WO2010031212A1 - 一种超高速光包交换网的光包压缩和解压缩方法及其系统 - Google Patents

一种超高速光包交换网的光包压缩和解压缩方法及其系统 Download PDF

Info

Publication number
WO2010031212A1
WO2010031212A1 PCT/CN2008/002131 CN2008002131W WO2010031212A1 WO 2010031212 A1 WO2010031212 A1 WO 2010031212A1 CN 2008002131 W CN2008002131 W CN 2008002131W WO 2010031212 A1 WO2010031212 A1 WO 2010031212A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
packet
optical packet
signal
compression
Prior art date
Application number
PCT/CN2008/002131
Other languages
English (en)
French (fr)
Inventor
张建国
解宜原
赵卫
Original Assignee
中国科学院西安光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院西安光学精密机械研究所 filed Critical 中国科学院西安光学精密机械研究所
Publication of WO2010031212A1 publication Critical patent/WO2010031212A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0003Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/002Construction using optical delay lines or optical buffers or optical recirculation

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to an optical packet compression and decompression method and system thereof for an ultra-high speed optical packet switching network.
  • optical packet switching technology attracts more and more research interest, especially due to the emergence of more and more circuit switching technologies suitable for data packet switching and optical packet switching technology. It has the advantage of modulation and pattern transparency and very high available bandwidth. System manufacturers have developed large-scale packet routers. Large available electric package routers have
  • the existing optical packet compression technologies mainly include:
  • the present invention provides an ultra-high speed optical packet exchange in which a optical packet header is simple to extract, can be applied to network systems of various rates, has a variable compression ratio, is easy to upgrade, and is low in cost.
  • Optical packet compression and decompression method and system thereof are very-high speed optical packet exchanges in which a optical packet header is simple to extract, can be applied to network systems of various rates, has a variable compression ratio, is easy to upgrade, and is low in cost.
  • the technical solution of the present invention is:
  • the present invention provides an optical packet compression method for an ultra-high speed optical packet switching network, which is special in that: the method comprises the following steps -
  • the IP data packet of the electrical domain is divided into two parts: a packet header and a payload, and the payload portion is equally divided into payload partitioning units. If the length of the payload partitioning unit is divisible by the number of partitions to be divided, the direct partitioning is performed. If it is not divisible, add zero at the end of the length of the payload splitting unit until it can be divisible;
  • the above-mentioned IP data packet is divided into one or more payload division units.
  • a decompression method for an optical packet compression method of an ultra-high speed optical packet switching network is characterized in that: the method comprises the following steps:
  • the high-rate optical packet signal is amplified and divided into multiple optical packet signals
  • each optical packet signal and the local clock are used for signal extraction to extract a low-speed optical signal; 3) Detect the extracted low-speed optical signal.
  • a compression system for an optical packet compression method of an ultra-high speed optical packet switching network is characterized in that: the compressed system comprises an IP packet division module, a first optical amplifier, a modulator, and a compression module; The optical amplifier and the IP packet splitting module are connected by a modulator; the modulator is connected to the compression module.
  • the above compression module may be composed of a fiber delay line array and a combiner or a spatial delay and a mirror.
  • a decompression system for an optical packet decompression method of an ultra-high speed optical packet switching network which is special in that: the decompression system includes a second optical amplifier, a splitter, a signal extraction module, and a detector; The two optical amplifiers and the signal extraction module are connected by a splitter; the signal extraction module is connected to the detector.
  • the signal extraction module may be an AND gate formed by a four-wave mixing effect of a semiconductor optical amplifier (S0A), an all-optical gate of a Hertz-light asymmetric demultiplexer (TOAD), and a periodically poled lithium niobate crystal (PPLN). All-optical and gate, full-light and gate of complex waveguide structures, full-light and gates of 1550nm Laser Amplifiers (Fabry-Perot and Distributed Feedback Laser Amplifiers) or all-optical gates of SOA-MZI structures.
  • S0A semiconductor optical amplifier
  • TOAD Hertz-light asymmetric demultiplexer
  • PPLN periodically poled lithium niobate crystal
  • the optical packet header is easy to extract, and the optical packet header does not require ultra-high speed detectors and processing units in the case of low speed processing. Because the compression method is decompressed by the signal extraction module, the original optical packet header can be obtained, and the extraction method is simple, and the extracted packet header does not change the original transmission rate of the packet header, and meets the need for low communication in optical communication. The requirement to handle optical heads, the processing of the head at low rates, does not require ultra-high speed detectors and processing units.
  • IP packet splitting of the present invention is done in the electrical domain, and compression is done in the optical domain, so only a low speed electronic processing system is required.
  • the compression and decompression scheme provided by the present invention does not have any specific requirements on the IP packet rate of the electrical domain, and with the delay of each channel of the compression module Different times, optical packets of different rates can be compressed, so the scheme is applicable to network systems of various rates.
  • the compression rate is variable, easy to upgrade.
  • the compression module provided by the invention consists of an optical delay array and a combiner or a spatial delay and a mirror, and only needs to change the number of divisions of the IP data packet and the size of the delay array and the corresponding optical delay of each channel. You can change the compression ratio. It is only necessary to increase the size of the delay array to upgrade the compressor, which is very easy to upgrade.
  • IP packet segmentation is completed in a low-speed electrical domain, the compressor structure is simple, the decompressor technology is relatively mature, so the overall cost is low.
  • the compressor provided by the present invention is composed of a delay array and a combiner.
  • the decompressor is realized by an optical AND gate such as S0A. These devices can be optically integrated, and the technology is mature and easy to manufacture.
  • FIG. 1 is a schematic flow chart of a compression method according to the present invention.
  • FIG. 2 is a schematic flow chart of a decompression method according to the present invention.
  • FIG. 3 is a schematic diagram of a standard IP data packet and a split IP data packet according to the present invention.
  • FIG. 4 is a schematic structural view of an optical packet compression process according to the present invention.
  • Figure 5 is a schematic view of the compression principle of the present invention.
  • FIG. 6 is a schematic structural diagram of an optical packet decompression process according to the present invention.
  • Figure 7 is a schematic structural view of a compression system of the present invention.
  • FIG. 8 is a schematic structural view of a decompression system of the present invention.
  • the optical packet compression method of the ultra-high speed optical packet switching network includes the following steps:
  • the IP data packet of the electric domain is divided, the divided IP data packet is modulated into an optical signal, and the modulated optical signal is input into the compression module 8 composed of the optical fiber delay line array and the combiner to compress and output the compressed high rate.
  • Optical packet signal In the above segmentation, the IP data packet of the electrical domain is first divided into two parts: a packet header and a payload, and the payload portion is equally divided into payload segmentation units, and if the length of the payload segmentation unit can be divided by the number of segments to be divided, Then directly split, if not divisible, add zero at the end of the length of the payload partition unit until it can be divisible; Secondly, determine whether the payload split unit and the header length are equal? If yes, the modulation is performed directly; if not, the zero is added after the packet header to the same length as the payload division unit, and then modulated.
  • the number of payload division units in which the IP packet is divided is one or more, and the larger the number of divisions, the higher the compression ratio.
  • the compression module 8 is compressed using the compression principle of the prior art, and the compression module 8 may be composed of a fiber delay line array and a combiner or an existing spatial delay mode and a mirror.
  • a method for decompressing an optical packet compression method of an ultra-high speed optical packet switching network includes the following steps: After a high-rate optical packet signal arrives at a destination node, it is amplified by a second optical amplifier 9 and passed through a splitter. 10 is divided into multiple optical packet signals, and the number of paths is consistent with the number of divisions of IP packet division, ⁇ each optical packet signal and local clock injection signal extraction module 11, and signal extraction module 11 is formed by using S0A four-wave mixing effect.
  • the AND gate performs a signal extraction and extraction of the low-speed optical signal, and then the extracted low-speed optical signal is detected by the detector 12 to complete decompression.
  • the IP data packet can be divided into a header portion and a payload portion, and the payload portion is equally divided into payload partitioning units (data P1, data P2, ... data P8, see FIG. 4, light
  • the pulse source generates 10OGbps optical pulse, which is amplified by the first optical amplifier 5, and then divided into 9 channels through the splitter, respectively, into the 10G modulator 7, and the IP data packet arrives after the IP packet splitting module 6, the packet header and The payload part is separately stored separately, and the payload part is stored separately into blocks. If the header and the payload are as fast as the length, the modulator 7 is directly entered. If it is not equal, the zero is added at the end of the header to make the block and the header equal.
  • the modulated signal is modulated into a 10G optical signal by the modulator 7.
  • the modulated optical signal enters the compression module 8 for compression.
  • the optical signal is compressed into a high-rate optical packet signal to become a 90 Gbps optical signal.
  • the optical packet arrives, it is amplified by EDFA and divided into 9 channels through the splitter 10.
  • the local lOGbps optical pulse source is triggered.
  • the splitter 10 is divided into 9 paths, respectively, through the pulse pair.
  • the quasi-post and the optical packet signal are injected into the S0A, and the signal decompression is performed by using the four-wave mixing effect.
  • the decompressed lOGbps signal is pulse-shaped into the detector and the original signal is recovered.
  • an optical packet compression system of an ultra-high speed optical packet switching network includes: an IP packet division module 6, a first optical amplifier 5, a modulator 7 and a compression module 8; a first optical amplifier 5 and The IP packet splitting module 6 is connected by a modulator 7; the modulator 7 is connected to the compression module 8.
  • a decompression system for an optical packet of an ultra-high speed optical packet switching network includes: a second optical amplifier 9, a splitter 10, a signal extraction module 11 and a detector 12; a second optical amplifier 9 and The signal extraction module 11 is connected by a splitter 10; the signal extraction module 11 is connected to the detector 12.
  • the signal extraction module 11 may be an all-optical gate of a gate, a Hertzian optical asymmetric demultiplexer (TOAD), and a full-light gate of a periodically poled lithium niobate crystal (PPLN) formed by the four-wave mixing effect of the SOA.
  • TOAD Hertzian optical asymmetric demultiplexer
  • PPLN periodically poled lithium niobate crystal
  • the optical amplifier may be an optical amplifier such as an erbium doped fiber amplifier (EDFA), a semiconductor optical amplifier (SOA), or an optical fiber Raman amplifier (FRA).
  • EDFA erbium doped fiber amplifier
  • SOA semiconductor optical amplifier
  • FPA optical fiber Raman amplifier
  • Modulator 7 can be a variety of modulators such as electro-optic modulators, acousto-optic modulators, electroabsorption modulators, and the like.

Description

一种超高速光包交换网的光包压缩和解压縮方法及其系统 技术领域
本发明涉及光通信技术领域, 尤其涉及一种超高速光包交换网的光包压 缩和解压縮方法及其系统。
背景技术
光包交换技术作为未来光通信非常有吸引力的一种技术选择, 吸引着越 来越多的研究兴趣, 特别是由于越来越多的适合数据包交换的线路交换技术 的出现和光包交换技术具有调制和码型透明且有非常高的可用带宽的优点。 系统制造商们已经研发出了大规模的电包路由器。 大型的可用电包路由器有
1000个输入 /输出口和可以处理 40Gbps的线卡。 不过, 在实现处理 40Gbps或者 更高速率的信号的超高速电子技术中仍存在着诸多的挑战和困难。 由于本地 局域网主要处理低速数据包 (155〜622Mbps) ,而连接本地局域网的骨干网,' 要求是超高速的。 早期研究的光交换是基于电路交换的。 在这种交换体系中 需进行光 /电、 电 /光的转换和进行电信号处理。 现在还有一种光包交换技 术是欧洲光包交换关键 (KE0PS)工程中使用的交换技术, 该技术将交换从电域 转移到了光域。 在所有的光包交换技术中, 对光包的压縮和解压缩技术将是 一项关键技术, 因为对光包的有效压缩和解压缩可以有效地降低光包的冲突 概率和提高网络的吞吐量以及降低交换的技术难度和成本。
现有的光包压缩技术主要有:
1: H. Toda, F. Nakada, M. Suzuki, A. Hasegawa,在 "An optical packet compressor based on a fiber delay loop" 中报道的基于受电光幵关控制 的光纤回环技术的将重复频率由 25MHZ提高到 5GHZ, 该技术的主要缺点是受限 于电开关的开关速度。
2: P. Toliver, K. Deng, I. Glesk, and P. Prucnal, 在 "Simultaneous optical compression and decompression of lOOGb/s 0TDM packets using a single bidirectional optical delay line lattice,,,中报道的基于双 确认本 向光纤延迟线阵列的光包压缩技术, 该技术的主要缺点是需要选包器, : a光 包包头和数据部分是同一速率, 这样在交换节点需要超高速的探测器和处理 单元。
3: H. Sotobayashi, K. itayama, and T. Ozeki, 在 "40 Gbit/s photonic packet compression and decompression by supercontinuum generation, " 中报道的基于超连续产生技术的将 4bitlOGbps提高到 40Gbps, 该技术的主要缺点是输入数据脉冲宽度要足够的窄。
发明内容
为了解决背景技术中存在的上述技术问题, 本发明提供了一种光包包头 提取简单、 可适用于各种速率的网络系统中、 压缩率可变、 易于升级且成本 低廉的超高速光包交换网的光包压缩和解压缩方法及其系统。
本发明的技术解决方案是: 本发明提供了一种超高速光包交换网的光包 压缩方法, 其特殊之处在于: 该方法包括以下步骤-
1 ) 将电域的 IP数据包进行分割;
2 ) 将分割后的 IP数据包调制成光信号;
3 ) 将光信号压缩成高速率光包信号。
上述步骤 1 ) 的具体实现步骤如下:
1.1 ) 将电域的 IP数据包分割为包头和净荷两个部分, 净荷部分进行等长 度分割成净荷分割单元, 若净荷分割单元长度可以被需要分割的数目整除, 则直接分割, 若不能整除则在净荷分割单元长度末尾加零直到可以整除为止;
1.2) 判断净荷分割单元和包头长度是否相等? 若是, 则直接进行调制; 若否, 则在包头后补零至和净荷分割单元长度相等后, 再进行调制。
上述 IP数据包分割成的净荷分割单元为一个或多个。
一种超高速光包交换网的光包压缩方法的解压缩方法, 其特殊之处在于: 该方法包括以下步骤:
1 ) 高速率光包信号经过放大并分为多路光包信号;
2 ) 每一路光包信号和本地时钟进行信号提取, 提取出低速光信号; 3) 对提取出的低速光信号进行探测。
一种超高速光包交换网的光包压縮方法的压缩系统, 其特殊之处在于: 所压缩系统包括 IP数据包分割模块、 第一光放大器、 调制器以及压縮模块; 所述第一光放大器和 IP数据包分割模块通过调制器相连; 所述调制器和压缩 模块相连。
上述压缩模块可以是光纤延迟线阵列和合路器组成或者空间延迟和反射 镜组成。
一种超高速光包交换网的光包解压縮方法的解压缩系统, 其特殊之处在 于: 所述解压缩系统包括第二光放大器、 分路器、 信号提取模块以及探测器; 所述第二光放大器和信号提取模块通过分路器相连; 所述信号提取模块与探 测器相连。
上述信号提取模块可以是半导体光放大器(S0A) 的四波混频效应形成的 与门、 赫兹光非对称解复用器 (TOAD) 的全光与门、 周期极化铌酸锂晶体 (PPLN) 的全光与门、 复式波导结构的全光与门、 1550nm Laser Amplifiers (Fabry- Perot and Distributed Feedback Laser Amplifiers)的全光与门或 者 SOA-MZI结构的全光与门。
本发明的优点是:
1、 光包包头提取简单、 光包头在低速处理的情况下不需要超高速探测器 和处理单元。 本发明由于该压缩方法经过信号提取模块进行解压缩处理, 可 以得到原来的光包包头, 提取方法简单, 且提取出的包头不会改变包头的原 来传输速率, 满足光通信中需要在低速率下处理光包头的要求, 在低速率下 处理包头将不需要超高速探测器和处理单元。
2、 采用低速的电子处理系统控制超高速的光包信号。 本发明的 IP数据包 分割是在电域中完成的, 压缩是在光域中完成, 所以只需要低速的电子处理 系统就可以完成。
3、 可适用于各种速率的网络系统中。 本发明所提供的压缩和解压缩方案 对电域的 IP数据包速率没有任何特定的要求, 而且随着压縮模块每一路的延 时不同, 可以压缩出不同速率的光包, 所以该方案适用于各种速率的网络系 统中。
4、 压縮率可变、 易于升级。 本发明所提供的压缩模块由光延时阵列和合 路器组成或者空间延迟和采用反射镜组成, 则只需要改变 IP数据包的分割数 目和延时阵列的大小以及相应的每一路的光延时就可以改变压缩率。 只需要 增加延时阵列的大小就可以升级该压縮器, 非常易于升级。
5、 成本低廉。 本发明所提供的压缩和解压缩方案 IP数据包分割在低速的 电域中完成, 压縮器结构简单, 解压缩器技术比较成熟, 所以整体成本低廉
6、 易于制造, 可光学集成。 本发明所提供的压缩器由延时阵列和合路器 组成, 解压缩器由 S0A等光学与门实现, 这些器件都可以光学集成, 且技术成 熟, 易于制造。
附图说明
图 1为本发明压缩方法流程示意图;
图 2为本发明解压缩方法流程示意图;
图 3为本发明标准 IP数据包和分割后的 IP数据包示意图;
图 4为本发明光包压缩过程结构示意图;
图 5为本发明的压缩原理示意图;
图 6为本发明光包解压缩过程结构示意图;
图 7为本发明压缩系统的结构示意图;
图 8为本发明解压缩系统的结构示意图。
具体实施方式
参见图 1,本发明所提供的超高速光包交换网的光包压縮方法包括以下步 骤:
将电域的 IP数据包进行分割,将分割后的 IP数据包调制成光信号,将调制 后的光信号输入光纤延迟线阵列和合路器组成的压缩模块 8进行压缩并输出 压缩后的高速率光包信号。 其中在上述分割时,首先将电域的 IP数据包分割为包头和净荷两部分,净 荷部分进行等长度分割成净荷分割单元, 若净荷分割单元长度可以被需要分 割的数目整除, 则直接分割, 若不能整除则在净荷分割单元长度末尾加零直 到可以整除为止; 其次判断净荷分割单元和包头长度是否相等?若是, 则直 接进行调制; 若否, 则在包头后补零至和净荷分割单元长度相等后, 再进行 调制。
其中 IP数据包分割的净荷分割单元的数量是一个或多个, 分割的数量越 多则压缩率越高。
压缩模块 8是利用现有技术的压缩原理进行压缩, 压缩模块 8可以是光纤 延迟线阵列和合路器组成或者现有的空间延迟方式和反射镜组成。
参见图 2, 一种超高速光包交换网的光包压縮方法的解压缩方法, 包括以 下步骤: 高速率光包信号到达目的节点后, 经过第二光放大器 9放大后, 通过 分路器 10分为多路光包信号, 路的数量和 IP数据包分割的分割数量一致, ^每 一路光包信号和本地时钟注入信号提取模块 11, 信号提取模块 11利用 S0A四波 混频效应形成的与门进行信号提取并提取出的低速光信号, 然后对提取出的 低速光信号通过探测器 12进行探测, 完成解压缩。
参见图 3, IP数据包经分割后可以形成包头 (head) 部分以及净荷部分, 同时净荷部分进行等长度分割成净荷分割单元 (数据 Pl、 数据 P2……数据 P8 参见图 4, 光脉冲源产生 lOGbps光脉冲经过第一光放大器 5放大后经过分 路器被分为 9路, 分别进入 10G的调制器 7中, 同时到达的 IP数据包经过 IP数据 包分割模块 6后, 包头和净荷部分分开单独存储, 净荷部分被分为块分别存储 , 若包头和净荷分快等长则直接进入调制器 7, 若不等长则在包头末尾补零使 分块和包头等长进入调制器 7调制成 10G光信号。 调制后的光信号进入压缩模 块 8中进行压缩。
参见图 5, 经过压縮模块压缩后, 光信号压缩成高速率光包信号变为 90Gbps光信号。 参见图 6, 光包到达后经过 EDFA放大在经过分路器 10被分为 9路, 同时本 地 lOGbps光脉冲源触发, 经过 EDFA放大后经过分路器 10被分为 9路, 分别经过 脉冲对准后和光包信号一同注入 S0A, 利用四波混频效应进行信号解压缩, 解 压缩后的 lOGbps信号经过脉冲整形进入探测器原始信号被恢复。
参见图 7, 一种超高速光包交换网的光包压縮系统, 该系统包括: IP数据 包分割模块 6、 第一光放大器 5、 调制器 7以及压缩模块 8; 第一光放大器 5和 IP 数据包分割模块 6通过调制器 7相连; 调制器 7和压缩模块 8相连。
参见图 8, 一种超高速光包交换网的光包的解压缩系统, 该系统包括: 第 二光放大器 9、 分路器 10、 信号提取模块 11以及探测器 12; 第二光放大器 9和 信号提取模块 11通过分路器 10相连; 信号提取模块 11与探测器 12相连。 信号 提取模块 11可以是 S0A的四波混频效应形成的与门、 赫兹光非对称解复用器 (TOAD) 的全光与门、 周期极化铌酸锂晶体(PPLN) 的全光与门、 复式波导结 构的全光与门、 1550nm Laser Amplifiers (Fabry- Perot and Distributed Feedback Laser Amplifiers)的全光与门或者 S0A-MZI结构的全光与门。
光放大器可以是掺铒光纤放大器(EDFA)、 半导体光放大器(SOA)、 光 纤喇曼放大器 (FRA) 等各种光放大器。
调制器 7可以是电光调制器、 声光调制器、 电吸收调制器等各种调制器。

Claims

权利要求书
1、 一种超高速光包交换网的光包压縮方法, 其特征在于: 该方法包括以 下步骤:
1 ) 将电域的 IP数据包进行分割;
2)将分割后的 IP数据包调制成光信号;
3) 将光信号压缩成高速率光包信号。
2、 根据权利要求 1所述的超高速光包交换网的光包压缩方法, 其特征在 于: 所述步骤 1 ) 的具体实现步骤如下:
1.1 ) 将电域的 IP数据包分割为包头和净荷两部分, 净荷部分进行等长度 分割成净荷分割单元, 若净荷分割单元长度可以被需要分割的数目整除, 则 直接分割, 若不能整除则在净荷分割单元长度末尾加零直到可以整除为止;
1.2) 判断净荷分割单元和包头长度是否相等?若是, 则直接进行调制; 若否, 则在包头后补零至和净荷分割单元长度相等后, 再进行调制。
3、 根据权利要求 2所述的超高速光包交换网的光包压缩方法, 其特征在 于: 所述 IP数据包分割成的净荷分割单元为一个或多个。
4、 一种实现权利要求 1的超高速光包交换网的光包压缩方法的解压缩方 法, 其特征在于: 该方法包括以下步骤-
1 ) 高速率光包信号经过放大并分为多路光包信号;
2) 每一路光包信号和本地时钟进行信号提取, 提取出低速光信号;
3) 对提取出的低速光信号进行探测。
5、一种实现权利要求 1的超高速光包交换网的光包压缩方法的压縮系统, 其特征在于: 所述压缩系统包括 IP数据包分割模块、 第一光放大器、 调制器 以及压缩模块; 所述第一光放大器和 IP数据包分割模块通过调制器相连; 所 述调制器和压缩模块相连。
6、 根据权利要求 5所述的超高速光包交换网的光包压缩系统, 其特征在 于: 所述压缩模块可以是光纤延迟线阵列和合路器组成或者空间延迟和反射 镜组成。
7、 一种实现权利要求 4的超高速光包交换网的光包解压缩方法的解压缩 系统, 其特征在于: 所述解压缩系统包括第二光放大器、 分路器、 信号提取 模块以及探测器; 所述第二光放大器和信号提取模块通过分路器相连; 所述 信号提取模块与探测器相连。
8、 根据权利要求 7所述的超高速光包交换网的光包的解压缩系统, 其特征在 于: 所述信号提取模块可以是半导体光放大器(S0A) 的四波混频效应形成的 与门、赫兹光非对称解复用器 (TOAD) 的全光与门、周期极化铌酸锂晶体(PPLN ) 的全光与门、 复式波导结构的全光与门、 1550nm Laser Amplifiers (Fabry-Perot and Distributed Feedback Laser Amplifiers)的全光与门或 者 SOA-MZI结构的全光与门。
PCT/CN2008/002131 2008-09-19 2008-12-30 一种超高速光包交换网的光包压缩和解压缩方法及其系统 WO2010031212A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810151033 CN101677417A (zh) 2008-09-19 2008-09-19 一种超高速光包交换网的光包压缩和解压缩方法及其系统
CN200810151033.0 2008-09-19

Publications (1)

Publication Number Publication Date
WO2010031212A1 true WO2010031212A1 (zh) 2010-03-25

Family

ID=42029792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/002131 WO2010031212A1 (zh) 2008-09-19 2008-12-30 一种超高速光包交换网的光包压缩和解压缩方法及其系统

Country Status (2)

Country Link
CN (1) CN101677417A (zh)
WO (1) WO2010031212A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368704A (zh) * 2011-10-20 2012-03-07 西南大学 一种超高速光包交换网硬件加密和解密方法及其系统
CN103441808A (zh) * 2013-08-26 2013-12-11 哈尔滨工业大学深圳研究生院 基于光电转换的高速率伪随机二进制序列生成装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6559989B1 (en) * 1999-12-03 2003-05-06 Electronics And Telecommunications Research Institute Optical packet header processing apparatus for optical packet switch
JP2005136951A (ja) * 2003-10-08 2005-05-26 National Institute Of Information & Communication Technology 光波長多重通信に用いられる光パケットルーティング装置
US7142787B2 (en) * 2000-06-20 2006-11-28 Kddi Corporation Optical data transmission method and its system, optical transmitter and its method, and optical switcher
CN1964314A (zh) * 2005-11-07 2007-05-16 华为技术有限公司 通过高速下行分组接入技术hsdpa传输ip报文的方法
CN101150370A (zh) * 2007-04-12 2008-03-26 中兴通讯股份有限公司 Rz-dpsk调制光信号产生装置及方法
CN101188459A (zh) * 2007-12-26 2008-05-28 电子科技大学 一种光分组格式及其标签和净荷的产生和分离系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6559989B1 (en) * 1999-12-03 2003-05-06 Electronics And Telecommunications Research Institute Optical packet header processing apparatus for optical packet switch
US7142787B2 (en) * 2000-06-20 2006-11-28 Kddi Corporation Optical data transmission method and its system, optical transmitter and its method, and optical switcher
JP2005136951A (ja) * 2003-10-08 2005-05-26 National Institute Of Information & Communication Technology 光波長多重通信に用いられる光パケットルーティング装置
CN1964314A (zh) * 2005-11-07 2007-05-16 华为技术有限公司 通过高速下行分组接入技术hsdpa传输ip报文的方法
CN101150370A (zh) * 2007-04-12 2008-03-26 中兴通讯股份有限公司 Rz-dpsk调制光信号产生装置及方法
CN101188459A (zh) * 2007-12-26 2008-05-28 电子科技大学 一种光分组格式及其标签和净荷的产生和分离系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAVE M. SPIRIT ET AL.: "Optical Time Division Multiplexing: Systems and Networks.", IEEE COMMUNICATIONS MAGAZINE., vol. 32, no. ISS.12, December 1994 (1994-12-01), pages 56 - 62 *

Also Published As

Publication number Publication date
CN101677417A (zh) 2010-03-24

Similar Documents

Publication Publication Date Title
Blumenthal et al. All-optical label swapping networks and technologies
Tsiokos et al. 10-Gb/s all-optical half-adder with interferometric SOA gates
Chang et al. Enabling technologies for next-generation optical packet-switching networks
Cotter et al. Ultra-high-bit-rate networking: From the transcontinental backbone to the desktop
Bogoni et al. OTDM-based optical communications networks at 160 Gbit/s and beyond
Vatin et al. Experimental realization of dual task processing with a photonic reservoir computer
Mukherjee Method of implementation of frequency encoded all optical half adder, half subtractor and full adder based on semiconductor optical amplifiers and add drop multiplexers
Hu et al. 160-Gb/s silicon all-optical packet switch for buffer-less optical burst switching
Pal et al. An alternative approach of developing a frequency encoded optical tri-state multiplexer with broad area semiconductor optical amplifier (BSOA)
WO2010031212A1 (zh) 一种超高速光包交换网的光包压缩和解压缩方法及其系统
KR20050058974A (ko) 광 스위치 및 광 교환 방법
CN102929072B (zh) 无偏振串扰的偏振复用系统全光波长变换简化装置及方法
CN203119913U (zh) 一种具有波长组播功能的全光码型转换装置
Runser et al. Interferometric ultrafast SOA-based optical switches: From devices to applications
CN208015735U (zh) 基于微腔光孤子晶体频梳的相干光通信系统
Awad et al. All-optical timing extraction with simultaneous optical demultiplexing from 40 Gb/s using a single electroabsorption modulator
Hu et al. 40-Gb/s all-optical serial-to-parallel conversion based on a single SOA
Glesk et al. Ultra-fast all-optical switching in optical networks
JPH1172757A (ja) 光パルス多重装置
CN201282542Y (zh) 一种超高速光包交换网的光包压缩和解压缩系统
Oxenløwe et al. Ultra-high-speed optical signal processing of Tbaud data signals
Calabretta et al. All-optical label processing in optical packet switched networks
CN101963735A (zh) 一种偏振复用系统中的全光信息处理方案
Giamougiannis et al. Demonstration of Low-Latency ETH-switched DataCenter and 5G Fronthaul Networks Using the 1024-port $\text {Hipo}\lambda\text {aos} $ Optical Packet Switch
JP2004080462A (ja) 時分割多重信号光の分離装置、並びに、それを用いた光受信装置および光伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08876953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08876953

Country of ref document: EP

Kind code of ref document: A1