WO2010029786A1 - Heat exchanger device operating method and heat exchanger device - Google Patents

Heat exchanger device operating method and heat exchanger device Download PDF

Info

Publication number
WO2010029786A1
WO2010029786A1 PCT/JP2009/055637 JP2009055637W WO2010029786A1 WO 2010029786 A1 WO2010029786 A1 WO 2010029786A1 JP 2009055637 W JP2009055637 W JP 2009055637W WO 2010029786 A1 WO2010029786 A1 WO 2010029786A1
Authority
WO
WIPO (PCT)
Prior art keywords
heated liquid
heated
heat exchanger
heat transfer
heat
Prior art date
Application number
PCT/JP2009/055637
Other languages
French (fr)
Japanese (ja)
Inventor
古川 誠司
神谷 俊行
勇 平敷
禎司 齊藤
野田 清治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010528674A priority Critical patent/JP5225383B2/en
Publication of WO2010029786A1 publication Critical patent/WO2010029786A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans

Abstract

The heat exchanger device operating method can prevent the adherence of a scale to a heated liquid flow path, while keeping the amount of heat transferred to the heated liquid constant. With the heat exchanger device operating method, after the heated liquid is heated by heat exchange with a thermal medium and flows out the heated liquid flow path, part of the heated liquid flows into a heated liquid circulation pipeline, pulsations are produced in the inflowing part of the heated liquid by the intermittent driving of a circulation pump, and the heated liquid in which pulsations have been produced again flows unchanged into the heated liquid flow path.

Description

熱交換器装置の運転方法、及び熱交換器装置Operation method of heat exchanger apparatus and heat exchanger apparatus
 この発明は、被加熱液が流通し外部の熱媒体と熱交換する被加熱液流路にスケールが付着するのを防止する機能を備えた、熱交換器装置の運転方法、及び熱交換器装置に関するものである。 The present invention relates to a method of operating a heat exchanger apparatus and a heat exchanger apparatus having a function of preventing scale from adhering to a heated liquid passage through which heated liquid flows and exchanges heat with an external heat medium. It is about.
 浴室や台所に温水を供給する給湯器は電気給湯器、ガス給湯器、石油給湯器などに大別されるが、いずれも熱を水に伝えるための熱交換器と呼ばれる部分が存在する。電気給湯器の中でも、最近特に、省エネや地球温暖化対策としての二酸化炭素削減の観点から、ヒートポンプ熱交換式の電気給湯器(ヒートポンプ給湯器)が注目されている。
 その原理は、大気の熱を熱媒体に移し、その熱でお湯を沸かすものである。具体的に言えば気体を圧縮したときに発生する高熱を熱交換器を介して水へ移し、その気体を膨張させたときの冷気によって再び熱媒体の温度を大気温まで戻す繰り返し(冷熱サイクル)によるものである。理論上投入エネルギー以上の熱エネルギーを取り出すことはできないが、ヒートポンプ給湯器は大気の熱を活用する仕組みのため、運転に要するエネルギーよりも多くの熱エネルギーを利用することができる。
Water heaters that supply hot water to the bathroom or kitchen are roughly divided into electric water heaters, gas water heaters, and oil water heaters, and all have parts called heat exchangers for transferring heat to water. Among electric water heaters, in particular, heat pump heat exchange type electric water heaters (heat pump water heaters) are attracting attention from the viewpoint of energy saving and carbon dioxide reduction as a measure against global warming.
The principle is that the heat of the atmosphere is transferred to a heat medium, and hot water is boiled with that heat. Specifically, the heat generated when the gas is compressed is transferred to water via a heat exchanger, and the temperature of the heat medium is returned to the atmospheric temperature again by the cold air when the gas is expanded (cooling cycle). Is due to. Theoretically, it is not possible to extract more heat energy than the input energy, but the heat pump water heater uses the heat of the atmosphere, so it can use more heat energy than the energy required for operation.
 熱交換器は水に対して熱を伝えるために、熱伝達面を常に清浄な状態に保つことが非常に重要である。隔壁が汚れると有効な熱伝達面積が減少し、熱伝達性能の低下を招く。さらに汚れが蓄積すると、最悪の場合には流路の閉塞を招く。
 特に水中の硬度成分(カルシウムイオンやマグネシウムイオン)が高い地域では、加熱によりスケールと呼ばれる炭酸塩結晶が析出し、熱交換器内に付着しやすいという問題がある。
In order for the heat exchanger to transfer heat to the water, it is very important to keep the heat transfer surface clean at all times. When the partition wall is soiled, the effective heat transfer area is reduced and the heat transfer performance is deteriorated. Further accumulation of dirt causes blockage of the flow path in the worst case.
In particular, in a region where the hardness component (calcium ion or magnesium ion) in water is high, there is a problem that carbonate crystals called scales are deposited by heating and easily adhere to the heat exchanger.
 従来の熱交換器装置として、例えば特許文献1には、加熱手段と、この加熱手段と熱交換可能に設けられた熱交換路29と、この熱交換路29内に介設されたポンプ28とを備え、ポンプ28を一定時間、定常運転時の回転数よりも高い回転数で駆動させることによって、熱交換路29内を流通する湯水の速度を一時的に上昇させ、熱交換器29内のスケールを除去する湯垢除去方法が記載されている。 As a conventional heat exchanger device, for example, Patent Document 1 discloses a heating means, a heat exchange path 29 provided so as to be able to exchange heat with the heating means, and a pump 28 interposed in the heat exchange path 29. And the pump 28 is driven at a rotational speed higher than the rotational speed at the time of steady operation for a certain period of time, thereby temporarily increasing the speed of hot water flowing through the heat exchange path 29. A descaling method for removing scale is described.
 また、他の特許文献2には、被熱交換液を循環させる循環ポンプ3と、少なくとも循環ポンプ3の運転動作を制御するコントローラ10とを備え、一定の時間間隔ごとに循環ポンプ3をフル駆動させることで、熱交換器2内のスケールを除去する給湯機が記載されている。 Other Patent Document 2 includes a circulation pump 3 that circulates the heat exchange liquid and a controller 10 that controls at least the operation of the circulation pump 3, and fully drives the circulation pump 3 at regular time intervals. A hot water heater that removes the scale in the heat exchanger 2 is described.
特開2001-263793号公報JP 2001-263793 A 特開2005-308235号公報JP 2005-308235 A
 しかしながら、上記特許文献1では、熱交換路29内を流れる湯水の速度を脈動させることが目的ではなく、例えば貯湯タンク内の湯水の全量沸き上げ後に一定時間のスケール除去運転を行うものであった。
 また、上記特許文献2についても、被熱交換液の速度を脈動させることが目的ではなく、被熱交換液を加熱するのに利用した運転時間の積算値が所定値に達したとき、被熱交換液の循環手段をフル駆動させるものであった。
However, in Patent Document 1, the purpose is not to pulsate the speed of the hot water flowing in the heat exchange path 29, but, for example, the scale removal operation is performed for a certain time after the entire amount of hot water in the hot water tank is boiled. .
In addition, the above-mentioned Patent Document 2 is not intended to pulsate the speed of the heat exchange liquid, but when the integrated value of the operation time used to heat the heat exchange liquid reaches a predetermined value, The circulating means of the exchange liquid was fully driven.
 これらの運転動作は、貯湯タンクを経由した湯水を熱交換路の入口から再び流通させ、しかもその流量を一時的に増加させるというものなので、径もしくは幅の狭い熱交換路を流通させるためには多大な動力を必要とするという問題点があった。
 また、貯湯タンクやその他の配管にて放熱が進行した後の湯水が循環することになるので、給湯温度を一定に維持するために余計な熱量が必要であるという問題点があった。
 また、仮にこの運転動作を極めて短い間隔で繰り返せば、湯水の流量に対して脈動に近い作用を与えることはできるが、特許文献1及び2に記載されたものは、次のような問題点があった。即ち、
 貯湯タンクを経由した湯水を熱交換路の入口から再び流通させるので、湯水が径もしくは幅の狭い熱交換路内を通過するときに、隔壁との間に生じる摩擦抵抗を受け、最もスケールが発生し易い、熱交換路隔壁の温度及び湯温が最も高くなる熱交換路出口付近では流速の変化が鈍ってしまい、十分なスケール付着防止効果もしくはスケール除去効果が得られないという問題点があった。
These operation operations are to recirculate hot water passing through the hot water storage tank from the inlet of the heat exchange path and increase the flow rate temporarily. In order to distribute the heat exchange path with a narrow diameter or width, There was a problem of requiring a great deal of power.
In addition, since hot water after heat dissipation has circulated in the hot water storage tank and other piping is circulated, there is a problem that an extra amount of heat is required to maintain the hot water supply temperature constant.
Further, if this operation is repeated at an extremely short interval, an action close to pulsation can be given to the flow rate of hot water, but those described in Patent Documents 1 and 2 have the following problems. there were. That is,
Since hot water passing through the hot water storage tank is recirculated from the inlet of the heat exchange path, when hot water passes through the heat exchange path with a narrow diameter or width, it receives the frictional resistance generated between the partition walls and generates the largest scale. However, there is a problem that the change in the flow velocity becomes dull near the outlet of the heat exchange path where the temperature of the heat exchange path partition wall and the hot water temperature are the highest, and a sufficient scale adhesion prevention effect or scale removal effect cannot be obtained. .
 この発明は、上述のような問題点を解決することを課題とするものであって、被加熱液が流通し外部の熱媒体と熱交換する被加熱液流路にスケールが付着するのを簡単な構成で防止することができる、熱交換器装置の運転方法、及び熱交換器装置を提供することを目的とする。 An object of the present invention is to solve the above-described problems, and it is easy for a scale to adhere to a heated liquid passage through which the heated liquid flows and exchanges heat with an external heat medium. It is an object of the present invention to provide a heat exchanger apparatus operating method and a heat exchanger apparatus that can be prevented with a simple configuration.
 この発明に係る熱交換器装置の運転方法は、被加熱液が流通し、外部の熱媒体と熱交換する被加熱液流路を有する熱交換器と、この被加熱液流路の入口に接続された被加熱液入口配管と、前記被加熱液が排出される前記被加熱液流路の出口に接続された被加熱液出口配管と、この被加熱液出口配管から分岐されているとともに先端部が前記被加熱液流路の途中で接続された被加熱液循環配管と、この被加熱液循環配管に設けられ前記被加熱液を前記被加熱液流路と被加熱液循環配管との間で循環させる循環ポンプとを備えた熱交換器装置の運転方法であって、前記被加熱液が前記熱媒体と熱交換により加熱されて前記被加熱液流路から流出した後、前記被加熱液の一部は、前記被加熱液循環配管に流入し、この流入した前記被加熱液は、前記循環ポンプの間欠駆動運転により脈動が生じ、脈動が生じた前記被加熱液は、そのまま前記被加熱液流路に再び流入する。 The operation method of the heat exchanger apparatus according to the present invention includes a heat exchanger having a heated liquid channel through which a heated liquid flows and exchanges heat with an external heat medium, and is connected to an inlet of the heated liquid channel The heated liquid inlet pipe, the heated liquid outlet pipe connected to the outlet of the heated liquid flow path through which the heated liquid is discharged, and a tip portion branched from the heated liquid outlet pipe The heated liquid circulation pipe connected in the middle of the heated liquid flow path and the heated liquid circulation pipe provided between the heated liquid flow path and the heated liquid circulation pipe An operation method of a heat exchanger apparatus comprising a circulation pump for circulation, wherein the heated liquid is heated by heat exchange with the heat medium and flows out of the heated liquid flow path, and then the heated liquid A part flows into the heated liquid circulation pipe, and the heated liquid flowing in Pulsation by the intermittent driving operation of the circulation pump occurs, the heated fluid pulsation occurs, it again enters the the heated liquid flow path.
 この発明に係る熱交換器装置は、被加熱液が流通し、外部の熱媒体と熱交換する被加熱液流路を有する熱交換器と、この被加熱液流路の入口に接続された被加熱液入口配管と、前記被加熱液が排出される前記被加熱液流路の出口に接続された被加熱液出口配管と、この被加熱液出口配管から分岐されているとともに先端部が前記被加熱液流路の途中で接続された被加熱液循環配管と、この被加熱液循環配管に設けられ前記被加熱液を前記被加熱液流路と被加熱液循環配管との間で循環させる循環ポンプと、この循環ポンプの運転動作を制御するコントローラとを備え、前記コントローラは、前記循環ポンプを間欠運転させるようになっている。 A heat exchanger apparatus according to the present invention includes a heat exchanger having a heated liquid passage through which a liquid to be heated flows and exchanges heat with an external heat medium, and a target connected to an inlet of the heated liquid passage. A heated liquid inlet pipe, a heated liquid outlet pipe connected to an outlet of the heated liquid flow path through which the heated liquid is discharged, a branch from the heated liquid outlet pipe, and a distal end portion of the heated liquid outlet pipe A heated liquid circulation pipe connected in the middle of the heated liquid flow path, and a circulation provided in the heated liquid circulation pipe for circulating the heated liquid between the heated liquid flow path and the heated liquid circulation pipe A pump and a controller for controlling the operation of the circulation pump are provided, and the controller is configured to intermittently operate the circulation pump.
 この発明に係る熱交換器装置の運転方法、及び熱交換器装置によれば、被加熱液流路の途中の下流側と、被加熱液循環配管との間で被加熱液を間欠運転で循環させることで、被加熱液流路内の被加熱液の圧力変化を生じさせ、被加熱液流路へのスケールの付着を防止することができる。 According to the operation method of the heat exchanger apparatus and the heat exchanger apparatus according to the present invention, the liquid to be heated is circulated between the downstream side in the middle of the liquid path to be heated and the liquid circulation pipe to be heated in an intermittent operation. By doing so, it is possible to cause a pressure change of the liquid to be heated in the liquid flow path to be heated and to prevent the scale from adhering to the liquid flow path to be heated.
この発明の実施の形態1における熱交換器装置の概略構成図である。It is a schematic block diagram of the heat exchanger apparatus in Embodiment 1 of this invention. 図1の熱交換器装置を用いたときのスケール付着防止効果を示す図である。It is a figure which shows the scale adhesion prevention effect when using the heat exchanger apparatus of FIG. 図1の熱交換器装置を用いたときのスケール付着防止効果を示す図である。It is a figure which shows the scale adhesion prevention effect when using the heat exchanger apparatus of FIG. 図1の熱交換器装置を用いたときのスケール付着防止効果を示す図である。It is a figure which shows the scale adhesion prevention effect when using the heat exchanger apparatus of FIG. この発明の実施の形態2における熱交換器装置の全体斜視図である。It is a whole perspective view of the heat exchanger apparatus in Embodiment 2 of this invention. 図5の低温側伝熱板を示す平面図である。It is a top view which shows the low temperature side heat exchanger plate of FIG. 図5の高温側伝熱板を示す平面図である。It is a top view which shows the high temperature side heat exchanger plate of FIG. 図5のエンドプレートを示す平面図である。It is a top view which shows the end plate of FIG. 図5の伝熱板モジュールを示す断面、及び被加熱液の流れを示す図である。It is a figure which shows the cross section which shows the heat exchanger plate module of FIG. 5, and the flow of a to-be-heated liquid. 図5の伝熱板モジュールを示す断面、及び熱媒体の流れを示す図である。It is a figure which shows the cross section which shows the heat exchanger plate module of FIG. 5, and the flow of a heat carrier. この発明の実施の形態3における熱交換器装置の伝熱板モジュールを示す断面図である。It is sectional drawing which shows the heat exchanger plate module of the heat exchanger apparatus in Embodiment 3 of this invention. 図11のエンドプレートを示す平面図である。It is a top view which shows the end plate of FIG. 図11の低温側伝熱板を示す平面図である。It is a top view which shows the low temperature side heat exchanger plate of FIG. 図11の高温側伝熱板を示す平面図である。It is a top view which shows the high temperature side heat exchanger plate of FIG. 図11の制御弁の動作を示す図である。It is a figure which shows operation | movement of the control valve of FIG.
 以下、この発明の各実施の形態について図に基づいて説明するが、各図において同一、または相当部材、部位については同一符号を付して説明する。
 実施の形態1
 図1は、この発明の実施の形態1における熱交換器装置100を含む給湯装置を示す概略構成図である。
 この給湯装置は、冷凍サイクルを構成する、外気の熱を例えば二酸化炭素冷媒である熱媒体に移すための空気-熱媒体熱交換器91、熱媒体を圧縮するための圧縮機92、熱媒体の熱で被加熱液である水を加熱する熱媒体-水熱交換器100b及び熱媒体を冷却するための膨張弁93を備えている。
 熱交換器装置100における熱媒体-水熱交換器100bは、熱媒体入口配管99を介して空気-熱媒体熱交換器91と接続されている。熱媒体入口配管99には圧縮機92が取り付けられている。
 また、熱媒体-水熱交換器100bは、熱媒体出口配管55を介して空気-熱媒体熱交換器91と接続されている。熱媒体出口配管55には膨張弁93が取り付けられている。
 熱媒体-水熱交換器100bの内部には、水が通過しながら加熱される伝熱管である被加熱液流路100aが設けられている。
 被加熱液流路100aの一端部には、熱媒体-水熱交換器100bに水が流入する被加熱液入口配管9が接続されている。被加熱液流路100aの他端部には、加熱された水を熱媒体-水熱交換器100bの外部に排出する被加熱液出口配管5が接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or equivalent members and parts will be described with the same reference numerals.
Embodiment 1
1 is a schematic configuration diagram showing a hot water supply apparatus including a heat exchanger apparatus 100 according to Embodiment 1 of the present invention.
This hot water supply apparatus includes an air-heat medium heat exchanger 91 for transferring the heat of the outside air to a heat medium that is, for example, carbon dioxide refrigerant, a compressor 92 for compressing the heat medium, A heat medium-water heat exchanger 100b that heats the water to be heated by heat and an expansion valve 93 for cooling the heat medium are provided.
The heat medium-water heat exchanger 100 b in the heat exchanger apparatus 100 is connected to the air-heat medium heat exchanger 91 via the heat medium inlet pipe 99. A compressor 92 is attached to the heat medium inlet pipe 99.
The heat medium-water heat exchanger 100 b is connected to the air-heat medium heat exchanger 91 via the heat medium outlet pipe 55. An expansion valve 93 is attached to the heat medium outlet pipe 55.
Inside the heat medium-water heat exchanger 100b, a heated liquid channel 100a that is a heat transfer tube heated while water passes is provided.
A heated liquid inlet pipe 9 through which water flows into the heat medium-water heat exchanger 100b is connected to one end of the heated liquid channel 100a. A heated liquid outlet pipe 5 for discharging heated water to the outside of the heat medium-water heat exchanger 100b is connected to the other end of the heated liquid channel 100a.
 被加熱液出口配管5からは被加熱液循環配管6が分岐されている。この被加熱液循環配管6の先端部は被加熱液流路100aの途中で接続されている。被加熱液循環配管6には、循環ポンプ7が取り付けられている。この循環ポンプ7の駆動により、被加熱液である水は、被加熱液流路100a、被加熱液出口配管5、被加熱液循環配管6及び被加熱液流路100aの順序で循環する。
 循環ポンプ7は、信号線8aを介して循環ポンプ7の駆動を制御するコントローラ8と接続されている。
A heated liquid circulation pipe 6 is branched from the heated liquid outlet pipe 5. The tip of the heated liquid circulation pipe 6 is connected in the middle of the heated liquid flow path 100a. A circulation pump 7 is attached to the heated liquid circulation pipe 6. By driving the circulation pump 7, water to be heated circulates in the order of the heated liquid flow path 100a, the heated liquid outlet pipe 5, the heated liquid circulation pipe 6, and the heated liquid flow path 100a.
The circulation pump 7 is connected to a controller 8 that controls driving of the circulation pump 7 via a signal line 8a.
 なお、図1では、熱媒体-水熱交換器100bでは、熱媒体と水との関係は向流であるが、並流でもよい。
 また、被加熱液出口配管5及び被加熱液入口配管9を給湯タンク(図示せず)に接続し、給湯タンクに貯留された、加熱された被加熱液である温水を再度熱媒体-水熱交換器100bに送り、被加熱液を再加熱するようにしてもよい。
In FIG. 1, in the heat medium-water heat exchanger 100b, the relationship between the heat medium and water is countercurrent, but it may be parallel flow.
Further, the heated liquid outlet pipe 5 and the heated liquid inlet pipe 9 are connected to a hot water supply tank (not shown), and the hot water, which is the heated heated liquid stored in the hot water tank, is reheated to the heating medium-water heat. You may make it send to the exchanger 100b and reheat a to-be-heated liquid.
 次に、上記構成の熱交換器装置100の動作について説明する。
 まず、空気-熱媒体熱交換器91で外気の熱を吸収した熱媒体は、ここでいったん蒸発し、圧縮機92で圧縮されて高温高圧の気体となり熱媒体入口配管99を介して熱媒体-水熱交換器100bへ送られる。
 一方、被加熱液入口配管9を介して熱媒体-水熱交換器100bへ送り込まれた水は、熱媒体-水熱交換器100b内に設けられた被加熱液流路100aを通過しながら熱媒体からの熱を受けて加熱され、被加熱液出口配管5から流出する。
 熱媒体-水熱交換器100bで熱を奪われた熱媒体は、熱媒体出口配管55を介して膨張弁93へ送られ、ここで減圧されて再び液体となる。液体となった熱媒体は、空気-熱媒体熱交換器91に戻され、外気の熱を吸収して上記の冷熱サイクルを繰り返すことになる。
Next, operation | movement of the heat exchanger apparatus 100 of the said structure is demonstrated.
First, the heat medium that has absorbed the heat of the outside air by the air-heat medium heat exchanger 91 is once evaporated and compressed by the compressor 92 to become a high-temperature and high-pressure gas through the heat medium inlet pipe 99. It is sent to the water heat exchanger 100b.
On the other hand, the water sent to the heating medium-water heat exchanger 100b through the heated liquid inlet pipe 9 is heated while passing through the heated liquid channel 100a provided in the heating medium-water heat exchanger 100b. It is heated by receiving heat from the medium and flows out from the heated liquid outlet pipe 5.
The heat medium deprived of heat in the heat medium-water heat exchanger 100b is sent to the expansion valve 93 through the heat medium outlet pipe 55, where it is decompressed and becomes liquid again. The liquid heat medium is returned to the air-heat medium heat exchanger 91 to absorb the heat of the outside air and repeat the above cooling cycle.
 被加熱液出口配管5から流出した水の一部は、循環ポンプ7の駆動により、被加熱液循環配管6を通じて熱媒体-水熱交換器100b内の被加熱液流路100aへ戻される。このとき、コントローラ8は、信号線8aを通じて循環ポンプ7が一定間隔でオン・オフを繰り返すように制御する。
 これにより、被加熱液流路100aの出口付近、即ち被加熱液流路100aの上流からの温水と被加熱液循環配管6からの温水が合流した地点から、被加熱液出口配管5から分岐した被加熱液循環配管6の端部までの領域において、被加熱液である温水の流量を間欠的に増加し、この領域では脈動が生じる。
A part of the water flowing out from the heated liquid outlet pipe 5 is returned to the heated liquid flow path 100a in the heat medium-water heat exchanger 100b through the heated liquid circulation pipe 6 by driving the circulation pump 7. At this time, the controller 8 performs control so that the circulation pump 7 is repeatedly turned on and off at regular intervals through the signal line 8a.
As a result, the liquid is branched from the heated liquid outlet pipe 5 from the vicinity of the outlet of the heated liquid flow path 100a, that is, from the point where the warm water from the upstream of the heated liquid flow path 100a and the warm water from the heated liquid circulation pipe 6 merge. In the region up to the end of the heated liquid circulation pipe 6, the flow rate of the hot water that is the heated liquid is intermittently increased, and pulsation occurs in this region.
 上述したように、被加熱液である水は、被加熱液流路100aを通過しながら熱媒体からの熱を受けて加熱されていくので、被加熱液流路100aの出口付近が最も水温が上昇し、スケールが付着しやすい領域と言える。
 従って、この領域で脈動を生じさせることは、スケール付着の発生を効率よく防止することになる。
 このように、被加熱液循環配管6を被加熱液流路100aへ接続する位置を被加熱液流路100aの中央よりも出口側(下流側)にすることで、スケール付着の発生を効率よく防止することができる。
As described above, water that is the liquid to be heated is heated by receiving heat from the heat medium while passing through the liquid channel 100a to be heated, so that the water temperature is the highest near the outlet of the liquid channel 100a to be heated. It can be said that the scale rises and the scale is easily attached.
Therefore, generating pulsation in this region effectively prevents the occurrence of scale adhesion.
In this way, the position where the heated liquid circulation pipe 6 is connected to the heated liquid flow path 100a is located on the outlet side (downstream side) from the center of the heated liquid flow path 100a, thereby efficiently generating scale adhesion. Can be prevented.
 このとき、被加熱液である水が脈動する領域は被加熱液流路100aの出口付近のみであるので、水をさらに上流、例えば被加熱液入口配管9へ戻す場合に比べて、圧力損失が小さい。即ち、速度変化を鈍らせることなく確実に水を脈動させ、スケール付着をより確実に防止することができる。
 また、循環ポンプ7の容量もしくは動力が少なくて済む。
 また、水は被加熱液流路100aの一部で循環することになるが、被加熱液入口配管9を通じて被加熱液流路100aへ流入する水の流量と、被加熱液出口配管5を通じて被加熱液流路100aから流出する加熱された温水の流量を常に一定に維持することができる。即ち、スケール付着を防止しながら給湯量と給湯温度を一定に維持することができる。
At this time, the region where the water to be heated pulsates is only in the vicinity of the outlet of the heated liquid channel 100a, so that the pressure loss is higher than when returning water further upstream, for example, to the heated liquid inlet pipe 9. small. That is, it is possible to reliably pulsate the water without slowing the speed change, and to more reliably prevent scale adhesion.
Further, the capacity or power of the circulation pump 7 can be small.
Further, water circulates in a part of the heated liquid channel 100 a, but the flow rate of water flowing into the heated liquid channel 100 a through the heated liquid inlet pipe 9 and the heated liquid outlet pipe 5 The flow rate of the heated hot water flowing out from the heating liquid channel 100a can be always kept constant. That is, the hot water supply amount and the hot water supply temperature can be kept constant while preventing scale adhesion.
 次に、この発明の実施の形態1における熱交換器装置100における、被加熱液流路100aのスケール付着防止効果の具体例を説明する。
 図2は、本願発明者が熱媒体-水熱交換器100bを模擬した長さ25cm、外径8mm、内径6mmの銅直管に水温80℃の高硬度水(硬度270mg-CaCO3/l)を200時間流通させたときの銅直管内面に付着したスケール量を分析した実験結果である。付着したスケールは1モル/lの希塩酸で抽出した後、高速液体クロマトグラフィ分析装置を使ってカルシウムイオン量を測定した。
Next, a specific example of the scale adhesion preventing effect of the heated liquid channel 100a in the heat exchanger apparatus 100 according to Embodiment 1 of the present invention will be described.
FIG. 2 shows a high hardness water (hardness 270 mg-CaCO 3 / l) on a copper straight pipe having a length of 25 cm, an outer diameter of 8 mm, and an inner diameter of 6 mm simulated by the inventor of the heat medium-water heat exchanger 100b. It is the experimental result which analyzed the amount of scales adhering to the copper straight pipe inner surface when it was distribute | circulated for 200 hours. The attached scale was extracted with 1 mol / l dilute hydrochloric acid, and then the amount of calcium ions was measured using a high performance liquid chromatography analyzer.
 図2では、高硬度水の流速をパラメータとして3例(0.5m/s、0.75m/s、1.0m/s)の定常流実験を行った結果と、脈動を与えた実験の結果とを合わせて示している。
 脈動の実験では、流速0.5m/sを10秒間継続した後、さらに0.25m/sの増分を10秒間与えることを繰り返した。即ち、流速0.5m/sと0.75m/s(=0.5+0.25m/s)を10秒ずつ交互に繰り返した。
 その結果、図2に示すように、流速0.5m/s、0.75m/s、1.0m/sの場合はスケール付着が認められたが、脈動を「0.5+0.25m/s」の場合は実験開始200時間後もスケール付着が認められなかった。
In FIG. 2, the results of three steady flow experiments (0.5 m / s, 0.75 m / s, and 1.0 m / s) using the flow rate of high hardness water as a parameter and the results of an experiment that gave pulsation Are shown together.
In the pulsation experiment, a flow rate of 0.5 m / s was continued for 10 seconds, and then an increment of 0.25 m / s was further applied for 10 seconds. That is, a flow rate of 0.5 m / s and 0.75 m / s (= 0.5 + 0.25 m / s) were alternately repeated every 10 seconds.
As a result, as shown in FIG. 2, scale adhesion was observed when the flow velocity was 0.5 m / s, 0.75 m / s, and 1.0 m / s, but the pulsation was “0.5 + 0.25 m / s”. In the case of, no scale adhesion was observed even 200 hours after the start of the experiment.
 流速が大きいと水と被加熱液流路100aの内隔壁との間に生じる摩擦力が高まり、スケール付着を抑制できることは明らかである。
 しかしながら、脈動を与えたケースの最大流速は、0.75m/sであり、流速0.75m/sもしくは1.0m/sで流し続けた場合の同等以下であったが、図2から分かるように、スケール付着抑制効果が両者のそれよりも著しく大きい。
 脈動により生じる被加熱液流路100a内の圧力変化が水の流れに複雑な乱れを生じさせ、これがスケール付着抑制効果に寄与したものと考えられる。
It is clear that when the flow rate is large, the frictional force generated between water and the inner partition wall of the liquid-to-be-heated channel 100a is increased, and scale adhesion can be suppressed.
However, the maximum flow velocity in the case where pulsation was applied was 0.75 m / s, which was equal to or less than the case where the flow was continued at a flow velocity of 0.75 m / s or 1.0 m / s. Furthermore, the scale adhesion inhibiting effect is remarkably greater than that of both.
It is considered that the pressure change in the heated liquid channel 100a caused by the pulsation caused a complicated disturbance in the flow of water, which contributed to the effect of suppressing the scale adhesion.
 なお、ここで示した流速は、高硬度水の体積流量(m3/s)を断面積(m2)で除した線流速(m/s)なので、銅管の管径もしくは熱交換器内の伝熱流路幅、高さなどには依存しない条件とみなしてよい。 The flow rate shown here is a linear flow rate (m / s) obtained by dividing the volume flow rate (m 3 / s) of high hardness water by the cross-sectional area (m 2 ). This may be regarded as a condition that does not depend on the heat transfer channel width, height, or the like.
 図3は本願発明者が脈動の周期を変化させて4例の実験を行った結果を示している。例えば、脈動周期1分とは、流速0.5m/sを1分間継続した後、さらに0.25m/sの増分を1分間与えることを交互に繰り返した例である。
 図3に示すように、周期が1分の場合及び30秒の場合はスケール付着が認められたが、10秒以下の場合は実験開始200時間後もスケール付着が認められなかった。従って、脈動の周期は30秒未満、望ましくは10秒以下に定めるのがよい。
FIG. 3 shows the results of experiments conducted by the inventor of the present application in four cases while changing the pulsation period. For example, the pulsation cycle of 1 minute is an example in which a flow rate of 0.5 m / s is continued for 1 minute, and then an increment of 0.25 m / s is further applied for 1 minute.
As shown in FIG. 3, scale adhesion was observed when the period was 1 minute and 30 seconds, but scale adhesion was not recognized even after 200 hours from the start of the experiment when the period was 10 seconds or less. Therefore, the period of pulsation should be set to less than 30 seconds, preferably 10 seconds or less.
 また、ここでは、基準となる流速を与える時間(A)と、さらに流速を増加させる時間(B)とが等しい場合についてそのスケール付着防止効果を説明したが、必ずしも両者を一致させる必要はない。
 それぞれを30秒未満、望ましくは10秒以下に定めれば、同等の効果を奏する。あるいは、Aのみを30秒未満、望ましくは10秒以下に定めても、ほぼ同等の効果を奏する。
In addition, here, the scale adhesion preventing effect has been described in the case where the time (A) for providing the reference flow velocity is equal to the time (B) for further increasing the flow velocity, but it is not always necessary to match the two.
If each is set to less than 30 seconds, preferably 10 seconds or less, the same effect can be obtained. Alternatively, even if only A is set to less than 30 seconds, desirably 10 seconds or less, substantially the same effect is obtained.
 図4は、流速0.5m/sを基準として、4段階に流速を変えた場合の実験結果を示している。それぞれの流速を維持する時間は10秒である。10%増し(+0.05m/s)、25%増し(+0.125m/s)の場合はスケール付着が認められたが、50%増し(+0.25m/s)、100%増し(+0.5m/s)の場合は実験開始200時間後もスケール付着が認められなかった。従って、流速の増分は、基準となる流速の25%を超えるように、望ましくは50%以上となるように定めるのがよい。 FIG. 4 shows the experimental results when the flow velocity is changed in four stages with a flow velocity of 0.5 m / s as a reference. The time for maintaining each flow rate is 10 seconds. In the case of 10% increase (+0.05 m / s) and 25% increase (+0.125 m / s), scale adhesion was observed, but 50% increase (+0.25 m / s) and 100% increase (+0.5 m) In the case of / s), no scale adhesion was observed even after 200 hours from the start of the experiment. Therefore, the increment of the flow rate should be determined so as to exceed 25% of the reference flow rate, desirably 50% or more.
 以上では、脈動の波形が矩形波である場合のスケール付着防止効果を説明したが、サインカーブを描くように波形を定めてもよい。このときの波形の振幅及び周期は、矩形波の場合に準じて定めればよい。例えば、次の式(1)に従って流速を変化させれば、同等の効果を得ることができる。 In the above, the scale adhesion preventing effect when the pulsation waveform is a rectangular wave has been described. However, the waveform may be determined so as to draw a sine curve. The amplitude and period of the waveform at this time may be determined according to the case of a rectangular wave. For example, if the flow rate is changed according to the following equation (1), the same effect can be obtained.
 V=0.5+0.25×sin(2πt/20)‥‥‥‥‥‥(1)
 ここで
 V:流速(m/s)
 t:時間(秒)である。
V = 0.5 + 0.25 × sin (2πt / 20) (1)
Where V: Flow velocity (m / s)
t: Time (seconds).
 さらには、サインカーブを描く波形の1周期分を1ストロークとして、これをある一定時間ごとに基準流速に与えるようにしても、顕著なスケール付着防止効果を得ることができる。この間隔は、矩形波の場合と同様に、10秒程度以下に定めるのが望ましい。 Furthermore, even if one cycle of the waveform that draws a sine curve is set as one stroke and this is given to the reference flow rate at certain intervals, a remarkable scale adhesion prevention effect can be obtained. This interval is desirably set to about 10 seconds or less, as in the case of the rectangular wave.
 本実験に供した水の硬度(270mg-CaCO3/l)は、日本の水道水の平均的な硬度(50~60mg-CaCO3/l)の約5倍であり、極めて高い値である。
 また、水温も80℃と、局所的な沸騰を回避できる限界の温度まで高めて実験しており、給湯に供する水としては最もスケールの発生しやすい条件下で行ったものと言える。
 従って、図2~4の実験結果から導き出されたスケール付着防止のための条件は、最もその効果の高い条件とみなせる。
The water hardness (270 mg-CaCO 3 / l) used in this experiment is about five times the average hardness (50-60 mg-CaCO 3 / l) of tap water in Japan, which is a very high value.
In addition, the water temperature is 80 ° C., and the experiment is conducted by raising the temperature to a limit temperature that can avoid local boiling, and it can be said that the water used for hot water supply was performed under conditions where scale is most likely to occur.
Therefore, the conditions for preventing scale adhesion derived from the experimental results of FIGS. 2 to 4 can be regarded as the most effective conditions.
 実施の形態1では、このような脈動を、被加熱液流路100aを流れる水に対して間欠的に循環流を与えることによって実現した。よって、水の循環ポンプ7としては、例えば水の間欠吐出が可能なレシプロポンプを用いるのがよい。 In the first embodiment, such pulsation is realized by intermittently applying a circulation flow to the water flowing through the heated liquid channel 100a. Therefore, as the water circulation pump 7, for example, a reciprocating pump capable of intermittent water discharge is preferably used.
 実施の形態2.
 一般家庭用の給湯システムでは、省エネの要求から熱交換率の向上が求められているが、同時に給湯器の小型化も求められている。熱交換器については、従来の伝熱管式と呼ばれる1cmほどの径の管を用いたものに替わり、積層式と呼ばれる数mmほどの間隔で薄板を積層した熱交換器が利用されるようになってきている。
 図5は、この実施の形態の熱交換器装置200を示す全体斜視図である。
 この熱交換器装置200の積層式の熱媒体-水熱交換器である伝熱板モジュール200aは、図8に示すエンドプレート3,4間に、図6に示す低温側伝熱板1と図7に示す高温側伝熱板2とが交互に積層して構成されている。なお、低温側伝熱板1、高温側伝熱板2の枚数は図5に示す枚数に限定されない。
 エンドプレート3に穿設された熱媒体入口孔31には、熱媒体入口配管99の先端部が接合されている。熱媒体出口孔32には、熱媒体出口配管55の先端部が接合されている。被加熱液入口孔33には、被加熱液入口配管9が接合されている。
Embodiment 2. FIG.
In general hot water supply systems for home use, an improvement in the heat exchange rate is required due to the demand for energy saving. As for the heat exchanger, instead of the conventional one using a tube having a diameter of about 1 cm called a heat transfer tube type, a heat exchanger called a laminated type in which thin plates are laminated at intervals of about several mm is used. It is coming.
FIG. 5 is an overall perspective view showing the heat exchanger apparatus 200 of this embodiment.
A heat transfer plate module 200a, which is a stacked heat medium-water heat exchanger of the heat exchanger apparatus 200, is arranged between the end plate 3 and 4 shown in FIG. 8 and the low temperature side heat transfer plate 1 shown in FIG. 7 and the high temperature side heat transfer plate 2 shown in FIG. The number of the low temperature side heat transfer plates 1 and the high temperature side heat transfer plates 2 is not limited to the number shown in FIG.
A front end portion of the heat medium inlet pipe 99 is joined to the heat medium inlet hole 31 formed in the end plate 3. The tip of the heat medium outlet pipe 55 is joined to the heat medium outlet hole 32. The heated liquid inlet pipe 9 is joined to the heated liquid inlet hole 33.
 被加熱液出口孔34には、被加熱液出口配管5の先端部が接合されている。被加熱液出口配管5からは、被加熱液循環配管6が分岐されている。この被加熱液循環配管6の先端部は、エンドプレート3に穿設された被加熱液循環孔35に接合されている。被加熱液循環配管6には、循環ポンプ7が取り付けられている。
 循環ポンプ7は、信号線8aを介して循環ポンプ7の駆動を制御するコントローラ8と接続されている。
The tip of the heated liquid outlet pipe 5 is joined to the heated liquid outlet hole 34. A heated liquid circulation pipe 6 is branched from the heated liquid outlet pipe 5. The tip of the heated liquid circulation pipe 6 is joined to the heated liquid circulation hole 35 formed in the end plate 3. A circulation pump 7 is attached to the heated liquid circulation pipe 6.
The circulation pump 7 is connected to a controller 8 that controls driving of the circulation pump 7 via a signal line 8a.
 図6は、中空で内部に被加熱液が流れる被加熱液流路である低温側伝熱室1bが形成された低温側伝熱板1を示す平面図であり、低温側伝熱板1の四隅には、熱媒体入口孔11、熱媒体出口孔12、被加熱液入口孔13、被被加熱液出口孔14、さらには被加熱液循環孔15が穿設されている。
 また、低温側伝熱板1、熱媒体入口孔11、熱媒体出口孔12の周囲にはそれぞれ隔壁1a、隔壁11a、隔壁12aが設けられている。熱媒体入口孔11及び隔壁11aにより、被加熱液流路である低温側伝熱室1bと区画された熱媒体入口流路11bが形成され、熱媒体出口孔12及び隔壁12aにより、低温側伝熱室1bと区画された熱媒体出口流路12bが形成されている。
FIG. 6 is a plan view showing the low temperature side heat transfer plate 1 in which the low temperature side heat transfer chamber 1b, which is a heated liquid flow path through which the heated liquid flows inside, is formed. At the four corners, a heat medium inlet hole 11, a heat medium outlet hole 12, a heated liquid inlet hole 13, a heated liquid outlet hole 14, and a heated liquid circulation hole 15 are formed.
Further, a partition wall 1a, a partition wall 11a, and a partition wall 12a are provided around the low temperature side heat transfer plate 1, the heat medium inlet hole 11, and the heat medium outlet hole 12, respectively. The heat medium inlet hole 11 and the partition wall 11a form a heat medium inlet channel 11b that is partitioned from the low temperature side heat transfer chamber 1b that is a liquid flow path to be heated. The heat medium outlet hole 12 and the partition wall 12a form a low temperature side heat transfer chamber. A heat medium outlet channel 12b partitioned from the heat chamber 1b is formed.
 図7は中空で内部に高温側伝熱室2bが形成された高温側伝熱板2を示す平面図であり、高温側伝熱板2の四隅には、熱媒体入口孔21、熱媒体出口孔22、被加熱液入口孔23、被被加熱液出口孔24、さらには被加熱液循環孔25が穿設されている。また、高温側伝熱板2、被加熱液入口孔23、被加熱液出口孔24、被加熱液循環孔25の周囲にはそれぞれ隔壁2a、隔壁23a、隔壁24a、隔壁25aが設けられている。被加熱液入口孔23及び隔壁23aにより、高温側伝熱室2bと区画された被加熱液入口流路23bが形成され、被加熱液出口24及び隔壁24aにより、高温側伝熱室2bと区画された被加熱液出口流路24bが形成されている。被加熱液循環孔25及び隔壁25aにより、高温側伝熱室2bと区画された被加熱液循環流路25bが形成されている。 FIG. 7 is a plan view showing a high temperature side heat transfer plate 2 that is hollow and has a high temperature side heat transfer chamber 2b formed therein. At the four corners of the high temperature side heat transfer plate 2, there are a heat medium inlet hole 21 and a heat medium outlet. A hole 22, a heated liquid inlet hole 23, a heated liquid outlet hole 24, and a heated liquid circulation hole 25 are formed. A partition wall 2a, a partition wall 23a, a partition wall 24a, and a partition wall 25a are provided around the high temperature side heat transfer plate 2, the heated liquid inlet hole 23, the heated liquid outlet hole 24, and the heated liquid circulation hole 25, respectively. . A heated liquid inlet passage 23b partitioned from the high temperature side heat transfer chamber 2b is formed by the heated liquid inlet hole 23 and the partition wall 23a, and separated from the high temperature side heat transfer chamber 2b by the heated liquid outlet 24 and the partition wall 24a. The heated liquid outlet channel 24b thus formed is formed. A heated liquid circulation passage 25b partitioned from the high temperature side heat transfer chamber 2b is formed by the heated liquid circulation hole 25 and the partition wall 25a.
 低温側伝熱板1の熱媒体入口流路11bは、隣接した高温側伝熱板2の熱媒体入口孔21に連通している。低温側伝熱板1の熱媒体出口流路12bは、隣接した高温側伝熱板2の熱媒体出口孔22に連通している。
 高温側伝熱板2の被加熱液入口流路23bは、隣接した低温側伝熱板1の被加熱液入口孔13に連通している。高温側伝熱板2の被加熱液出口流路24bは、隣接した低温側伝熱板1の被加熱液出口孔14に連通している。高温側伝熱板2の被加熱液循環流路25bは、隣接した低温側伝熱板1の被加熱液循環孔15に連通している。
The heat medium inlet channel 11 b of the low temperature side heat transfer plate 1 communicates with the heat medium inlet hole 21 of the adjacent high temperature side heat transfer plate 2. The heat medium outlet channel 12 b of the low temperature side heat transfer plate 1 communicates with the heat medium outlet hole 22 of the adjacent high temperature side heat transfer plate 2.
The heated liquid inlet channel 23 b of the high temperature side heat transfer plate 2 communicates with the heated liquid inlet hole 13 of the adjacent low temperature side heat transfer plate 1. The heated liquid outlet channel 24 b of the high temperature side heat transfer plate 2 communicates with the heated liquid outlet hole 14 of the adjacent low temperature side heat transfer plate 1. The heated liquid circulation passage 25 b of the high temperature side heat transfer plate 2 communicates with the heated liquid circulation hole 15 of the adjacent low temperature side heat transfer plate 1.
 なお、水が流通する中空の低温側伝熱板1の内壁面、及び熱媒体が流通する中空の高温側伝熱板2の内壁面は、それぞれ、水、熱媒体がまんべんなく流通させるための無数の凹凸が形成されている。
 また、低温側伝熱板1、高温側伝熱板2の縦横の長さ、熱媒体入口孔11,21の径、熱媒体出口孔12,22の径、被加熱液入口孔13,23の径、被被加熱液出口孔14,24の径、被加熱液循環孔15,25の径は、図1に示した例に何ら限定されない。
In addition, the inner wall surface of the hollow low-temperature side heat transfer plate 1 through which water flows and the inner wall surface of the hollow high-temperature side heat transfer plate 2 through which the heat medium circulate are innumerable for allowing water and heat medium to circulate evenly. Asperities are formed.
Further, the vertical and horizontal lengths of the low temperature side heat transfer plate 1 and the high temperature side heat transfer plate 2, the diameters of the heat medium inlet holes 11 and 21, the diameters of the heat medium outlet holes 12 and 22, and the heated liquid inlet holes 13 and 23 The diameter, the diameter of the heated liquid outlet holes 14 and 24, and the diameter of the heated liquid circulation holes 15 and 25 are not limited to the example shown in FIG.
 図8は、エンドプレート3を示す平面図であり、エンドプレート3の四隅には、熱媒体入口孔31、熱媒体出口孔32、被加熱液入口孔33、被加熱液出口孔34、さらには被加熱液循環孔35が穿設されている。 FIG. 8 is a plan view showing the end plate 3. At the four corners of the end plate 3, a heat medium inlet hole 31, a heat medium outlet hole 32, a heated liquid inlet hole 33, a heated liquid outlet hole 34, and further, A heated liquid circulation hole 35 is formed.
 低温側伝熱板1、高温側伝熱板2、エンドプレート3,4は積層化して1つの伝熱板モジュール200aを構成し、それぞれの縦横の長さ、熱媒体入口孔、熱媒体出口孔、被加熱液入口孔、被加熱液出口孔、被加熱液循環孔の位置・径は共通である。 The low temperature side heat transfer plate 1, the high temperature side heat transfer plate 2, and the end plates 3 and 4 are laminated to form one heat transfer plate module 200a. Each of the vertical and horizontal lengths, the heat medium inlet hole, and the heat medium outlet hole The position and diameter of the heated liquid inlet hole, heated liquid outlet hole, and heated liquid circulation hole are the same.
 次に、実施の形態2における熱交換器装置200の動作について、図5、図9及び図10を参照して説明する。
 被加熱液入口配管9内の被加熱液である水1000は、図9に示すように、エンドプレート3に穿設された被加熱液入口孔33を通じて伝熱板モジュール200aへ流入する。伝熱板モジュール200aへ流入した水1000は、まず、最も近傍の低温側伝熱室1bへ流入するが、一部は被加熱液入口孔13、被加熱液入口流路23bを通じて他の低温側伝熱室1bへも流入する。各低温側伝熱室1bを平行に通過した水1000は、被加熱液出口流路24b、被加熱液出口孔14を通じて合流し、被加熱液出口孔34を通じて被加熱液出口配管5へ流出する。
Next, operation | movement of the heat exchanger apparatus 200 in Embodiment 2 is demonstrated with reference to FIG.5, FIG.9 and FIG.10.
As shown in FIG. 9, the water 1000 that is the liquid to be heated in the liquid inlet pipe 9 to be heated flows into the heat transfer plate module 200 a through the liquid inlet hole 33 formed in the end plate 3. The water 1000 that has flowed into the heat transfer plate module 200a first flows into the closest low-temperature side heat transfer chamber 1b, but a part of the water 1000 passes through the heated liquid inlet hole 13 and the heated liquid inlet channel 23b to the other low temperature side. It also flows into the heat transfer chamber 1b. The water 1000 that has passed through the low temperature side heat transfer chambers 1b in parallel joins through the heated liquid outlet channel 24b and the heated liquid outlet hole 14 and flows out to the heated liquid outlet pipe 5 through the heated liquid outlet hole 34. .
 被加熱液出口配管5を流れる水1000の一部は、循環ポンプ7の駆動により、被加熱液循環配管6を通じて伝熱板モジュール200a内に再び流入する。この水1000は、まず、最も近傍の低温側伝熱室1bへ流入するが、一部は被加熱液循環孔15、被加熱液循環流路25bを通じて他の低温側伝熱室1b内に流入する。
 ここで、コントローラ8は、信号線8aを介して循環ポンプ7が一定間隔でオン・オフを繰り返すように制御する。
 これにより、低温側伝熱室1b内の被加熱液循環孔15から被加熱液出口孔14までの領域を通過する水1000の流量を間欠的に増加させ、水を脈動させることができる。
A part of the water 1000 flowing through the heated liquid outlet pipe 5 flows again into the heat transfer plate module 200 a through the heated liquid circulating pipe 6 by driving the circulation pump 7. The water 1000 first flows into the nearest low-temperature side heat transfer chamber 1b, but a part flows into the other low-temperature side heat transfer chamber 1b through the heated liquid circulation hole 15 and the heated liquid circulation passage 25b. To do.
Here, the controller 8 performs control so that the circulation pump 7 is repeatedly turned on and off at regular intervals via the signal line 8a.
Thereby, the flow volume of the water 1000 which passes through the area | region from the to-be-heated liquid circulation hole 15 in the low temperature side heat transfer chamber 1b to the to-be-heated liquid exit hole 14 can be increased intermittently, and water can be pulsated.
 一方、熱媒体入口配管99内の熱媒体2000は、図10に示すように、エンドプレート3に穿設された熱媒体入口孔31を通じて伝熱板モジュール200aへ流入する。伝熱板モジュール100aへ流入した熱媒体2000は、熱媒体入口流路11bを通過して最も近傍の高温側伝熱室2b内へ流入するが、一部は被加熱液入口孔21、熱媒体入口流路11bを通じて他の高温側伝熱室2b内へ流入する。
 各高温側伝熱室2bを互いに平行に通過した熱媒体2000は、熱媒体出口流路22b、熱媒体出口孔12を通じて合流し、熱媒体出口孔32を通じて熱媒体出口配管55へ流出する。
On the other hand, the heat medium 2000 in the heat medium inlet pipe 99 flows into the heat transfer plate module 200a through the heat medium inlet hole 31 formed in the end plate 3, as shown in FIG. The heat medium 2000 that has flowed into the heat transfer plate module 100a passes through the heat medium inlet channel 11b and flows into the closest high-temperature side heat transfer chamber 2b. It flows into the other high temperature side heat transfer chamber 2b through the inlet channel 11b.
The heat medium 2000 that has passed through the high temperature side heat transfer chambers 2b in parallel with each other joins through the heat medium outlet channel 22b and the heat medium outlet hole 12, and flows out to the heat medium outlet pipe 55 through the heat medium outlet hole 32.
 こうして、隣り合う低温側伝熱室1b、高温側伝熱室2bを、並流で対向して通過する水1000、熱媒体2000により、水1000と熱媒体2000との間で熱交換が行われ、水1000の温度は、熱媒体2000からの熱で上昇していく。
 例えば、水1000が硬度成分の高い水である場合、低温側伝熱室1b内で水温が最も上昇する被加熱液出口孔14近傍はスケールがもっとも付着しやすい場所であるが、この付近では、水が脈動し、スケール付着を防止することができる。
In this way, heat is exchanged between the water 1000 and the heat medium 2000 by the water 1000 and the heat medium 2000 that pass through the adjacent low-temperature side heat transfer chamber 1b and the high-temperature side heat transfer chamber 2b in parallel flow. The temperature of the water 1000 rises with the heat from the heat medium 2000.
For example, when the water 1000 is water having a high hardness component, the vicinity of the heated liquid outlet hole 14 where the water temperature rises most in the low temperature side heat transfer chamber 1b is a place where the scale is most easily attached. Water pulsates and scale adhesion can be prevented.
 このとき、水1000が脈動する領域は低温側伝熱室1b内の被加熱液出口孔14近傍のみであるので、被加熱液1000を従来例のように被加熱液入口配管9もしくはエンドプレート3に穿設された被加熱液入口孔33へ戻す場合に比べて、圧力損失が小さい。即ち、速度変化を鈍化させることなく確実に水1000を脈動させ、スケール付着を防止することができる。また、循環ポンプ7の容量もしくは動力が少なくて済む。 At this time, since the region where the water 1000 pulsates is only in the vicinity of the heated liquid outlet hole 14 in the low temperature side heat transfer chamber 1b, the heated liquid 1000 is used as the heated liquid inlet pipe 9 or the end plate 3 as in the conventional example. The pressure loss is small as compared with the case of returning to the heated liquid inlet hole 33 formed in. That is, it is possible to reliably pulsate the water 1000 without slowing the speed change and prevent scale adhesion. Further, the capacity or power of the circulation pump 7 can be small.
 また、水1000は低温側伝熱室1b内の一部を循環するが、低温側伝熱室1bへ流入する水1000の流量と、低温側伝熱室1bから流出する被加熱液1000の流量は常に一定に維持することができる。即ち、スケール付着を防止しながら給湯温度を一定に維持することができる。 Further, the water 1000 circulates in the low temperature side heat transfer chamber 1b, but the flow rate of the water 1000 flowing into the low temperature side heat transfer chamber 1b and the flow rate of the heated liquid 1000 flowing out of the low temperature side heat transfer chamber 1b. Can always be kept constant. That is, the hot water supply temperature can be kept constant while preventing scale adhesion.
 なお、被加熱液循環孔15は、低温側伝熱板1においてスケール付着の危険性が高い領域、即ち水が高温となる領域に穿設される。具体的には、被加熱液出口孔14を中心として低温伝熱板1の対角線長の1/2を半径とする扇形(四分の一円)領域のいずれかに穿設するのが望ましい。
 また、高温側伝熱板2に穿設された被加熱液循環孔25、エンドプレート3に穿設された被加熱液循環孔35の位置もこれと同様である。
The heated liquid circulation hole 15 is formed in the low temperature side heat transfer plate 1 in a region where the risk of scale adhesion is high, that is, a region where water becomes high temperature. Specifically, it is desirable to drill in any one of the fan-shaped (quarter circle) regions having a radius of ½ of the diagonal length of the low-temperature heat transfer plate 1 with the heated liquid outlet hole 14 as the center.
The positions of the heated liquid circulation hole 25 drilled in the high temperature side heat transfer plate 2 and the heated liquid circulation hole 35 drilled in the end plate 3 are also the same.
 実施の形態3.
 図11は、この発明の実施の形態における熱交換器装置201を示す断面図である。なお、図11に示す低温側伝熱板1x,1y,1z、高温側伝熱板2x,2y,2zをそれぞれ3枚ずつ積層する例を示したが、伝熱板の枚数についてはこれに限定されるものではない。
 図12は、図11のエンドプレート30の平面図である。エンドプレート30の四隅には、熱媒体入口孔301、熱媒体出口孔32、被加熱液入口孔303、被加熱液出口孔304が穿設されている。
 また、これらとは別に被加熱液分注配管を貫通させるための貫通孔3051、3052、3053が穿設されている。
Embodiment 3 FIG.
FIG. 11 is a cross-sectional view showing a heat exchanger apparatus 201 according to the embodiment of the present invention. In addition, although the example which laminates | stacks three each of the low temperature side heat exchanger plates 1x, 1y, and 1z and the high temperature side heat exchanger plates 2x, 2y, and 2z shown in FIG. 11 was shown, it is limited to this about the number of heat exchanger plates. Is not to be done.
12 is a plan view of the end plate 30 of FIG. At the four corners of the end plate 30, a heat medium inlet hole 301, a heat medium outlet hole 32, a heated liquid inlet hole 303, and a heated liquid outlet hole 304 are formed.
In addition to these, through holes 3051, 3052, 3053 for penetrating the heated liquid dispensing pipe are drilled.
 図13は、図11の低温側伝熱板1x,1y,1zの平面図をまとめて示したものである。中空の低温側伝熱板1x,1y,1zの四隅には、熱媒体入口孔11x,11y,11z、熱媒体出口孔12x,12y,12z、被加熱液入口孔13x,13y,13z、被被加熱液出口孔14x,14y,14zがそれぞれ穿設されている。 FIG. 13 collectively shows a plan view of the low temperature side heat transfer plates 1x, 1y, 1z of FIG. At the four corners of the hollow low temperature side heat transfer plates 1x, 1y, 1z, heat medium inlet holes 11x, 11y, 11z, heat medium outlet holes 12x, 12y, 12z, heated liquid inlet holes 13x, 13y, 13z, Heating liquid outlet holes 14x, 14y, and 14z are formed, respectively.
 さらに、低温側伝熱板1xには、被加熱液分注配管を貫通させるための貫通孔15x1、15x2が穿設されている。低温側伝熱板1yには、貫通孔15y1が穿設されている。低温側伝熱板1zには貫通孔は無い。
低温側伝熱板1x、熱媒体入口孔11x、熱媒体出口孔12xの周囲にはそれぞれ隔壁1ax、隔壁11ax、隔壁12axが設けられており、低温側伝熱板1xの内部には低温側伝熱室1bxが形成されている。さらに、熱媒体入口孔11x及び隔壁11axにより、熱媒体入口流路11bxが構成され、熱媒体出口孔12x及び隔壁12axにより熱媒体出口流路12bxが構成されている。
Further, the low temperature side heat transfer plate 1x is provided with through holes 15x1 and 15x2 for penetrating the heated liquid dispensing pipe. A through hole 15y1 is formed in the low temperature side heat transfer plate 1y. There is no through hole in the low temperature side heat transfer plate 1z.
A partition wall 1ax, a partition wall 11ax, and a partition wall 12ax are provided around the low temperature side heat transfer plate 1x, the heat medium inlet hole 11x, and the heat medium outlet hole 12x, respectively. A heat chamber 1bx is formed. Further, the heat medium inlet channel 11bx is constituted by the heat medium inlet hole 11x and the partition wall 11ax, and the heat medium outlet channel 12bx is constituted by the heat medium outlet hole 12x and the partition wall 12ax.
同様に、低温側伝熱板1y、熱媒体入口孔11y、熱媒体出口孔12yの周囲にはそれぞれ隔壁1ay、隔壁11ay、隔壁12ayが設けられており、低温側伝熱板1yの内部には低温側伝熱室1byが形成されている。さらに、熱媒体入口孔11y及び隔壁11ayにより熱媒体入口流路11byが構成され、熱媒体出口孔12y及び隔壁12ayにより熱媒体出口流路12byが構成されている。 Similarly, a partition wall 1ay, a partition wall 11ay, and a partition wall 12ay are provided around the low temperature side heat transfer plate 1y, the heat medium inlet hole 11y, and the heat medium outlet hole 12y, respectively. A low temperature side heat transfer chamber 1by is formed. Further, the heat medium inlet channel 11by and the partition wall 11ay constitute a heat medium inlet channel 11by, and the heat medium outlet hole 12y and the partition wall 12ay constitute a heat medium outlet channel 12by.
同様に、低温側伝熱板1z、熱媒体入口孔11z、熱媒体出口孔12zの周囲にはそれぞれ隔壁1az、隔壁11az、隔壁12azが設けられており、低温側伝熱板1zの内部には低温側伝熱室1bzが形成されている。さらに、熱媒体入口孔11z及び隔壁11azにより熱媒体入口流路11bzが構成され、熱媒体出口孔12z及び隔壁12azにより熱媒体出口流路12bzが構成されている。
 低温側伝熱室1bx,1by,1bzは、被加熱液が流通する被加熱液流路である。
Similarly, a partition wall 1az, a partition wall 11az, and a partition wall 12az are provided around the low temperature side heat transfer plate 1z, the heat medium inlet hole 11z, and the heat medium outlet hole 12z, respectively. A low temperature side heat transfer chamber 1bz is formed. Further, a heat medium inlet channel 11bz is configured by the heat medium inlet hole 11z and the partition wall 11az, and a heat medium outlet channel 12bz is configured by the heat medium outlet hole 12z and the partition wall 12az.
The low temperature side heat transfer chambers 1bx, 1by, 1bz are heated liquid passages through which the heated liquid flows.
 なお、中空の低温側伝熱板1x、1y、1zの内壁面には、被加熱液をまんべんなく流通させるための無数の凹凸が形成されている。
 また、低温側伝熱板1x、1y、1zの縦横の長さ、熱媒体入口孔11x、11y、11z、熱媒体出口孔12x、12y、12z、被加熱液入口孔13x、13y、13z、被被加熱液出口孔14x、14y、14z、被加熱液循環孔15x、15y、15zの径は、図1に示した例に何ら限定されるものではない。
Innumerable irregularities are formed on the inner wall surfaces of the hollow low temperature side heat transfer plates 1x, 1y, and 1z to distribute the liquid to be heated evenly.
Also, the vertical and horizontal lengths of the low temperature side heat transfer plates 1x, 1y, 1z, heat medium inlet holes 11x, 11y, 11z, heat medium outlet holes 12x, 12y, 12z, heated liquid inlet holes 13x, 13y, 13z, The diameters of the heated liquid outlet holes 14x, 14y and 14z and the heated liquid circulation holes 15x, 15y and 15z are not limited to the example shown in FIG.
図14は、図11の高温側伝熱板2x、2y、2zの平面図をまとめて示したものである。中空の高温側伝熱板2x、2y、2zの四隅には、熱媒体入口孔21x、21y、21z、熱媒体出口孔22x、22y、22z、被加熱液入口孔23x、23y、23z、被被加熱液出口孔24x、24y、24zが穿設されている。
 さらに、高温側伝熱板2xには、被加熱液分注配管を貫通させるための貫通孔25x1、25x2が穿設されている。低温側伝熱板2yには、貫通孔25y1が穿設されている。低温側伝熱板2zには貫通孔は無い。
高温側伝熱板2x、被加熱液入口孔23x、被加熱液出口孔24xの周囲にはそれぞれ隔壁2ax、隔壁23ax、隔壁24axが設けられており、高温側伝熱板2xの内部には、高温側伝熱室2bxが形成されている。さらに、被加熱液入口孔23xと隔壁23axは被加熱液入口流路23bxを、被加熱液出口24xと隔壁24axは被加熱液出口流路24bxを形成している。
高温側伝熱板2y、被加熱液入口孔23y、被加熱液出口孔24yの周囲にはそれぞれ隔壁2ay、隔壁23ay、隔壁24ayが設けられており、高温側伝熱板2yの内部には、高温側伝熱室2byが形成されている。さらに、被加熱液入口孔23y及び隔壁23ayにより被加熱液入口流路23byを構成し、被加熱液出口24y及び隔壁24ayにより被加熱液出口流路24byを構成している。
FIG. 14 collectively shows a plan view of the high temperature side heat transfer plates 2x, 2y, 2z in FIG. Heat medium inlet holes 21x, 21y, 21z, heat medium outlet holes 22x, 22y, 22z, heated liquid inlet holes 23x, 23y, 23z, and to-be-covered are provided at the four corners of the hollow high temperature side heat transfer plates 2x, 2y and 2z. Heated liquid outlet holes 24x, 24y, and 24z are formed.
Furthermore, the high temperature side heat transfer plate 2x is provided with through holes 25x1 and 25x2 for penetrating the heated liquid dispensing pipe. A through hole 25y1 is formed in the low temperature side heat transfer plate 2y. There is no through hole in the low temperature side heat transfer plate 2z.
A partition 2ax, a partition 23ax, and a partition 24ax are provided around the high temperature side heat transfer plate 2x, the heated liquid inlet hole 23x, and the heated liquid outlet hole 24x, respectively. A high temperature side heat transfer chamber 2bx is formed. Further, the heated liquid inlet hole 23x and the partition wall 23ax form a heated liquid inlet channel 23bx, and the heated liquid outlet 24x and the partition wall 24ax form a heated liquid outlet channel 24bx.
A partition wall 2ay, a partition wall 23ay, and a partition wall 24ay are provided around the high temperature side heat transfer plate 2y, the heated liquid inlet hole 23y, and the heated liquid outlet hole 24y, respectively. A high temperature side heat transfer chamber 2by is formed. Further, the heated liquid inlet passage 23by is constituted by the heated liquid inlet hole 23y and the partition wall 23ay, and the heated liquid outlet flow path 24by is constituted by the heated liquid outlet 24y and the partition wall 24ay.
高温側伝熱板2z、被加熱液入口孔23z、被加熱液出口孔24zの周囲にはそれぞれ隔壁2az、隔壁23az、隔壁24azが設けられており、高温側伝熱板2zの内部に高温側伝熱室2bzが形成されている。さらに、被加熱液入口孔23z及び隔壁23azにより被加熱液入口流路23bzを構成し、被加熱液出口24z及び隔壁24azにより被加熱液出口流路24bzを構成している。 A partition wall 2az, a partition wall 23az, and a partition wall 24az are provided around the high temperature side heat transfer plate 2z, the heated liquid inlet hole 23z, and the heated liquid outlet hole 24z, respectively, and the high temperature side heat transfer plate 2z has a high temperature side. A heat transfer chamber 2bz is formed. Further, the heated liquid inlet passage 23b and the partition wall 23az constitute a heated liquid inlet channel 23bz, and the heated liquid outlet port 24z and the partition wall 24az constitute a heated liquid outlet channel 24bz.
 なお、中空の高温側伝熱板2x、2y、2zの内壁面上には、被加熱液をまんべんなく流通させるための無数の凹凸が形成されている。
 また、高温側伝熱板2x、2y、2zの縦横の長さ、熱媒体入口孔21x、21y、21z、熱媒体出口孔22x、22y、22z、被加熱液入口孔23x、23y、23z、被被加熱液出口孔24x、24y、24zの径は、図1に示した例に何ら限定さらない。
Innumerable irregularities are formed on the inner wall surfaces of the hollow high-temperature side heat transfer plates 2x, 2y, and 2z to distribute the liquid to be heated evenly.
Further, the vertical and horizontal lengths of the high temperature side heat transfer plates 2x, 2y, 2z, heat medium inlet holes 21x, 21y, 21z, heat medium outlet holes 22x, 22y, 22z, heated liquid inlet holes 23x, 23y, 23z, The diameters of the heated liquid outlet holes 24x, 24y, and 24z are not limited to the example shown in FIG.
 この実施の形態の熱交換器装置201では、低温側伝熱板1x、1y、1zと高温側伝熱板2x、2y、2zとが交互に積層されており、両端にエンドプレート301及び401が接合されて伝熱板モジュール201аを構成しているので、それぞれの縦横の長さ、熱媒体入口孔、熱媒体出口孔、被加熱液入口孔、被加熱液出口孔の、貫通孔の位置・径は共通である。
 貫通孔について特に具体的に説明すると、貫通孔3051、15x1、15y1、25x1、25y1の位置・径、貫通穴3052、15x2、25x2の位置・径は共通である。
 また、これらの貫通孔は、低温側伝熱板1x、1y、1zにおいてスケール付着の危険性が高い領域、すなわち被加熱液が高温となる領域に穿設される。具体的には、被加熱液出口孔14xもしくは14yもしくは14zを中心として低温伝熱板の対角線長の1/2を半径とする扇形(四分の一円)領域のいずれかに穿設される。
In the heat exchanger apparatus 201 of this embodiment, the low temperature side heat transfer plates 1x, 1y, 1z and the high temperature side heat transfer plates 2x, 2y, 2z are alternately stacked, and end plates 301 and 401 are provided at both ends. Since the heat transfer plate module 201a is joined to each other, the vertical and horizontal lengths, the positions of the through holes of the heat medium inlet hole, the heat medium outlet hole, the heated liquid inlet hole, and the heated liquid outlet hole The diameter is common.
The through holes 3051, 15x1, 15y1, 25x1, and 25y1 have the same position / diameter and the through holes 3052, 15x2, and 25x2 have the same position / diameter.
Further, these through holes are formed in regions where the risk of scale adhesion is high in the low temperature side heat transfer plates 1x, 1y, and 1z, that is, regions where the liquid to be heated becomes high temperature. Specifically, it is drilled in any one of the fan-shaped (quarter circle) regions having a radius of ½ of the diagonal length of the low-temperature heat transfer plate with the heated liquid outlet hole 14x or 14y or 14z as the center. .
 この熱交換器装置201には、循環する水1000を各低温側伝熱室1bx,1by,1bzへ分注するための分注配管6x、6y、6zが備えられている。分注配管6xは、エンドプレート301に穿設された貫通孔3053を介して低温側伝熱室1bxに連通している。
 また、分注配管6yは、エンドプレート301に穿設された貫通孔3053、低温側伝熱板1xに穿設された貫通孔15x2、高温側伝熱板2xに穿設された貫通孔25x2を介して、低温側伝熱室1byと連通している。
 分注配管6zは、エンドプレート301に穿設された貫通孔3051、低温側伝熱板1xに穿設された貫通孔15x1、高温側伝熱板2xに穿設された貫通孔25x1、低温側伝熱板1yに穿設された貫通孔15y1、高温側伝熱板2yに穿設された貫通孔25y1を介して、低温側伝熱室1bzと連通している。
The heat exchanger apparatus 201 includes dispensing pipes 6x, 6y, and 6z for dispensing the circulating water 1000 to the low temperature side heat transfer chambers 1bx, 1by, and 1bz. The dispensing pipe 6x communicates with the low temperature side heat transfer chamber 1bx through a through hole 3053 formed in the end plate 301.
The dispensing pipe 6y includes a through hole 3053 formed in the end plate 301, a through hole 15x2 formed in the low temperature side heat transfer plate 1x, and a through hole 25x2 formed in the high temperature side heat transfer plate 2x. And communicates with the low temperature side heat transfer chamber 1by.
The dispensing pipe 6z includes a through hole 3051 formed in the end plate 301, a through hole 15x1 formed in the low temperature side heat transfer plate 1x, a through hole 25x1 formed in the high temperature side heat transfer plate 2x, and a low temperature side. The heat transfer plate 1y communicates with the low temperature side heat transfer chamber 1bz through a through hole 15y1 formed in the heat transfer plate 1y and a through hole 25y1 formed in the high temperature side heat transfer plate 2y.
 各分注配管6x、6y、6zには、制御弁70を介して被加熱液循環配管本体6Aと接続されている。制御弁70は信号線80aを介してコントローラ80と接続されている。
 各分注配管6x、6y、6z及び被加熱液循環配管本体6Aにより、被加熱液循環配管を構成している。
 他の構成は、実施の形態2と同様である。
Each dispensing pipe 6x, 6y, 6z is connected to a heated liquid circulation pipe main body 6A via a control valve 70. The control valve 70 is connected to the controller 80 via a signal line 80a.
Each of the dispensing pipes 6x, 6y, 6z and the heated liquid circulation pipe main body 6A constitutes the heated liquid circulation pipe.
Other configurations are the same as those in the second embodiment.
 コントローラ80は、水1000が時間差をつけて順次分注配管6x、6y、6zを流通するように信号線80aを介して制御弁70を制御する。
 例えば、図15に示すようなタイミングで弁を開閉し、水1000を分注配管6x、6y、6zに流通させる。
 その他の動作は、実施の形態2と同様である。
The controller 80 controls the control valve 70 via the signal line 80a so that the water 1000 sequentially flows through the dispensing pipes 6x, 6y, and 6z with a time difference.
For example, the valve is opened and closed at a timing as shown in FIG. 15, and the water 1000 is circulated through the pipes 6x, 6y, and 6z.
Other operations are the same as those in the second embodiment.
 これにより、被加熱液流路である、低温側伝熱室1bx、1by、1bz内で水温が最も上昇する被加熱液出口孔14x、14y、14z近傍の流速をそれぞれ脈動させ、スケール付着を確実に防止することができる。
 このとき、被加熱液1000を各低温側伝熱室1bx、1by、1bzへ時間差をつけて循環させているので、被加熱液出口配管5から送出される単位時間当たりの被加熱液循環量は少なくてよく、実施の形態1及び2に比べてポンプ容量や動力がさらに少なくて済むという効果を奏する。
This pulsates the flow velocity in the vicinity of the heated liquid outlet holes 14x, 14y, and 14z where the water temperature rises most in the low temperature side heat transfer chambers 1bx, 1by, and 1bz, which are the heated liquid flow paths, and ensures scale adhesion. Can be prevented.
At this time, since the liquid to be heated 1000 is circulated to each of the low temperature side heat transfer chambers 1bx, 1by and 1bz with a time difference, the amount of liquid to be heated per unit time sent from the liquid to be heated outlet pipe 5 is It is possible to reduce the pump capacity and power as compared with the first and second embodiments.
 なお、上記各実施の形態では、給湯装置に組み込まれた熱交換器装置について説明したが、勿論このものに限定されるものではなく、この発明の熱交換器装置は、例えば床暖房装置にも適用することができる。 In each of the above embodiments, the heat exchanger apparatus incorporated in the hot water supply apparatus has been described. However, the present invention is not limited to this, and the heat exchanger apparatus of the present invention can be applied to, for example, a floor heating apparatus. Can be applied.

Claims (8)

  1.  被加熱液が流通し、外部の熱媒体と熱交換する被加熱液流路を有する熱交換器と、
     この被加熱液流路の入口に接続された被加熱液入口配管と、
     前記被加熱液が排出される前記被加熱液流路の出口に接続された被加熱液出口配管と、
     この被加熱液出口配管から分岐されているとともに先端部が前記被加熱液流路の途中で接続された被加熱液循環配管と、
     この被加熱液循環配管に設けられ前記被加熱液を前記被加熱液流路と被加熱液循環配管との間で循環させる循環ポンプと
    を備えた熱交換器装置の運転方法であって、
     前記被加熱液が前記熱媒体と熱交換により加熱されて前記被加熱液流路から流出した後、前記被加熱液の一部は、前記被加熱液循環配管に流入し、この流入した前記被加熱液は、前記循環ポンプの間欠駆動運転により脈動が生じ、脈動が生じた前記被加熱液は、そのまま前記被加熱液流路に再び流入することを特徴とする熱交換器装置の運転方法。
    A heat exchanger in which a liquid to be heated circulates and has a liquid path to be heated to exchange heat with an external heat medium;
    A heated liquid inlet pipe connected to the inlet of the heated liquid flow path;
    A heated liquid outlet pipe connected to an outlet of the heated liquid flow path through which the heated liquid is discharged;
    A heated liquid circulation pipe branched from the heated liquid outlet pipe and having a tip connected in the middle of the heated liquid flow path;
    An operation method of a heat exchanger apparatus provided with a circulation pump provided in the heated liquid circulation pipe and circulating the heated liquid between the heated liquid flow path and the heated liquid circulation pipe,
    After the heated liquid is heated by heat exchange with the heat medium and flows out of the heated liquid flow path, a part of the heated liquid flows into the heated liquid circulation pipe, The operation method of the heat exchanger apparatus, wherein the heating liquid is pulsated by the intermittent drive operation of the circulation pump, and the heated liquid in which the pulsation occurs again flows into the heated liquid flow path as it is.
  2.  前記被加熱液循環配管は、前記先端部が前記被加熱液流路の出口側に接続されていることを特徴とする請求項1に記載の熱交換器装置の運転方法。 The operation method of the heat exchanger apparatus according to claim 1, wherein the heated liquid circulation pipe has the tip connected to an outlet side of the heated liquid flow path.
  3.  前記熱交換器は、内部に前記被加熱液が流通する、前記被加熱流路である伝熱管を有していることを特徴とする請求項1または2に記載の熱交換器装置の運転方法。 The operation method of the heat exchanger apparatus according to claim 1 or 2, wherein the heat exchanger includes a heat transfer tube which is the heated channel through which the heated liquid flows. .
  4.  前記コントローラは、前記伝熱管内を流れる前記被加熱液の流速を、0.5m/sと、この流速よりも大きな流速とを30秒未満の周期で繰り返すように、前記循環ポンプを運転させることを特徴とする請求項3に記載の熱交換器装置の運転方法。 The controller operates the circulation pump so that the flow rate of the liquid to be heated flowing in the heat transfer tube is repeated at a cycle of 0.5 m / s and a flow rate larger than this flow rate in a period of less than 30 seconds. The operation method of the heat exchanger apparatus according to claim 3.
  5.  前記コントローラは、前記伝熱管内を流れる前記被加熱液の流速を、0.5m/sと、この流速よりも少なくとも25%大きな流速とを繰り返すように、前記循環ポンプを駆動させることを特徴とする請求項3に記載の熱交換器装置の運転方法。 The controller drives the circulation pump to repeat the flow rate of the liquid to be heated flowing in the heat transfer tube at 0.5 m / s and a flow rate at least 25% larger than the flow rate. The operation method of the heat exchanger apparatus of Claim 3 to do.
  6.  前記熱交換器は、内部に前記熱媒体が流通する高温側伝熱室を有する前記高温側伝熱板と、内部に前記被加熱液が流通する、前記被加熱液流路である前記低温側伝熱室を有する前記高温側伝熱板とが交互に積層されていることを特徴とする請求項1または2に記載の熱交換器装置の運転方法。 The heat exchanger includes the high temperature side heat transfer plate having a high temperature side heat transfer chamber in which the heat medium flows, and the low temperature side which is the heated liquid flow path in which the heated liquid flows. The operation method of the heat exchanger apparatus according to claim 1 or 2, wherein the high temperature side heat transfer plates having heat transfer chambers are alternately stacked.
  7.  前記被加熱液循環配管は、各前記低温側伝熱室に個別に連通した複数の分注配管を有していることを特徴とする請求項6に記載の熱交換器装置の運転方法。 The operation method of the heat exchanger apparatus according to claim 6, wherein the heated liquid circulation pipe has a plurality of pipes individually connected to the low-temperature side heat transfer chambers.
  8.  被加熱液が流通し、外部の熱媒体と熱交換する被加熱液流路を有する熱交換器と、
     この被加熱液流路の入口に接続された被加熱液入口配管と、
     前記被加熱液が排出される前記被加熱液流路の出口に接続された被加熱液出口配管と、
     この被加熱液出口配管から分岐されているとともに先端部が前記被加熱液流路の途中で接続された被加熱液循環配管と、
     この被加熱液循環配管に設けられ前記被加熱液を前記被加熱液流路と被加熱液循環配管との間で循環させる循環ポンプと、
     この循環ポンプの運転動作を制御するコントローラとを備え、
     前記コントローラは、前記循環ポンプを間欠運転させることを特徴とする熱交換器装置。
    A heat exchanger in which a liquid to be heated circulates and has a liquid path to be heated to exchange heat with an external heat medium;
    A heated liquid inlet pipe connected to the inlet of the heated liquid flow path;
    A heated liquid outlet pipe connected to an outlet of the heated liquid flow path through which the heated liquid is discharged;
    A heated liquid circulation pipe branched from the heated liquid outlet pipe and having a tip connected in the middle of the heated liquid flow path;
    A circulation pump provided in the heated liquid circulation pipe for circulating the heated liquid between the heated liquid flow path and the heated liquid circulation pipe;
    A controller for controlling the operation of the circulation pump,
    The said controller makes the said circulation pump operate intermittently, The heat exchanger apparatus characterized by the above-mentioned.
PCT/JP2009/055637 2008-09-12 2009-03-23 Heat exchanger device operating method and heat exchanger device WO2010029786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010528674A JP5225383B2 (en) 2008-09-12 2009-03-23 Operation method of heat exchanger device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-234253 2008-09-12
JP2008234253 2008-09-12

Publications (1)

Publication Number Publication Date
WO2010029786A1 true WO2010029786A1 (en) 2010-03-18

Family

ID=42005049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055637 WO2010029786A1 (en) 2008-09-12 2009-03-23 Heat exchanger device operating method and heat exchanger device

Country Status (2)

Country Link
JP (1) JP5225383B2 (en)
WO (1) WO2010029786A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117776A (en) * 2010-12-02 2012-06-21 Mitsubishi Electric Corp Heat pump type water heater
JP2014222136A (en) * 2013-05-14 2014-11-27 三菱電機株式会社 Water heater
JPWO2012176325A1 (en) * 2011-06-24 2015-02-23 三菱電機株式会社 Water heater
US9021993B2 (en) 2011-04-01 2015-05-05 Mitsubishi Electric Corporation Water heater and flow rate control method
US20160166983A1 (en) * 2013-07-31 2016-06-16 IFP Energies Nouvelles Process for capturing a heavy metal contained in a moist gas, integrating a heat pump to heat the gas introduced into a capture mass
WO2016132540A1 (en) * 2015-02-20 2016-08-25 三菱電機株式会社 Heat exchanging device and heat pump water heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249981A (en) * 2012-05-30 2013-12-12 Denso Corp Heat transport device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140252A (en) * 1978-04-22 1979-10-31 Hisaka Works Ltd Operating time prolonging method of plate system heat exchanger
JPS6296704A (en) * 1985-10-23 1987-05-06 Toshiba Corp Hot water turbine plant
JP2000314557A (en) * 1999-04-28 2000-11-14 Toto Ltd Water heater
JP2004144445A (en) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005077062A (en) * 2003-09-03 2005-03-24 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005308235A (en) * 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd Water heater
JP2006110494A (en) * 2004-10-15 2006-04-27 Denso Corp Method for removing silica, method for preventing adhesion of scale and apparatus for producing warm water
JP2007075775A (en) * 2005-09-16 2007-03-29 Nippon Corrosion Engineering Co Ltd Method for preventing deposition of scale in electrolytic cell and apparatus for producing electrolyzed water using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140252A (en) * 1978-04-22 1979-10-31 Hisaka Works Ltd Operating time prolonging method of plate system heat exchanger
JPS6296704A (en) * 1985-10-23 1987-05-06 Toshiba Corp Hot water turbine plant
JP2000314557A (en) * 1999-04-28 2000-11-14 Toto Ltd Water heater
JP2004144445A (en) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005077062A (en) * 2003-09-03 2005-03-24 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005308235A (en) * 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd Water heater
JP2006110494A (en) * 2004-10-15 2006-04-27 Denso Corp Method for removing silica, method for preventing adhesion of scale and apparatus for producing warm water
JP2007075775A (en) * 2005-09-16 2007-03-29 Nippon Corrosion Engineering Co Ltd Method for preventing deposition of scale in electrolytic cell and apparatus for producing electrolyzed water using it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117776A (en) * 2010-12-02 2012-06-21 Mitsubishi Electric Corp Heat pump type water heater
US9021993B2 (en) 2011-04-01 2015-05-05 Mitsubishi Electric Corporation Water heater and flow rate control method
JPWO2012176325A1 (en) * 2011-06-24 2015-02-23 三菱電機株式会社 Water heater
JP2014222136A (en) * 2013-05-14 2014-11-27 三菱電機株式会社 Water heater
US20160166983A1 (en) * 2013-07-31 2016-06-16 IFP Energies Nouvelles Process for capturing a heavy metal contained in a moist gas, integrating a heat pump to heat the gas introduced into a capture mass
US9889404B2 (en) * 2013-07-31 2018-02-13 IFP Energies Nouvelles Process for capturing a heavy metal contained in a moist gas, integrating a heat pump to heat the gas introduced into a capture mass
WO2016132540A1 (en) * 2015-02-20 2016-08-25 三菱電機株式会社 Heat exchanging device and heat pump water heater
JPWO2016132540A1 (en) * 2015-02-20 2017-08-17 三菱電機株式会社 Heat exchange device and heat pump type water heater

Also Published As

Publication number Publication date
JP5225383B2 (en) 2013-07-03
JPWO2010029786A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5225383B2 (en) Operation method of heat exchanger device
JP6190872B2 (en) Energy efficient air heating, air conditioning and water heating systems
CN1981166A (en) Heat conveyance system
JP2013249988A (en) Heat pump device
KR101304848B1 (en) Heating pipe cleaning equipment of the boiler
ATE530858T1 (en) DEVICE FOR MINIMIZING UNDESIRABLE FLUID TRANSFER FROM A FIRST SECTOR TO A SECOND SECTOR AND HEAT EXCHANGER SYSTEM HAVING SUCH A DEVICE
JP5811053B2 (en) Heat exchanger and operation method thereof
JP2010014380A (en) Thermal fluid supply system and thermal fluid supply method
JP2014024604A (en) Water dispenser
JP3593480B2 (en) Seawater cooling system
JP6896968B2 (en) Absorption heat exchange system
JP4892365B2 (en) Heat pump water heater
JP2014190612A (en) Heating apparatus and heat exchanger
JP5171280B2 (en) Heat exchanger and heat pump type water heater using the same
JP5387320B2 (en) Water heater
CN207797467U (en) Distributor and refrigerating circulatory device
KR101545084B1 (en) Hot water supply heating system, heat pump and condensor
JP5894958B2 (en) Water heat exchanger
KR101402690B1 (en) Hot water system
JP7059664B2 (en) Heat pump system
KR20190089997A (en) Absorption chiller
JP2014077592A (en) Hot water supply heating system, heat pump and condenser
JP2007333317A (en) Steam generating system
JP2005114196A (en) Heating medium supply system
CN110081597A (en) Heat from Low-temperature Flue Gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528674

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09812934

Country of ref document: EP

Kind code of ref document: A1