WO2010029933A1 - Method for marking color sequence to article - Google Patents
Method for marking color sequence to article Download PDFInfo
- Publication number
- WO2010029933A1 WO2010029933A1 PCT/JP2009/065712 JP2009065712W WO2010029933A1 WO 2010029933 A1 WO2010029933 A1 WO 2010029933A1 JP 2009065712 W JP2009065712 W JP 2009065712W WO 2010029933 A1 WO2010029933 A1 WO 2010029933A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- color
- array
- data
- arrangement
- colors
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/06009—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
- G06K19/06037—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/146—Methods for optical code recognition the method including quality enhancement steps
- G06K7/1473—Methods for optical code recognition the method including quality enhancement steps error correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K2019/06215—Aspects not covered by other subgroups
- G06K2019/06225—Aspects not covered by other subgroups using wavelength selection, e.g. colour code
Definitions
- An automatic recognition code that returns data in the order of colors is known.
- the present invention relates to the relationship between the color order and data of each symbol of the automatic recognition code.
- the present inventor has been conducting various research and development on a code system (so-called “color arrangement code”) that expresses data by arrangement, combination, arrangement, and order of colors without depending on the size and shape.
- a code system so-called “color arrangement code”
- the inventor of the present application has applied for a 1D color bit code (Japanese Patent Application No. 2006-196705, etc.) which is one of such codes.
- Japanese Patent Application No. 2006-196548 has been filed.
- the present invention relates to an optical automatic recognition code, and more particularly to a technical improvement in the case of using a color arrangement as an automatic recognition code.
- the conventional automatic recognition code based on a color arrangement (such as a 1D color bit code) is based on the idea of recognizing only a certain color order and expressing data with this. That is, this order is converted into data. In general, in such an automatic recognition code, it is necessary to determine a reading start position in the reading rule.
- a cell refers to a color area to which a predetermined color is added.
- products such as electric wires may mark the color arrangement endlessly in the longitudinal direction.
- the end points are closed to form a closed loop such as a strap
- the portion that can be actually read is a small part of the marked code.
- the inventor of the present application has invented an automatic recognition code that temporally connects color changes and expresses data by the changes, and has filed a separate application (Japanese Patent Application No. 2008-212973, etc.).
- this automatic recognition code it is possible to know the data only after recognizing the color change of the color emission.
- this color change by recognizing data with a small number of cells, it is possible to shorten the time from the start of reading until the data is returned (referred to here as turnaround time), but error detection / correction, etc.
- this time turnaround time may be disadvantageous.
- optical recognition code based on the color arrangement is a kind of so-called optical recognition code. Some terms related to the optical recognition code will be explained.
- Code symbol A specific optical recognition code, which represents predetermined data, and a group of figures / graphic figures are particularly called “code symbols”. Or, it may be simply called “symbol”. Further, since it is one unit of the automatic recognition code, it may be called a “unit code mark”.
- a tag basically refers to a medium attached to an article (an article to be marked).
- price tags for example, price tags, product tags, and the like.
- a color array is used as an automatic recognition code, and each of these color arrays corresponds to a “code symbol” as an automatic recognition code.
- optical recognition code optical automatic recognition code
- QR code registered trademark
- Object to be stamped An article / object to which a code symbol of an optical recognition code is given is called a “marked object”. In this embodiment to be described later, “articles” are mainly used.
- marking The operation of assigning each code symbol of the optical recognition code to the object to be marked is called “marking”.
- the operation of applying an “adhesive seal” with the code symbol and the operation of “hanging” the tag with the code symbol are “marking”. It corresponds to a preferable example of “.
- a tag with a code symbol corresponds to a “price tag”, a “product brand tag”, or the like.
- a code symbol is attached to such a “price tag” and attached to a “product”.
- plastic wires are often used for this attachment.
- Such “attachment” is also a suitable example of the above “marking”.
- Marking color One or more colors used for the code symbol are called “marking colors”.
- the marking color is also called “signal color”.
- As the marking color about three colors are typically appropriate considering the identification accuracy and the like. For example, three colors of RGB and three colors of CMY are suitable.
- the color used for the cells constituting the color array is the marking color referred to here, but in the embodiments described later, R (red) G (green) B (blue) will be mainly described as an example. is doing.
- Medium The means / material used when marking the object is called “medium”. Specifically, it corresponds to ink used for marking, a price tag to be applied to the object to be marked, a product tag, and the like.
- ink for direct printing is an example of the medium.
- Product tag and “price tag” in the case of “hanging” a product tag with a code symbol are also examples of the medium.
- the above-mentioned adhesive seal corresponds to a suitable example of this “medium”.
- Quiat Zone A region other than the marking color and a region other than the code symbol boundary and the code symbol is called a “quiat zone”.
- colors other than the marking color are particularly called “ambient colors”.
- Patent Document 1 discloses a CRC code error detection device in which parity bits are assigned in reverse order.
- Patent Document 2 discloses an invention that suppresses processing delay when error detection is performed using an inverse CRC circuit in which temporal transition is reversed.
- Patent Document 3 discloses a barcode demodulator that can complete demodulation in a short time without causing an error due to reverse reading of the right block.
- Patent Document 4 discloses a technique for canceling the correlation of data by using a scramble signal generated from a cyclic code and realizing stable tracking control of a magnetic disk recording apparatus.
- Patent Document 5 discloses a technical RAID apparatus that records a production date, a serial number, and the like by providing a barcode on the inner periphery of an optical disc that uses trellis coding based on the Hamming distance.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a color array (code) that can return predetermined data without particularly setting the starting point of continuous cells (colors). .
- the present invention is a color array that expresses predetermined data by arranging m cells each having a predetermined color, and is configured so that cells of the same color are not adjacent to each other.
- the color arrangement when the m color arrangements are repeatedly and continuously arranged, the color arrangement composed of m consecutive cells at arbitrary positions is always the same data among the repeated color arrangements. It is a color arrangement characterized by expressing.
- the m is an integer of 2 or more.
- the present invention is a color array light emitting method for expressing predetermined data by emitting predetermined colors m times in order, and the same colors are not continuously emitted.
- the color array light emitting method configured as described above, when the m times of light emission are repeatedly and continuously emitted, the continuous color light emission sequence is started at an arbitrary timing.
- the color array light emitting method is characterized in that a sequence of colors emitted m times always represents the same data.
- m is an integer of 2 or more.
- the present invention provides the color array described in (1), wherein the first color array representing the first data and the second data representing the second data different from the first data.
- the color arrangement is a color arrangement characterized in that the Hamming distance between them is n or more.
- n is a positive integer.
- the present invention obtains a hamming distance between colors of each digit in the color arrangement for each digit, and calculates a sum of the obtained hamming distances between the color arrangements.
- the color arrangement is characterized by a Hamming distance.
- the present invention is configured such that an order is set for the color group used in the color arrangement, and the distance between the colors according to the order is the Hamming distance between the colors. It is a color arrangement characterized by the following.
- the present invention is the color arrangement described in (3), wherein the n is 3.
- the present invention is a color array that expresses predetermined data by arranging m cells each having a predetermined color, and is configured so that cells of the same color are not adjacent to each other.
- the color array obtained by cyclically replacing the color array representing the predetermined data for the cell also represents the predetermined data, and the color array group representing the predetermined data is grouped as a replacement group for the cell. It is a color arrangement characterized by that.
- m is an integer of 2 or more.
- a color group to be used is set in order, and the color array representing predetermined data is circulated and replaced based on the order of colors.
- the array represents another data different from the predetermined data, and belongs to a group as a replacement group for the color representing the other data.
- the present invention is the color array according to (1), wherein the color array represents the same data as when read in the reverse order and when read in the reverse order. .
- the color in the reverse order is displayed.
- the color arrangement is characterized in that the arrangement is excluded from the available color arrangement group.
- the present invention provides the method for attaching the color arrangement according to any one of (1), (3) to (10) to an article, wherein the predetermined color arrangement is continuously arranged in a line.
- the present invention is a method for attaching a color array to an article, wherein the color array according to (11) is attached to the article, wherein the row is a straight line or a curve.
- the present invention applies the arrangement step to each of the plurality of color arrangements, and A method of applying a color arrangement to an article, wherein the arrangement includes arranging the arrangement in a row, and the columns for each color arrangement are arranged on the article in parallel with each other.
- the present invention provides the color array light emitting method according to (2), wherein the first color array emitted to represent the first data is different from the first data.
- the second color array emitted to represent data is a color array light emitting method characterized in that a Hamming distance between them is n or more.
- n is a positive integer.
- the present invention provides the color array light emitting method according to (14), wherein a Hamming distance between colors of each cell in the color array is obtained for each digit, and a total sum of the obtained Hamming distances is obtained in the color array.
- the present invention is configured such that an order is set for the color group used in the color array, and a distance between the colors according to the order is set between the colors.
- the present invention is the color array light emitting method according to (14), wherein n is 3.
- the present invention is an article provided with the color arrangement described in any one of (1), (3) to (10).
- an automatic recognition code that can express and read data without adopting a starting point is adopted, so that an optical automatic recognition is performed on a string-like article such as an electric wire.
- a code can be continuously attached (marked), and a highly convenient optical automatic recognition code can be realized.
- FIG. 9 is a table showing inter-group Hamming distances for groups in which the intra-group Hamming distance is less than 3 among the groups in the 12-color arrangement shown in FIGS. It is a table
- the “array” of colors is an arrangement of colors in a predetermined row, and may be linear or curved.
- This color array represents data by the arrangement of the colors, and is used as a so-called automatic recognition code.
- n, m, k, etc. are positive integers unless otherwise specified.
- the cyclic arrangement refers to all color arrangement groups obtained by rotating the color arrangement code in a cyclic manner, the details of which will be described later with reference to FIG.
- data Da returned by the color array A1 Ak from a cell at an arbitrary position in the color array group (referred to as A1) to a cell Ak after a predetermined number k of cells is returned from an arbitrary cell B1.
- the color array B1: up to the cell Bk after passing through a predetermined number k of cells is an array having the characteristic that it is equal to the data Db returned by Bk.
- a color arrangement group is formed by continuously arranging color arrangements composed of k cells. Since the cyclic arrangement of the color arrangement is also configured to represent the same data as the original color arrangement, it is possible to restore correct data no matter where the color arrangement group starts to be read.
- FIG. 1 shows a conceptual diagram of coding using a cyclic array.
- the concept is described using “0” and “1” instead of an example using colors.
- RGB ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
- RGBRBG RGBRBG RGBRBG ... ⁇ 000111000111000111 GBRGRB GBRGRB GBRGRB ... ⁇ 000111000111000111 BRGBGR BRGBGR BRGBGR ... ⁇ 000111000111000111 BRGBGR BRGBGR BRGBGR ... ⁇ 000111000111000111
- the color array and the numerical array The following relationship arises between
- RGBRBG RGBRBG RGBRBG RGBRBG It becomes.
- the numerical repeating arrangement of 0101 cannot be represented by a color arrangement, but 000111 can be represented. This means that the numerical array that can be represented by the repeated arrangement of the color array has certain restrictions.
- the tip color is determined to be R if it is 0 and G if it is 1.
- the color at the tip is R.
- the numerical value of the end must be 0. If the end is 1, the end color will be G or B.
- the terminal Even if the terminal is 1, if the value immediately before the terminal is 0, the terminal may be B indicating the same value. Therefore, when the position immediately before the end is not 0, the same color as the tip is always obtained. Thus, in the case of adopting a color arrangement system that does not allow the same color to continue, generally, it is not possible to replace all the repeated numerical value arrangements with a color arrangement.
- recognition is performed as follows. Recognizing cyclically means that the start point is sequentially shifted and read to perform recognition. When the recognition is started from the first R, when the recognition is started from the next G, the recognition is performed by sequentially shifting the starting point as indium. An example recognized in this way is shown below.
- the same repeated numerical value array may be represented by a plurality of different color arrays.
- the 6-cell color (array) is a color array configured by arranging 6 cells, and is an example such as RGRGBG, RGRGBG, RGRGBG, and the like. It is a condition and feature that the end (underlined part) is a different color.
- the 6-cell color arrangement there are 14 patterns shown in FIG. 2 that do not have the same value even if a cyclic arrangement (step of creating a cyclic code) is performed. That is, 14 types of data can be represented.
- the cyclic arrays are regarded as equivalent. This ensures that the correct value is always obtained no matter where you start reading.
- the specifications that do not change even if cyclic replacement is performed are the number of cells of each color and the cell interval arrangement, and it is considered appropriate to classify the color arrangement based on this.
- the 14 code symbols are classified into groups from such a viewpoint.
- each grouping is as follows: Group A: RGB each of two colors, and each color interval (number of cells between them) is 1, 3 Group B: 2 colors for each of RGB, and the interval between each color (the number of cells between them) is 2, 2 Group C: 3, 2, and 1 RGB. (However, in random order) However, C-1 and C-2 are cyclic permutation groups for each color.
- Group 0 Consists of only two colors of RGB (this group is omitted in the following discussion). According to this way of thinking, the color order is not taken into account, so each group is replaceable with respect to the color.
- each group shown in FIG. 2 is a cycle that can perform color replacement (change) of R ⁇ G, G ⁇ B, B ⁇ R, or R ⁇ B, G ⁇ R, B ⁇ G. It will be understood that this is a replacement group, and the replaced code symbol group and the code symbol before replacement are closed for each group. That is, these code symbols form a so-called substitution group.
- each of the groups C1 and C2 are mirror images of each other (replacement of only R ⁇ ⁇ G, G ⁇ ⁇ B, and B ⁇ ⁇ R).
- each of the groups C1 and C2 is closed as a cyclic replacement group.
- group C1 + C2 has no group and is closed with respect to the replacement in which any pair of colors is replaced.
- cyclic substitution is used as a word meaning cyclic substitution of sequences, and "cyclic substitution” is defined as R ⁇ G, G ⁇ B, B ⁇ R. It is used as a term for the cyclic substitution of such constituent species.
- cyclic replacement shifting the position of each cell constituting the array cyclically is called cyclic replacement, and changing the color (in a predetermined order) is called cyclic replacement.
- the Hamming distance between the color arrangements is the sum of the digits of the color arrangements, the distance between the colors obtained for each digit.
- the distance between colors is preferably determined by providing an order between the colors and determining the distance between the colors according to the order. That is, if the colors are adjacent in that order, the Hamming distance is set to 1. If there is another kind of color between them, the Hamming distance between these colors is 2. Of course, in the case of the same color, the Hamming distance is zero. That is, it is preferable to set the “distance” to the number of colors +1 between one color and another color + 1.
- the Hamming distance is 0 for the same color, but the Hamming distance is 1 for different colors.
- the Hamming distance between the color arrangements is the number of digits that are different colors by comparing the digits of the color arrangements.
- the minimum hamming distance between the cyclic arrays of each data is regarded as the hamming distance of the data (representing automatic recognition code symbol).
- the Hamming distance of the RGBRBG and GBRGRB color arrays is compared with the RGBRBG and GBRGRB cyclic code groups, and the smallest value is defined as the Hamming distance of the RGBRBG and GBRGRB color arrays. Examples of RGBRBG and GBRGRB are shown below.
- the underline is underlined where the digits do not match.
- RGBRBG is compared with the following cyclic code group.
- the cyclically replaced code symbols are also treated as representing equivalent data. That is, the group of the color arrangement described above is not affected by the cyclic replacement, and this group is essential in correspondence with the data. That is, the group directly corresponds to the data. Therefore, even in error handling, it is efficient to select the color arrangement to be used based on the Hamming distance between groups. If this Hamming distance is large, an error is detected, and in some cases, correction may be possible.
- Group A (A1, A2, A3, A4, A5, A6) ⁇ ⁇ Group B (B1, B2, B3, B4, B5, B6)
- B1, B2, B3, B4, B5, B6 The relationship between A1 ⁇ ⁇ B1, A1 ⁇ ⁇ B2, A1 ⁇ ⁇ B3, A1 ⁇ ⁇ B4, A1 ⁇ ⁇ B5, A1 ⁇ ⁇ B6 may be examined.
- A1, A2, A3, A4, A5, A6 are code symbols that are members of group A.
- B1, B2, B3, B4, B5, and B6 are code symbols that are members of group B.
- a condition that satisfies a predetermined hamming distance as a whole is that both the hamming distance between groups and the intra-group hamming distance satisfy the condition ( There is always a Hamming distance that is greater than the minimum Hamming distance).
- FIG. 3 This conceptual diagram is shown in FIG. In FIG. 3, a portion indicated by a white bidirectional arrow means that the hamming distance between groups is equal to or greater than a certain value (minimum hamming distance). A group indicated by a white circle means that the intra-group hamming distance is equal to or greater than a certain value (minimum hamming distance).
- the Hamming distance is guaranteed between all the color arrangements. Therefore, if an automatic recognition code system is constructed and used using a code in the range indicated by X, a code system with a guaranteed minimum Hamming distance can be used, and a code that is resistant to errors is used. be able to.
- the Hamming distance between the groups described above is as shown in the table of FIG. As described above, the Hamming distance may be 2 or less between the groups A and B, between the groups A and C, and between the groups C1 and C2.
- BGRBGR BRGBRG
- FIG. 6 (a) shows an explanatory diagram of a state in which the string-like object is continuously marked. As shown in FIG. 6A, the direction of the cord is different between the case of looking at this side of the string and the case of looking at the other side.
- FIG. 6B shows an explanatory diagram of a case in which colors are emitted in order in time. Unlike the case where the colors are arranged in the space, the color is changed (arranged) in time, so that the order is not reversed unlike FIG.
- FIG. 6 (c) is an explanatory diagram showing a state of reading an automatic recognition code marked (attached) in multiple rows on an article through a window 12 having a certain width. ing.
- This window 12 is a U-shaped notch formed in the shutter 10, and a portion visible through this window is a reading range. In this way, it is also conceivable to increase the number of data by repeatedly arranging the color array.
- Example 2 Example of 12-color arrangement
- the case of the 12-color arrangement is shown in the table in the same manner as the case of the 6-color arrangement. This table is shown in FIGS.
- groups as shown in these tables are configured. These groups have different color numbers and intervals, and each group is closed in a component color replacement operation and forms a replacement group.
- a group with a hamming distance within group of less than 3 is indicated by a cross in the table shown in FIG.
- the x mark represents an intra-group Hamming distance of less than 3.
- the group in which the hamming distance is already less than 3 in the group is excluded, and the hamming distance between the hamming distances of 3 or more is obtained and shown in FIG.
- the hamming distance between groups is less than 3 in gray (gray).
- White squares represent a Hamming distance of 3 or more.
- the table also shows the sequence when called in reverse order each color sequence (code symbol) shown in the table of FIG. 15 is shown in Figure 16.
- each pair may be treated as representing one data.
- the group 4122 includes six color arrays, but if each group is paired to represent one piece of data, a total of three types of data can be represented.
- 4122 (1) and 4122 (6) form a pair 4122 (2) and 4122 (4) form a pair 4122 (5) and 4122 (3) form a pair Group 4121a is the same is there.
- the number of data that can be expressed is as follows. 4131 group: 3 4122 group: 3 25b group: 3 21b group: 6 4121b group: 3 6a group: 3 4111b group: 6 Thus, a total of 27 types of data can be expressed.
- a value of about 3 is appropriate as the value of the Hamming distance described above.
- a Hamming distance of 3 is useful for error detection and correction.
- this value is too large, the code utilization efficiency may deteriorate, and it may be difficult to efficiently represent data.
- the color arrangement when attached to a string-like article, the color arrangement also bends when the string is bent, but there is no problem because the data can be restored if the color order can be recognized.
- a region to which each color constituting the color array is attached is called a cell symbolically.
- the color array is configured by arranging cells with predetermined colors.
- This cell is a concept on a symbol representing a place where colors constituting a color array are given.
- the actual cell is a physical region / part on the surface of the article and coated with ink of a predetermined color. Cells are often referred to as digits.
- each column is parallel to each other in view of reading effort.
- colors are arranged in space.
- the utility of the present invention may be higher when light is emitted along the time axis than when colors are arranged in space.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Character Input (AREA)
Abstract
Realized is a code system wherein a color sequence usable as an optical automatic recognition code representing data by means of the order of colors is continuously marked on an article such as a cord and the same correct data can be read even if any cell of the color sequence is started to be read. The color sequence (code symbol) is determined so that cyclic codes of the color sequence also represent the same data. The cyclic codes are color sequences determined by shifting (rotating) the code symbol in such a way that the cells are cyclic. When a color sequence is composed of six cells, five cyclic codes are determined from the color sequence. Since six color sequences in total represent the same data, the data can be correctly read even if any cell is started to be read when the color sequences are continuously marked.
Description
色彩の順番でデータを返す自動認識コードが知られている。本発明は、この自動認識コードの各シンボルの、色彩順とデータとの関連に関する発明である。
An automatic recognition code that returns data in the order of colors is known. The present invention relates to the relationship between the color order and data of each symbol of the automatic recognition code.
本願発明者は、寸法形状に依存せず、色彩の配列・組み合わせ・並び・順番によってデータを表現するコードシステム(いわゆる「色彩配列コード」)について、種々の研究開発を行っている。例えば、このようなコードの一種である1Dカラービットコード(特願2006-196705他)を本願発明者はこれまでに出願している。他に、特願2006-196548号等も出願している。
The present inventor has been conducting various research and development on a code system (so-called “color arrangement code”) that expresses data by arrangement, combination, arrangement, and order of colors without depending on the size and shape. For example, the inventor of the present application has applied for a 1D color bit code (Japanese Patent Application No. 2006-196705, etc.) which is one of such codes. In addition, Japanese Patent Application No. 2006-196548 has been filed.
このように、本発明は光学的な自動認識コードに関し、特に色彩配列を自動認識コードとして用いる場合の技術的な改良に関する。
Thus, the present invention relates to an optical automatic recognition code, and more particularly to a technical improvement in the case of using a color arrangement as an automatic recognition code.
従来の(1Dカラービットコード等の)色彩配列による自動認識コードは、一定の色彩の順序のみを認識し、これでデータを表現するという考え方である。つまり、この順受がデータに変換されるわけである。一般にこのような自動認識コードにおいては、読み取りルールにおいて、読み取りの開始位置を決めておく必要があった。
The conventional automatic recognition code based on a color arrangement (such as a 1D color bit code) is based on the idea of recognizing only a certain color order and expressing data with this. That is, this order is converted into data. In general, in such an automatic recognition code, it is necessary to determine a reading start position in the reading rule.
(※「1Dカラービットコード」、「カラービットコード」は、本願出願人の自動認識コードの商品名・固有名称である)
すなわち、通常の色彩配列による自動認識コードの場合は、色彩配列の端点が明確になっており、これを画像として認識した上で端点から色彩配列を読み取り、データに変換するという工程を行っている。 (* "1D color bit code" and "color bit code" are product names and unique names of the applicant's automatic recognition code)
That is, in the case of an automatic recognition code based on a normal color array, the end points of the color array are clear, and after the color is recognized as an image, the color array is read from the end points and converted into data. .
すなわち、通常の色彩配列による自動認識コードの場合は、色彩配列の端点が明確になっており、これを画像として認識した上で端点から色彩配列を読み取り、データに変換するという工程を行っている。 (* "1D color bit code" and "color bit code" are product names and unique names of the applicant's automatic recognition code)
That is, in the case of an automatic recognition code based on a normal color array, the end points of the color array are clear, and after the color is recognized as an image, the color array is read from the end points and converted into data. .
また、発明者が先に出願した自動認識コードの例においては、端点が必ずしも明確になっていなくとも、構成するセル数(色彩範囲の個数)が特定されている場合、端点を推定してデータに変換するということも可能である。但し、この場合、色彩配列にルールで定められた一定の冗長部分が必要である。
※ここで、セルとはある所定の1色が付される色彩領域を言う。 Further, in the example of the automatic recognition code filed earlier by the inventor, even if the end points are not always clear, if the number of constituting cells (the number of color ranges) is specified, the end points are estimated and the data It is also possible to convert to. However, in this case, a certain redundant portion determined by the rule is required in the color array.
* Here, a cell refers to a color area to which a predetermined color is added.
※ここで、セルとはある所定の1色が付される色彩領域を言う。 Further, in the example of the automatic recognition code filed earlier by the inventor, even if the end points are not always clear, if the number of constituting cells (the number of color ranges) is specified, the end points are estimated and the data It is also possible to convert to. However, in this case, a certain redundant portion determined by the rule is required in the color array.
* Here, a cell refers to a color area to which a predetermined color is added.
一方、電線のような商品は、その長手方向に延々と色彩配列をマーキングする場合もある。このようなケースや、ストラップのように端点が閉じて閉ループを形成しているケースなどでは、実際に読み取れる部位はマークされたコードのごく一部であることが考えられる。
On the other hand, products such as electric wires may mark the color arrangement endlessly in the longitudinal direction. In such a case or a case where the end points are closed to form a closed loop such as a strap, it is conceivable that the portion that can be actually read is a small part of the marked code.
このような場合、読み取った部位とコードの開始点、終点が一致することはまれである。また、始点又は終点付近に冗長セル(CRCコード等)を配する場合、この冗長分はデータ量に応じて大きくなるのが通常であり、読み取れる部位が限られている場合には冗長セルに遮られて肝心のデータセルを全て読み取りきれないケースもあることが予想される。
In such a case, it is rare that the read portion coincides with the start point and end point of the code. In addition, when redundant cells (such as CRC code) are arranged near the start point or end point, this redundancy usually increases according to the amount of data. When the readable part is limited, the redundant cell is blocked. It is expected that there are cases where all the important data cells cannot be read.
また、本願発明者は、色彩変化を時間的に接続してこの変化によってデータを表現する自動認識コードの発明をなし、別途出願(特願2008-212973等)をしている。しかし、この自動認識コードにおいては、色彩発光の色彩の変化を認識してはじめてそのデータを知ることができる。この色彩変化の場合、少ないセル数でデータを認識することによって、読み取り開始からデータを返すまでの時間(ここでは、ターンアラウンドタイムと呼ぶ)を短縮することができるが、エラー検知・訂正等のための冗長セルが多数ある場合は、この時間(ターンアラウンドタイム)が長くなるという欠点が考えられる。
The inventor of the present application has invented an automatic recognition code that temporally connects color changes and expresses data by the changes, and has filed a separate application (Japanese Patent Application No. 2008-212973, etc.). However, with this automatic recognition code, it is possible to know the data only after recognizing the color change of the color emission. In the case of this color change, by recognizing data with a small number of cells, it is possible to shorten the time from the start of reading until the data is returned (referred to here as turnaround time), but error detection / correction, etc. In the case where there are a large number of redundant cells for this purpose, this time (turnaround time) may be disadvantageous.
また、データセルの損傷などでデータを読み出せない場合、一般的には、損傷していない別のデータ部位を改めて読み取る必要があるが、操作者の作業が煩雑となり、実用性を大きく損なうことが容易に想像できる。
When data cannot be read due to data cell damage, etc., it is generally necessary to read another data portion that is not damaged, but this complicates the operator's work and greatly impairs practicality. Can be easily imagined.
用語の説明
色彩配列による自動認識コードは、いわゆる光学式認識コードの一種である。光学式認識コードに関する用語を若干説明する。 Explanation of Terms The automatic recognition code based on the color arrangement is a kind of so-called optical recognition code. Some terms related to the optical recognition code will be explained.
色彩配列による自動認識コードは、いわゆる光学式認識コードの一種である。光学式認識コードに関する用語を若干説明する。 Explanation of Terms The automatic recognition code based on the color arrangement is a kind of so-called optical recognition code. Some terms related to the optical recognition code will be explained.
コードシンボル:
所定のデータを表す、具体的な1個1個の光学式認識コードその物、一塊りの図形・図形群を、特に「コードシンボル」と呼ぶ。又は単に「シンボル」と呼ぶ場合もある。また、自動認識コードの1単位であるので、「単位コードマーク」と呼ぶ場合もある。 Code symbol:
A specific optical recognition code, which represents predetermined data, and a group of figures / graphic figures are particularly called “code symbols”. Or, it may be simply called “symbol”. Further, since it is one unit of the automatic recognition code, it may be called a “unit code mark”.
所定のデータを表す、具体的な1個1個の光学式認識コードその物、一塊りの図形・図形群を、特に「コードシンボル」と呼ぶ。又は単に「シンボル」と呼ぶ場合もある。また、自動認識コードの1単位であるので、「単位コードマーク」と呼ぶ場合もある。 Code symbol:
A specific optical recognition code, which represents predetermined data, and a group of figures / graphic figures are particularly called “code symbols”. Or, it may be simply called “symbol”. Further, since it is one unit of the automatic recognition code, it may be called a “unit code mark”.
さらに、便宜上、この「コードシンボル」その物を「タグ」と呼ぶ場合もたまにある。但し、タグは、基本的には、物品(被印物)に付す媒体を言う。例えば、値段のタグ、商品タグ、等である。
本発明は、自動認識コードとして色彩配列を用いるが、この1個1個のそれぞれの色彩配列が、自動認識コードとしての「コードシンボル」に相当する。 Furthermore, for convenience, the “code symbol” itself is sometimes called a “tag”. However, a tag basically refers to a medium attached to an article (an article to be marked). For example, price tags, product tags, and the like.
In the present invention, a color array is used as an automatic recognition code, and each of these color arrays corresponds to a “code symbol” as an automatic recognition code.
本発明は、自動認識コードとして色彩配列を用いるが、この1個1個のそれぞれの色彩配列が、自動認識コードとしての「コードシンボル」に相当する。 Furthermore, for convenience, the “code symbol” itself is sometimes called a “tag”. However, a tag basically refers to a medium attached to an article (an article to be marked). For example, price tags, product tags, and the like.
In the present invention, a color array is used as an automatic recognition code, and each of these color arrays corresponds to a “code symbol” as an automatic recognition code.
光学式認識コード(光学式自動認識コード):
「光学式認識コード」と言う場合は、一般に個別の具体的なコードシンボルではなく、そのようなコード「体系」を意味する言葉として用いる場合が多い。例えば「QRコード(登録商標)という名称の光学式認識コード。」のように表現し、一般には「コード体系」を表す語である。
また、光学式認識コードは、一般に機械によって自動的に認識されるので、光学式自動認識コードと呼ばれることも多い。 Optical recognition code (optical automatic recognition code):
In general, the term “optical recognition code” is often used as a word meaning such a code “system”, not an individual specific code symbol. For example, it is expressed as “an optical recognition code named QR code (registered trademark)”, and is generally a word indicating “code system”.
In addition, since the optical recognition code is generally automatically recognized by a machine, it is often called an optical automatic recognition code.
「光学式認識コード」と言う場合は、一般に個別の具体的なコードシンボルではなく、そのようなコード「体系」を意味する言葉として用いる場合が多い。例えば「QRコード(登録商標)という名称の光学式認識コード。」のように表現し、一般には「コード体系」を表す語である。
また、光学式認識コードは、一般に機械によって自動的に認識されるので、光学式自動認識コードと呼ばれることも多い。 Optical recognition code (optical automatic recognition code):
In general, the term “optical recognition code” is often used as a word meaning such a code “system”, not an individual specific code symbol. For example, it is expressed as “an optical recognition code named QR code (registered trademark)”, and is generally a word indicating “code system”.
In addition, since the optical recognition code is generally automatically recognized by a machine, it is often called an optical automatic recognition code.
被印物:
光学式認識コードのコードシンボルを付与する物品・対象物を「被印物」と呼ぶ。後述する本実施の形態では、主として「物品」を用いている。 Object to be stamped:
An article / object to which a code symbol of an optical recognition code is given is called a “marked object”. In this embodiment to be described later, “articles” are mainly used.
光学式認識コードのコードシンボルを付与する物品・対象物を「被印物」と呼ぶ。後述する本実施の形態では、主として「物品」を用いている。 Object to be stamped:
An article / object to which a code symbol of an optical recognition code is given is called a “marked object”. In this embodiment to be described later, “articles” are mainly used.
マーキング:
被印物に光学式認識コードの各コードシンボルを付与する作業を「マーキング」と呼ぶ。マーキングは、コードシンボルを被印物に直接「印刷」する処理の他、コードシンボルを付した「粘着シール」を貼付する動作や、コードシンボルを付したタグを「掛ける」動作、等が「マーキング」の好適な例に相当する。特に、被印物が販売の対象となる商材・商品である場合、コードシンボルを付したタグとしては、「値札」や「商品ブランドタグ」等が該当する。このような「値札」にコードシンボルを付して「商品」に取り付けることが広く行われている。この取り付けには、近年プラスチックのワイヤーが用いられることが多い。これらのような「取り付け」も、上記「マーキング」の好適な例である。 marking:
The operation of assigning each code symbol of the optical recognition code to the object to be marked is called “marking”. In addition to the process of “printing” the code symbol directly on the object to be marked, the operation of applying an “adhesive seal” with the code symbol and the operation of “hanging” the tag with the code symbol are “marking”. It corresponds to a preferable example of “. In particular, when the article to be marked is a product / product to be sold, a tag with a code symbol corresponds to a “price tag”, a “product brand tag”, or the like. A code symbol is attached to such a “price tag” and attached to a “product”. In recent years, plastic wires are often used for this attachment. Such “attachment” is also a suitable example of the above “marking”.
被印物に光学式認識コードの各コードシンボルを付与する作業を「マーキング」と呼ぶ。マーキングは、コードシンボルを被印物に直接「印刷」する処理の他、コードシンボルを付した「粘着シール」を貼付する動作や、コードシンボルを付したタグを「掛ける」動作、等が「マーキング」の好適な例に相当する。特に、被印物が販売の対象となる商材・商品である場合、コードシンボルを付したタグとしては、「値札」や「商品ブランドタグ」等が該当する。このような「値札」にコードシンボルを付して「商品」に取り付けることが広く行われている。この取り付けには、近年プラスチックのワイヤーが用いられることが多い。これらのような「取り付け」も、上記「マーキング」の好適な例である。 marking:
The operation of assigning each code symbol of the optical recognition code to the object to be marked is called “marking”. In addition to the process of “printing” the code symbol directly on the object to be marked, the operation of applying an “adhesive seal” with the code symbol and the operation of “hanging” the tag with the code symbol are “marking”. It corresponds to a preferable example of “. In particular, when the article to be marked is a product / product to be sold, a tag with a code symbol corresponds to a “price tag”, a “product brand tag”, or the like. A code symbol is attached to such a “price tag” and attached to a “product”. In recent years, plastic wires are often used for this attachment. Such “attachment” is also a suitable example of the above “marking”.
また、被印物の容器にコードシンボルを付す行為も、実質的な面を考慮してマーキングと呼ばれることが多い。
Also, the act of attaching a code symbol to the container of the object to be stamped is often called marking in consideration of substantial aspects.
マーキング色:
コードシンボルに用いられる1又は2色以上の色彩を「マーキング色」と呼ぶ。マーキング色は「信号色」とも呼ばれる。マーキング色としては、典型的には3色程度が識別精度等も考慮すると妥当である。例えば、RGBの3色や、CMYの3色等が好適である。 Marking color:
One or more colors used for the code symbol are called “marking colors”. The marking color is also called “signal color”. As the marking color, about three colors are typically appropriate considering the identification accuracy and the like. For example, three colors of RGB and three colors of CMY are suitable.
コードシンボルに用いられる1又は2色以上の色彩を「マーキング色」と呼ぶ。マーキング色は「信号色」とも呼ばれる。マーキング色としては、典型的には3色程度が識別精度等も考慮すると妥当である。例えば、RGBの3色や、CMYの3色等が好適である。 Marking color:
One or more colors used for the code symbol are called “marking colors”. The marking color is also called “signal color”. As the marking color, about three colors are typically appropriate considering the identification accuracy and the like. For example, three colors of RGB and three colors of CMY are suitable.
本発明においては、色彩配列を構成するセルに用いられる色彩がここで言うマーキング色であるが、後述する実施の形態では、主にR(赤)G(緑)B(青)を例として説明している。
In the present invention, the color used for the cells constituting the color array is the marking color referred to here, but in the embodiments described later, R (red) G (green) B (blue) will be mainly described as an example. is doing.
媒体:
被印物にマーキングを施す際に用いる手段・材料を「媒体」と呼ぶ。具体的には、マーキングに用いるインクや、被印物に掛ける値札、商品タグ、等が相当する。例えば、直接印刷する場合の「インク」は上記媒体の一例である。また、コードシンボルを付した商品タグを「掛ける」場合の「商品タグ」「値札」も媒体の一例である。また、上述した粘着シールもこの「媒体」の好適な一例に相当する。 Medium:
The means / material used when marking the object is called “medium”. Specifically, it corresponds to ink used for marking, a price tag to be applied to the object to be marked, a product tag, and the like. For example, “ink” for direct printing is an example of the medium. “Product tag” and “price tag” in the case of “hanging” a product tag with a code symbol are also examples of the medium. The above-mentioned adhesive seal corresponds to a suitable example of this “medium”.
被印物にマーキングを施す際に用いる手段・材料を「媒体」と呼ぶ。具体的には、マーキングに用いるインクや、被印物に掛ける値札、商品タグ、等が相当する。例えば、直接印刷する場合の「インク」は上記媒体の一例である。また、コードシンボルを付した商品タグを「掛ける」場合の「商品タグ」「値札」も媒体の一例である。また、上述した粘着シールもこの「媒体」の好適な一例に相当する。 Medium:
The means / material used when marking the object is called “medium”. Specifically, it corresponds to ink used for marking, a price tag to be applied to the object to be marked, a product tag, and the like. For example, “ink” for direct printing is an example of the medium. “Product tag” and “price tag” in the case of “hanging” a product tag with a code symbol are also examples of the medium. The above-mentioned adhesive seal corresponds to a suitable example of this “medium”.
クワイアットゾーン:
マーキング色以外の色彩による領域で、コードシンボルの境界、コードシンボル以外の領域を「クワイアットゾーン」と呼ぶ。 Quiat Zone:
A region other than the marking color and a region other than the code symbol boundary and the code symbol is called a “quiat zone”.
マーキング色以外の色彩による領域で、コードシンボルの境界、コードシンボル以外の領域を「クワイアットゾーン」と呼ぶ。 Quiat Zone:
A region other than the marking color and a region other than the code symbol boundary and the code symbol is called a “quiat zone”.
なお、マーキング色以外の色彩を特に、「周囲色」と呼ぶ。
In addition, colors other than the marking color are particularly called “ambient colors”.
従来の先行特許技術
ここで、従来の先行特許技術を、数種説明する。 Conventional Prior Patent Technologies Here, several conventional prior patent technologies will be described.
ここで、従来の先行特許技術を、数種説明する。 Conventional Prior Patent Technologies Here, several conventional prior patent technologies will be described.
例えば、下記特許文献1には、パリティビットが逆順に付与されたCRCコードのエラー検出装置が開示されている。
また、下記特許文献2には、時間的遷移を逆転した逆CRC回路を用いて誤り検出を行う際の処理遅延を抑制する発明が開示されている。
また、下記特許文献3には、右ブロックの逆読みによる誤差を生じることなく短時間で復調を完了させることが可能なバーコード復調装置が開示されている。
また、下記特許文献4には、巡回コードから生成したスクランブル信号を用いることによって、データの相関性を打ち消し、磁気ディスク記録装置の安定したトラッキング制御を実現する技術が開示されている。
また、下記特許文献5には、ハミング距離に基づいたトレリスコーディングが使用される光ディスクの内周にバーコードを設けて、生産日やシリアルナンバー等を記録する技術RAID装置が開示されている。
特開2002-171171号公報
特開2000-269826号公報
特開平11-053464号公報
特開2003-036598号公報
特開2006-318467号公報
For example, Patent Document 1 below discloses a CRC code error detection device in which parity bits are assigned in reverse order.
Further,Patent Document 2 below discloses an invention that suppresses processing delay when error detection is performed using an inverse CRC circuit in which temporal transition is reversed.
Patent Document 3 below discloses a barcode demodulator that can complete demodulation in a short time without causing an error due to reverse reading of the right block.
Patent Document 4 below discloses a technique for canceling the correlation of data by using a scramble signal generated from a cyclic code and realizing stable tracking control of a magnetic disk recording apparatus.
Patent Document 5 below discloses a technical RAID apparatus that records a production date, a serial number, and the like by providing a barcode on the inner periphery of an optical disc that uses trellis coding based on the Hamming distance.
JP 2002-171171 A JP 2000-269826 A Japanese Patent Laid-Open No. 11-053464 JP 2003-036598 A JP 2006-318467 A
また、下記特許文献2には、時間的遷移を逆転した逆CRC回路を用いて誤り検出を行う際の処理遅延を抑制する発明が開示されている。
また、下記特許文献3には、右ブロックの逆読みによる誤差を生じることなく短時間で復調を完了させることが可能なバーコード復調装置が開示されている。
また、下記特許文献4には、巡回コードから生成したスクランブル信号を用いることによって、データの相関性を打ち消し、磁気ディスク記録装置の安定したトラッキング制御を実現する技術が開示されている。
また、下記特許文献5には、ハミング距離に基づいたトレリスコーディングが使用される光ディスクの内周にバーコードを設けて、生産日やシリアルナンバー等を記録する技術RAID装置が開示されている。
Further,
本発明は、上記の事情に鑑みなされたものであり、連続したセル(色彩)の開始点を特に定めなくても所定のデータを返すことのできる色彩配列(コード)を得ることを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a color array (code) that can return predetermined data without particularly setting the starting point of continuous cells (colors). .
(1)本発明は、上記課題を解決するために、所定の色彩が付されたセルをm個並べて所定のデータを表現する色彩配列であって、同一色彩のセルが隣接しないように構成された色彩配列において、前記m個の色彩配列が繰り返し連続的に配列された場合に、該繰り返された色彩配列のうち、任意の位置の連続するm個のセルからなる色彩配列が、常に同一データを表現することを特徴とする色彩配列である。ここで、前記mは、2以上の整数である。
(1) In order to solve the above-described problem, the present invention is a color array that expresses predetermined data by arranging m cells each having a predetermined color, and is configured so that cells of the same color are not adjacent to each other. In the color arrangement, when the m color arrangements are repeatedly and continuously arranged, the color arrangement composed of m consecutive cells at arbitrary positions is always the same data among the repeated color arrangements. It is a color arrangement characterized by expressing. Here, the m is an integer of 2 or more.
(2)また、本発明は、上記課題を解決するために、所定の色彩を順番にm回発光して所定のデータを表現する色彩配列発光方法であって、同一色彩が連続して発光されないように構成された色彩配列発光方法において、前記m回の発光が繰り返し連続的に引き続いて発光されている場合に、該繰り返された色彩発光の列のうち、任意のタイミングから開始される連続するm回発光された色彩の列が、常に同一データを表現することを特徴とする色彩配列発光方法である。ここで、前記mは2以上の整数である。
(2) Further, in order to solve the above-described problem, the present invention is a color array light emitting method for expressing predetermined data by emitting predetermined colors m times in order, and the same colors are not continuously emitted. In the color array light emitting method configured as described above, when the m times of light emission are repeatedly and continuously emitted, the continuous color light emission sequence is started at an arbitrary timing. The color array light emitting method is characterized in that a sequence of colors emitted m times always represents the same data. Here, m is an integer of 2 or more.
(3)また、本発明は、(1)記載の色彩配列において、第1のデータを表す第1の前記色彩配列と、前記第1のデータとは異なる第2のデータを表す第2の前記色彩配列とは、それらの間のハミング距離が、n以上であることを特徴とする色彩配列である。ここで、nは、正の整数である。
(3) Further, the present invention provides the color array described in (1), wherein the first color array representing the first data and the second data representing the second data different from the first data. The color arrangement is a color arrangement characterized in that the Hamming distance between them is n or more. Here, n is a positive integer.
(4)また、本発明は、(3)記載の色彩配列において、前記色彩配列中の各桁の色彩間のハミング距離を各桁毎に求め、求めたハミング距離の総和を前記色彩配列間のハミング距離とすることを特徴とする色彩配列である。
(4) Further, in the color arrangement according to (3), the present invention obtains a hamming distance between colors of each digit in the color arrangement for each digit, and calculates a sum of the obtained hamming distances between the color arrangements. The color arrangement is characterized by a Hamming distance.
(5)また、本発明は、(4)記載の色彩配列において、前記色彩配列に用いられる色彩群に順番が設定されており、その順番に従ってった色彩間の距離を前記色彩間のハミング距離とすることを特徴とする色彩配列である。
(5) Further, in the color arrangement described in (4), the present invention is configured such that an order is set for the color group used in the color arrangement, and the distance between the colors according to the order is the Hamming distance between the colors. It is a color arrangement characterized by the following.
(6)また、本発明は、(3)記載の色彩配列において、前記nは、3であることを特徴とする色彩配列である。
(6) Further, the present invention is the color arrangement described in (3), wherein the n is 3.
(7)本発明は、上記課題を解決するために、所定の色彩が付されたセルをm個並べて所定のデータを表現する色彩配列であって、同一色彩のセルが隣接しないように構成された色彩配列において、所定のデータを表す前記色彩配列を、セルについて巡回置換した色彩配列も前記所定のデータを表し、前記所定のデータを表す色彩配列群は、セルについての置換群としてグループ分けされることを特徴とする色彩配列である。ここで、前記mは2以上の整数である。
(7) In order to solve the above-described problem, the present invention is a color array that expresses predetermined data by arranging m cells each having a predetermined color, and is configured so that cells of the same color are not adjacent to each other. In the color array, the color array obtained by cyclically replacing the color array representing the predetermined data for the cell also represents the predetermined data, and the color array group representing the predetermined data is grouped as a replacement group for the cell. It is a color arrangement characterized by that. Here, m is an integer of 2 or more.
(8)また、本発明は、(7)記載の色彩配列において、利用する色彩群は順番が設定されており、所定のデータを表す前記色彩配列を、色彩について前記順番に基づき循環置換した色彩配列は、前記所定のデータとは異なる他のデータを表し、前記他のデータを表す色彩に対する置換群としてのグループに属することを特徴とする色彩配列である。
(8) Further, according to the present invention, in the color array described in (7), a color group to be used is set in order, and the color array representing predetermined data is circulated and replaced based on the order of colors. The array represents another data different from the predetermined data, and belongs to a group as a replacement group for the color representing the other data.
(9)また、本発明は、(1)記載の色彩配列において、前記色彩配列は、逆順に読んだ場合も、正順に読んだ場合と同一のデータを表すことを特徴とする色彩配列である。
(9) The present invention is the color array according to (1), wherein the color array represents the same data as when read in the reverse order and when read in the reverse order. .
(10)また、本発明は、(1)記載の色彩配列において、前記色彩配列は、逆順に読んだ場合に、正順に読んだ場合とは異なる他のデータを表す場合は、その逆順の色彩配列が、利用できる色彩配列群から除かれていることを特徴とする色彩配列である。
(10) According to the present invention, in the color array described in (1), when the color array represents other data different from the case of reading in the normal order when the reverse order is read, the color in the reverse order is displayed. The color arrangement is characterized in that the arrangement is excluded from the available color arrangement group.
(11)また、本発明は、(1)、(3)~(10)のいずれか1項に記載の色彩配列を物品に付す方法において、所定の前記色彩配列を連続的に列状に配置する配置ステップ、を含むことを特徴とする色彩配列を物品に付す方法である。
(11) Further, the present invention provides the method for attaching the color arrangement according to any one of (1), (3) to (10) to an article, wherein the predetermined color arrangement is continuously arranged in a line. An arrangement step of attaching to the article a color array characterized by comprising:
(12)また、本発明は、(11)記載の色彩配列を物品に付す方法において、前記列は、直線又は曲線であることを特徴とする色彩配列を物品に付す方法である。
(12) Further, the present invention is a method for attaching a color array to an article, wherein the color array according to (11) is attached to the article, wherein the row is a straight line or a curve.
(13)また、本発明は、(11)又は(12)記載の色彩配列を物品に付す方法において、複数の前記色彩配列のそれぞれに対して、前記配置ステップを適用し、各色彩配列毎に前記列状に配置を行うステップ、を含み、前記各色彩配列毎の列が互いに平行に前記物品上に配置されていることを特徴とする色彩配列を物品に付す方法である。
(13) Further, in the method of attaching the color arrangement described in (11) or (12) to an article, the present invention applies the arrangement step to each of the plurality of color arrangements, and A method of applying a color arrangement to an article, wherein the arrangement includes arranging the arrangement in a row, and the columns for each color arrangement are arranged on the article in parallel with each other.
(14)また、本発明は、(2)記載の色彩配列発光方法において、第1のデータを表すために発光される第1の前記色彩配列と、前記第1のデータとは異なる第2のデータを表すために発光される第2の前記色彩配列とは、それらの間のハミング距離が、n以上であることを特徴とする色彩配列発光方法である。ここで、nは、正の整数である。
(14) Further, the present invention provides the color array light emitting method according to (2), wherein the first color array emitted to represent the first data is different from the first data. The second color array emitted to represent data is a color array light emitting method characterized in that a Hamming distance between them is n or more. Here, n is a positive integer.
(15)また、本発明は、(14)記載の色彩配列発光方法において、前記色彩配列中の各セルの色彩間のハミング距離を各桁毎に求め、求めたハミング距離の総和を前記色彩配列間のハミング距離とすることを特徴とする色彩配列発光方法である。
(15) Further, the present invention provides the color array light emitting method according to (14), wherein a Hamming distance between colors of each cell in the color array is obtained for each digit, and a total sum of the obtained Hamming distances is obtained in the color array. A color array light emitting method characterized by a hamming distance between them.
(16)また、本発明は、(15)記載の色彩配列発光方法において、前記色彩配列に用いられる色彩群に順番が設定されており、その順番に従ってった色彩間の距離を前記色彩間のハミング距離とすることを特徴とする色彩配列発光方法である。
(16) Further, in the color array light emitting method according to (15), the present invention is configured such that an order is set for the color group used in the color array, and a distance between the colors according to the order is set between the colors. A color array light emitting method characterized by a Hamming distance.
(17)また、本発明は、(14)記載の色彩配列発光方法において、前記nは、3であることを特徴とする色彩配列発光方法である。
(17) Further, the present invention is the color array light emitting method according to (14), wherein n is 3.
(18)また、本発明は、(1)、(3)~(10)のいずれか1項に記載の色彩配列が付された物品である。
(18) Further, the present invention is an article provided with the color arrangement described in any one of (1), (3) to (10).
以上述べたように、本発明によれば、開始点を特に定めなくてもデータを表現し、読み取ることができる自動認識コードを採用したので、電線等のひも状の物品に光学式の自動認識コードを連続的に付す(マーキング)することができ、利便性の高い光学式自動認識コードを実現することができる。
As described above, according to the present invention, an automatic recognition code that can express and read data without adopting a starting point is adopted, so that an optical automatic recognition is performed on a string-like article such as an electric wire. A code can be continuously attached (marked), and a highly convenient optical automatic recognition code can be realized.
10 シャッター
12 窓 10Shutter 12 Window
12 窓 10
以下、図面に基づき、本発明の好適な実施の形態について説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
なお、本件において、色彩の「配列」とは、色彩を所定の列状に並べたものであり、直線状、曲線状であっても良い。この色彩配列はその色彩の並びによってデータを表し、いわゆる自動認識コードとして利用する。また、本件において、n、m、k等は特に断らない限り正の整数である。
In this case, the “array” of colors is an arrangement of colors in a predetermined row, and may be linear or curved. This color array represents data by the arrangement of the colors, and is used as a so-called automatic recognition code. In this case, n, m, k, etc. are positive integers unless otherwise specified.
本件発明においては、色彩配列の巡回配列をコード化することによって、上記課題を解決している。巡回配列とは、その色彩配列コードを循環的にいわばローテート(rotate)して得られる全ての色彩配列群をいい、その詳細は、図1において後述する。
In the present invention, the above problem is solved by coding a cyclic arrangement of color arrangements. The cyclic arrangement refers to all color arrangement groups obtained by rotating the color arrangement code in a cyclic manner, the details of which will be described later with reference to FIG.
本発明では色彩配列群の任意の位置のセル(これをA1と呼ぶ)から、予め定められたセル数kを経たセルAkまでの色彩配列A1:Akの返すデータDaが、任意のセルB1から、予め定められたセル数kを経たセルBkまでの色彩配列B1:Bkの返すデータDbと等しいという特性を持つ配列であるということである。
このような性質を有する色彩配列群を用いることによって、上記課題を解決しているのである。 In the present invention, data Da returned by the color array A1: Ak from a cell at an arbitrary position in the color array group (referred to as A1) to a cell Ak after a predetermined number k of cells is returned from an arbitrary cell B1. This means that the color array B1: up to the cell Bk after passing through a predetermined number k of cells is an array having the characteristic that it is equal to the data Db returned by Bk.
The above problem is solved by using a color arrangement group having such properties.
このような性質を有する色彩配列群を用いることによって、上記課題を解決しているのである。 In the present invention, data Da returned by the color array A1: Ak from a cell at an arbitrary position in the color array group (referred to as A1) to a cell Ak after a predetermined number k of cells is returned from an arbitrary cell B1. This means that the color array B1: up to the cell Bk after passing through a predetermined number k of cells is an array having the characteristic that it is equal to the data Db returned by Bk.
The above problem is solved by using a color arrangement group having such properties.
本実施の形態では、k個のセルから成る色彩配列を連続的に並べて色彩配列群を形成している。そして、この色彩配列の巡回配列も、元の色彩配列と同一のデータを表すように構成しているので、上記色彩配列群をどこから読み始めても、正しいデータを復元することが可能である。
In this embodiment, a color arrangement group is formed by continuously arranging color arrangements composed of k cells. Since the cyclic arrangement of the color arrangement is also configured to represent the same data as the original color arrangement, it is possible to restore correct data no matter where the color arrangement group starts to be read.
これは、例えば、通常の2進数(0、1)で表現されるデータにおいては、図1のような巡回数値をそれぞれ同一値と見ると言うことである。
図1には巡回配列を用いたコード化の概念図が示されている。図1では、色彩を用いた例ではなく、「0」と「1」とを用いて概念を説明したものである。 This means that, for example, in data represented by normal binary numbers (0, 1), the number of rounds as shown in FIG. 1 is regarded as the same value.
FIG. 1 shows a conceptual diagram of coding using a cyclic array. In FIG. 1, the concept is described using “0” and “1” instead of an example using colors.
図1には巡回配列を用いたコード化の概念図が示されている。図1では、色彩を用いた例ではなく、「0」と「1」とを用いて概念を説明したものである。 This means that, for example, in data represented by normal binary numbers (0, 1), the number of rounds as shown in FIG. 1 is regarded as the same value.
FIG. 1 shows a conceptual diagram of coding using a cyclic array. In FIG. 1, the concept is described using “0” and “1” instead of an example using colors.
例えば、図1において、「00000001」のコードに対して、1ビットずつローテートした「10000000」「01000000」「00100000」「00010000」・・・等が巡回配列となる。そして、上述したように、これらを全て同値と見なすことによって、どの位置から読み取りを開始しても、正しくデータを読み取ることができるコード体系を得ることができる。
なお、図1では、数値(0、1)を用いて巡回配列の概念を説明したが、これは色彩でも同様である。
なお、図1において、例えば00000101の符号列は、
00000101000001010000010100000101…
のように00000101が「繰り返し配置」されていると想定している。 For example, in FIG. 1, “10000000”, “01000000”, “00100000”, “00010000”,... Rotated one bit at a time for the code “00000001” is a cyclic array. As described above, by regarding all of these as the same value, it is possible to obtain a code system that can read data correctly from any position.
In FIG. 1, the concept of the cyclic arrangement is described using numerical values (0, 1), but the same applies to colors.
In FIG. 1, for example, a code string of 00000101 is
00000101000001010000010100000101 ...
It is assumed that “00000101” is “repeatedly arranged”.
なお、図1では、数値(0、1)を用いて巡回配列の概念を説明したが、これは色彩でも同様である。
なお、図1において、例えば00000101の符号列は、
00000101000001010000010100000101…
のように00000101が「繰り返し配置」されていると想定している。 For example, in FIG. 1, “10000000”, “01000000”, “00100000”, “00010000”,... Rotated one bit at a time for the code “00000001” is a cyclic array. As described above, by regarding all of these as the same value, it is possible to obtain a code system that can read data correctly from any position.
In FIG. 1, the concept of the cyclic arrangement is described using numerical values (0, 1), but the same applies to colors.
In FIG. 1, for example, a code string of 00000101 is
00000101000001010000010100000101 ...
It is assumed that “00000101” is “repeatedly arranged”.
※色彩配列→数値変換の方法
ところで、色彩配列を数値に置き換えることは様々な方法があり、それぞれ特徴がある。 * Color array-> numerical conversion method By the way, there are various ways to replace the color array with numerical values, each with its own characteristics.
ところで、色彩配列を数値に置き換えることは様々な方法があり、それぞれ特徴がある。 * Color array-> numerical conversion method By the way, there are various ways to replace the color array with numerical values, each with its own characteristics.
これらについて以下に述べる。代表的な手法として、第1に、色彩遷移のみによって表される数値を採用する考え方があろう。また、第2に開始色彩の利用する考え方があると思われる。なお、これらの考え方は、本願発明者が独自に考案したものである。
説明の都合上、開始色彩を利用する例から説明する。 These are described below. As a typical method, first, there may be an idea of adopting a numerical value represented only by color transition. Secondly, there seems to be an idea of using the starting color. These ideas are originally devised by the present inventors.
For convenience of explanation, an example using the start color will be described.
説明の都合上、開始色彩を利用する例から説明する。 These are described below. As a typical method, first, there may be an idea of adopting a numerical value represented only by color transition. Secondly, there seems to be an idea of using the starting color. These ideas are originally devised by the present inventors.
For convenience of explanation, an example using the start color will be described.
1.開始色彩の利用(固定+前置数値方式)
上述したように色彩の遷移のみでデータを表現する場合(遷移数値化方式)では、開始色彩の関係で3つの異なる色彩配列が同値の数値を返す場合が多い。 1. Use of starting color (fixed + prefix numerical system)
As described above, when data is expressed only by color transition (transition digitization method), there are many cases where three different color arrays return the same value because of the start color.
上述したように色彩の遷移のみでデータを表現する場合(遷移数値化方式)では、開始色彩の関係で3つの異なる色彩配列が同値の数値を返す場合が多い。 1. Use of starting color (fixed + prefix numerical system)
As described above, when data is expressed only by color transition (transition digitization method), there are many cases where three different color arrays return the same value because of the start color.
そこで、例えばRGBを数値に置き換える方法として、
R=0、G=1、Bは前置の数字と同値、という置き換え方がある。このように色彩を数値に割り当てると、同一色彩の連続を防止することができ、隣接するセル同士は必ず異なる色彩とすることができ、読み取りが行いやすくなる。 Therefore, for example, as a method of replacing RGB with numerical values,
There is a replacement method in which R = 0, G = 1, and B are equivalent to the prefix numbers. When colors are assigned to numerical values in this way, continuity of the same colors can be prevented, and adjacent cells can always have different colors, making reading easier.
R=0、G=1、Bは前置の数字と同値、という置き換え方がある。このように色彩を数値に割り当てると、同一色彩の連続を防止することができ、隣接するセル同士は必ず異なる色彩とすることができ、読み取りが行いやすくなる。 Therefore, for example, as a method of replacing RGB with numerical values,
There is a replacement method in which R = 0, G = 1, and B are equivalent to the prefix numbers. When colors are assigned to numerical values in this way, continuity of the same colors can be prevented, and adjacent cells can always have different colors, making reading easier.
例えば、0が連続する場合は、RBRB・・・と色彩を配置すれば良く、同一色彩が連続してしまうことがない。1が連続する場合は、GBGB・・・と色彩を配置すれば良く、この場合も同一色彩が連続してしまうことがない。
このような割り当て手法を応用すると上記の色彩配列は、
固定+前置数値方式
RGBRBG RGBRBG RGBRBG
…→100110 100110 100110
GBRGRB GBRGRB GBRGRB
…→001011 001011 001011
BRGBGR BRGBGR BRGBGR
…→110001 110001 110001
となる。 For example, when 0s are continuous, it is only necessary to arrange the colors RBRB... And the same color will not be continued. When 1 is continuous, it is only necessary to arrange colors GBGB... In this case, the same color is not continued.
Applying such an allocation method, the above color arrangement is
Fixed + prefix numerical system RGBRBG RGBRBG RGBRBG
... → 100110 100110 100110
GBRGRB GBRGRB GBRGRB
... → 001011 001011 001011
BRGBGR BRGBGR BRGBGR
... → 110001 110001 110001
It becomes.
このような割り当て手法を応用すると上記の色彩配列は、
固定+前置数値方式
RGBRBG RGBRBG RGBRBG
…→100110 100110 100110
GBRGRB GBRGRB GBRGRB
…→001011 001011 001011
BRGBGR BRGBGR BRGBGR
…→110001 110001 110001
となる。 For example, when 0s are continuous, it is only necessary to arrange the colors RBRB... And the same color will not be continued. When 1 is continuous, it is only necessary to arrange colors GBGB... In this case, the same color is not continued.
Applying such an allocation method, the above color arrangement is
Fixed + prefix numerical system RGBRBG RGBRBG RGBRBG
... → 100110 100110 100110
GBRGRB GBRGRB GBRGRB
... → 001011 001011 001011
BRGBGR BRGBGR BRGBGR
... → 110001 110001 110001
It becomes.
2.色彩遷移により表される数値を採用する考え方(遷移数値化方式)
上述したように色彩遷移をそのまま0、1の数値に置き換えることが可能である。この数値を繰り返し配置することで、巡回コード対応の連続符号を表すことができる。
このとき、連続符号の任意の開始点から既知の桁数分の数値を取り込むことでデータを知ることができる。この場合、実際の信号は色彩配列なので、上述したように表現できる数値には制約が生じる。 2. Concept of adopting numerical values expressed by color transition (transition numerical system)
As described above, it is possible to replace the color transitions with numerical values of 0 and 1 as they are. By repeatedly arranging these numerical values, a continuous code corresponding to a cyclic code can be represented.
At this time, the data can be known by taking in the numerical values for the known number of digits from an arbitrary starting point of the continuous code. In this case, since the actual signal is a color array, the numerical values that can be expressed as described above are limited.
上述したように色彩遷移をそのまま0、1の数値に置き換えることが可能である。この数値を繰り返し配置することで、巡回コード対応の連続符号を表すことができる。
このとき、連続符号の任意の開始点から既知の桁数分の数値を取り込むことでデータを知ることができる。この場合、実際の信号は色彩配列なので、上述したように表現できる数値には制約が生じる。 2. Concept of adopting numerical values expressed by color transition (transition numerical system)
As described above, it is possible to replace the color transitions with numerical values of 0 and 1 as they are. By repeatedly arranging these numerical values, a continuous code corresponding to a cyclic code can be represented.
At this time, the data can be known by taking in the numerical values for the known number of digits from an arbitrary starting point of the continuous code. In this case, since the actual signal is a color array, the numerical values that can be expressed as described above are limited.
遷移数値化方式
開始色彩によって、異なる色彩配列を利用可能である。例えば、
R→G、G→B、B→Rという変化で「0」を表す。 Transition numerical system Different color arrangements can be used depending on the starting color. For example,
“0” is represented by changes of R → G, G → B, and B → R.
開始色彩によって、異なる色彩配列を利用可能である。例えば、
R→G、G→B、B→Rという変化で「0」を表す。 Transition numerical system Different color arrangements can be used depending on the starting color. For example,
“0” is represented by changes of R → G, G → B, and B → R.
R→B、B→G、G→Rという変化で「1」を表す。とすれば、色彩配列から数値を以下のように復元できる。すなわち、
RGBRBG RGBRBG RGBRBG…→000111000111000111
GBRGRB GBRGRB GBRGRB…→000111000111000111
BRGBGR BRGBGR BRGBGR…→000111000111000111
となり、巡回数値の特性を保ったまま、それぞれ異なる値を返すことがわかる。 “1” is represented by changes of R → B, B → G, and G → R. Then, the numerical value can be restored from the color array as follows. That is,
RGBRBG RGBRBG RGBRBG ... → 000111000111000111
GBRGRB GBRGRB GBRGRB ... → 000111000111000111
BRGBGR BRGBGR BRGBGR ... → 000111000111000111
Thus, it can be seen that different values are returned while maintaining the characteristics of the number of rounds.
RGBRBG RGBRBG RGBRBG…→000111000111000111
GBRGRB GBRGRB GBRGRB…→000111000111000111
BRGBGR BRGBGR BRGBGR…→000111000111000111
となり、巡回数値の特性を保ったまま、それぞれ異なる値を返すことがわかる。 “1” is represented by changes of R → B, B → G, and G → R. Then, the numerical value can be restored from the color array as follows. That is,
RGBRBG RGBRBG RGBRBG ... → 000111000111000111
GBRGRB GBRGRB GBRGRB ... → 000111000111000111
BRGBGR BRGBGR BRGBGR ... → 000111000111000111
Thus, it can be seen that different values are returned while maintaining the characteristics of the number of rounds.
色彩配列と数値配列
なお、このように色彩配列は2進数の「0、1」データ(=数値データ)と対応づけが可能であるが、これを「繰り返し配置」する場合、色彩配列と数値配列との間に以下に示すような関係が生じる。 Color array and numerical array In this way, the color array can be associated with binary “0, 1” data (= numerical data). However, when this is repeatedly arranged, the color array and the numerical array The following relationship arises between
なお、このように色彩配列は2進数の「0、1」データ(=数値データ)と対応づけが可能であるが、これを「繰り返し配置」する場合、色彩配列と数値配列との間に以下に示すような関係が生じる。 Color array and numerical array In this way, the color array can be associated with binary “0, 1” data (= numerical data). However, when this is repeatedly arranged, the color array and the numerical array The following relationship arises between
◆色彩配列と数値データの関係(その1)
例えば、00011という数値データを考える。これを「繰り返し配置」すると、
00011 00011 00011…となる。 ◆ Relationship between color array and numerical data (1)
For example, consider the numerical data 00001. If you repeat this,
00001 00001 00001...
例えば、00011という数値データを考える。これを「繰り返し配置」すると、
00011 00011 00011…となる。 ◆ Relationship between color array and numerical data (1)
For example, consider the numerical data 00001. If you repeat this,
00001 00001 00001...
ここで00011を上述した遷移数値化方式で色彩配列で表すと、先頭をRと置いた場合は、
RGBRBG(∵RG=0、GB=0、BR=0、RB=1、BG=1)
となる。そこでこの色彩配列を「繰り返し配置」すると、
RGBRBG RGBRBG RGBRBG RGBRBG
となる。 Here, when 00001 is represented by a color arrangement in the above-described transition numerical system, when the head is set to R,
RGBRBG (∵RG = 0, GB = 0, BR = 0, RB = 1, BG = 1)
It becomes. So, if you repeat this color arrangement,
RGBRBG RGBRBG RGBRBG RGBRBG
It becomes.
RGBRBG(∵RG=0、GB=0、BR=0、RB=1、BG=1)
となる。そこでこの色彩配列を「繰り返し配置」すると、
RGBRBG RGBRBG RGBRBG RGBRBG
となる。 Here, when 00001 is represented by a color arrangement in the above-described transition numerical system, when the head is set to R,
RGBRBG (∵RG = 0, GB = 0, BR = 0, RB = 1, BG = 1)
It becomes. So, if you repeat this color arrangement,
RGBRBG RGBRBG RGBRBG RGBRBG
It becomes.
ところで、この繰り返された色彩配列を数値に置き換え(変換す)ると
00011「1」00011「1」00011「1」…
となり、別の数字「1」が現れてきてしまう。ここで、上記「」は、別に表れた他の数字を意味するために挿入したものである。 By the way, when this repeated color array is replaced (converted) with a numerical value, it is assumed that 00001 “1” 00001 “1” 00001 “1”.
Then, another number “1” appears. Here, the above “” is inserted to mean another number that appears separately.
00011「1」00011「1」00011「1」…
となり、別の数字「1」が現れてきてしまう。ここで、上記「」は、別に表れた他の数字を意味するために挿入したものである。 By the way, when this repeated color array is replaced (converted) with a numerical value, it is assumed that 00001 “1” 00001 “1” 00001 “1”.
Then, another number “1” appears. Here, the above “” is inserted to mean another number that appears separately.
この例から理解できるように、00011の数値繰り返し配置は色彩配列で表せないが、000111は表すことができる。このことは、すなわち色彩配列の繰り返し配置で表せる数値配列は一定の制約があることを意味する。
As can be understood from this example, the numerical repeating arrangement of 0101 cannot be represented by a color arrangement, but 000111 can be represented. This means that the numerical array that can be represented by the repeated arrangement of the color array has certain restrictions.
上述した様に00011をその色彩配列で繰り返し配置し、これを数値に再び変換すると、00011「1」の繰り返しとなり、この色彩配列はRGBRBGRとなる。
これは、容易に理解できるように、要するに、数値を色彩配列で表した場合、先頭色彩(この場合”R”)と終端色彩(この場合”R”)が等しければ、上で述べたような別の数字が表れず、正常に数値を繰り返して配置することができることを意味する。 As described above, when 00001 is repeatedly arranged in the color arrangement and converted again into a numerical value, 00001 “1” is repeated, and this color arrangement becomes RGBRBGR.
As can be easily understood, when the numerical values are expressed in a color arrangement, if the first color (in this case “R”) and the last color (in this case “R”) are equal, as described above, It means that another number does not appear, and the numerical value can be normally repeated repeatedly.
これは、容易に理解できるように、要するに、数値を色彩配列で表した場合、先頭色彩(この場合”R”)と終端色彩(この場合”R”)が等しければ、上で述べたような別の数字が表れず、正常に数値を繰り返して配置することができることを意味する。 As described above, when 00001 is repeatedly arranged in the color arrangement and converted again into a numerical value, 00001 “1” is repeated, and this color arrangement becomes RGBRBGR.
As can be easily understood, when the numerical values are expressed in a color arrangement, if the first color (in this case “R”) and the last color (in this case “R”) are equal, as described above, It means that another number does not appear, and the numerical value can be normally repeated repeatedly.
このような条件を、数値データとして考察すると、
i個の「0(数値)」で構成される数列において、最終の色彩は
G(i=1)、B(i=2)、R(i=3)、
G(i=4)、B(i=5)、R(i=6)、…
となる。一方、「1(数値)」はRGBの進み(遷移方向)が「0」の場合と逆なので、数値に含まれる“1”の個数をmとすると、明らかに、
G(i-m=1)、B(i-m=2)、R(i-m=3)、
G(i-m=4)、B(i-m=5)、R(i-m=6)、…
となる。すなわち、数列の桁数をk、含まれる「1(数値)」の個数mとすると、
(k-2m) mod 3 ≡ 0
を満たすことが、その数列を色彩配列を繰り返して配列した場合に表せる条件となる。 Considering such conditions as numerical data,
In a sequence consisting of i “0 (numerical values)”, the final colors are G (i = 1), B (i = 2), R (i = 3),
G (i = 4), B (i = 5), R (i = 6),.
It becomes. On the other hand, “1 (numerical value)” is opposite to the case where the progression (transition direction) of RGB is “0”. Therefore, if the number of “1” included in the numerical value is m, it is clear that
G (im = 1), B (im = 2), R (im = 3),
G (im = 4), B (im = 5), R (im = 6),...
It becomes. That is, if the number of digits in the sequence is k and the number m of “1 (numerical values)” is included,
(K-2m)mod 3 ≡ 0
Satisfying the condition is a condition that can be expressed when the numerical sequence is arranged by repeating the color arrangement.
i個の「0(数値)」で構成される数列において、最終の色彩は
G(i=1)、B(i=2)、R(i=3)、
G(i=4)、B(i=5)、R(i=6)、…
となる。一方、「1(数値)」はRGBの進み(遷移方向)が「0」の場合と逆なので、数値に含まれる“1”の個数をmとすると、明らかに、
G(i-m=1)、B(i-m=2)、R(i-m=3)、
G(i-m=4)、B(i-m=5)、R(i-m=6)、…
となる。すなわち、数列の桁数をk、含まれる「1(数値)」の個数mとすると、
(k-2m) mod 3 ≡ 0
を満たすことが、その数列を色彩配列を繰り返して配列した場合に表せる条件となる。 Considering such conditions as numerical data,
In a sequence consisting of i “0 (numerical values)”, the final colors are G (i = 1), B (i = 2), R (i = 3),
G (i = 4), B (i = 5), R (i = 6),.
It becomes. On the other hand, “1 (numerical value)” is opposite to the case where the progression (transition direction) of RGB is “0”. Therefore, if the number of “1” included in the numerical value is m, it is clear that
G (im = 1), B (im = 2), R (im = 3),
G (im = 4), B (im = 5), R (im = 6),...
It becomes. That is, if the number of digits in the sequence is k and the number m of “1 (numerical values)” is included,
(K-2m)
Satisfying the condition is a condition that can be expressed when the numerical sequence is arranged by repeating the color arrangement.
また、上述した固定+前置数値方式の場合、例えば、00110はRBGBRであるが、これを繰り返し配置すると、
RBGBR RBGBR RBGBR
となりRが重複することが判明する。すなわち、固定+前置数値方式では、先端と終端が同値、かつ終端の1つ前が異値の場合、色彩配列の繰り返しができないことが判明する。 In addition, in the case of the fixed + prefix numerical system described above, for example, 00110 is RBGBR, but if this is repeatedly arranged,
RBGBR RBGBR RBGBR
It turns out that R overlaps. In other words, in the fixed + prefix numerical system, it is found that the color arrangement cannot be repeated when the front end and the end are the same value and the previous one is a different value.
RBGBR RBGBR RBGBR
となりRが重複することが判明する。すなわち、固定+前置数値方式では、先端と終端が同値、かつ終端の1つ前が異値の場合、色彩配列の繰り返しができないことが判明する。 In addition, in the case of the fixed + prefix numerical system described above, for example, 00110 is RBGBR, but if this is repeatedly arranged,
RBGBR RBGBR RBGBR
It turns out that R overlaps. In other words, in the fixed + prefix numerical system, it is found that the color arrangement cannot be repeated when the front end and the end are the same value and the previous one is a different value.
詳細に言えば、以下の通りとなる。
まず、先端の色彩は、0ならR、1ならGに決定する。
先端の値が0の場合を検討する。この場合は、先端の色彩は、Rである。終端も同様に、Rとなるためには、終端の数値も0である必用がある。もし、終端が1である場合には、終端の色彩は、GかBとなってしまうからである。 In detail, it is as follows.
First, the tip color is determined to be R if it is 0 and G if it is 1.
Consider the case where the tip value is zero. In this case, the color at the tip is R. Similarly, in order for the end to be R, the numerical value of the end must be 0. If the end is 1, the end color will be G or B.
まず、先端の色彩は、0ならR、1ならGに決定する。
先端の値が0の場合を検討する。この場合は、先端の色彩は、Rである。終端も同様に、Rとなるためには、終端の数値も0である必用がある。もし、終端が1である場合には、終端の色彩は、GかBとなってしまうからである。 In detail, it is as follows.
First, the tip color is determined to be R if it is 0 and G if it is 1.
Consider the case where the tip value is zero. In this case, the color at the tip is R. Similarly, in order for the end to be R, the numerical value of the end must be 0. If the end is 1, the end color will be G or B.
終端が1の場合であっても、その終端の1つ前の値が同じく0であった場合、終端は同値を示すBとなる可能性がある。従って、終端の一つ前が0ではなかった場合に、常に先端と同一色彩となる。
このように、同一色彩が連続することを許さない色彩配列の体系を採用する場合においては、一般的に、全ての繰り返し数値配列を、色彩配列に置き換えることはできない。 Even if the terminal is 1, if the value immediately before the terminal is 0, the terminal may be B indicating the same value. Therefore, when the position immediately before the end is not 0, the same color as the tip is always obtained.
Thus, in the case of adopting a color arrangement system that does not allow the same color to continue, generally, it is not possible to replace all the repeated numerical value arrangements with a color arrangement.
このように、同一色彩が連続することを許さない色彩配列の体系を採用する場合においては、一般的に、全ての繰り返し数値配列を、色彩配列に置き換えることはできない。 Even if the terminal is 1, if the value immediately before the terminal is 0, the terminal may be B indicating the same value. Therefore, when the position immediately before the end is not 0, the same color as the tip is always obtained.
Thus, in the case of adopting a color arrangement system that does not allow the same color to continue, generally, it is not possible to replace all the repeated numerical value arrangements with a color arrangement.
◆色彩配列と数値データの関係(その2)
ところで、000111を上述した遷移数値化方式を用いて色彩配列で表す場合、表し方としては、上述したように
RGBRBGR
がまず挙げられる。しかし、それ以外にも、
GBRGRBG 及び BRGBGRB
と言う表し方も存在する。 ◆ Relationship between color array and numerical data (Part 2)
By the way, when 000111 is represented by a color array using the above-described transition numerical system, the representation method is RGBRBGR as described above.
First of all. But besides that,
GBRGRBG and BRGBGRB
There is also a way of expressing that.
ところで、000111を上述した遷移数値化方式を用いて色彩配列で表す場合、表し方としては、上述したように
RGBRBGR
がまず挙げられる。しかし、それ以外にも、
GBRGRBG 及び BRGBGRB
と言う表し方も存在する。 ◆ Relationship between color array and numerical data (Part 2)
By the way, when 000111 is represented by a color array using the above-described transition numerical system, the representation method is RGBRBGR as described above.
First of all. But besides that,
GBRGRBG and BRGBGRB
There is also a way of expressing that.
従って、
000111000111000111…
を表す色彩配列は
RGBRBG RGBRBG RGBRBG…
GBRGRB GBRGRB GBRGRB…
BRGBGR BRGBGR BRGBGR…
の3種が存在する。 Therefore,
000111000111000111 ...
The color arrangement that represents is RGBRBG RGBRBG RGBRBG ...
GBRGRB GBRGRB GBRGRB ...
BRGBGR BRGBGR BRGBGR ...
There are three types.
000111000111000111…
を表す色彩配列は
RGBRBG RGBRBG RGBRBG…
GBRGRB GBRGRB GBRGRB…
BRGBGR BRGBGR BRGBGR…
の3種が存在する。 Therefore,
000111000111000111 ...
The color arrangement that represents is RGBRBG RGBRBG RGBRBG ...
GBRGRB GBRGRB GBRGRB ...
BRGBGR BRGBGR BRGBGR ...
There are three types.
この色彩配列を、巡回的に認識すると以下のように認識が行われる。巡回的に認識するとは開始点を逐次ずらして巡回させて読み取って認識を実行することを言う。
最初のRから認識を開始した場合、次のGから認識を開始した場合、・・・のように、順次開始点をずらして認識を行っていくのである(巡回的に認識)。このようにして認識した例を以下に示す。 When this color arrangement is recognized cyclically, recognition is performed as follows. Recognizing cyclically means that the start point is sequentially shifted and read to perform recognition.
When the recognition is started from the first R, when the recognition is started from the next G, the recognition is performed by sequentially shifting the starting point as in (...). An example recognized in this way is shown below.
最初のRから認識を開始した場合、次のGから認識を開始した場合、・・・のように、順次開始点をずらして認識を行っていくのである(巡回的に認識)。このようにして認識した例を以下に示す。 When this color arrangement is recognized cyclically, recognition is performed as follows. Recognizing cyclically means that the start point is sequentially shifted and read to perform recognition.
When the recognition is started from the first R, when the recognition is started from the next G, the recognition is performed by sequentially shifting the starting point as in (...). An example recognized in this way is shown below.
RGBRBG RGBRBG RGBRBG…→000111000111000111
GBRBG RGBRBG RGBRBG…→00111000111000111
BRBG RGBRBG RGBRBG…→0111000111000111
RBG RGBRBG RGBRBG…→111000111000111
BG RGBRBG RGBRBG…→11000111000111
G RGBRBG RGBRBG…→1000111000111
GBRGRB GBRGRB GBRGRB…→000111000111000111
BRGRB GBRGRB GBRGRB…→00111000111000111
RGRB GBRGRB GBRGRB…→0111000111000111
GRB GBRGRB GBRGRB…→111000111000111
RB GBRGRB GBRGRB…→11000111000111
B GBRGRB GBRGRB…→1000111000111
BRGBGR BRGBGR BRGBGR…→000111000111000111
RGBGR BRGBGR BRGBGR…→00111000111000111
GBGR BRGBGR BRGBGR…→0111000111000111
BGR BRGBGR BRGBGR…→111000111000111
GR BRGBGR BRGBGR…→11000111000111
R BRGBGR BRGBGR…→1000111000111
このように、数値は同一の数値の繰り返し配列であり、色彩は連続して同一色彩が表れることもない。つまり、常に隣接するセルでは異なった色彩が表れるような繰り返し配列であることが理解されよう。
また固定+前置数値方式では、以下に示すように始まりの状況に応じてその部分の色彩配列が異なるパターンが生じる。以下の例では、「その部分」に「」を付し、明確にしている。
RGBRBG RGBRBG RGBRBG ... → 000111000111000111
GBRBG RGBRBG RGBRBG ... → 00111000111000111
BRBG RGBRBG RGBRBG ... → 0111000111000111
RBG RGBRBG RGBRBG ... → 111000111000111
BG RGBRBG RGBRBG ... → 11000111000111
G RGBRBG RGBRBG ... → 1000111000111
GBRGRB GBRGRB GBRGRB ... → 000111000111000111
BRGRB GBRGRB GBRGRB ... → 00111000111000111
RGRB GBRGRB GBRGRB… → 0111000111000111
GRB GBRGRB GBRGRB ... → 111000111000111
RB GBRGRB GBRGRB ... → 11000111000111
B GBRGRB GBRGRB ... → 1000111000111
BRGBGR BRGBGR BRGBGR ... → 000111000111000111
RGBGR BRGBGR BRGBGR ... → 00111000111000111
GBGR BRGBGR BRGBGR ... → 0111000111000111
BGR BRGBGR BRGBGR ... → 111000111000111
GR BRGBGR BRGBGR… → 11000111000111
R BRGBGR BRGBGR… → 1000111000111
As described above, the numerical values are a repetitive arrangement of the same numerical values, and the colors do not appear in succession. That is, it will be understood that the arrangement is such that different colors always appear in adjacent cells.
Further, in the fixed + prefix numerical system, a pattern in which the color arrangement of the portion differs depending on the starting situation as shown below. In the following example, “the part” is clarified by adding “”.
000111000111000111
…→「RBR」GBG RBRGBG RBRGBG
00111000111000111
…→「RB」GBG RBRGBG RBRGBG
0111000111000111
…→「R」GBG RBRGBG RBRGBG
111000111000111
…→「GBG」RBRGBG RBRGBG
11000111000111
…→「GB」RBRGBG RBRGBG
このように同一繰り返し数値配列は複数の異なった色彩配列で表されることがある。 000111000111000111
... → "RBR" GBG RBRGBG RBRGBG
00111000111000111
... → "RB" GBG RBRGBG RBRGBG
0111000111000111
... → "R" GBG RBRGBG RBRGBG
111000111000111
... → "GBG" RBRGBG RBRGBG
11000111000111
... → "GB" RBRGBG RBRGBG
As described above, the same repeated numerical value array may be represented by a plurality of different color arrays.
…→「RBR」GBG RBRGBG RBRGBG
00111000111000111
…→「RB」GBG RBRGBG RBRGBG
0111000111000111
…→「R」GBG RBRGBG RBRGBG
111000111000111
…→「GBG」RBRGBG RBRGBG
11000111000111
…→「GB」RBRGBG RBRGBG
このように同一繰り返し数値配列は複数の異なった色彩配列で表されることがある。 000111000111000111
... → "RBR" GBG RBRGBG RBRGBG
00111000111000111
... → "RB" GBG RBRGBG RBRGBG
0111000111000111
... → "R" GBG RBRGBG RBRGBG
111000111000111
... → "GBG" RBRGBG RBRGBG
11000111000111
... → "GB" RBRGBG RBRGBG
As described above, the same repeated numerical value array may be represented by a plurality of different color arrays.
従って、本文では、以下のような状況を検討する。
Therefore, the following situations will be considered in the text.
(1)連続同値(連続して複数のセルに同一色彩が付されること)を許さない色彩配列パターンを採用する場合を検討する。
(2)上記のパターンを採用した場合、そのコードシンボルを繰り返し配置した時に、全ての巡回配列を同一データと見なす方式を採用する。 (1) Consider a case of adopting a color arrangement pattern that does not allow continuous equivalence (same color is continuously assigned to a plurality of cells).
(2) When the above pattern is adopted, a system is adopted in which all cyclic arrays are regarded as the same data when the code symbols are repeatedly arranged.
(2)上記のパターンを採用した場合、そのコードシンボルを繰り返し配置した時に、全ての巡回配列を同一データと見なす方式を採用する。 (1) Consider a case of adopting a color arrangement pattern that does not allow continuous equivalence (same color is continuously assigned to a plurality of cells).
(2) When the above pattern is adopted, a system is adopted in which all cyclic arrays are regarded as the same data when the code symbols are repeatedly arranged.
この(1)(2)のような状況下において、
(A)巡回色彩配列の性質
(B)巡回色彩配列のデータ化
について、以下詳細に検討し、説明を行う。 Under the circumstances (1) and (2),
(A) Property of cyclic color array (B) Data conversion of cyclic color array will be discussed and explained in detail below.
(A)巡回色彩配列の性質
(B)巡回色彩配列のデータ化
について、以下詳細に検討し、説明を行う。 Under the circumstances (1) and (2),
(A) Property of cyclic color array (B) Data conversion of cyclic color array will be discussed and explained in detail below.
※巡回色彩配列の具体的性質
以下、3種の色彩(R,G,B)で構成された色彩配列について述べる。 * Specific properties of the cyclic color arrangement The color arrangement composed of three kinds of colors (R, G, B) is described below.
以下、3種の色彩(R,G,B)で構成された色彩配列について述べる。 * Specific properties of the cyclic color arrangement The color arrangement composed of three kinds of colors (R, G, B) is described below.
「具体例1」 6セル色彩配列の例
ここで、6セル色彩(配列)とは、6セルを並べて構成した色彩配列であって、例えばRGRGBG、RGRGBG、RGRGBG、のような例であり、先頭と終端(下線部)が異なった色彩であることが条件・特徴となる。
このような6セル色彩配列の場合、巡回配列(巡回コードを作成する工程)を行っても全く同値とならないものは、図2に示す14通りである。つまり、14種のデータを表すことができる。 “Specific Example 1” Example of 6-cell color arrangement Here, the 6-cell color (array) is a color array configured by arranging 6 cells, and is an example such as RGRGBG, RGRGBG, RGRGBG, and the like. It is a condition and feature that the end (underlined part) is a different color.
In the case of such a 6-cell color arrangement, there are 14 patterns shown in FIG. 2 that do not have the same value even if a cyclic arrangement (step of creating a cyclic code) is performed. That is, 14 types of data can be represented.
ここで、6セル色彩(配列)とは、6セルを並べて構成した色彩配列であって、例えばRGRGBG、RGRGBG、RGRGBG、のような例であり、先頭と終端(下線部)が異なった色彩であることが条件・特徴となる。
このような6セル色彩配列の場合、巡回配列(巡回コードを作成する工程)を行っても全く同値とならないものは、図2に示す14通りである。つまり、14種のデータを表すことができる。 “Specific Example 1” Example of 6-cell color arrangement Here, the 6-cell color (array) is a color array configured by arranging 6 cells, and is an example such as RGRGBG, RGRGBG, RGRGBG, and the like. It is a condition and feature that the end (underlined part) is a different color.
In the case of such a 6-cell color arrangement, there are 14 patterns shown in FIG. 2 that do not have the same value even if a cyclic arrangement (step of creating a cyclic code) is performed. That is, 14 types of data can be represented.
ところで、本発明では、既に述べたように、巡回配列を同値と見ている。これによって、どこから読み始めても、常に正しい値が得られるものである。
巡回置換を行っても変化しない諸元は、各色彩のセル数とセル間隔配列なので、これに基づき色彩配列を分類するのが妥当と考えられる。図2では、上記14個のコードシンボルをそのような観点からグループに分類している。 By the way, in the present invention, as described above, the cyclic arrays are regarded as equivalent. This ensures that the correct value is always obtained no matter where you start reading.
The specifications that do not change even if cyclic replacement is performed are the number of cells of each color and the cell interval arrangement, and it is considered appropriate to classify the color arrangement based on this. In FIG. 2, the 14 code symbols are classified into groups from such a viewpoint.
巡回置換を行っても変化しない諸元は、各色彩のセル数とセル間隔配列なので、これに基づき色彩配列を分類するのが妥当と考えられる。図2では、上記14個のコードシンボルをそのような観点からグループに分類している。 By the way, in the present invention, as described above, the cyclic arrays are regarded as equivalent. This ensures that the correct value is always obtained no matter where you start reading.
The specifications that do not change even if cyclic replacement is performed are the number of cells of each color and the cell interval arrangement, and it is considered appropriate to classify the color arrangement based on this. In FIG. 2, the 14 code symbols are classified into groups from such a viewpoint.
図2の表において、各グループ分けの意味は
グループA:RGB各2色、各色彩の間隔(間にあるセルの数)がいずれも1,3
グループB:RGB各2色、各色彩の間隔(間にあるセルの数)がいずれも2,2
グループC:RGBが3,2,1個ずつ。(但し順不同)
但し、C-1,C-2はそれぞれ各色彩に対して巡回置換群である。 In the table of FIG. 2, the meaning of each grouping is as follows: Group A: RGB each of two colors, and each color interval (number of cells between them) is 1, 3
Group B: 2 colors for each of RGB, and the interval between each color (the number of cells between them) is 2, 2
Group C: 3, 2, and 1 RGB. (However, in random order)
However, C-1 and C-2 are cyclic permutation groups for each color.
グループA:RGB各2色、各色彩の間隔(間にあるセルの数)がいずれも1,3
グループB:RGB各2色、各色彩の間隔(間にあるセルの数)がいずれも2,2
グループC:RGBが3,2,1個ずつ。(但し順不同)
但し、C-1,C-2はそれぞれ各色彩に対して巡回置換群である。 In the table of FIG. 2, the meaning of each grouping is as follows: Group A: RGB each of two colors, and each color interval (number of cells between them) is 1, 3
Group B: 2 colors for each of RGB, and the interval between each color (the number of cells between them) is 2, 2
Group C: 3, 2, and 1 RGB. (However, in random order)
However, C-1 and C-2 are cyclic permutation groups for each color.
グループ0:RGBのうち2色のみで構成(以後の考察ではこのグループは省く。)
このような考え方によれば色彩順は考慮していないので、各グループは色彩に対して置換的である。実際に、図2に示した各グループは、R→G、G→B、B→R、もしくはR→B、G→R、B→G、という色彩の置換(変更)をすることができる循環置換群であり、置換したコードシンボル群と置換前のコードシンボルとで、各グループ毎に閉じていることが理解されよう。すなわち、これらコードシンボルは、いわゆる置換群を形成していることになる。 Group 0: Consists of only two colors of RGB (this group is omitted in the following discussion).
According to this way of thinking, the color order is not taken into account, so each group is replaceable with respect to the color. Actually, each group shown in FIG. 2 is a cycle that can perform color replacement (change) of R → G, G → B, B → R, or R → B, G → R, B → G. It will be understood that this is a replacement group, and the replaced code symbol group and the code symbol before replacement are closed for each group. That is, these code symbols form a so-called substitution group.
このような考え方によれば色彩順は考慮していないので、各グループは色彩に対して置換的である。実際に、図2に示した各グループは、R→G、G→B、B→R、もしくはR→B、G→R、B→G、という色彩の置換(変更)をすることができる循環置換群であり、置換したコードシンボル群と置換前のコードシンボルとで、各グループ毎に閉じていることが理解されよう。すなわち、これらコードシンボルは、いわゆる置換群を形成していることになる。 Group 0: Consists of only two colors of RGB (this group is omitted in the following discussion).
According to this way of thinking, the color order is not taken into account, so each group is replaceable with respect to the color. Actually, each group shown in FIG. 2 is a cycle that can perform color replacement (change) of R → G, G → B, B → R, or R → B, G → R, B → G. It will be understood that this is a replacement group, and the replaced code symbol group and the code symbol before replacement are closed for each group. That is, these code symbols form a so-called substitution group.
また、グループC1とC2は互いに鏡像関係(R←→G、G←→B、B←→Rのみの置換)にある。一方、グループC1,C2それぞれは、巡回置換群として閉じている。
In addition, the groups C1 and C2 are mirror images of each other (replacement of only R ← → G, G ← → B, and B ← → R). On the other hand, each of the groups C1 and C2 is closed as a cyclic replacement group.
また,グループC1+C2は、いずれかの一対の色彩同士を置き換えた置換に対して群を無し、閉じていることが理解されよう。
Also, it will be understood that the group C1 + C2 has no group and is closed with respect to the replacement in which any pair of colors is replaced.
※なお、本発明、本実施の形態では、「巡回置換」を配列の巡回的置換を意味する言葉として用いており、また、「循環置換」をR→G、G→B、B→Rのような構成種の循環的置換を表す言葉として用いている。
* In the present invention and this embodiment, "cyclic substitution" is used as a word meaning cyclic substitution of sequences, and "cyclic substitution" is defined as R → G, G → B, B → R. It is used as a term for the cyclic substitution of such constituent species.
簡単に言えば、配列を構成する各セルの位置を巡回的にずらしていくことを巡回置換といい、色彩を(予め定められた順番で)変更することを循環置換と言っているのである。
To put it simply, shifting the position of each cell constituting the array cyclically is called cyclic replacement, and changing the color (in a predetermined order) is called cyclic replacement.
ハミング距離
ところで色彩配列を正確に認識するためには、各色彩配列間の差異(ハミング距離)が大きいことが望ましい。
本実施の形態において特徴的なことは、色彩の間で(ハミング)距離を定義したことである。この結果、色彩の自動認識コードにおける検出精度等を数的に論じることが可能である。 In order to accurately recognize the color arrangement at the Hamming distance, it is desirable that the difference (Hamming distance) between the color arrangements is large.
What is characteristic in the present embodiment is that (hamming) distance is defined between colors. As a result, it is possible to discuss numerically the detection accuracy in the automatic color recognition code.
ところで色彩配列を正確に認識するためには、各色彩配列間の差異(ハミング距離)が大きいことが望ましい。
本実施の形態において特徴的なことは、色彩の間で(ハミング)距離を定義したことである。この結果、色彩の自動認識コードにおける検出精度等を数的に論じることが可能である。 In order to accurately recognize the color arrangement at the Hamming distance, it is desirable that the difference (Hamming distance) between the color arrangements is large.
What is characteristic in the present embodiment is that (hamming) distance is defined between colors. As a result, it is possible to discuss numerically the detection accuracy in the automatic color recognition code.
色彩配列同士のハミング距離は、各色彩配列の各桁を比較し、それらの色彩間の距離を各桁毎に求め、それらの総和である。色彩間の距離は、色彩間に順番等を設け、その順番に従ってって、色彩間の距離を定めるのが好適である。つまり、その順番において色彩が隣接していれば、そのハミング距離を1と置くのである。間に他の色彩が一種存在する場合は、それら色彩間のハミング距離は2である。そして同一の色彩の場合は当然、ハミング距離は0となる。
つまり、ある色彩と他の色彩との間にある色彩の数+1を「距離」とすることが好適である。 The Hamming distance between the color arrangements is the sum of the digits of the color arrangements, the distance between the colors obtained for each digit. The distance between colors is preferably determined by providing an order between the colors and determining the distance between the colors according to the order. That is, if the colors are adjacent in that order, the Hamming distance is set to 1. If there is another kind of color between them, the Hamming distance between these colors is 2. Of course, in the case of the same color, the Hamming distance is zero.
That is, it is preferable to set the “distance” to the number of colors +1 between one color and anothercolor + 1.
つまり、ある色彩と他の色彩との間にある色彩の数+1を「距離」とすることが好適である。 The Hamming distance between the color arrangements is the sum of the digits of the color arrangements, the distance between the colors obtained for each digit. The distance between colors is preferably determined by providing an order between the colors and determining the distance between the colors according to the order. That is, if the colors are adjacent in that order, the Hamming distance is set to 1. If there is another kind of color between them, the Hamming distance between these colors is 2. Of course, in the case of the same color, the Hamming distance is zero.
That is, it is preferable to set the “distance” to the number of colors +1 between one color and another
従って、3色(例えばRGB)を用いる場合は、同一色彩の場合はハミング距離が0であるが、異なる色彩の場合は、ハミング距離は1である。同じく、3色(例えばRGB)を用いる場合、色彩配列同士のハミング距離は、各色彩配列の各桁を比較し、異なる色彩である桁の数である。
Therefore, when three colors (for example, RGB) are used, the Hamming distance is 0 for the same color, but the Hamming distance is 1 for different colors. Similarly, when three colors (for example, RGB) are used, the Hamming distance between the color arrangements is the number of digits that are different colors by comparing the digits of the color arrangements.
但し、本考案では巡回コードを全て同一と見なすので、各データ(自動認識コードシンボル)の巡回配列同士の最小ハミング距離を、そのデータ(を表す自動認識コードシンボル)のハミング距離と見なしている。
However, in the present invention, since the cyclic codes are all regarded as the same, the minimum hamming distance between the cyclic arrays of each data (automatic recognition code symbol) is regarded as the hamming distance of the data (representing automatic recognition code symbol).
例えば、RGBRBGとGBRGRBの色彩配列のハミング距離は、RGBRBGと、GBRGRBの巡回コード群とを比較し、最も小さい値をRGBRBGとGBRGRBの色彩配列のハミング距離であると定義している。
以下、RGBRBGとGBRGRBの例を示す。桁が一致していない箇所に下線が引かれている。 For example, the Hamming distance of the RGBRBG and GBRGRB color arrays is compared with the RGBRBG and GBRGRB cyclic code groups, and the smallest value is defined as the Hamming distance of the RGBRBG and GBRGRB color arrays.
Examples of RGBRBG and GBRGRB are shown below. The underline is underlined where the digits do not match.
以下、RGBRBGとGBRGRBの例を示す。桁が一致していない箇所に下線が引かれている。 For example, the Hamming distance of the RGBRBG and GBRGRB color arrays is compared with the RGBRBG and GBRGRB cyclic code groups, and the smallest value is defined as the Hamming distance of the RGBRBG and GBRGRB color arrays.
Examples of RGBRBG and GBRGRB are shown below. The underline is underlined where the digits do not match.
RGBRBG を、以下の巡回コード群とそれぞれ比較する。
RGBRBG is compared with the following cyclic code group.
↓↑
GBRGRB ハミング距離6
↓巡回
BGBRGR ハミング距離3 上のコードを右に巡回シフト(ROTATE)
↓巡回
RBGBRG ハミング距離4 同様
↓巡回
GRBGBR ハミング距離4 同様
↓巡回
RGRBGB ハミング距離4 同様
↓巡回
BRGRBG ハミング距離3 同様
となり、最小距離は、「3」である。従って、RGBRBGとGBRGRBとのハミング距離は「3」となる。 ↓ ↑
GBRGRB Hamming distance 6
↓ Cyclic B GBRGR Hamming distance 3 The code above is cyclically shifted to the right (ROTATE)
↓ cyclic R BGBRG Hamming distance 4 similar ↓ cyclic GR B G B R Hamming distance 4 similar ↓ cyclic RG RBGB Hamming distance 4 similar ↓ cyclic BRG RBG Hamming distance 3 similar, and the minimum distance is "3". Therefore, the Hamming distance between RGBRBG and GBRGRB is “3”.
GBRGRB ハミング距離6
↓巡回
BGBRGR ハミング距離3 上のコードを右に巡回シフト(ROTATE)
↓巡回
RBGBRG ハミング距離4 同様
↓巡回
GRBGBR ハミング距離4 同様
↓巡回
RGRBGB ハミング距離4 同様
↓巡回
BRGRBG ハミング距離3 同様
となり、最小距離は、「3」である。従って、RGBRBGとGBRGRBとのハミング距離は「3」となる。 ↓ ↑
↓ Cyclic B GBR
↓ cyclic R BGBR
◆誤り対応とグループの関係
本実施の形態で提案する自動認識コードにおいては、巡回置換したコードシンボルも同値のデータを表すものとして取り扱っている。
つまり、上述した色彩配列のグループは、巡回置換に影響を受けないため、このグループがデータとの対応において本質的である。すなわち、グループがデータと直接対応している。
従って誤り対応においても、グループ間のハミング距離をもとに、使用する色彩配列を選定するのが効率的である。このハミング距離が大きければ、エラーを検知し、場合によっては訂正まで可能となる場合もある。 ◆ Relationship between error handling and groups In the automatic recognition code proposed in this embodiment, the cyclically replaced code symbols are also treated as representing equivalent data.
That is, the group of the color arrangement described above is not affected by the cyclic replacement, and this group is essential in correspondence with the data. That is, the group directly corresponds to the data.
Therefore, even in error handling, it is efficient to select the color arrangement to be used based on the Hamming distance between groups. If this Hamming distance is large, an error is detected, and in some cases, correction may be possible.
本実施の形態で提案する自動認識コードにおいては、巡回置換したコードシンボルも同値のデータを表すものとして取り扱っている。
つまり、上述した色彩配列のグループは、巡回置換に影響を受けないため、このグループがデータとの対応において本質的である。すなわち、グループがデータと直接対応している。
従って誤り対応においても、グループ間のハミング距離をもとに、使用する色彩配列を選定するのが効率的である。このハミング距離が大きければ、エラーを検知し、場合によっては訂正まで可能となる場合もある。 ◆ Relationship between error handling and groups In the automatic recognition code proposed in this embodiment, the cyclically replaced code symbols are also treated as representing equivalent data.
That is, the group of the color arrangement described above is not affected by the cyclic replacement, and this group is essential in correspondence with the data. That is, the group directly corresponds to the data.
Therefore, even in error handling, it is efficient to select the color arrangement to be used based on the Hamming distance between groups. If this Hamming distance is large, an error is detected, and in some cases, correction may be possible.
・グループ間ハミング距離
まず、各グループ内において上述したように色彩は置換的である。従って、各グループ間(全ての構成要素同士)のハミング距離は、一方のグループの1つの構成要素と他のグループの関係を調べることで明らかになる。 -Hamming distance between groups First, as described above, colors are permutable in each group. Therefore, the Hamming distance between each group (all the constituent elements) becomes clear by examining the relationship between one constituent element of one group and the other group.
まず、各グループ内において上述したように色彩は置換的である。従って、各グループ間(全ての構成要素同士)のハミング距離は、一方のグループの1つの構成要素と他のグループの関係を調べることで明らかになる。 -Hamming distance between groups First, as described above, colors are permutable in each group. Therefore, the Hamming distance between each group (all the constituent elements) becomes clear by examining the relationship between one constituent element of one group and the other group.
例えば、
グループA(A1,A2,A3、A4、A5、A6)
←→グループB(B1,B2,B3、B4、B5、B6)
は、A1←→B1、A1←→B2、A1←→B3、A1←→B4、A1←→B5、A1←→B6の関係を調べれば良い。 For example,
Group A (A1, A2, A3, A4, A5, A6)
← → Group B (B1, B2, B3, B4, B5, B6)
The relationship between A1 ← → B1, A1 ← → B2, A1 ← → B3, A1 ← → B4, A1 ← → B5, A1 ← → B6 may be examined.
グループA(A1,A2,A3、A4、A5、A6)
←→グループB(B1,B2,B3、B4、B5、B6)
は、A1←→B1、A1←→B2、A1←→B3、A1←→B4、A1←→B5、A1←→B6の関係を調べれば良い。 For example,
Group A (A1, A2, A3, A4, A5, A6)
← → Group B (B1, B2, B3, B4, B5, B6)
The relationship between A1 ← → B1, A1 ← → B2, A1 ← → B3, A1 ← → B4, A1 ← → B5, A1 ← → B6 may be examined.
ここで、A1、A2、A3、A4、A5、A6、は、グループAのメンバーである各コードシンボルである。一方、B1、B2、B3、B4、B5、B6、は、グループBのメンバーである各コードシンボルである。
Here, A1, A2, A3, A4, A5, A6 are code symbols that are members of group A. On the other hand, B1, B2, B3, B4, B5, and B6 are code symbols that are members of group B.
・グループ内ハミング距離
次に、グループ内のハミング距離について説明する。
同一グループ内は、グループの1つの構成メンバー(コードシンボル)と同一グループ内の他のメンバー(コードシンボル)の関係を調べることでそのグループ内のハミング距離が明らかになる。 -Hamming distance within a group Next, the hamming distance within a group is demonstrated.
In the same group, the hamming distance in the group becomes clear by examining the relationship between one member (code symbol) of the group and the other member (code symbol) in the same group.
次に、グループ内のハミング距離について説明する。
同一グループ内は、グループの1つの構成メンバー(コードシンボル)と同一グループ内の他のメンバー(コードシンボル)の関係を調べることでそのグループ内のハミング距離が明らかになる。 -Hamming distance within a group Next, the hamming distance within a group is demonstrated.
In the same group, the hamming distance in the group becomes clear by examining the relationship between one member (code symbol) of the group and the other member (code symbol) in the same group.
例えば、グループA(A1,A2,A3、A4、A5、A6)の場合
A1←→A2、A1←→A3、A1←→A4、A1←→A5、A1←→A6
ここで、「全体で所定のハミング距離を満たす条件」(全体で所定の(最小の)ハミング距離を保証する条件)は、グループ間のハミング距離及びグループ内ハミング距離が、共にその条件を満たす(最小限のハミング距離以上のハミング距離を常にある)ことである。 For example, in the case of group A (A1, A2, A3, A4, A5, A6) A1 ← → A2, A1 ← → A3, A1 ← → A4, A1 ← → A5, A1 ← → A6
Here, “a condition that satisfies a predetermined hamming distance as a whole” (a condition that guarantees a predetermined (minimum) hamming distance as a whole) is that both the hamming distance between groups and the intra-group hamming distance satisfy the condition ( There is always a Hamming distance that is greater than the minimum Hamming distance).
A1←→A2、A1←→A3、A1←→A4、A1←→A5、A1←→A6
ここで、「全体で所定のハミング距離を満たす条件」(全体で所定の(最小の)ハミング距離を保証する条件)は、グループ間のハミング距離及びグループ内ハミング距離が、共にその条件を満たす(最小限のハミング距離以上のハミング距離を常にある)ことである。 For example, in the case of group A (A1, A2, A3, A4, A5, A6) A1 ← → A2, A1 ← → A3, A1 ← → A4, A1 ← → A5, A1 ← → A6
Here, “a condition that satisfies a predetermined hamming distance as a whole” (a condition that guarantees a predetermined (minimum) hamming distance as a whole) is that both the hamming distance between groups and the intra-group hamming distance satisfy the condition ( There is always a Hamming distance that is greater than the minimum Hamming distance).
この概念図が図3に示されている。図3中、白抜きの双方向矢印で示されている箇所はグループ間ハミング距離が一定の値(最小ハミング距離)以上あることを意味している。また、白抜きの円で示されているグループは、そのグループ内ハミング距離が一定の値(最小ハミング距離)以上あることを意味している。
この図3中、Xで示された範囲では、全ての色彩配列間でハミング距離が保証されている。従って、このXで示された範囲のコードを用いて自動認識コード体系を構築し、利用すれば、最小ハミング距離が保証されたコード体系を利用することができ、エラーに耐性のあるコードを用いることができる。 This conceptual diagram is shown in FIG. In FIG. 3, a portion indicated by a white bidirectional arrow means that the hamming distance between groups is equal to or greater than a certain value (minimum hamming distance). A group indicated by a white circle means that the intra-group hamming distance is equal to or greater than a certain value (minimum hamming distance).
In the range indicated by X in FIG. 3, the Hamming distance is guaranteed between all the color arrangements. Therefore, if an automatic recognition code system is constructed and used using a code in the range indicated by X, a code system with a guaranteed minimum Hamming distance can be used, and a code that is resistant to errors is used. be able to.
この図3中、Xで示された範囲では、全ての色彩配列間でハミング距離が保証されている。従って、このXで示された範囲のコードを用いて自動認識コード体系を構築し、利用すれば、最小ハミング距離が保証されたコード体系を利用することができ、エラーに耐性のあるコードを用いることができる。 This conceptual diagram is shown in FIG. In FIG. 3, a portion indicated by a white bidirectional arrow means that the hamming distance between groups is equal to or greater than a certain value (minimum hamming distance). A group indicated by a white circle means that the intra-group hamming distance is equal to or greater than a certain value (minimum hamming distance).
In the range indicated by X in FIG. 3, the Hamming distance is guaranteed between all the color arrangements. Therefore, if an automatic recognition code system is constructed and used using a code in the range indicated by X, a code system with a guaranteed minimum Hamming distance can be used, and a code that is resistant to errors is used. be able to.
例えば6セル色彩配列の場合、上述したグループ間のハミング距離は図4の表のようになる。このように、グループA―B間、グループA―C間、グループC1-C2間、においては、ハミング距離が2以下となる場合がある。
For example, in the case of a 6-cell color arrangement, the Hamming distance between the groups described above is as shown in the table of FIG. As described above, the Hamming distance may be 2 or less between the groups A and B, between the groups A and C, and between the groups C1 and C2.
従って、例えば、ハミング距離3以上の組み合わせを得たい場合には、
・グループB+グループC1、又は、
・グループB+グループC2
を利用することができることが図4から読み取ることができる。この場合、色彩配列はグループBの構成色彩配列2通りと、グループC1もしくはC2の構成色彩配列3通り、の合計5通りを得ることができる。グループB+グループC1の場合の様子が図5に示されている。 Therefore, for example, when it is desired to obtain a combination with a Hamming distance of 3 or more,
・ Group B + Group C1, or
・ Group B + Group C2
Can be read from FIG. In this case, a total of five color arrangements can be obtained, that is, two color arrangements of group B and three color arrangements of group C1 or C2. The situation in the case of group B + group C1 is shown in FIG.
・グループB+グループC1、又は、
・グループB+グループC2
を利用することができることが図4から読み取ることができる。この場合、色彩配列はグループBの構成色彩配列2通りと、グループC1もしくはC2の構成色彩配列3通り、の合計5通りを得ることができる。グループB+グループC1の場合の様子が図5に示されている。 Therefore, for example, when it is desired to obtain a combination with a Hamming distance of 3 or more,
・ Group B + Group C1, or
・ Group B + Group C2
Can be read from FIG. In this case, a total of five color arrangements can be obtained, that is, two color arrangements of group B and three color arrangements of group C1 or C2. The situation in the case of group B + group C1 is shown in FIG.
◆対称性
ところで、自動認識コードの応用範囲・用途によっては、例えばひも状の物体に繰り返し色彩配列を施した場合も想定しなければならない場合もある。
この場合、繰り返してマーキングされた色彩配列(群)から切り取られた一部からは、先頭と終端の区別をつけることは困難である。
従って、かかるひも状物体の用途においては、上表のように得られた色彩配列の逆順が、他の色彩配列の正順と一致することは許されない。
さて、図5の表のデータでは、グループBの2つの色彩配列が互いにそのような関係(逆順が他のコードの正順と一致するという関係)になっている。 ◆ Symmetry By the way, depending on the application range and use of the automatic recognition code, for example, it may be necessary to assume that a string-like object is repeatedly arranged in color.
In this case, it is difficult to distinguish the beginning and the end from a part cut out from the color array (group) marked repeatedly.
Therefore, in the use of the string-like object, the reverse order of the color arrangement obtained as shown in the above table cannot be matched with the normal order of the other color arrangements.
Now, in the data of the table of FIG. 5, the two color arrangements of group B have such a relationship (relation that the reverse order matches the normal order of other codes).
ところで、自動認識コードの応用範囲・用途によっては、例えばひも状の物体に繰り返し色彩配列を施した場合も想定しなければならない場合もある。
この場合、繰り返してマーキングされた色彩配列(群)から切り取られた一部からは、先頭と終端の区別をつけることは困難である。
従って、かかるひも状物体の用途においては、上表のように得られた色彩配列の逆順が、他の色彩配列の正順と一致することは許されない。
さて、図5の表のデータでは、グループBの2つの色彩配列が互いにそのような関係(逆順が他のコードの正順と一致するという関係)になっている。 ◆ Symmetry By the way, depending on the application range and use of the automatic recognition code, for example, it may be necessary to assume that a string-like object is repeatedly arranged in color.
In this case, it is difficult to distinguish the beginning and the end from a part cut out from the color array (group) marked repeatedly.
Therefore, in the use of the string-like object, the reverse order of the color arrangement obtained as shown in the above table cannot be matched with the normal order of the other color arrangements.
Now, in the data of the table of FIG. 5, the two color arrangements of group B have such a relationship (relation that the reverse order matches the normal order of other codes).
つまり、
→BGRBGR=BRGBRG←:(矢印は読み順を示す)
となることが明らかである。 That means
→ BGRBGR = BRGBRG ←: (Arrows indicate reading order)
It is clear that
→BGRBGR=BRGBRG←:(矢印は読み順を示す)
となることが明らかである。 That means
→ BGRBGR = BRGBRG ←: (Arrows indicate reading order)
It is clear that
このようなケースでは、BGRBGR=BRGBRGとおき、同値と見ることによって、(図5の例より1個少ないが)全体で4つの値を持つコード体系であるとして利用することができる。
In such a case, when BGRBGR = BRGBRG is considered, it can be used as a code system having four values as a whole (though it is one less than the example in FIG. 5).
なお、例えば色彩を時間的に順番に発光するケースや、マーキングの正逆関係が予め既知の場合にはこのような事項を考慮する必要はない。この様子の説明図が図6に示されている。
It should be noted that such matters need not be taken into account when, for example, the case where the colors are emitted sequentially in time or when the normal / reverse relationship of the marking is known in advance. An explanatory view of this state is shown in FIG.
図6(a)には、上記ひも状の物体に連続的にマーキングされている場合の様子の説明図が示されている。図6(a)に示されているように、紐のこちら側を見る場合と、向こう側を見る場合とでは、コードの方向が異なる。
FIG. 6 (a) shows an explanatory diagram of a state in which the string-like object is continuously marked. As shown in FIG. 6A, the direction of the cord is different between the case of looking at this side of the string and the case of looking at the other side.
図6(b)には、色彩を時間的に順番に発光するケースの説明図が示されている。色彩が空間に配置されている場合と異なり、時間的に変化(配置)されているので、図6(a)と異なり、順番が逆となることはない。
FIG. 6B shows an explanatory diagram of a case in which colors are emitted in order in time. Unlike the case where the colors are arranged in the space, the color is changed (arranged) in time, so that the order is not reversed unlike FIG.
図6(c)には、一定の幅を有する窓12を介して、物品の上に多列化してマーキングされた(付された)自動認識コードを読み取る場合の様子を示す説明図が示されている。この窓12はシャッター10に空けられたU字形状の切り欠きであり、この窓を介して見える部位が読み取り範囲である。このように、繰り返し色彩配列を多列化することでデータ数を増やすことも考えられる。
FIG. 6 (c) is an explanatory diagram showing a state of reading an automatic recognition code marked (attached) in multiple rows on an article through a window 12 having a certain width. ing. This window 12 is a U-shaped notch formed in the shutter 10, and a portion visible through this window is a reading range. In this way, it is also conceivable to increase the number of data by repeatedly arranging the color array.
「具体例2」 12色彩配列の例
12色彩数配列の場合を、6色彩配列の場合と同じように表に示した。この表が図7~図12までに示されている。12色彩配列の場合は、これらの表に示すようなグループが構成されている。これらのグループ間は、いずれも各色彩数、間隔の構成が異なっており、各グループは構成色の置換操作において閉じており置換群をなしている。 “Specific Example 2” Example of 12-color arrangement The case of the 12-color arrangement is shown in the table in the same manner as the case of the 6-color arrangement. This table is shown in FIGS. In the case of a 12-color arrangement, groups as shown in these tables are configured. These groups have different color numbers and intervals, and each group is closed in a component color replacement operation and forms a replacement group.
12色彩数配列の場合を、6色彩配列の場合と同じように表に示した。この表が図7~図12までに示されている。12色彩配列の場合は、これらの表に示すようなグループが構成されている。これらのグループ間は、いずれも各色彩数、間隔の構成が異なっており、各グループは構成色の置換操作において閉じており置換群をなしている。 “Specific Example 2” Example of 12-color arrangement The case of the 12-color arrangement is shown in the table in the same manner as the case of the 6-color arrangement. This table is shown in FIGS. In the case of a 12-color arrangement, groups as shown in these tables are configured. These groups have different color numbers and intervals, and each group is closed in a component color replacement operation and forms a replacement group.
これらの各グループを調べ、グループ内ハミング距離が3未満のグループが、図13に示す表中×印で示されている。ここで、×印がグループ内ハミング距離3未満を表す。
Investigating each of these groups, a group with a hamming distance within group of less than 3 is indicated by a cross in the table shown in FIG. Here, the x mark represents an intra-group Hamming distance of less than 3.
次に、先に示したように各グループ中の1つの構成要素(色彩配列)と、他グループとの間のハミング距離を調べた。その結果が図14の表に示されている。
Next, as shown above, the Hamming distance between one component (color arrangement) in each group and another group was examined. The results are shown in the table of FIG.
この図14においては、グループ内で既にハミング距離が3未満となっていたグループを除外し、ハミング距離が3以上のものについてグループ間(のハミング)距離を求めて図14に示した。この図14の表においては、グループ間のハミング距離が3未満を灰色(グレー)で示している。白のマス目は、ハミング距離が3以上を表している。
In FIG. 14, the group in which the hamming distance is already less than 3 in the group is excluded, and the hamming distance between the hamming distances of 3 or more is obtained and shown in FIG. In the table of FIG. 14, the hamming distance between groups is less than 3 in gray (gray). White squares represent a Hamming distance of 3 or more.
図14の表において、左上部は矩形状にグレーのマスが存在していない一定の領域が観察される。この領域では、全ての構成するグループが互いにハミング距離3以上であることを示している(グループ4131,4222,25b、4121a、6a,4111b,324d,322dである)。(※なお、グループの「名称」は本願発明者らが便宜上つけたものである。)
従ってこれら(グループ4131,4222,25b、4121a、6a,4111b,324d,322d)を構成する45通りの全ての色彩配列(図15の表参照)は、巡回置換を行っても互いにハミング距離3以上を保つ。 In the table of FIG. 14, a certain region where a gray square is not present in the upper left corner is observed. In this area, it is indicated that all constituent groups have a Hamming distance of 3 or more ( groups 4131, 4222, 25b, 4121a, 6a, 4111b, 324d, 322d). (* The “name” of the group is given by the inventors of the present application for convenience.)
Therefore, all 45 color arrangements (see the table in FIG. 15) constituting these ( groups 4131, 4222, 25b, 4121a, 6a, 4111b, 324d, 322d) are hamming distances of 3 or more with each other even if cyclic replacement is performed. Keep.
従ってこれら(グループ4131,4222,25b、4121a、6a,4111b,324d,322d)を構成する45通りの全ての色彩配列(図15の表参照)は、巡回置換を行っても互いにハミング距離3以上を保つ。 In the table of FIG. 14, a certain region where a gray square is not present in the upper left corner is observed. In this area, it is indicated that all constituent groups have a Hamming distance of 3 or more (
Therefore, all 45 color arrangements (see the table in FIG. 15) constituting these (
逆順
なお、図15の表に示した各色彩配列(コードシンボル)を逆順に呼んだ場合の配列も示した表が図16に示されている。 Reverse Incidentally, the table also shows the sequence when called in reverse order each color sequence (code symbol) shown in the table of FIG. 15 is shown in Figure 16.
なお、図15の表に示した各色彩配列(コードシンボル)を逆順に呼んだ場合の配列も示した表が図16に示されている。 Reverse Incidentally, the table also shows the sequence when called in reverse order each color sequence (code symbol) shown in the table of FIG. 15 is shown in Figure 16.
さて、この図16の表において、グループ4131は逆読みをしても色彩配列順は変化しないのでそのまま使用できる。また、グループ4122、4121aは逆読みで同一グループ内の他の色彩配列と同じ値を返す。そのため、以下に示すように、それぞれのペアで1つのデータを表すものとして扱えば良い。
In the table of FIG. 16, the group 4131 can be used as it is because the color arrangement order does not change even if reverse reading is performed. The groups 4122 and 4121a return the same value as other color arrays in the same group by reverse reading. Therefore, as shown below, each pair may be treated as representing one data.
グループ4122には6個の色彩配列が含まれるが、それぞれペアを組ませて1個のデータを表せば、全部で3種のデータを表すことができる。
The group 4122 includes six color arrays, but if each group is paired to represent one piece of data, a total of three types of data can be represented.
4122(1)と4122(6)とでペアを組ませる
4122(2)と4122(4)とでペアを組ませる
4122(5)と4122(3)とでペアを組ませる
グループ4121aも同様である。 4122 (1) and 4122 (6) form a pair 4122 (2) and 4122 (4) form a pair 4122 (5) and 4122 (3) form apair Group 4121a is the same is there.
4122(2)と4122(4)とでペアを組ませる
4122(5)と4122(3)とでペアを組ませる
グループ4121aも同様である。 4122 (1) and 4122 (6) form a pair 4122 (2) and 4122 (4) form a pair 4122 (5) and 4122 (3) form a
また、324d、322dのグループは反転読みだと異なった別のグループの要素(色彩配列)となってしまうので、逆順読みを考慮しなければならない用途においては採用することはできない。
In addition, since the groups of 324d and 322d become elements of different groups (color arrangement) when reversed reading is performed, it cannot be used in applications where reverse order reading must be considered.
従って、上記表15、16で示した例では反転読みを考慮した場合、表せるデータの数は、
4131グループ:3個
4122グループ:3個
25bグループ:3個
21bグループ:6個
4121bグループ:3個
6aグループ:3個
4111bグループ:6個
となり、合計27通りのデータを表現することができる。 Therefore, in the examples shown in Tables 15 and 16, when reverse reading is considered, the number of data that can be expressed is as follows.
4131 group: 3 4122 group: 3 25b group: 3 21b group: 6 4121b group: 3 6a group: 3 4111b group: 6
Thus, a total of 27 types of data can be expressed.
4131グループ:3個
4122グループ:3個
25bグループ:3個
21bグループ:6個
4121bグループ:3個
6aグループ:3個
4111bグループ:6個
となり、合計27通りのデータを表現することができる。 Therefore, in the examples shown in Tables 15 and 16, when reverse reading is considered, the number of data that can be expressed is as follows.
4131 group: 3 4122 group: 3 25b group: 3 21b group: 6 4121b group: 3 6a group: 3 4111b group: 6
Thus, a total of 27 types of data can be expressed.
まとめ・変形例
以上、自動認識コードとして用いる色彩配列の例を種々説明してきた。 Summary / Modifications Various examples of the color arrangement used as the automatic recognition code have been described above.
以上、自動認識コードとして用いる色彩配列の例を種々説明してきた。 Summary / Modifications Various examples of the color arrangement used as the automatic recognition code have been described above.
(1)
本実施の形態によれば、巡回コードを利用したので、読み取り開始がどこからでも正しくデータを読み取ることができる色彩配列が得られる。 (1)
According to the present embodiment, since a cyclic code is used, a color array that can read data correctly from anywhere can be obtained.
本実施の形態によれば、巡回コードを利用したので、読み取り開始がどこからでも正しくデータを読み取ることができる色彩配列が得られる。 (1)
According to the present embodiment, since a cyclic code is used, a color array that can read data correctly from anywhere can be obtained.
また、利用する色彩配列の間のハミング距離を一定値以上に設定することを提案した。ハミング距離の最低値を保証することによって、エラー検出等に寄与することができる。
Also, it was proposed to set the Hamming distance between the color arrangements to be used above a certain value. By guaranteeing the minimum value of the Hamming distance, it is possible to contribute to error detection and the like.
又逆順で色彩配列を呼んでしまった場合でも誤って別のデータを読み取ってしまうことがない構成も説明した。
In addition, a configuration has been described in which even if the color arrangement is called in the reverse order, another data is not read by mistake.
(2)
上述したハミング距離の値としては3程度が妥当であろう。ハミング距離が3であればエラー検知・訂正等に役立つ。一方、この値が大きすぎると、コードの利用効率が悪化し、効率的なデータの表現が困難になる恐れがある。 (2)
A value of about 3 is appropriate as the value of the Hamming distance described above. A Hamming distance of 3 is useful for error detection and correction. On the other hand, if this value is too large, the code utilization efficiency may deteriorate, and it may be difficult to efficiently represent data.
上述したハミング距離の値としては3程度が妥当であろう。ハミング距離が3であればエラー検知・訂正等に役立つ。一方、この値が大きすぎると、コードの利用効率が悪化し、効率的なデータの表現が困難になる恐れがある。 (2)
A value of about 3 is appropriate as the value of the Hamming distance described above. A Hamming distance of 3 is useful for error detection and correction. On the other hand, if this value is too large, the code utilization efficiency may deteriorate, and it may be difficult to efficiently represent data.
(3)
これまで、自動認識コードとして色彩配列を用いる例を主として説明してきた。この色彩配列は、直線的な1列状に配置されていることを主として説明したが、連なりが追跡可能である限りにおいては、曲線のように曲がっていてもかまわないし、また直角に折れ曲がる等の「折れ」があってもかまわない。 (3)
So far, examples of using a color arrangement as an automatic recognition code have been mainly described. This color arrangement is mainly described as being arranged in a straight line, but as long as the series can be traced, it may be bent like a curve, or bend at a right angle, etc. It does not matter if there is a “break”.
これまで、自動認識コードとして色彩配列を用いる例を主として説明してきた。この色彩配列は、直線的な1列状に配置されていることを主として説明したが、連なりが追跡可能である限りにおいては、曲線のように曲がっていてもかまわないし、また直角に折れ曲がる等の「折れ」があってもかまわない。 (3)
So far, examples of using a color arrangement as an automatic recognition code have been mainly described. This color arrangement is mainly described as being arranged in a straight line, but as long as the series can be traced, it may be bent like a curve, or bend at a right angle, etc. It does not matter if there is a “break”.
特に、ひも状の物品に付す場合は、紐が曲がることによって色彩配列も曲がることになるが、色彩の順番が認識できればデータが復元できるので問題はない。
In particular, when attached to a string-like article, the color arrangement also bends when the string is bent, but there is no problem because the data can be restored if the color order can be recognized.
(4)
色彩配列を構成する各色彩が付される領域を記号的にはセルと呼ぶ。換言すれば、所定の色彩が付されたセルを並べることによって色彩配列が構成されている。このセルは、色彩配列を構成する色彩が付されている場所を表す記号上の概念である。もちろん実際のセルは、セルは物品の上の表面であって、所定の色彩のインク等が塗られた物理的な領域・部位である。セルは、しばしば桁とも呼ぶ。 (4)
A region to which each color constituting the color array is attached is called a cell symbolically. In other words, the color array is configured by arranging cells with predetermined colors. This cell is a concept on a symbol representing a place where colors constituting a color array are given. Of course, the actual cell is a physical region / part on the surface of the article and coated with ink of a predetermined color. Cells are often referred to as digits.
色彩配列を構成する各色彩が付される領域を記号的にはセルと呼ぶ。換言すれば、所定の色彩が付されたセルを並べることによって色彩配列が構成されている。このセルは、色彩配列を構成する色彩が付されている場所を表す記号上の概念である。もちろん実際のセルは、セルは物品の上の表面であって、所定の色彩のインク等が塗られた物理的な領域・部位である。セルは、しばしば桁とも呼ぶ。 (4)
A region to which each color constituting the color array is attached is called a cell symbolically. In other words, the color array is configured by arranging cells with predetermined colors. This cell is a concept on a symbol representing a place where colors constituting a color array are given. Of course, the actual cell is a physical region / part on the surface of the article and coated with ink of a predetermined color. Cells are often referred to as digits.
(5)
色彩配列が逆順に読まれる場合は、その逆順の色彩配列もまた同一のデータを表すようにグループ分けすることを上で提案した。 (5)
It was proposed above that when the color array is read in reverse order, the reverse color array is also grouped to represent the same data.
色彩配列が逆順に読まれる場合は、その逆順の色彩配列もまた同一のデータを表すようにグループ分けすることを上で提案した。 (5)
It was proposed above that when the color array is read in reverse order, the reverse color array is also grouped to represent the same data.
しかし、単純にその逆順の色彩配列を「使用しない」ことにしても好適である。
However, it is also preferable to simply “do not use” the reverse color arrangement.
(6)
また、色彩配列を2列設ける構成について上で説明した。2列設ければ、表せるデータ量は2倍となる。上では2列の例について説明したが、3列でもそれ以上でもかまわない。列数に応じてデータ量を増やすことが可能である。 (6)
The configuration in which two rows of color arrays are provided has been described above. If two columns are provided, the amount of data that can be represented is doubled. Although the example of two rows has been described above, it may be three rows or more. The amount of data can be increased according to the number of columns.
また、色彩配列を2列設ける構成について上で説明した。2列設ければ、表せるデータ量は2倍となる。上では2列の例について説明したが、3列でもそれ以上でもかまわない。列数に応じてデータ量を増やすことが可能である。 (6)
The configuration in which two rows of color arrays are provided has been described above. If two columns are provided, the amount of data that can be represented is doubled. Although the example of two rows has been described above, it may be three rows or more. The amount of data can be increased according to the number of columns.
なお、読み取りの手間を考慮すれば、各列は、互いに平行であることが好ましい。但し、デザイン的な観点等から故意に平行を崩すことも好適である。又は、直線の列とkじょくせんの列とを組み合わせることもデザイン的には好ましい場合もあろう。
Note that it is preferable that each column is parallel to each other in view of reading effort. However, it is also preferable to intentionally break the parallelism from the viewpoint of design. Alternatively, it may be preferable in terms of design to combine a straight line and a k line.
(7)
上で述べた例では、主として有体物である物品上に色彩配列を付して自動認識コードを構成させる例を説明した。 (7)
In the example described above, an example in which an automatic recognition code is configured by attaching a color array to an article that is mainly tangible has been described.
上で述べた例では、主として有体物である物品上に色彩配列を付して自動認識コードを構成させる例を説明した。 (7)
In the example described above, an example in which an automatic recognition code is configured by attaching a color array to an article that is mainly tangible has been described.
このような例では、色彩をいわば空間上で並べているのである。
In such an example, colors are arranged in space.
上でも多少説明したが、色彩を時間軸上で並べることも好適である。この場合も、空間上を並べる場合と同様の工夫をすることができ、同様の効果が得られる。
As described above, it is also preferable to arrange colors on the time axis. Also in this case, the same contrivance as in the case of arranging in space can be made, and the same effect can be obtained.
但し、時間軸上で色彩を順次発光させる場合は、順序が逆順に読み取ってしまうことが考えにくい。従って、上で述べた逆順に対する対処は、時間軸上の色彩発光の場合は不要である場合が多いであろう。
However, when the colors are sequentially emitted on the time axis, it is unlikely that they will be read in the reverse order. Therefore, it is often unnecessary to deal with the reverse order described above in the case of color emission on the time axis.
特に、時間軸上で色彩を順番に発光させる場合は、その開始時点が空間の場合よりも一層検知しにくい。従って、空間に色彩を配置する場合よりも、時間軸に沿って色彩を発光する場合の方が 本発明の有用性は高い可能性がある。
In particular, when light is emitted in order on the time axis, it is harder to detect than when the start point is space. Therefore, the utility of the present invention may be higher when light is emitted along the time axis than when colors are arranged in space.
Claims (18)
- 所定の色彩が付されたセルをm個並べて所定のデータを表現する色彩配列であって、同一色彩のセルが隣接しないように構成された色彩配列において、
前記m個の色彩配列が繰り返し連続的に配列された場合に、該繰り返された色彩配列のうち、任意の位置の連続するm個のセルからなる色彩配列が、常に同一データを表現することを特徴とする色彩配列。ここで、前記mは、2以上の整数である。 In a color array in which m cells each having a predetermined color are arranged to express predetermined data, the color array configured so that cells of the same color are not adjacent to each other,
When the m color arrays are repeatedly and continuously arranged, among the repeated color arrays, the color array including m consecutive cells at arbitrary positions always represents the same data. Characteristic color arrangement. Here, the m is an integer of 2 or more. - 所定の色彩を順番にm回発光して所定のデータを表現する色彩配列発光方法であって、同一色彩が連続して発光されないように構成された色彩配列発光方法において、
前記m回の発光が繰り返し連続的に引き続いて発光されている場合に、該繰り返された色彩発光の列のうち、任意のタイミングから開始される連続するm回発光された色彩の列が、常に同一データを表現することを特徴とする色彩配列発光方法。ここで、前記mは2以上の整数である。 In a color array light emitting method configured to emit predetermined m colors m times in order to express predetermined data, the color array light emitting method configured so that the same color is not continuously emitted,
When the m times of light emission are repeatedly and continuously emitted, among the repeated color light emission columns, a continuous color sequence of m times of light emission starting from an arbitrary timing is always performed. A color array light emission method characterized by expressing the same data. Here, m is an integer of 2 or more. - 請求項1記載の色彩配列において、
第1のデータを表す第1の前記色彩配列と、前記第1のデータとは異なる第2のデータを表す第2の前記色彩配列とは、それらの間のハミング距離が、n以上であることを特徴とする色彩配列。ここで、nは、正の整数である。 The color arrangement according to claim 1,
The first color array representing the first data and the second color array representing the second data different from the first data have a Hamming distance of n or more between them. Color arrangement characterized by. Here, n is a positive integer. - 請求項3記載の色彩配列において、前記色彩配列中の各桁の色彩間のハミング距離を各桁毎に求め、求めたハミング距離の総和を前記色彩配列間のハミング距離とすることを特徴とする色彩配列。 4. The color arrangement according to claim 3, wherein a Hamming distance between colors of each digit in the color arrangement is obtained for each digit, and a sum of the obtained Hamming distances is set as a Hamming distance between the color arrangements. Color array.
- 請求項4記載の色彩配列において、前記色彩配列に用いられる色彩群に順番が設定されており、その順番に従ってった色彩間の距離を前記色彩間のハミング距離とすることを特徴とする色彩配列。 5. The color array according to claim 4, wherein an order is set for the color groups used in the color array, and a distance between colors according to the order is a Hamming distance between the colors. .
- 請求項3記載の色彩配列において、前記nは、3であることを特徴とする色彩配列。 4. The color array according to claim 3, wherein n is 3.
- 所定の色彩が付されたセルをm個並べて所定のデータを表現する色彩配列であって、同一色彩のセルが隣接しないように構成された色彩配列において、
所定のデータを表す前記色彩配列を、セルについて巡回置換した色彩配列も前記所定のデータを表し、前記所定のデータを表す色彩配列群は、セルについての置換群としてグループ分けされることを特徴とする色彩配列。ここで、前記mは2以上の整数である。 In a color array in which m cells each having a predetermined color are arranged to express predetermined data, the color array configured so that cells of the same color are not adjacent to each other,
The color array obtained by cyclically replacing the color array representing predetermined data for a cell also represents the predetermined data, and the color array group representing the predetermined data is grouped as a replacement group for the cell. Color array to be used. Here, m is an integer of 2 or more. - 請求項7記載の色彩配列において、
利用する色彩群は順番が設定されており、
所定のデータを表す前記色彩配列を、色彩について前記順番に基づき循環置換した色彩配列は、前記所定のデータとは異なる他のデータを表し、前記他のデータを表す色彩に対する置換群としてのグループに属することを特徴とする色彩配列。 The color arrangement according to claim 7,
The order of colors used is set,
The color array obtained by cyclically replacing the color array representing predetermined data based on the order with respect to colors represents other data different from the predetermined data, and is included in a group as a replacement group for colors representing the other data. A color array characterized by belonging. - 請求項1記載の色彩配列において、
前記色彩配列は、逆順に読んだ場合も、正順に読んだ場合と同一のデータを表すことを特徴とする色彩配列。 The color arrangement according to claim 1,
The color array represents the same data as when read in the reverse order even when read in the reverse order. - 請求項1記載の色彩配列において、
前記色彩配列は、逆順に読んだ場合に、正順に読んだ場合とは異なる他のデータを表す場合は、その逆順の色彩配列が、利用できる色彩配列群から除かれていることを特徴とする色彩配列。 The color arrangement according to claim 1,
When the color arrangement is read in the reverse order and represents other data different from the data read in the normal order, the color arrangement in the reverse order is excluded from the available color arrangement groups. Color array. - 請求項1、3~10のいずれか1項に記載の色彩配列を物品に付す方法において、
所定の前記色彩配列を連続的に列状に配置する配置ステップ、
を含むことを特徴とする色彩配列を物品に付す方法。 A method for attaching the color arrangement according to any one of claims 1, 3 to 10 to an article,
An arrangement step of arranging the predetermined color arrangement continuously in a line;
A method of attaching a color arrangement to an article comprising: - 請求項11記載の色彩配列を物品に付す方法において、
前記列は、直線又は曲線であることを特徴とする色彩配列を物品に付す方法。 12. A method of attaching the color arrangement of claim 11 to an article,
A method of applying an array of colors to an article, wherein the rows are straight or curved. - 請求項11又は12記載の色彩配列を物品に付す方法において、
複数の前記色彩配列のそれぞれに対して、前記配置ステップを適用し、各色彩配列毎に前記列状に配置を行うステップ、
を含み、前記各色彩配列毎の列が互いに平行に前記物品上に配置されていることを特徴とする色彩配列を物品に付す方法。 In the method of attaching the color arrangement according to claim 11 or 12 to an article,
Applying the arrangement step to each of a plurality of the color arrangements, and arranging the arrangement in the row for each color arrangement;
A method of applying a color array to an article, wherein the columns for each color array are arranged on the article in parallel with each other. - 請求項2記載の色彩配列発光方法において、
第1のデータを表すために発光される第1の前記色彩配列と、前記第1のデータとは異なる第2のデータを表すために発光される第2の前記色彩配列とは、それらの間のハミング距離が、n以上であることを特徴とする色彩配列発光方法。ここで、nは、正の整数である。 The color array light emitting method according to claim 2,
The first color array emitted to represent first data and the second color array emitted to represent second data different from the first data are between them. The color array light emitting method characterized by that the Hamming distance of is n or more. Here, n is a positive integer. - 請求項14記載の色彩配列発光方法において、前記色彩配列中の各セルの色彩間のハミング距離を各桁毎に求め、求めたハミング距離の総和を前記色彩配列間のハミング距離とすることを特徴とする色彩配列発光方法。 15. The color array light emitting method according to claim 14, wherein a Hamming distance between colors of each cell in the color array is obtained for each digit, and a sum of the obtained Hamming distances is set as a Hamming distance between the color arrays. Color array light emitting method.
- 請求項15記載の色彩配列発光方法において、前記色彩配列に用いられる色彩群に順番が設定されており、その順番に従ってった色彩間の距離を前記色彩間のハミング距離とすることを特徴とする色彩配列発光方法。 16. The color array light emitting method according to claim 15, wherein an order is set for the color groups used in the color array, and a distance between colors according to the order is set as a Hamming distance between the colors. Color array emission method.
- 請求項14記載の色彩配列発光方法において、前記nは、3であることを特徴とする色彩配列発光方法。 15. The color array light emitting method according to claim 14, wherein n is 3.
- 請求項1、3~10のいずれか1項に記載の色彩配列が付された物品。 An article to which the color arrangement according to any one of claims 1, 3 to 10 is attached.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008231448A JP2010066927A (en) | 2008-09-09 | 2008-09-09 | Color arrangement, color arrangement light emission method, method for attaching color arrangement to article, and article with color arrangement attached thereto |
JP2008-231448 | 2008-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010029933A1 true WO2010029933A1 (en) | 2010-03-18 |
Family
ID=42005186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/065712 WO2010029933A1 (en) | 2008-09-09 | 2009-09-09 | Method for marking color sequence to article |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010066927A (en) |
WO (1) | WO2010029933A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61271580A (en) * | 1985-05-22 | 1986-12-01 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Method and apparatus for identifying object and object itself |
JPH05333779A (en) * | 1992-05-29 | 1993-12-17 | Tokyo Electric Co Ltd | Printed matter such as label |
JPH06111084A (en) * | 1992-09-28 | 1994-04-22 | Toppan Moore Co Ltd | Graphic code and its deciphering method and its device |
JP2008027029A (en) * | 2006-07-19 | 2008-02-07 | B-Core Inc | Optical symbol, article therewith, method of attaching optical symbol to article, and method of decoding optical symbol |
-
2008
- 2008-09-09 JP JP2008231448A patent/JP2010066927A/en not_active Withdrawn
-
2009
- 2009-09-09 WO PCT/JP2009/065712 patent/WO2010029933A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61271580A (en) * | 1985-05-22 | 1986-12-01 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Method and apparatus for identifying object and object itself |
JPH05333779A (en) * | 1992-05-29 | 1993-12-17 | Tokyo Electric Co Ltd | Printed matter such as label |
JPH06111084A (en) * | 1992-09-28 | 1994-04-22 | Toppan Moore Co Ltd | Graphic code and its deciphering method and its device |
JP2008027029A (en) * | 2006-07-19 | 2008-02-07 | B-Core Inc | Optical symbol, article therewith, method of attaching optical symbol to article, and method of decoding optical symbol |
Also Published As
Publication number | Publication date |
---|---|
JP2010066927A (en) | 2010-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008027029A (en) | Optical symbol, article therewith, method of attaching optical symbol to article, and method of decoding optical symbol | |
US10460223B2 (en) | Encoded cells and cell arrays | |
JP2023145619A (en) | Two-dimensional barcode with dynamic environmental data system, method, and apparatus | |
JP4564813B2 (en) | Two-dimensional barcode and code decoding method thereof | |
US6070805A (en) | Distortion resistant double-data correcting color transition barcode and method of generating and using same | |
JP6144585B2 (en) | Multidimensional color barcode and method | |
US7604180B2 (en) | Code pattern, printed matter, image generating apparatus, image processing apparatus, image generating method, and information identifying method | |
US8011596B2 (en) | Machine readable 2D symbology printable on demand | |
JP2004529344A5 (en) | ||
KR20090018811A (en) | Multi-dimensional symbologies and related methods | |
JP2005267598A5 (en) | ||
US7611067B2 (en) | Printed material with identification function, image generating apparatus, image processing apparatus, image generating method, image processing method, and program product therefor | |
CN110447036A (en) | Two-dimensional bar-shaped system, method and apparatus with dynamic environment data | |
KR20090035529A (en) | Optical symbol, article to which the optical symbol is attached, method for attaching optical symbol to article, and optical recognition code recognizing method | |
CN105740930A (en) | Photo-magnetically readable barcode coding method | |
WO2010029933A1 (en) | Method for marking color sequence to article | |
JP2024505116A (en) | Dot matrix code construction method, generation and reading method, terminal, and dot matrix code system | |
JP7420784B2 (en) | Coils consisting of wound metal strips with markings and the use of such markings | |
JP5609469B2 (en) | Image processing apparatus, identification apparatus, electronic writing instrument, and program | |
WO2010114526A1 (en) | System for recovering data from an unreadable tag | |
WO2010016436A1 (en) | Optical automatic-recognition code, and management system using the code | |
CN114136351B (en) | Single code channel absolute coding and decoding method with error detection and correction function | |
CN201336039Y (en) | Mechanical bar code data plate | |
US8657205B2 (en) | Image processing apparatus, identification apparatus, method for determining bit sequence and computer readable medium | |
JP7339163B2 (en) | Measuring instruments, measures and measuring methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09813079 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09813079 Country of ref document: EP Kind code of ref document: A1 |