dimensionally developed along the shape of the flat plate.
 図10に示すように、ループ型細管ヒートパイプ30に入熱する加熱部31と、ループ型細管ヒートパイプ30から放熱される冷却部32との間に、作動流体の流路である細管が複数本配置されている。この細管は、図9に示す配管10の延在方向に沿うように、偶数本設けられている。複数の細管の一方側の端部である一端同士、および、細管の他方側の端部である他端同士は、連結管により連結されている。ループ型細管ヒートパイプ30は、加熱部31と冷却部32との間で細管に多数のターンを繰り返させ、細管を往復させる蛇行構造に形成されている。この蛇行構造により、ループ型細管ヒートパイプ30は、加熱部31から熱を受ける多数の受熱部と、冷却部32へ熱を放出する多数の放熱部を有する。 As shown in FIG. 10, there are a plurality of thin tubes that are working fluid flow paths between a heating unit 31 that inputs heat into the loop thin tube heat pipe 30 and a cooling unit 32 that dissipates heat from the loop thin tube heat pipe 30. The book is arranged. Even numbers of the thin tubes are provided along the extending direction of the pipe 10 shown in FIG. One ends that are one end portions of the plurality of thin tubes and the other ends that are end portions on the other side of the thin tubes are connected by a connecting tube. The loop type thin tube heat pipe 30 is formed in a meandering structure in which a thin tube is caused to repeat a number of turns between a heating unit 31 and a cooling unit 32 and the thin tube is reciprocated. Due to this meandering structure, the loop type thin tube heat pipe 30 has a large number of heat receiving portions that receive heat from the heating portion 31 and a large number of heat radiating portions that release heat to the cooling portion 32.
 ループ型細管ヒートパイプ30の内部には、気液二相の作動流体が封入されている。作動流体は、蛇行構造の細管の内部を減圧し真空排気した後に細管内部へ封入されている。そのため、細管の内部には、液体状および気体状の作動流体が、平衡状態を保って充満されている。図10には、液体状の作動流体が充満している液相33、気体状の作動流体が充満している気相34および蒸気泡35が図示されている。 A gas-liquid two-phase working fluid is sealed inside the loop type thin tube heat pipe 30. The working fluid is sealed inside the narrow tube after the inside of the narrow tube having a meandering structure is decompressed and evacuated. Therefore, the inside of the narrow tube is filled with liquid and gaseous working fluid while maintaining an equilibrium state. FIG. 10 shows a liquid phase 33 filled with a liquid working fluid, a gas phase 34 and a vapor bubble 35 filled with a gaseous working fluid.
 ループ型細管ヒートパイプ30へ伝熱される熱量が小さいとき、液相33は冷却部32側へ偏って存在し、静止したU字型の液柱となる。加熱部31からループ型細管ヒートパイプ30へ入熱する加熱量が増加するにつれて、液相33が熱を吸収して液相33内に核沸騰を発生させる。この核沸騰により、液相33の一部が液体から気体へと相変化して、液相33内に蒸気泡35が発生する。発生した蒸気泡35は、加熱部31側から冷却部32側へ向かって細管内を移動する。蒸気泡35が冷却部32に到達すると、蒸気泡35に含まれる気体が冷却されて凝縮し、気体から液体へと相変化する。この蒸気泡35の移動を利用して、加熱部31から冷却部32への潜熱の移送が行なわれる。 When the amount of heat transferred to the loop type thin pipe heat pipe 30 is small, the liquid phase 33 is biased toward the cooling unit 32 and becomes a stationary U-shaped liquid column. As the amount of heat input from the heating unit 31 to the loop-type capillary tube heat pipe 30 increases, the liquid phase 33 absorbs heat and causes nucleate boiling in the liquid phase 33. Due to this nucleate boiling, a part of the liquid phase 33 changes from a liquid to a gas, and a vapor bubble 35 is generated in the liquid phase 33. The generated vapor bubbles 35 move in the narrow tube from the heating unit 31 side to the cooling unit 32 side. When the vapor bubbles 35 reach the cooling unit 32, the gas contained in the vapor bubbles 35 is cooled and condensed, and the phase changes from gas to liquid. Utilizing the movement of the vapor bubbles 35, the latent heat is transferred from the heating unit 31 to the cooling unit 32.
 また、加熱部31における蒸気泡35の発達および冷却部32における蒸気泡35の収縮により、細管内の液相33が自励的に振動し、図10中の両矢印に示すように、液相33と気相34との界面が細管の延在方向に沿って移動する。この液相33の振動を利用して、加熱部31から冷却部32への顕熱の移送が行なわれる。このように、ループ型細管ヒートパイプ30では、加熱部31と冷却部32との温度差を駆動力として、蒸気泡35の移動および液相33の振動を発生させ、蒸気泡35による潜熱輸送および液相33による顕熱輸送によって、加熱部31から冷却部32への熱輸送が行なわれる。 Further, due to the development of the vapor bubble 35 in the heating unit 31 and the contraction of the vapor bubble 35 in the cooling unit 32, the liquid phase 33 in the narrow tube vibrates self-excited, and as shown by the double arrows in FIG. The interface between 33 and the gas phase 34 moves along the extending direction of the thin tube. Using the vibration of the liquid phase 33, the sensible heat is transferred from the heating unit 31 to the cooling unit 32. As described above, in the loop type thin tube heat pipe 30, the temperature difference between the heating unit 31 and the cooling unit 32 is used as a driving force to cause the movement of the vapor bubbles 35 and the vibration of the liquid phase 33. By sensible heat transport by the liquid phase 33, heat transport from the heating unit 31 to the cooling unit 32 is performed.
 上記のように作動するループ型細管ヒートパイプ30は、自励振動ヒートパイプとも呼称され、傾斜姿勢に関係なく加熱部31から冷却部32への熱輸送が可能とされている。また、潜熱と顕熱とを混合輸送するために、ループ型細管ヒートパイプ30は高い熱輸送能力を有している。またループ型細管ヒートパイプ30は、ウィックなど内部構造のない細管を使用するため、細管の自由な屈曲が可能であり、屈曲による熱輸送性能の低下が少ないので、大規模な熱輸送装置を低コストで実現することができる。 The loop-type thin tube heat pipe 30 that operates as described above is also referred to as a self-excited vibration heat pipe, and is capable of transporting heat from the heating unit 31 to the cooling unit 32 regardless of the inclined posture. Moreover, in order to mix and transport latent heat and sensible heat, the loop type thin tube heat pipe 30 has a high heat transport capability. In addition, since the loop type thin tube heat pipe 30 uses a thin tube having no internal structure such as a wick, the thin tube can be bent freely, and the heat transport performance is not lowered by the bend. Can be realized at a cost.
 また、ループ型細管ヒートパイプ30では、細管の蛇行数を増減することで熱輸送量を増減させることができ、広範囲に亘って所望の熱輸送量を得ることができる。つまり、細管の数を増加させるに従って、加熱部31から冷却部32への熱輸送効率を向上させることができる。蛇行構造のループ型細管を限られたスペースに配置する必要があるので、偶数本の細管が設けられている構成とすれば、効率的に蛇行構造を形成できるため好ましい。また、所望の熱輸送量に合わせて、複数のループ型細管を配管10の外周面に貼り付ける構成としてもよい。 Further, in the loop type thin tube heat pipe 30, the amount of heat transport can be increased or decreased by increasing or decreasing the meandering number of the narrow tubes, and a desired heat transport amount can be obtained over a wide range. That is, the heat transport efficiency from the heating unit 31 to the cooling unit 32 can be improved as the number of thin tubes is increased. Since it is necessary to arrange the meandering loop type narrow tubes in a limited space, it is preferable to have an even number of narrow tubes because the meandering structure can be formed efficiently. Moreover, it is good also as a structure which affixes a some loop type thin tube on the outer peripheral surface of the piping 10 according to desired heat transport amount.
 また、ループ型細管ヒートパイプ30を構成する細管は、内径1~2mm程度であって、板厚を含めた細管の外径は2mm~3mm程度である。そのため、図3および図7に示す従来型のヒートパイプ20を配管10の外周面に熱的に接触させる場合と比較して、配管10およびループ型細管ヒートパイプ30を含む配管装置の外径を、大幅に小さくすることができる。したがって、より小さな回路によって配管10内を流れる反応ガスを加熱することができ、装置全体としての小型化を達成することが可能である。 Further, the narrow tube constituting the loop type thin tube heat pipe 30 has an inner diameter of about 1 to 2 mm, and the outer diameter of the thin tube including the plate thickness is about 2 mm to 3 mm. Therefore, compared with the case where the conventional heat pipe 20 shown in FIG. 3 and FIG. 7 is brought into thermal contact with the outer peripheral surface of the pipe 10, the outer diameter of the piping device including the pipe 10 and the loop type thin pipe heat pipe 30 is reduced. Can be significantly smaller. Therefore, the reaction gas flowing in the pipe 10 can be heated by a smaller circuit, and it is possible to achieve downsizing of the entire apparatus.
 図11は、実施の形態3の流体輸送経路の配置の一例を示す模式図である。図11に示す流体輸送経路は、高温部27が上側に配置され、低温部28が下側に配置された、トップヒート状態に配置されている。ガス流GFに示すように配管10の内部を反応ガスが流れ、配管10を介在させて反応ガスを加熱するために、配管10の外周面にループ型細管ヒートパイプ30を構成する蛇行細管が貼り付けられている。このように実施の形態3では、配管10に熱的に接触するヒートパイプとして、ループ型細管ヒートパイプ30が用いられているために、配管10の高低差が大きいトップヒート状態でも熱輸送が可能となる。したがって、配管10の姿勢に関わらず熱輸送できる流体搬送装置2を得ることができ、配管10の配置計画に係る設計の自由度を大幅に向上させることができる。 FIG. 11 is a schematic diagram illustrating an example of the arrangement of the fluid transport path according to the third embodiment. The fluid transport path shown in FIG. 11 is arranged in a top heat state in which the high temperature part 27 is arranged on the upper side and the low temperature part 28 is arranged on the lower side. In order to heat the reaction gas through the pipe 10 and heat the reaction gas through the pipe 10 as shown in the gas flow GF, a meandering tubule constituting the loop type thin pipe heat pipe 30 is attached to the outer peripheral surface of the pipe 10. It is attached. Thus, in Embodiment 3, since the loop type thin tube heat pipe 30 is used as a heat pipe that is in thermal contact with the pipe 10, heat transport is possible even in a top heat state where the height difference of the pipe 10 is large. It becomes. Therefore, it is possible to obtain the fluid conveyance device 2 that can perform heat transport regardless of the posture of the pipe 10, and to greatly improve the degree of design freedom related to the arrangement plan of the pipe 10.
 (実施の形態4)
 図12は、実施の形態4の配管を平板状に展開した状態を示す模式図である。図13は、図12に示す矢印XIII方向から平板状に展開された配管を見た図である。なお図12は、図13に示す矢印XII方向から平板状に展開された配管を見た図を示している。図14は、実施の形態4の配管の斜視図である。
(Embodiment 4)
FIG. 12 is a schematic diagram illustrating a state in which the pipe according to the fourth embodiment is expanded in a flat plate shape. FIG. 13 is a view of the pipe developed in a flat plate shape from the direction of the arrow XIII shown in FIG. FIG. 12 shows a view of the pipe developed in a flat plate shape from the direction of the arrow XII shown in FIG. FIG. 14 is a perspective view of the piping according to the fourth embodiment.
 実施の形態3では、配管10の外周面に蛇行させた細管を貼り付けて、ループ型細管ヒートパイプ30を配管10に対し熱的に接触させる例について説明した。これに対し実施の形態4では、図12および図13に示すように、配管40を展開した平板の内部にループ型細管ヒートパイプ30が組み込まれている。蛇行させたループ型細管を組み込んだ平板を製造した後に、その平板を曲げ加工して管状の配管40を形成することで、ループ型細管ヒートパイプ30を内蔵した配管40を得ることができる。この配管40を、図2に示す配管10およびヒートパイプ20に替えて、流体搬送装置2に適用することができる。 In the third embodiment, the example in which the narrow pipe meandering is attached to the outer peripheral surface of the pipe 10 and the loop type thin pipe heat pipe 30 is brought into thermal contact with the pipe 10 has been described. On the other hand, in the fourth embodiment, as shown in FIGS. 12 and 13, a loop type thin tube heat pipe 30 is incorporated in a flat plate on which the piping 40 is developed. After manufacturing a flat plate incorporating a meandering loop type thin tube, the flat plate is bent to form a tubular pipe 40, whereby the pipe 40 incorporating the loop type thin tube heat pipe 30 can be obtained. This piping 40 can be applied to the fluid conveyance device 2 in place of the piping 10 and the heat pipe 20 shown in FIG.
 つまり、図14に示す管状部材としての配管40は、配管40の延在方向に交差する断面の形状が環状の壁部41を有する。壁部41の内部には、配管40の延在方向に沿う複数の細管部42と、細管部42の端部同士を連結する連結管43,44とが設けられている。連結管43は、細管部42の一方の端部同士を連結する。連結管44は、細管部42の他方の端部同士を連結する。細管部42および連結管43,44は、多数ターンを繰り返す蛇行構造のループ型細管ヒートパイプ30を構成する。図10を参照して説明した動作原理に基づいて、連結管43,44のいずれか一方の近傍を加熱部31とし、他方を冷却部32とすることにより、傾斜姿勢に関係なく加熱部31から冷却部32への熱輸送を行なうことができる。 That is, the pipe 40 as a tubular member shown in FIG. 14 has a wall portion 41 having an annular cross-sectional shape intersecting with the extending direction of the pipe 40. Inside the wall portion 41, there are provided a plurality of thin tube portions 42 along the extending direction of the pipe 40 and connecting tubes 43, 44 that connect the ends of the thin tube portions 42. The connecting pipe 43 connects one end portions of the thin tube portion 42 to each other. The connecting tube 44 connects the other ends of the thin tube portion 42. The thin tube portion 42 and the connecting tubes 43 and 44 constitute a loop-shaped thin tube heat pipe 30 having a meandering structure that repeats many turns. Based on the principle of operation described with reference to FIG. 10, the vicinity of one of the connecting pipes 43 and 44 is the heating unit 31, and the other is the cooling unit 32. Heat transport to the cooling unit 32 can be performed.
 このようにループ型細管ヒートパイプ30を配管40の内部に内蔵させて形成し、熱源から配管40に熱を加え、内部を搬送される流体を加熱する加熱配管として配管40を適用することにより、配管40の内部を流れる反応ガスをより効率よく加熱することができる。つまり、図9に示すループ型細管ヒートパイプ30を配管10の外周部に貼り付けた場合、配管の外表面と細管の表面とが完全に密着せず、配管の外表面と細管の表面との間に隙間が存在する。その結果、接触熱抵抗と呼ばれる大きな熱抵抗が生じて、ループ型細管ヒートパイプ30から配管10への熱伝達効率が低下する。 In this way, the loop type thin tube heat pipe 30 is formed inside the pipe 40, and heat is applied to the pipe 40 from a heat source, and the pipe 40 is applied as a heating pipe that heats the fluid conveyed through the inside. The reaction gas flowing inside the pipe 40 can be heated more efficiently. That is, when the loop-type thin tube heat pipe 30 shown in FIG. 9 is attached to the outer periphery of the pipe 10, the outer surface of the pipe and the surface of the thin tube are not completely adhered, and the outer surface of the pipe and the surface of the thin tube There is a gap between them. As a result, a large thermal resistance called contact thermal resistance is generated, and the heat transfer efficiency from the loop type thin tube heat pipe 30 to the pipe 10 is lowered.
 これに対し、図14に示す配管40では壁面内にループ型細管ヒートパイプ30が形成されているので、接触熱抵抗が発生することがなく、ループ型細管ヒートパイプ30によって配管40を効率よく加熱することができる。したがって、反応ガスを搬送する配管装置に配管40を適用することで、配管40の内部を流れる反応ガスの温度の均一性を、より向上させることができる。また、図11で説明したように、ループ型細管ヒートパイプ30が用いられると、配管40の高低差が大きいトップヒート状態でも熱輸送が可能となる。したがって、配管40の姿勢に関わらず熱輸送できる流体搬送装置2を得ることができる。 On the other hand, in the pipe 40 shown in FIG. 14, the loop thin tube heat pipe 30 is formed in the wall surface, so that no contact thermal resistance is generated, and the pipe 40 is efficiently heated by the loop thin tube heat pipe 30. can do. Therefore, the uniformity of the temperature of the reaction gas flowing through the inside of the pipe 40 can be further improved by applying the pipe 40 to the piping device that transports the reaction gas. In addition, as described with reference to FIG. 11, when the loop type thin tube heat pipe 30 is used, heat transport is possible even in a top heat state where the height difference of the pipe 40 is large. Therefore, it is possible to obtain the fluid conveyance device 2 that can transport heat regardless of the posture of the pipe 40.
 (実施の形態5)
 図15は、実施の形態5の配管の斜視図である。図16は、図15に示すXVI-XVI線に沿う配管の断面図である。実施の形態4では、内部にループ型細管ヒートパイプ30が形成された平板を曲げて管状に加工する配管40について説明した。これに対し、実施の形態5の配管50は、図15および図16に示すように、外側管51と内側管52とを含む。内側管52の外周面52aに、外側管51の内周面51aが密着している。
(Embodiment 5)
FIG. 15 is a perspective view of a pipe according to the fifth embodiment. 16 is a cross-sectional view of the piping along the line XVI-XVI shown in FIG. In the fourth embodiment, the pipe 40 that bends a flat plate in which the loop type thin pipe heat pipe 30 is formed to be processed into a tubular shape has been described. On the other hand, the pipe 50 of the fifth embodiment includes an outer pipe 51 and an inner pipe 52 as shown in FIGS. 15 and 16. The inner peripheral surface 51 a of the outer tube 51 is in close contact with the outer peripheral surface 52 a of the inner tube 52.
 内側管52の外周面52aには、溝加工が施されている。この溝形状は、内側管52の延在方向に沿う複数の細溝を含む。内側管52の外周面52aには、ループ型細管ヒートパイプ30の回路の細管部42となる、細溝が加工されている。内側管52の外部に外側管51をかぶせて、溶接などで一体化接合した後、外周面52aに形成された溝を真空排気して作動液を封入することにより、ループ型細管ヒートパイプ30を内部に内蔵する管状部材としての配管50を構成することができる。 The outer peripheral surface 52a of the inner tube 52 is grooved. This groove shape includes a plurality of narrow grooves along the extending direction of the inner tube 52. On the outer peripheral surface 52 a of the inner tube 52, a narrow groove that becomes the thin tube portion 42 of the circuit of the loop thin tube heat pipe 30 is processed. After the outer tube 51 is placed outside the inner tube 52 and integrally joined by welding or the like, the groove formed in the outer peripheral surface 52a is evacuated and sealed with a working fluid, whereby the loop type thin tube heat pipe 30 is formed. The piping 50 as a tubular member built in the inside can be configured.
 なお、図15および図16では、内側管52の外側表面である外周面52aに溝を加工した例を示している。外側管51の内側表面である内周面51aに溝を加工した後、内側管52と外側管51とを一体化接合して、上記と同様のループ型細管ヒートパイプ30の回路を形成するようにしてもよい。また、内側管52の外周面52aと外側管51の内周面51aとの双方に同一パターンの溝加工を施した後、内側管52と外側管51とを一体化接合して、上記と同様のループ型細管ヒートパイプ30の回路を形成するようにしてもよい。 15 and 16 show an example in which grooves are formed on the outer peripheral surface 52a that is the outer surface of the inner tube 52. FIG. After processing the groove on the inner peripheral surface 51a which is the inner surface of the outer tube 51, the inner tube 52 and the outer tube 51 are integrally joined to form a circuit of the loop type thin tube heat pipe 30 similar to the above. It may be. Further, after the groove pattern having the same pattern is formed on both the outer peripheral surface 52a of the inner tube 52 and the inner peripheral surface 51a of the outer tube 51, the inner tube 52 and the outer tube 51 are integrally joined, and the same as described above. A circuit of the loop type thin tube heat pipe 30 may be formed.
 また、ループ型細管ヒートパイプ30の細管部42を構成する細溝のみならず、連結管43,44を構成する細溝を、内周面51aまたは外周面52aに形成してもよい。さらに、内側管52の外周面52aおよび外側管51の内周面51aの少なくともいずれか一方に、溝加工のほか、たとえばエンボス加工などの、内周面51aまたは外周面52aに凹凸形状を形成する任意の凹凸加工を行なうことにより、ループ型細管ヒートパイプ30の回路を形成するようにしてもよい。 Further, not only the narrow groove constituting the narrow tube portion 42 of the loop type thin tube heat pipe 30, but also the narrow groove constituting the connecting pipes 43 and 44 may be formed on the inner peripheral surface 51a or the outer peripheral surface 52a. Further, at least one of the outer peripheral surface 52a of the inner tube 52 and the inner peripheral surface 51a of the outer tube 51 is formed with a concavo-convex shape on the inner peripheral surface 51a or the outer peripheral surface 52a, such as embossing, in addition to groove processing. You may make it form the circuit of the loop type thin tube heat pipe 30 by performing arbitrary uneven | corrugated processing.
 このようにすると、一般的な配管材料を加工することにより外側管51および内側管52を形成して、これらを一体化接合することで、ループ型細管ヒートパイプ30を内蔵した配管50を容易に得ることができる。そのため、実施の形態4に示すような平板の曲げ加工や、曲げ加工後に平板を接合して管状にする作業が不要となり、配管50の内面研磨も容易になる。したがって、製作が容易かつ低コストな、ループ型細管ヒートパイプ30を内蔵する配管50を得ることができる。 In this way, by processing a general piping material, the outer pipe 51 and the inner pipe 52 are formed, and these are integrated and joined, so that the pipe 50 incorporating the loop type thin pipe heat pipe 30 can be easily formed. Obtainable. Therefore, it is not necessary to bend the flat plate as shown in the fourth embodiment or to join the flat plate into a tubular shape after the bending, and the inner surface of the pipe 50 can be easily polished. Therefore, it is possible to obtain the pipe 50 including the loop type thin pipe heat pipe 30 that is easy to manufacture and low in cost.
 (実施の形態6)
 図17は、実施の形態6の配管の斜視図である。図18は、図17に示すXVIII-XVIII線に沿う配管の断面図である。図17に示す配管は、図14を参照して説明した配管40の周囲を、さらに外覆管60で囲っている。外覆管60は、ループ型細管ヒートパイプ30を内蔵する配管40を内包している。配管40の外周面40aと、外覆管60の内周面60aとの間には、真空空間61が形成されている。
(Embodiment 6)
FIG. 17 is a perspective view of a pipe according to the sixth embodiment. 18 is a cross-sectional view of the piping along the line XVIII-XVIII shown in FIG. The pipe shown in FIG. 17 further surrounds the pipe 40 described with reference to FIG. The outer tube 60 includes a pipe 40 that houses the loop-type thin tube heat pipe 30. A vacuum space 61 is formed between the outer peripheral surface 40 a of the pipe 40 and the inner peripheral surface 60 a of the outer tube 60.
 配管40の外周面40aと外覆管60の内周面60aとの間に真空空間61を有することにより、配管40を真空断熱し、配管40の外周面40aから外部への放熱を抑制して、配管40から周囲へのエネルギーロスを低減する構造にすることができる。配管40の内部を流れる反応ガスをヒートパイプによって加熱する構成であり、配管40の外表面にテープヒータなどの加熱部を設けることなく配管40全体の均熱加熱が可能とされているので、配管40の外周面40aに真空空間61を設けることが容易である。 By having the vacuum space 61 between the outer peripheral surface 40a of the pipe 40 and the inner peripheral surface 60a of the outer tube 60, the pipe 40 is vacuum-insulated, and heat radiation from the outer peripheral surface 40a of the pipe 40 to the outside is suppressed. In addition, a structure that reduces energy loss from the pipe 40 to the surroundings can be obtained. Since the reaction gas flowing inside the pipe 40 is heated by a heat pipe, soaking of the entire pipe 40 is possible without providing a heating unit such as a tape heater on the outer surface of the pipe 40. It is easy to provide the vacuum space 61 on the outer peripheral surface 40a of 40.
 このような真空空間61を設けて配管40からの放熱量を低減して熱損失を減らすことにより、配管40の外部に断熱材を巻き付ける必要がなくなる。したがって、断熱材の取り付け取り外しが不要となるため、配管のメンテナンスが容易となり、配管の使用環境をクリーンに保つことができる効果がある。さらに、断熱材を配管に巻き付ける場合の断熱材の外径と比較して、外覆管60の外径を大幅に小さくしても同等の断熱効果を得ることができ、装置の小型化を達成することができる。または、断熱材の外径と同等の外径を有する外覆管60を用いて真空空間61を形成すれば、より高い断熱性能を得ることができるので、限られたスペースで一層高い断熱性を有する断熱構造を形成することができる。 By providing such a vacuum space 61 and reducing the amount of heat released from the pipe 40 to reduce heat loss, it is not necessary to wrap a heat insulating material around the pipe 40. Therefore, since it is not necessary to attach or remove the heat insulating material, the maintenance of the piping is facilitated, and there is an effect that the usage environment of the piping can be kept clean. Furthermore, compared to the outer diameter of the heat insulating material when the heat insulating material is wound around the pipe, the same heat insulating effect can be obtained even if the outer diameter of the outer tube 60 is significantly reduced, and the device can be downsized. can do. Alternatively, if the vacuum space 61 is formed using the outer tube 60 having an outer diameter equivalent to the outer diameter of the heat insulating material, a higher heat insulating performance can be obtained, so that a higher heat insulating property can be obtained in a limited space. The heat insulation structure which has can be formed.
 なお、実施の形態1~5で説明した配管を、上記説明した通り外覆管60で囲って真空空間61を形成して真空断熱することによって、断熱材を廃止でき装置を小型化できるという同様の効果が得られることは言うまでもない。 As described above, the piping described in the first to fifth embodiments is surrounded by the outer tube 60 to form the vacuum space 61 and is thermally insulated by vacuum, so that the heat insulating material can be eliminated and the apparatus can be downsized. It goes without saying that the effect of can be obtained.
 (実施の形態7)
 実施の形態1~6の説明においては、図1に示す気化器140と加熱部143との間に設けられた流体輸送経路141を例として説明したが、本発明の配管装置および流体搬送装置は、種々の系統に用いることが可能である。図19~図22は、物質供給システムの変形例の概略構成を示すブロック図である。
(Embodiment 7)
In the description of the first to sixth embodiments, the fluid transport path 141 provided between the vaporizer 140 and the heating unit 143 shown in FIG. 1 has been described as an example. It can be used for various systems. 19 to 22 are block diagrams showing a schematic configuration of a modified example of the substance supply system.
 図19に示す物質供給システムは、n(nは2以上の整数)個の反応室150a~150nを備える。流体輸送経路144には、配管の分岐のための接合部145が接続されており、接合部145は加熱部146により周囲を覆われている。接合部145から反応室150aに至る流体輸送経路161a,164aは、反応ガスの流量制御用のバルブ162aを介して接合されている。バルブ162aは加熱部163aにより周囲を覆われており、加熱部163aからの伝熱によってバルブ162aが加熱される。接合部145からその他の反応室150nへ至る経路も、上記と同様の構成を成している。 The substance supply system shown in FIG. 19 includes n (n is an integer of 2 or more) reaction chambers 150a to 150n. A joint 145 for branching the pipe is connected to the fluid transport path 144, and the periphery of the joint 145 is covered with a heating unit 146. The fluid transport paths 161a and 164a from the joint 145 to the reaction chamber 150a are joined via a valve 162a for controlling the flow rate of the reaction gas. The valve 162a is covered with a heating unit 163a, and the valve 162a is heated by heat transfer from the heating unit 163a. The path from the junction 145 to the other reaction chamber 150n has the same configuration as described above.
 図19に示す物質供給システムにおいて、流体輸送経路141,144,161a~161n,164a~164nに、実施の形態1~6に記載のいずれかの流体搬送装置を適用することにより、気化器140から反応室150a~150nへ至る反応ガスの温度を均一化することができる。 In the substance supply system shown in FIG. 19, by applying any one of the fluid conveyance devices described in the first to sixth embodiments to the fluid transport paths 141, 144, 161a to 161n, 164a to 164n, The temperature of the reaction gas reaching the reaction chambers 150a to 150n can be made uniform.
 図20に示す物質供給システムでは、気化器140と反応室150とが流体輸送経路141によって直接連結されており、反応ガスの流量制御用のバルブ142を有していない。この場合でも、流体輸送経路141に実施の形態1~6のいずれかの流体搬送装置を適用し、流体輸送経路141を加熱するヒートパイプに気化器140または反応室150の熱を伝熱させることにより、気化器140から反応室150へ至る反応ガスの温度を均一化することができる。 In the substance supply system shown in FIG. 20, the vaporizer 140 and the reaction chamber 150 are directly connected by the fluid transport path 141 and do not have the valve 142 for controlling the flow rate of the reaction gas. Even in this case, the fluid transfer device according to any one of the first to sixth embodiments is applied to the fluid transport path 141, and the heat of the vaporizer 140 or the reaction chamber 150 is transferred to the heat pipe that heats the fluid transport path 141. Thus, the temperature of the reaction gas from the vaporizer 140 to the reaction chamber 150 can be made uniform.
 図21に示す物質供給システムは、バルブ112を加熱する加熱部113を備えており、液状原料供給装置110から気化器140へ供給される液体状の原料を、気化器140の上流で予熱できる構成とされている。この場合でも、流体輸送経路111,114に実施の形態1~6のいずれかの流体搬送装置を適用し、流体輸送経路111,114を加熱するヒートパイプに加熱部113または気化器140の熱を伝熱させることにより、液状原料供給装置110から気化器140へ至る液体状の原料の温度を均一化することができる。つまり、本発明の配管装置および流体搬送装置は、気体を搬送する装置に限られず、液体を搬送する装置に適用することも可能である。 The substance supply system shown in FIG. 21 includes a heating unit 113 that heats the valve 112, and is capable of preheating the liquid raw material supplied from the liquid raw material supply apparatus 110 to the vaporizer 140 upstream of the vaporizer 140. It is said that. Even in this case, the fluid conveyance device according to any one of the first to sixth embodiments is applied to the fluid transport paths 111 and 114, and the heat of the heating unit 113 or the vaporizer 140 is applied to the heat pipe that heats the fluid transport paths 111 and 114. By conducting heat transfer, the temperature of the liquid raw material from the liquid raw material supply apparatus 110 to the vaporizer 140 can be made uniform. That is, the piping device and the fluid conveyance device of the present invention are not limited to a device that conveys gas, and can also be applied to a device that conveys liquid.
 図22に示す物質供給システムは、バルブ122を加熱する加熱部123を備えており、キャリアガス供給装置120から気化器140へ供給されるキャリアガスを、気化器140の上流で予熱できる構成とされている。この場合でも、流体輸送経路121,124に実施の形態1~6のいずれかの流体搬送装置を適用し、流体輸送経路121,124を加熱するヒートパイプに加熱部123または気化器140の熱を伝熱させることにより、キャリアガス供給装置120から気化器140へ至るキャリアガスの温度を均一化することができる。 The substance supply system shown in FIG. 22 includes a heating unit 123 that heats the valve 122, and is configured to be able to preheat the carrier gas supplied from the carrier gas supply device 120 to the vaporizer 140 upstream of the vaporizer 140. ing. Even in this case, the fluid conveyance device according to any one of the first to sixth embodiments is applied to the fluid transportation paths 121 and 124, and the heat of the heating unit 123 or the vaporizer 140 is applied to the heat pipe that heats the fluid transportation paths 121 and 124. By conducting heat transfer, the temperature of the carrier gas from the carrier gas supply device 120 to the vaporizer 140 can be made uniform.
 (実施の形態8)
 実施の形態1~7においては、ヒートパイプを用いた配管の加熱について述べたが、ヒートパイプから積極的に熱を奪ってヒートパイプの作動流体を冷却させる冷却器を、ヒートパイプと熱的に接触するように設けてもよい。加熱部によるヒートパイプの加熱を停止した後に、冷却器によってヒートパイプを冷却すれば、ヒートパイプの一部を冷却することにより、ヒートパイプ全体の冷却を効率的に行なうことができる。つまり、実施の形態1で説明した従来型のヒートパイプの熱輸送動作、または実施の形態3で説明したループ型細管ヒートパイプの熱輸送動作により、ヒートパイプ全体を冷却する必要はなく、効率的にヒートパイプの冷却を行なうことができる。
(Embodiment 8)
In the first to seventh embodiments, the heating of the pipe using the heat pipe has been described. However, a cooler that actively takes heat from the heat pipe and cools the working fluid of the heat pipe is thermally connected to the heat pipe. You may provide so that it may contact. If the heat pipe is cooled by the cooler after stopping the heating of the heat pipe by the heating unit, the entire heat pipe can be efficiently cooled by cooling a part of the heat pipe. That is, it is not necessary to cool the entire heat pipe by the heat transport operation of the conventional heat pipe described in the first embodiment or the heat transport operation of the loop type thin tube heat pipe described in the third embodiment. The heat pipe can be cooled.
 このようにすれば、メンテナンス時などの配管の温度を下げたい場合に、配管をより高速に均一温度で下げることができるので、配管の温度低下に要する時間を短縮でき、メンテナンス時間を短縮することができる。 In this way, when it is desired to lower the temperature of the pipe during maintenance, etc., the pipe can be lowered at a uniform temperature at a higher speed, so the time required to lower the temperature of the pipe can be shortened and the maintenance time can be shortened. Can do.
 以上のように本発明の実施の形態について説明を行なったが、各実施の形態の構成を適宜組合せてもよい。また、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments of the present invention have been described as above, the configurations of the embodiments may be combined as appropriate. In addition, it should be considered that the embodiment disclosed this time is illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明の配管装置および流体搬送装置は、たとえば半導体ウェハや液晶ガラス基板などに成膜対象物を成膜する際の反応ガスなど、高精度の温度管理を必要とする物質を搬送する配管装置および流体搬送装置に、特に有利に適用され得る。 A piping device and a fluid conveyance device of the present invention are, for example, a piping device that conveys a substance that requires high-precision temperature management, such as a reaction gas when a film formation target is formed on a semiconductor wafer, a liquid crystal glass substrate, or the like. It can be applied particularly advantageously to a fluid conveying device.

Claims (7)

  1.  流体を搬送するための配管装置であって、
     管状部材(40)と、
     前記管状部材(40)を加熱する加熱部(140,143)とを備え、
     前記管状部材(40)の環状壁部(41)の内部には、前記管状部材(40)の延在方向に沿う複数の細管部(42)と、前記細管部(42)の一端同士を連結する第一連結管部(43)と、前記細管部(42)の他端同士を連結する第二連結管部(44)とが設けられており、
     前記細管部(42)、前記第一連結管部(43)および前記第二連結管部(44)は、ループ型細管ヒートパイプ(30)を構成する、配管装置。
    A piping device for conveying a fluid,
    A tubular member (40);
    A heating section (140, 143) for heating the tubular member (40),
    Inside the annular wall portion (41) of the tubular member (40), a plurality of thin tube portions (42) along the extending direction of the tubular member (40) and one ends of the thin tube portions (42) are connected. A first connecting pipe part (43) and a second connecting pipe part (44) for connecting the other ends of the narrow pipe part (42) are provided,
    The said thin tube part (42), said 1st connection pipe part (43), and said 2nd connection pipe part (44) are piping apparatuses which comprise a loop type thin tube heat pipe (30).
  2.  前記管状部材(50)は、内側管(52)と、前記内側管(52)の外周面(52a)に内周面(51a)が密着する外側管(51)とを含み、
     前記細管部(42)は、前記内側管(52)の前記外周面(52a)および前記外側管(51)の前記内周面(51a)の少なくともいずれか一方が凹凸加工されて形成されている、請求の範囲第1項に記載の配管装置。
    The tubular member (50) includes an inner tube (52) and an outer tube (51) in which an inner peripheral surface (51a) is in close contact with an outer peripheral surface (52a) of the inner tube (52),
    The narrow tube portion (42) is formed by unevenly processing at least one of the outer peripheral surface (52a) of the inner tube (52) and the inner peripheral surface (51a) of the outer tube (51). The piping device according to claim 1.
  3.  前記管状部材(40)を内包する外覆管(60)をさらに備え、
     前記管状部材(40)の外周面(40a)と、前記外覆管(60)の内周面(60a)との間に、真空空間(61)を有する、請求の範囲第1項に記載の配管装置。
    An outer tube (60) containing the tubular member (40);
    The vacuum space (61) according to claim 1, comprising a vacuum space (61) between an outer peripheral surface (40a) of the tubular member (40) and an inner peripheral surface (60a) of the outer tube (60). Plumbing equipment.
  4.  第一加熱部(140)と、
     第二加熱部(143)と、
     前記第一加熱部(140)と前記第二加熱部(143)とを連結し、前記第一加熱部(140)から前記第二加熱部(143)へ流体を搬送する管状部材(10)と、
     前記管状部材(10)に熱的に接触するヒートパイプ(20)とを備え、
     前記ヒートパイプ(20)は、前記第一加熱部(140)および前記第二加熱部(143)の少なくともいずれか一方により加熱される、流体搬送装置(2)。
    A first heating section (140);
    A second heating unit (143);
    A tubular member (10) for connecting the first heating unit (140) and the second heating unit (143) and conveying a fluid from the first heating unit (140) to the second heating unit (143); ,
    A heat pipe (20) in thermal contact with the tubular member (10),
    The said heat pipe (20) is a fluid conveying apparatus (2) heated by at least any one of said 1st heating part (140) and said 2nd heating part (143).
  5.  前記管状部材(10)および前記ヒートパイプ(20)を内包する外覆管(60)をさらに備え、
     前記管状部材(10)の外周面(10a)と、前記外覆管(60)の内周面(60a)との間に、真空空間(61)を有する、請求の範囲第4項に記載の流体搬送装置。
    An outer tube (60) containing the tubular member (10) and the heat pipe (20);
    The vacuum space (61) is provided between the outer peripheral surface (10a) of the tubular member (10) and the inner peripheral surface (60a) of the outer tube (60). Fluid transfer device.
  6.  前記ヒートパイプは、ループ型細管ヒートパイプ(30)である、請求の範囲第4項または第5項に記載の流体搬送装置。 The fluid transfer device according to claim 4 or 5, wherein the heat pipe is a loop type thin pipe heat pipe (30).
  7.  前記管状部材(40)の環状壁部(41)の内部には、前記管状部材(40)の延在方向に沿う複数の細管部(42)と、前記細管部(42)の一端同士を連結する第一連結管部(43)と、前記細管部(42)の他端同士を連結する第二連結管部(44)とが設けられており、
     前記細管部(42)、前記第一連結管部(43)および前記第二連結管部(44)は、前記ループ型細管ヒートパイプ(30)を構成する、請求の範囲第6項に記載の流体搬送装置。
    Inside the annular wall portion (41) of the tubular member (40), a plurality of thin tube portions (42) along the extending direction of the tubular member (40) and one ends of the thin tube portions (42) are connected. A first connecting pipe part (43) and a second connecting pipe part (44) for connecting the other ends of the narrow pipe part (42) are provided,
    The said thin tube part (42), said 1st connection pipe part (43), and said 2nd connection pipe part (44) comprise the said loop type thin tube heat pipe (30), Claim 6 characterized by the above-mentioned. Fluid transfer device.
PCT/JP2008/066847 2008-09-18 2008-09-18 Piping device, and fluid carrying device WO2010032304A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/066847 WO2010032304A1 (en) 2008-09-18 2008-09-18 Piping device, and fluid carrying device
JP2010529536A JP5183744B2 (en) 2008-09-18 2008-09-18 Piping device and fluid transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/066847 WO2010032304A1 (en) 2008-09-18 2008-09-18 Piping device, and fluid carrying device

Publications (1)

Publication Number Publication Date
WO2010032304A1 true WO2010032304A1 (en) 2010-03-25

Family

ID=42039158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066847 WO2010032304A1 (en) 2008-09-18 2008-09-18 Piping device, and fluid carrying device

Country Status (2)

Country Link
JP (1) JP5183744B2 (en)
WO (1) WO2010032304A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968153A (en) * 2010-10-13 2011-02-09 苏州康斯坦普工程塑料有限公司 Liquid conveying and heating pipe
JP2012220160A (en) * 2011-04-13 2012-11-12 Toyota Central R&D Labs Inc Channel structure of self-excited vibration heat pipe
JP2013130331A (en) * 2011-12-21 2013-07-04 Toshiba Corp Bubble-driven cooling device
JP5232332B2 (en) * 2011-03-31 2013-07-10 AvanStrate株式会社 Manufacturing method of glass plate
JP2013142507A (en) * 2012-01-11 2013-07-22 Kanai Educational Institution Heat pump and hot water supply system
WO2013161013A1 (en) * 2012-04-25 2013-10-31 東芝三菱電機産業システム株式会社 Heat transfer device
US11580748B2 (en) 2019-10-25 2023-02-14 7-Eleven, Inc. Tracking positions using a scalable position tracking system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101915044B1 (en) * 2017-03-15 2018-11-05 삼성중공업 주식회사 Apparatus for preventing condensation of exhaust pipe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233992A (en) * 1989-03-06 1990-09-17 Power Reactor & Nuclear Fuel Dev Corp Double tube heat pipe type heat exchanger
JPH04190090A (en) * 1990-11-22 1992-07-08 Akutoronikusu Kk Loop type fine tube heat pipe
JPH06168877A (en) * 1992-11-30 1994-06-14 Handotai Process Kenkyusho:Kk Device for fabrication of semiconductor
JPH07224449A (en) * 1994-02-10 1995-08-22 Fujikura Ltd Freezing preventive structure of service water pipe
JP2004239582A (en) * 2003-02-10 2004-08-26 Kubota Corp Fixing structure for heat pipe heat absorbing part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233992A (en) * 1989-03-06 1990-09-17 Power Reactor & Nuclear Fuel Dev Corp Double tube heat pipe type heat exchanger
JPH04190090A (en) * 1990-11-22 1992-07-08 Akutoronikusu Kk Loop type fine tube heat pipe
JPH06168877A (en) * 1992-11-30 1994-06-14 Handotai Process Kenkyusho:Kk Device for fabrication of semiconductor
JPH07224449A (en) * 1994-02-10 1995-08-22 Fujikura Ltd Freezing preventive structure of service water pipe
JP2004239582A (en) * 2003-02-10 2004-08-26 Kubota Corp Fixing structure for heat pipe heat absorbing part

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968153A (en) * 2010-10-13 2011-02-09 苏州康斯坦普工程塑料有限公司 Liquid conveying and heating pipe
JP5232332B2 (en) * 2011-03-31 2013-07-10 AvanStrate株式会社 Manufacturing method of glass plate
JP2012220160A (en) * 2011-04-13 2012-11-12 Toyota Central R&D Labs Inc Channel structure of self-excited vibration heat pipe
JP2013130331A (en) * 2011-12-21 2013-07-04 Toshiba Corp Bubble-driven cooling device
JP2013142507A (en) * 2012-01-11 2013-07-22 Kanai Educational Institution Heat pump and hot water supply system
WO2013161013A1 (en) * 2012-04-25 2013-10-31 東芝三菱電機産業システム株式会社 Heat transfer device
KR20150004377A (en) * 2012-04-25 2015-01-12 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Heat transfer device
KR101661051B1 (en) 2012-04-25 2016-09-28 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Heat transfer device
US9689622B2 (en) 2012-04-25 2017-06-27 Toshiba Mitsubishi-Electric Industrial Systems Corporation Heat transfer device
US11580748B2 (en) 2019-10-25 2023-02-14 7-Eleven, Inc. Tracking positions using a scalable position tracking system

Also Published As

Publication number Publication date
JP5183744B2 (en) 2013-04-17
JPWO2010032304A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5183744B2 (en) Piping device and fluid transfer device
JP5283758B2 (en) Heat transfer device
US7004240B1 (en) Heat transport system
US6942021B2 (en) Heat transport device and electronic device
US8136580B2 (en) Evaporator for a heat transfer system
US9746248B2 (en) Heat pipe having a wick with a hybrid profile
Zhao et al. Experimental study on a cryogenic loop heat pipe with high heat capacity
US9625182B2 (en) Cooling device
US20100319884A1 (en) Self-excited oscillating flow heat pipe
JP2009115396A (en) Loop-type heat pipe
US10712098B2 (en) Loop heat pipe and method of manufacturing loop heat pipe
EP2317601B1 (en) An integrated antenna structure with an imbedded cooling channel
JP5770303B2 (en) Cooling apparatus and method
US9689622B2 (en) Heat transfer device
JP2012077988A (en) Heat relay mechanism, and heat-dissipating fin unit
JP2011009312A (en) Heat transfer device and electronic apparatus
WO2017169969A1 (en) Cooling device
JP5238042B2 (en) Fluid transfer device
JP7333022B2 (en) Heat exchanger
KR102233280B1 (en) Cryogenic loop heat-pipe with pulsating heat-pipe
WO2021193833A1 (en) Thermoelectric device
KR102409620B1 (en) Cooling device and manufacturing method for thereof
US10126024B1 (en) Cryogenic heat transfer system
WO2018011913A1 (en) Self-excitation vibration heat pipe and electronic equipment provided with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08810891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529536

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08810891

Country of ref document: EP

Kind code of ref document: A1