WO2010028570A1 - 一种链路聚合组信息管理的方法和网络节点 - Google Patents

一种链路聚合组信息管理的方法和网络节点 Download PDF

Info

Publication number
WO2010028570A1
WO2010028570A1 PCT/CN2009/073479 CN2009073479W WO2010028570A1 WO 2010028570 A1 WO2010028570 A1 WO 2010028570A1 CN 2009073479 W CN2009073479 W CN 2009073479W WO 2010028570 A1 WO2010028570 A1 WO 2010028570A1
Authority
WO
WIPO (PCT)
Prior art keywords
lag
attribute information
link
information
message
Prior art date
Application number
PCT/CN2009/073479
Other languages
English (en)
French (fr)
Inventor
曹玮
薛莉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN200810216096A external-priority patent/CN101674229B/zh
Priority claimed from CN2008102160974A external-priority patent/CN101674230B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010028570A1 publication Critical patent/WO2010028570A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the embodiments of the present invention relate to the field of computer network technologies, and in particular, to a link aggregation group information management method and a network node.
  • MPLS Multi-protocol label switch
  • MPLS replaces the IP packet header with a short, fixed-length label as the forwarding basis, which improves the forwarding efficiency compared with the traditional IP routing method.
  • MPLS adopts a connection-oriented control plane to complete the establishment of an LSP (label switch path), and completes the transmission of data through the connection-oriented LSP.
  • a LAG (link aggregation group) is a link attribute that is used to transmit data by binding multiple physical links into one logical link, so that multiple links exist between two devices. Flexible expansion of bandwidth, fast link protection and load balancing.
  • the inventors of the present invention have found that in the MPLS-TP (MPLS-Transport Profile, MPLS Transport Network), the OAM (Operation, Administration and Maintenance, Management, and Maintenance) function may generate an error in the link that encounters the LAG attribute. For example, if there are three links in the LAG between the two devices, one of the links fails. The other two links work normally. The OAM packet is transmitted to the peer through the faulty link in the LAG. . But in fact, the other two links in the LAG work normally, and the LAG has not failed. Therefore, in the MPLS-TP network, the LAG link information should be managed to avoid an error in the detection result of the link by 0 AM because the network device does not know the LAG attribute. There is no mechanism for advertising and collecting LAG link information in the existing MPLS-TP network.
  • MPLS-TP MPLS-Transport Profile, MPLS Transport Network
  • the embodiment of the present invention provides a method and network section for link aggregation group information management.
  • the LAG link information can be managed to avoid the error of the detection result of the link by 0 AM because the network device does not know the LAG attribute.
  • the embodiment of the present invention provides a method for link aggregation group information management, including:
  • the first network node constructs a link state routing protocol message including the LAG attribute information, and sends the message to other nodes in the network;
  • the node that receives the link state routing protocol message containing the LAG attribute information records the LAG attribute information in the message.
  • the link state routing protocol packet may be an open shortest path first OSPF link state acknowledgement LSA message, or an intermediate system to intermediate system IS-IS link state packet LSP message.
  • the embodiment of the present invention further provides a network node, where the network node includes an interface for interacting with other network nodes, and the network node further includes: a LAG information sending module, configured to use the LAG attribute of the node Information is added to the link state routing protocol that will be sent to other network nodes;
  • the LAG information collection module is configured to extract LAG attribute information from the link state routing protocol packet received by the interface.
  • the link state routing protocol packet may be an open shortest path first OSPF link state acknowledgement LSA message, or an intermediate system to intermediate system IS-IS link state packet LSP message.
  • the LAG attribute information collection in the OAM-enabled transmission network can be implemented by extending the Layer 3 network protocol, thereby improving the correctness of the link detection by the OAM.
  • the guarantee of service quality and the deployment of traffic engineering are of great significance and function.
  • FIG. 1 is a flowchart of a method for managing link aggregation group LAG information according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of a network node according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart of sending an OSPF LSA packet according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a network node according to Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart of sending an IS-IS LSP packet according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of a network node according to Embodiment 3 of the present invention.
  • a first embodiment of the present invention provides a method for link aggregation group LAG information management, where the method includes:
  • the first network node constructs a link state routing protocol message that includes LAG attribute information, and sends the message to other nodes in the network.
  • the node that receives the link state routing protocol packet that includes the LAG attribute information records the LAG attribute information in the packet.
  • the first embodiment of the present invention further provides a network node.
  • the network node includes:
  • the LAG information sending module 201 is configured to add the LAG attribute information of the local node to the link state routing protocol message to be sent to other network nodes;
  • the LAG information collection module 202 is configured to extract LAG attribute information from the link state routing protocol packet received by the interface.
  • the link state routing protocol is extended, so that the MPLS-TP network node can collect the LAG link information in the MPLS-TP network through the link state routing protocol, and manage the LAG link information.
  • link state routing protocols such as open shortest path first.
  • the Open Shortest Path First (OSPF) protocol and the Intermediate System to Intermediate System (IS-IS) protocol according to the adopted link state routing protocol, the LAG attribute of the construct in the embodiment of the present invention
  • the link state routing protocol packets of the information are also different.
  • the specific implementations of the first embodiment of the present invention are specifically described by using the OSPF protocol packets and the IS-IS protocol packets as the link state routing protocol packets.
  • the MPLS-TP network node can collect LAG link information in the MPLS-TP network through OSPF protocol packets. Link information is managed.
  • OSPF Open Shortest Path First
  • OSPF is a network layer-based routing protocol. Its functions include routing network topology discovery, routing network status information collection, and route calculation, and network status dynamic monitoring.
  • OSPF Traffic Engineering (TE) is an extended version of the traffic engineering that is the shortest path-first protocol. It is the same as the OSPF mechanism. It extends the packet carrying TE information to implement OSPF traffic engineering extension.
  • OSPF packets There are five types of OSPF packets, which are:
  • LSA Link State Acknowledgment
  • IETF RFC 2370 defines three types of transparent LSAs for transmitting various link state information. The difference between the three types of LSAs is that the range of flooding is different. Type 9 is used for flooding in links, and Type 10 is used for flooding in links. Flooding within the domain, Type 11 is used to flood the entire autonomous system. RFC3630 uses its Type 10 to deliver TE related information. The embodiment of the present invention extends the TE LSA to carry LAG attribute information.
  • the extended TE LSA4 text format of OSPF TE is shown in Table 1: LS age Options 10
  • the embodiment of the present invention increases the LAG attribute information of the MPLS-TP network by using TLV, that is, Type-Length-Value.
  • TLV The TLV format in OSPF TE is shown in Table 2: Type (1 octet)
  • the OSPF protocol may adopt any of the following extension methods:
  • the LAG member amount is used to identify the number of links included in the LAG attribute link
  • the LAG element bandwidth is used to identify the bandwidth of each member link of the LAG attribute link.
  • the new Sub-TLV is defined to carry the LAG attribute information.
  • the relationship between the TLV and the Sub-TLV is shown in Table 5.
  • the Sub-TLV as the LAG element bandwidth Sub-TLV, which is used to identify the bandwidth of each member link of the LAG attribute link.
  • the LAG element bandwidth Sub-TLV format is shown in Table 7.
  • LAG LSA Defines a new LAG LSA packet format, and use the LAG LSA to carry the LAG attribute information.
  • the LAG LSA is a type 10 Opaque LSA.
  • the format of the LSA header is shown in Table 9.
  • LAG TLV which carries the LAG attribute and related information.
  • the format of the LAG TLV is shown in Table 10.
  • the LAG member amount is used to identify the number of links included in the LAG attribute link.
  • LAG element bandwidth Used to identify the bandwidth of each member link of the LAG attribute link;
  • LAG element bandwidth TLV which is used to identify the bandwidth of each member link of the LAG attribute link.
  • the format of the LAG element bandwidth TLV is shown in Table 12. Subtype (11 or reserved value)
  • the sending end constructs an OSPF LSA packet and sends the configured OSPF LSA packet.
  • the OSPF LS A packet carries the LAG attribute information with the sender as the endpoint, and the LAG attribute information includes: the number of links included in the LAG attribute link and/or the link of each member link of the LAG attribute link. bandwidth.
  • the LAG attribute information may be carried in the TLV of the LAG LSA dedicated to the LAG attribute, or added to the TE LSA in a TLV manner, or added to the Link attribute in the TE LSA in a Sub-TLV manner.
  • the receiving end receives the OSPF LS A packet.
  • the receiving end updates the local database according to the LAG attribute in the OSPF LSA packet.
  • the embodiment further provides a network node that implements link aggregation group information management.
  • the interface includes an interface for interacting with other network nodes, and may further include:
  • the LAG information sending module 401 is configured to add the LAG attribute information of the local node to the OSPF LSA message to be sent to other network nodes when the network initialization or the network LAG attribute changes.
  • the network node can also include:
  • the LAG information database 403 is configured to store the received LAG attribute information.
  • the LAG attribute information includes the number of links included in the LAG attribute link and/or the bandwidth of each member link of the LAG attribute link.
  • the extension of the Intermediate System to Intermediate System (IS-IS) protocol enables the MPLS-TP network node to collect the MPLS-TP network through the IS-IS protocol.
  • LAG link information which manages LAG link information.
  • the IS-IS protocol is a Layer 2 network protocol used for network topology discovery, network resource information collection, and data forwarding path calculation.
  • the IS-IS protocol has good scalability.
  • the IETF extends the IS-IS (ISO 9542) protocol to support topology discovery of IP layer networks, network resource information collection, and calculation of IP shortest path trees.
  • the IS-IS protocol includes three protocols:
  • Partial Sequence Number Pakcets (including a layer of partial sequence number packet 4 ⁇ and a layer 2 partial sequence number packet) includes some of the latest LSP information in the link information database on the node,
  • the Complete Sequence Numbers Packets (including a full sequence number packet and a Layer 2 full sequence number packet) contain all the latest LSP information in the link information database on the node.
  • the embodiment of the present invention increases the MPLS-TP network by using a TLV, that is, a Type-Length-Value (type-length-value). Attribute information.
  • TLV format in IS-IS is shown in Table 13: Type (1 octet)
  • TLV IS Reachability TLV
  • IP Reachability TLV IP Reachability TLV
  • the embodiment of the present invention can carry the LAG attribute information of the MPLS-TP network by using a sub-TLV (Sub-TLV) related in the existing TLV.
  • a Sub-TLV as shown in Table 15 is included. Type description
  • the LAG member amount is used to identify the number of links included in the LAG attribute link.
  • the LAG element bandwidth is used to identify the bandwidth of each member link of the LAG attribute link.
  • LAG TLV carrying LAG attribute information
  • the sub-TLV is a LAG member Sub-TLV, which is used to identify the number of links that the LAG attribute link contains.
  • the LAG member Sub-TLV format is shown in Table 18. Subtype (1 or other non-conflicting values)
  • Sub-TLV as the LAG element bandwidth Sub-TLV, which is used to identify the bandwidth of each member link of the LAG attribute link.
  • the LAG element bandwidth Sub-TLV format is shown in Table 19. Subtype (2 or other non-conflicting values)
  • the LAG member Sub-TLV is defined to identify the number of links included in the LAG attribute link, and the format of the LAG member Sub-TLV is as shown in Table 20;
  • LAG element bandwidth Sub-TLV which is used to identify the bandwidth of each member link of the LAG attribute link.
  • the format of the LAG element bandwidth Sub-TLV is shown in Table 21. Subtype (14 or reserved value)
  • the LAG Sub-TLV is configured to carry the LAG attribute information.
  • the format of the LAG Sub-TLV is as shown in Table 22.
  • the LAG member amount is used to identify the link included in the LAG attribute link.
  • the number of LAG elements is used to identify the bandwidth of each member link of the LAG attribute link. Type (13 or reserved value)
  • the procedures for sending and receiving IS-IS protocol packets are as specified in the original protocol.
  • the process of sending an IS-IS LSP packet in this embodiment is as shown in FIG. 5, and includes:
  • the sender constructs an IS-IS LSP packet and sends the configured IS-IS LSP packet.
  • the IS-IS LSP packet carries the LAG attribute information with the sender as the endpoint.
  • the LAG attribute information includes: the number of links included in the LAG attribute link and/or the bandwidth of each member link of the LAG attribute link.
  • the LAG attribute information may be carried in a TLV dedicated to the delivery of the LAG attribute, or may be added to the extended IS reachability TLV in a Sub-TLV manner.
  • the receiving end receives the IS-IS LSP packet.
  • the receiving end updates the local database according to the LAG attribute in the IS-IS LSP packet.
  • a network node that implements link aggregation group information management is also provided. As shown in FIG. 6, the interface for performing interaction with other network nodes may further include:
  • the network node can also include:
  • the LAG information database 603 is configured to store the received LAG attribute information.
  • the LAG attribute information includes the number of links included in the LAG attribute link. Further, the LAG attribute information may further include: a bandwidth of each member link of the LAG attribute link.
  • the IS-IS protocol is taken as an example, and other three-layer network protocols may be similarly extended to implement the solution of the present invention.
  • the solution provided by the embodiment of the present invention can implement LAG attribute information collection in an MPLS-TP network or other OAM-enabled transmission network, thereby improving the correctness of the link detection by the OAM, guaranteeing the service quality of the service, and traffic engineering.
  • the deployment has important meaning and role.
  • the embodiment of the present invention or a part thereof may be implemented by software, and the corresponding software program may be stored in a readable storage medium such as an optical disk, a hard disk, a floppy disk or the like.

Description

一种链路聚合组信息管理的方法和网络节点 本申请要求于 2008 年 9 月 12 日提交中国专利局、 申请号为 200810216097.4、 发明名称为 "一种链路聚合组信息管理的方法和网络节点" 的中国专利申请以及于 2008 年 9 月 12 日提交中国专利局、 申请号为 200810216096.X, 发明名称为 "一种链路聚合组信息管理的方法和网络节点" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及计算机网络技术领域,尤其涉及一种链路聚合组信息管 理的方法和网络节点。
背景技术
MPLS(Multi-protocol label switch, 多协议标签交换)最初是为了提高转发 效率而设计的。 MPLS以短的、 固定长度的标签替代 IP报文头作为转发依据, 与传统 IP路由方式相比提高了转发效率。 MPLS采用了面向无连接的控制平面 完成 LSP ( label switch path, 标签转发路径) 的建立, 通过面向连接的 LSP完 成数据的传输。
LAG ( link aggregation group, 链路聚合组)是将多个物理链路绑定成一 个逻辑链路, 使两个设备间存在多条链路, 用来传输数据的一种链路属性, 用 于带宽的灵活扩展, 链路的快速保护及负载均衡。
本发明的发明人发现, MPLS-TP ( MPLS - Transport Profile , MPLS传输网 络)中, OAM ( Operation, Administration and Maintenance操作, 管理与维护) 功能在遇到 LAG属性的链路,有可能产生错误。 例如, 两设备间 LAG中有三条 链路,其中一条链路发生故障, 另外两个链路工作正常, OAM报文通过 LAG中 的发生故障的链路传输到对端,就会认为 LAG发生故障。但实际上 LAG中另外 两条链路正常工作, LAG未发生故障。 因此, 在 MPLS-TP网络中, 应该对 LAG 链路信息进行管理, 避免因网络设备不知道 LAG属性而使 0 AM对链路的检测 结果出现错误。 现有的 MPLS-TP网络中不存在 LAG链路信息的通告和收集的 机制。
发明内容
有鉴于此, 本发明实施例提供一种链路聚合组信息管理的方法和网络节 点,能够对 LAG链路信息进行管理,避免因网络设备不知道 LAG属性而使 0 AM 对链路的检测结果出现错误。
为实现上述目的, 本发明实施例提供一种链路聚合组信息管理的方法, 包括:
第一网络节点构造包含 LAG属性信息的链路状态路由协议报文, 并向网 络中其它节点发送所述报文;
收到所述包含 LAG属性信息的链路状态路由协议报文的节点记录所述报 文中的 LAG属性信息。
其中,上述链路状态路由协议报文可以是开放最短路径优先 OSPF链路状 态确认 LSA报文, 也可以是中间系统到中间系统 IS-IS链路状态分组 LSP报 文。
另一方面, 本发明实施例还提供一种网络节点, 该网络节点包括用于与其 他网络节点进行交互的接口, 另外该网络节点还包括: LAG信息发送模块, 用于将本节点的 LAG属性信息添加到将要发送到其它网络节点的链路状态路 由协议 4艮文中;
LAG信息收集模块, 用于从所述接口接收的链路状态路由协议报文中, 提取出 LAG属性信息。
其中,上述链路状态路由协议报文可以是开放最短路径优先 OSPF链路状 态确认 LSA报文, 也可以是中间系统到中间系统 IS-IS链路状态分组 LSP报 文。
从以上技术方案可以看出,通过对三层网络协议进行扩展, 可以实现在适 用 OAM的传输网络如 MPLS-TP网络中 LAG属性信息的收集,从而提高 OAM 对链路检测的正确性, 为业务的服务质量的保证, 流量工程的部署都具有重要 的意义和作用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一提供的一种链路聚合组 LAG信息管理的方法的流程 图;
图 2是本发明实施例一提供的一种网络节点的示意图;
图 3是本发明实施例二提供的 OSPF LSA报文发送流程图;
图 4是本发明实施例二提供的网络节点的示意图;
图 5是本发明实施例三提供的 IS-IS LSP报文发送流程图;
图 6是本发明实施例三提供的网络节点的示意图。
具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
以下结合附图对本发明做进一步描述:
实施例一
如图 1所示,本发明实施例一提供一种链路聚合组 LAG信息管理的方法, 该方法包括:
101 : 第一网络节点构造包含 LAG属性信息的链路状态路由协议报文,并 向网络中其它节点发送所述 ·^艮文;
102:收到所述包含 LAG属性信息的链路状态路由协议报文的节点记录所 述报文中的 LAG属性信息。
相应的, 本发明实施例一还提供一种网络节点, 如图 2所示, 该网络节点 包括:
LAG信息发送模块 201 , 用于将本节点的 LAG属性信息添加到将要发送 到其它网络节点的链路状态路由协议报文中;
LAG信息收集模块 202, 用于从所述接口接收的链路状态路由协议报文 中, 提取出 LAG属性信息。
本实施例通过对链路状态路由协议进行扩展, 使得 MPLS-TP网络节点可 以通过链路状态路由协议 4艮文收集 MPLS-TP网络中 LAG链路信息, 对 LAG 链路信息进行管理。
在实际中, 链路状态路由协议可以有很多种, 例如开放最短路径优先 ( Open Shortest Path First, OSPF )协议和中间系统到中间系统 ( Intermediate System to Intermediate System, IS-IS )协议, 根据采用的链路状态路由协议的 不同, 本发明实施例中的构造的包含 LAG属性信息的链路状态路由协议报文 也不同。以下各个实施例不妨分别以链路状态路由协议报文采用 OSPF协议报 文和 IS-IS协议报文为例具体说明本发明实施例一的具体实现。
实施例二
本发明实施例二中通过对开放最短路径优先(Open Shortest Path First, OSPF )协议的扩展, 使得 MPLS-TP网络节点可以通过 OSPF协议报文, 收集 MPLS-TP网络中 LAG链路信息, 对 LAG链路信息进行管理。
OSPF协议是一种基于网络层的路由协议, 其功能包含了路由网络拓朴发 现, 路由网络状态信息收集, 以及路由计算, 和网络状态动态监控的功能。 OSPF流量工程(Traffic Engineer, TE )是开放最短路径优先协议的流量工程 的扩展版本, 与 OSPF机制相同, 通过扩展报文携带 TE信息实现 OSPF的流 量工程的扩展。
OSPF协议共有 5种报文, 分别是:
1 ) Hello报文, 用于邻居节点发现和维护;
2 )数据库描述(Database Description )报文, 在邻居节点建立后, 初始路 由链路状态信息在邻居节点之间的传递;
3 )链路状态请求 ( Link State Request )报文, 当路由器状态信息改变时, 请求邻居路由器之间进行状态同步;
4 )链路状态更新 ( Link State Update )报文, 在邻居路由器之间响应状态 同步请求消息;
5 )链路状态确认(Link State Acknowledgment, LSA )报文, 对收到的最 新的 LSA信息进行确认, 保证 LSA信息的可靠传送。
为便于进行 OSPF扩展, IETF RFC2370定义了三种透明 LSA用于传递各 种链路状态信息, 三种 LSA的区别在于泛洪的范围不同, Type 9用于链路内 泛洪, Type 10用于域内泛洪, Type 11用于在整个自治系统内泛洪。 RFC3630 利用其中的 Type 10传递 TE相关信息。 本发明实施例通过扩展 TE LSA用来 携带 LAG属性信息。
OSPF TE的扩展 TE LSA4艮文格式,如表 1所示: LS age Options 10
Instance
Advertising router
LS sequence number
LS checksum Length
Router TLV (4 octets)
Link TLV (variable length)
表 1
为了收集 MPLS-TP网络中 LAG链路信息, 本发明实施例通过 TLV, 即 Type-Length-Value (类型-长度-值) 的形式增加 MPLS-TP网络的 LAG属性信 息。 OSPF TE中的 TLV格式如表 2所示: 类型 (1 octet)
长度 (1 octet)
值 (可变 octets)
表 2
本实施例可以通过在现有 TLV 中相关的子 TLV ( Sub-TLV ) 来携带 MPLS-TP网络的 LAG属性信息。 如在 TE LSA报文的 Link TLV中, 包括如 表 3所示的 Sub-TLV。
类型 描述 长度
1 Link type 1
2 Link ID 4
3 Local Interface IP addr 4
4 Remote Interface IP addr 4
5 Traffic engineering metric 4
6 Maximum bandwidth 4
7 Maximum reservable bandwidth 4
8 Unreserved bandwidth 32
9 Administrative group 4 表 3
本实施例中针对适用 OAM的传输网络,如 MPLS-TP网络,对 OSPF协议 可以采用如下的扩展方法中的任意一种:
1 )在 TE LSA报文中, 定义新的 TLV, 即 LAG TLV用来携带 LAG属性 信息:
如表 4所示, LAG member amount用来标识 LAG属性链路所包含的链路 的个数, LAG element bandwidth用来标识 LAG属性链路各个成员链路的带宽。 类型 (3或保留值)
长度 (1 octet)
LAG member amount (1 octet)
LAG element 1 bandwidth(l octet)
LAG element2 bandwidth(l octet) 表 4
2 )在 TE LSA报文的链路 Link TLV中, 定义新的 Sub-TLV携带 LAG属 性信息, TLV与 Sub-TLV之间的关系如表 5所示。 类型
长度 (1 octet)
Sub-TLV
表 5
定义 Sub-TLV为 LAG member Sub-TLV, 用来标识 LAG属性链路所包含 的链路的个数, LAG member Sub-TLV格式如表 6所示。 子类型(10或保留值)
长度 (1 octet)
LAG member amount (1 octet)
表 6
和 /或定义 Sub-TLV为 LAG element bandwidth Sub-TLV, 用来标识 LAG 属性链路各个成员链路的带宽, LAG element bandwidth Sub-TLV格式如表 7 所示。
Figure imgf000008_0001
LAG element 1 bandwidth(l octet)
LAG element2 bandwidth(l octet) 表 7
3 )在 TE LSA报文的 Link TLV中, 定义 LAG Sub-TLV携带 LAG属性信 息, LAG Sub-TLV的格式如表 8所示, LAG member amount用来标识 LAG属 性链路所包含的链路的个数, LAG element bandwidth用来标识 LAG属性链路 各个成员链路的带宽。
类型 (10或保留值)
长度 (1 octet)
LAG member amount (1 octet)
LAG element 1 bandwidth(l octet)
LAG element2 bandwidth(l octet) 表 8
4 )定义新的 LAG LSA报文格式, 用该 LAG LSA携带 LAG属性信息, 该 LAG LSA为 type 10 Opaque LSA, 该 LSA头格式如表 9所示。
Figure imgf000009_0001
表 9
在 payload中扩展 TLV用来标识 LAG属性信息。 例如可以:
( 1 )定义 LAG TLV,该 LAG TLV携带 LAG属性及其相关信息, LAG TLV 的格式如表 10所示, LAG member amount用来标识 LAG属性链路所包含的 链路的个数, LAG element bandwidth用来标识 LAG属性链路各个成员链路的 带宽;
类型 (10或保留值)
长度 (1 octet)
LAG member amount (1 octet)
LAG element 1 bandwidth(l octet)
Figure imgf000010_0001
表 10
或者, (2 )定义 LAG member TLV, 用来标识 LAG属性链路所包含的链 路的个数, LAG member TLV的格式如表 11所示; 子类型(10或保留值)
长度 (1 octet)
LAG member amount (1 octet)
表 11
和 /或定义 LAG element bandwidth TLV,用来标识 LAG属性链路各个成员 链路的带宽, LAG element bandwidth TLV的格式如表 12所示。 子类型(11或保留值)
长度 (1 octet)
LAG element 1 bandwidth(l octet)
LAG element2 bandwidth(l octet) 表 12
OSPF协议报文的发送和接收规程均按照原协议的规定。 本实施例中 OSPF LSA报文发送流程如图 3所示, 包括:
301 : 在网络初始化或网络 LAG属性发生变化时, 发送端构造 OSPF LSA 报文,并将构造好的 OSPF LSA报文发送出去。所述 OSPF LS A报文中携带以 发送端为端点的 LAG属性信息, 所述 LAG属性信息包括: LAG属性链路所 包含的链路的个数和 /或 LAG属性链路各个成员链路的带宽。 所述 LAG属性 信息可以携带在专用于传递 LAG属性的 LAG LSA的 TLV中,或者以 TLV的 方式添加到 TE LSA中, 或者以 Sub-TLV的方式添加到 TE LSA中的 Link属 性中。
302: 接收端接收 OSPF LS A报文。
303:接收端根据所述 OSPF LSA报文中的 LAG属性,更新本地的数据库。 另外, 本实施例还相应提出一种实现链路聚合组信息管理的网络节点, 如 图 4所示, 包括用于与其它网络节点进行交互的接口, 还可以包括: LAG信息发送模块 401 , 用于在网络初始化或网络 LAG属性发生变化时 将本节点的 LAG属性信息添加到将要发送到其它网络节点的 OSPF LSA报文 中。
LAG信息收集模块 402,用于从所述接口接收的 OSPF LS A报文中,提取 出 LAG属性信息。
该网络节点还可以包括:
LAG信息数据库 403 , 用于存储所收到的 LAG属性信息。 所述 LAG属 性信息包括 LAG属性链路所包含的链路的个数和 /或 LAG属性链路各个成员 链路的带宽。
本实施例中都是以 OSPF协议为例,实际也可以对其他三层网络协议进行 类似的扩展,来实现本发明方案。本发明实施例提供的方案,可以在 MPLS-TP 网络或其他适用 OAM 的传输网络中实现 LAG属性信息的收集, 从而提高 OAM对链路检测的正确性, 为业务的服务质量的保证, 流量工程的部署都具 有重要的意义和作用。
实施例三
本发明实施例三中通过对中间系统到中间系统 ( Intermediate System to Intermediate System, IS-IS )协议的扩展,使得 MPLS-TP网络节点可以通过 IS-IS 协议 4艮文,收集 MPLS-TP网络中 LAG链路信息,对 LAG链路信息进行管理。
IS-IS 协议是一种基于二层的网络协议, 用于网络拓朴发现, 网络资源信 息收集, 以及数据转发路径的计算。 IS-IS协议有很好的扩展性, IETF在 IS-IS ( ISO 9542 )协议的基础上进行扩展支持 IP层网络的拓朴发现, 网络资源信 息收集, 以及 IP最短路径树的计算。 IS-IS协议包括三种协议 4艮文:
1 ) Hello报文, 用于发现邻居节点;
2 )链路状态分组(Link State Packet, LSP)报文,用于交换链路状态信息; 3)序列号分组(Sequence Number Packet, SNP)报文, 用于确保链路状态 信息的实时性, 保证相邻节点间的链路状态信息同步。
其中, Hello 报文分为三种, 分别是一层局域网中间系统到中间系统的 Hello分组( Level 1 LAN IS to IS Hello Packet )报文, 二层局域网中间系统到 中间系统的 Hello分组( Level 2 LAN IS to IS Hello Packet )报文, 点对点中间 系统到中间系统 Hello分组( Point-to-Point IS to IS Hello Packet )报文。 LSP 报文分为两种, 分别是一层链路状态分组( Level 1 Link State Packets )报文, 二层链路状态分组( Level 2 Link State Packets )报文。 SNP报文分为四种, 分 别是一层全序列号分组 ( Level 1 Complete Sequence Numbers Packets ) 艮文, 二层全序列分组 ( Level 2 Complete Sequence Numbers Packets ) 4艮文, 一层部 分序列号分组 ( Level 1 Partial Sequence Numbers Packets ) 艮文, 和二层部分 序列号分组( Level 2 Partial Sequence Numbers Packets ) 4艮文。 部分序列号分 组( Partial Sequence Number Pakcets ) 4艮文(包括一层部分序列号分组 4艮文和 二层部分序列号分组报文)中包含节点上链路信息数据库中的部分最新的 LSP 信息, 而全序列号分组 ( Complete Sequence Numbers Packets ) 艮文 (包括一 层全序列号分组报文和二层全序列号分组报文)则包含节点上链路信息数据库 中的全部最新的 LSP信息。
为了收集 MPLS-TP网络中 LAG链路信息, 充分利用 IS-IS易于扩展的属 性, 本发明实施例通过 TLV, 即 Type-Length- Value (类型 -长度 -值)的形式增 加 MPLS-TP网络的属性信息。 IS-IS中的 TLV格式如表 13所示: 类型 (1 octet)
长度 (1 octet)
取值 (可变 octets)
表 13
为使得 IS-IS协议扩展性更好,在 RFC3874(IS-IS 流量工程扩展)中定义了 新的 TLV替换 IS-IS协议中已有的用于传递中间系统( Intermediate System , IS ) 可达性信息的 TLV(IS Reachability TLV)和 IP 可达性信息的 TLV(IP Reachability TLV), 所述新的 TLV如表 14所示:
Figure imgf000012_0001
表 14
本发明实施例可以通过在现有 TLV中相关的子 TLV ( Sub-TLV )来携带 MPLS-TP 网络的 LAG 属性信息。 如在扩展 IS 可达性 (The extended IS reachability ) TLV中, 包括如表 15所示的 Sub-TLV。 类型 描述
0-2 己 ( unassigned )
3 管理组 ( Administrative group )
4-5 未分配
6 IPv4接口地址 ( IPv4 interface address )
7 未分配
8 IPv4邻居地址 ( IPv4 neighbor address )
9 最大链路带宽 ( Maximum link bandwidth )
10 保留链路带宽 ( Reservable link bandwidth )
11 未保留带宽 ( Unreserved bandwidth )
12-17 未分配
18 TE默认参数 ( TE Default metric )
19-254 未分配
255 留待将来扩展
表 15
本发明实施例针对适用 OAM的传输网络,如 MPLS-TP网络,对 IS-IS 协议可以采用如下的扩展方法中的任意一种:
1 )在 LSP报文中, 定义新的 TLV, 即 LAG TLV用来携带 LAG属 性信息, 在 LSP报文中增加如下的 TLV:
如表 16所示, LAG member amount用来标识 LAG属性链路所包含 的链路的个数, LAG element bandwidth用来标识 LAG属性链路各个成员 链路的带宽。
_类型 (32或其他不冲突的保留值)
长度 (1 octet)
LAG member amount (1 octet)
LAG element 1 bandwidth(l octet)
LAG element2 bandwidth(l octet) 表 16
2 )在 LSP报文中, 定义新的 LAG TLV携带 LAG属性信息, LAG TLV 的格式如表 17所示 <
类型 (32或其他不冲突的保留值)
长度 (1 octet)
Sub-TLV
表 17
定义 Sub-TLV为 LAG member Sub-TLV, 用来标识 LAG属性链路所包含 的链路的个数, LAG member Sub-TLV格式如表 18所示。 子类型(1或其他不冲突的值)
长度 (1 octet)
LAG member amount (1 octet)
表 18
和 /或定义 Sub-TLV为 LAG element bandwidth Sub-TLV, 用来标识 LAG 属性链路各个成员链路的带宽, LAG element bandwidth Sub-TLV格式如表 19 所示。 子类型 (2或其他不冲突的值)
长度 (1 octet)
LAG element 1 bandwidth(l octet)
LAG element2 bandwidth(l octet) 表 19
3 )在 LSP 4艮文的扩展 IS reachability TLV 中,定义 LAG member Sub-TLV, 用来标识 LAG属性链路所包含的链路的个数, LAG member Sub-TLV的格式 如表 20所示;
子类型(13或保留值)
长度 (1 octet)
LAG member amount (1 octet)
表 20
和 /或定义 LAG element bandwidth Sub-TLV,用来标识 LAG属性链路各个 成员链路的带宽, LAG element bandwidth Sub-TLV的格式如表 21所示。 子类型(14或保留值)
长度 (1 octet) LAG element 1 bandwidth(l octet)
LAG element2 bandwidth(l octet) 表 21
4 )在 LSP报文的扩展 IS reachability TLV 中, 定义 LAG Sub-TLV携带 LAG属性信息, LAG Sub-TLV的格式如表 22所示, LAG member amount用 来标识 LAG属性链路所包含的链路的个数, LAG element bandwidth用来标识 LAG属性链路各个成员链路的带宽。 类型 (13或保留值)
长度 (1 octet)
LAG member amount (1 octet)
LAG element 1 bandwidth(l octet)
LAG element2 bandwidth(l octet) 表 22
IS-IS协议报文的发送和接收规程均按照原协议的规定。 本实施例中的 IS-IS LSP报文发送流程如图 5所示, 包括:
501 : 在网络初始化或网络 LAG属性发生变化时, 发送端构造 IS-IS LSP 报文, 并将构造好的 IS-IS LSP报文发送出去。 所述 IS-IS LSP报文中携带以 发送端为端点的 LAG属性信息。 所述 LAG属性信息包括: LAG属性链路所 包含的链路的个数和 /或 LAG属性链路各个成员链路的带宽。 所述 LAG属性 信息可以携带在专用于传递 LAG属性的 TLV中, 或者以 Sub-TLV的方式添 加到扩展 IS reachability TLV中。
502: 接收端接收 IS-IS LSP报文。
503:接收端根据所述 IS-IS LSP报文中的 LAG属性,更新本地的数据库。 本实施例中还相应提出一种实现链路聚合组信息管理的网络节点, 如图 6 所示, 包括用于与其它网络节点进行交互的接口, 还可以包括:
LAG信息发送模块 601 , 用于在网络初始化或网络 LAG属性发生变化时 将本节点的 LAG属性信息添加到将要发送到其它网络节点的 IS-IS LSP报文 中。 LAG信息收集模块 602, 用于从所述节点接口接收的 IS-IS LSP报文中, 提取出 LAG属性信息。
该网络节点还可以包括:
LAG信息数据库 603 , 用于存储所收到的 LAG属性信息。 所述 LAG属 性信息包括 LAG属性链路所包含的链路的个数。进一步,所述 LAG属性信息 还可以包括: LAG属性链路各个成员链路的带宽。
本实施例中都是以 IS-IS协议为例, 实际也可以对其他三层网络协议进行 类似的扩展,来实现本发明方案。本发明实施例提供的方案,可以在 MPLS-TP 网络或其他适用 OAM 的传输网络中实现 LAG属性信息的收集, 从而提高 OAM对链路检测的正确性, 为业务的服务质量的保证, 流量工程的部署都具 有重要的意义和作用。 本发明实施例或者其中的一部分, 可以利用软件实现,相应的软件程序可 以存储在可读取的存储介质中, 例如光盘, 硬盘, 软盘等。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求
1、 一种链路聚合组 LAG信息管理的方法, 其特征在于, 包括: 第一网络节点构造包含 LAG属性信息的链路状态路由协议报文, 并向网 络中其它节点发送所述报文;
收到所述包含 LAG属性信息的链路状态路由协议报文的节点记录所述报 文中的 LAG属性信息。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第一网络节点构造包 含 LAG属性信息的链路状态路由协议报文具体实现为:
第一网络节点构造包含 LAG属性信息的开放最短路径优先 OSPF链路状 态确认 LSA报文;
所述收到所述包含 LAG属性信息的链路状态路由协议报文的节点记录所 述 4艮文中的 LAG属性信息具体实现为:
收到所述包含 LAG属性信息的 OSPF LSA报文的节点记录所述报文中的 LAG属性信息。
3、 根据权利要求 2所述的方法, 其特征在于, 所述 LSA报文为 TE LSA 报文或自定义的 LAG LSA报文。
4、根据权利要求 3所述的方法, 其特征在于, 所述 LAG属性信息携带在 所述 TE LSA报文的链路 Link属性中, 或者作为新的属性直接携带在所述 TE LSA报文中, 或者作为属性直接携带在所述 LAG LSA报文中。
5、 根据权利要求 1所述的方法, 其特征在于, 所述第一网络节点构造包 含 LAG属性信息的链路状态路由协议报文具体实现为:
第一网络节点构造包含 LAG属性信息的中间系统到中间系统 IS-IS链路 状态分组 LSP报文, 并向网络中其它节点发送所述报文;
所述收到所述包含 LAG属性信息的链路状态路由协议报文的节点记录所 述 4艮文中的 LAG属性信息具体实现为:
收到所述包含 LAG属性信息的 IS-IS LSP报文的节点记录所述报文中的 LAG属性信息。
6、根据权利要求 5所述的方法, 其特征在于, 所述 LAG属性信息携带在 所述 IS-IS LSP报文的传递中间系统 IS可达性信息的属性中,或者作为新的属 性直接携带在所述 IS-IS LSP报文中。
7、 根据权利要求 1至 6中任意一项所述的方法, 其特征在于, 所述 LAG 属性信息包括:
LAG属性链路所包含的成员链路的个数。
8、 根据权利要求 1至 6中任意一项所述的方法, 其特征在于, 所述 LAG 属性信息包括:
LAG属性链路各个成员链路的带宽。
9、 根据权利要求 1至 6中任意一项所述的方法, 其特征在于, 所述 LAG 以所述第一网络节点为端点。
10、 一种网络节点, 包括用于与其它网络节点进行交互的接口, 其特征在 于, 还包括:
LAG信息发送模块,用于将本节点的 LAG属性信息添加到将要发送到其 它网络节点的链路状态路由协议报文中;
LAG信息收集模块, 用于从所述接口接收的链路状态路由协议报文中, 提取出 LAG属性信息。
11、根据权利要求 10所述的网络节点, 其特征在于, 所述 LAG信息发送 模块具体为用于将本节点的 LAG属性信息添加到将要发送到其它网络节点的 OSPF LSA 4艮文中的 LAG信息发送模块;
所述 LAG信息收集模块具体为用于从所述接口接收的 OSPF LSA报文中, 提取出 LAG属性信息的 LAG信息收集模块。
12、 根据权利要求 11 所述的网络节点, 其特征在于, 所述 LSA报文为
TE LSA报文或自定义的 LAG LSA报文。
13、根据权利要求 12所述的网络节点, 其特征在于, 所述 LAG属性信息 携带在所述 TE LSA报文的 Link属性中, 或者作为新的属性直接携带在所述 TE LSA报文中, 或者作为属性直接携带在所述 LAG LSA报文中。
14、 根据权利要求 10所述的网络节点, 包括用于与其它网络节点进行交 互的接口, 其特征在于, 还包括:
LAG信息发送模块,用于将本节点的 LAG属性信息添加到将要发送到其 它网络节点的 IS-IS LSP报文中;
LAG信息收集模块, 用于从所述接口接收的 IS-IS LSP报文中, 提取出 LAG属性信息。
15、根据权利要求 14所述的网络节点, 其特征在于, 所述 LAG属性信息 携带在所述 IS-IS LSP报文的传递 IS可达性信息的属性中,或者作为新的属性 直接携带在所述 IS-IS LSP报文。
16、 根据权利要求 14所述的网络节点, 其特征在于, 还包括:
LAG信息数据库, 用于存储所述 LAG信息收集模块所收到的 LAG属性 信息。
17、 根据权利要求 14至 16中任意一项所述的网络节点, 其特征在于, 所 述 LAG属性信息包括:
LAG属性链路所包含的链路的个数。
18、 根据权利要求 14至 16中任意一项所述的网络节点, 其特征在于, 所 述 LAG属性信息包括:
LAG属性链路各个成员链路的带宽。
PCT/CN2009/073479 2008-09-12 2009-08-25 一种链路聚合组信息管理的方法和网络节点 WO2010028570A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810216097.4 2008-09-12
CN200810216096.X 2008-09-12
CN200810216096A CN101674229B (zh) 2008-09-12 2008-09-12 一种链路聚合组信息管理的方法和网络节点
CN2008102160974A CN101674230B (zh) 2008-09-12 2008-09-12 一种链路聚合组信息管理的方法和网络节点

Publications (1)

Publication Number Publication Date
WO2010028570A1 true WO2010028570A1 (zh) 2010-03-18

Family

ID=42004796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073479 WO2010028570A1 (zh) 2008-09-12 2009-08-25 一种链路聚合组信息管理的方法和网络节点

Country Status (1)

Country Link
WO (1) WO2010028570A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010814A1 (en) * 1997-08-29 1999-03-04 Intel Corporation Link bundling in a network
CN1382354A (zh) * 1999-09-20 2002-11-27 诺基亚公司 报告通信链路信息
CN101014040A (zh) * 2007-02-08 2007-08-08 杭州华为三康技术有限公司 一种触发下游设备处理报文的方法及交换设备
CN101094157A (zh) * 2007-08-20 2007-12-26 中兴通讯股份有限公司 利用链路聚合实现网络互连的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010814A1 (en) * 1997-08-29 1999-03-04 Intel Corporation Link bundling in a network
CN1382354A (zh) * 1999-09-20 2002-11-27 诺基亚公司 报告通信链路信息
CN101014040A (zh) * 2007-02-08 2007-08-08 杭州华为三康技术有限公司 一种触发下游设备处理报文的方法及交换设备
CN101094157A (zh) * 2007-08-20 2007-12-26 中兴通讯股份有限公司 利用链路聚合实现网络互连的方法

Similar Documents

Publication Publication Date Title
CN107637031B (zh) 用于网络业务的路径计算单元中央控制器
Gredler et al. North-bound distribution of link-state and traffic engineering (te) information using bgp
JP5992602B2 (ja) IPv6ネットワークにおいてラベル配布プロトコル(LDP)を使用するためのシステムおよび方法
US11909596B2 (en) Connections and accesses for hierarchical path computation element (PCE)
JP4109692B2 (ja) ラベルスイッチネットワークにおけるセッション確立方法及びラベルスイッチノード
US8559318B2 (en) Method, node and system for obtaining link aggregation group information
WO2010051699A1 (zh) 建立标签交换路径的方法、系统及网络节点
EP2625829A1 (en) System and method for computing a backup egress of a point-to-multi-point label switched path
WO2015055016A1 (zh) 网元设备配置和管理方法、装置及网元设备
WO2005112350A1 (fr) Procede de gestion de chemin dans un reseau prive virtuel utilisant le protocole ipv6
WO2008131686A1 (fr) Procédé et dispositif périphérique de fournisseur pour produire et traiter des données de pseudocâble
EP2509261A1 (en) Monitoring of a network element in a packet-switched network
EP3975514A1 (en) Targeted neighbor discovery for border gateway protocol
WO2009074093A1 (fr) Procédé et appareil de détermination de la topologie et de gestion automatique des ressources dans un réseau pbb
WO2011127849A2 (zh) 一种数据流传送方法及网络设备
WO2010124537A1 (zh) 节点关联通道能力的协商方法及节点设备
WO2015085746A1 (zh) 虚拟路由转发实例处理方法及装置
CN101674229B (zh) 一种链路聚合组信息管理的方法和网络节点
WO2009076848A1 (zh) 一种pbb网络中自动拓扑发现及资源管理的方法和装置
US20220385560A1 (en) Network-topology discovery using packet headers
CN107231249B (zh) 转发节点的物理拓扑信息的获取方法、控制器和转发节点
WO2009012703A1 (fr) Procédé, système et routeur de transmission basés sur le protocole de routage inter-domaine (bgp)
WO2010028570A1 (zh) 一种链路聚合组信息管理的方法和网络节点
WO2015054864A1 (zh) 二层虚拟专用网络业务的建立方法和设备
Talaulikar RFC 9552: Distribution of Link-State and Traffic Engineering Information Using BGP

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09812636

Country of ref document: EP

Kind code of ref document: A1