WO2010029791A1 - Fuel leakage diagnostic device and fuel leakage diagnosis method - Google Patents

Fuel leakage diagnostic device and fuel leakage diagnosis method Download PDF

Info

Publication number
WO2010029791A1
WO2010029791A1 PCT/JP2009/058470 JP2009058470W WO2010029791A1 WO 2010029791 A1 WO2010029791 A1 WO 2010029791A1 JP 2009058470 W JP2009058470 W JP 2009058470W WO 2010029791 A1 WO2010029791 A1 WO 2010029791A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure
leakage
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2009/058470
Other languages
French (fr)
Japanese (ja)
Inventor
博隆 金子
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to JP2010528675A priority Critical patent/JPWO2010029791A1/en
Publication of WO2010029791A1 publication Critical patent/WO2010029791A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/225Leakage detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine

Definitions

  • the present invention relates to a fuel leak diagnostic device and a fuel leak diagnostic method, and more particularly to a fuel leak diagnostic device and a fuel leak diagnostic method for diagnosing a fuel leak from a high pressure fuel system in a leakless accumulator fuel supply device.
  • an accumulator fuel supply device configured to inject high pressure fuel pumped by a high pressure pump and accumulated in a common rail into each cylinder of the internal combustion engine by a fuel injection valve.
  • a fuel injection valve used in such an accumulator fuel supply device a nozzle needle that opens and closes an injection hole, a back pressure chamber in which high pressure fuel is supplied and a back pressure is applied to the nozzle needle by the pressure, and a back pressure chamber.
  • a fuel injection valve provided with a back pressure relief mechanism for releasing the high pressure fuel.
  • part of the high-pressure fuel from the common rail is supplied to the back pressure chamber, and the nozzle needle is released by allowing the high-pressure fuel in the back pressure chamber to escape to the return passage by a back pressure relief mechanism having an on-off valve or the like.
  • the injection hole is opened by lifting, and high-pressure fuel is injected from the injection hole into the cylinder of the internal combustion engine.
  • a piezo injector using a piezo actuator has begun to be used as a back pressure relief mechanism.
  • a piezo injector it is easy to adopt a structure in which there is no leaked fuel leaking to the low-pressure part other than the high-pressure fuel released by the back pressure relief mechanism, and it becomes possible to configure as a leakless pressure accumulator fuel supply device (for example, , See Patent Document 1).
  • Adoption of a leakless structure is also being considered for electromagnetic solenoid fuel injection valves.
  • Such a leakless pressure accumulating fuel supply device eliminates the need to supply the leak to the fuel injection valve, thereby reducing the capacity of the high pressure pump and reducing the size of the high pressure pump. Further, in a vehicle or the like in which idling stop control is performed, high-pressure fuel does not leak at the time of idling stop, the pressure in the common rail is maintained, and the startability of the internal combustion engine after idling stop is improved. Furthermore, the fact that the pressure in the common rail is unlikely to decrease means that the pressure amplitude in the region where the high-pressure fuel flows is suppressed, and the durability of the components is improved.
  • an object of the present invention is to provide a fuel leakage diagnosis device and a fuel leakage diagnosis method that can easily diagnose the presence or absence of leakage of high-pressure fuel in a leakless accumulator fuel supply device.
  • a high-pressure pump that pumps high-pressure fuel
  • a common rail that stores high-pressure fuel pumped from the high-pressure pump
  • a fuel injection valve that injects high-pressure fuel stored in the common rail into a cylinder of the internal combustion engine
  • the fuel injection valve includes a nozzle needle that opens and closes an injection hole, a back pressure chamber that is supplied with high pressure fuel and applies a back pressure to the nozzle needle by the pressure of the high pressure fuel, and a back pressure chamber.
  • Leakless pressure accumulation fuel supply that has a back pressure relief mechanism that lifts the nozzle needle by allowing high pressure fuel to escape and opens the injection hole, and has no leak passage for fuel other than high pressure fuel in the back pressure chamber
  • a pressure detection unit for detecting and storing the pressure in the high pressure fuel system
  • an internal combustion engine During the stop period, a fuel leakage control is performed by observing the pressure control in the high-pressure fuel system after the start of holding the fuel in the high-pressure fuel system and the holding control unit for holding the fuel in the high-pressure fuel system.
  • a fuel leakage diagnosis device comprising a fuel leakage determination unit for determining the presence or absence of the fuel leakage is provided, and the above-described problem is solved.
  • the fuel leakage determination unit compares the pressure in the high pressure fuel system after a predetermined time has elapsed after starting to hold the fuel in the high pressure fuel system with a predetermined threshold value. Thus, it is preferable to determine the presence or absence of fuel leakage.
  • the fuel leakage determination unit determines the pressure drop amount or the pressure drop rate in the high pressure fuel system after the fuel starts to be held in the high pressure fuel system as a predetermined reference value. It is preferable to determine the presence or absence of fuel leakage by comparing with.
  • the stop period of the internal combustion engine is during idling stop control of the internal combustion engine.
  • the fuel leakage diagnosis device of the present invention when configuring the fuel leakage diagnosis device of the present invention, when the temperature of the coolant used for cooling the internal combustion engine or the temperature of the high pressure fuel in the high pressure fuel system has decreased by a predetermined value or more from the temperature when the internal combustion engine is stopped. It is preferable to provide a diagnosis stop instruction unit for stopping the determination in the fuel leak determination unit.
  • Another aspect of the present invention is a high-pressure pump that pumps high-pressure fuel, a common rail that stores high-pressure fuel pumped from the high-pressure pump, and a fuel that injects high-pressure fuel stored in the common rail into a cylinder of an internal combustion engine.
  • a fuel injection valve including a nozzle needle that opens and closes an injection hole, a back pressure chamber that is supplied with high pressure fuel and applies a back pressure to the nozzle needle by the pressure of the high pressure fuel, and Leakless, which has a back pressure relief mechanism that lifts the nozzle needle by allowing the high pressure fuel in the back pressure chamber to escape and opens the injection hole, and does not have a fuel leak passage other than the high pressure fuel in the back pressure chamber
  • a fuel leakage diagnosis method for diagnosing the presence or absence of fuel leakage from a high-pressure fuel system in an accumulator fuel supply system, the high-pressure fuel system is maintained while holding fuel in the high-pressure fuel system.
  • a fuel leakage diagnosis method characterized by determining the presence or absence of fuel leakage.
  • the fuel leakage diagnostic device and the fuel leakage diagnostic method of the present invention during the stop period of the internal combustion engine, based on the pressure change in the high-pressure fuel system that should be essentially less likely to be reduced if it is a leakless accumulator fuel supply device, The presence or absence of fuel leakage in the high-pressure fuel system can be easily diagnosed. Therefore, durability deterioration such as wear and connection failure of each component can be found early and repaired and replaced, so that the fuel injection state, the startability of the internal combustion engine, and the durability of the accumulator fuel supply device of each component The improvement of the property is achieved.
  • the fuel leakage determination unit compares the pressure in the high-pressure fuel system with a threshold value to determine the presence or absence of fuel leakage. It is possible to reliably determine the presence or absence of fuel leakage that has occurred in the apparatus.
  • the fuel leakage determination unit compares the pressure decrease amount or the pressure decrease ratio in the high pressure fuel system with a predetermined reference value to determine whether or not there is a fuel leak, The presence or absence of leakage can be reliably determined, and the degree of fuel leakage can be diagnosed.
  • the stop period of the internal combustion engine is at the time of idling stop control of the internal combustion engine, so that the vehicle equipped with the internal combustion engine is in operation and the high pressure fuel system is The presence or absence of fuel leakage can be diagnosed using the time when the control for holding the high-pressure fuel is performed. Therefore, waste of the battery or the like can be suppressed and time required for diagnosis can be saved.
  • the fuel leakage diagnosis device of the present invention includes a diagnosis stop instruction unit that stops the determination of the fuel leak determination unit when the temperature of the coolant or the temperature of the high-pressure fuel has decreased by a predetermined value or more since the stop of the internal combustion engine. It is avoided that it is determined that the fuel leaks when the pressure is reduced due to the contraction of the high-pressure fuel in the high-pressure fuel system due to the temperature change.
  • FIG. 1 shows a leakless accumulator fuel supply device (hereinafter simply referred to as a fuel leak diagnostic device (control device) 100) according to a first embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a configuration example of “accumulated fuel supply device”.
  • the accumulator fuel supply device 50 includes a fuel tank 1, a low pressure pump 2, a fuel filter 3, a high pressure pump 5, a common rail 10, a piezo injector 13 as a fuel injection valve, and the like as main elements. Each component is connected by a fuel pipe.
  • Fuel supply passages 18a to 18d through which low-pressure fuel flows from the fuel tank 1 to the pressurizing chamber 5a of the high-pressure pump 5 are indicated by solid lines, and from the pressurizing chamber 5a to the common rail
  • a high-pressure fuel passage 37 through which high-pressure fuel up to 10 flows and a high-pressure fuel passage 39 through which high-pressure fuel from the common rail 10 to each piezo injector 13 flows are shown by bold lines.
  • the high-pressure pump 5, the pressure control valve 12, and the fuel return passages 30a to 30c from the piezo injector 13 to the fuel tank 1 are indicated by broken lines.
  • the arrows in the figure indicate the traveling direction of the fuel in each passage.
  • the high-pressure fuel system 40 is constituted by the common rail 10 and the piezo injector 13 downstream of the fuel discharge valve 9 of the high-pressure pump 5 and the high-pressure fuel passages 37 and 39 connecting them.
  • the fuel in the fuel tank 1 is sent to the high pressure pump 5 by the low pressure pump 2.
  • the flow rate of the fuel sent to the pressurizing chamber 5a is adjusted by the flow rate control valve 8 comprising an electromagnetic proportional control valve in accordance with the operating state of the internal combustion engine and the target rail pressure.
  • the overflow valve 14 is connected to the fuel supply passage 18b so that the excess fuel is returned to the fuel tank 1 so that the pressure in the fuel supply passage 18b upstream of the flow control valve 8 is maintained at a predetermined value.
  • the fuel supplied with its flow rate adjusted by the flow control valve 8 flows into the pressurizing chamber 5a via the fuel intake valve 6 when a negative pressure is generated in the pressurizing chamber 5a as the plunger 7 descends. Thereafter, when the plunger 7 is raised by the cam 15 and the fuel in the pressurizing chamber 5 a is pressurized, the fuel discharge valve 9 is opened, and high-pressure fuel is pumped toward the common rail 10.
  • the common rail 10 In the common rail 10, the high-pressure fuel pumped from the high-pressure pump 5 is accumulated. A pressure sensor 21 is attached to the common rail 10, and feedback control of the pressure control valve 12 and the flow rate control valve 8 by the control device 100 is performed so that the rail pressure becomes the target rail pressure. As a result, the common rail 10 is in a state where high-pressure fuel having a target rail pressure is supplied to the plurality of piezo injectors 13.
  • the piezo injector 13 is provided with a back pressure relief mechanism 60 for opening and closing the injection hole.
  • the energization control to the piezo actuator 51 of the back pressure relief mechanism 60 by the control device 100 is performed in a state where the high pressure fuel is supplied from the common rail 10, and the injection hole is opened and closed, so that various High pressure fuel is injected into a cylinder of an internal combustion engine (not shown) in an injection pattern.
  • FIG. 2 shows a configuration example of the piezo injector 13 including a back pressure relief mechanism 60 including a piezo actuator 51 as an example of a fuel injection valve.
  • the piezo injector 13 is configured such that fuel is injected by letting the high-pressure fuel in the back pressure chamber 91 loaded on the rear end side of the nozzle needle 83 escape by the back pressure relief mechanism 60. It is.
  • the nozzle needle 83 passes through the first hole 75a of the orifice plate 75.
  • the high pressure fuel is guided from the periphery of the nozzle to the injection hole 79b side.
  • the high-pressure fuel is also supplied to the back pressure chamber 91 via the first throttle hole 75b and is also guided to the axial hole 71a of the valve plate 71 via the second throttle hole 75c.
  • the piezo actuator 51 when the piezo actuator 51 is energized to extend the piezo stack 51A, the displacement of the piezo stack 51A is transmitted to the displacement amplification piston 65, and further amplified in the displacement amplification chamber 66 and transmitted to the valve piston 67.
  • the valve member 73 When the valve member 73 is pressed by the valve piston 67, the valve member 73 is separated from the reduced diameter portion 71 b of the axial hole 71 a of the valve plate 71 and the reduced diameter portion 71 b is opened, while the third of the orifice plate 75 is opened.
  • the throttle hole 75d is closed.
  • the force that presses the nozzle needle 83 to the side opposite to the injection hole 79b is the needle.
  • the biasing force of the spring 89 is exceeded, the nozzle needle 83 is lifted from the valve seat, and the injection hole 79b is opened.
  • the fuel used for back pressure control of the nozzle needle 83 and released to the displacement amplification chamber 66 side is flowed to the fuel recirculation passage 30c via the fuel escape passage 61c and returned to the fuel tank.
  • the piezo injector 13 configured as described above has a configuration in which the high pressure fuel does not leak to the low pressure side in addition to the high pressure fuel in the back pressure chamber 91 being released by the escape control of the piezo actuator 51. Therefore, in a state where the piezo stack 51A is not extended and the reduced diameter portion 71b of the valve plate 71 is closed by the valve member 73, the leak fuel from the piezo injector 13 does not exist or becomes extremely small. In other words, if the piezo stack 51A is not extended and the pressure control valve 12 connected to the common rail 10 is closed, a state in which the rail pressure is difficult to decrease is formed. Therefore, even when the high-pressure pump 5 is downsized, the target rail pressure and the required injection amount are ensured, and the startability at the time of restarting the internal combustion engine in the idling stop control is prevented.
  • the piezo injector 13 is used as a fuel injection valve. However, there is no portion where the high pressure fuel leaks to the low pressure side other than the high pressure fuel in the back pressure chamber 91 is released by the back pressure control. Any electromagnetic solenoid injector may be used.
  • FIG. 3 is a functional block diagram showing a part related to fuel leakage diagnosis in the configuration of the control device 100 shown in FIG.
  • the control device 100 is configured around a microcomputer having a known configuration, and includes a pressure detection unit 101, an idling stop determination unit 102, an engine switch detection unit 103, a diagnosis execution switch detection unit 104, and a diagnosis start.
  • a determination unit 105, a rail pressure / injection control unit (holding control unit) 106, and a fuel leakage determination unit 107 are provided. Specifically, each of these units is realized by executing a program by a microcomputer.
  • the pressure detection unit 101 reads the sensor value (rail pressure) Prail of the pressure sensor 21 provided on the common rail 10 and stores it in a RAM (Random Access Memory) (not shown).
  • the read rail pressure Prail is also output to the rail pressure / injection control unit 106 and the fuel leakage determination unit 107.
  • the idling stop determination unit 102 is based on information such as the rotational speed Ne of the internal combustion engine, the accelerator pedal operation amount Acc, the brake pedal operation amount Brk, the clutch position C, and the gear position G. Whether to perform idling stop control is determined. When it is determined that the idling stop control unit 102 performs the idling stop control, a signal Is indicating that the idling stop control is performed is output to the diagnosis start determination unit 105, and the rail pressure / injection control unit An internal combustion engine stop signal Es is output to 106.
  • the engine switch detection unit 103 detects ON / OFF of the ignition switch of the internal combustion engine.
  • a signal Se indicating that the internal combustion engine is to be stopped when the ignition switch is turned off is sent to the diagnosis start determination unit 105.
  • a stop signal Es for the internal combustion engine is output to the rail pressure / injection control unit 106.
  • Diagnosis execution switch detection unit 104 detects ON / OFF of the diagnosis execution switch. For example, when a fuel leakage diagnosis is performed at a vehicle dealer or the like, a diagnosis execution switch is turned ON, and when the diagnosis execution switch detection unit 104 detects that the diagnosis execution switch is turned ON, a diagnosis start determination unit 105 On the other hand, a signal De indicating that the internal combustion engine is stopped as a result of the diagnosis is output, and a stop signal Es for the internal combustion engine is output to the rail pressure / injection control unit 106.
  • the diagnosis start determination unit 105 determines whether or not the accumulator fuel supply apparatus 50 is in a state of executing a fuel leakage diagnosis. There may be one or more conditions regarding whether or not to perform the fuel leakage diagnosis. In the present embodiment, any one of the three conditions that the idling stop control of the internal combustion engine is executed, the ignition switch of the internal combustion engine is turned off, and the diagnosis execution switch is turned on. When is established, it is determined that the fuel leakage diagnosis is executed. The diagnosis start determination unit 105 outputs a signal Ds for executing a fuel leakage diagnosis to the rail pressure / injection control unit 106 and the fuel leakage determination unit 107 when these conditions are satisfied.
  • Rail pressure / injection control unit (holding control unit)
  • the rail pressure / injection control unit 106 performs control of the rail pressure Prail and fuel injection control. In the normal operation mode of the internal combustion engine, the rail pressure / injection control unit 106 is based on the rail pressure Prail output from the pressure detection unit 101. 8 and feedback control of the pressure control valve 12 and energization control of the piezo injector 13 are performed.
  • the rail pressure / injection control unit 106 functions as a holding control unit for the rail pressure Prail at the time of fuel leakage diagnosis.
  • the rail pressure control unit 106 as a holding control unit holds the fuel in the high-pressure fuel system 40 when the diagnosis start determination unit 105 determines that the accumulator fuel supply device is in a state of executing the fuel leakage diagnosis. Take control.
  • the rail pressure / injection control unit 106 outputs a holding start signal Pk to the fuel leakage determination unit 107.
  • the control for holding the fuel in the high-pressure fuel system 40 is performed by closing the pressure control valve 12 connected to the piezo injector 13 and the common rail 10 together with the supply of the high-pressure fuel from the high-pressure pump 5 being stopped.
  • the high pressure fuel system 40 is closed.
  • this control is used as it is.
  • the stop instruction signal Es for the internal combustion engine is output and the fuel injection to the internal combustion engine is stopped, the fuel pumping from the high pressure pump 5 is stopped and the fuel discharge valve 9 becomes a check valve.
  • the inside of the high-pressure fuel passage 37 downstream of the pressurizing chamber 5a is blocked so that it cannot flow backward.
  • the pressure control valve 12 connected to the common rail 10 is fully closed, so that the high-pressure fuel is blocked from recirculating from the common rail 10 to the fuel tank 1.
  • the piezo injector 13 the piezo stack 51 ⁇ / b> A is not expanded and the pressure in the back pressure chamber 91 is secured, so that the nozzle needle 83 is pressed toward the injection hole 79 b and the injection hole 79 b is closed. Is done.
  • the high-pressure fuel system 40 is closed with the fuel held therein.
  • the fuel held in the high-pressure fuel system 40 may be held as it is with the pressure existing in the high-pressure fuel system 40 when the internal combustion engine is stopped, or held in a state adjusted to a predetermined pressure. Also good.
  • the pressure control valve 12 is used based on the rail pressure Prail after the internal combustion engine is stopped. This can be done by adjusting the pressure.
  • the rail pressure / injection control unit 106 of the control device 100 of the present embodiment when the rail pressure Prail falls below a predetermined value (second threshold value P3) when a fuel leakage diagnosis described later is performed, When the internal combustion engine is restarted, fuel injection is not performed until the rail pressure Prail reaches a predetermined value (second threshold value P3). Then, after the high pressure pump 5 is driven in the cranking state and the rail pressure Prail reaches a predetermined value (second threshold value P3), fuel injection into the internal combustion engine is permitted and the internal combustion engine is started. By not permitting the start of fuel injection to the internal combustion engine until the rail pressure Prail becomes equal to or higher than a predetermined value, abnormal operation of the internal combustion engine, damage to the internal combustion engine due to abnormal operation, and the like are prevented.
  • the fuel leakage determination unit 107 detects the fuel leakage from the high pressure fuel system 40 based on the pressure change in the high pressure fuel system 40 after the fuel starts to be held in the high pressure fuel system 40. Determine presence or absence.
  • the fuel leak determination unit 107 of the control device 100 of the present embodiment reads the pressure detection unit 101 after a predetermined time tm has elapsed after the internal combustion engine has completely stopped after starting to hold the fuel in the high pressure fuel system 40. Whether or not there is a fuel leak from the high-pressure fuel system 40 is determined by determining whether or not the rail pressure Prail to be reduced has decreased to a predetermined first threshold value P2 or less.
  • the fuel leak determination unit 107 of the control device 100 of the present embodiment is a case where the rail pressure Prail after a predetermined time tm has elapsed after the internal combustion engine has stopped has not decreased to the first threshold value P2 or less. On the other hand, if it is equal to or lower than the second threshold value P3 set to a value higher than the first threshold value P2, it is determined that there is a possibility that fuel leakage from the high-pressure fuel system 40 may start to proceed. Although not shown in the figure, based on the determination result in the fuel leakage determination unit 107, if there is a fuel leak from the high-pressure fuel system 40 or there is a risk of it, the control device 100 informs the driver or the like. A warning is displayed to inform the user.
  • the predetermined time tm may be a predetermined time set in advance.
  • the rail pressure Prail is detected and compared with the first threshold P2 when the internal combustion engine is restarted. You can also.
  • the first threshold value P2 may be a value set in advance, but is set individually based on the rail pressure P1 detected at the time when control for holding fuel in the high-pressure fuel system 40 is started. May be.
  • FIG. 4 shows a temporal change in the rotational speed Ne of the internal combustion engine and a temporal change in the rail pressure Prail in the case where the idling stop control is executed.
  • the solid line A indicates the rotational speed Ne of the internal combustion engine
  • the solid line B (B 1), the broken line B 2, the dotted line B 3, and the alternate long and short dash line B 4 indicate the rail pressure Prail detected by the pressure sensor 21.
  • P1 is a necessary pressure in idle operation
  • P2 is a first threshold value (fuel leakage determination value)
  • P3 is a second threshold value (fuel injection permission pressure).
  • the idling stop determination unit 102 instructs execution of idling stop control at an arbitrary time t1
  • an internal combustion engine stop signal Es is output, and the rotational speed Ne of the internal combustion engine begins to decrease, at time t2.
  • the internal combustion engine stops completely.
  • the rail pressure / injection control unit 106 closes the high-pressure fuel system 40 and controls to hold the fuel in the high-pressure fuel system 40.
  • the rail pressure Prail remains unchanged at the rail pressure (P1 in FIG. 4) at the time t1, and is kept constant as shown by the solid line B1.
  • the rail pressure Prail gradually decreases as shown by a broken line B2. If there is no fuel leakage from the high-pressure fuel system 40 or there is only a very small amount of leaked fuel, the amount of decrease in the rail pressure Prail is small, and the internal combustion engine is restarted at time t4 when the idling stop control is released.
  • the rail pressure Prail exceeds the second threshold value (fuel injection permission pressure) P3, the rail pressure Prail quickly rises to the necessary pressure P1 in the idling operation and immediately enters the internal combustion engine. Fuel injection is performed and the internal combustion engine is started.
  • the rail pressure Prail significantly decreases after the stop point t1 of the internal combustion engine as indicated by the dotted line B3. Therefore, when the internal combustion engine is restarted at the time t4 when the idling stop control is released, the time t7 is required for the rail pressure Prail to reach the second threshold value P3 at which fuel injection to the internal combustion engine is permitted. It takes time until. Therefore, the start of the internal combustion engine is delayed, and it takes time until the rail pressure Prail reaches the necessary pressure P1 in the idle operation (t8).
  • Rail pressure Prail gradually decreases. Even in this case, it takes a little time for the rail pressure Prail to reach the second threshold value P3 at which fuel injection to the internal combustion engine is permitted from the time t4 when the idling stop control is released to the time t5. Therefore, the start of the internal combustion engine is delayed, and it takes time until the rail pressure Prail reaches the necessary pressure P1 in the idling operation (t6).
  • the fuel leakage determination unit 107 of the control device 100 of the present embodiment performs t3 after a predetermined time tm has elapsed from the state t2 in which the internal combustion engine is completely stopped. At this point, it is determined whether or not the rail pressure Prail has decreased to the first threshold value P2 or the second threshold value P3 or less, thereby performing a fuel leakage diagnosis of the high-pressure fuel system 40.
  • the rail pressure Prail at the time point t3 is less than or equal to the first threshold value P2. Of course, it does not fall below the second threshold value P3.
  • step S10 a fuel leak diagnosis method for the high-pressure fuel system 40 performed by the control device 100 of the present embodiment will be described based on the flow of FIG.
  • step S10 any one of the conditions that the idling stop control is executed, the ignition switch is turned off, and the diagnosis execution switch is turned on is met. Whether or not is determined. This determination is repeated until either condition is met.
  • step S10 If it is determined in step S10 that any of the conditions is met, the rail pressure Prail1 is detected in step S11, and then the internal combustion engine is stopped in step S12. Next, after the timer is operated in step S13, in step S14, control for holding the fuel in the high-pressure fuel system 40 is performed. Specifically, the injection from the fuel injection valve 13 is stopped, and the pressure control valve 12 connected to the common rail 10 is fully closed.
  • step S15 it is repeatedly determined whether or not the timer has passed the predetermined time tm until the timer has passed the predetermined time tm.
  • the timer elapses the predetermined time tm
  • a fuel leak ERROR signal is output and, for example, a warning display indicating the occurrence of fuel leak is displayed.
  • step S19 it is determined whether or not the rail pressure Prail2 is equal to or lower than the second threshold value P3.
  • the rail pressure Prail2 is less than or equal to the second threshold value P3, it is estimated that a slight fuel leak has occurred. Therefore, in step S20, a fuel leak ALERT signal is output and, for example, a fuel leak may occur. This routine is terminated after displaying a warning indicating that there is.
  • an OK signal is output in step S21 and the routine is terminated.
  • the presence or absence of fuel leakage from the high-pressure fuel system 40 is diagnosed based on the pressure change of the high-pressure fuel system 40 during the stop period of the internal combustion engine.
  • the self-diagnosis of the presence or absence of leakage of the high-pressure fuel in the high-pressure fuel system 40 is performed without performing a diagnostic operation, and the fuel leakage from the high-pressure fuel system 40 is detected at an early stage.
  • the controller 100 Since the control device 100 holds the fuel in the high-pressure fuel system 40 and detects a pressure change in the high-pressure fuel system 40, the controller 100 is configured to be able to diagnose the fuel leakage from the high-pressure fuel system 40.
  • the fuel leak can be diagnosed using the high-pressure fuel supplied to the high-pressure fuel system 40, and the fuel leak diagnosis can be easily performed.
  • the stop period of the internal combustion engine for diagnosing fuel leakage is during idling stop control of the internal combustion engine, the fuel is held in the high-pressure fuel system 40 during operation of the vehicle on which the internal combustion engine is mounted.
  • the fuel leakage of the high-pressure fuel system 40 can be diagnosed using the time when the control is performed. Therefore, waste of the battery or the like can be suppressed and time required for diagnosis can be saved.
  • Another Example of Fuel Leak Diagnosis Method includes, for example, comparing the pressure drop amount or the pressure drop rate until a predetermined time elapses after the fuel is held in the high-pressure fuel system with a predetermined reference value. It is done.
  • the rail pressure Prail3 is read when control for holding fuel in the high pressure fuel system is started, and after a predetermined time tm has elapsed based on the rail pressure Prail3.
  • An allowable reference pressure drop amount D0 or a reference pressure drop rate R0 is set.
  • the rail pressure Prail4 is read, and the pressure drop amount D or the pressure drop rate R from the rail pressure Prail1 at the start of the holding control is calculated. Then, the pressure drop amount D or the pressure drop rate R is compared with the reference pressure drop amount D0 or the reference pressure drop rate R0, and the presence or absence of fuel leakage is determined.
  • reference pressure drop amount D0 or reference pressure drop rate R0 may also be set in advance, or based on the rail pressure detected at the time when control for holding fuel in the high-pressure fuel system is started. May be set. Further, although not shown in the drawing, the (first) reference pressure drop D0 or the first pressure drop amount D0 or the occurrence of a light fuel leak as well as a noticeable fuel leak can be detected as in the fuel leak diagnosis shown in FIG. In addition to the (first) reference pressure decrease rate R0, the second reference pressure decrease amount or the second reference value that is smaller than the first reference pressure decrease amount D0 or the first reference pressure decrease rate R0. The reference pressure drop rate may be set.
  • Another fuel leak diagnosis method 2 Further, as another method for determining the presence or absence of fuel leakage, for example, comparing the pressure decrease pattern in the high-pressure fuel system after starting to hold the fuel in the high-pressure fuel system with a predetermined reference pattern. It is done.
  • the rail pressure Prail5 is read when the control for holding the fuel in the high pressure fuel system is started, and the reference pattern X of the rail pressure drop is based on the rail pressure Prail5. Is set. Then, the rail pressure Prail is continuously read, and the rail pressure decrease pattern B (B1, B2, B3) is compared with the reference pattern X, and the method of decreasing the rail pressure is the method of decreasing the reference pattern X. Whether or not there is a fuel leak is determined by whether or not it is faster.
  • this reference pattern may also be a preset pattern, or may be set individually based on the rail pressure detected at the time when control for holding fuel in the high-pressure fuel system is started. Also good. Further, although not shown, in addition to the fuel leak diagnosis shown in FIG. 4, in addition to the remarkable fuel leak, the occurrence of a light fuel leak can be detected in addition to the (first) reference pattern X.
  • the second reference pattern may be set in which the rail pressure lowers more slowly than the first reference pattern X.
  • Another fuel leakage diagnosis method 3 Further, as another method for diagnosing fuel leakage, for example, when idling stop control is executed or when a diagnosis start switch is turned on, the internal combustion engine is stopped after a predetermined time has elapsed since the internal combustion engine stopped. When restarting, the time until the rail pressure is returned to a predetermined value and the energization amount to the pressure control valve are compared with a predetermined (first) threshold value. Although this method is not shown, for example, the return value of the rail pressure that is returned when the internal combustion engine is restarted is set in advance, and the time until the rail pressure rises to the return value after the restart of the internal combustion engine, pressure control, etc.
  • the amount of current supplied to the valve is compared with a (first) threshold value to determine the presence or absence of fuel leakage. For example, when a pressure control valve that is fully opened in a non-energized state is used, the greater the amount of fuel leakage, the greater the amount of power supplied to the pressure control valve until the rail pressure rises to the return value. In addition, as the amount of fuel leakage increases, the time until the rail pressure rises to the return value becomes longer.
  • the configuration of the fuel leakage determination unit can be diversified.
  • the value of the energization amount is set higher than the first threshold value so that not only the remarkable fuel leakage but also the occurrence of minor fuel leakage can be detected as in the fuel leakage diagnosis shown in FIG.
  • a second threshold value that is smaller may be set.
  • the second embodiment of the present invention is a fuel leak diagnosis device (control device) 130 provided in a leakless pressure-accumulation fuel supply device similar to that described in the first embodiment. While having the same configuration as the control device 100 of the first embodiment, it is erroneously determined that a fuel leak has occurred due to a decrease in the pressure in the high-pressure fuel system 40 due to the contraction of the high-pressure fuel caused by a temperature change. It is configured not to be.
  • FIG. 8 is a functional block diagram showing a part related to fuel leakage diagnosis in the configuration of the control device 130 of the present embodiment.
  • the control device 130 is configured around a microcomputer having a known configuration, and includes a pressure detection unit 101, an idling stop determination unit 102, an engine switch detection unit 103, a diagnosis execution switch detection unit 104, and a diagnosis start.
  • a determination unit 105, a rail pressure / injection control unit (holding control unit) 106, a fuel leakage determination unit 107, and a diagnosis stop instruction unit 108 are provided. Specifically, each of these units is realized by executing a program by a microcomputer.
  • the pressure detection unit 101, the idling stop determination unit 102, the engine switch detection unit 103, the diagnosis execution switch detection unit 104, the diagnosis start determination unit 105, the rail pressure / injection control unit 106, and the fuel leakage determination unit 107 are the first one. It has the same function as each part of the control apparatus 100 of the embodiment. However, the diagnosis start determination unit 105 outputs not only the rail pressure / injection control unit 106 and the fuel leakage determination unit 107 but also the diagnosis stop instruction unit when the diagnosis start condition is satisfied. Also output to 108.
  • the diagnosis stop instruction unit 108 is configured so that the temperature Tw of the coolant used for cooling the internal combustion engine and the temperature Tf of the high pressure fuel in the high pressure fuel system 40 are equal to or greater than a predetermined value from the start of execution of the fuel leak diagnosis.
  • a fuel leak judgment stop signal S is output to the fuel leak judgment unit 107.
  • the diagnosis stop instruction unit 108 of the fuel leak diagnosis apparatus 130 is stored in a RAM (not shown) when the signal Ds for starting the fuel leak diagnosis is output from the diagnosis start determination unit 105.
  • the coolant temperature Tw and the temperature Tf of the high-pressure fuel in the high-pressure fuel system 40 are read, and the values at that time are set as reference values Tw0 and Tf0, respectively.
  • the diagnosis stop instruction unit 108 continuously reads the coolant temperature Tw and the high-pressure fuel temperature Tf in the high-pressure fuel system 40 and obtains deviations ⁇ Tw and ⁇ Tf from the reference values Tw0 and Tf0.
  • a fuel leak determination stop signal S is output to the fuel leak determination unit 107.
  • the coolant temperature Tw and the high-pressure fuel temperature Tf can be detected by a temperature sensor or the like provided in a region where the coolant or the high-pressure fuel flows.
  • the diagnosis stop instructing unit 108 is configured such that the temperature of the high-pressure fuel in the high-pressure fuel system 40 decreases with the lapse of time after the internal combustion engine stops, and the fuel density changes, so that the fuel contracts and the high-pressure fuel system 40 It is provided to prevent a fuel leak from being determined to have occurred from the high-pressure fuel system 40 even when no fuel leak has occurred when the pressure drops. Therefore, information other than the coolant temperature Tw and the high-pressure fuel temperature Tf can be used as a determination criterion if it can be estimated that the temperature of the high-pressure fuel 40 system decreases.
  • step S10 the idling stop control is executed, the ignition switch is turned off, and the diagnosis execution switch is turned on.
  • the rail pressure Prail1 is detected in step S11, and then the internal combustion engine is stopped in step S12.
  • the timer is operated in step S13, and the temperature Tw of the coolant at that time and the temperature Tf of the high-pressure fuel in the high-pressure fuel system 40 are read in step S31, and each of the values read in step S31 is read in step S32.
  • the temperatures Tw and Tf are set to the reference values Tw0 and Tf0, respectively.
  • step S14 control for holding the fuel in the high-pressure fuel system 40 is performed, and in step S15, the timer elapses a predetermined time tm. Until then, it is repeatedly determined whether or not the timer has passed the predetermined time tm.
  • step S15 if the timer has not elapsed the predetermined time tm and it is determined No in step S15, the process proceeds to step S33, and the coolant temperature Tw and the high-pressure fuel temperature Tf at that time are read. .
  • step S35 it is determined whether or not at least one of the deviations ⁇ Tw and ⁇ Tf is equal to or greater than the predetermined values ⁇ Tw0 and ⁇ Tf0.
  • the process returns to step S15 and the diagnosis is continued.
  • the pressure in the high-pressure fuel system 40 is reduced due to the contraction of the fuel, and no fuel leakage occurs. Nevertheless, since it may be determined that a fuel leak has occurred, the fuel leak diagnosis is stopped and this routine is terminated.
  • step S15 When the timer has passed the predetermined time tm in step S15, the subsequent steps S16 to S21 are performed in the same manner as the steps described in the first embodiment, and whether the fuel leakage ERROR signal is output in step S18. Alternatively, the routine ends when the fuel leakage ALERT signal is output in step S20 or the OK signal is output in step S21.
  • the fuel contracts due to a decrease in the temperature of the high-pressure fuel, and the pressure in the high-pressure fuel system 40 is decreased, so that there is a risk of erroneous diagnosis in the fuel leakage diagnosis. Disappear. Therefore, the reliability of the diagnosis result of the fuel leak diagnosis is improved.
  • the control for detecting the coolant temperature after the diagnosis is started and the temperature in the high-pressure fuel system and stopping the fuel leakage diagnosis when the temperature is lowered by a predetermined value or more from the start of the diagnosis is the fuel described in the first embodiment.
  • the present invention can also be applied when performing another method 1 to 3 of leak diagnosis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Provided are a fuel leakage diagnostic device and a fuel leakage diagnosis method with which it is easy to diagnose whether there is leakage of highly compressed fuel from a leak-proof pressurized storage-type fuel delivery device. The fuel leakage diagnostic device diagnoses whether there is fuel leakage from a leak-proof pressurized storage-type fuel delivery device equipped with a high‑pressure fuel system, which comprises a high‑pressure pump for pumping a highly compressed fuel, a common rail where the highly compressed fuel pumped from the high‑pressure pump is stored, and fuel injection valves for injecting the highly compressed fuel stored in the common rail into the cylinders of an internal combustion engine. The fuel leakage diagnostic device is equipped with a pressure detection unit that reads the pressure of the high‑pressure fuel system and stores the pressure reading, a retention control unit that retains the fuel inside the high‑pressure fuel system while the internal combustion engine is stopped, and a fuel leakage determination unit that determines whether there is fuel leakage by checking changes in the pressure in the high‑pressure fuel system after retention of the fuel in the high‑pressure fuel system has been started.

Description

燃料漏れ診断装置及び燃料漏れ診断方法Fuel leakage diagnosis device and fuel leakage diagnosis method
 本発明は、燃料漏れ診断装置及び燃料漏れ診断方法に関し、特に、リークレス蓄圧式燃料供給装置における高圧燃料系からの燃料漏れを診断する燃料漏れ診断装置及び燃料漏れ診断方法に関する。 The present invention relates to a fuel leak diagnostic device and a fuel leak diagnostic method, and more particularly to a fuel leak diagnostic device and a fuel leak diagnostic method for diagnosing a fuel leak from a high pressure fuel system in a leakless accumulator fuel supply device.
 従来、内燃機関の燃料供給装置として、高圧ポンプによって圧送されコモンレール内に蓄積された高圧燃料を、燃料噴射弁によって内燃機関の各気筒内に噴射するように構成された蓄圧式燃料供給装置が使用されている。
 このような蓄圧式燃料供給装置に用いられる燃料噴射弁として、噴射孔を開閉するノズルニードルと、高圧燃料が供給されてその圧力によりノズルニードルに背圧を負荷する背圧室と、背圧室内の高圧燃料を逃がすための背圧逃し機構と、を備えた燃料噴射弁が知られている。この燃料噴射弁では、コモンレールからの高圧燃料の一部が背圧室に供給され、開閉弁等を有する背圧逃し機構により、背圧室内の高圧燃料を還流通路に逃がすことで、ノズルニードルがリフトして噴射孔が開口し、噴射孔から内燃機関の気筒へ高圧燃料が噴射される。
Conventionally, as an internal combustion engine fuel supply device, an accumulator fuel supply device configured to inject high pressure fuel pumped by a high pressure pump and accumulated in a common rail into each cylinder of the internal combustion engine by a fuel injection valve has been used. Has been.
As a fuel injection valve used in such an accumulator fuel supply device, a nozzle needle that opens and closes an injection hole, a back pressure chamber in which high pressure fuel is supplied and a back pressure is applied to the nozzle needle by the pressure, and a back pressure chamber There is known a fuel injection valve provided with a back pressure relief mechanism for releasing the high pressure fuel. In this fuel injection valve, part of the high-pressure fuel from the common rail is supplied to the back pressure chamber, and the nozzle needle is released by allowing the high-pressure fuel in the back pressure chamber to escape to the return passage by a back pressure relief mechanism having an on-off valve or the like. The injection hole is opened by lifting, and high-pressure fuel is injected from the injection hole into the cylinder of the internal combustion engine.
 これまで、背圧逃し機構の開閉制御を行う手段として、電磁ソレノイドが採用された燃料噴射弁が多く使用されている。電磁ソレノイド式の燃料噴射弁の場合、背圧逃し機構によって逃がされる高圧燃料以外にも、ノズルニードルやバルブピストン等の摺動部分から低圧部に漏れ出すリーク燃料が還流通路に戻されるようになっている。背圧室内の高圧燃料が背圧逃し機構によって逃がされたときにのみ排出されるのに対して、このリーク燃料は、燃料噴射弁内に高圧燃料が存在している場合に漏れ出すようになっている。 So far, many fuel injection valves that employ electromagnetic solenoids have been used as means for controlling the opening and closing of the back pressure relief mechanism. In the case of an electromagnetic solenoid type fuel injection valve, in addition to the high-pressure fuel that is released by the back pressure relief mechanism, leaked fuel that leaks from the sliding part such as the nozzle needle and valve piston to the low-pressure part is returned to the return passage. ing. The high-pressure fuel in the back-pressure chamber is discharged only when it is released by the back-pressure relief mechanism, whereas this leaked fuel leaks when high-pressure fuel is present in the fuel injection valve. It has become.
 一方、近年では、背圧逃し機構としてピエゾアクチュエータを用いたピエゾインジェクタが用いられ始めている。ピエゾインジェクタの場合、背圧逃し機構によって逃がされる高圧燃料以外に低圧部に漏れ出すリーク燃料が存在しないような構造を採用しやすく、リークレス蓄圧式燃料供給装置として構成することが可能になる(例えば、特許文献1参照)。電磁ソレノイド式の燃料噴射弁においてもリークレスの構造を採用することが検討されている。 On the other hand, in recent years, a piezo injector using a piezo actuator has begun to be used as a back pressure relief mechanism. In the case of a piezo injector, it is easy to adopt a structure in which there is no leaked fuel leaking to the low-pressure part other than the high-pressure fuel released by the back pressure relief mechanism, and it becomes possible to configure as a leakless pressure accumulator fuel supply device (for example, , See Patent Document 1). Adoption of a leakless structure is also being considered for electromagnetic solenoid fuel injection valves.
 このようなリークレス蓄圧式燃料供給装置では、リーク分を燃料噴射弁に供給する必要がなくなるため、高圧ポンプの容量を低減できるとともに高圧ポンプの小型化が図られる。また、アイドリングストップ制御が実施される車両等では、アイドリングストップ時に高圧燃料が漏れ出すことがなく、コモンレール内の圧力が保持され、アイドリングストップ後の内燃機関の始動性が向上する。さらに、コモンレール内の圧力が低下しにくいということは、高圧燃料が流通する領域での圧力の振幅が抑えられることであり、構成部品の耐久性の向上が図られる。 Such a leakless pressure accumulating fuel supply device eliminates the need to supply the leak to the fuel injection valve, thereby reducing the capacity of the high pressure pump and reducing the size of the high pressure pump. Further, in a vehicle or the like in which idling stop control is performed, high-pressure fuel does not leak at the time of idling stop, the pressure in the common rail is maintained, and the startability of the internal combustion engine after idling stop is improved. Furthermore, the fact that the pressure in the common rail is unlikely to decrease means that the pressure amplitude in the region where the high-pressure fuel flows is suppressed, and the durability of the components is improved.
特開2007-510849号公報JP 2007-510849 A
 しかしながら、このようなリークレス蓄圧式燃料供給装置では、各構成部品の磨耗や接続不良等の耐久劣化により高圧燃料のリークが生じると、小型化された高圧ポンプの容量が不足して、コモンレールの目標圧力(以下、「目標レール圧」と称する。)や内燃機関への要求噴射量が確保されにくくなる。また、高圧燃料のリークが生じると、アイドリングストップ後の内燃機関の再始動時に、コモンレールの圧力(以下、「レール圧」と称する。)を上昇させるために時間を要し、内燃機関の始動性が低下する。さらに、想定外の部分において高圧燃料のリークが生じると、エロージョン等によって当該部分が破損するおそれがあるだけでなく、アイドリングストップ制御時にもレール圧が低下することによる高圧燃料の圧力振幅回数の増加による耐久性の低下のおそれもある。そのため、リークレス蓄圧式燃料供給装置においては、高圧燃料の漏れの有無を正確に把握することが必要になる。 However, in such a leakless pressure-accumulation fuel supply system, if high-pressure fuel leaks due to endurance deterioration such as wear or connection failure of each component, the capacity of the miniaturized high-pressure pump is insufficient, and the common rail target It becomes difficult to ensure the pressure (hereinafter referred to as “target rail pressure”) and the required injection amount to the internal combustion engine. In addition, when high pressure fuel leaks, it takes time to increase the pressure of the common rail (hereinafter referred to as “rail pressure”) when the internal combustion engine is restarted after idling is stopped. Decreases. Furthermore, if high-pressure fuel leaks in an unexpected part, not only may the part be damaged by erosion or the like, but also the number of high-pressure fuel pressure amplitudes will increase due to a drop in rail pressure during idling stop control. There is also a risk of lowering durability. Therefore, in the leakless pressure accumulator fuel supply device, it is necessary to accurately grasp the presence or absence of leakage of high-pressure fuel.
 そこで、本発明の発明者は鋭意努力し、内燃機関の停止期間中に、高圧燃料系内に燃料を保持しながら高圧燃料系内の圧力変化を見ることにより、このような問題を解決できることを見出し本発明を完成したものである。すなわち、本発明は、リークレス蓄圧式燃料供給装置において高圧燃料の漏れの有無を容易に診断することができる燃料漏れ診断装置及び燃料漏れ診断方法を提供することを目的とする。 Therefore, the inventors of the present invention diligently tried to solve such a problem by observing the pressure change in the high pressure fuel system while holding the fuel in the high pressure fuel system during the stop period of the internal combustion engine. The present invention has been completed. That is, an object of the present invention is to provide a fuel leakage diagnosis device and a fuel leakage diagnosis method that can easily diagnose the presence or absence of leakage of high-pressure fuel in a leakless accumulator fuel supply device.
 本発明によれば、高圧燃料を圧送する高圧ポンプと、高圧ポンプから圧送される高圧燃料が蓄積されるコモンレールと、コモンレールに蓄積された高圧燃料を内燃機関の気筒に噴射する燃料噴射弁と、を含む高圧燃料系を備え、燃料噴射弁は、噴射孔を開閉するノズルニードルと、高圧燃料が供給されて高圧燃料の圧力によりノズルニードルに背圧を負荷する背圧室と、背圧室の高圧燃料を逃がすことでノズルニードルをリフトさせて噴射孔を開口させる背圧逃し機構と、を備えるとともに、背圧室の高圧燃料以外の燃料のリーク通路を持たない構造であるリークレス蓄圧式燃料供給装置における、高圧燃料系からの燃料漏れの有無を診断するための燃料漏れ診断装置において、高圧燃料系内の圧力を検出し記憶する圧力検出部と、内燃機関の停止期間中に、高圧燃料系内に燃料を保持するための保持制御部と、燃料を高圧燃料系内に保持し始めたとき以降の高圧燃料系内の圧力変化を見ることにより、燃料漏れの有無を判定する燃料漏れ判定部と、を備えることを特徴とする燃料漏れ診断装置が提供され、上述した問題が解決される。 According to the present invention, a high-pressure pump that pumps high-pressure fuel, a common rail that stores high-pressure fuel pumped from the high-pressure pump, a fuel injection valve that injects high-pressure fuel stored in the common rail into a cylinder of the internal combustion engine, The fuel injection valve includes a nozzle needle that opens and closes an injection hole, a back pressure chamber that is supplied with high pressure fuel and applies a back pressure to the nozzle needle by the pressure of the high pressure fuel, and a back pressure chamber. Leakless pressure accumulation fuel supply that has a back pressure relief mechanism that lifts the nozzle needle by allowing high pressure fuel to escape and opens the injection hole, and has no leak passage for fuel other than high pressure fuel in the back pressure chamber In the fuel leakage diagnosis apparatus for diagnosing the presence or absence of fuel leakage from the high pressure fuel system in the apparatus, a pressure detection unit for detecting and storing the pressure in the high pressure fuel system, and an internal combustion engine During the stop period, a fuel leakage control is performed by observing the pressure control in the high-pressure fuel system after the start of holding the fuel in the high-pressure fuel system and the holding control unit for holding the fuel in the high-pressure fuel system. A fuel leakage diagnosis device comprising a fuel leakage determination unit for determining the presence or absence of the fuel leakage is provided, and the above-described problem is solved.
 また、本発明の燃料漏れ診断装置を構成するにあたり、燃料漏れ判定部は、燃料を高圧燃料系内に保持し始めてから所定時間経過後の高圧燃料系内の圧力を、所定の閾値と比較することで燃料漏れの有無を判定することが好ましい。 Further, in configuring the fuel leakage diagnosis device of the present invention, the fuel leakage determination unit compares the pressure in the high pressure fuel system after a predetermined time has elapsed after starting to hold the fuel in the high pressure fuel system with a predetermined threshold value. Thus, it is preferable to determine the presence or absence of fuel leakage.
 また、本発明の燃料漏れ診断装置を構成するにあたり、燃料漏れ判定部は、燃料を高圧燃料系内に保持し始めてからの高圧燃料系内の圧力低下量又は圧力低下割合を、所定の基準値と比較することで燃料漏れの有無を判定することが好ましい。 Further, in configuring the fuel leakage diagnosis device of the present invention, the fuel leakage determination unit determines the pressure drop amount or the pressure drop rate in the high pressure fuel system after the fuel starts to be held in the high pressure fuel system as a predetermined reference value. It is preferable to determine the presence or absence of fuel leakage by comparing with.
 また、本発明の燃料漏れ診断装置を構成するにあたり、内燃機関の停止期間は、内燃機関のアイドリングストップ制御時であることが好ましい。 Further, in configuring the fuel leakage diagnosis device of the present invention, it is preferable that the stop period of the internal combustion engine is during idling stop control of the internal combustion engine.
 また、本発明の燃料漏れ診断装置を構成するにあたり、内燃機関の冷却に用いられるクーラントの温度又は高圧燃料系内の高圧燃料の温度が内燃機関の停止時の温度から所定値以上低下したときに、燃料漏れ判定部における判定を中止させる診断中止指示部を備えることが好ましい。 Further, when configuring the fuel leakage diagnosis device of the present invention, when the temperature of the coolant used for cooling the internal combustion engine or the temperature of the high pressure fuel in the high pressure fuel system has decreased by a predetermined value or more from the temperature when the internal combustion engine is stopped. It is preferable to provide a diagnosis stop instruction unit for stopping the determination in the fuel leak determination unit.
 また、本発明の別の態様は、高圧燃料を圧送する高圧ポンプと、高圧ポンプから圧送される高圧燃料が蓄積されるコモンレールと、コモンレールに蓄積された高圧燃料を内燃機関の気筒に噴射する燃料噴射弁と、を含む高圧燃料系を備え、燃料噴射弁は、噴射孔を開閉するノズルニードルと、高圧燃料が供給されて高圧燃料の圧力によりノズルニードルに背圧を負荷する背圧室と、背圧室の高圧燃料を逃がすことでノズルニードルをリフトさせて噴射孔を開口させる背圧逃し機構と、を備えるとともに、背圧室の高圧燃料以外の燃料のリーク通路を持たない構造であるリークレス蓄圧式燃料供給装置における、高圧燃料系からの燃料漏れの有無を診断するための燃料漏れ診断方法において、高圧燃料系内に燃料を保持しながら高圧燃料系の圧力変化を見ることにより、燃料漏れの有無を判定することを特徴とする燃料漏れ診断方法である。 Another aspect of the present invention is a high-pressure pump that pumps high-pressure fuel, a common rail that stores high-pressure fuel pumped from the high-pressure pump, and a fuel that injects high-pressure fuel stored in the common rail into a cylinder of an internal combustion engine. A fuel injection valve including a nozzle needle that opens and closes an injection hole, a back pressure chamber that is supplied with high pressure fuel and applies a back pressure to the nozzle needle by the pressure of the high pressure fuel, and Leakless, which has a back pressure relief mechanism that lifts the nozzle needle by allowing the high pressure fuel in the back pressure chamber to escape and opens the injection hole, and does not have a fuel leak passage other than the high pressure fuel in the back pressure chamber In a fuel leakage diagnosis method for diagnosing the presence or absence of fuel leakage from a high-pressure fuel system in an accumulator fuel supply system, the high-pressure fuel system is maintained while holding fuel in the high-pressure fuel system. By looking at the force variation is a fuel leakage diagnosis method characterized by determining the presence or absence of fuel leakage.
 本発明の燃料漏れ診断装置及び燃料漏れ診断方法によれば、内燃機関の停止期間中に、リークレス蓄圧式燃料供給装置であれば本来低下しにくいはずの高圧燃料系内の圧力変化に基づいて、高圧燃料系の燃料漏れの有無を容易に診断することができる。したがって、各構成部品の磨耗や接続不良等の耐久劣化が早期に発見され、修理、交換できるため、燃料噴射状態や内燃機関の始動性、さらには、各構成部品の蓄圧式燃料供給装置の耐久性の向上が図られる。 According to the fuel leakage diagnostic device and the fuel leakage diagnostic method of the present invention, during the stop period of the internal combustion engine, based on the pressure change in the high-pressure fuel system that should be essentially less likely to be reduced if it is a leakless accumulator fuel supply device, The presence or absence of fuel leakage in the high-pressure fuel system can be easily diagnosed. Therefore, durability deterioration such as wear and connection failure of each component can be found early and repaired and replaced, so that the fuel injection state, the startability of the internal combustion engine, and the durability of the accumulator fuel supply device of each component The improvement of the property is achieved.
 また、本発明の燃料漏れ診断装置において、燃料漏れ判定部が、高圧燃料系内の圧力を閾値と比較して燃料漏れの有無を判定することにより、本来圧力が低下しにくいリークレス蓄圧式燃料供給装置において生じた燃料漏れの有無を確実に判別することができる。 Further, in the fuel leakage diagnosis apparatus of the present invention, the fuel leakage determination unit compares the pressure in the high-pressure fuel system with a threshold value to determine the presence or absence of fuel leakage. It is possible to reliably determine the presence or absence of fuel leakage that has occurred in the apparatus.
 また、本発明の燃料漏れ診断装置において、燃料漏れ判定部が、高圧燃料系内の圧力低下量又は圧力低下割合を、所定の基準値と比較して燃料漏れの有無を判定することにより、燃料漏れの有無を確実に判別できるとともに、燃料漏れの程度を診断することができる。 In the fuel leakage diagnosis apparatus of the present invention, the fuel leakage determination unit compares the pressure decrease amount or the pressure decrease ratio in the high pressure fuel system with a predetermined reference value to determine whether or not there is a fuel leak, The presence or absence of leakage can be reliably determined, and the degree of fuel leakage can be diagnosed.
 また、本発明の燃料漏れ診断装置において、内燃機関の停止期間が、内燃機関のアイドリングストップ制御時であることにより、内燃機関が搭載された車両の運転時であって、かつ、高圧燃料系に高圧燃料が保持される制御が行われる時を利用して、燃料漏れの有無を診断することができる。したがって、バッテリー等の浪費が抑えられるとともに、診断のために要する時間を省くことができる。 Further, in the fuel leakage diagnosis device of the present invention, the stop period of the internal combustion engine is at the time of idling stop control of the internal combustion engine, so that the vehicle equipped with the internal combustion engine is in operation and the high pressure fuel system is The presence or absence of fuel leakage can be diagnosed using the time when the control for holding the high-pressure fuel is performed. Therefore, waste of the battery or the like can be suppressed and time required for diagnosis can be saved.
 また、本発明の燃料漏れ診断装置において、クーラントの温度又は高圧燃料の温度が内燃機関の停止時から所定値以上低下した時に、燃料漏れ判定部の判定を中止させる診断中止指示部を備えることにより、温度変化による高圧燃料系内の高圧燃料の収縮によって圧力が低下した場合に燃料漏れを生じていると判定されることが避けられる。 Further, the fuel leakage diagnosis device of the present invention includes a diagnosis stop instruction unit that stops the determination of the fuel leak determination unit when the temperature of the coolant or the temperature of the high-pressure fuel has decreased by a predetermined value or more since the stop of the internal combustion engine. It is avoided that it is determined that the fuel leaks when the pressure is reduced due to the contraction of the high-pressure fuel in the high-pressure fuel system due to the temperature change.
本発明の第1の実施の形態の燃料漏れ診断装置(制御装置)を備えた蓄圧式燃料供給装置の構成例を説明するための図である。It is a figure for demonstrating the structural example of the pressure accumulation type fuel supply apparatus provided with the fuel leak diagnostic apparatus (control apparatus) of the 1st Embodiment of this invention. ピエゾインジェクタの構成について説明するための断面図である。It is sectional drawing for demonstrating the structure of a piezo injector. 第1の実施の形態にかかる燃料漏れ診断装置の構成例を説明するためのブロック図である。It is a block diagram for demonstrating the structural example of the fuel leak diagnostic apparatus concerning 1st Embodiment. アイドリングストップ制御時の内燃機関の回転数変化とレール圧変化とを示すチャート図である。It is a chart figure which shows the rotation speed change and rail pressure change of an internal combustion engine at the time of idling stop control. 第1の実施の形態にかかる燃料漏れ診断方法の一例を説明するためのフローである。It is a flow for demonstrating an example of the fuel leak diagnostic method concerning 1st Embodiment. 別の燃料漏れ診断方法を説明するためのチャート図である。It is a chart for demonstrating another fuel leak diagnostic method. さらに別の燃料漏れ診断方法を説明するためのチャート図である。It is a chart for demonstrating another fuel leak diagnostic method. 第2の実施の形態にかかる燃料漏れ診断装置の構成例を説明するためのブロック図である。It is a block diagram for demonstrating the structural example of the fuel leak diagnostic apparatus concerning 2nd Embodiment. 第2の実施の形態にかかる燃料漏れ診断方法の一例を説明するためのフローである。It is a flow for demonstrating an example of the fuel leak diagnostic method concerning 2nd Embodiment.
 以下、適宜図面を参照して、本発明の燃料漏れ診断装置及び燃料漏れ診断方法に関する実施の形態について具体的に説明する。ただし、かかる実施形態は本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。なお、それぞれの図中、同じ符号を付してあるものについては同一の部材が示され、適宜説明が省略されている。 Hereinafter, embodiments of the fuel leakage diagnosis apparatus and the fuel leakage diagnosis method of the present invention will be specifically described with reference to the drawings as appropriate. However, this embodiment shows one aspect of the present invention, and does not limit the present invention, and can be arbitrarily changed within the scope of the present invention. In addition, in each figure, about the thing which has attached | subjected the same code | symbol, the same member is shown and description is abbreviate | omitted suitably.
[第1の実施の形態]
1.リークレス蓄圧式燃料供給装置
(1)基本的構成
 図1は、本発明の第1の実施の形態にかかる燃料漏れ診断装置(制御装置)100が備えられたリークレス蓄圧式燃料供給装置(以下、単に「蓄圧式燃料供給装置」と称する。)50の構成例を示す概略図である。
 この蓄圧式燃料供給装置50は、燃料タンク1と、低圧ポンプ2と、燃料フィルタ3と、高圧ポンプ5と、コモンレール10と、燃料噴射弁としてのピエゾインジェクタ13等を主たる要素として備えている。それぞれの構成要素は燃料配管で接続されており、燃料タンク1から高圧ポンプ5の加圧室5aまでの低圧燃料が流動する燃料供給通路18a~18dが実線で示され、加圧室5aからコモンレール10までの高圧燃料が流動する高圧燃料通路37と、コモンレール10から各ピエゾインジェクタ13までの高圧燃料が流動する高圧燃料通路39が太線で示されている。また、高圧ポンプ5、圧力制御弁12、及びピエゾインジェクタ13から燃料タンク1までの燃料還流通路30a~30cが破線で示されている。図中の矢印は各通路における燃料の進行方向を示している。
 ここでは、高圧ポンプ5の燃料吐出弁9より下流側のコモンレール10、ピエゾインジェクタ13及びこれらを接続する高圧燃料通路37、39により、高圧燃料系40が構成されている。
[First Embodiment]
1. Leakless Accumulated Fuel Supply Device (1) Basic Configuration FIG. 1 shows a leakless accumulator fuel supply device (hereinafter simply referred to as a fuel leak diagnostic device (control device) 100) according to a first embodiment of the present invention. FIG. 5 is a schematic diagram showing a configuration example of “accumulated fuel supply device”.
The accumulator fuel supply device 50 includes a fuel tank 1, a low pressure pump 2, a fuel filter 3, a high pressure pump 5, a common rail 10, a piezo injector 13 as a fuel injection valve, and the like as main elements. Each component is connected by a fuel pipe. Fuel supply passages 18a to 18d through which low-pressure fuel flows from the fuel tank 1 to the pressurizing chamber 5a of the high-pressure pump 5 are indicated by solid lines, and from the pressurizing chamber 5a to the common rail A high-pressure fuel passage 37 through which high-pressure fuel up to 10 flows and a high-pressure fuel passage 39 through which high-pressure fuel from the common rail 10 to each piezo injector 13 flows are shown by bold lines. In addition, the high-pressure pump 5, the pressure control valve 12, and the fuel return passages 30a to 30c from the piezo injector 13 to the fuel tank 1 are indicated by broken lines. The arrows in the figure indicate the traveling direction of the fuel in each passage.
Here, the high-pressure fuel system 40 is constituted by the common rail 10 and the piezo injector 13 downstream of the fuel discharge valve 9 of the high-pressure pump 5 and the high- pressure fuel passages 37 and 39 connecting them.
 この蓄圧式燃料供給装置50では、燃料タンク1内の燃料が低圧ポンプ2によって高圧ポンプ5に向けて送られる。このとき、加圧室5aに送られる燃料の流量は、内燃機関の運転状態や目標レール圧に応じて、電磁式の比例制御弁からなる流量制御弁8によって調節される。また、流量制御弁8より上流側の燃料供給通路18b内の圧力が所定値に維持されるように、燃料供給通路18bにはオーバーフローバルブ14が接続され、余剰の燃料が燃料タンク1に戻される。 In the accumulator fuel supply device 50, the fuel in the fuel tank 1 is sent to the high pressure pump 5 by the low pressure pump 2. At this time, the flow rate of the fuel sent to the pressurizing chamber 5a is adjusted by the flow rate control valve 8 comprising an electromagnetic proportional control valve in accordance with the operating state of the internal combustion engine and the target rail pressure. Further, the overflow valve 14 is connected to the fuel supply passage 18b so that the excess fuel is returned to the fuel tank 1 so that the pressure in the fuel supply passage 18b upstream of the flow control valve 8 is maintained at a predetermined value. .
 流量制御弁8によって流量が調節されて供給される燃料は、プランジャ7が下降することで加圧室5aに負圧が生じると、燃料吸入弁6を介して加圧室5aに流れ込む。その後、カム15によってプランジャ7が上昇させられて加圧室5a内の燃料が加圧されると、燃料吐出弁9が開かれ、コモンレール10に向けて高圧燃料が圧送される。 The fuel supplied with its flow rate adjusted by the flow control valve 8 flows into the pressurizing chamber 5a via the fuel intake valve 6 when a negative pressure is generated in the pressurizing chamber 5a as the plunger 7 descends. Thereafter, when the plunger 7 is raised by the cam 15 and the fuel in the pressurizing chamber 5 a is pressurized, the fuel discharge valve 9 is opened, and high-pressure fuel is pumped toward the common rail 10.
 コモンレール10では、高圧ポンプ5から圧送された高圧燃料が蓄積される。このコモンレール10には圧力センサ21が取り付けられており、レール圧が目標レール圧となるように、制御装置100による圧力制御弁12や流量制御弁8のフィードバック制御が行われる。その結果、コモンレール10からは、目標レール圧の高圧燃料が複数のピエゾインジェクタ13に対して供給された状態になる。 In the common rail 10, the high-pressure fuel pumped from the high-pressure pump 5 is accumulated. A pressure sensor 21 is attached to the common rail 10, and feedback control of the pressure control valve 12 and the flow rate control valve 8 by the control device 100 is performed so that the rail pressure becomes the target rail pressure. As a result, the common rail 10 is in a state where high-pressure fuel having a target rail pressure is supplied to the plurality of piezo injectors 13.
 ピエゾインジェクタ13には、噴射孔を開閉するための背圧逃し機構60が備えられている。ピエゾインジェクタ13では、コモンレール10から高圧燃料が供給されている状態で、制御装置100による背圧逃し機構60のピエゾアクチュエータ51への通電制御が行われ、噴射孔が開閉されることで、様々な噴射パターンで図示しない内燃機関の気筒に高圧燃料が噴射される。 The piezo injector 13 is provided with a back pressure relief mechanism 60 for opening and closing the injection hole. In the piezo injector 13, the energization control to the piezo actuator 51 of the back pressure relief mechanism 60 by the control device 100 is performed in a state where the high pressure fuel is supplied from the common rail 10, and the injection hole is opened and closed, so that various High pressure fuel is injected into a cylinder of an internal combustion engine (not shown) in an injection pattern.
(2)燃料噴射弁(ピエゾインジェクタ)
 図2は、燃料噴射弁の一例として、ピエゾアクチュエータ51を含む背圧逃し機構60を備えたピエゾインジェクタ13の構成例を示している。このピエゾインジェクタ13は、ノズルニードル83の後端部側に負荷される背圧室91内の高圧燃料を、背圧逃し機構60によって逃すことにより、燃料の噴射が行われるように構成されたものである。
(2) Fuel injection valve (piezo injector)
FIG. 2 shows a configuration example of the piezo injector 13 including a back pressure relief mechanism 60 including a piezo actuator 51 as an example of a fuel injection valve. The piezo injector 13 is configured such that fuel is injected by letting the high-pressure fuel in the back pressure chamber 91 loaded on the rear end side of the nozzle needle 83 escape by the back pressure relief mechanism 60. It is.
 図2に示すピエゾインジェクタ13において、ピエゾスタック51Aが伸張されていない状態でインジェクタハウジング61の高圧通路61bから高圧燃料が導入されると、オリフィスプレート75の第1の孔75aを介してノズルニードル83の周囲から噴射孔79b側に高圧燃料が導かれる。また、高圧燃料は第1の絞り孔75bを介して背圧室91にも供給されるとともに、第2の絞り孔75cを介して弁プレート71の軸方向孔71aにも導かれる。このとき、軸方向孔71aの縮径部71bは弁部材73によって閉じられているため、高圧燃料はさらに第3の絞り孔75dを介して、ノズルニードル83の周囲から噴射孔79b側に導かれる。
 この状態では、ノズルニードル83を噴射孔79b側に押圧する力とニードルスプリング89の付勢力との総和が、噴射孔79b側とは反対側に押圧する力に勝るため、ノズルニードル83は弁座にシートし、噴射孔79bは塞がれている。
In the piezo injector 13 shown in FIG. 2, when high-pressure fuel is introduced from the high-pressure passage 61b of the injector housing 61 in a state where the piezo stack 51A is not extended, the nozzle needle 83 passes through the first hole 75a of the orifice plate 75. The high pressure fuel is guided from the periphery of the nozzle to the injection hole 79b side. The high-pressure fuel is also supplied to the back pressure chamber 91 via the first throttle hole 75b and is also guided to the axial hole 71a of the valve plate 71 via the second throttle hole 75c. At this time, since the reduced diameter portion 71b of the axial hole 71a is closed by the valve member 73, the high-pressure fuel is further guided from the periphery of the nozzle needle 83 to the injection hole 79b side through the third throttle hole 75d. .
In this state, the sum of the force that presses the nozzle needle 83 toward the injection hole 79b and the urging force of the needle spring 89 is greater than the force that presses the nozzle needle 83 toward the side opposite to the injection hole 79b. The injection hole 79b is closed.
 一方、ピエゾアクチュエータ51に通電しピエゾスタック51Aを伸張させると、ピエゾスタック51Aの変位が変位増幅ピストン65に伝達され、さらに、変位増幅室66で増幅されてバルブピストン67に伝達される。バルブピストン67によって弁部材73が押圧されると、弁部材73が弁プレート71の軸方向孔71aの縮径部71bから離間して縮径部71bが開放される一方、オリフィスプレート75の第3の絞り孔75dが塞がれる。そうすると、背圧室91内でノズルニードル83の後端部に負荷されていた背圧が変位増幅室66側に逃されるため、ノズルニードル83を噴射孔79bとは反対側に押圧する力がニードルスプリング89の付勢力を上回り、ノズルニードル83が弁座からリフトし、噴射孔79bが開放される。
 ノズルニードル83の背圧制御に用いられ、変位増幅室66側に逃された燃料は、燃料逃し通路61cを介して燃料還流通路30cに流され、燃料タンクに戻される。
On the other hand, when the piezo actuator 51 is energized to extend the piezo stack 51A, the displacement of the piezo stack 51A is transmitted to the displacement amplification piston 65, and further amplified in the displacement amplification chamber 66 and transmitted to the valve piston 67. When the valve member 73 is pressed by the valve piston 67, the valve member 73 is separated from the reduced diameter portion 71 b of the axial hole 71 a of the valve plate 71 and the reduced diameter portion 71 b is opened, while the third of the orifice plate 75 is opened. The throttle hole 75d is closed. Then, since the back pressure applied to the rear end portion of the nozzle needle 83 in the back pressure chamber 91 is released to the displacement amplification chamber 66 side, the force that presses the nozzle needle 83 to the side opposite to the injection hole 79b is the needle. The biasing force of the spring 89 is exceeded, the nozzle needle 83 is lifted from the valve seat, and the injection hole 79b is opened.
The fuel used for back pressure control of the nozzle needle 83 and released to the displacement amplification chamber 66 side is flowed to the fuel recirculation passage 30c via the fuel escape passage 61c and returned to the fuel tank.
 このように構成されたピエゾインジェクタ13では、ピエゾアクチュエータ51の逃し制御によって背圧室91内の高圧燃料が逃される以外に、高圧燃料が低圧側にリークする部分がない構成となっている。したがって、ピエゾスタック51Aが伸張しておらず、弁プレート71の縮径部71bが弁部材73によって閉じられている状態では、ピエゾインジェクタ13からのリーク燃料は存在しないか、極めて少量になる。換言すれば、ピエゾスタック51Aが伸張しておらず、かつ、コモンレール10に接続された圧力制御弁12が閉じていれば、レール圧が低下しにくい状態が形成される。したがって、高圧ポンプ5が小型化されている場合であっても、目標レール圧や要求噴射量が確保され、また、アイドリングストップ制御における内燃機関の再始動時の始動性の低下が防止される。 The piezo injector 13 configured as described above has a configuration in which the high pressure fuel does not leak to the low pressure side in addition to the high pressure fuel in the back pressure chamber 91 being released by the escape control of the piezo actuator 51. Therefore, in a state where the piezo stack 51A is not extended and the reduced diameter portion 71b of the valve plate 71 is closed by the valve member 73, the leak fuel from the piezo injector 13 does not exist or becomes extremely small. In other words, if the piezo stack 51A is not extended and the pressure control valve 12 connected to the common rail 10 is closed, a state in which the rail pressure is difficult to decrease is formed. Therefore, even when the high-pressure pump 5 is downsized, the target rail pressure and the required injection amount are ensured, and the startability at the time of restarting the internal combustion engine in the idling stop control is prevented.
 なお、本実施形態では燃料噴射弁としてピエゾインジェクタ13が用いられているが、背圧制御によって背圧室91内の高圧燃料が逃される以外に高圧燃料が低圧側にリークする部分がない構成のものであれば電磁ソレノイド式のインジェクタであっても構わない。 In the present embodiment, the piezo injector 13 is used as a fuel injection valve. However, there is no portion where the high pressure fuel leaks to the low pressure side other than the high pressure fuel in the back pressure chamber 91 is released by the back pressure control. Any electromagnetic solenoid injector may be used.
2.制御装置(燃料漏れ診断装置)
(1)全体構成
 図3は、図1に示す制御装置100の構成のうち、燃料漏れ診断に関する部分を機能的なブロックに表した図を示している。
 この制御装置100は、公知の構成のマイクロコンピュータを中心に構成されており、圧力検出部101と、アイドリングストップ判定部102と、エンジンスイッチ検出部103と、診断実施スイッチ検出部104と、診断開始判定部105と、レール圧・噴射制御部(保持制御部)106と、燃料漏れ判定部107を備えている。これらの各部は、具体的には、マイクロコンピュータによるプログラムの実行により実現される。
2. Control device (Fuel leak diagnosis device)
(1) Overall Configuration FIG. 3 is a functional block diagram showing a part related to fuel leakage diagnosis in the configuration of the control device 100 shown in FIG.
The control device 100 is configured around a microcomputer having a known configuration, and includes a pressure detection unit 101, an idling stop determination unit 102, an engine switch detection unit 103, a diagnosis execution switch detection unit 104, and a diagnosis start. A determination unit 105, a rail pressure / injection control unit (holding control unit) 106, and a fuel leakage determination unit 107 are provided. Specifically, each of these units is realized by executing a program by a microcomputer.
(2)圧力検出部
 圧力検出部101は、コモンレール10に設けられた圧力センサ21のセンサ値(レール圧)Prailを読込み、図示しないRAM(Random Access Memory)に記憶する。また、読み込まれたレール圧Prailは、レール圧・噴射制御部106及び燃料漏れ判定部107にも出力される。
(2) Pressure Detection Unit The pressure detection unit 101 reads the sensor value (rail pressure) Prail of the pressure sensor 21 provided on the common rail 10 and stores it in a RAM (Random Access Memory) (not shown). The read rail pressure Prail is also output to the rail pressure / injection control unit 106 and the fuel leakage determination unit 107.
(3)アイドリングストップ判定部
 アイドリングストップ判定部102は、内燃機関の回転数Neやアクセルペダルの操作量Acc、ブレーキペダルの操作量Brk、クラッチ位置C、ギア位置G等の情報に基づき、内燃機関のアイドリングストップ制御を行うか否かを判別する。このアイドリングストップ判定部102が、アイドリングストップ制御を行うと判定した場合には、診断開始判定部105に対してアイドリングストップ制御が行われることを示す信号Isを出力するとともに、レール圧・噴射制御部106に対して内燃機関の停止信号Esを出力する。
(3) Idling stop determination unit The idling stop determination unit 102 is based on information such as the rotational speed Ne of the internal combustion engine, the accelerator pedal operation amount Acc, the brake pedal operation amount Brk, the clutch position C, and the gear position G. Whether to perform idling stop control is determined. When it is determined that the idling stop control unit 102 performs the idling stop control, a signal Is indicating that the idling stop control is performed is output to the diagnosis start determination unit 105, and the rail pressure / injection control unit An internal combustion engine stop signal Es is output to 106.
(4)エンジンスイッチ検出部
 エンジンスイッチ検出部103は、内燃機関のイグニションスイッチのON-OFFを検出する。このエンジンスイッチ検出部103が、イグニションスイッチがOFFにされたことを検出すると、診断開始判定部105に対してイグニションスイッチがOFFにされたことに伴い内燃機関が停止されることを示す信号Seを出力するとともに、レール圧・噴射制御部106に対して内燃機関の停止信号Esを出力する。
(4) Engine switch detection unit The engine switch detection unit 103 detects ON / OFF of the ignition switch of the internal combustion engine. When the engine switch detection unit 103 detects that the ignition switch has been turned off, a signal Se indicating that the internal combustion engine is to be stopped when the ignition switch is turned off is sent to the diagnosis start determination unit 105. In addition to the output, a stop signal Es for the internal combustion engine is output to the rail pressure / injection control unit 106.
(5)診断実施スイッチ検出部
 診断実施スイッチ検出部104は、診断実施スイッチのON-OFFを検出する。例えば、車両のディーラー等において燃料漏れ診断を実施する際に診断実施スイッチがONにされ、この診断実施スイッチ検出部104が、診断実施スイッチがONにされたことを検出すると、診断開始判定部105に対して、診断実施に伴い内燃機関が停止されることを示す信号Deを出力するとともに、レール圧・噴射制御部106に対して内燃機関の停止信号Esを出力する。
(5) Diagnosis execution switch detection unit The diagnosis execution switch detection unit 104 detects ON / OFF of the diagnosis execution switch. For example, when a fuel leakage diagnosis is performed at a vehicle dealer or the like, a diagnosis execution switch is turned ON, and when the diagnosis execution switch detection unit 104 detects that the diagnosis execution switch is turned ON, a diagnosis start determination unit 105 On the other hand, a signal De indicating that the internal combustion engine is stopped as a result of the diagnosis is output, and a stop signal Es for the internal combustion engine is output to the rail pressure / injection control unit 106.
(6)診断開始判定部
 診断開始判定部105は、蓄圧式燃料供給装置50が燃料漏れ診断を実行する状態にあるか否かを判別する。燃料漏れ診断を行うか否かの条件は一つであってもよく、複数であってもよい。本実施形態では、内燃機関のアイドリングストップ制御が実行されること、内燃機関のイグニッションスイッチがOFFにされること、診断実施スイッチがONにされることの三つの条件のうちのいずれか一つの条件が成立したときに、燃料漏れ診断を実行すると判定される。この診断開始判定部105は、これらの条件が成立した時点で、燃料漏れ診断を実行する信号Dsを、レール圧・噴射制御部106及び燃料漏れ判定部107に出力する。
(6) Diagnosis start determination unit The diagnosis start determination unit 105 determines whether or not the accumulator fuel supply apparatus 50 is in a state of executing a fuel leakage diagnosis. There may be one or more conditions regarding whether or not to perform the fuel leakage diagnosis. In the present embodiment, any one of the three conditions that the idling stop control of the internal combustion engine is executed, the ignition switch of the internal combustion engine is turned off, and the diagnosis execution switch is turned on. When is established, it is determined that the fuel leakage diagnosis is executed. The diagnosis start determination unit 105 outputs a signal Ds for executing a fuel leakage diagnosis to the rail pressure / injection control unit 106 and the fuel leakage determination unit 107 when these conditions are satisfied.
(7)レール圧・噴射制御部(保持制御部)
 レール圧・噴射制御部106は、レール圧Prailの制御及び燃料噴射制御を行う部分であり、内燃機関の通常運転モードにおいては、圧力検出部101から出力されたレール圧Prailに基づき、流量制御弁8や圧力制御弁12のフィードバック制御を行うとともに、ピエゾインジェクタ13の通電制御を行う。
(7) Rail pressure / injection control unit (holding control unit)
The rail pressure / injection control unit 106 performs control of the rail pressure Prail and fuel injection control. In the normal operation mode of the internal combustion engine, the rail pressure / injection control unit 106 is based on the rail pressure Prail output from the pressure detection unit 101. 8 and feedback control of the pressure control valve 12 and energization control of the piezo injector 13 are performed.
 また、レール圧・噴射制御部106は、燃料漏れ診断時においては、レール圧Prailの保持制御部として機能する。保持制御部としてのレール圧制御部106は、診断開始判定部105で蓄圧式燃料供給装置が燃料漏れ診断を実行する状態にあると判定された時点で、高圧燃料系40内に燃料を保持する制御を行う。高圧燃料系40に燃料を保持する制御が開始されると、レール圧・噴射制御部106は燃料漏れ判定部107に対して保持開始信号Pkを出力する。 Further, the rail pressure / injection control unit 106 functions as a holding control unit for the rail pressure Prail at the time of fuel leakage diagnosis. The rail pressure control unit 106 as a holding control unit holds the fuel in the high-pressure fuel system 40 when the diagnosis start determination unit 105 determines that the accumulator fuel supply device is in a state of executing the fuel leakage diagnosis. Take control. When control for holding fuel in the high-pressure fuel system 40 is started, the rail pressure / injection control unit 106 outputs a holding start signal Pk to the fuel leakage determination unit 107.
 この高圧燃料系40内に燃料を保持する制御は、高圧ポンプ5からの高圧燃料の供給が停止されることと併せて、ピエゾインジェクタ13及びコモンレール10に接続された圧力制御弁12を全閉し、高圧燃料系40を閉塞することで行われる。アイドリングストップ制御時には、もともと、同様の状態で高圧燃料系40内に燃料が保持されて高圧燃料系40が閉塞されるため、この制御がそのまま利用される。 The control for holding the fuel in the high-pressure fuel system 40 is performed by closing the pressure control valve 12 connected to the piezo injector 13 and the common rail 10 together with the supply of the high-pressure fuel from the high-pressure pump 5 being stopped. The high pressure fuel system 40 is closed. At the time of idling stop control, since the fuel is originally held in the high-pressure fuel system 40 and the high-pressure fuel system 40 is closed in the same state, this control is used as it is.
 具体的には、内燃機関の停止指示信号Esが出力され内燃機関への燃料噴射を停止すると、高圧ポンプ5からの燃料の圧送が停止されるとともに、燃料吐出弁9が逆止弁となって、加圧室5aの下流の高圧燃料通路37内が逆流不能に閉塞される。また、コモンレール10に接続された圧力制御弁12が全閉されることで、高圧燃料がコモンレール10から燃料タンク1へ還流不能に閉塞される。さらに、各ピエゾインジェクタ13では、ピエゾスタック51Aが伸張していない状態にされて背圧室91の圧力が確保されることで、ノズルニードル83が噴射孔79b側に押圧されて噴射孔79bが閉塞される。これにより高圧燃料系40が内部に燃料を保持した状態で閉塞される。 Specifically, when the stop instruction signal Es for the internal combustion engine is output and the fuel injection to the internal combustion engine is stopped, the fuel pumping from the high pressure pump 5 is stopped and the fuel discharge valve 9 becomes a check valve. The inside of the high-pressure fuel passage 37 downstream of the pressurizing chamber 5a is blocked so that it cannot flow backward. Further, the pressure control valve 12 connected to the common rail 10 is fully closed, so that the high-pressure fuel is blocked from recirculating from the common rail 10 to the fuel tank 1. Further, in each piezo injector 13, the piezo stack 51 </ b> A is not expanded and the pressure in the back pressure chamber 91 is secured, so that the nozzle needle 83 is pressed toward the injection hole 79 b and the injection hole 79 b is closed. Is done. As a result, the high-pressure fuel system 40 is closed with the fuel held therein.
 高圧燃料系40内に保持される燃料は、内燃機関の停止時に高圧燃料系40内に存在した状態の圧力でそのまま保持してもよく、あらかじめ定められた圧力に調圧した状態で保持してもよい。高圧燃料をあらかじめ定められた圧力に調圧するには、例えば、内燃機関の停止前に一旦レール圧を上昇させた後、内燃機関の停止後に、レール圧Prailに基づき、圧力制御弁12を用いて調圧することなどで行うことができる。 The fuel held in the high-pressure fuel system 40 may be held as it is with the pressure existing in the high-pressure fuel system 40 when the internal combustion engine is stopped, or held in a state adjusted to a predetermined pressure. Also good. In order to adjust the high-pressure fuel to a predetermined pressure, for example, after the rail pressure is once increased before the internal combustion engine is stopped, the pressure control valve 12 is used based on the rail pressure Prail after the internal combustion engine is stopped. This can be done by adjusting the pressure.
 さらに、本実施形態の制御装置100のレール圧・噴射制御部106では、後述する燃料漏れ診断が行われたときにレール圧Prailが所定値(第2の閾値P3)を下回った場合には、内燃機関の再始動時に、レール圧Prailが所定値(第2の閾値P3)に到達するまでは燃料噴射が行われない。そして、クランキング状態で高圧ポンプ5が駆動し、レール圧Prailが所定値(第2の閾値P3)に到達した後、内燃機関への燃料噴射が許可され、内燃機関が始動する。レール圧Prailが所定値以上になるまで内燃機関への燃料噴射の開始を許可しないことで、内燃機関の異常運転や異常運転に伴う内燃機関の損傷等が防止される。 Furthermore, in the rail pressure / injection control unit 106 of the control device 100 of the present embodiment, when the rail pressure Prail falls below a predetermined value (second threshold value P3) when a fuel leakage diagnosis described later is performed, When the internal combustion engine is restarted, fuel injection is not performed until the rail pressure Prail reaches a predetermined value (second threshold value P3). Then, after the high pressure pump 5 is driven in the cranking state and the rail pressure Prail reaches a predetermined value (second threshold value P3), fuel injection into the internal combustion engine is permitted and the internal combustion engine is started. By not permitting the start of fuel injection to the internal combustion engine until the rail pressure Prail becomes equal to or higher than a predetermined value, abnormal operation of the internal combustion engine, damage to the internal combustion engine due to abnormal operation, and the like are prevented.
(8)燃料漏れ判定部
 燃料漏れ判定部107は、高圧燃料系40内に燃料を保持し始めたとき以降の高圧燃料系40内の圧力変化に基づいて、高圧燃料系40からの燃料漏れの有無を判定する。本実施形態の制御装置100の燃料漏れ判定部107は、高圧燃料系40内に燃料を保持し始めた後、内燃機関が完全に停止してから所定時間tm経過後に、圧力検出部101で読み込まれるレール圧Prailが所定の第1の閾値P2以下になるまで低下したか否かを判別することによって、高圧燃料系40からの燃料漏れの有無を判定する。
(8) Fuel leakage determination unit The fuel leakage determination unit 107 detects the fuel leakage from the high pressure fuel system 40 based on the pressure change in the high pressure fuel system 40 after the fuel starts to be held in the high pressure fuel system 40. Determine presence or absence. The fuel leak determination unit 107 of the control device 100 of the present embodiment reads the pressure detection unit 101 after a predetermined time tm has elapsed after the internal combustion engine has completely stopped after starting to hold the fuel in the high pressure fuel system 40. Whether or not there is a fuel leak from the high-pressure fuel system 40 is determined by determining whether or not the rail pressure Prail to be reduced has decreased to a predetermined first threshold value P2 or less.
 また、本実施形態の制御装置100の燃料漏れ判定部107は、内燃機関が停止してから所定時間tm経過後のレール圧Prailが、第1の閾値P2以下まで低下していない場合であっても、第1の閾値P2よりも高い値に設定された第2の閾値P3以下になっている場合には、高圧燃料系40からの燃料漏れが進行しはじめているおそれがあると判定する。
 図示していないが、この燃料漏れ判定部107での判定結果に基づき、高圧燃料系40からの燃料漏れが生じている場合、あるいはそのおそれがある場合には、制御装置100は運転者等に知らせるために警告表示等を行う。
Further, the fuel leak determination unit 107 of the control device 100 of the present embodiment is a case where the rail pressure Prail after a predetermined time tm has elapsed after the internal combustion engine has stopped has not decreased to the first threshold value P2 or less. On the other hand, if it is equal to or lower than the second threshold value P3 set to a value higher than the first threshold value P2, it is determined that there is a possibility that fuel leakage from the high-pressure fuel system 40 may start to proceed.
Although not shown in the figure, based on the determination result in the fuel leakage determination unit 107, if there is a fuel leak from the high-pressure fuel system 40 or there is a risk of it, the control device 100 informs the driver or the like. A warning is displayed to inform the user.
 上述の所定時間tmは、あらかじめ設定された規定時間であってもよいが、アイドリングストップ制御の場合であれば、内燃機関の再始動時にレール圧Prailを検出して第1の閾値P2と比較することもできる。この第1の閾値P2は、あらかじめ設定された値でもよいが、高圧燃料系40内に燃料を保持する制御を開始した時点で検出されるレール圧P1に基づき、個々に設定されるものであってもよい。 The predetermined time tm may be a predetermined time set in advance. In the case of idling stop control, the rail pressure Prail is detected and compared with the first threshold P2 when the internal combustion engine is restarted. You can also. The first threshold value P2 may be a value set in advance, but is set individually based on the rail pressure P1 detected at the time when control for holding fuel in the high-pressure fuel system 40 is started. May be.
3.燃料漏れ診断のタイミングチャート
 図4は、アイドリングストップ制御が実行されたときを例にとった内燃機関の回転数Neの時間的変化とレール圧Prailの時間的変化を示す。図4中、実線Aは内燃機関の回転数Neを示し、実線B(B1)、破線B2、点線B3、一点鎖線B4は圧力センサ21により検出されるレール圧Prailを示す。また、P1はアイドル運転での必要圧力であり、P2は第1の閾値(燃料漏れ判定値)であり、P3は第2の閾値(燃料噴射許可圧力)である。
 例えば、任意のt1の時点でアイドリングストップ判定部102によってアイドリングストップ制御の実行が指示されると、内燃機関の停止信号Esが出力されて、内燃機関の回転数Neが低下し始め、t2の時点で内燃機関が完全に停止する。t1の時点では、同時に、レール圧・噴射制御部106によって高圧燃料系40を閉塞し、高圧燃料系40内に燃料を保持させる制御を行う。このとき、高圧燃料系40からの燃料漏れが全くなければ、レール圧Prailはt1の時点でのレール圧(図4ではP1)のまま変化せず、実線B1のように一定に維持される。通常は、ごく微量のリーク燃料が存在するため、破線B2に示すようにレール圧Prailが緩やかに低下する。高圧燃料系40からの燃料漏れが全くない場合、あるいは、ごく微量のリーク燃料しかない場合には、レール圧Prailの低下量は小さく、アイドリングストップ制御が解除されるt4の時点で内燃機関を再始動する際には、レール圧Prailが第2の閾値(燃料噴射許可圧力)P3を越えているため、レール圧Prailが速やかにアイドル運転での必要圧力P1まで上昇するとともに、直ちに内燃機関への燃料噴射が行われて内燃機関が始動する。
3. FIG. 4 shows a temporal change in the rotational speed Ne of the internal combustion engine and a temporal change in the rail pressure Prail in the case where the idling stop control is executed. In FIG. 4, the solid line A indicates the rotational speed Ne of the internal combustion engine, and the solid line B (B 1), the broken line B 2, the dotted line B 3, and the alternate long and short dash line B 4 indicate the rail pressure Prail detected by the pressure sensor 21. Further, P1 is a necessary pressure in idle operation, P2 is a first threshold value (fuel leakage determination value), and P3 is a second threshold value (fuel injection permission pressure).
For example, when the idling stop determination unit 102 instructs execution of idling stop control at an arbitrary time t1, an internal combustion engine stop signal Es is output, and the rotational speed Ne of the internal combustion engine begins to decrease, at time t2. The internal combustion engine stops completely. At the time t1, at the same time, the rail pressure / injection control unit 106 closes the high-pressure fuel system 40 and controls to hold the fuel in the high-pressure fuel system 40. At this time, if there is no fuel leakage from the high-pressure fuel system 40, the rail pressure Prail remains unchanged at the rail pressure (P1 in FIG. 4) at the time t1, and is kept constant as shown by the solid line B1. Usually, since a very small amount of leaked fuel exists, the rail pressure Prail gradually decreases as shown by a broken line B2. If there is no fuel leakage from the high-pressure fuel system 40 or there is only a very small amount of leaked fuel, the amount of decrease in the rail pressure Prail is small, and the internal combustion engine is restarted at time t4 when the idling stop control is released. When starting, since the rail pressure Prail exceeds the second threshold value (fuel injection permission pressure) P3, the rail pressure Prail quickly rises to the necessary pressure P1 in the idling operation and immediately enters the internal combustion engine. Fuel injection is performed and the internal combustion engine is started.
 ところが、高圧燃料系40に燃料漏れが発生している場合には、点線B3に示すように内燃機関の停止時点t1以後にレール圧Prailが顕著に低下する。そのため、アイドリングストップ制御が解除されるt4の時点で内燃機関を再始動する際に、内燃機関への燃料噴射が許可される第2の閾値P3にレール圧Prailが到達するためにはt7の時点までの時間を要する。したがって、内燃機関の始動が遅れるとともに、レール圧Prailがアイドル運転での必要圧力P1に到達するまで(t8)に時間がかかることになる。 However, when a fuel leak has occurred in the high-pressure fuel system 40, the rail pressure Prail significantly decreases after the stop point t1 of the internal combustion engine as indicated by the dotted line B3. Therefore, when the internal combustion engine is restarted at the time t4 when the idling stop control is released, the time t7 is required for the rail pressure Prail to reach the second threshold value P3 at which fuel injection to the internal combustion engine is permitted. It takes time until. Therefore, the start of the internal combustion engine is delayed, and it takes time until the rail pressure Prail reaches the necessary pressure P1 in the idle operation (t8).
 また、高圧燃料系40からの燃料漏れが顕著に発生しているわけではないが、軽度の燃料漏れが発生している場合には、一点鎖線B4に示すように内燃機関の停止時点t1以後、レール圧Prailが徐々に低下する。この場合でも、アイドリングストップ制御が解除されるt4の時点からt5の時点まで、内燃機関への燃料噴射が許可される第2の閾値P3にレール圧Prailが到達するためにわずかながら時間を要する。したがって、内燃機関の始動が遅れるとともに、レール圧Prailがアイドル運転での必要圧力P1に到達するまで(t6)に時間がかかることになる。 Further, although the fuel leakage from the high-pressure fuel system 40 does not occur remarkably, when a slight fuel leakage occurs, after the stop time t1 of the internal combustion engine as shown by a one-dot chain line B4, Rail pressure Prail gradually decreases. Even in this case, it takes a little time for the rail pressure Prail to reach the second threshold value P3 at which fuel injection to the internal combustion engine is permitted from the time t4 when the idling stop control is released to the time t5. Therefore, the start of the internal combustion engine is delayed, and it takes time until the rail pressure Prail reaches the necessary pressure P1 in the idling operation (t6).
 このような高圧燃料系40からの燃料漏れを検知するために、本実施形態の制御装置100の燃料漏れ判定部107では、内燃機関が完全に停止した状態t2から、所定時間tm経過後のt3の時点で、レール圧Prailが第1の閾値P2又は第2の閾値P3以下まで低下したか否かを判別することで、高圧燃料系40の燃料漏れ診断を行う。高圧燃料系40からの燃料漏れが全くない場合(B1)、あるいは、ごく微量のリーク燃料しかない場合(B2)には、t3の時点でのレール圧Prailが第1の閾値P2以下になることがないことはもちろん、第2の閾値P3以下になることもない。 In order to detect such fuel leakage from the high-pressure fuel system 40, the fuel leakage determination unit 107 of the control device 100 of the present embodiment performs t3 after a predetermined time tm has elapsed from the state t2 in which the internal combustion engine is completely stopped. At this point, it is determined whether or not the rail pressure Prail has decreased to the first threshold value P2 or the second threshold value P3 or less, thereby performing a fuel leakage diagnosis of the high-pressure fuel system 40. When there is no fuel leakage from the high-pressure fuel system 40 (B1), or when there is only a very small amount of leaked fuel (B2), the rail pressure Prail at the time point t3 is less than or equal to the first threshold value P2. Of course, it does not fall below the second threshold value P3.
 一方、高圧燃料系40からの顕著な燃料漏れが発生している場合(B3)には、t3の時点でのレール圧Prailが第1の閾値P2以下まで低下しており、燃料漏れの発生が検出される。さらに、レール圧Prailが第1の閾値P2以下まで低下していない場合であっても、t3の時点でのレール圧Prailが第2の閾値P3以下まで低下している場合(B4)には、軽度の燃料漏れが発生しているものとして検出される。 On the other hand, when a significant fuel leak has occurred from the high-pressure fuel system 40 (B3), the rail pressure Prail at time t3 has decreased to the first threshold value P2 or less, and the occurrence of fuel leak has occurred. Detected. Furthermore, even when the rail pressure Prail has not decreased to the first threshold value P2 or less, when the rail pressure Prail at the time t3 has decreased to the second threshold value P3 or less (B4), It is detected as a slight fuel leak.
4.燃料漏れ診断方法
 次に、本実施形態の制御装置100によって行われる高圧燃料系40の燃料漏れ診断方法について、図5のフローに基づいて説明する。
 この燃料漏れ診断では、まず、ステップS10で、アイドリングストップ制御が実行されること、イグニションスイッチがOFFにされること、診断実施スイッチがONにされることのうちのいずれか一つの条件に該当するか否かの判別が行われる。いずれかの条件に該当するまで、繰り返しこの判別が行われる。
4). Fuel Leak Diagnosis Method Next, a fuel leak diagnosis method for the high-pressure fuel system 40 performed by the control device 100 of the present embodiment will be described based on the flow of FIG.
In this fuel leakage diagnosis, first, in step S10, any one of the conditions that the idling stop control is executed, the ignition switch is turned off, and the diagnosis execution switch is turned on is met. Whether or not is determined. This determination is repeated until either condition is met.
 ステップS10において、いずれかの条件に該当すると判定された場合には、ステップS11でレール圧Prail1を検出した後、ステップS12で内燃機関を停止させる。次いで、ステップS13でタイマを作動させた後、ステップS14では、高圧燃料系40内に燃料を保持する制御が行われる。具体的には、燃料噴射弁13からの噴射が停止されるとともに、コモンレール10に接続された圧力制御弁12が全閉にされる。 If it is determined in step S10 that any of the conditions is met, the rail pressure Prail1 is detected in step S11, and then the internal combustion engine is stopped in step S12. Next, after the timer is operated in step S13, in step S14, control for holding the fuel in the high-pressure fuel system 40 is performed. Specifically, the injection from the fuel injection valve 13 is stopped, and the pressure control valve 12 connected to the common rail 10 is fully closed.
 次いで、ステップS15では、タイマが所定時間tmを経過するまで、タイマが所定時間tmを経過したか否かの判別が繰り返し行われる。タイマが所定時間tmを経過すると、ステップS16でレール圧Prail2を検出した後、ステップS17でレール圧Prail2が第1の閾値P2以下になっているか否かの判別が行われる。レール圧Prail2が第1の閾値P2以下になっている場合には顕著な燃料漏れが発生しているため、ステップS18で燃料漏れERROR信号を出力するとともに、例えば、燃料漏れの発生を示す警告表示をした上で本ルーチンを終了する。 Next, in step S15, it is repeatedly determined whether or not the timer has passed the predetermined time tm until the timer has passed the predetermined time tm. When the timer elapses the predetermined time tm, after detecting the rail pressure Prail2 in step S16, it is determined whether or not the rail pressure Prail2 is equal to or lower than the first threshold value P2 in step S17. When the rail pressure Prail2 is equal to or lower than the first threshold value P2, a significant fuel leak has occurred. Therefore, in step S18, a fuel leak ERROR signal is output and, for example, a warning display indicating the occurrence of fuel leak is displayed. After completing this routine.
 一方、ステップS17において、レール圧Prail2が第1の閾値P2を超えていれば、顕著な燃料漏れが発生していないため、次に、軽度な燃料漏れが発生しているかを判別するステップS19に進む。ステップS19では、レール圧Prail2が第2の閾値P3以下になっているか否かの判別が行われる。レール圧Prail2が第2の閾値P3以下になっている場合には軽度な燃料漏れが発生していると推定されるため、ステップS20で燃料漏れALERT信号を出力するとともに、例えば、燃料漏れのおそれがあることを示す警告表示をした上で本ルーチンを終了する。一方、レール圧Prail2が第2の閾値P3を超えていれば軽度の燃料漏れのおそれもないため、ステップS21でOK信号を出力して本ルーチンを終了する。 On the other hand, if the rail pressure Prail2 exceeds the first threshold value P2 in step S17, no significant fuel leakage has occurred, so that it is next determined in step S19 whether minor fuel leakage has occurred. move on. In step S19, it is determined whether or not the rail pressure Prail2 is equal to or lower than the second threshold value P3. When the rail pressure Prail2 is less than or equal to the second threshold value P3, it is estimated that a slight fuel leak has occurred. Therefore, in step S20, a fuel leak ALERT signal is output and, for example, a fuel leak may occur. This routine is terminated after displaying a warning indicating that there is. On the other hand, if the rail pressure Prail2 exceeds the second threshold value P3, there is no possibility of slight fuel leakage, so an OK signal is output in step S21 and the routine is terminated.
 以上のような燃料漏れ診断方法によれば、内燃機関の停止期間中の高圧燃料系40の圧力変化に基づき、高圧燃料系40からの燃料漏れの有無が診断されるため、作業者等が特別な診断作業を行うことなく、高圧燃料系40の高圧燃料の漏れの有無の自己診断が行われ、高圧燃料系40からの燃料漏れが早期に発見される。 According to the fuel leakage diagnosis method as described above, the presence or absence of fuel leakage from the high-pressure fuel system 40 is diagnosed based on the pressure change of the high-pressure fuel system 40 during the stop period of the internal combustion engine. The self-diagnosis of the presence or absence of leakage of the high-pressure fuel in the high-pressure fuel system 40 is performed without performing a diagnostic operation, and the fuel leakage from the high-pressure fuel system 40 is detected at an early stage.
 また、制御装置100が、高圧燃料系40内に燃料を保持するとともに、高圧燃料系40内の圧力変化を検出することによって、高圧燃料系40からの燃料漏れを診断可能に構成されているので、高圧燃料系40に供給されている高圧燃料を利用して燃料漏れを診断することができ、燃料漏れ診断が容易に実行可能である。 Since the control device 100 holds the fuel in the high-pressure fuel system 40 and detects a pressure change in the high-pressure fuel system 40, the controller 100 is configured to be able to diagnose the fuel leakage from the high-pressure fuel system 40. The fuel leak can be diagnosed using the high-pressure fuel supplied to the high-pressure fuel system 40, and the fuel leak diagnosis can be easily performed.
 さらに、燃料漏れを診断する内燃機関の停止期間が、内燃機関のアイドリングストップ制御時であれば、内燃機関が搭載された車両の運転時であって、高圧燃料系40内に燃料が保持される制御が行われる時を利用して、高圧燃料系40の燃料漏れを診断することができる。したがって、バッテリー等の浪費が抑えられるとともに、診断のために要する時間を省くことができる。 Further, if the stop period of the internal combustion engine for diagnosing fuel leakage is during idling stop control of the internal combustion engine, the fuel is held in the high-pressure fuel system 40 during operation of the vehicle on which the internal combustion engine is mounted. The fuel leakage of the high-pressure fuel system 40 can be diagnosed using the time when the control is performed. Therefore, waste of the battery or the like can be suppressed and time required for diagnosis can be saved.
5.燃料漏れ診断方法の別の例
(1)別の燃料漏れ診断方法1
 燃料漏れの有無を判定する他の方法としては、例えば、高圧燃料系内に燃料を保持し始めてから所定時間経過するまでの圧力低下量又は圧力低下割合を所定の基準値と比較することが挙げられる。
 この方法では、例えば、図6に示すように、高圧燃料系内に燃料を保持する制御を開始するときにレール圧Prail3が読み込まれ、当該レール圧Prail3に基づいて、所定時間tmの経過後の許容可能な基準圧力低下量D0又は基準圧力低下割合R0が設定される。所定時間tmの経過後には、レール圧Prail4が読み込まれ、保持制御開始時のレール圧Prail1からの圧力低下量D又は圧力低下割合Rが算出される。そして、圧力低下量D又は圧力低下割合Rが基準圧力低下量D0又は基準圧力低下割合R0と比較され、燃料漏れの有無が判定される。
5). Another Example of Fuel Leak Diagnosis Method (1) Another Fuel Leak Diagnosis Method 1
Another method for determining the presence or absence of fuel leakage includes, for example, comparing the pressure drop amount or the pressure drop rate until a predetermined time elapses after the fuel is held in the high-pressure fuel system with a predetermined reference value. It is done.
In this method, for example, as shown in FIG. 6, the rail pressure Prail3 is read when control for holding fuel in the high pressure fuel system is started, and after a predetermined time tm has elapsed based on the rail pressure Prail3. An allowable reference pressure drop amount D0 or a reference pressure drop rate R0 is set. After the elapse of the predetermined time tm, the rail pressure Prail4 is read, and the pressure drop amount D or the pressure drop rate R from the rail pressure Prail1 at the start of the holding control is calculated. Then, the pressure drop amount D or the pressure drop rate R is compared with the reference pressure drop amount D0 or the reference pressure drop rate R0, and the presence or absence of fuel leakage is determined.
 このように燃料漏れ診断が行われることによって、燃料漏れ診断開始時点のレール圧がばらついていても燃料漏れ診断が正確に行われる。これらの基準圧力低下量D0又は基準圧力低下割合R0についても、あらかじめ設定された値でもよく、あるいは、高圧燃料系内に燃料を保持する制御を開始した時点で検出されるレール圧に基づき、個々に設定されるものであってもよい。また、図示されてはいないが、図4に示す燃料漏れ診断と同様に、顕著な燃料漏れだけでなく軽度の燃料漏れの発生も検出できるように、(第1の)基準圧力低下量D0又は(第1の)基準圧力低下割合R0以外にも、第1の基準圧力低下量D0又は第1の基準圧力低下割合R0の値よりも小さい値である、第2の基準圧力低下量又は第2の基準圧力低下割合が設定されていてもよい。 燃料 By performing the fuel leakage diagnosis in this way, the fuel leakage diagnosis is accurately performed even if the rail pressure at the time of starting the fuel leakage diagnosis varies. These reference pressure drop amount D0 or reference pressure drop rate R0 may also be set in advance, or based on the rail pressure detected at the time when control for holding fuel in the high-pressure fuel system is started. May be set. Further, although not shown in the drawing, the (first) reference pressure drop D0 or the first pressure drop amount D0 or the occurrence of a light fuel leak as well as a noticeable fuel leak can be detected as in the fuel leak diagnosis shown in FIG. In addition to the (first) reference pressure decrease rate R0, the second reference pressure decrease amount or the second reference value that is smaller than the first reference pressure decrease amount D0 or the first reference pressure decrease rate R0. The reference pressure drop rate may be set.
(2)別の燃料漏れ診断方法2
 また、燃料漏れの有無を判定する他の方法としては、例えば、高圧燃料系内に燃料を保持し始めた以降における高圧燃料系内の圧力の低下パターンを所定の基準パターンと比較することが挙げられる。
 この方法では、例えば、図7に示すように、高圧燃料系内に燃料を保持する制御を開始するときにレール圧Prail5が読み込まれ、当該レール圧Prail5に基づいて、レール圧低下の基準パターンXが設定される。そして、レール圧Prailが継続的に読み込まれるとともに、当該レール圧の低下パターンB(B1、B2、B3)が基準パターンXと比較され、レール圧の低下の仕方が、基準パターンXの低下の仕方よりも速いか否かによって、燃料漏れの有無が判定される。
(2) Another fuel leak diagnosis method 2
Further, as another method for determining the presence or absence of fuel leakage, for example, comparing the pressure decrease pattern in the high-pressure fuel system after starting to hold the fuel in the high-pressure fuel system with a predetermined reference pattern. It is done.
In this method, for example, as shown in FIG. 7, the rail pressure Prail5 is read when the control for holding the fuel in the high pressure fuel system is started, and the reference pattern X of the rail pressure drop is based on the rail pressure Prail5. Is set. Then, the rail pressure Prail is continuously read, and the rail pressure decrease pattern B (B1, B2, B3) is compared with the reference pattern X, and the method of decreasing the rail pressure is the method of decreasing the reference pattern X. Whether or not there is a fuel leak is determined by whether or not it is faster.
 このように燃料漏れ診断が行われることによって、燃料漏れ診断開始時点のレール圧及び燃料漏れの程度に応じたレール圧の低下パターンが検出され、高圧燃料系からの燃料漏れの度合いが正確に把握される。ただし、この基準パターンについても、あらかじめ設定されたパターンでもよく、あるいは、高圧燃料系内に燃料を保持する制御を開始した時点で検出されるレール圧に基づき、個々に設定されるものであってもよい。また、図示されてはいないが、図4に示す燃料漏れ診断と同様に、顕著な燃料漏れだけでなく軽度の燃料漏れの発生も検出できるように、(第1の)基準パターンX以外にも、第1の基準パターンXよりもレール圧の低下の仕方が緩やかな第2の基準パターンが設定されていてもよい。 By performing the fuel leak diagnosis in this way, the rail pressure drop pattern corresponding to the rail pressure at the start of the fuel leak diagnosis and the degree of fuel leak is detected, and the degree of fuel leak from the high-pressure fuel system is accurately grasped. Is done. However, this reference pattern may also be a preset pattern, or may be set individually based on the rail pressure detected at the time when control for holding fuel in the high-pressure fuel system is started. Also good. Further, although not shown, in addition to the fuel leak diagnosis shown in FIG. 4, in addition to the remarkable fuel leak, the occurrence of a light fuel leak can be detected in addition to the (first) reference pattern X. The second reference pattern may be set in which the rail pressure lowers more slowly than the first reference pattern X.
(3)別の燃料漏れ診断方法3
 さらに、燃料漏れを診断する他の方法としては、例えば、アイドリングストップ制御が実行された場合や診断開始スイッチがONにされた場合などにおいては、内燃機関が停止してから所定時間経過後に内燃機関が再始動する際に、レール圧が所定値まで復帰させられるまでの時間や、圧力制御弁への通電量を所定の(第1の)閾値と比較することが挙げられる。
 この方法は、図示しないものの、例えば、内燃機関の再始動時に復帰させられるレール圧の復帰値があらかじめ設定され、内燃機関の再始動後にレール圧が復帰値まで上昇するまでの時間や、圧力制御弁への通電量が(第1の)閾値と比較され、燃料漏れの有無が判定される。例えば、非通電状態で全開となる圧力制御弁が用いられる場合には、燃料漏れ量が多いほど、レール圧が復帰値まで上昇するまでの圧力制御弁への通電量が多くなる。また、燃料漏れ量が多いほど、レール圧が復帰値まで上昇するまでの時間が長くなる。
(3) Another fuel leakage diagnosis method 3
Further, as another method for diagnosing fuel leakage, for example, when idling stop control is executed or when a diagnosis start switch is turned on, the internal combustion engine is stopped after a predetermined time has elapsed since the internal combustion engine stopped. When restarting, the time until the rail pressure is returned to a predetermined value and the energization amount to the pressure control valve are compared with a predetermined (first) threshold value.
Although this method is not shown, for example, the return value of the rail pressure that is returned when the internal combustion engine is restarted is set in advance, and the time until the rail pressure rises to the return value after the restart of the internal combustion engine, pressure control, etc. The amount of current supplied to the valve is compared with a (first) threshold value to determine the presence or absence of fuel leakage. For example, when a pressure control valve that is fully opened in a non-energized state is used, the greater the amount of fuel leakage, the greater the amount of power supplied to the pressure control valve until the rail pressure rises to the return value. In addition, as the amount of fuel leakage increases, the time until the rail pressure rises to the return value becomes longer.
 このように燃料漏れ診断が行われることによっても高圧燃料系からの燃料漏れを診断することができるため、燃料漏れ判定部の構成の多様化が図られる。また、図4に示す燃料漏れ診断と同様に、顕著な燃料漏れだけでなく軽度の燃料漏れの発生も検出できるように、第1の閾値以外にも、通電量の値が第1の閾値よりも小さい第2の閾値が設定されていてもよい。 Since the fuel leakage diagnosis can be made by performing the fuel leakage diagnosis in this way, the configuration of the fuel leakage determination unit can be diversified. In addition to the first threshold value, in addition to the first threshold value, the value of the energization amount is set higher than the first threshold value so that not only the remarkable fuel leakage but also the occurrence of minor fuel leakage can be detected as in the fuel leakage diagnosis shown in FIG. Also, a second threshold value that is smaller may be set.
[第2の実施の形態]
 本発明の第2の実施の形態は、第1の実施の形態で説明したものと同様のリークレス蓄圧式燃料供給装置に備えられる燃料漏れ診断装置(制御装置)130であって、基本的には第1の実施の形態の制御装置100と同様の構成を備えるとともに、温度変化に起因する高圧燃料の収縮による高圧燃料系40内の圧力の低下によって、燃料漏れが発生していると誤って判定されないように構成されている。
[Second Embodiment]
The second embodiment of the present invention is a fuel leak diagnosis device (control device) 130 provided in a leakless pressure-accumulation fuel supply device similar to that described in the first embodiment. While having the same configuration as the control device 100 of the first embodiment, it is erroneously determined that a fuel leak has occurred due to a decrease in the pressure in the high-pressure fuel system 40 due to the contraction of the high-pressure fuel caused by a temperature change. It is configured not to be.
1.制御装置(燃料漏れ診断装置)
(1)全体構成
 図8は、本実施形態の制御装置130の構成のうち、燃料漏れ診断に関する部分を機能的なブロックに表した図を示している。
 この制御装置130は、公知の構成のマイクロコンピュータを中心に構成されており、圧力検出部101と、アイドリングストップ判定部102と、エンジンスイッチ検出部103と、診断実施スイッチ検出部104と、診断開始判定部105と、レール圧・噴射制御部(保持制御部)106と、燃料漏れ判定部107と、診断中止指示部108を備えている。これらの各部は、具体的には、マイクロコンピュータによるプログラムの実行により実現される。
1. Control device (Fuel leak diagnosis device)
(1) Overall Configuration FIG. 8 is a functional block diagram showing a part related to fuel leakage diagnosis in the configuration of the control device 130 of the present embodiment.
The control device 130 is configured around a microcomputer having a known configuration, and includes a pressure detection unit 101, an idling stop determination unit 102, an engine switch detection unit 103, a diagnosis execution switch detection unit 104, and a diagnosis start. A determination unit 105, a rail pressure / injection control unit (holding control unit) 106, a fuel leakage determination unit 107, and a diagnosis stop instruction unit 108 are provided. Specifically, each of these units is realized by executing a program by a microcomputer.
 このうち、圧力検出部101、アイドリングストップ判定部102、エンジンスイッチ検出部103、診断実施スイッチ検出部104、診断開始判定部105、レール圧・噴射制御部106、燃料漏れ判定部107は、第1の実施の形態の制御装置100の各部と同様の機能を有している。ただし、診断開始判定部105は、診断開始の条件が成立した時点で、燃料漏れ診断を実行する信号Dsを、レール圧・噴射制御部106及び燃料漏れ判定部107だけでなく、診断中止指示部108にも出力する。 Among these, the pressure detection unit 101, the idling stop determination unit 102, the engine switch detection unit 103, the diagnosis execution switch detection unit 104, the diagnosis start determination unit 105, the rail pressure / injection control unit 106, and the fuel leakage determination unit 107 are the first one. It has the same function as each part of the control apparatus 100 of the embodiment. However, the diagnosis start determination unit 105 outputs not only the rail pressure / injection control unit 106 and the fuel leakage determination unit 107 but also the diagnosis stop instruction unit when the diagnosis start condition is satisfied. Also output to 108.
(2)診断中止指示部
 診断中止指示部108は、内燃機関の冷却に用いられるクーラントの温度Tw及び高圧燃料系40内の高圧燃料の温度Tfが、燃料漏れ診断の実行開始時から所定値以上低下したときに、燃料漏れ判定部107に対して、燃料漏れ判定の中止信号Sを出力する。
(2) Diagnosis stop instruction unit The diagnosis stop instruction unit 108 is configured so that the temperature Tw of the coolant used for cooling the internal combustion engine and the temperature Tf of the high pressure fuel in the high pressure fuel system 40 are equal to or greater than a predetermined value from the start of execution of the fuel leak diagnosis. When the voltage drops, a fuel leak judgment stop signal S is output to the fuel leak judgment unit 107.
 具体的には、本実施形態の燃料漏れ診断装置130の診断中止指示部108は、診断開始判定部105から燃料漏れ診断を開始する信号Dsが出力された時点で、図示しないRAMに記憶されたクーラントの温度Tw及び高圧燃料系40内の高圧燃料の温度Tfを読み込み、そのときの値をそれぞれ基準値Tw0、Tf0として設定する。また、診断中止指示部108は、それ以降、継続的にクーラントの温度Tw及び高圧燃料系40内の高圧燃料の温度Tfを読み込むとともに基準値Tw0、Tf0との偏差ΔTw、ΔTfを求め、それぞれの偏差ΔTw、ΔTfが所定値ΔTw0、ΔTf0以上になったときに、燃料漏れ判定部107に対して燃料漏れ判定の中止信号Sを出力する。クーラントの温度Twや高圧燃料の温度Tfは、クーラントや高圧燃料が流通する領域に設けた温度センサ等によって検出することができる。 Specifically, the diagnosis stop instruction unit 108 of the fuel leak diagnosis apparatus 130 according to the present embodiment is stored in a RAM (not shown) when the signal Ds for starting the fuel leak diagnosis is output from the diagnosis start determination unit 105. The coolant temperature Tw and the temperature Tf of the high-pressure fuel in the high-pressure fuel system 40 are read, and the values at that time are set as reference values Tw0 and Tf0, respectively. Thereafter, the diagnosis stop instruction unit 108 continuously reads the coolant temperature Tw and the high-pressure fuel temperature Tf in the high-pressure fuel system 40 and obtains deviations ΔTw and ΔTf from the reference values Tw0 and Tf0. When the deviations ΔTw and ΔTf become equal to or greater than the predetermined values ΔTw0 and ΔTf0, a fuel leak determination stop signal S is output to the fuel leak determination unit 107. The coolant temperature Tw and the high-pressure fuel temperature Tf can be detected by a temperature sensor or the like provided in a region where the coolant or the high-pressure fuel flows.
 それぞれの偏差ΔTw、ΔTfと比較される所定値ΔTw0、ΔTf0は、燃料の密度が変わり燃料の収縮が発生すると推定できる値に設定され、一例として、ΔTw0=20℃、ΔTf0=20℃とすることができる。また、所定値ΔTw0、ΔTf0は固定値でなくてもよく、例えば、診断開始時の基準値Tw0、Tf0に応じて設定される変数であってもよい。 The predetermined values ΔTw0 and ΔTf0 to be compared with the respective deviations ΔTw and ΔTf are set to values that can be estimated that the fuel density changes and the fuel contracts. For example, ΔTw0 = 20 ° C. and ΔTf0 = 20 ° C. Can do. Further, the predetermined values ΔTw0 and ΔTf0 may not be fixed values, and may be variables set according to the reference values Tw0 and Tf0 at the start of diagnosis, for example.
 この診断中止指示部108は、内燃機関の停止後の時間経過によって高圧燃料系40内の高圧燃料の温度が低下し、燃料の密度が変わることで燃料の収縮が発生し高圧燃料系40内の圧力が低下した時に、燃料漏れが発生していないにもかかわらず高圧燃料系40から燃料漏れが生じていると判定されることを防ぐために設けられている。したがって、クーラントの温度Twや高圧燃料の温度Tf以外に、高圧燃料40系の温度が低下することが推定できる情報であれば、判定基準として用いることができる。 The diagnosis stop instructing unit 108 is configured such that the temperature of the high-pressure fuel in the high-pressure fuel system 40 decreases with the lapse of time after the internal combustion engine stops, and the fuel density changes, so that the fuel contracts and the high-pressure fuel system 40 It is provided to prevent a fuel leak from being determined to have occurred from the high-pressure fuel system 40 even when no fuel leak has occurred when the pressure drops. Therefore, information other than the coolant temperature Tw and the high-pressure fuel temperature Tf can be used as a determination criterion if it can be estimated that the temperature of the high-pressure fuel 40 system decreases.
2.燃料漏れ診断方法
 次に、本実施形態の制御装置130によって行われる高圧燃料系40の燃料漏れ診断方法について、図9のフローに基づいて説明する。
 この燃料漏れ診断では、第1の実施の形態で説明した各ステップと同様に、ステップS10で、アイドリングストップ制御が実行されること、イグニションスイッチがOFFにされること、診断実施スイッチがONにされることのうちのいずれか一つの条件に該当すると判定された場合に、ステップS11でレール圧Prail1を検出した後、ステップS12で内燃機関を停止させる。
2. Fuel Leak Diagnosis Method Next, a fuel leak diagnosis method for the high-pressure fuel system 40 performed by the control device 130 of the present embodiment will be described based on the flow of FIG.
In this fuel leakage diagnosis, in the same manner as each step described in the first embodiment, in step S10, the idling stop control is executed, the ignition switch is turned off, and the diagnosis execution switch is turned on. When it is determined that any one of the conditions is met, the rail pressure Prail1 is detected in step S11, and then the internal combustion engine is stopped in step S12.
 次いで、本実施形態では、ステップS13でタイマを作動させるとともに、ステップS31でその時点のクーラントの温度Tw及び高圧燃料系40内の高圧燃料の温度Tfを読込み、ステップS32ではステップS31で読み込んだ各温度Tw、Tfをそれぞれ基準値Tw0、Tf0に設定する。 Next, in this embodiment, the timer is operated in step S13, and the temperature Tw of the coolant at that time and the temperature Tf of the high-pressure fuel in the high-pressure fuel system 40 are read in step S31, and each of the values read in step S31 is read in step S32. The temperatures Tw and Tf are set to the reference values Tw0 and Tf0, respectively.
 次いで、第1の実施の形態で説明した各ステップと同様に、ステップS14では、高圧燃料系40内に燃料を保持する制御が行われた後、ステップS15では、タイマが所定時間tmを経過するまで、タイマが所定時間tmを経過したか否かの判別が繰り返し行われる。 Next, similarly to the steps described in the first embodiment, in step S14, control for holding the fuel in the high-pressure fuel system 40 is performed, and in step S15, the timer elapses a predetermined time tm. Until then, it is repeatedly determined whether or not the timer has passed the predetermined time tm.
 このとき、本実施形態では、タイマが所定時間tmを経過しておらず、ステップS15でNoと判別されたときにはステップS33に進み、その時点のクーラントの温度Tw及び高圧燃料の温度Tfを読込む。次いで、ステップS34で、クーラントの温度Twとその基準値Tw0との偏差ΔTw(=Tw0-Tw)及び高圧燃料の温度Tfとその基準値Tf0との偏差ΔTf(=Tf0-Tf)を算出した後、ステップS35で、それぞれの偏差ΔTw、ΔTfのうちの少なくとも一方が所定値ΔTw0、ΔTf0以上になったか否かを判別する。 At this time, in this embodiment, if the timer has not elapsed the predetermined time tm and it is determined No in step S15, the process proceeds to step S33, and the coolant temperature Tw and the high-pressure fuel temperature Tf at that time are read. . Next, after calculating the deviation ΔTw (= Tw0−Tw) between the coolant temperature Tw and its reference value Tw0 and the deviation ΔTf (= Tf0−Tf) between the high-pressure fuel temperature Tf and its reference value Tf0 in step S34. In step S35, it is determined whether or not at least one of the deviations ΔTw and ΔTf is equal to or greater than the predetermined values ΔTw0 and ΔTf0.
 それぞれの偏差ΔTw、ΔTfがともに所定値ΔTw0、ΔTf0未満である場合にはステップS15に戻って診断が継続される。一方、それぞれの偏差ΔTw、ΔTfのうちの少なくとも一方が所定値ΔTw0、ΔTf0以上になっている場合には、燃料の収縮によって高圧燃料系40内の圧力が低下し、燃料漏れが発生していないにもかかわらず燃料漏れが発生していると判定されるおそれがあることから、燃料漏れ診断を中止して本ルーチンを終了する。 If the deviations ΔTw and ΔTf are both less than the predetermined values ΔTw0 and ΔTf0, the process returns to step S15 and the diagnosis is continued. On the other hand, when at least one of the deviations ΔTw and ΔTf is equal to or greater than the predetermined values ΔTw0 and ΔTf0, the pressure in the high-pressure fuel system 40 is reduced due to the contraction of the fuel, and no fuel leakage occurs. Nevertheless, since it may be determined that a fuel leak has occurred, the fuel leak diagnosis is stopped and this routine is terminated.
 ステップS15でタイマが所定時間tmを経過したときには、以降のステップS16~ステップS21が第1の実施の形態で説明した各ステップと同様に行われ、ステップS18で燃料漏れERROR信号が出力されるか、あるいは、ステップS20で燃料漏れALERT信号が出力されるか、さらに、ステップS21でOK信号が出力されるかして本ルーチンを終了する。 When the timer has passed the predetermined time tm in step S15, the subsequent steps S16 to S21 are performed in the same manner as the steps described in the first embodiment, and whether the fuel leakage ERROR signal is output in step S18. Alternatively, the routine ends when the fuel leakage ALERT signal is output in step S20 or the OK signal is output in step S21.
 以上のような燃料漏れ診断方法によれば、高圧燃料の温度の低下によって燃料が収縮し、高圧燃料系40内の圧力が低下したことに起因して、燃料漏れ診断において誤診断されるおそれがなくなる。したがって、燃料漏れ診断の診断結果の信頼性が向上される。
 なお、診断開始後のクーラントの温度や高圧燃料系内の温度を検出し、診断開始時から所定値以上低下したときに燃料漏れ診断を中止させる制御は、第1の実施の形態で説明した燃料漏れ診断の別の方法1~3を実施する際にも適用することができる。
According to the fuel leakage diagnosis method as described above, the fuel contracts due to a decrease in the temperature of the high-pressure fuel, and the pressure in the high-pressure fuel system 40 is decreased, so that there is a risk of erroneous diagnosis in the fuel leakage diagnosis. Disappear. Therefore, the reliability of the diagnosis result of the fuel leak diagnosis is improved.
The control for detecting the coolant temperature after the diagnosis is started and the temperature in the high-pressure fuel system and stopping the fuel leakage diagnosis when the temperature is lowered by a predetermined value or more from the start of the diagnosis is the fuel described in the first embodiment. The present invention can also be applied when performing another method 1 to 3 of leak diagnosis.

Claims (6)

  1.  高圧燃料を圧送する高圧ポンプと、前記高圧ポンプから圧送される前記高圧燃料が蓄積されるコモンレールと、前記コモンレールに蓄積された前記高圧燃料を内燃機関の気筒に噴射する燃料噴射弁と、を含む高圧燃料系を備え、前記燃料噴射弁は、噴射孔を開閉するノズルニードルと、前記高圧燃料が供給されて前記高圧燃料の圧力により前記ノズルニードルに背圧を負荷する背圧室と、前記背圧室の前記高圧燃料を逃がすことで前記ノズルニードルをリフトさせて前記噴射孔を開口させる背圧逃し機構と、を備えるとともに、前記背圧室の前記高圧燃料以外の燃料のリーク通路を持たない構造であるリークレス蓄圧式燃料供給装置における、前記高圧燃料系からの燃料漏れの有無を診断するための燃料漏れ診断装置において、
     前記高圧燃料系内の圧力を検出し記憶する圧力検出部と、
     前記内燃機関の停止期間中に、前記高圧燃料系内に前記燃料を保持するための保持制御部と、
     前記燃料を前記高圧燃料系内に保持し始めたとき以降の前記高圧燃料系内の圧力変化を見ることにより、前記燃料漏れの有無を判定する燃料漏れ判定部と、
     を備えることを特徴とする燃料漏れ診断装置。
    A high-pressure pump that pumps high-pressure fuel; a common rail that stores the high-pressure fuel pumped from the high-pressure pump; and a fuel injection valve that injects the high-pressure fuel stored in the common rail into a cylinder of an internal combustion engine. The fuel injection valve includes a nozzle needle that opens and closes an injection hole, a back pressure chamber that is supplied with the high pressure fuel and applies a back pressure to the nozzle needle by the pressure of the high pressure fuel, and the back pressure chamber. And a back pressure relief mechanism that lifts the nozzle needle to open the injection hole by letting out the high pressure fuel in the pressure chamber, and does not have a fuel leak passage other than the high pressure fuel in the back pressure chamber. In the fuel leakage diagnostic apparatus for diagnosing the presence or absence of fuel leakage from the high-pressure fuel system in the structure of the leakless pressure accumulating fuel supply device,
    A pressure detector for detecting and storing the pressure in the high-pressure fuel system;
    A holding control unit for holding the fuel in the high-pressure fuel system during a stop period of the internal combustion engine;
    A fuel leakage determination unit that determines the presence or absence of the fuel leakage by looking at the pressure change in the high pressure fuel system after the fuel starts to be held in the high pressure fuel system;
    A fuel leakage diagnosis device comprising:
  2.  前記燃料漏れ判定部は、前記燃料を前記高圧燃料系内に保持し始めてから所定時間経過後の前記高圧燃料系内の圧力を、所定の閾値と比較することで前記燃料漏れの有無を判定することを特徴とする請求項1に記載の燃料漏れ診断装置。 The fuel leakage determination unit determines the presence or absence of the fuel leakage by comparing a pressure in the high pressure fuel system after a predetermined time has elapsed after starting to hold the fuel in the high pressure fuel system with a predetermined threshold. The fuel leakage diagnosis apparatus according to claim 1.
  3.  前記燃料漏れ判定部は、前記燃料を前記高圧燃料系内に保持し始めてからの前記高圧燃料系内の圧力低下量又は圧力低下割合を、所定の基準値と比較することで前記燃料漏れの有無を判定することを特徴とする請求項1に記載の燃料漏れ診断装置。 The fuel leakage determination unit compares the pressure drop amount or the pressure drop rate in the high pressure fuel system after the fuel is held in the high pressure fuel system with a predetermined reference value to determine whether the fuel leak has occurred. The fuel leakage diagnosis apparatus according to claim 1, wherein:
  4.  前記内燃機関の停止期間は、前記内燃機関のアイドリングストップ制御時であることを特徴とする請求項1~3のいずれか一項に記載の燃料漏れ診断装置。 4. The fuel leakage diagnosis apparatus according to claim 1, wherein the stop period of the internal combustion engine is an idling stop control of the internal combustion engine.
  5.  前記内燃機関の冷却に用いられるクーラントの温度又は前記高圧燃料系内の高圧燃料の温度が前記内燃機関の停止時の温度から所定値以上低下したときに、前記燃料漏れ判定部における前記判定を中止させる診断中止指示部を備えることを特徴とする請求項1~4のいずれか一項に記載の燃料漏れ診断装置。 When the temperature of the coolant used for cooling the internal combustion engine or the temperature of the high-pressure fuel in the high-pressure fuel system has decreased by a predetermined value or more from the temperature at the time of stop of the internal combustion engine, the determination in the fuel leak determination unit is stopped. The fuel leakage diagnosis apparatus according to any one of claims 1 to 4, further comprising: a diagnosis stop instruction unit that performs the operation.
  6.  高圧燃料を圧送する高圧ポンプと、前記高圧ポンプから圧送される前記高圧燃料が蓄積されるコモンレールと、前記コモンレールに蓄積された前記高圧燃料を内燃機関の気筒に噴射する燃料噴射弁と、を含む高圧燃料系を備え、前記燃料噴射弁は、噴射孔を開閉するノズルニードルと、前記高圧燃料が供給されて前記高圧燃料の圧力により前記ノズルニードルに背圧を負荷する背圧室と、前記背圧室の前記高圧燃料を逃がすことで前記ノズルニードルをリフトさせて前記噴射孔を開口させる背圧逃し機構と、を備えるとともに、前記背圧室の前記高圧燃料以外の燃料のリーク通路を持たない構造であるリークレス蓄圧式燃料供給装置における、前記高圧燃料系からの燃料漏れの有無を診断するための燃料漏れ診断方法において、
     前記高圧燃料系内に前記燃料を保持しながら前記高圧燃料系の圧力変化を見ることにより、前記燃料漏れの有無を判定することを特徴とする燃料漏れ診断方法。
    A high-pressure pump that pumps high-pressure fuel; a common rail that stores the high-pressure fuel pumped from the high-pressure pump; and a fuel injection valve that injects the high-pressure fuel stored in the common rail into a cylinder of an internal combustion engine. The fuel injection valve includes a nozzle needle that opens and closes an injection hole, a back pressure chamber that is supplied with the high pressure fuel and applies a back pressure to the nozzle needle by the pressure of the high pressure fuel, and the back pressure chamber. And a back pressure relief mechanism that lifts the nozzle needle to open the injection hole by letting out the high pressure fuel in the pressure chamber, and does not have a fuel leak passage other than the high pressure fuel in the back pressure chamber. In the fuel leakage diagnosis method for diagnosing the presence or absence of fuel leakage from the high-pressure fuel system in the structure of the leakless accumulator fuel supply system having the structure,
    A fuel leak diagnosis method, wherein the presence or absence of the fuel leak is determined by observing a pressure change of the high pressure fuel system while holding the fuel in the high pressure fuel system.
PCT/JP2009/058470 2008-09-11 2009-04-30 Fuel leakage diagnostic device and fuel leakage diagnosis method WO2010029791A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010528675A JPWO2010029791A1 (en) 2008-09-11 2009-04-30 Fuel leakage diagnosis device and fuel leakage diagnosis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-233289 2008-09-11
JP2008233289 2008-09-11

Publications (1)

Publication Number Publication Date
WO2010029791A1 true WO2010029791A1 (en) 2010-03-18

Family

ID=42005054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058470 WO2010029791A1 (en) 2008-09-11 2009-04-30 Fuel leakage diagnostic device and fuel leakage diagnosis method

Country Status (2)

Country Link
JP (1) JPWO2010029791A1 (en)
WO (1) WO2010029791A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102182601A (en) * 2011-02-01 2011-09-14 潍柴动力股份有限公司 Method and device for diagnosing and calibrating faults in high-pressure common rail system
JP2011196262A (en) * 2010-03-19 2011-10-06 Denso Corp Fuel pressure control device
CN104727961A (en) * 2013-12-18 2015-06-24 现代自动车株式会社 Method and system for diagnosing common rail diesel engine
JP2016044562A (en) * 2014-08-20 2016-04-04 ボッシュ株式会社 High-pressure connector structure of common rail type fuel injection system
KR101611968B1 (en) 2014-12-22 2016-04-12 주식회사 현대케피코 Diagnosis method and system of direct injection engine
JP2019138182A (en) * 2018-02-07 2019-08-22 株式会社デンソー Load control system
CN110520616A (en) * 2017-04-13 2019-11-29 Mtu 腓特烈港有限责任公司 For acquiring the method for the combustion chamber of lasting penetrating, penetrating system and internal combustion engine with such penetrating system
US10591379B2 (en) 2017-12-27 2020-03-17 Cummins Inc. System and method for identifying a source of high pressure leakage
CN111765014A (en) * 2020-06-30 2020-10-13 潍柴重机股份有限公司 Method and system for monitoring leakage of high-pressure fuel system
CN113482823A (en) * 2021-07-02 2021-10-08 东风商用车有限公司 Method and device for diagnosing faults of fuel injection system and automobile with device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552146A (en) * 1991-04-26 1993-03-02 Nippondenso Co Ltd Accumulator fuel injection device for diesel engine
JPH08270480A (en) * 1995-03-29 1996-10-15 Toyota Motor Corp Failure diagnostic device for evaporation purge system
JP2000274297A (en) * 1999-03-24 2000-10-03 Isuzu Motors Ltd Common rail type fuel injection device
JP2003155948A (en) * 2001-11-19 2003-05-30 Denso Corp Common rail type fuel injection system
JP2007154788A (en) * 2005-12-06 2007-06-21 Toyota Motor Corp Power output device, automobile having power output device mounted thereon and method for controlling power output device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552146A (en) * 1991-04-26 1993-03-02 Nippondenso Co Ltd Accumulator fuel injection device for diesel engine
JPH08270480A (en) * 1995-03-29 1996-10-15 Toyota Motor Corp Failure diagnostic device for evaporation purge system
JP2000274297A (en) * 1999-03-24 2000-10-03 Isuzu Motors Ltd Common rail type fuel injection device
JP2003155948A (en) * 2001-11-19 2003-05-30 Denso Corp Common rail type fuel injection system
JP2007154788A (en) * 2005-12-06 2007-06-21 Toyota Motor Corp Power output device, automobile having power output device mounted thereon and method for controlling power output device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196262A (en) * 2010-03-19 2011-10-06 Denso Corp Fuel pressure control device
CN102182601A (en) * 2011-02-01 2011-09-14 潍柴动力股份有限公司 Method and device for diagnosing and calibrating faults in high-pressure common rail system
CN104727961A (en) * 2013-12-18 2015-06-24 现代自动车株式会社 Method and system for diagnosing common rail diesel engine
CN104727961B (en) * 2013-12-18 2019-05-03 现代自动车株式会社 For diagnosing the method and system of co-rail diesel engine
JP2016044562A (en) * 2014-08-20 2016-04-04 ボッシュ株式会社 High-pressure connector structure of common rail type fuel injection system
KR101611968B1 (en) 2014-12-22 2016-04-12 주식회사 현대케피코 Diagnosis method and system of direct injection engine
CN110520616A (en) * 2017-04-13 2019-11-29 Mtu 腓特烈港有限责任公司 For acquiring the method for the combustion chamber of lasting penetrating, penetrating system and internal combustion engine with such penetrating system
US10591379B2 (en) 2017-12-27 2020-03-17 Cummins Inc. System and method for identifying a source of high pressure leakage
JP2019138182A (en) * 2018-02-07 2019-08-22 株式会社デンソー Load control system
CN111765014A (en) * 2020-06-30 2020-10-13 潍柴重机股份有限公司 Method and system for monitoring leakage of high-pressure fuel system
CN111765014B (en) * 2020-06-30 2022-10-25 潍柴重机股份有限公司 Method and system for monitoring leakage of high-pressure fuel system
CN113482823A (en) * 2021-07-02 2021-10-08 东风商用车有限公司 Method and device for diagnosing faults of fuel injection system and automobile with device
CN113482823B (en) * 2021-07-02 2023-03-03 东风商用车有限公司 Method and device for diagnosing fault of fuel injection system and automobile with device

Also Published As

Publication number Publication date
JPWO2010029791A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
WO2010029791A1 (en) Fuel leakage diagnostic device and fuel leakage diagnosis method
JP4355346B2 (en) Control device for internal combustion engine
EP2010776B1 (en) Start-up control device and start-up control method for internal combustion engine
JP4297129B2 (en) Start control device for internal combustion engine
JP2005337031A (en) Abnormality diagnosis apparatus for high pressure fuel system of cylinder injection type internal combustion engine
JP4780137B2 (en) High pressure fuel control device
JP4045594B2 (en) Accumulated fuel injection system
JP3972823B2 (en) Accumulated fuel injection system
JP5185147B2 (en) Fuel supply device for internal combustion engine
JP5314156B2 (en) Control device for internal combustion engine
JP2001173507A (en) Accumulator fuel injection control device
EP2336531A1 (en) Accumulator fuel injection system controller and control method and accumulator fuel injection system
JP5558205B2 (en) Abnormality diagnosis device for fuel temperature sensor and accumulator fuel injection device
JP3876694B2 (en) Common rail fuel injection system
JP6823286B2 (en) Internal combustion engine fuel injection system
JP5497010B2 (en) Abnormality diagnosis device for temperature sensor, fuel injection control device, and pressure accumulation type fuel injection device
JP5294510B2 (en) Control device and control method for fuel injection device
US20130024092A1 (en) Device for preventing the engine from stalling in a vehicle equipped with a diesel injection system
JP2011064108A (en) Fuel injection device
JP2014043820A (en) High pressure fuel control device
CN108138676B (en) Method and apparatus for operating an internal combustion engine including a high pressure fuel injection system
JP2003293835A (en) Accumulator fuel injection system
JP7232698B2 (en) Pressure accumulation type fuel injection control device and control method for pressure accumulation type fuel injection control device
JP5532885B2 (en) Fuel injection device
JP6764131B2 (en) Internal combustion engine fuel injection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812939

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528675

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09812939

Country of ref document: EP

Kind code of ref document: A1