WO2010028954A2 - Leistungsregelung für einen windpark - Google Patents

Leistungsregelung für einen windpark Download PDF

Info

Publication number
WO2010028954A2
WO2010028954A2 PCT/EP2009/061041 EP2009061041W WO2010028954A2 WO 2010028954 A2 WO2010028954 A2 WO 2010028954A2 EP 2009061041 W EP2009061041 W EP 2009061041W WO 2010028954 A2 WO2010028954 A2 WO 2010028954A2
Authority
WO
WIPO (PCT)
Prior art keywords
power
plant
wind farm
wind
control unit
Prior art date
Application number
PCT/EP2009/061041
Other languages
English (en)
French (fr)
Other versions
WO2010028954A3 (de
Inventor
Mike Dommaschk
Jörg DORN
Ingo Euler
Franz Karlecik-Maier
Jörg LANG
Klaus WÜRFLINGER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP09782255.5A priority Critical patent/EP2324551B1/de
Priority to DK09782255.5T priority patent/DK2324551T3/da
Priority to CN200980135876.4A priority patent/CN102159830B/zh
Publication of WO2010028954A2 publication Critical patent/WO2010028954A2/de
Publication of WO2010028954A3 publication Critical patent/WO2010028954A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/96Mounting on supporting structures or systems as part of a wind turbine farm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the invention relates to a method for regulating the output of a wind farm power, wherein the wind farm has wind turbines, which are electrically interconnected by means of a wind farm network, in which a wind farm control unit transmits a wind farm default value to system control units, each for controlling a wind turbine are provided.
  • a wind farm which consists of a variety of wind turbines.
  • Each wind turbine comprises a wind turbine, the rotor of which is connected to rotor blades, so that when there is a wind, the rotor is set in rotation and an electric power is generated.
  • Each wind turbine also has a system control, via which the electrical power generated by the wind turbine is adjustable.
  • the wind turbines are connected to each other via an electrical network, so that a wind farm is created.
  • the wind farm is connected to an electrical alternating voltage network, into which the electrical active power of the wind turbines is fed.
  • a wind farm controller is provided, which is connected by means of data lines to each system controller. The wind farm controller uses these data lines to specify setpoints for the active power to be fed into the grid by the wind turbines.
  • the method of the prior art and in particular the method of the type mentioned has the disadvantage that the higher-level control of the wind farm must be linked to the subordinate regulations of wind turbines via a communication line, which ensures a fast data transfer.
  • the construction of such a fast communication network is costly and expensive.
  • the object of the invention is to provide a method of the type mentioned above, which is low in effort and cost.
  • the invention solves this problem in that all plant control units receive the same wind farm default value, each plant control unit based on the
  • a higher-level wind farm control provides a wind farm default value common to all plant control units.
  • This Windparkvorgabewert can therefore be transmitted in a simple manner, for example via a ripple control signal to the system control units.
  • a more complex, targeted, fast communication in which a setpoint must be transmitted for the control. falls within the scope of the invention. In this way, the costs of communication are significantly reduced.
  • the wind farm control unit is linked to a converter control unit and connected to the wind farm inverter is controlled so that this generates an AC voltage Ul, 2, 3 in the wind farm network whose actual frequency ⁇ is the wind farm default value, each plant control unit, the actual frequency / is recorded and from the actual frequency / is the
  • Wind farm default value determined.
  • the inverter used for this purpose advantageously has power semiconductor valves, which in one or more
  • each power semiconductor valve comprises, for example, a series circuit of power semiconductors, for example, disconnectable power semiconductors with freewheeling diodes each connected in opposite directions in parallel thereto.
  • each power semiconductor valve comprises a series circuit of bipolar submodules, each submodule having an energy store at which a voltage drops.
  • each submodule is assigned a circuit of power semiconductors with which - depending on the control of the power semiconductors - the voltage dropping across the energy store or a zero voltage can be applied to the output of the submodule.
  • Converters with such submodules Also called multilevel inverter whose structure and control are well known to those skilled in the art, so that need not be discussed in detail at this point. However, the converter topology is fundamentally arbitrary within the scope of the invention.
  • an inverter control unit which provides control signals for the power semiconductors of the converter as a function of predetermined setpoint values.
  • each system control unit detects the actual frequency of the AC voltage Ul, 2, 3 in the wind farm network. From the determined actual frequency of the wind farm default value is then determined. The regulation of the wind energy plant then takes place on the basis of the wind farm default value in the sense that the plant actual output P 1 delivered by the respective wind energy plant is smaller than the given plant maximum power P Max .
  • the manner of limiting the output power output is fundamentally arbitrary and dependent on the design of the respective wind turbine. For example, it is possible within the scope of the invention for the system control unit to change the angle of attack of the rotor blades, to control the generator of the wind turbine itself or one of the wind turbine converters assigned to the wind turbine correspondingly.
  • the converter transmits the electrical power ⁇ P 7 generated by the wind farm, that is to say the sum of all plant outputs P 1 , via a DC voltage connection a further inverter, which is connected to an AC voltage network, so that an HVDC connection is provided between the wind farm network and the AC voltage network.
  • the wind park network is connected to the AC voltage network via an HVDC connection.
  • the sea-side converter From the sea-side converter is a cost-DC connection provided to a land side inverter inverter.
  • the converter which is operated as an inverter, in turn generates a suitable alternating voltage, which is then fed, for example, via a transformer into an AC voltage network to be supplied.
  • the wind farm advance value is transmitted to each system control unit by means of a radio signal, a satellite signal or a cost-effective communication conductor.
  • a radio signal e.g., a radio signal
  • satellite signal e.g., a satellite signal
  • cost-effective communication conductor e.g., a radio signal, a satellite signal or a cost-effective communication conductor.
  • separate transmission takes place here via wireless or cable-guided communication.
  • the selected communication link is inexpensive in contrast to that of the prior art.
  • the cable-controlled communication is realized, for example, as a commercially available and therefore cost-effective LAN connection.
  • the wind farm default value is expediently a wind farm power gradient dP / dt, wherein each wind turbine control unit derives a tailored plant power gradient dp / dt from the wind farm power gradient dP / dt and the Calculation of their associated maximum system power P max on the basis of their system performance gradient dp / dt takes place.
  • the determination of the specific plant power gradient from the general wind farm power gradient takes place, for example, with the aid of a characteristic unit in which a parameterisable characteristic curve for the conversion of the wind farm power gradient to the plant power gradient is stored.
  • the nominal power assigned to the wind energy installation for example, the nominal power assigned to the wind energy installation, the wind direction determined for this wind direction, the wind speed and the location of the respective wind turbine are used.
  • the transmission of a power gradient also allows the operator to specify the speed with which, for example, a new operating point of the wind farm is to be approached. Despite this wealth of information, which is so important in practice, there are no new requirements for transmission, which can therefore remain simple and inexpensive.
  • the wind farm power gradient dP / dt is transmitted to the system control units with the aid of the actual frequency / of the wind farm network.
  • the determination of the wind farm power gradient dP / dt can then be derived in a simple and accurate manner from the temporal change of a difference frequency d 1 / dt, where
  • each system control unit alters the system actual power P 1 generated by it according to the system power gradient dp / dt while obtaining the maximum system power P ma ⁇ .
  • the actual system performance is but limited to a given nominal maximum power P ma ⁇ , n e nn.
  • each wind turbine is assigned a nominal maximum power P ma ⁇ , n e nn. This allows individual adaptation of the control to the different boundary conditions of the respective wind turbine.
  • the dynamics of a change in the actual system power P 1 is reduced by means of a smoothing unit.
  • a smoothing unit for example, a ramp unit which applies a ramp function to the successive incoming power values or a delay unit is considered.
  • the initially incoming measured value is approximated with an always constant slope to the subsequently incoming measured value.
  • the output signal of the smoothing unit is therefore not subject to rapid, strong fluctuations.
  • the speed with which the input-side changes are approached on the output side is proportional to the difference between the successive measured values. The greater the difference, the faster the output side of the smoothing unit will follow its changes on the input side.
  • the plant power gradient dp / dt is supplied to an integrator equipped with upper integrator boundary and lower integrator boundary, and the output of the integrator Pi + i, the actual system power P 1 and the nominal maximum power P ma ⁇ , n e nn are fed as input signals to a minimum selection unit which transmits its smallest input signal to an adder unit which supplies a predetermined offset power to the minimum input signal of the minimum selection unit the plant maximum power P max is added, wherein the plant maximum power Pm a x is used simultaneously as a new upper integrator limit. In this way, it is ensured that the plant performance changes as desired with the given plant performance.
  • FIG. 1 shows a schematic representation of a wind farm erected in the sea area
  • FIG. 2 shows an embodiment of the invention
  • Figure 3 shows a more detailed representation of a control part of Figure 2 show.
  • FIG. 1 shows an embodiment of the wind farm 1 according to the invention, which has a plurality of wind turbines 2.
  • Each wind turbine 2 has a figurative not shown generator, whose rotor is rotatably connected to rotor blades 3, which are rotated in the wind.
  • an electric power is provided by the generator, which is converted via a converter into DC voltage and then back into AC voltage.
  • the AC voltage thus obtained is then fed via a transformer 4 in a wind farm network 5, which is connected via transformers 6 and 7 with an inverter 8 operated as a rectifier.
  • the wind farm 2, the wind farm network 5 and the inverter 8 are set up because of the prevailing high wind in a marine area.
  • a direct voltage connection 10 is used, which extends between the converter 8 and a further converter 11, the converter 11 being operated as an inverter.
  • the inverters 8 and 11 are so-called multilevel inverters and each have a bridge circuit comprising power semiconductor valves, which in turn are composed of a series connection of bipolar submodules.
  • Each submodule has an energy store, for example a capacitor, and a circuit of power semiconductors, by means of which the voltage dropping across the energy store, the voltage inverted thereto, or else a voltage at the output of each submodule can be applied.
  • the step height corresponds to the voltage regulation of the voltage dropping at one of the energy stores.
  • the inverter consists of a series circuit of turn-off power semiconductors, each of which a freewheeling diode is connected in anti-parallel. In this way, a two, three or philnstufiger converter is formed.
  • the DC voltage connection 10 is formed for example as a so-called bipolar DC voltage connection and has a positive and a negative wiring harness, which are commonly referred to as poles. Depending on the inverter topology used, the poles of the DC voltage connection can be connected to one another via capacitors. However, the various converter topologies are known as such, so that need not be discussed in more detail here at this point.
  • each wind turbine 2 is assigned a system control unit 12.
  • each system control unit 12 is connected to a current sensor arranged in the wind farm network 5 for determining the alternating current il, 2, 3 and to a voltage sensor for determining the rotational voltage Ul, 2, 3.
  • the measuring sensors for detecting the alternating current il, 2, 3 and the alternating voltage to the respective transformer from the perspective of the wind turbine immediately downstream. From the current values il, 2, 3 and the voltage values U1, 2, 3, each system control unit 12 determines, in a known manner, the system actual power P 1 generated by its associated wind turbine 12 and fed into the wind farm network. From the measured changes voltage values Ul, 2, 3 can also determine the generated in the wind farm network 5 by the inverter 8 actual frequency.
  • a wind farm control unit 13 which is connected to an inverter control unit 14, wherein the converter control unit 14 is responsible for the control of the inverter 8.
  • the Umrichterregelungsaku 14 determines the actual frequency / is the wind farm network 5. For example, if the output from the wind farm 1 in total power ⁇ P be reduced 7, the wind farm control unit 13 Umrichterregelungsaku controls 14 on so that these in the wind farm network 5, the alternating voltage Ul, 2 3 an actual frequency / is generated, from which each system control unit 12 determines a desired wind farm default value common to all wind energy installations 2.
  • the wind farm default value is a wind farm yield gradient in the exemplary embodiment shown.
  • each plant control unit 12 From the Windpark elaboratesgradienten each plant control unit 12 based on determined or predetermined plant parameters such as location, wind energy, wind direction and the like, one of the respective wind turbine 2 associated plant performance gradients dp / dt.
  • the plant power gradients determined in this way are therefore generally different from wind turbines to wind turbines.
  • the plant performance gradient is finally based on the regulation of the respective wind energy plant. Additional communication between wind farm control unit 13 and system control unit 12 is superfluous here.
  • the wind farm control unit 13 receives the wind farm default value, for example, from a control center, not shown figuratively.
  • Figure 2 illustrates an embodiment of the method according to the invention in more detail, wherein the running in each system control unit 12 control steps are illustrated. It can be seen that the detected actual frequency is ⁇ the wind farm network 5 to an adder 15 of the system control unit 12 is supplied, the nominal difference frequency d / by forming the difference between a fixed nominal frequency ⁇ and the actual frequency / is determined. From the time variation of the difference frequency d ⁇ / dt, a decoding unit 16 derives the wind farm power gradient dP / dt.
  • this wind power gradient dP / dt is additionally transmitted by a radio signal from the wind farm control unit 13 to each system control unit 12, wherein a selection unit 17 is provided which switches to the respective other transmission path in the event of a failure of one transmission path.
  • the wind farm power gradient dP / dt is finally fed to a plant characteristic unit 18, which calculates a plant power gradient dp / dt from the wind farm power gradient dP / dt.
  • specific system parameters such as a rated power P Nenn assigned to the wind energy plant 2, a wind direction and wind speed measured at the wind energy plant 2 and further location parameters of the wind energy plant, are included in the calculation.
  • the wind farm power gradient is normalized, so that the units [pu] / sec can be assigned to it.
  • the plant performance gradient dp / dt is non-normalized and has the units MW / sec.
  • the plant maximum power P Ma ⁇ is determined from the plant power gradient dp / dt and the plant actual power generated by the respective wind energy plant 2.
  • FIG. 3 clarifies the calculation unit 19 in more detail. It can be seen that the plant power gradient dp / dt is supplied to an integrator 20.
  • the integrator 20 has an upper integrator limit P Ma ⁇ and a lower integrator limit I, wherein the lower integrator limit I corresponds, for example, the own power requirement of the respective wind turbine.
  • the output of the integrator Pi + i is supplied together with the measured system power P 1 and one of the respective wind turbine permanently assigned Nennmaximalwirk ancient PMa ⁇ , Nenn a contaushuisko 21, which forwards the smallest value to its output from said input variables.
  • the plant performance P 1 is subject to high fluctuations due to the rapid wind changes.
  • the system actual power is time smoothed before being fed to the minimum selection unit 21. This is done in Figure 3 by a ramp unit 22 which applies a ramp function to the incoming plant performance values. In this way, only sustainable or, in other words, changes with a longer duration are forwarded.
  • a ramp unit 22 is known to the person skilled in the art, so that it need not be discussed in more detail here.
  • the output of the minimum selection unit 40 is supplied to an adder 23, which adds to the minimum input signal of the minimum selection unit 21 a fixed offset value for each wind energy plant while obtaining the plant maximum power P Max .
  • the system maximum power P Max is then used as the basis for the further control of the wind energy plant in the sense that, as indicated in FIG. 2, the actual system power P 1 is kept smaller than the system maximum power P Max .
  • the investment maxi- malwirk ancient P Ma ⁇ also used as the upper integrator limit for the integrator 20.
  • the regulation of the wind energy installations 2 is operated such that the maximum power, P Ma ⁇ , N e nn + offset power, is provided. If the power of the wind farm 1 can be shut down, the wind farm control unit 13 acts as an on Umrichterregelungs Maschinen 14 that the frequency is Istfre- ⁇ i m wind farm network 5 is reduced compared to the nominal frequency ⁇ call.
  • the decoding unit 16 generates a corresponding wind farm power gradient dP / dt, from which then a negative plant power gradient dp / dt is provided by means of the plant characteristic unit 18.
  • the output of the integrator 20 P ⁇ + i thus becomes smaller than Pi, g i a tt and as

Abstract

Um ein Verfahren zum Regeln der von einem Windpark (1) abgegebenen Leistung, wobei der Windpark (1) über Windenergieanlagen (2) verfügt, die mittels eines Windparknetzes (5) elektrisch miteinander verbunden sind, bei dem - eine Windparkregelungseinheit (13) einen Windparkvorgabewert an Anlagenregelungseinheiten (12) überträgt, die jeweils zum Regeln einer Windenergieanlage (12) vorgesehen sind, und - die Anlagenregelungseinheiten (12) die jeweils zugeordnete Windenergieanlage (2) so regeln, dass eine von der jeweiligen Windenergieanlage (2) in das Windparknetz (5) eingespeiste Anlagenistleistung PI kleiner ist als eine aus dem Windparkvorgabewert abgeleitete Anlagenmaximalleistung Pmax, bereitzustellen, das sicher und kostengünstig ist, wird vorgeschlagen, dass alle Anlagenregelungseinheiten (12) den gleichen Windparkvorgabewert erhalten, wobei jede Anlagenregelungseinheit (12) auf der Grundlagen des Windparkvorgabewertes und auf der Grundlage einer gemessenen Anlagenistleistung PI, die der von der zugeordneten Windenergieanlage (2) erzeugten Leistung entspricht, eine Anlagenmaximalleistung Pmax, ermittelt und die jeweils zugeordnete Windenergieanlage (2) so regelt, dass die Anlagenistleistung PI kleiner ist als die Anlagenmaximalleistung Pmax.

Description

Beschreibung
Leistungsregelung für einen Windpark
Die Erfindung betriff ein Verfahren zum Regeln der von einem Windpark abgegebenen Leistung, wobei der Windpark über Windenergieanlagen verfügt, die mittels eines Windparknetzes elektrisch miteinander verbunden sind, bei dem eine Windpark- regelungseinheit einen Windparkvorgabewert an Anlagenrege- lungseinheiten überträgt, die jeweils zum Regeln einer Windenergieanlage vorgesehen sind.
Ein solches Verfahren ist aus der DE 10 2006 032 389 Al bereits bekannt. Dort ist ein Windpark beschrieben, der aus ei- ner Vielzahl von Windenergieanlagen besteht. Jede Windenergieanlage umfasst eine Windturbine, deren Läufer mit Rotorblättern verbunden ist, so dass bei einem Aufkommen von Wind der Läufer in Rotation versetzt und eine elektrische Leistung erzeugt wird. Jede Windenergieanlage verfügt ferner über eine Anlagensteuerung, über welche die von der Windanlage erzeugte elektrische Leistung einstellbar ist. Dabei sind die Windenergieanlagen über ein elektrisches Netz miteinander verbunden, so dass ein Windpark entsteht. Der Windpark ist an ein elektrisches Wechselspannungsnetz angeschlossen, in den die elektrische Wirkleistung der Windenergieanlagen eingespeist wird. Zur Regelung der eingespeisten Gesamtwirkleistung ist ein Windparkregler vorgesehen, der mittels Datenleitungen mit jeder Anlagensteuerung verbunden ist. Über diese Datenleitungen gibt der Windparkregler Sollwerte für die von den Wind- energieanlagen in das Netz einzuspeisende Wirkleistung vor.
Aus Windenergieanlagen bestehende Windparks und Verfahren zur Regelung eines solchen Windparks sind ferner in der DE 10 2004 048 341 Al, WO 01/52379 A2 , EP 1 337 754 Bl und in der WO 97/45908 beschrieben.
Den Verfahren gemäß dem Stand der Technik und insbesondere dem Verfahren der eingangs genannten Art haftet der Nachteil an, dass die übergeordnete Regelung des Windparks mit den untergeordneten Regelungen der Windenergieanlagen über eine Kommunikationsleitung verknüpft werden muss, die eine schnelle Datenübertragung gewährleistet. Insbesondere bei einer größeren Anzahl von Windenergieanlagen ist der Aufbau eines solchen schnellen Kommunikationsnetzes jedoch kostenintensiv und aufwändig.
Aufgabe der Erfindung ist es, ein Verfahren der eingangs ge- nannten Art bereitzustellen, das aufwandsarm und kostengünstig ist.
Die Erfindung löst diese Aufgabe dadurch, dass alle Anlagenregelungseinheiten den gleichen Windparkvorgabewert erhalten, wobei jede Anlagenregelungseinheit auf der Grundlagen des
Windparkvorgabewertes und auf der Grundlage einer gemessenen Anlagenistleistung P1, die der von der zugeordneten Windenergieanlage erzeugten Leistung entspricht, eine Anlagenmaximal- leistung Pmax ermittelt und die jeweils zugeordnete Windener- gieanlage so regelt, dass die Anlagenistleistung P1 kleiner ist als die Anlagenmaximalleistung Pmax .
Erfindungsgemäß stellt eine übergeordnete Windparkregelung einen allen Anlagenregelungseinheiten gemeinsamen Windpark- Vorgabewert bereit. Dieser Windparkvorgabewert kann daher auf einfache Art und Weise beispielweise über ein Rundsteuersignal an die Anlagenregelungseinheiten übermittelt werden. Eine aufwändigere zielgerichtete schnelle Kommunikation, bei der ein Sollwert für die Regelung übermittelt werden muss, ent- fällt im Rahmen der Erfindung. Auf diese Weise werden die Kosten für eine Kommunikation deutlich herabgesetzt.
Gemäß einer bevorzugten Ausgestaltung der Erfindung ist die Windparkregelungseinheit mit einer Umrichterregelungseinheit verknüpft und ein mit dem Windpark verbundener Umrichter wird so geregelt, dass dieser im Windparknetz eine Wechselspannung Ul, 2, 3 erzeugt, deren Istfrequenz χ ist dem Windparkvorgabewert entspricht, wobei jede Anlagenregelungseinheit die Istfrequenz / ist erfasst und aus der Istfrequenz / ist den
Windparkvorgabewert ermittelt. Hier erfolgt die Kommunikation zwischen der übergeordneten Windparkregelungseinheit und den Anlageregelungseinheiten über die Istfrequenz der Wechselspannung, mit der das die Windenergieanlagen verbindende Windparknetz beaufschlagt ist. Der Aufbau der Wechselspannung im Windparknetz erfolgt über einen Umrichter, da der Netzaufbau durch die Windenergieanlagen allein nicht möglich ist.
Der hierzu eingesetzte Umrichter weist vorteilhafterweise Leistungshalbleiterventile auf, die in einer oder mehreren
Brückenschaltungen miteinander verbunden sind. Dabei umfasst jedes Leistungshalbleiterventil beispielsweise eine Reihenschaltung aus Leistungshalbleitern, beispielsweise aus abschaltbaren Leistungshalbleitern mit jeweils gegensinnig pa- rallel dazu geschalteten Freilaufdioden . Abweichend hiervon umfasst jedes Leistungshalbleiterventil eine Reihenschaltung von bipolaren Submodulen, wobei jedes Submodul über einen Energiespeicher verfügt, an dem eine Spannung abfällt. Darüber hinaus ist jedem Submodul eine Schaltung von Leistungs- halbleitern zugeordnet, mit denen - je nach Ansteuerung der Leistungshalbleiter - die an dem Energiespeicher abfallende Spannung oder eine Nullspannung an den Ausgang des Submoduls gelegt werden kann. Umrichter mit solchen Submodulen werden auch Multilevel-Umrichter genannt, deren Aufbau und Steuerung dem Fachmann hinreichend bekannt sind, so dass an dieser Stelle nicht näher darauf eingegangen zu werden braucht. Die Umrichtertopologie ist im Rahmen der Erfindung jedoch grund- sätzlich beliebig.
Zur Steuerung des Umrichters ist eine Umrichterregelungseinheit vorgesehen, welche in Abhängigkeit vorgegebener Sollwerte Steuersignale für die Leistungshalbleiter des Umrichters bereitstellt. Über diese Umrichterregelungseinheit ist es somit möglich, die Istfrequenz der Wechselspannung Ul, 2, 3 im Windparknetz vorzugeben.
Zweckmäßigerweise erfasst jede Anlagenregelungseinheit die Istfrequenz der Wechselspannung Ul, 2, 3 im Windparknetz. Aus der ermittelten Istfrequenz wird anschließend der Windparkvorgabewert ermittelt. Die Regelung der Windenergieanlage erfolgt anschließend auf Grundlage der Windparkvorgabewertes in dem Sinne, dass die von der jeweiligen Windenergieanlage ab- gegebene Anlagenistleistung P1 kleiner als die gegebene AnIa- genmaximalleistung PMax ist. Die Art und Weise der Begrenzung der abgegebenen Anlagenistleistung ist Rahmen der Erfindung grundsätzlich beliebig und von der Bauart der jeweiligen Windenergieanlage abhängig. Beispielsweise ist es im Rahmen der Erfindung möglich, dass die Anlagenregelungseinheit den Anstellwinkel der Rotorblätter verändert, den Generator der Windenergieanlage selbst oder einen der Windenergieanlage zugeordneten Windenergieanlagenumrichter entsprechend ansteuert.
Vorteilhafterweise überträgt der Umrichter die vom Windpark erzeugte elektrische Leistung ΣP7, also die Summe aller Anlagenistleistungen P1, über eine Gleichspannungsverbindung an einen weiteren Umrichter, der mit einem Wechselspannungsnetz verbunden ist, so dass zwischen dem Windparknetz und dem Wechselspannungsnetz eine HGÜ-Verbindung bereitgestellt ist. Gemäß diesem zweckmäßigen Ausführungsbeispiel ist das Wind- parknetz über eine HGÜ-Verbindung mit dem Wechselspannungsnetz verbunden. So ist beispielsweise bei einem so genannten Off-Shore-Windpark, der eine Vielzahl von Windenergieanlagen im Meer aufweist, ein zentraler Umrichter vorgesehen, der beispielsweise ebenfalls meerseitig, auf einer Meeresplatt- form angeordnet ist, an dem das Windparknetz einen Knotenpunkt bildet. Von dem meerseitigen Umrichter ist eine kostengünstige Gleichspannungsverbindung bis zu einem landseitig angeordneten Wechselrichter Umrichter vorgesehen. Der als Wechselrichter betriebene Umrichter erzeugt wiederum eine ge- eignete Wechselspannung, die dann beispielsweise über einen Transformator in ein zu versorgendes Wechselspannungsnetz eingespeist wird.
Bei einer erfindungsgemäßen Variante wird der Windparkvorga- bewert mittels eines Funksignals, eines Satellitensignals oder eines kostengünstigen Kommunikationsleiters an jede Anlagenregelungseinheit übertragen. Anstelle der oder zusätzlich zur Frequenzkodierung des Windparkvorgabewertes tritt hier die separate Übertragung über kabellose oder kabelge- führte Kommunikation. Die gewählte Kommunikationsverbindung ist im Gegensatz zur derjenigen des Standes der Technik kostengünstig. Die kabelgeführte Kommunikation ist beispielsweise als handelsübliche und daher kostengünstige LAN-Verbindung realisiert .
Zweckmäßigerweise ist der Windparkvorgabewert ein Windpark- leistungsgradient dP/dt, wobei jede Anlagenregelungseinheit aus dem Windparkleistungsgradient dP/dt einen auf sie zugeschnittenen Anlagenleistungsgradienten dp/dt ableitet und die Berechnung der ihr zugeordneten Anlagenmaximalleistung Pmax auf der Grundlage ihres Anlagenleistungsgradienten dp/dt erfolgt. Die Ermittlung des spezifischen Anlagenleistungsgradienten aus dem allgemeinen Windparkleistungsgradient erfolgt beispielsweise mit Hilfe einer Kennlinieneinheit, in der eine parametrisierbare Kennlinie für die Umrechnung des Windpark- leistungsgradienten zum Anlagenleistungsgradienten gespeichert ist. Als Parameter oder Einflussgrößen zur Anpassung der Kennlinie an äußere Randbedingungen dienen beispielsweise die der Windenergieanlage jeweils zugeordnete Nennleistung, die für diese ermittelte Windrichtung, die Windgeschwindigkeit und der Standort der jeweiligen Windenergieanlage. Die Übertragung eines Leistungsgradienten ermöglicht dem Betreiber auch die Geschwindigkeit vorzugeben, mit der beispiels- weise ein neuer Betriebspunkt des Windparks angefahren werden soll. Trotz dieser in der Praxis wichtigen Informationsfülle werden keine neuen Anforderungen an die Übertragung gestellt, die daher einfach und kostengünstig bleiben kann.
Weitere Vorteile ergeben sich, wenn der Windparkleistungsgradient dP/dt mit Hilfe der Istfrequenz / ist des Windparknetzes auf die Anlagenregelungseinheiten übertragen wird. Die Ermittlung des Windparkleistungsgradienten dP/dt kann dann auf einfache und genaue Art und Weise aus der zeitlichen Änderung einer Differenzfrequenz d^/dt abgeleitet werden, wobei die
Differenzfrequenz άγ aus der gemessenen Istfrequenz γ ist und einer vorgegebenen festen Nennfrequenz γnenn gemäß άγ = γ nenn _ γ ±st berechnet wird.
Zweckmäßigerweise verändert jede Anlagenregelungseinheit die von ihr erzeugte Anlagenistleistung P1 dem Anlagenleistungsgradienten dp/dt entsprechend unter Gewinnung der Anlagenmaximalleistung Pmaχ. Hierbei wird die Anlagenistleistung je- doch auf eine vorgegebene Nennmaximalleistung Pmaχ,nenn begrenzt .
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung ist jeder Windenergieanlage eine Nennmaximalleistung Pmaχ,nenn zugeordnet. Dies ermöglicht eine individuelle Anpassung der Regelung an die unterschiedlichen Randbedingungen der jeweiligen Windenergieanlage.
Vorteilhafterweise wird die Dynamik einer Veränderung der Anlagenistleistung P1 mittels einer Glättungseinheit herabgesetzt. Gemäß dieser Variante werden schnelle und nur kurzfristige Schwankungen der Anlagenistleistung nicht auf die Regelung der Windenergieanlage übertragen. Hierzu werden Leistungsmesswerte der einzelnen Anlage werden hierbei quasi geglättet, so dass nur nachhaltige Änderungen der Anlagenleistung bei der Regelung berücksichtig werden. Als Glättungseinheit kommt beispielsweise eine Rampeneinheit, die eine Rampenfunktion auf die nacheinander eingehenden Anlage- nistleistungswerte anwendet, oder eine Verzögerungseinheit in Betracht. Bei der Rampeneinheit wird der zunächst eingehende Messwert mit einer immer konstanten Steigung an den darauffolgend eingehenden Messwert angenähert. Das Ausgangssignal der Glättungseinheit unterliegt daher keinen schnellen star- ken Schwankungen. Bei einer Verzögerungseinheit ist die Geschwindigkeit, mit der die eingangsseitigen Änderungen aus- gangsseitig angefahren werden proportional zum Unterschied der aufeinander folgenden Messwerte. Je größer der Unterschied, desto schneller folgt die Ausgangsseite der Glät- tungseinheit ihren eingangseitigen Änderungen.
Gemäß einer bevorzugten Ausgestaltung wird der Anlagenleistungsgradient dp/dt einem mit oberer Integratorgrenze und unterer Integratorgrenze ausgrüsteten Integrator zugeführt und der Ausgang des Integrators Pi+i, die Anlagenistleistung P1 und die Nennmaximalleistung Pmaχ,nenn werden einer Minimalauswahleinheit als Eingangssignale zugeführt, welche ihr kleinstes Eingangssignal an eine Addiereinheit überträgt, die zu dem kleinsten Eingangsignal der Minimalauswahleinheit eine vorgegebene Offsetleistung unter Gewinnung der Anlagenmaxi- malleistung Pmax addiert, wobei die Anlagenmaximalleistung Pmax gleichzeitig als neue obere Integratorgrenze verwendet wird. Auf diese Art und Weise ist sichergestellt, dass die Anlagenistleistung sich mit der vorgegebenen Anlagenistleistung wie gewünscht verändert.
Der hier verwendeten Leistungsbegriffe berücksichtigen vorteilhafterweise nur die Wirkleistung.
Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleiche Bezugszeichen auf gleich wirken- de Bauteile verweisen und wobei
Figur 1 eine schematische Darstellung eines im Meergebiet aufgestellten Windparks,
Figur 2 ein Ausführungsbeispiel des erfindungsgemäßen
Verfahrens in einer schematischen Darstellung und
Figur 3 eine genauere Darstellung eines Regelungsteils von Figur 2 zeigen.
Figur 1 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Windparks 1, der eine Vielzahl von Windenergieanlagen 2 aufweist. Jede Windenergieanlage 2 verfügt über einen figürlich nicht dargestellten Generator, dessen Läufer drehfest mit Rotorblättern 3 verbunden ist, die bei Windaufkommen in Drehung versetzt werden. Auf diese Weise wird von dem Generator eine elektrische Leistung bereitgestellt, die über einen Umrichter in Gleichspannung und anschließend wieder in Wechselspannung überführt wird. Die so gewonnene Wechselspannung wird anschließend über einen Transformator 4 in ein Windparknetz 5 eingespeist, das über Transformatoren 6 und 7 mit einem als Gleichrichter betriebenen Umrichter 8 verbunden ist. Der Windpark 2, das Windparknetz 5 und der Umrichter 8 sind wegen des dort herrschenden hohen Windaufkommens in einem Meeresgebiet aufgestellt. Zur Übertragung der von den Windenergieanlagen 2 gewonnenen elektrischen Leistung an ein landseitig angeordnetes Wechselspannungsnetz 9 dient eine Gleichspan- nungsverbindung 10, die sich zwischen dem Umrichter 8 und einem weiteren Umrichter 11 erstreckt, wobei der Umrichter 11 als Wechselrichter betrieben wird. Die über die Gleichspannungsverbindung 10 miteinander verbundenen Umrichter 8 und 11 bilden eine Hochspannungsgleichstromübertragungsanlage aus.
In dem in Figur 1 dargestellten Ausführungsbeispiel sind die Umrichter 8 und 11 so genannte Multilevel-Umrichter und verfügen jeweils über eine Brückenschaltung aus Leistungshalbleiterventilen, die wiederum aus einer Reihenschaltung aus bipolaren Submodulen zusammengesetzt sind. Jedes Submodul verfügt über einen Energiespeicher, beispielsweise einen Kondensator, und über eine Schaltung aus Leistungshalbleitern, mit deren Hilfe die an dem Energiespeicher abfallende Spannung, die hierzu invertierte Spannung oder aber eine NuIl- Spannung an den Ausgang jedes Submoduls gelegt werden kann.
Durch die Ansteuerung der Leistungshalbleiter aller Submodule eines Umrichterventils, ist es daher möglich, die an dem Umrichterventil jeweils abfallende Spannung stufenweise zu steuern. Dabei entspricht die Stufenhöhe der Spannungsregelung der an einem der Energiespeicher abfallenden Spannung.
Bei einem hiervon abweichenden Ausführungsbeispiel besteht der Umrichter hingegen aus einer Reihenschaltung von abschaltbaren Leistungshalbleitern, denen jeweils eine Freilaufdiode antiparallel geschaltet ist. Auf diese Weise ist ein zwei-, drei oder fünstufiger Umrichter ausgebildet.
Die Gleichspannungsverbindung 10 ist beispielsweise als so genannte bipolare Gleichspannungsverbindung ausgebildet und verfügt über einen positiven sowie über einen negativen Leitungsstrang, die üblicherweise als Pole bezeichnet werden. Die Pole der Gleichspannungsverbindung können je nach einge- setzter Umrichtertopologie über Kondensatoren miteinander verbunden sein. Die verschiedenen Umrichtertopologien sind jedoch als solche bekannt, so dass an dieser Stelle hierauf nicht genauer eingegangen zu werden braucht.
Zur Regelung der von jeder Windenergieanlage 2 erzeugten Anlagenistleistung ist jeder Windenergieanlage 2 eine Anlagenregelungseinheit 12 zugeordnet. Dabei ist jede Anlagenregelungseinheit 12 mit einem im Windparknetz 5 angeordneten Stromsensor zur Ermittlung des Wechselstromes il, 2, 3 und mit einem Spannungssensor zur Ermittlung der Drehspannung Ul, 2, 3 verbunden. Dazu sind die Messsensoren zum Erfassen des Wechselstromes il, 2, 3 und der Wechselspannung dem jeweiligen Transformator aus Sicht der Windenergieanlage unmittelbar nachgeschaltet. Aus den Stromwerten il, 2, 3 und den Span- nungswerten Ul, 2, 3 ermittelt jede Anlagenregelungseinheit 12 auf bekannte Art und Weise die von der ihr zugeordneten Windenergieanlage 12 erzeugte und ins Windparknetz eingespeiste Anlagenistleistung P1. Aus den gemessenen Wechsel- spannungswerten Ul, 2, 3 lässt sich ferner die im Windparknetz 5 durch den Umrichter 8 erzeugte Istfrequenz ermitteln.
Zur Regelung der vom gesamten Windpark in Summe abgebenden Leistung ΣP7 dient eine Windparkregelungseinheit 13, die mit einer Umrichterregelungseinheit 14 verbunden ist, wobei die Umrichterregelungseinheit 14 für die Regelung des Umrichters 8 zuständig ist. Mit anderen Worten bestimmt die Umrichterregelungseinheit 14 die Istfrequenz / ist des Windparknetzes 5. Soll beispielsweise die vom Windpark 1 in Summe abgegebene Leistung ΣP7 herabgesetzt werden, steuert die Windparkregelungseinheit 13 die Umrichterregelungseinheit 14 so an, dass diese im Windparknetz 5 die Wechselspannung Ul, 2, 3 eine Istfrequenz / ist erzeugt, aus der jede Anlagenregelungsein- heit 12 einen gewünschten allen Windenergieanlagen 2 gemeinsamen Windparkvorgabewert ermittelt. Der Windparkvorgabewert ist in dem gezeigten Ausführungsbeispiel ein Windparkleis- tungsgradient . Aus dem Windparkleistungsgradienten leitet jede Anlagenregelungseinheit 12 auf der Grundlage ermittelter oder vorgegebener Anlagenparameter wie Standort, Windenergie, Windrichtung und dergleichen, einen der jeweiligen Windenergieanlage 2 zugeordneten Anlagenleistungsgradienten dp/dt. Die auf diese Weise ermittelten Anlagenleistungsgradienten sind daher in der Regel von Windenergieanlage zu Windenergie- anläge unterschiedlich. Der Anlagenleistungsgradient wird schließlich der Regelung der jeweiligen Windenergieanlage zugrunde gelegt. Eine zusätzliche Kommunikation zwischen Windparkregelungseinheit 13 und Anlagenregelungseinheit 12 ist hier überflüssig.
Die Windparkregelungseinheit 13 erhält den Windparkvorgabewert beispielsweise von einer figürlich nicht dargestellten Leitstelle . Figur 2 verdeutlicht ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens genauer, wobei die in jeder Anlagenregelungseinheit 12 ablaufenden Regelungsschritte verdeutlicht sind. Es ist erkennbar, dass die erfasste Istfrequenz χ ist des Windparknetzes 5 einem Addierer 15 der Anlagenregelungseinheit 12 zugeführt wird, der die Differenzfrequenz d/ durch Bilden der Differenz zwischen einer fest vorgegebenen Nennfrequenz γnenn und der Istfrequenz / ist ermittelt . Aus der zeitlichen Veränderung der Differenzfrequenz d^/dt leitet eine Dekodiereinheit 16 den Windparkleistungsgradienten dP/dt her. In dem gezeigten Ausführungsbeispiel wird dieser Wind- parkleistungsgradient dP/dt zusätzlich noch durch ein Funksignal von der Windparkregelungseinheit 13 an jede Anlagenregelungseinheit 12 übertragen, wobei eine Auswahleinheit 17 vorgesehen ist, die bei Ausfall eines Übertragungsweges auf den jeweils anderen Übertragungsweg umschaltet. Der Windpark- leistungsgradient dP/dt wird schließlich einer Anlagenkennli- nieneinheit 18 zugeführt, welche aus dem Windparkleistungsgradienten dP/dt einen Anlagenleistungsgradienten dp/dt be- rechnet. Hierbei gehen für jede Windenergieanlage 2 spezifische Anlagenparameter, wie eine der Windenergieanlage 2 zugeordnete Nennleistung PNenn, eine an der Windenergieanlage 2 gemessene Windrichtung und Windgeschwindigkeit sowie weitere Standortparameter der Windenergieanlage in die Berechnung ein. Hierbei liegt der Windparkleistungsgradient normiert vor, so dass ihm die Einheiten [p.u.]/sec zugeordnet werden können. Der Anlagenleistungsgradient dp/dt liegt hingegen un- normiert vor und weist die Einheiten MW/sec auf. Mit Hilfe einer Berechnungseinheit 19 wird aus dem Anlagenleistungsgra- dienten dp/dt und der von der jeweiligen Windenergieanlage 2 erzeugte Anlagenistleistung die Anlagenmaximalleistung PMaχ ermittelt . Figur 3 verdeutlicht die Berechnungseinheit 19 genauer. Es ist erkennbar, dass der Anlagenleistungsgradient dp/dt einem Integrator 20 zugeführt wird. Der Integrator 20 weist eine obere Integratorgrenze PMaχ sowie eine untere Integratorgrenze I auf, wobei die untere Integratorgrenze I beispielsweise dem Eigenleistungsbedarf der jeweiligen Windenergieanlage entspricht. Der Ausgang des Integrators Pi+i wird gemeinsam mit der gemessenen Anlagenistleistung P1 und einer der jeweiligen Windenergieanlage fest zugeordneten Nennmaximalwirkleistung PMaχ,Nenn einer Minimalauswahleinheit 21 zugeführt, die aus den genannten Eingangsgrößen den kleinsten Wert an ihren Ausgang weiterleitet. Die Anlagenistleistung P1 ist aufgrund der schnellen Windänderungen hohen Schwankungen unterworfen. Um nachteilige Auswirkungen solcher schneller Schwankungen zu unterdrücken, wird die Anlagenistleistung, bevor sie der Minimalauswahleinheit 21 zugeführt wird, zeitlich geglättet. Dies erfolgt in Figur 3 durch eine Rampeneinheit 22, die eine Rampenfunktion auf die eingehenden Anlagenistleistungswerte anwendet. Auf diese Weise werden nur nachhaltige oder mit an- deren Worten Veränderungen mit einer längeren Dauer weitergeleitet. Eine solche Rampeneinheit 22 ist dem Fachmann jedoch bekannt, so dass an dieser Stelle hierauf nicht genauer eingegangen zu werden braucht.
Der Ausgang der Minimalauswahleinheit 40 wird einem Addierer 23 zugeführt, der zu dem minimalen Eingangssignal der Minimalauswahleinheit 21 eine für jede Windenergieanlage fest vorgegebenen Offsetleistung unter Gewinnung der Anlagenmaxi- malleistung PMax hinzuaddiert . Die Anlagenmaximalleistung PMax wird anschließend der weiteren Regelung der Windenergieanlage in dem Sinne zugrunde gelegt, dass wie in Figur 2 angedeutet, die Anlagenistleistung P1 kleiner gehalten wird als die Anlagenmaximalleistung PMax . Darüber hinaus wird die Anlagenmaxi- malwirkleistung PMaχ auch als obere Integratorgrenze für den Integrator 20 verwendet.
Bei einem hohen Energiebedarf im Wechselspannungsnetz 9, sie- he Figur 1, wird die Regelung der Windenergieanlagen 2 so betrieben, dass die maximale Leistung, PMaχ,Nenn + Offsetleistung, bereitgestellt wird. Soll die Leistung des Windparks 1 heruntergefahren werden, wirkt die Windparkregelungseinheit 13 so auf die Umrichterregelungseinheit 14 ein, dass die Istfre- quenz χist im Windparknetz 5 gegenüber der Nennfrequenz ^nenn herabgesetzt wird. Die Dekodiereinheit 16 erzeugt einen entsprechenden Windparkleistungsgradienten dP/dt, aus dem dann mittels der Anlagenkennlinieneinheit 18 ein negativer Anlagenleistungsgradient dp/dt bereitgestellt wird. Der Ausgang des Integrators 20 PΣ+i wird somit kleiner als Pi,giatt und als
PMaχ,Nenn und sorgt daher für eine Abnahme von PMax und somit für ein kleiner werdendes PΣ der jeweiligen Windenergieanlage 2.
Ist die gewünschte Anlagenleistung P1 erreicht, wird dp/dt gleich Null gesetzt, PΣ+i ist somit zeitlich konstant. Je nachdem welcher Wert PΣ oder PI+i kleiner ist, liegt am Ausgang der Minimalauswahleinheit 21 P1 oder PI+i an. PMaχ ist aufgrund der Offsetleistung jedoch größer, so dass die Regelung der Windenergieanlage so erfolgt, dass auch P1 größer wird oder werden kann. So lange der Anlagenleistungsgradient dp/dt jedoch Null ist, ändert sich PI+i nicht, so dass es zu keiner Zunahme kommt. PΣ+i bleibt der kleinste Eingangswert der Minimalauswahleinheit 21. Eine Steigerung der Anlagenistleistung Pi erfolgt erst mit positiven Anlagenleistungsgradienten dp/dt, der für einen Zuwachs von PI+i sorgt.

Claims

Patentansprüche
1. Verfahren zum Regeln der von einem Windpark (1) abgegebenen Leistung, wobei der Windpark (1) über Windenergieanlagen (2) verfügt, die mittels eines Windparknetzes (5) elektrisch miteinander verbunden sind, bei dem
- eine Windparkregelungseinheit (13) einen Windparkvorgabewert an Anlagenregelungseinheiten (12) überträgt, die jeweils zum Regeln einer Windenergieanlage (12) vorgesehen sind, d a d u r c h g e k e n n z e i c h n e t , dass
- alle Anlagenregelungseinheiten (12) den gleichen Windparkvorgabewert erhalten,
- wobei jede Anlagenregelungseinheit (12) auf der Grundlagen des Windparkvorgabewertes und auf der Grundlage einer gemes- senen Anlagenistleistung P1, die der von der zugeordneten
Windenergieanlage (2) erzeugten Leistung entspricht, eine An- lagenmaximalleistung Pmax ermittelt und
- die jeweils zugeordnete Windenergieanlage (2) so regelt, dass die Anlagenistleistung P1 kleiner ist als die Anlagenma- ximalleistung Pmax .
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass
- die Windparkregelungseinheit (13) mit einer Umrichterrege- lungseinheit (14) verknüpft ist und ein mit dem Windpark (1) verbundener Umrichter (8) so geregelt wird, dass dieser im Windparknetz (5) eine Wechselspannung Ul, 2, 3 erzeugt, deren Istfrequenz / ist dem Windparkvorgabewert entspricht, wobei jede Anlagenregelungseinheit (12) die Istfrequenz / ist er- fasst und aus der Istfrequenz / ist den Windparkvorgabewert ermittelt .
3. Verfahren nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass der Umrichter (8) die vom Windpark (1) abgegebene elektrische Leistung über eine Gleichspannungsverbindung (10) an einen weiteren Umrichter (11) überträgt, der mit einem Wechselspan- nungsnetz (9) verbunden ist, so dass zwischen dem Windparknetz (5) und dem Wechselspannungsnetz (9) eine HGÜ-Verbindung bereitgestellt ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Windparkvorgabewert ein Windparkleistungsgradient dP/dt ist, wobei jede Anlagenregelungseinheit (12) aus dem Windparkleistungsgradient dP/dt einen auf sie zugeschnittenen Anlagenleistungsgradienten dp/dt ableitet und die Berechnung der ihr zugeordneten Anlagenmaximalleistung Pmax auf der Grundlage ihres Anlagenleistungsgradienten dp/dt erfolgt.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , dass jede Anlagenregelungseinheit (12) die ihr zugeordnete Anlage¬ nistleistung Pi dem Anlagenleistungsgradienten dp/dt entsprechend unter Gewinnung der Anlagenmaximalleistung Pmax verändert, wobei die Anlagenistleistung auf eine vorgegebene Nenn¬ maximalwirkleistung Pmaχ,nenn begrenzt wird.
6. Verfahren nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass jeder Windenergieanlage (2) eine Nennmaximalleistung Pmaχ,nenn zugeordnet ist.
7. Verfahren nach Anspruch 5 oder 6, d a d u r c h g e k e n n z e i c h n e t , dass die Dynamik einer Veränderung der Anlagenistleistung P1 mittels einer Glättungseinheit (22) herabgesetzt wird.
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , dass die Glättungseinheit (22) eine Rampenfunktion oder eine Verzögerungsfunktion zur Anwendung bringt.
9. Verfahren nach einem der Ansprüche 5 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass
Anlagenleistungsgradienten dp/dt einem mit oberer Integratorgrenze und unterer Integratorgrenze ausgrüsteten Integrator (26) zugeführt, der Ausgang des Integrators (20), die Anlagenistleistung P1 und die Nennmaximalleistung Pmaχ,nenn einer Minimalauswahleinheit (21) als Eingangssignale zugeführt werden, welche ihr kleinstes Eingangssignal an eine Addiereinheit (23) überträgt, die zu dem kleinsten Eingangsignal der Minimalauswahleinheit eine vorgegebene Offsetleistung unter Gewinnung der Anlagenmaximalleistung Pmax addiert, wobei die Anlagenmaximalleistung Pmax gleichzeitig als neue obere Integratorgrenze verwendet wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Windparkvorgabewert mittels eines Funksignals, eines Satellitensignals oder eines Kommunikationsleiters an jede Anlagenregelungseinheit (12) übertragen wird.
PCT/EP2009/061041 2008-09-15 2009-08-27 Leistungsregelung für einen windpark WO2010028954A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09782255.5A EP2324551B1 (de) 2008-09-15 2009-08-27 Leistungsregelung für einen windpark
DK09782255.5T DK2324551T3 (da) 2008-09-15 2009-08-27 Effektregulering for en vindpark
CN200980135876.4A CN102159830B (zh) 2008-09-15 2009-08-27 风力发电场功率调节

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008047667A DE102008047667A1 (de) 2008-09-15 2008-09-15 Leistungsregelung für einen Windpark
DE102008047667.6 2008-09-15

Publications (2)

Publication Number Publication Date
WO2010028954A2 true WO2010028954A2 (de) 2010-03-18
WO2010028954A3 WO2010028954A3 (de) 2010-05-14

Family

ID=41682710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/061041 WO2010028954A2 (de) 2008-09-15 2009-08-27 Leistungsregelung für einen windpark

Country Status (5)

Country Link
EP (1) EP2324551B1 (de)
CN (1) CN102159830B (de)
DE (1) DE102008047667A1 (de)
DK (1) DK2324551T3 (de)
WO (1) WO2010028954A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102400849A (zh) * 2010-07-26 2012-04-04 通用电气公司 变频风力设备
CN103244354A (zh) * 2012-02-08 2013-08-14 北京能高自动化技术股份有限公司 风力发电机组功率曲线自适应优化方法
EP2824322A4 (de) * 2012-03-08 2015-11-04 Mitsubishi Heavy Ind Ltd Ausgabesteuerungsvorrichtung und ausgabesteuerungsverfahren für eine windkraftanlage
EP3754178A1 (de) 2019-06-17 2020-12-23 Nordex Energy GmbH Verfahren zum betreiben eines windparks
CN112368903A (zh) * 2018-07-05 2021-02-12 乌本产权有限公司 用于将电功率馈入供电网中的方法
EP3848575A1 (de) 2020-01-09 2021-07-14 Nordex Energy SE & Co. KG Verfahren zum betreiben eines windparks mit einer vielzahl von windenergieanlagen sowie ein entsprechender windpark

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010000837A1 (de) * 2010-01-12 2011-07-14 SkyWind GmbH, 24782 Verfahren zur Verminderung der Komplexität von Windenergieanlagen im Windparkverbund und Anordnung eines Windparks
US20120019007A1 (en) * 2010-07-21 2012-01-26 Nelson Robert J Method and apparatus for minimizing harmonic currents in a wind turbine park
DE102010056456A1 (de) 2010-12-29 2012-06-21 Repower Systems Ag Windpark und Verfahren zum Betreiben eines Windparks
CN102606399A (zh) * 2012-03-07 2012-07-25 季志刚 根据风力大小自动调节风叶角度的风力发电机组
US11525433B2 (en) 2017-12-21 2022-12-13 Vestas Wind Systems A/S Power ramp rate control
CN110967562A (zh) * 2019-11-27 2020-04-07 北京无线电计量测试研究所 一种辐射敏感度试验场均匀域测量方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045908A1 (de) 1996-05-24 1997-12-04 Siemens Aktiengesellschaft Windenergiepark
WO2001052379A2 (en) 1999-12-23 2001-07-19 Abb Ab Electric power system based on renewable energy sources
DE10044262A1 (de) 2000-09-07 2002-03-21 Stephan Joeckel Getriebelose Windkraftanlage mit Blattwinkelverstellung zur aktiven Schwingungsdämpfung im Antriebsstrang
WO2003030329A1 (de) 2001-09-28 2003-04-10 Aloys Wobben Verfahren zum betrieb eines windparks
EP1337754B1 (de) 2000-11-28 2004-08-04 Aloys Wobben Windenergieanlage bzw. windpark bestehend aus einer vielzahl von windenergieanlage
DE102004048341A1 (de) 2004-10-01 2006-04-13 Repower Systems Ag Windpark mit robuster Blindleistungsregelung und Verfahren zum Betrieb
EP1752659A2 (de) 2005-08-12 2007-02-14 REpower Systems AG Verfahren zum Betrieb eines Windenergieanlagenparks sowie Windenergieanlagenpark
EP1879277A2 (de) 2006-07-13 2008-01-16 NORDEX ENERGY GmbH Windpark sowie Verfahren zum Betreiben eines Windparks
WO2009019306A1 (de) 2007-08-07 2009-02-12 Gunnar Kaestle Verfahren zur steuerung elektrischer verbraucher im niederspannungsnetz

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119452B2 (en) * 2003-09-03 2006-10-10 General Electric Company Voltage control for wind generators

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045908A1 (de) 1996-05-24 1997-12-04 Siemens Aktiengesellschaft Windenergiepark
WO2001052379A2 (en) 1999-12-23 2001-07-19 Abb Ab Electric power system based on renewable energy sources
DE10044262A1 (de) 2000-09-07 2002-03-21 Stephan Joeckel Getriebelose Windkraftanlage mit Blattwinkelverstellung zur aktiven Schwingungsdämpfung im Antriebsstrang
EP1337754B1 (de) 2000-11-28 2004-08-04 Aloys Wobben Windenergieanlage bzw. windpark bestehend aus einer vielzahl von windenergieanlage
WO2003030329A1 (de) 2001-09-28 2003-04-10 Aloys Wobben Verfahren zum betrieb eines windparks
DE102004048341A1 (de) 2004-10-01 2006-04-13 Repower Systems Ag Windpark mit robuster Blindleistungsregelung und Verfahren zum Betrieb
EP1752659A2 (de) 2005-08-12 2007-02-14 REpower Systems AG Verfahren zum Betrieb eines Windenergieanlagenparks sowie Windenergieanlagenpark
EP1879277A2 (de) 2006-07-13 2008-01-16 NORDEX ENERGY GmbH Windpark sowie Verfahren zum Betreiben eines Windparks
DE102006032389A1 (de) 2006-07-13 2008-01-24 Nordex Energy Gmbh Windpark sowie Verfahren zum Betreiben eines Windparks
WO2009019306A1 (de) 2007-08-07 2009-02-12 Gunnar Kaestle Verfahren zur steuerung elektrischer verbraucher im niederspannungsnetz

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102400849A (zh) * 2010-07-26 2012-04-04 通用电气公司 变频风力设备
CN103244354A (zh) * 2012-02-08 2013-08-14 北京能高自动化技术股份有限公司 风力发电机组功率曲线自适应优化方法
CN103244354B (zh) * 2012-02-08 2015-02-18 北京能高自动化技术股份有限公司 风力发电机组功率曲线自适应优化方法
EP2824322A4 (de) * 2012-03-08 2015-11-04 Mitsubishi Heavy Ind Ltd Ausgabesteuerungsvorrichtung und ausgabesteuerungsverfahren für eine windkraftanlage
CN112368903A (zh) * 2018-07-05 2021-02-12 乌本产权有限公司 用于将电功率馈入供电网中的方法
EP3754178A1 (de) 2019-06-17 2020-12-23 Nordex Energy GmbH Verfahren zum betreiben eines windparks
US11078887B2 (en) 2019-06-17 2021-08-03 Nordex Energy Se & Co. Kg Method for operating a wind farm
EP3848575A1 (de) 2020-01-09 2021-07-14 Nordex Energy SE & Co. KG Verfahren zum betreiben eines windparks mit einer vielzahl von windenergieanlagen sowie ein entsprechender windpark
US11549487B2 (en) 2020-01-09 2023-01-10 Nordex Energy Se & Co. Kg Method for operating a wind farm having a plurality of wind turbines and corresponding wind farm

Also Published As

Publication number Publication date
EP2324551A2 (de) 2011-05-25
CN102159830B (zh) 2014-02-12
DE102008047667A1 (de) 2010-03-25
WO2010028954A3 (de) 2010-05-14
EP2324551B1 (de) 2019-07-31
CN102159830A (zh) 2011-08-17
DK2324551T3 (da) 2019-10-07

Similar Documents

Publication Publication Date Title
EP2324551B1 (de) Leistungsregelung für einen windpark
EP2841766B1 (de) Windpark mit schneller lokaler blindleistungsregelung
EP2245728B1 (de) Windkraftanlage mit umrichterregelung
EP2872777B1 (de) Verfahren zum steuern eines elektrischen erzeugers
WO2014173695A9 (de) Verfahren zum einspeisen elektrischer leistung in ein elektrisches versorgungsnetz
DE102015109724A1 (de) System und Verfahren zum Schützen eines Leistungswandlers während eines unerwünschten Spannungsereignisses
EP3156646B1 (de) Windenergieanlage mit einem drehzahl- und einem generatorregler
DE102009017939A1 (de) Windpark mit mehreren Windenergieanlagen sowie Verfahren zur Regelung der Einspeisung von einem Windpark
DE102010056456A1 (de) Windpark und Verfahren zum Betreiben eines Windparks
EP3533125A1 (de) Verfahren zum betreiben einer windenergieanlage
EP2971757B1 (de) Windkraftanlage mit frequenzmessung
EP3688860B1 (de) Verfahren zum versorgen von windenergieanlagenkomponenten mit energie sowie energieversorgungseinrichtung und windenergieanlage damit
WO2017191308A1 (de) Verfahren zur kompensation von einzuspeisenden strömen eines windparks
WO2013144242A2 (de) Chopperverstärkter umrichter für windenergieanlagen
EP2388904B1 (de) Drehstrom-Wechselrichterschaltung und Verfahren zum Betreiben einer Drehstrom-Wechselrichterschaltung
EP3909107A1 (de) Windenergieanlage
EP3311481B1 (de) Verfahren zur regelung eines selbstgeführten umrichters, selbstgeführter umrichter sowie anordnung zur übertragung elektrischer leistung
WO2018099626A1 (de) Verfahren zum regeln von einem leistungswert eines offshore-windenergiesystems
EP3449554A1 (de) Wechselrichter und verfahren zum erzeugen eines wechselstroms
WO2011085961A2 (de) Verfahren und vorrichtung zum aufsynchronisieren eines generators in einem netz
EP3979484A1 (de) Verfahren zum steuern einer windenergieanlage
EP3021448B1 (de) Windenergieanlage und verfahren zum betreiben einer windenergieanlage
EP3852211A1 (de) Verfahren zur regelung der leistungsabgabe eines windparks
DE102019131475A1 (de) Verfahren zur Stromregelung eines Energiesystems
EP3125398A1 (de) Eigenbedarfssteuerung für eine windenergieanlage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135876.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09782255

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009782255

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 959/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE