WO2010032021A1 - Coated polymeric substrates - Google Patents
Coated polymeric substrates Download PDFInfo
- Publication number
- WO2010032021A1 WO2010032021A1 PCT/GB2009/002249 GB2009002249W WO2010032021A1 WO 2010032021 A1 WO2010032021 A1 WO 2010032021A1 GB 2009002249 W GB2009002249 W GB 2009002249W WO 2010032021 A1 WO2010032021 A1 WO 2010032021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite film
- film according
- poly
- solvent
- conductive particles
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/044—Forming conductive coatings; Forming coatings having anti-static properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/15—Heterocyclic compounds having oxygen in the ring
- C08K5/151—Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
- C08K5/1535—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2429/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2429/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2429/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2429/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/221—Oxides; Hydroxides of metals of rare earth metal
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2231—Oxides; Hydroxides of metals of tin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
- Y10T428/31797—Next to addition polymer from unsaturated monomers
Definitions
- the present invention is concerned with a transparent conductive composite film, and a method for the manufacture thereof.
- Transparent conductive multi-layer films comprising a support overlaid with a conductive layer containing an electroconductive material are known and have been previously disclosed as useful in the manufacture of photovoltaic cells, EMI shielding screens, and touch screens in electronic equipment (for instance PDAs, mobile phones etc).
- the composite films have been " produced by sputtering techniques, which are capable of forming conductive layers having low surface resistance.
- sputtering is disadvantageous in that it requires use of bulky and costly apparatus and is associates with a slow deposition rate.
- Attempts have also been made to manufacture transparent composite films by wet-coating methods, which provide advantages over the sputtering method in terms of higher productivity, lower apparatus and manufacturing costs, and greater efficiency in producing conductive layers of large surface area.
- a conductive coating solution comprising conductive particles dispersed in a binder resin is applied onto substrate, dried (or sintered) at high- temperature to form a conductive layer, and then compressed.
- US-5504133 discloses the use of a coating composition comprising conductive particles dispersed in a binder solution comprising a mixed organic solvent consisting of at least one polar solvent and at least one non-polar solvent in which is dissolved a polymer containing an acidic- functional group.
- Another example of a conventional coating method is described in JP- A-9-109259.
- US-5908585 teaches a combination of metal oxide particles and conductive hollow carbon micro-fibres dispersed in an organic or inorganic matrix to provide the transparent conductive layer.
- US-6777477 discloses a transparent conductive tin oxide film on a glass or ceramic substrate, prepared using an aqueous coating solution comprising stannic acid, and further comprising a water-soluble polymeric binder having a polar group which is dissolved in the aqueous solution in the presence of ammonia or a water-soluble amine, wherein the coated substrate is dried and then heated at a temperature of 400 to 700°C in order to crystallise the tin oxide particles to provide conductivity.
- One problem with the wet-coating method is that large amounts of binder resin are typically required in order to form the conductive layer.
- JP-A-8- 199096 discloses a coating process for applying a low-resistance conductive layer to a glass substrate which dispenses with the binder component, but sintering is conducted at a temperature which is too high to be used with polymeric substrates.
- US- 6416818 is also directed to the preparation of transparent conductive coatings on non- polymeric substrates and discloses a coating composition comprising relatively low concentrations of binder.
- US-2005/0112361 and US-2008/0026204 are directed to glass, ceramic and resin substrates and disclose a coating composition comprising conductive particles dispersed in an organic or aqueous solvent in which the volume ratio of conductive particles to polymeric binder is at least 4:1, and preferably the presence of binder is avoided altogether, wherein the coated layer is first dried and then compressed under relatively high pressure at relatively low temperatures in order to provide the transparent conductive layer.
- a composite film comprising a polymeric substrate and a transparent conductive layer, said conductive layer being derived from a coating composition containing:
- electrically conductive particles selected from the group consisting of metal oxides and doped metal oxides; (ii) poly(vinyl alcohol); and
- a process for the manufacture of a composite film comprising a polymeric substrate and a transparent conductive layer having a sheet resistance of no more than 1,000 ohms per square, said process comprising the steps of providing a polymeric substrate and disposing on a surface thereof a coating composition containing:
- electrically conductive particles selected from the group consisting of metal oxides and doped metal oxides
- the polymeric substrate is a self-supporting film or sheet by which is meant a film or sheet capable of independent existence in the absence of a supporting base.
- the substrate may be formed from any suitable film-forming material.
- Thermoplastic polymeric materials are preferred. Such materials include a homopolymer or copolymer of a 1- olefin, such as ethylene, propylene and but-1-ene, a polyamide, a polycarbonate, PVC, PVA, polyacrylates, celluloses and particularly a synthetic linear polyester.
- the substrate is described in detail below with respect to polyester substrates.
- Suitable polyesters are obtainable by condensing one or more dicarboxylic acid(s) or their lower alkyl (up to 6 carbon atoms) diesters with one or more diols.
- the dicarboxylic acid component typically contains at least one aromatic dicarboxylic acid, which is preferably terephthalic acid, isophathalic acid, phthalic acid, 2,5-, 2,6- or 2,7- naphthalenedicarboxylic acid, and is preferably terephthalic acid or 2,6- naphthalenedicarboxylic acid.
- the polyester may also contain one or more residues derived from aliphatic dicarboxylic acids, such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azeleic acid or sebacic acid.
- the diol(s) is/are preferably selected from aliphatic and cycloaliphatic glycols, e.g. ethylene glycol, 1,3- propanediol, 1,4-butanediol, neopentyl glycol and 1,4-cyclohexanedimethanol, preferably from aliphatic glycols.
- the polyester contains only one glycol, preferably ethylene glycol.
- Preferred homopolyesters are polyesters of 2,6- naphthalenedicarboxylic acid or terephthalic acid with ethylene glycol. Formation of the polyester is conveniently effected in a known manner by condensation or ester interchange, generally at temperatures up to about 295°C.
- Formation of the substrate may be effected by conventional techniques well-known in the art. Conveniently, formation of the substrate is effected by extrusion, in accordance with the procedure described below. In general terms the process comprises the steps of extruding a layer of molten polymer, quenching the extrudate and orienting the quenched extrudate in at least one direction.
- the substrate may be uniaxially-oriented, but is more typically biaxially-oriented. Orientation may be effected by any process known in the art for producing an oriented film, for example a tubular or flat film process. Biaxial orientation is effected by drawing in two mutually perpendicular directions in the plane of the film to achieve a satisfactory combination of mechanical and physical properties.
- simultaneous biaxial orientation may be effected by extruding a thermoplastics polyester tube which is subsequently quenched, reheated and then expanded by internal gas pressure to induce transverse orientation, and withdrawn at a rate which will induce longitudinal orientation.
- the film-forming polyester is extruded through a slot die and rapidly quenched upon a chilled casting drum to ensure that the polyester is quenched to the amorphous state.
- Orientation is then effected by stretching the quenched extrudate in at least one direction at a temperature above the glass transition temperature of the polyester.
- Sequential orientation may be effected by stretching a flat, quenched extrudate firstly in one direction, usually the longitudinal direction, i.e.
- Stretching is generally effected so that the dimension of the oriented film is from 2 to 5, more preferably 2.5 to 4.5 times its original dimension in the or each direction of stretching.
- stretching is effected at temperatures higher than the Tg of the polyester, preferably about 15°C higher than the Tg. Greater draw ratios (for example, up to about 8 times) may be used if orientation in only one direction is required. It is not necessary to stretch equally in the machine and transverse directions although this is preferred if balanced properties are desired.
- a stretched film may be, and preferably is, dimensionally stabilised by heat-setting under dimensional support at a temperature above the glass transition temperature of the polyester but below the melting temperature thereof, to induce crystallisation of the polyester.
- a small amount of dimensional relaxation may be performed in the transverse direction, TD by a procedure known as "toe-in".
- Toe-in can involve dimensional shrinkage of the order 2 to 4% but an analogous dimensional relaxation in the process or machine direction, MD is difficult to achieve since low line tensions are required and film control and winding becomes problematic.
- the actual heat-set temperature and time will vary depending on the composition of the film and its desired final thermal shrinkage but should not be selected so as to substantially degrade the toughness properties of the film such as tear resistance.
- a heat set temperature of about 180° to 245°C is generally desirable.
- the film may also, and indeed preferably is, further stabilized through use of an online relaxation stage. Alternatively the relaxation treatment can be performed off-line. In this additional step, the film is heated at a temperature lower than that of the heat-setting stage, and with a much reduced MD and TD tension. Film thus processed will exhibit a smaller thermal shrinkage than that produced in the absence of such post heat-setting relaxation.
- heat-setting and heat-stabilisation of the biaxially stretched film is conducted as follows. After the stretching steps have been completed, heat-setting is effected by dimensionally restraining the film at a tension in the range of about 19 to about 75 kg/m, preferably about 45 to about 50 kg/m of film width, using a heat-set temperature preferably from about 135° to about 250 0 C, more preferably 235-240°C and a heating duration typically in the range of 5 to 40 sees, preferably 8 to 30 sees.
- the heat-set film is then heat-stabilised by heating it under low tension, preferably such that the tension experienced by the film is less than 5 kg/m, preferably less than 3.5 kg/m, more preferably in the range of from 1 to about 2.5 kg/m, and typically in the range of 1.5 to 2 kg/m of film width, typically using a temperature lower than that used for the heat-setting step and selected to be in the range from about 135°C to 250 0 C, preferably 190 to 250 0 C, more preferably 200 to 230 0 C, and more preferably at least 215°C, typically 215 to 230°C, and for a duration of heating typically in the range of 10 to 40 sec, with a duration of 20 to 30 sees being preferred.
- a heat-set, heat-stabilised film exhibits a very low residual shrinkage and consequently high dimensional stability.
- the film has a shrinkage at 30 mins at 230 0 C, measured as defined herein, of less than 1%, preferably less than 0.75%, preferably less than 0.5%, preferably less than 0.25%, and more preferably less than 0.1%. It will be appreciated that these dimensional stability characteristics refer to the uncoated heat- stabilised, heat-set, biaxially oriented polyester substrate.
- the polyester substrate may conveniently contain any of the additives conventionally employed in the manufacture of polyester films.
- agents such as cross-linking agents, dyes, pigments, voiding agents, lubricants, anti-oxidants, radical scavengers, UV absorbers, thermal stabilisers, flame retardants and inhibitors, anti-blocking agents, surface active agents, slip aids, optical brighteners, gloss improvers, prodegradents, viscosity modifiers and dispersion stabilisers may be incorporated as appropriate.
- the film may comprise a particulate filler which can improve handling and windability during manufacture.
- the particulate filler may, for example, be a particulate inorganic filler (e.g.
- composition of a layer may be mixed together in a conventional manner. For example, by mixing with the monomeric reactants from which the film-forming polyester is derived, or the components may be mixed with the polyester by tumble or dry blending or by compounding in an extruder, followed by cooling and, usually, comminution into granules or chips. Masterbatching technology may also be employed.
- the substrate should be optically clear, preferably having a % of scattered visible light (haze) of ⁇ 10%, preferably ⁇ 6%, more preferably ⁇ 3.5 % and particularly ⁇ 1.5%, measured according to the standard ASTM D 1003.
- haze scattered visible light
- any particulate filler is typically present in only small amounts, generally not exceeding 0.5% and preferably less than 0.2% by weight of a given layer.
- the exposed surface of the substrate may, if desired, be subjected to a chemical or physical surface-modifying treatment to improve the bond between that surface and the subsequently applied layer.
- the exposed surface of the substrate can be exposed to a high voltage electrical stress accompanied by corona discharge.
- Corona discharge may be effected in air at atmospheric pressure with conventional equipment using a high frequency, high voltage generator, preferably having a power output of from 1 to 20 kW at a potential of 1 to 100 kV.
- Discharge is conventionally accomplished by passing the film over a dielectric support roller at the discharge station at a linear speed preferably of 1.0 to 500 m per minute.
- the discharge electrodes may be positioned 0.1 to 10.0 mm from the moving film surface.
- no such surface-modifying treatment is effected, and the coating composition described herein is coated directly onto the surface of the substrate.
- the thickness of the substrate is preferably in the range of about 10 to 300 ⁇ m.
- the electrically conductive particles of the conductive layer are preferably particles of indium tin oxide (i.e. tin-doped indium oxide), antimony tin-oxide and aluminium zinc oxide, and preferably indium-tin oxide (ITO).
- ITO indium-tin oxide
- Other examples of inorganic conductive particles useful in the present invention include tin oxide, indium oxide, zinc oxide, cadmium oxide, and fluorine-doped tin oxide (FTO).
- FTO fluorine-doped tin oxide
- a plurality of different types of particles may be used as the conductive particles, but typically only one type of particle is used. In any event, all electrically conductive particles present in the coating composition and conductive layer are selected from the group consisting of metal oxides and doped metal oxides.
- the particle size is typically not more than l ⁇ m, preferably not more than 0.5 ⁇ m, preferably not more than lOOnm and typically in the range of 1-100 nm.
- the particles are spherical or substantially spherical in shape.
- the binder used in the present invention is poly(vinyl alcohol) (PVA), preferably having an average molecular weight (Mw) of from about 1,000 to about 5,000,000, preferably no more than about 2,000,000, more preferably no more than 100,000, more preferably at least about 5,000, and typically about 10,000 to about 30,000.
- PVA poly(vinyl alcohol)
- the ratio of the electrically conductive particles to the poly(vinyl alcohol) binder is critical, and the ratio by weight is referred to herein as W M :W P .
- W M :W P is in the range of from about 2.0:1 to about 4.0:1, preferably in the range of from about 3.0:1 to about 4.0:1, more preferably in the range of from about 3.2:1 to about 3.8:1 in order to provide the target conductivity.
- V M : Vp volume ratio of the conductive particles to the PVA resin
- the sheet resistance referred to herein is that of the coated and dried composite film comprising said polymeric substrate and said transparent conductive layer in an uncompressed state.
- the coating composition preferably comprises:
- said electrically conductive particles in an amount of from about 10 to about 30%, preferably from about 15 to about 25%, by weight of the total coating composition; and (ii) said poly(vinyl alcohol) in an amount of from about 1 to about 10 %, preferably from about 3 to about 7 %, by weight of the total coating composition.
- the solvent of the conductive coating composition is an aqueous solvent, i.e. a solvent which either consists of water or comprises water and one or more co-solvents.
- the co- solvents are preferably selected from water-soluble or water-miscible solvents, and are typically polar. Suitable co-solvents are selected from alcohols, acetone, butan-2-one, pentan-2-one, pentan-3-one, tetrahydrofuran, N-methylformamide, N,N-dimethyl formamide, N,N-dimethylacetamide, N-methylpyrrolidone and dimethylsulfoxide.
- Preferred alcohols are selected from methanol, ethanol, propan-1-ol, propan-2-ol, butan- l-ol, 2-methoxyethan- 1 -ol, 2-ethoxyethan-l-ol, 1-methoxypropan-l-ol, 1-ethoxypropan- l-ol, ethane- 1,2-diol, propane-l,3-diol and propane- 1, 2,3 -triol.
- the co-solvent is selected from methanol, ethanol, propan-2-ol, acetone and tetrahydrofuran.
- the solvent consists essentially of water.
- additives may be incorporated in the coating composition, as appropriate, such as UV absorbers, surfactants and dispersion aids, although any such additive should be selected from those which do not impair the electrical conductivity.
- the conductive coating composition is an aqueous dispersion suitably obtained by preparing a dispersion of the conductive particles in the solvent, and separately preparing an aqueous solution of the poly(vinyl alcohol) binder, which are then mixed.
- the dispersion of the conductive particles is added to the PVA solution, followed by vigorous agitation of the mixture.
- the dispersion is then applied to the substrate using conventional coating techniques, including gravure roll coating, reverse roll coating, dip coating, bead coating, extrusion-coating, melt-coating or electrostatic spray coating.
- the coated substrate is then dried, typically at a temperature of from about 100 0 C to about 200 0 C, preferably from about 150 0 C to about 200 0 C, and this is normally effected in an oven. Typical durations of heating are between about 5 minutes and 1 hour, depending on the temperature used. It is surprising that low sheet resistance can be achieved using these relatively low heating temperatures and without compression of the conductive layer
- the composite film comprising substrate and conductive layer is optionally compressed, in order to increase both the strength and the conductivity of the layer, and this can also improve the adhesion of the conductive layer to the substrate.
- the compression force is preferably at least 44 N/mm 2 , more preferably at least 135 N/mm 2 , more preferably at least 180 N/mm 2 , but typically no more than 1000 N/mm 2 .
- Compressing may be performed at ambient temperatures (i.e. between about 15 and 4O 0 C, more typically between about 18 and 25°C).
- the compression can be effected using conventional methods, including sheet pressing and roll pressing, and preferably by roll pressing in which the film to be compressed is held between rolls and compressed as the rolls rotate, thereby allowing roll-to-roll production.
- the composite film comprising substrate and conductive layer is not compressed.
- the conductive layer may be formed on both sides of the substrate.
- the thickness of the conductive layer is typically no more than about 40 ⁇ m, more typically no more than about 30 ⁇ m, and preferably in the range of from about 0.1 ⁇ m to about 10 ⁇ m.
- the sheet resistance of the conductive layer is no more than 1 ,000 ohms per square, preferably no more than 750 ohms per square, preferably no more than 500 ohms per square, preferably no more than 250 ohms per square, and most preferably less than 100 ohms per square. In one embodiment, the sheet resistance is at least 1 ohm per square.
- the composite film comprising polymeric substrate and conductive layer preferably exhibits a % of scattered visible light (haze) of ⁇ 50%, preferably ⁇ 40%, more preferably ⁇ 30 %, more preferably ⁇ 20 %, and particularly ⁇ 10%, measured according to the standard ASTM D 1003, and/or a total luminous transmission over the visible range (TLT) of at least 60%, preferably at least 70%, preferably at least 80%, and preferably at least 90%.
- haze scattered visible light
- TLT total luminous transmission over the visible range
- the conductive layer can optionally be provided with a protective hard-coat layer, and such layers are well-known in the art, including for instance silicone-, acrylic- and melamine-based thermosetting compositions, and UV-curable compositions such as acrylate-containing compositions.
- a 50 wt% aqueous dispersion of ITO nanoparticles (NanoTek 11200W, Nanophase Technologies) was applied onto a 125 ⁇ m heat-stabilised poly(ethylene terephthalate) film (ST504, DuPont Teijin Films) using a Meyer rod bar number 4, corresponding to an approximate wet coat thickness of 36 ⁇ m.
- the coated film was placed in an oven set at 180 °C and cured for 5 minutes.
- Comparative Example 2 To 1.00 g of a 50 wt% aqueous dispersion of ITO nanoparticles (NanoTek 11200W, Nanophase Technologies) was added 0.10 g of a 10 wt% aqueous solution of poly(N- isopropyl acrylamide). The coating preparation was vigorously agitated and then applied onto a 125 ⁇ m heat-stabilised poly(ethylene terephthalate) film using a Meyer rod bar number 4. The coated film was placed in an oven set at 180 0 C and cured for 5 minutes.
- a 25 wt% dispersion of ITO nanoparticles in isopropanol (VP AdNano ITO DIPA, Degussa) was applied onto a 125 ⁇ m heat-stabilised poly(ethylene terephthalate) film using a Meyer rod bar number 5, corresponding to an approximate wet coat thickness of 50 ⁇ m.
- the coated film was placed in an oven set at 180 0 C and cured for 5 minutes.
- Comparative Example 6 To 1.00 g of a 25 wt% dispersion of ITO nanoparticles in isopropanol (VP AdNano ITO DIPA, Degussa) was added 0.20 g of a 25 wt% solution of poly(N-vinyl pyrrolidone) in isopropanol. The coating preparation was vigorously agitated and then applied onto a 125 ⁇ m heat-stabilised poly(ethylene terephthalate) film using a Meyer rod bar number 5. The coated film was placed in an oven set at 180 0 C and cured for 5 minutes.
- Example 1 A 25 wt% aqueous dispersion of ITO nanoparticles (VP AdNano ITO DW, Degussa) was applied onto a 125 ⁇ m heat-stabilised poly(ethylene terephthalate) film using a Meyer rod bar number 8, corresponding to an approximate wet coat thickness of 100 ⁇ m. The coated film was placed in an oven set at 180 0 C and cured for 5 minutes.
- VP AdNano ITO DW a 25 wt% aqueous dispersion of ITO nanoparticles
- a 25 wt% aqueous dispersion of ITO nanoparticles (VP AdNano ITO DW, Degussa) was applied onto a 125 ⁇ m heat-stabilised poly(ethylene terephthalate) film using a Meyer rod bar number 5. The coated film was placed in an oven set at 180 °C and cured for 10 minutes.
- Comparative Example 8 To 1.40 g of a 25 wt% aqueous dispersion of ITO nanoparticles (VP AdNano ITO DW, Degussa) was added 0.40 g of a 10 wt% aqueous solution of poly(N-ethyl oxazoline). The coating preparation was vigorously agitated and then applied onto a 125 ⁇ m heat- stabilised poly(ethylene terephthalate) film using a Meyer rod bar number 5. The coated film was placed in an oven set at 180 0 C and cured for 5 minutes.
- a 25 wt% aqueous dispersion of ITO nanoparticles (VP AdNano ITO DW, Degussa) was applied onto a 125 ⁇ m heat-stabilised poly(ethylene terephthalate) film using a Meyer rod bar number 5. The coated film was placed in an oven set at 180 °C and cured for 20 minutes.
- Degussa was added 0.25 g of a 25 wt% aqueous solution of poly(ethylene glycol). The coating preparation was vigorously agitated and then applied onto a 125 ⁇ m heat- stabilised poly(ethylene terephthalate) film using a Meyer rod bar number 5. The coated film was placed in an oven set at 180 0 C and cured for 20 minutes.
- Comparative Example 10 To 0.90 g of a 25 wt% aqueous dispersion of ITO nanoparticles (VP AdNano ITO DW, Degussa) was added 0.30 g of a 5 wt% aqueous solution of poly(sodium acrylate). The coating preparation was vigorously agitated and then applied onto a 125 ⁇ m heat- stabilised poly(ethylene terephthalate) film using a Meyer rod bar number 5. The coated film was placed in an oven set at 180 °C and cured for 20 minutes.
- Example ITO dispersion (A) Polymer solution (B) (A) / (B) ITO:polymer Mb Temp Time SR/1000 TLT Haze solvent wt% Name Mw solvent wt% w/w w/w ( 0 C) (min) (ohm/sq) (%) (%) (%)
- Example 1 water 25% PVA 20,000 water 24% 3.5:1 3.65 8 180 5 840 67 44
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Laminated Bodies (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980136479.9A CN102159629B (en) | 2008-09-19 | 2009-09-18 | Coated polymeric substrates |
US13/119,650 US20110165409A1 (en) | 2008-09-19 | 2009-09-18 | Coated Polymeric Substrates |
JP2011527399A JP5592889B2 (en) | 2008-09-19 | 2009-09-18 | Coated polymer substrate |
EP20090785140 EP2331613B1 (en) | 2008-09-19 | 2009-09-18 | Coated polymeric substrates |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0817224.9 | 2008-09-19 | ||
GB0817224A GB0817224D0 (en) | 2008-09-19 | 2008-09-19 | Coated polymeric substrates |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010032021A1 true WO2010032021A1 (en) | 2010-03-25 |
Family
ID=39951909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2009/002249 WO2010032021A1 (en) | 2008-09-19 | 2009-09-18 | Coated polymeric substrates |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110165409A1 (en) |
EP (1) | EP2331613B1 (en) |
JP (1) | JP5592889B2 (en) |
KR (1) | KR101611639B1 (en) |
CN (1) | CN102159629B (en) |
GB (1) | GB0817224D0 (en) |
WO (1) | WO2010032021A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101489161B1 (en) * | 2010-07-30 | 2015-02-06 | 주식회사 잉크테크 | Method for manufacturing transparent conductive layer and transparent conductive layer manufactured by the method |
TW201350199A (en) * | 2012-06-01 | 2013-12-16 | Iner Aec Executive Yuan | Manufacturing method of thin film of monolayer Al-doped ZnO nano-microspheres having uniform size |
US9587132B2 (en) * | 2014-03-20 | 2017-03-07 | E I Du Pont De Nemours And Company | Thermoformable polymer thick film transparent conductor and its use in capacitive switch circuits |
CN111960690A (en) * | 2020-07-10 | 2020-11-20 | 江苏科技大学 | High-dispersity tin antimony oxide high-molecular film and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4967819A (en) * | 1989-03-13 | 1990-11-06 | The Goodyear Tire & Rubber Company | Coating composition and tire coated therewith |
US5908585A (en) * | 1995-10-23 | 1999-06-01 | Mitsubishi Materials Corporation | Electrically conductive transparent film and coating composition for forming such film |
US6416818B1 (en) * | 1998-08-17 | 2002-07-09 | Nanophase Technologies Corporation | Compositions for forming transparent conductive nanoparticle coatings and process of preparation therefor |
US6777477B1 (en) * | 1999-11-17 | 2004-08-17 | Toyo Gosei Kogyo Co., Ltd. | Coating solution for forming transparent and conductive tin oxide film and method for preparing transparent and conductive tin oxide film, and transparent and conductive tin oxide film |
WO2007042993A2 (en) * | 2005-10-10 | 2007-04-19 | P.S.P. - Progetti, Sistemi, Packaging S.R.L. | A laminated material having a high oxygen-barrier effect |
US20080026204A1 (en) * | 2000-05-21 | 2008-01-31 | Tdk Corporation | Transparent conductive multi-layer structure and process for producing the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57142647A (en) * | 1981-02-27 | 1982-09-03 | Ricoh Co Ltd | Electrically conductive support |
JPS6084716A (en) * | 1983-10-15 | 1985-05-14 | キヤノン株式会社 | Transparent conductive film and method of producing same |
US5504133A (en) * | 1993-10-05 | 1996-04-02 | Mitsubishi Materials Corporation | Composition for forming conductive films |
US6221543B1 (en) * | 1999-05-14 | 2001-04-24 | 3M Innovatives Properties | Process for making active substrates for color displays |
JP2003128418A (en) * | 2001-10-17 | 2003-05-08 | Konica Corp | Aqueous dispersion containing amorphous tin oxide, aqueous dispersion containing amorphous tin oxide and polyvinyl alcohol, and method for their production, and antistatic coating composition and plastic film having antistatic coat |
CN100547697C (en) * | 2006-12-13 | 2009-10-07 | 华南理工大学 | A kind of preparation method who contains the transparent conductive material of antimony doped tin oxide |
-
2008
- 2008-09-19 GB GB0817224A patent/GB0817224D0/en not_active Ceased
-
2009
- 2009-09-18 CN CN200980136479.9A patent/CN102159629B/en not_active Expired - Fee Related
- 2009-09-18 EP EP20090785140 patent/EP2331613B1/en not_active Not-in-force
- 2009-09-18 JP JP2011527399A patent/JP5592889B2/en not_active Expired - Fee Related
- 2009-09-18 KR KR1020117004959A patent/KR101611639B1/en active IP Right Grant
- 2009-09-18 US US13/119,650 patent/US20110165409A1/en not_active Abandoned
- 2009-09-18 WO PCT/GB2009/002249 patent/WO2010032021A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4967819A (en) * | 1989-03-13 | 1990-11-06 | The Goodyear Tire & Rubber Company | Coating composition and tire coated therewith |
US5908585A (en) * | 1995-10-23 | 1999-06-01 | Mitsubishi Materials Corporation | Electrically conductive transparent film and coating composition for forming such film |
US6416818B1 (en) * | 1998-08-17 | 2002-07-09 | Nanophase Technologies Corporation | Compositions for forming transparent conductive nanoparticle coatings and process of preparation therefor |
US6777477B1 (en) * | 1999-11-17 | 2004-08-17 | Toyo Gosei Kogyo Co., Ltd. | Coating solution for forming transparent and conductive tin oxide film and method for preparing transparent and conductive tin oxide film, and transparent and conductive tin oxide film |
US20080026204A1 (en) * | 2000-05-21 | 2008-01-31 | Tdk Corporation | Transparent conductive multi-layer structure and process for producing the same |
WO2007042993A2 (en) * | 2005-10-10 | 2007-04-19 | P.S.P. - Progetti, Sistemi, Packaging S.R.L. | A laminated material having a high oxygen-barrier effect |
Also Published As
Publication number | Publication date |
---|---|
KR101611639B1 (en) | 2016-04-11 |
CN102159629B (en) | 2014-05-28 |
JP2012503064A (en) | 2012-02-02 |
JP5592889B2 (en) | 2014-09-17 |
EP2331613A1 (en) | 2011-06-15 |
EP2331613B1 (en) | 2012-06-20 |
CN102159629A (en) | 2011-08-17 |
KR20110063441A (en) | 2011-06-10 |
GB0817224D0 (en) | 2008-10-29 |
US20110165409A1 (en) | 2011-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9199438B2 (en) | Transparent conductive composite films | |
US9554460B2 (en) | Reflective conductive composite film | |
JP4997973B2 (en) | Electromagnetic shielding film | |
EP1640154B1 (en) | Heat-stabilised Poly(Ethylene Naphthalate) film for flexible electronic and opt-electronic devices | |
EP2331613B1 (en) | Coated polymeric substrates | |
JP2015530279A (en) | Transparent conductive film | |
TW201718762A (en) | Polymer compositions and substrates for high temperature transparent conductive film applications | |
JP2007177202A (en) | Antistatic polyester film and method for producing the same | |
JP2012006985A (en) | Laminated polyester film | |
JP5519422B2 (en) | Method for producing texture film | |
JP2017052857A (en) | Biaxially-oriented polyester film for display member | |
JP5437646B2 (en) | Film for touch panel and roll thereof | |
CN114981080B (en) | Laminated film and method for producing same | |
JP2019034532A (en) | Laminate film and method for production thereof | |
JP6303769B2 (en) | Laminated polyester film | |
JP2020132864A (en) | Film | |
JP5822636B2 (en) | Laminated polyester film | |
WO2009096610A1 (en) | Solar battery base | |
JP2011222580A (en) | Laminated film for solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980136479.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09785140 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2009785140 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117004959 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2011527399 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |