WO2010027007A1 - Ultrasonic actuator - Google Patents

Ultrasonic actuator Download PDF

Info

Publication number
WO2010027007A1
WO2010027007A1 PCT/JP2009/065387 JP2009065387W WO2010027007A1 WO 2010027007 A1 WO2010027007 A1 WO 2010027007A1 JP 2009065387 W JP2009065387 W JP 2009065387W WO 2010027007 A1 WO2010027007 A1 WO 2010027007A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
piezoelectric vibrator
rotor
ultrasonic actuator
receiving portion
Prior art date
Application number
PCT/JP2009/065387
Other languages
French (fr)
Japanese (ja)
Inventor
勝一 浦谷
茂昭 栃本
昭広 沖
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2010527808A priority Critical patent/JP5152336B2/en
Publication of WO2010027007A1 publication Critical patent/WO2010027007A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes
    • H02N2/004Rectangular vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/202Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
    • H10N30/2023Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement having polygonal or rectangular shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Definitions

  • the present invention relates to an ultrasonic actuator that drives a moving body by vibration of a piezoelectric vibrator having a piezoelectric element.
  • the ultrasonic actuator is configured such that a fixed portion including a piezoelectric vibrator having a piezoelectric element and a moving body are in contact with each other, and the moving body is driven by the vibration of the piezoelectric vibrator. Specifically, a traveling wave is generated on the surface of the fixed part by the vibration of the piezoelectric vibrator, and the fixed part comes into contact with the moving body only at the top of the wave. Since the top of the wave is rotating elliptically, the moving body is driven so as to be pushed by the fixed part. Since the ultrasonic actuator is driven in this manner, there is a possibility that slip occurs between the fixed portion and the moving body, and it is necessary to control the moving amount of the moving body.
  • a method of providing a position detection device such as a rotary encoder has been used. That is, the moving amount of the moving body is detected by the position detection device, and the moving body is controlled by feedback control.
  • attaching the rotary encoder has a problem that the space for installing the ultrasonic actuator increases.
  • the invention described in Patent Document 1 is an ultrasonic actuator including a fixed portion and a moving body, and a non-uniform portion is formed by a slot or a protrusion on the moving body.
  • the nonuniform portion is formed in order to emphasize the change in the envelope of the peak value of the drive current supplied to the piezoelectric vibrator.
  • Patent Document 2 discloses an ultrasonic motor composed of a vibrator and a moving body, and 2 arc protrusions or ring-shaped protrusions 2 facing each other on the lower surface of the moving body. Heterogeneous portions are formed at one location, thereby forming a non-uniform portion for detecting the position and rotational speed of the moving body.
  • the vibrator is provided with vibration detection means, which compares the fluctuation period of the phase difference between the detection signal detected by the vibration detection means and the applied voltage to obtain the fluctuation period, and detects the position and rotation speed from the fluctuation period. ing.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an ultrasonic actuator that is small and capable of accurate position control.
  • An ultrasonic actuator includes a piezoelectric vibrator that generates vibration by an electric signal, a vibrating body having a curved portion or a needle-like protrusion, and a contact portion that transmits the vibration.
  • a piezoelectric high vibration receiving portion that is easy to receive vibration from the protrusion and a low contact receiving portion that is difficult to receive vibration from the protruding portion; and the piezoelectric vibration through the high vibration receiving portion.
  • a calculation unit that calculates position information of the moving body based on a state change
  • a control unit that controls driving of the moving body based on the position information calculated by the calculation unit.
  • the resonance state change of the piezoelectric vibrator is detected, the position information such as the moving amount and position of the moving body is calculated, and the moving amount and the like of the moving body are thereby controlled.
  • a small ultrasonic actuator can be provided without the need.
  • the contact area of the moving body with the vibration contacted portion is extremely small, and the force from the moving body is a protrusion close to point contact.
  • the resonance state change of the piezoelectric vibrator can be detected with high resolution. Therefore, a phase difference appears remarkably, a change in phase difference can be detected with higher accuracy, and position control with higher accuracy can be performed.
  • FIGS. 4A and 4B are views showing an external appearance of a vibrating body provided in the ultrasonic actuator, FIG. 4A is a plan view of the vibrating body, and FIG. 4B is a diagram in which drive electrodes of the vibrating body are installed.
  • FIG. 4C is a side view of the vibrating body on which the vibration detection electrode is installed.
  • FIG. 5A is a cross-sectional view showing an electrode configuration in each layer of the piezoelectric vibrator of the vibrator
  • FIG. 5A is a cross-sectional view taken along the line VA-VA of FIG. 4B
  • FIG. It is a VB-VB sectional view taken on the line B).
  • FIGS. 7A and 7B are conceptual diagrams illustrating a rotational movement of a protrusion provided on a contact portion of the vibrating body
  • FIG. 7A is a side view of the contact portion
  • FIG. 7B is a plan view of the contact portion.
  • It is a disassembled perspective view of the rotor and the contact portion of the ultrasonic actuator.
  • FIG. 17A is a graph showing the phase difference between the driving current and the driving voltage in the piezoelectric vibrator
  • FIG. 17A is a graph showing the waveforms of the driving current and the driving voltage in the first embodiment.
  • FIG. 6 is a circuit diagram showing a part of a specific circuit configuration of an ultrasonic actuator according to Embodiment 2.
  • FIG. FIG. 22A is a graph showing the drive current and drive voltage of the ultrasonic actuator according to Embodiment 2
  • FIG. 22A is a graph showing the drive current and drive voltage in the first embodiment
  • FIG. It is a graph which shows the drive current and drive voltage in a 2nd form.
  • FIG. 23A is a graph showing an output signal from the logic circuit of the ultrasonic actuator according to Embodiment 2 and a signal after low-pass filter processing
  • FIG. 23A is a graph in the first embodiment
  • 6 is a graph showing a signal after a high-pass filter process and a signal after a low-pass filter process of an ultrasonic actuator according to a second embodiment.
  • FIG. 1 is a diagram for explaining a configuration of a lens driving unit using the ultrasonic actuator according to the first embodiment.
  • the lens driving unit 300 is used for AF and zooming of digital cameras and digital video cameras, and driving of aberration correction of a pickup lens of a DVD.
  • a lens support portion 22b that is partially screwed with a lead screw 21 that is integrally coupled to the rotation shaft of the ultrasonic actuator 100 according to the first embodiment, and is supported by the lens support portion 22b.
  • the lens 22, two guide rails 22 a installed in parallel with the lead screw 21 that controls the movement of the lens 22, a case 23 covering these, and the ultrasonic actuator 100 are provided.
  • the electrical components of the ultrasonic actuator 100 are not shown.
  • a through hole is formed in the lens support portion 22b that supports the outer peripheral portion of the lens 22, and a guide rail 22a is passed through the through hole, and the lens support portion 22b is connected to the guide rail 22b. Can move only along the direction.
  • the lens support portion 22b is screwed with the lead screw 21, and the lens support portion 22b is driven along the guide rail 22a as the lead screw 21 rotates about its axis.
  • the lens driving unit 300 by driving the ultrasonic actuator 100, the lead screw 21 is rotated clockwise or counterclockwise, whereby the lens support portion 22b integrated with the lens 22 is moved in the horizontal direction in FIG. Moving. That is, the lens driving unit 300 constitutes a linear movement lens feed mechanism.
  • the ultrasonic actuator 100 is used for the lens driving unit 300, for example, but is not limited thereto, and can be used for various other purposes.
  • FIG. 2 is a view for explaining the mechanical configuration of the ultrasonic actuator.
  • the electrical configuration of the ultrasonic actuator is not shown.
  • the ultrasonic actuator 100 includes a moving body having a contacted portion, that is, a rotor 1, a contact portion 2 a having a protrusion 2 c that contacts the contacted portion of the rotor 1, and a piezoelectric vibrator 2 b.
  • a vibrating body (stator) 2 a weight portion 5 installed at an end of the vibrating body 2, a rotating shaft 3 installed integrally with the rotor 1 at the rotation center of the rotor 1, a bearing 27 of the rotating shaft 3,
  • a case 7 that covers them, a pressurizing unit 6 that is connected to the bottom surface of the case 7 and the vibrating body 2 and includes an elastic body such as a spring that presses the vibrating body 2 against the rotor 1 with a predetermined urging force;
  • the connected support frame 24, a cap 26 installed so as to penetrate the support frame 24, and a bearing 25 that is a sphere that is rotatably fitted in a recess 26 a formed in the cap 26.
  • the rotor 1 has a disk shape.
  • the rotating shaft 3 is the center of the rotor 1 and is disposed so as to extend in a direction perpendicular to the surface of the disk.
  • the rotating shaft 3 is connected to the rotor 1 integrally or by caulking or the like.
  • the vibrating body 2 includes a disk-shaped contact portion 2a centering on the rotation shaft 3 and a piezoelectric vibrator 2b joined to the contact portion 2a.
  • the contact portion 2 a has a protrusion 2 c, and the protrusion 2 c comes into contact with the rotor 1.
  • the contact portion 2a including the protrusion 2c is made of a material having high wear resistance such as ceramics such as alumina and zirconia, cemented carbide, and the like. Is formed.
  • the contact portion 2a is fixed to the piezoelectric vibrator 2b using an adhesive having high rigidity and strong adhesive force such as epoxy.
  • the piezoelectric vibrator 2b is configured by alternately laminating piezoelectric thin plates exhibiting piezoelectric characteristics and internal electrodes. In consideration of ease of manufacture, the piezoelectric vibrator 2b preferably has a rectangular parallelepiped shape.
  • the piezoelectric thin plate for example, a thin plate of a piezoelectric element such as a piezoelectric ceramic made of PZT (lead zirconate titanate) or the like may be used.
  • the piezoelectric vibrator 2b vibrates by sending a predetermined electric signal to the piezoelectric vibrator 2b via the internal electrode. Due to the vibration, the contact portion 2a connected to the piezoelectric vibrator 2b vibrates, and the protrusion 2c in contact with the rotor 1 also vibrates.
  • the uppermost part of the projection 2c is formed in a curved surface or a needle shape, and makes the contact area with the rotor 1 as small as possible.
  • the bearing 27 rotatably supports the rotary shaft 3.
  • the rotary shaft 3 is supported in the radial direction by the bearing 27.
  • the weight part 5 is installed at the end opposite to the end joined to the contact part 2a.
  • the vibration balance of the vibrating body 2 is improved.
  • the vibration of the protrusion part 2c can be increased.
  • the weight portion 5 is formed of tungsten having a high specific gravity, copper, or an iron-based tungsten alloy.
  • the rotor 1, the vibrating body 2, the rotating shaft 3, the bearing 27, the weight portion 5, and the pressurizing portion 6 are disposed in the case 7.
  • the rotating shaft 3 protrudes from the inside of the case 7 to the outside.
  • a part of the bearing 27 is exposed to the outside of the case 7.
  • the vibrating body 2 is restricted from rotating with respect to the case 7, and is pressed from the bottom surface of the case 7 toward the rotor 1 by the pressurizing unit 6. Thereby, the contact part 2a is in contact with the rotor 1 in a state where high pressure is applied.
  • the support frame 24 is installed on the end surface of the case 7 on the side from which the rotary shaft 3 protrudes, and the rotary shaft 3 protruding from the case 7 extends into the support frame 24.
  • a concave surface is formed at the end of the rotating shaft 3, and a bearing 25, which is a sphere fitted in a recess 26 a of a cap 26 installed on the support frame 24, is disposed so as to fit in the concave surface, and the rotating shaft 3 rotates.
  • the bearing 25 is freely supported.
  • the rotary shaft 3 is supported by the bearing 25 in the radial and thrust directions.
  • the cap 26 is threadedly engaged with the support frame 24 and penetrates. That is, the support frame 24 and the cap 26 are threaded, and the position of the cap 26 in the direction along the rotation shaft 3 can be adjusted by tightening or loosening the cap 26.
  • the rotating shaft 3 coupled to the rotor 1 receives a reaction force from the bearing 25, but the reaction force is at the center of rotation of the rotating shaft 3. Therefore, the friction loss between the rotating shaft 3 and the bearing 25 which is a sphere can be minimized.
  • the position of the cap 26 is adjusted to adjust the pressing force between the vibrating body 2 and the rotor 1. And if adjustment is completed, the position of the cap 26 will be fixed by adhere
  • FIG. 3 is a diagram for explaining an electrical configuration of the ultrasonic actuator.
  • the ultrasonic actuator 100 includes a control unit 11, a drive voltage generation unit 12, a vibration state detection unit 14, a detection voltage conversion unit 15, and a drive voltage other than those shown in FIG. 2.
  • a conversion unit 16 and a calculation unit 17 are provided.
  • the mechanical configuration shown in FIG. 2 shows members necessary for the description of the electrical configuration, and the other components are not shown.
  • the control unit 11, the drive voltage generation unit 12, the drive current generation unit 13, the detection voltage conversion unit 15, the drive voltage conversion unit 16, and the calculation unit 17 are, for example, a resistor, a capacitor, and a coil on a substrate.
  • An electronic element such as is arranged.
  • the control unit 11 generates a drive signal that is an electrical signal so that the rotor 1 is rotationally driven. Specifically, the rotor 1 is driven so that the drive signal is driven by the protrusion 2c by vibrating the piezoelectric vibrator 2b so that the protrusion 2c (not shown) of the contact portion 2a generates an elliptical rotational motion. Moving.
  • the drive voltage generator 12 generates a drive voltage according to the drive signal instructed by the controller 11.
  • the drive current generation unit 13 since the drive control of the piezoelectric vibrator 2b is performed by a current, the drive current generation unit 13 generates a drive current based on the drive voltage.
  • the drive current generated by the drive current generator 13 is output from the drive current generator 13 and input to the piezoelectric vibrator 2b.
  • the vibration state detection unit 14 detects a vibration detection voltage indicating the vibration state of the piezoelectric vibrator 2b. Specifically, when the piezoelectric vibrator 2b vibrates, the vibration state detection unit 14 outputs a voltage (vibration detection voltage) that is a signal indicating the vibration state of the piezoelectric vibrator 2b. Note that the vibration state of the piezoelectric vibrator 2b changes according to the resonance state of the piezoelectric vibrator 2b.
  • the detection voltage conversion unit 15 converts the vibration detection voltage output from the vibration state detection unit 14 into a pulse signal and inputs the pulse signal to the calculation unit 17.
  • the drive voltage conversion unit 16 converts the drive voltage generated by the drive voltage generation unit 12 into a pulse signal and inputs the pulse signal to the calculation unit 17. As described above, the arithmetic processing is facilitated by converting the pulse signal.
  • the calculation unit 17 calculates the phase difference between the vibration detection voltage from the detection voltage conversion unit 15 and the drive voltage from the drive voltage conversion unit 16.
  • the calculation unit 17 calculates position information such as the movement amount of the rotor 1 based on the calculated phase difference, and instructs the control unit 11.
  • the control unit 11 generates a drive signal in consideration of the position information from the calculation unit 17.
  • the position information is information calculated by the calculation unit 17 regarding the movement amount, position, etc. of the rotor 1.
  • the vibration state detection unit 14 is described separately from the piezoelectric vibrator 2b in consideration of easy viewing.
  • the vibration state detection unit 14 is installed as an internal electrode of the piezoelectric vibrator 2b. Also good. Thereby, the vibration state of the piezoelectric vibrator 2b can be directly detected, and high-precision detection is possible.
  • the vibration state detection part 14 is installed in the inside of the piezoelectric vibrator 2b is demonstrated.
  • FIG. 4 is a view showing the appearance of a vibrating body provided in the ultrasonic actuator
  • FIG. 4 (A) is a plan view of the vibrating body
  • 4 (B) is a diagram showing a drive electrode of a piezoelectric vibrator installed
  • FIG. 4C is a side view of the side on which the vibration detection electrode of the piezoelectric vibrator is installed.
  • the vibrating body 2 includes a piezoelectric vibrator 2b having a configuration in which a circular contact portion 2a provided with a protrusion 2c and a piezoelectric thin plate are stacked via an internal electrode. It has. For example, as shown in FIG.
  • the protrusions 2c have a substantially spherical surface, and are formed at three equal intervals (120 degree intervals) concentrically with the central axis of the contact portion 2a. Each vertex of these protrusions 2 c is in contact with the rotor 1.
  • the protrusion 2c may be formed in a cone shape such as a cone or a pyramid, the uppermost portion may be a needle shape, the lower portion may be square, and the upper portion may be hemispherical.
  • the uppermost portion of the protrusion 2c is curved or needle-shaped, and the protrusion 2c may be in contact with the contacted portion on the lower surface of the rotor 1 with a minute area as close to point contact (or line contact) as possible.
  • -2, 2b-3, 2b-4, vibration detection electrode 2b-5, and ground electrode 2b-6 are provided on each side surface of the piezoelectric vibrator 2b.
  • drive electrodes 2b-1, 2b-2, 2b-3, 2b-4, vibration detection electrode 2b-5, and ground electrode 2b-6 are not shown, but lead wires, flexible wires, etc. are solder or conductive. It is joined by an adhesive or the like to send and receive signals.
  • FIG. 5 is a cross-sectional view showing the electrode configuration in each layer of the piezoelectric vibrator according to Embodiment 1, and FIG. 5 (A) is a cross-sectional view taken along the line VA-VA of FIG. 4 (B). ) Is a cross-sectional view taken along line VB-VB in FIG.
  • the piezoelectric vibrator 2b includes a piezoelectric thin plate 20 on which the internal electrodes 2d to 2h shown in FIGS. 5A and 5B are formed, and a piezoelectric thin plate on which the internal electrode 2i that is the vibration state detector 14 is formed.
  • 20 is a multilayer structure in which 20 and 20 are alternately stacked.
  • the internal electrode layer having the internal electrodes 2d to 2h and the internal electrode layer having the internal electrode 2i are alternately laminated, and the piezoelectric thin plate 20 is inserted between the internal electrode layers.
  • the internal electrodes 2d to 2i are formed by printing silver palladium on the piezoelectric thin plate 20.
  • the internal electrodes 2d to 2g are formed in the vicinity of each corner of the piezoelectric thin plate 20, respectively.
  • the internal electrode 2h is disposed on at least a part of the portion on the piezoelectric thin plate 20 where the portion where any of the protrusions 2c is arranged is moved along the direction perpendicular to the rotor 1. With this arrangement, the internal electrode 2i can accurately detect the vibration state of the piezoelectric vibrator 2b.
  • the vibration detection voltage is output from the internal electrode 2i according to the vibration of the piezoelectric vibrator 2b.
  • the internal electrode 2 i is formed on substantially the entire surface of the piezoelectric thin plate 20.
  • the internal electrodes 2d, 2e, 2f, and 2g are connected to the drive electrodes 2b-1, 2b-2, 2b-3, and 2b-4, respectively.
  • the internal electrode 2h is connected to the vibration detection electrode 2b-5.
  • the internal electrode 2i is connected to the ground electrode 2b-6.
  • the drive electrodes 2b-1, 2b-2, 2b-3, 2b-4 are connected to the drive current generator 13, the vibration detection electrode 2b-5 is connected to the detection voltage converter 15, and the ground electrode 2b-6 is Grounded.
  • connection and grounding are not shown, but are performed via lead wires, FPC (flexible printed wiring board), or the like.
  • FPC flexible printed wiring board
  • FIG. 6 is a conceptual diagram showing the bending primary mode of the vibrating body.
  • 7A and 7B are diagrams for explaining the rotation of the protruding portion.
  • FIG. 7A is a side view of the contact portion
  • FIG. 7B is a plan view of the contact portion.
  • the bending primary mode is excited 90 degrees out of phase in the piezoelectric vibrator 2b.
  • the piezoelectric vibrator 2b which is a rectangular parallelepiped, repeats the primary bending deformation motion to the left and right by two nodes P as shown in FIG.
  • the high-frequency drive signals applied to the drive electrodes 2b-1, 2b-2, 2b-4, and 2b-3 are 90 degrees out of phase with each other. Is generated by the internal electrodes 2d, 2e, 2g, and 2f while the vibration in the bending primary mode is shifted.
  • the tip of the piezoelectric vibrator 2b joined to the contact portion 2a performs a revolving motion (oscillation vibration).
  • the protrusion 2c of the contact portion 2a installed on the piezoelectric vibrator 2b is indicated by an arrow in FIGS. 7A and 7B.
  • Elliptical vibration is performed. Note that the phases of the elliptical vibrations of the adjacent protrusions 2c are shifted by 120 degrees.
  • the rotor 1 is pressed against the contact portion 2a. Therefore, the friction coefficient between the rotor 1 and the protrusion 2c is large. Therefore, each protrusion 2c performs the above-described elliptical vibration whose phase is shifted by 120 degrees, so that the rotor 1 is rotationally driven so as to be moved by the protrusion 2c.
  • the rotor 1 has a structure in which the resonance state of the piezoelectric vibrator 2b changes according to the position of the piezoelectric vibrator 2b with respect to the rotor 1.
  • the rotor 1 has a configuration in which different forces are periodically applied to the piezoelectric vibrator 2b when the rotor 1 is rotationally driven.
  • a vibration high receiving portion that easily receives vibration from the protrusion portion 2c of the contact portion 2a and a vibration low receiving portion that hardly receives vibration from the protrusion portion 2c of the contact portion 2a are formed.
  • the contacted part of the rotor is not uniform.
  • the vibration high receiving portion and the low vibration receiving portion of the rotor 1 should not be made uniform in the shape of the surface in contact with the projection 2c, or the vibration high receiving portion and the low vibration receiving portion of the rotor 1 may be made of different materials. Thus, the phase difference between the driving voltage and the driving current is changed.
  • the vibration high receiving portion of the rotor 1 is formed by a flat surface that comes into contact with the protruding portion 2c so as to receive vibration from the protruding portion 2c, and the vibration low receiving portion constitutes a vibration high receiving portion.
  • a groove is formed on the flat surface so as not to come into contact with the protrusion 2c so as not to receive vibration from the protrusion 2c.
  • a plurality of grooves are formed for accurate position control.
  • the high vibration receiving portion of the rotor 1 has a rough surface to increase the coefficient of friction to make it easy to receive vibration from the protrusion 2c
  • the low vibration receiving portion has a small surface roughness to make it slip easily and vibrate. It may be difficult to receive.
  • the high vibration receiving portion of the rotor 1 is made of a vibrating material such as a high density material or a low elastic material so as to be easily subjected to vibration from the protrusion 2c, and the low vibration receiving portion is a low density material or elastic. It may be made of a vibration-absorbing material such as a high-grade material so that it is difficult to receive vibration from the protrusion 2c.
  • the phase difference between the drive voltage and drive current of the drive signal in the piezoelectric vibrator 2b is changed by making the contacted portion of the rotor 1 in contact with the contact portion 2a of the vibrating body 2 non-uniform.
  • the rotor 1 since the rotor 1 has the above structure when the rotor 1 is driven, there are a plurality of states in which different forces are applied to the vibrating piezoelectric vibrator 2b. Since the force applied to the piezoelectric vibrator 2b varies depending on the form of the rotor 1 where the piezoelectric vibrator 2b is located, the resonance state of the piezoelectric vibrator 2b changes.
  • the ultrasonic actuator 100 detects the amount of movement of the rotor 1 based on the change in the resonance state.
  • FIG. 8 is an exploded perspective view of the rotor 1 and the contact portion 2a.
  • FIG. 9 is a diagram showing the shape of the contacted portion of the rotor 1.
  • FIG. 10 is an enlarged cross-sectional view of the main part of the contacted portion of the rotor 1.
  • FIG. 11 is an enlarged cross-sectional view of a main part showing another structure of the contacted portion of the rotor 1.
  • FIG. 12 is an enlarged cross-sectional view of a main part showing still another structure of the contacted portion of the rotor 1.
  • the contact portion 2a of the vibrating body 2 (not shown) includes a plurality of protrusions 2c on the surface on the rotor 1 side.
  • a predetermined urging force is applied between the rotor 1 and the contact portion 2a, and these are in close contact with each other.
  • the contact portion 2a is in contact with the contacted portion of the rotor 1 at the protrusion 2c. Therefore, the force is applied only from the rotor 1 to the protrusion 2c, and the force is not applied to the entire contact portion 2a.
  • the grooves 1a are formed at equal intervals along the circumference. That is, the location where the groove 1 a is formed and the location where the groove 1 a is not formed are alternately arranged along the circumference of the rotor 1.
  • the protrusion 2c periodically passes through the groove 1a.
  • the force applied to the contact portion 2a is different between the case where the protrusion 2c is located at the location where the groove 1a is formed (vibration low receiving portion) and the location where the groove 1a is not formed (vibration high accepting portion). .
  • the resonance state of the piezoelectric vibrator 2b changes.
  • the rotor 1 has a thin plate 1b attached so as to cover the surface on the contact portion 2a side.
  • the rotor 1 is formed of a metal such as stainless steel, and the groove 1a is formed in the rotor 1 by machining or etching.
  • the thin plate 1b is also formed of a metal such as stainless steel.
  • the thin plate 1b is preferably subjected to nitriding treatment or the like in order to improve wear resistance.
  • the rotor 1 and the thin plate 1b may be joined by forming a thin adhesive layer between them, or the vicinity of the center may be joined by spot welding or the like.
  • the protrusion 2c and the thin plate 1b come into contact with each other and the thin plate 1b is moved by the elliptical vibration of the protrusion 2c, so that the rotational drive is reliably transmitted from the thin plate 1b to the rotor 1.
  • the portion where the groove 1a is formed is a cavity
  • the spring constant of the thin plate 1b is different between the portion where the groove 1a is formed and the portion where the groove 1a is not formed. That is, in the thin plate 1b, the location where the groove 1a is formed is less rigid than the location where the groove 1a is not formed.
  • the resonance frequency of the piezoelectric vibrator 2b is lowered.
  • the resonance state of the piezoelectric vibrator 2b changes according to the position of the protrusion 2c with respect to the contacted portion of the rotor 1.
  • a vibration high receiving portion having a non-sliding surface having a high friction coefficient and a vibration low receiving portion having a sliding surface having a low friction coefficient are formed on the same flat surface of the contacted portion in contact with the protrusion 2c in the rotor 1.
  • the low vibration receiving portion is formed not by a groove but by a low friction region extending along the radial direction through the center of the rotor, and regions having different friction coefficients are alternately arranged along the circumference of the rotor 1.
  • the surface roughness may be changed.
  • the force applied to the protrusion 2c varies depending on the friction coefficient of the region where the protrusion 2c is located. Therefore, since the force applied to the piezoelectric vibrator 2b is also different, the resonance state of the piezoelectric vibrator 2b changes.
  • the vibration low receiving portion 1 c formed of a material having a lower density, lower mass, or higher elasticity than the material forming the vibration high receiving portion is provided along the circumference of the rotor 1. May be arranged periodically. Further, the formation range of the low vibration receiving portion may be widened as shown in FIG. For example, the vibration low receiving portion 1c may occupy a half circumference of the rotor 1. With such a configuration, the contacted portion in contact with the protrusion 2c in the rotor 1 is formed of a plurality of different materials, and the force applied to the protrusion 2c varies depending on the material of the region where the protrusion 2c is located.
  • the resonance state of the piezoelectric vibrator 2b changes.
  • the material of the vibration high receiving portion and the vibration low receiving portion are different from each other, and the surfaces that come into contact with the protrusions 2c are the same flat surface, so that no rattling occurs when the rotor 1 is driven.
  • the surface of the rotor 1 on the side of the protrusion 2c may be covered with a thin plate as shown in FIG.
  • the resonance state of the piezoelectric vibrator 2b changes according to the relative position of the rotor 1. Since the groove 1a and the regions having different friction coefficients are formed, two types of regions are periodically arranged along the circumference of the rotor 1, so that the resonance state of the piezoelectric vibrator 2b can be changed. By monitoring, the position information of the rotor 1 can be calculated. Note that all of the protrusions 2c need to be located in one of the two types of regions at the same time. The shape of the surface of the rotor 1 that is in contact with the protrusion 2c needs to be configured to have such a relationship.
  • the position is set as the origin position of the rotor 1. May be. That is, three types of different forms may be provided in the contacted portion of the rotor 1 that is in contact with the protruding portion 2c, one of which may be formed in only one place, and the remaining two types may be formed alternately alternately. Also, more than three types of different forms may be formed on the contacted portion of the rotor 1.
  • heterogenous form is not limited to the example mentioned above. Any device that can change the resonance state of the piezoelectric vibrator 2b may be used.
  • FIG. 13 is a graph showing the relationship between the vibration detection voltage and the frequency of the drive signal
  • FIG. 14 is a graph showing the relationship between the phase difference between the vibration detection voltage and the drive voltage and the frequency of the drive signal.
  • the vertical axis represents voltage and the horizontal axis represents frequency.
  • FIG. 13 shows a case where the groove 1a is formed in the contacted portion of the rotor 1 and the thin plate 1b is formed as shown in FIG.
  • the relationship between the amplitude of the voltage and the frequency is shown for the case where the portion 2c is located at a location where the groove 1a is not formed.
  • the solid line indicates the case where the protrusion 2c is located at the position where the groove 1a is formed
  • the broken line indicates the case where the protrusion 2c is located where the groove 1a is not formed.
  • the amplitude of the vibration detection voltage is different between the case where the protrusion 2c is located at the position where the groove 1a is not formed and the case where the protrusion 2c is located at the position where the groove 1a is formed.
  • the frequency at the maximum value is the resonance point in each line. Since the solid line has a lower frequency at the maximum value, the resonance frequency of the piezoelectric vibrator 2b is lower when the protrusion 2c is located at the position where the groove 1a is formed. Note that the phase difference between the vibration detection voltage and the drive voltage changes greatly in the vicinity of the resonance point.
  • FIG. 14 shows a case in which the groove 1a is formed in the contacted portion of the rotor 1 and the thin plate 1b is formed as shown in FIG. In the case where the part 2c is located at a location where the groove 1a is not formed, the relationship between the phase difference between the vibration detection voltage and the drive voltage and the frequency of the drive signal is shown.
  • a solid line indicates a case where the protruding portion 2c is positioned at a position where the groove 1a is formed, and a broken line indicates a case where the protruding portion 2c is positioned where the groove 1a is not formed.
  • the phase difference is different between the case where the protrusion 2c is located at a position where the groove 1a is not formed and the case where the protrusion 2c is located where the groove 1a is formed.
  • the vibration detection voltage and the phase difference differ depending on the position of the protrusion 2c with respect to the rotor 1, the change in the resonance state can be detected by calculating them based on the vibration detection voltage.
  • the control unit 11 outputs a drive signal that is an electric signal for a command to drive the rotor 1.
  • the drive voltage generation unit 12 generates a drive voltage according to the drive signal from the control unit 11. At this time, the generated drive voltage is detected by the drive voltage converter 16 and converted into a pulse signal. Further, the drive voltage is input to the drive current generation unit 13, and the drive current generation unit 13 generates a drive current corresponding to the drive voltage.
  • the drive voltage and drive current are alternating current.
  • the drive current is input to the piezoelectric vibrator 2b, and when the piezoelectric vibrator 2b vibrates, the protrusion 2c performs elliptical vibration, thereby driving the rotor 1.
  • the vibration detection voltage generated at this time is detected by the vibration state detection unit 14 (internal electrode 2h) and output to the detection voltage conversion unit 15.
  • the detection voltage converter 15 converts the vibration detection voltage into a pulse signal.
  • the calculating part 17 calculates
  • the phase difference is detected as signal information (level) by converting the pulse signal. Thereby, the phase difference can be easily detected.
  • the calculation unit 17 may calculate position information such as the movement amount of the rotor 1 from the amplitude of the vibration detection voltage.
  • Each protrusion 2c is in contact with the contacted portion of the rotor 1 at its apex. Therefore, in the detection of different regions, it is possible to detect accurately and with high accuracy even in the vicinity of the boundary between them.
  • the rotor 1 has three different forms. One is the origin form, and the rest is the first form and the second form. Therefore, when the protrusion 2c is located in each form, the resonance states are different from each other.
  • the first form and the second form are alternately formed at a predetermined angle with respect to the center of the rotor 1, and the number of passes through the first form and the second form is counted. That's fine.
  • the rotation angle of the rotor 1 can be detected from the predetermined angle and the number of passes. In this way, the relative position relationship between the vibrating body 2 and the rotor 1 can be detected.
  • the origin form can also be detected, it is possible to easily detect how many times the rotor 1 has rotated by counting how many times the origin form has been passed.
  • the absolute position relationship between the protrusion 2c and the rotor 1 can be detected.
  • position information such as a movement amount and a movement amount of the rotor 1 can be detected.
  • the contact portion 2a is in contact with the contacted portion of the rotor 1 at the apex of the projection 2c, so that the vibration state change (resonance state change) of the piezoelectric vibrator 2b is digitally changed. That is, it can be detected with high resolution. Changes in the vibration detection voltage and the phase difference appear remarkably, the phase difference can be easily detected, and more accurate position control is possible.
  • the position information of the rotor 1 detected by the calculation unit 17 is sent to the control unit 11, and the control unit 11 considers the position information of the rotor 1 detected by the calculation unit 17, and The drive can be controlled.
  • the ultrasonic actuator 100 capable of highly accurate position control can be realized without attaching a rotary encoder or the like.
  • FIG. 15 is a block diagram showing an electrical configuration of the ultrasonic actuator 200 according to the second embodiment.
  • the ultrasonic actuator 200 includes a rotor 1 that is a moving body, a vibrating portion (stator) having a contact portion 2 a having a protrusion 2 c (not shown) that contacts the rotor 1, and a piezoelectric vibrator 2 b. ) 2, the rotation shaft 3 integrally installed with the rotor 1 at the rotation center of the rotor 1, a control unit 11, a drive voltage generation unit 12, a drive current generation unit 13, a drive current detection unit 18, A drive current conversion unit 19, a drive voltage conversion unit 16, and a calculation unit 17 are provided.
  • the control unit 11, the drive voltage generation unit 12, the drive current generation unit 13, the drive current detection unit 18, the drive current conversion unit 19, the drive voltage conversion unit 16, and the calculation unit 17 are, for example, on a substrate.
  • Electronic elements such as resistors, capacitors and coils are arranged.
  • the mechanical configuration of the ultrasonic actuator 200 is the same as that of the ultrasonic actuator 100 according to the first embodiment. However, since the ultrasonic actuator 200 does not need to detect the vibration state, the vibration detection electrode 2b-5 and the internal electrode 2h connected to the vibration state detection unit shown in FIGS. 4 and 5 are provided. Absent.
  • the control unit 11 generates a drive signal that is an electrical signal so that the rotor 1 is rotationally driven.
  • the drive signal causes elliptical vibration to occur in the protrusion 2c installed on the contact portion 2a of the vibrating body 2.
  • the protrusion 2c performs elliptical vibration as shown in FIG. 7 due to the vibration of the piezoelectric vibrator 2b.
  • the rotor 1 is driven so as to be pushed by the protrusion 2c.
  • the drive voltage generator 12 generates a drive voltage according to the drive signal instructed by the controller 11.
  • the drive current generation unit 13 since the drive control of the piezoelectric vibrator 2b is performed by a current, the drive current generation unit 13 generates a drive current based on the drive voltage.
  • the drive current generated by the drive current generator 13 is output from the drive current generator 13 and input to the piezoelectric vibrator 2b.
  • the drive current detector 18 detects the drive current, and specifically detects the waveform and value of the drive current.
  • the drive current detector 18 is installed between the drive current generator 13 and the piezoelectric vibrator 2b and detects the drive current in the piezoelectric vibrator 2b.
  • the drive current converter 19 converts the drive current detected by the drive current detector 18 into a pulse signal and inputs it to the calculator 17.
  • the drive voltage conversion unit 16 converts the drive voltage generated by the drive voltage generation unit 12 into a pulse signal and inputs the pulse signal to the calculation unit 17. As described above, the arithmetic processing is facilitated by converting the pulse signal.
  • the calculation unit 17 calculates the phase difference between the drive current from the drive current conversion unit 19 and the drive voltage from the drive voltage conversion unit 16.
  • the calculation unit 17 calculates position information such as the movement amount of the rotor 1 based on the calculated phase difference, and instructs the control unit 11.
  • the control unit 11 generates a drive signal in consideration of the position information from the calculation unit 17.
  • the position information is information calculated by the calculation unit 17 such as the movement amount and position of the rotor 1.
  • the rotor 1 has a structure in which the phase difference between the drive voltage and the drive current in the piezoelectric vibrator 2b changes according to the position of the piezoelectric vibrator 2b with respect to the rotor 1. Note that the change in the phase difference between the drive voltage and the drive current is caused by the change in the resonance state.
  • the rotor 1 has a configuration in which the piezoelectric vibrator 2b is deformed when the rotor 1 is rotationally driven. Specifically, as in the first embodiment, the surface of the rotor 1 that contacts the protrusion 2c of the contact portion 2a is not uniform.
  • the drive voltage and the drive current can be reduced by making the shape of the contacted part in contact with the protrusion 2c in the rotor 1 non-uniform or by configuring the contacted part of the rotor 1 with a plurality of materials having different properties.
  • the phase difference is changed.
  • the contacted portion in contact with the protrusion 2c in the rotor 1 is not uniform, so that the phase difference between the drive voltage and the drive current of the drive signal in the piezoelectric vibrator 2b changes. That is, when the rotor 1 is driven, the contacted portion of the rotor 1 has the above-described structure, and therefore there are a plurality of states in which different forces are applied to the vibrating piezoelectric vibrator 2b. become.
  • the ultrasonic actuator 200 detects the amount of movement of the rotor 1 based on this phase difference.
  • a method for detecting the moving amount of the rotor 1 based on the phase difference between the drive current and the drive voltage will be described in more detail.
  • the piezoelectric vibrator 2b is driven by receiving a drive signal as described above.
  • this drive signal is an alternating current. That is, the drive current and drive voltage based on the drive signal are alternating current.
  • FIG. 16 is a diagram showing an equivalent circuit of the piezoelectric vibrator.
  • the piezoelectric transducer 2b is a capacitor of capacitance C d, inductance L 1 of the coil, the capacitance is a capacitor and resistance of C 1 and a series circuit composed of the resistor element R 1 is connected in parallel Circuit.
  • the value of C d is the capacitance determined by the dielectric constant and electrode size of the piezoelectric vibrator 2b.
  • the L 1 and C 1 values are values determined by the piezoelectric mechanical vibration of the piezoelectric vibrator 2b, and are specifically determined by the vibration mode, dimensions, elastic constant, density, piezoelectric constant, etc. of the piezoelectric vibrator 2b. .
  • the value of R 1 is a value determined by the mechanical vibration loss of piezoelectric vibrators 2b.
  • Equation 1 the first term is braking admittance, and the second term is dynamic admittance.
  • the dynamic admittance shown in the second term of Equation 1 is a series circuit of a resistance element, a coil, and a capacitor. Therefore, when the resistance of the resistance element is R, the inductance of the coil is L, the capacitance of the capacitor is C, and the input voltage applied to the series circuit is E m sin ⁇ t, the current that flows is assumed to be i. The relationship shown in is established.
  • Equation 5 When Equation 4 is solved to obtain A and B, and i is obtained from these, i is represented by Equation 5 shown below.
  • I is the amplitude of the current (driving current)
  • E m is the input voltage
  • represents the phase difference between the current (drive current) and the voltage (drive voltage) in the piezoelectric vibrator 2b. Equation 6 represents the value of ⁇ .
  • Equation 6 it can be seen that if the inductance L, capacitance C, and resistance R of the piezoelectric vibrator 2b are changed, the phase difference ⁇ between the drive current and the drive voltage is shifted.
  • the resistance R can change. That is, when the cross-sectional area becomes large and the length becomes short, the resistance becomes small.
  • the piezoelectric vibrator 2b is extended, its cross-sectional area is also reduced and the resistance value is increased.
  • the phase difference between the drive current and the drive voltage changes as the piezoelectric vibrator 2b is deformed. Therefore, as described above, when the contacted portion of the rotor 1 has a different form, the phase difference between the drive current and the drive voltage of the piezoelectric vibrator 2b differs depending on the form.
  • FIG. 17 is a graph for explaining a difference in phase difference between the drive current and the drive voltage.
  • FIG. 17A is a graph showing the waveforms of the drive current and the drive voltage in the first embodiment, and FIG. These are graphs showing the waveforms of the drive current and drive voltage of the second embodiment.
  • the vertical axis represents voltage value or current value, respectively, and the horizontal axis represents time (t).
  • the graph shown in the upper part is a drive voltage waveform
  • the graph shown in the lower part is a drive current waveform.
  • threshold values for the drive voltage and the drive current are also shown.
  • the phase difference between the drive voltage and the drive current is represented by ta.
  • the surface state of the rotor 1 is the second form which is different from the first form
  • the phase difference between the drive voltage and the drive current is tb as shown in FIG. The value is different from the phase difference ta in FIG.
  • phase difference between the drive voltage and the drive current is different is formed in the contacted portion of the rotor 1 in this way.
  • the phase differences ta and tb are calculated based on the threshold value between the drive voltage and the drive current. This threshold value indicates the rising position of the pulse when the drive voltage and the drive current are converted into a pulse signal.
  • the drive voltage and the drive current are converted into pulse signals by using the drive voltage conversion unit 16 and the drive current conversion unit 19, respectively, and the phase difference is based on the pulse edge interval at the rising edge of the pulse signals. Is detected.
  • the drive voltage converter 16 and the drive current converter 19 will be described.
  • FIG. 18 is a circuit diagram illustrating a configuration example of the current conversion unit or the voltage conversion unit.
  • FIG. 19 is a graph for explaining conversion to a pulse signal.
  • the drive current conversion unit 19 and the drive voltage conversion unit 16 include an operational amplifier, a resistance element having resistances R3 and R4, and a voltage source having a voltage of Vref.
  • the first threshold value ThH and the second threshold value ThL are expressed by Equation 7 using the resistors R3 and R4 and the voltage Vref.
  • Vout min is an L level output voltage
  • Vout max is an H level output voltage.
  • the threshold voltage difference with respect to the output full scale can be changed by changing the ratio of the resistors R3 and R4.
  • the phase difference between the driving voltage and the driving current of the piezoelectric vibrator 2b is changed by driving the rotor 1. Further, since the phase difference is detected by the calculation unit 16 using a pulse signal, particularly based on the interval between the pulse edges, the phase difference can be easily detected.
  • the force from the rotor 1 is applied only to the protrusion 2c, and no force is applied to the entire contact portion 2a, so that the phase difference between the drive current and the drive voltage appears remarkably. Therefore, it is easy to detect the phase difference, and position control with higher accuracy is possible.
  • phase difference between the drive current and the drive voltage may be detected for at least one of the plurality of piezoelectric vibrators 2b.
  • the control unit 11 outputs a drive signal that is an electric signal for a command to drive the rotor 1.
  • the drive voltage generation unit 12 generates a drive voltage according to the drive signal from the control unit 11. At this time, the generated drive voltage is detected by the drive voltage converter 16 and converted into a pulse signal. Further, the drive voltage is input to the drive current generation unit 13, and the drive current generation unit 13 generates a drive current corresponding to the drive voltage.
  • the drive voltage and drive current are alternating current.
  • the drive current is input to the piezoelectric vibrator 2b, and when the piezoelectric vibrator 2b vibrates, elliptical vibration is generated in the protrusion 2c, thereby driving the rotor 1.
  • the drive current is detected by the drive current detector 18 and converted into a pulse signal by the drive current converter 19.
  • the calculating part 17 calculates
  • FIG. 20 is a graph for explaining the positioning of the ultrasonic actuator 200.
  • the rotor 1 that is originally circular is developed and expressed in a straight line in consideration of easy understanding.
  • the contacted portion of the rotor 1 has three different forms as described above. One is the origin form, and the rest is the first form and the second form. Therefore, the phase difference between the drive voltage and the drive current differs in each form.
  • the phase difference is tz
  • the protrusion 2c is located in the first form
  • the phase difference is ta.
  • the protruding portion 2c is positioned in the form
  • the phase difference is tb.
  • the calculating part 17 can calculate the position information of the rotor 1 by obtaining the phase difference.
  • the first form and the second form are alternately formed at a predetermined angle with respect to the center of the rotor 1, and the number of times the first form and the second form are passed is counted. What should I do?
  • the rotation angle of the rotor 1 can be detected from the predetermined angle and the number of passes.
  • the position information of the rotor 1 can be detected.
  • the origin form can also be detected, it is possible to easily detect how many times the rotor 1 has rotated by counting how many times the origin form has been passed.
  • the absolute position relationship between the piezoelectric vibrator 2b and the rotor 1 can be detected. Further, by combining these, position information such as the movement amount and the movement amount of the rotor 1 can be calculated.
  • the contact portion 2a is in contact with the rotor 1 at the apex of the protrusion 2c, the change in the phase difference between the drive voltage and the drive current of the piezoelectric vibrator 2b (change in the resonance state) It can be detected digitally. That is, the vibration detection voltage and the phase difference change remarkably appear, the phase difference can be easily detected, and position control with higher accuracy is possible.
  • the position information of the rotor 1 detected by the calculation unit 17 is sent to the control unit 11, and the control unit 11 considers the position information of the rotor 1 detected by the calculation unit 17, and The drive can be controlled.
  • the ultrasonic actuator 200 capable of highly accurate position control without attaching a rotary encoder or the like.
  • FIG. 21 is a circuit diagram showing a part of a specific circuit configuration of the ultrasonic actuator 200.
  • the calculating part 17, the drive current conversion part 19, the drive voltage conversion part 16, the drive current detection part 18, and the piezoelectric vibrator 2b are represented by an electric circuit.
  • the piezoelectric vibrator 2b is an equivalent circuit as described above.
  • the drive current detection unit 18 is a resistance element, and the drive current can be detected by detecting the voltage at both ends thereof.
  • the drive current conversion unit 19 and the drive voltage conversion unit 16 are circuits having the same functions, although they are different from the circuit configuration described above. That is, the drive current and drive voltage are converted from an analog signal to a pulse signal.
  • the drive current converter 19 includes a differential amplifier circuit 19a and a pulse converter circuit 19b for amplifying a signal.
  • the drive voltage converter 16 includes a differential amplifier circuit 16a and a pulse converter circuit 16b.
  • the arithmetic unit 17 includes a logic circuit 17a, a low-pass filter 17b, and a high-pass filter 17c. Data actually measured using the circuit shown in FIG. 21 is shown in FIGS. 22 to 24 are graphs showing waveforms of data relating to the drive voltage and drive current obtained using the circuit shown in FIG.
  • FIG. 22 is a graph showing the drive current and drive voltage of the ultrasonic actuator 200
  • FIG. 22A is a graph showing the drive current and drive voltage in the first embodiment
  • FIG. It is a graph which shows the drive current and drive voltage in the form.
  • FIG. 23 is a graph showing an output signal from the logic circuit of the ultrasonic actuator 200 and a signal after the low-pass filter processing.
  • FIG. 23A is a graph in the first embodiment, and FIG. Is a graph in the second form.
  • FIG. 24 is a graph showing the signal after the high-pass filter processing and the signal after the low-pass filter processing of the ultrasonic actuator 200.
  • FIG. 22 shows a drive current waveform and a drive voltage converter output from the differential amplifier circuit 19a of the drive current converter 19 when the rotor 1 having the first and second forms different from each other is driven.
  • the drive voltage waveforms output from the 16 differential amplifier circuits 16a are shown.
  • a recess groove
  • no recess is provided in the rotor 1
  • FIGS. 22A and 22B showing the first mode and the second mode, respectively, the phase difference between the drive current and the drive voltage is different.
  • the output from the differential amplifier circuit 19a and the output from the differential amplifier circuit 16a are input to the pulse conversion circuits 19b and 16b, respectively, and then input to the logic circuit 17a.
  • they are converted into a signal including the phase difference between the drive current and the drive voltage as information and output. Specifically, it is converted into a signal as shown in FIG.
  • the signal waveform output from the logic circuit 17a and processed by the low-pass filter 17b is also shown in FIG.
  • FIGS. 23A and 23B the difference between the output signals from the logic circuit 17a in the first embodiment and the second embodiment is not clear, but by performing low-pass filter processing. These phase difference differences are expressed as signal level differences.
  • the signal after the low-pass filter processing is input to the high-pass filter 17c and subjected to high-pass filter processing.
  • the level difference of the signal after the high-pass filter processing is more noticeable than the level difference of the signal after the low-pass filter processing.
  • the phase difference can be detected as signal information (level), and the phase difference can be easily detected.
  • the phase difference can be detected by reading the level of the signal after the high-pass filter processing, and it can be easily detected whether the protrusion 2c is located in the first form or the second form.
  • the control unit 11 can grasp the position information of the rotor 1, and in consideration of this position information, High-precision position control can be performed.
  • the ultrasonic actuator described above mainly has the following features.
  • the ultrasonic actuator receives a vibration from the projection, a piezoelectric vibrator that generates a vibration by an electric signal, a vibrating body having a curved surface or a needle-like protrusion, and a contact portion that transmits the vibration. And a contacted part formed with a low vibration receiving part that is difficult to receive vibration from the protrusion, and is moved by receiving the vibration of the piezoelectric vibrator through the high vibration receiving part. Detecting a change in a resonance state of the piezoelectric vibrator that occurs when the vibration low-accepting portion of the moving body passes through the protrusion of the vibration body, and the movement is performed based on the change in the resonance state.
  • a calculation unit that calculates body position information; and a control unit that controls driving of the moving body based on the position information calculated by the calculation unit.
  • the resonance state change of the piezoelectric vibrator is detected, the positional information such as the moving amount and position of the moving body is calculated, and the moving amount and the like of the moving body are thereby controlled.
  • a small ultrasonic actuator can be provided without the need.
  • the contact area of the moving body with the vibration contacted portion is extremely small, and the force from the moving body is a protrusion close to point contact.
  • the resonance state change of the piezoelectric vibrator can be detected with high resolution. Therefore, a phase difference appears remarkably, a change in phase difference can be detected with higher accuracy, and position control with higher accuracy can be performed.
  • the vibration low receiving portion is formed in a line shape in a direction orthogonal to the direction in which the vibration low receiving portion moves relative to the protrusion.
  • the protrusion of the vibrating body can surely pass through the low vibration receiving portion. Accordingly, the resonance state change is surely generated in the piezoelectric vibrator, and accurate position control can be performed.
  • the contacted portion includes a vibration high receiving portion formed of a flat surface, a plurality of vibration low receiving portions formed by a plurality of grooves formed on the flat surface, and a cover member that covers the flat surface and the plurality of grooves. Is preferably provided.
  • a plurality of grooves are formed on the flat surface to separate the vibration high receptive part and the vibration low receptive part, so that the boundary between the two parts is clear in shape and resonates with the piezoelectric vibrator with a simple structure.
  • a state change can be caused.
  • the cover member that covers the flat surface and the groove is provided, the surface of the vibrating body that comes into contact with the protrusion is flat, thereby preventing rattling of the contact.
  • forming a plurality of grooves that is, by providing a plurality of vibration low receiving portions, the position information of the moving body can be obtained more accurately.
  • the high vibration receiving portion and the low vibration receiving portion are formed on the same flat surface, the high vibration receiving portion is formed of a vibrating material, and the low vibration receiving portion is formed of a vibration absorbing material. Also good.
  • the high vibration receiving portion and the low vibration receiving portion may be formed on the same flat surface so that the surface of the high vibration receiving portion is non-sliding and the surface of the low vibration receiving portion is slid.
  • the contact portion is provided with three protrusions, the three protrusions are arranged at equal intervals on a predetermined circumference, and the movable body is rotatable about a central axis passing through the center of the predetermined circumference, It is preferable that vibration low receiving portions of multiples of 3 are arranged at equal intervals in the circumferential direction.
  • the minimum number that is, three, can stably contact the contacted part of the moving body.
  • the vibration low receptive portion is formed by a multiple of 3
  • the three protrusions can be simultaneously positioned on the vibration low receptive portion, and the resonance state of the piezoelectric vibrator can be reliably changed at a predetermined cycle. Can do.
  • the vibrating body is further provided with a vibration state detection unit that detects a vibration state of the piezoelectric vibrator and outputs a vibration detection voltage, and the arithmetic unit is configured to output a vibration voltage between the vibration detection voltage and the piezoelectric vibrator.
  • the phase difference is preferably calculated as signal information.
  • a pulse conversion unit that converts the vibration detection voltage and the drive voltage in the piezoelectric vibrator into pulse signals is further provided, and the calculation unit includes each pulse edge interval between the drive voltage converted into a pulse signal and the vibration detection voltage.
  • the phase difference between the drive voltage and the vibration detection voltage is preferably calculated based on
  • the vibration detection voltage and the drive voltage are converted into pulse signals, and the phase difference is calculated based on each pulse edge interval, so that arithmetic processing can be performed easily.
  • the phase difference between the driving voltage and the driving current in the piezoelectric vibrator may be calculated as signal information.
  • the change in the resonance state of the piezoelectric vibrator can be easily calculated from the phase difference between the driving voltage and the driving current of the piezoelectric vibrator.
  • a pulse conversion unit that converts the drive voltage and drive current in the piezoelectric vibrator into pulse signals is further provided, and the calculation unit is based on each pulse edge interval of the drive voltage and the drive current converted into a pulse signal. It is preferable to calculate a phase difference between the drive voltage and the vibration detection voltage.
  • the vibration detection voltage and the drive voltage are converted into pulse signals, and the phase difference is calculated based on each pulse edge interval, so that arithmetic processing can be performed easily.
  • the vibration state detection unit is provided on a line perpendicular to the moving body and passing through the protrusion.
  • the vibration state detection unit is provided at a location that is more strongly affected by the pressing force from the moving body transmitted from the protrusion, so that the vibration state of the piezoelectric vibrator can be detected more accurately. It is.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

An ultrasonic actuator provided with a vibrating body comprising a piezoelectric vibrator for generating vibration by means of an electrical signal, a protruding section, and a contact section for transmitting the vibration; a moving body which comprises a section to be contacted where a vibration-high-receiving section susceptible to receiving the vibration from the protruding section and a vibration-low-receiving section not susceptible to receiving the vibration therefrom are formed, and which moves in response to the vibration of the piezoelectric vibrator via the vibration-high-receiving section; a calculating section which detects a change, in the resonance state of the piezoelectric vibrator, generated when the vibration-low-receiving section of the moving body passes through the protruding section of the vibrating body, and which calculates the positional information of the moving body according to the change in the resonance state; and a control section for controlling the drive of the moving body according to the positional information calculated by the calculating section.  The ultrasonic actuator is compact and is capable of an accurate positional control.

Description

超音波アクチュエータUltrasonic actuator
 本発明は、圧電素子を有する圧電振動子の振動により、移動体を駆動させる超音波アクチュエータに関する。 The present invention relates to an ultrasonic actuator that drives a moving body by vibration of a piezoelectric vibrator having a piezoelectric element.
 超音波アクチュエータは、圧電素子を有する圧電振動子を備えた固定部と移動体とが接触するように構成され、圧電振動子が振動することで移動体が駆動する。具体的には、圧電振動子が振動することで固定部の表面に進行波が発生し、固定部はその波の頂点でのみ移動体と接することとなる。その波の頂点は楕円回転運動を行っていることから、固定部に突き動かされるように移動体が駆動する。超音波アクチュエータはこのように駆動することから、固定部と移動体間に滑りが生じる可能性もあり、移動体の移動量を制御する必要があった。従来、移動体の移動量を制御するため、ロータリーエンコーダ等の位置検出装置を設ける方法がとられていた。すなわち、位置検出装置により移動体の移動量を検出し、フィードバック制御により移動体を制御していた。しかし、ロータリーエンコーダを取り付けることで、超音波アクチュエータの組み込みスペースが増大するという問題があった。 The ultrasonic actuator is configured such that a fixed portion including a piezoelectric vibrator having a piezoelectric element and a moving body are in contact with each other, and the moving body is driven by the vibration of the piezoelectric vibrator. Specifically, a traveling wave is generated on the surface of the fixed part by the vibration of the piezoelectric vibrator, and the fixed part comes into contact with the moving body only at the top of the wave. Since the top of the wave is rotating elliptically, the moving body is driven so as to be pushed by the fixed part. Since the ultrasonic actuator is driven in this manner, there is a possibility that slip occurs between the fixed portion and the moving body, and it is necessary to control the moving amount of the moving body. Conventionally, in order to control the amount of movement of a moving body, a method of providing a position detection device such as a rotary encoder has been used. That is, the moving amount of the moving body is detected by the position detection device, and the moving body is controlled by feedback control. However, attaching the rotary encoder has a problem that the space for installing the ultrasonic actuator increases.
 この問題を解決するために、最近、種々の方法が提案されてきた。例えば、特許文献1に記載された発明は、固定部と移動体を備えた超音波アクチュエータで、移動体にスロットや突起部で不均一部を形成している。不均一部は、圧電振動子に供給されている駆動電流の波高値の包絡線の変化を強調するために形成されている。検出された駆動電流の波高値の包絡線に電気的な信号処理を施すことで、移動体の移動量を検出し、移動量の制御を行っている。 Recently, various methods have been proposed to solve this problem. For example, the invention described in Patent Document 1 is an ultrasonic actuator including a fixed portion and a moving body, and a non-uniform portion is formed by a slot or a protrusion on the moving body. The nonuniform portion is formed in order to emphasize the change in the envelope of the peak value of the drive current supplied to the piezoelectric vibrator. By performing electrical signal processing on the detected envelope of the peak value of the drive current, the amount of movement of the moving body is detected and the amount of movement is controlled.
 また、特許文献2に記載された発明は、振動子と移動体で構成された超音波モータを開示し、移動体の下面に相対向する2個の円弧突起またはリング状突起の相対向する2つの箇所に異質部分が形成され、それらによって移動体の位置及び回転数を検出するための不均一部が形成されている。振動子には振動検出手段が設けられ、振動検出手段で検出された検出信号と印加電圧との位相差の変動の周期を比較して変動周期をえて、変動周期から位置および回転数を検出している。 The invention described in Patent Document 2 discloses an ultrasonic motor composed of a vibrator and a moving body, and 2 arc protrusions or ring-shaped protrusions 2 facing each other on the lower surface of the moving body. Heterogeneous portions are formed at one location, thereby forming a non-uniform portion for detecting the position and rotational speed of the moving body. The vibrator is provided with vibration detection means, which compares the fluctuation period of the phase difference between the detection signal detected by the vibration detection means and the applied voltage to obtain the fluctuation period, and detects the position and rotation speed from the fluctuation period. ing.
 特許文献1および特許文献2に記載された発明は、上述のような構成によって、エンコーダなどの移動体の位置を検出するセンサなしに位置決めおよび回転数を検出している。 In the inventions described in Patent Document 1 and Patent Document 2, the configuration and the number of rotations are detected without a sensor that detects the position of a moving body such as an encoder, by the configuration as described above.
 しかし、特許文献1の超音波アクチュエータでは、圧電振動子の駆動電流の波高値変化は小さいため、正確な検出は難しく、高精度の位置制御が困難である。またスロットや突起部の形状を、他の箇所と比べて大きくすることで、波高値変化を大きくすることは可能であるが、それにより駆動効率が低下し、接触時の平面性を保つことが難しくなるという新たな問題が生じる。 However, in the ultrasonic actuator of Patent Document 1, since the change in the peak value of the drive current of the piezoelectric vibrator is small, accurate detection is difficult, and high-accuracy position control is difficult. In addition, it is possible to increase the crest value change by increasing the shape of the slot and protrusion compared to other locations, but this will reduce the driving efficiency and maintain the flatness at the time of contact. The new problem of becoming difficult arises.
 特許文献2の超音波モータでは、移動体下面に形成された円弧突起またはリング状突起と振動子上面で面接触するので、移動体の移動量が平均化されてしまい、高精度の検出は困難であるとの問題がある。さらに移動体下面には相対向する2個の円弧突起またはリング状突起の相対向する2つの箇所に異質部分を形成しているので、移動体が1回転する間に2周期の位相差信号が出力されるだけである。そのため位置検出の分解能を向上するために、位相をずらした検出部を複数設ける必要があり、それによって構造を複雑にし検出回路の規模を大きくするという問題がある。 In the ultrasonic motor of Patent Document 2, since the circular protrusion or ring-shaped protrusion formed on the lower surface of the moving body is in surface contact with the upper surface of the vibrator, the moving amount of the moving body is averaged, and high-precision detection is difficult. There is a problem that it is. Furthermore, since the heterogeneous part is formed on the two lower surfaces of the two arcuate protrusions or ring-shaped protrusions facing each other on the lower surface of the moving body, a phase difference signal of two cycles is generated during one rotation of the moving body. It is only output. For this reason, in order to improve the resolution of position detection, it is necessary to provide a plurality of detection units whose phases are shifted, which causes a problem that the structure is complicated and the scale of the detection circuit is increased.
特開平6-225550号公報JP-A-6-225550 特開平6-133570号公報JP-A-6-133570
 本発明は上述の問題に鑑みて為され、その目的は、小型で正確な位置制御が可能な超音波アクチュエータを提供することである。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an ultrasonic actuator that is small and capable of accurate position control.
 本発明の一態様に係る超音波アクチュエータは、電気信号によって振動を生じる圧電振動子と、最上部が曲面または針状の突起部を有し前記振動を伝達する接触部を有する振動体と、前記突起部からの振動を受容し易い振動高受容部と前記突起部からの振動を受容し難い振動低受容部が形成された被接触部を有し、前記振動高受容部を介して前記圧電振動子の振動を受けて移動する移動体と、前記移動体の前記振動低受容部が前記振動体の前記突起部を通過するときに生じる前記圧電振動子の共振状態変化を検出して、前記共振状態変化に基づいて前記移動体の位置情報を算出する演算部と、前記演算部により算出された位置情報に基づいて前記移動体の駆動を制御する制御部とを備える。 An ultrasonic actuator according to an aspect of the present invention includes a piezoelectric vibrator that generates vibration by an electric signal, a vibrating body having a curved portion or a needle-like protrusion, and a contact portion that transmits the vibration. A piezoelectric high vibration receiving portion that is easy to receive vibration from the protrusion and a low contact receiving portion that is difficult to receive vibration from the protruding portion; and the piezoelectric vibration through the high vibration receiving portion. Detecting a resonance state change of the piezoelectric vibrator that occurs when the vibration low-accepting portion of the moving body passes through the protrusion of the vibrating body, A calculation unit that calculates position information of the moving body based on a state change, and a control unit that controls driving of the moving body based on the position information calculated by the calculation unit.
 このように、圧電振動子の共振状態変化を検出して、移動体の移動量や位置等の位置情報を算出して、それにより移動体の移動量等を制御するので、エンコーダなどのセンサを必要とせず、小型の超音波アクチュエータを提供することができる。 In this way, the resonance state change of the piezoelectric vibrator is detected, the position information such as the moving amount and position of the moving body is calculated, and the moving amount and the like of the moving body are thereby controlled. A small ultrasonic actuator can be provided without the need.
 また、振動体に設けられた突起部は最上部が曲面または針状であるので、移動体の振動被接触部との接触面積が極めて微小であり、移動体からの力は点接触に近い突起部に集まり、圧電振動子の共振状態変化の検出が高い分解能で行うことができる。そのため、位相差が顕著に表れることになり、位相差の変化をより高精度に検出することができ、より高精度の位置制御が可能である。 In addition, since the uppermost portion of the protrusion provided on the vibrating body is curved or needle-shaped, the contact area of the moving body with the vibration contacted portion is extremely small, and the force from the moving body is a protrusion close to point contact. The resonance state change of the piezoelectric vibrator can be detected with high resolution. Therefore, a phase difference appears remarkably, a change in phase difference can be detected with higher accuracy, and position control with higher accuracy can be performed.
本発明の第1の実施の形態に係る超音波アクチュエータを用いたレンズ駆動ユニットの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the lens drive unit using the ultrasonic actuator which concerns on the 1st Embodiment of this invention. 前記超音波アクチュエータの内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the said ultrasonic actuator. 前記超音波アクチュエータの電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the said ultrasonic actuator. 前記超音波アクチュエータに設けられている振動体の外観を示す図であって、図4(A)は前記振動体の平面図であり、図4(B)は前記振動体の駆動電極が設置された側の側面図であり、図4(C)は前記振動体の振動検知電極が設置された側の側面図である。FIGS. 4A and 4B are views showing an external appearance of a vibrating body provided in the ultrasonic actuator, FIG. 4A is a plan view of the vibrating body, and FIG. 4B is a diagram in which drive electrodes of the vibrating body are installed. FIG. 4C is a side view of the vibrating body on which the vibration detection electrode is installed. 前記振動体の圧電振動子の各層における電極構成を示す断面図であって、図5(A)は図4(B)のVA-VA線断面図であり、図5(B)は図4(B)のVB-VB線断面図である。FIG. 5A is a cross-sectional view showing an electrode configuration in each layer of the piezoelectric vibrator of the vibrator, FIG. 5A is a cross-sectional view taken along the line VA-VA of FIG. 4B, and FIG. It is a VB-VB sectional view taken on the line B). 前記振動体の屈曲1次モードを示す概念図である。It is a conceptual diagram which shows the bending primary mode of the said vibrating body. 前記振動体の接触部に設けられた突起部の回転運動を示す概念図であって、図7(A)は接触部の側面図であり、図7(B)は接触部の平面図である。FIGS. 7A and 7B are conceptual diagrams illustrating a rotational movement of a protrusion provided on a contact portion of the vibrating body, FIG. 7A is a side view of the contact portion, and FIG. 7B is a plan view of the contact portion. . 前記超音波アクチュエータのロータと前記接触部との分解斜視図である。It is a disassembled perspective view of the rotor and the contact portion of the ultrasonic actuator. 前記ロータの前記接触部と対向する面の形状を示す斜視図である。It is a perspective view which shows the shape of the surface facing the said contact part of the said rotor. 前記ロータと前記接触部との接触状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the contact state of the said rotor and the said contact part. 別のロータと前記接触部との接触状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the contact state of another rotor and the said contact part. さらに別のロータと前記接触部との接触状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the contact state of another rotor and the said contact part. 前記圧電振動子における振動検知電圧と駆動信号の周波数との関係を示すグラフである。It is a graph which shows the relationship between the vibration detection voltage in the said piezoelectric vibrator, and the frequency of a drive signal. 前記圧電振動子における振動検知電圧と駆動電圧間の位相差と、駆動信号の周波数との関係を示すグラフである。It is a graph which shows the relationship between the phase difference between the vibration detection voltage and drive voltage in the said piezoelectric vibrator, and the frequency of a drive signal. 本発明の実施の形態2に係る超音波アクチュエータの電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the ultrasonic actuator which concerns on Embodiment 2 of this invention. 圧電振動子の等価回路を示す図である。It is a figure which shows the equivalent circuit of a piezoelectric vibrator. 前記圧電振動子における駆動電流と駆動電圧の位相差のずれを示すグラフであって、図17(A)は第1の形態の駆動電流と駆動電圧の波形を示すグラフであり、図17(B)は第2の形態の駆動電流と駆動電圧の波形を示すグラフである。FIG. 17A is a graph showing the phase difference between the driving current and the driving voltage in the piezoelectric vibrator, and FIG. 17A is a graph showing the waveforms of the driving current and the driving voltage in the first embodiment. ) Is a graph showing waveforms of the drive current and the drive voltage in the second embodiment. 電流変換部または電圧変換部の構成例を示す回路図である。It is a circuit diagram which shows the structural example of a current converter or a voltage converter. パルス信号への変換を示すグラフである。It is a graph which shows conversion to a pulse signal. 実施の形態2に係る超音波アクチュエータの位置決めを示すグラフである。6 is a graph showing the positioning of the ultrasonic actuator according to the second embodiment. 実施の形態2に係る超音波アクチュエータの具体的な回路構成の一部を示す回路図である。6 is a circuit diagram showing a part of a specific circuit configuration of an ultrasonic actuator according to Embodiment 2. FIG. 実施の形態2に係る超音波アクチュエータの駆動電流と駆動電圧を示すグラフであって、図22(A)は第1の形態における駆動電流と駆動電圧を示すグラフであり、図22(B)は第2の形態における駆動電流と駆動電圧を示すグラフである。FIG. 22A is a graph showing the drive current and drive voltage of the ultrasonic actuator according to Embodiment 2, FIG. 22A is a graph showing the drive current and drive voltage in the first embodiment, and FIG. It is a graph which shows the drive current and drive voltage in a 2nd form. 実施の形態2に係る超音波アクチュエータのロジック回路からの出力信号およびローパスフィルタ処理後の信号を示すグラフであって、図23(A)は第1の形態におけるグラフであり、図23(B)は第2の形態におけるグラフである。FIG. 23A is a graph showing an output signal from the logic circuit of the ultrasonic actuator according to Embodiment 2 and a signal after low-pass filter processing, and FIG. 23A is a graph in the first embodiment, and FIG. Is a graph in the second form. 実施の形態2に係る超音波アクチュエータのハイパスフィルタ処理後の信号およびローパスフィルタ処理後の信号を示すグラフである。6 is a graph showing a signal after a high-pass filter process and a signal after a low-pass filter process of an ultrasonic actuator according to a second embodiment.
 以下、本発明に係る実施の形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted.
 (実施の形態1)
 本発明の実施の形態1に係る超音波アクチュエータについて説明する。まず、本発明の実施の形態1に係る超音波アクチュエータを用いた、レンズ駆動ユニットの構成について説明する。図1は実施の形態1に係る超音波アクチュエータを用いた、レンズ駆動ユニットの構成について説明するための図である。レンズ駆動ユニット300は、デジタルカメラやデジタルビデオカメラのAF、ズーム、DVDのピックアップレンズの収差補正の駆動などに用いられる。図1に示すように、実施の形態1に係る超音波アクチュエータ100の回転軸と一体に結合されたリードスクリュー21に一部が螺合されたレンズ支持部22bと、レンズ支持部22bにより支持されたレンズ22と、レンズ22の移動を制御するリードスクリュー21と平行に設置された2本のガイドレール22aと、これらを覆うケース23と、超音波アクチュエータ100とを備えている。なお、図1においては、超音波アクチュエータ100の電気的構成部分については、図示を省略している。
(Embodiment 1)
An ultrasonic actuator according to Embodiment 1 of the present invention will be described. First, the configuration of a lens driving unit using the ultrasonic actuator according to Embodiment 1 of the present invention will be described. FIG. 1 is a diagram for explaining a configuration of a lens driving unit using the ultrasonic actuator according to the first embodiment. The lens driving unit 300 is used for AF and zooming of digital cameras and digital video cameras, and driving of aberration correction of a pickup lens of a DVD. As shown in FIG. 1, a lens support portion 22b that is partially screwed with a lead screw 21 that is integrally coupled to the rotation shaft of the ultrasonic actuator 100 according to the first embodiment, and is supported by the lens support portion 22b. The lens 22, two guide rails 22 a installed in parallel with the lead screw 21 that controls the movement of the lens 22, a case 23 covering these, and the ultrasonic actuator 100 are provided. In FIG. 1, the electrical components of the ultrasonic actuator 100 are not shown.
 具体的には、レンズ22の外周部を支持しているレンズ支持部22bには貫通孔が形成され、その貫通孔にはガイドレール22aが貫通されていて、レンズ支持部22bはガイドレール22bに沿った方向のみ移動できる。また、レンズ支持部22bはリードスクリュー21と螺合しており、リードスクリュー21がその軸を中心として回転することで、レンズ支持部22bがガイドレール22aに沿って駆動される。 Specifically, a through hole is formed in the lens support portion 22b that supports the outer peripheral portion of the lens 22, and a guide rail 22a is passed through the through hole, and the lens support portion 22b is connected to the guide rail 22b. Can move only along the direction. The lens support portion 22b is screwed with the lead screw 21, and the lens support portion 22b is driven along the guide rail 22a as the lead screw 21 rotates about its axis.
 このようなレンズ駆動ユニット300において、超音波アクチュエータ100を駆動することで、リードスクリュー21が右回転または左回転し、それにより、レンズ22と一体であるレンズ支持部22bが図1において左右方向に移動する。つまり、レンズ駆動ユニット300は、直動レンズ送り機構を構成している。 In such a lens driving unit 300, by driving the ultrasonic actuator 100, the lead screw 21 is rotated clockwise or counterclockwise, whereby the lens support portion 22b integrated with the lens 22 is moved in the horizontal direction in FIG. Moving. That is, the lens driving unit 300 constitutes a linear movement lens feed mechanism.
 このように、実施の形態1に係る超音波アクチュエータ100は、例えばレンズ駆動ユニット300に用いられるが、これに限定されるわけではなく、他にも様々な用途に用いることができる。 As described above, the ultrasonic actuator 100 according to the first embodiment is used for the lens driving unit 300, for example, but is not limited thereto, and can be used for various other purposes.
 次に、前記超音波アクチュエータの機械的な構成について説明する。図2は前記超音波アクチュエータの機械的な構成を説明するための図である。なお、図2においては、前記超音波アクチュエータの電気的な構成については、図示を省略している。図2に示すように、前記超音波アクチュエータ100は、被接触部を有する移動体すなわちロータ1と、ロータ1の被接触部と接触する突起部2cを有する接触部2aおよび圧電振動子2bを有する振動体(ステータ)2と、振動体2の端部に設置された錘部5と、ロータ1の回転中心にロータ1と一体に設置された回転軸3と、回転軸3の軸受け27と、これらを覆うケース7と、ケース7の底面と振動体2とに接続され、振動体2をロータ1へ所定の付勢力で押し付けるバネ等の弾性体を備えた加圧部6と、ケース7と接続された支持フレーム24と、支持フレーム24を貫通するように設置されたキャップ26と、キャップ26に形成された窪み26aに回転自在に嵌り込む球体である軸受け25とを備えている。 Next, the mechanical configuration of the ultrasonic actuator will be described. FIG. 2 is a view for explaining the mechanical configuration of the ultrasonic actuator. In FIG. 2, the electrical configuration of the ultrasonic actuator is not shown. As shown in FIG. 2, the ultrasonic actuator 100 includes a moving body having a contacted portion, that is, a rotor 1, a contact portion 2 a having a protrusion 2 c that contacts the contacted portion of the rotor 1, and a piezoelectric vibrator 2 b. A vibrating body (stator) 2, a weight portion 5 installed at an end of the vibrating body 2, a rotating shaft 3 installed integrally with the rotor 1 at the rotation center of the rotor 1, a bearing 27 of the rotating shaft 3, A case 7 that covers them, a pressurizing unit 6 that is connected to the bottom surface of the case 7 and the vibrating body 2 and includes an elastic body such as a spring that presses the vibrating body 2 against the rotor 1 with a predetermined urging force; The connected support frame 24, a cap 26 installed so as to penetrate the support frame 24, and a bearing 25 that is a sphere that is rotatably fitted in a recess 26 a formed in the cap 26.
 ロータ1は円板状である。回転軸3は、ロータ1の中心であって、前記円板の面に垂直方向に伸びるように配置されている。回転軸3はロータ1に一体的、又はかしめなどによって結合されている。振動体2は、回転軸3を中心とする円板状の接触部2aおよび接触部2aに接合された圧電振動子2bとを備えている。接触部2aは突起部2cを有していて、突起部2cがロータ1と接触する。突起部2cとロータ1との摩擦力によりロータ1が駆動することから、突起部2cを含む接触部2aは、例えば、アルミナ、ジルコニア等のセラミックス、超硬合金等の耐摩耗性の高い材料で形成されている。なお接触部2aは、例えばエポキシ等の剛性が高く、接着力が強い接着剤を用いて圧電振動子2bに固定されている。圧電振動子2bは、圧電特性を示す圧電薄板と内部電極とが交互に積層されて構成されている。圧電振動子2bは製造のしやすさを考慮すると、直方体形状が好ましい。圧電薄板としては、例えばPZT(チタン酸ジルコニウム酸鉛)等からなる圧電セラミックス等の圧電素子の薄板を用いればよい。そして、内部電極を介して所定の電気信号が圧電振動子2bに送られることにより、圧電振動子2bは振動する。その振動により、圧電振動子2bに接続された接触部2aが振動し、ロータ1に接触している突起部2cも振動する。突起部2cは最上部が曲面又は針状に形成され、ロータ1との接触面積をできるだけ小さくしている。軸受け27は、回転軸3を回転自在に軸支する。具体的には、軸受け27により回転軸3はラジアル方向に支持されている。圧電振動子2bにおいて、接触部2aと接合している端部とは反対の端部に錘部5が設置されている。錘部5が設置されることで、振動体2の振動バランスが向上する。また、錘部5を設置することで、圧電振動子2bの振動の節の位置が錘部5側に移動するため、突起部2cの振動を大きくすることができる。例えば、錘部5は、比重の高いタングステンや、銅や鉄系のタングステン合金で形成されている。 The rotor 1 has a disk shape. The rotating shaft 3 is the center of the rotor 1 and is disposed so as to extend in a direction perpendicular to the surface of the disk. The rotating shaft 3 is connected to the rotor 1 integrally or by caulking or the like. The vibrating body 2 includes a disk-shaped contact portion 2a centering on the rotation shaft 3 and a piezoelectric vibrator 2b joined to the contact portion 2a. The contact portion 2 a has a protrusion 2 c, and the protrusion 2 c comes into contact with the rotor 1. Since the rotor 1 is driven by the frictional force between the protrusion 2c and the rotor 1, the contact portion 2a including the protrusion 2c is made of a material having high wear resistance such as ceramics such as alumina and zirconia, cemented carbide, and the like. Is formed. The contact portion 2a is fixed to the piezoelectric vibrator 2b using an adhesive having high rigidity and strong adhesive force such as epoxy. The piezoelectric vibrator 2b is configured by alternately laminating piezoelectric thin plates exhibiting piezoelectric characteristics and internal electrodes. In consideration of ease of manufacture, the piezoelectric vibrator 2b preferably has a rectangular parallelepiped shape. As the piezoelectric thin plate, for example, a thin plate of a piezoelectric element such as a piezoelectric ceramic made of PZT (lead zirconate titanate) or the like may be used. The piezoelectric vibrator 2b vibrates by sending a predetermined electric signal to the piezoelectric vibrator 2b via the internal electrode. Due to the vibration, the contact portion 2a connected to the piezoelectric vibrator 2b vibrates, and the protrusion 2c in contact with the rotor 1 also vibrates. The uppermost part of the projection 2c is formed in a curved surface or a needle shape, and makes the contact area with the rotor 1 as small as possible. The bearing 27 rotatably supports the rotary shaft 3. Specifically, the rotary shaft 3 is supported in the radial direction by the bearing 27. In the piezoelectric vibrator 2b, the weight part 5 is installed at the end opposite to the end joined to the contact part 2a. By installing the weight portion 5, the vibration balance of the vibrating body 2 is improved. Moreover, since the position of the vibration node of the piezoelectric vibrator 2b moves to the weight part 5 side by installing the weight part 5, the vibration of the protrusion part 2c can be increased. For example, the weight portion 5 is formed of tungsten having a high specific gravity, copper, or an iron-based tungsten alloy.
 ロータ1と、振動体2と、回転軸3と、軸受け27と、錘部5と、加圧部6とはケース7内に配置されている。なお、回転軸3はケース7内から外部に突出している。また、軸受け27の一部はケース7の外部に露呈している。振動体2はケース7に対して回転が規制され、ケース7の底面からロータ1方向に加圧部6により押圧されている。それにより、接触部2aはロータ1と高い圧力をかけられた状態で接触している。支持フレーム24は回転軸3が突出する側のケース7の端面に設置されていて、ケース7から突出された回転軸3は、支持フレーム24内へと伸びている。回転軸3の端部には凹面が形成され、支持フレーム24に設置されたキャップ26の窪み26aに嵌り込んだ球体である軸受け25がその凹面に嵌り込むように配置され、回転軸3は回転自在に軸受け25に軸支されている。具体的には、軸受け25により回転軸3はラジアルおよびスラスト方向について支持されている。キャップ26は支持フレーム24と螺合して貫通している。つまり、支持フレーム24およびキャップ26はねじ切りされていて、キャップ26を締めるあるいは緩めることで、回転軸3に沿った方向へのキャップ26の位置を調整できる。加圧部6により振動体2がロータ1に押し付けられていることから、ロータ1に結合された回転軸3は軸受け25からの反力を受けるが、その反力は回転軸3の回転中心で受けることになるため、回転軸3と球体である軸受け25との摩擦ロスを最小限に抑えることができる。超音波アクチュエータの製作時に、キャップ26の位置を調整して、振動体2およびロータ1間の押圧力を調整される。そして、調整が完了すれば、接着することでキャップ26の位置を固定される。このようにすることで、振動体2はケース7に対して回転が規制されながら、ロータ1との軸心が位置決めされ、保持される。 The rotor 1, the vibrating body 2, the rotating shaft 3, the bearing 27, the weight portion 5, and the pressurizing portion 6 are disposed in the case 7. The rotating shaft 3 protrudes from the inside of the case 7 to the outside. A part of the bearing 27 is exposed to the outside of the case 7. The vibrating body 2 is restricted from rotating with respect to the case 7, and is pressed from the bottom surface of the case 7 toward the rotor 1 by the pressurizing unit 6. Thereby, the contact part 2a is in contact with the rotor 1 in a state where high pressure is applied. The support frame 24 is installed on the end surface of the case 7 on the side from which the rotary shaft 3 protrudes, and the rotary shaft 3 protruding from the case 7 extends into the support frame 24. A concave surface is formed at the end of the rotating shaft 3, and a bearing 25, which is a sphere fitted in a recess 26 a of a cap 26 installed on the support frame 24, is disposed so as to fit in the concave surface, and the rotating shaft 3 rotates. The bearing 25 is freely supported. Specifically, the rotary shaft 3 is supported by the bearing 25 in the radial and thrust directions. The cap 26 is threadedly engaged with the support frame 24 and penetrates. That is, the support frame 24 and the cap 26 are threaded, and the position of the cap 26 in the direction along the rotation shaft 3 can be adjusted by tightening or loosening the cap 26. Since the vibrating body 2 is pressed against the rotor 1 by the pressurizing unit 6, the rotating shaft 3 coupled to the rotor 1 receives a reaction force from the bearing 25, but the reaction force is at the center of rotation of the rotating shaft 3. Therefore, the friction loss between the rotating shaft 3 and the bearing 25 which is a sphere can be minimized. When the ultrasonic actuator is manufactured, the position of the cap 26 is adjusted to adjust the pressing force between the vibrating body 2 and the rotor 1. And if adjustment is completed, the position of the cap 26 will be fixed by adhere | attaching. By doing in this way, while the rotation of the vibrating body 2 is restricted with respect to the case 7, the axis center with the rotor 1 is positioned and held.
 次に、前記超音波アクチュエータの電気的構成について説明する。図3は前記超音波アクチュエータの電気的な構成を説明するための図である。図3に示すように、前記超音波アクチュエータ100は、図2に示した以外に、制御部11と、駆動電圧生成部12と、振動状態検知部14と、検知電圧変換部15と、駆動電圧変換部16と、演算部17とを備えている。なお、図3において、図2で示した機械的構成については、電気的構成の説明について必要な部材を示し、これら以外は図示を省略する。なお、制御部11と、駆動電圧生成部12と、駆動電流生成部13と、検知電圧変換部15と、駆動電圧変換部16と、演算部17とは、例えば基板上に抵抗、コンデンサ、コイル等の電子素子が配置して構成される。 Next, the electrical configuration of the ultrasonic actuator will be described. FIG. 3 is a diagram for explaining an electrical configuration of the ultrasonic actuator. As shown in FIG. 3, the ultrasonic actuator 100 includes a control unit 11, a drive voltage generation unit 12, a vibration state detection unit 14, a detection voltage conversion unit 15, and a drive voltage other than those shown in FIG. 2. A conversion unit 16 and a calculation unit 17 are provided. In FIG. 3, the mechanical configuration shown in FIG. 2 shows members necessary for the description of the electrical configuration, and the other components are not shown. The control unit 11, the drive voltage generation unit 12, the drive current generation unit 13, the detection voltage conversion unit 15, the drive voltage conversion unit 16, and the calculation unit 17 are, for example, a resistor, a capacitor, and a coil on a substrate. An electronic element such as is arranged.
 制御部11は、ロータ1が回転駆動するよう電気信号である駆動信号を発生させるものである。具体的には、駆動信号が接触部2aの図示されていない突起部2cに楕円回転運動を生じるよう圧電振動子2bを振動させることで、突起部2cにより突き動かされるようにロータ1が駆動され移動する。 The control unit 11 generates a drive signal that is an electrical signal so that the rotor 1 is rotationally driven. Specifically, the rotor 1 is driven so that the drive signal is driven by the protrusion 2c by vibrating the piezoelectric vibrator 2b so that the protrusion 2c (not shown) of the contact portion 2a generates an elliptical rotational motion. Moving.
 駆動電圧生成部12は、制御部11により指示された前記駆動信号に応じた駆動電圧を発生させる。また、圧電振動子2bの駆動制御は電流で行うことから、駆動電流生成部13では、前記駆動電圧に基づいた駆動電流を生成する。駆動電流生成部13により生成された駆動電流は、駆動電流生成部13から出力され、圧電振動子2bに入力される。 The drive voltage generator 12 generates a drive voltage according to the drive signal instructed by the controller 11. In addition, since the drive control of the piezoelectric vibrator 2b is performed by a current, the drive current generation unit 13 generates a drive current based on the drive voltage. The drive current generated by the drive current generator 13 is output from the drive current generator 13 and input to the piezoelectric vibrator 2b.
 振動状態検知部14は、圧電振動子2bの振動状態を示す振動検知電圧を検知する。具体的には、圧電振動子2bが振動することで、振動状態検知部14から、圧電振動子2bの振動状態を示す信号である電圧(振動検知電圧)が出力される。なお、圧電振動子2bの振動状態は、圧電振動子2bの共振状態に応じて変化する。 The vibration state detection unit 14 detects a vibration detection voltage indicating the vibration state of the piezoelectric vibrator 2b. Specifically, when the piezoelectric vibrator 2b vibrates, the vibration state detection unit 14 outputs a voltage (vibration detection voltage) that is a signal indicating the vibration state of the piezoelectric vibrator 2b. Note that the vibration state of the piezoelectric vibrator 2b changes according to the resonance state of the piezoelectric vibrator 2b.
 検知電圧変換部15は振動状態検知部14から出力された振動検知電圧をパルス信号に変換して演算部17に入力する。また、駆動電圧変換部16は駆動電圧生成部12で生成された駆動電圧をパルス信号に変換して、演算部17に入力する。このように、パルス信号に変換することにより、演算処理が容易になる。 The detection voltage conversion unit 15 converts the vibration detection voltage output from the vibration state detection unit 14 into a pulse signal and inputs the pulse signal to the calculation unit 17. The drive voltage conversion unit 16 converts the drive voltage generated by the drive voltage generation unit 12 into a pulse signal and inputs the pulse signal to the calculation unit 17. As described above, the arithmetic processing is facilitated by converting the pulse signal.
 演算部17は、検知電圧変換部15からの振動検知電圧と駆動電圧変換部16からの駆動電圧の位相差を算出する。演算部17は、算出した位相差に基づきロータ1の移動量等の位置情報を算出して、制御部11に指示する。制御部11では演算部17から位置情報を考慮して駆動信号を作成する。なお、位置情報とは、ロータ1の移動量や位置等に関し、演算部17により算出された情報である。 The calculation unit 17 calculates the phase difference between the vibration detection voltage from the detection voltage conversion unit 15 and the drive voltage from the drive voltage conversion unit 16. The calculation unit 17 calculates position information such as the movement amount of the rotor 1 based on the calculated phase difference, and instructs the control unit 11. The control unit 11 generates a drive signal in consideration of the position information from the calculation unit 17. The position information is information calculated by the calculation unit 17 regarding the movement amount, position, etc. of the rotor 1.
 なお、図2において、見やすさを考慮して、振動状態検知部14を圧電振動子2bと別に記載しているが、例えば、振動状態検知部14を圧電振動子2bの内部電極として設置してもよい。それにより、圧電振動子2bの振動状態を直接検出することができ、高精度の検出が可能である。以下においては、振動状態検知部14を圧電振動子2bの内部に設置した場合について説明する。 In FIG. 2, the vibration state detection unit 14 is described separately from the piezoelectric vibrator 2b in consideration of easy viewing. However, for example, the vibration state detection unit 14 is installed as an internal electrode of the piezoelectric vibrator 2b. Also good. Thereby, the vibration state of the piezoelectric vibrator 2b can be directly detected, and high-precision detection is possible. Below, the case where the vibration state detection part 14 is installed in the inside of the piezoelectric vibrator 2b is demonstrated.
 次に、振動体2の構成について説明する。図4は前記超音波アクチュエータに設けられている振動体の外観を示す図であって、図4(A)は振動体の平面図であり、4(B)は圧電振動子の駆動電極が設置された側の側面図であり、図4(C)は圧電振動子の振動検知電極が設置された側の側面図である。図4(A)~図4(C)に示すように、振動体2は突起部2cが設置された円形の接触部2aと圧電薄板が内部電極を介して積層された構成の圧電振動子2bを備えている。例えば、図4(A)に示すように、突起部2cは略球面を有し、接触部2aの中心軸に対して同心円上に等間隔(120度間隔)で3つ形成されている。これら突起部2cの各頂点がロータ1に接触している。突起部2cは円錐や角錐のような錐状に形成して、最上部が針状のものであってもよく、また下部が方形状で上部が半球状に形成してもよい。すなわち、突起部2cの最上部が曲面または針状にして、ロータ1の下面の被接触部に突起部2cができるだけ点接触(または線接触)に近い微小な面積で接触するものであればよい。また、図4(B)、図4(C)に示すように、圧電振動子2bの積層された各内部電極に信号を入力あるいは各電極から信号を出力するための駆動電極2b-1、2b-2、2b-3、2b-4、振動検知電極2b-5、接地電極2b-6が圧電振動子2bの各側面に設置されている。これら、駆動電極2b-1、2b-2、2b-3、2b-4、振動検知電極2b-5、接地電極2b-6には、図示していないがリード線やフレキ等がハンダや導電性接着剤等により接合され、信号を送受信する。 Next, the configuration of the vibrating body 2 will be described. FIG. 4 is a view showing the appearance of a vibrating body provided in the ultrasonic actuator, FIG. 4 (A) is a plan view of the vibrating body, and 4 (B) is a diagram showing a drive electrode of a piezoelectric vibrator installed. FIG. 4C is a side view of the side on which the vibration detection electrode of the piezoelectric vibrator is installed. As shown in FIGS. 4 (A) to 4 (C), the vibrating body 2 includes a piezoelectric vibrator 2b having a configuration in which a circular contact portion 2a provided with a protrusion 2c and a piezoelectric thin plate are stacked via an internal electrode. It has. For example, as shown in FIG. 4A, the protrusions 2c have a substantially spherical surface, and are formed at three equal intervals (120 degree intervals) concentrically with the central axis of the contact portion 2a. Each vertex of these protrusions 2 c is in contact with the rotor 1. The protrusion 2c may be formed in a cone shape such as a cone or a pyramid, the uppermost portion may be a needle shape, the lower portion may be square, and the upper portion may be hemispherical. In other words, the uppermost portion of the protrusion 2c is curved or needle-shaped, and the protrusion 2c may be in contact with the contacted portion on the lower surface of the rotor 1 with a minute area as close to point contact (or line contact) as possible. . Further, as shown in FIGS. 4B and 4C, driving electrodes 2b-1, 2b for inputting signals to or outputting signals from the respective internal electrodes stacked on the piezoelectric vibrator 2b. -2, 2b-3, 2b-4, vibration detection electrode 2b-5, and ground electrode 2b-6 are provided on each side surface of the piezoelectric vibrator 2b. These drive electrodes 2b-1, 2b-2, 2b-3, 2b-4, vibration detection electrode 2b-5, and ground electrode 2b-6 are not shown, but lead wires, flexible wires, etc. are solder or conductive. It is joined by an adhesive or the like to send and receive signals.
 図5は実施の形態1に係る圧電振動子の各層における電極構成を示す断面図であって、図5(A)は図4(B)のVA-VA線断面図であり、図5(B)は図4(B)のVB-VB線断面図である。圧電振動子2bは図5(A)および図5(B)で示される各内部電極2d~2hが形成された圧電薄板20と、振動状態検知部14である内部電極2iが形成された圧電薄板20とが交互に積層された多層構造である。つまり、内部電極2d~2hを有する内部電極の層と、内部電極2iを有する内部電極の層とが交互に積層され、それらの内部電極の層の間に圧電薄板20が挿入されている。なお、これら内部電極2d~2iは圧電薄板20に銀パラジウムなどを印刷することで形成される。内部電極2d~2gは、それぞれ圧電薄板20の各角付近に形成されている。また、内部電極2hは圧電薄板20上であって、突起部2cのいずれかが配置された箇所を、ロータ1に垂直な方向に沿って、移動させた箇所の少なくとも一部に設置される。このように配置されることで、内部電極2iは、圧電振動子2bの振動状態を正確に検出することができる。つまり、圧電振動子2bの振動に応じて、内部電極2iからは振動検知電圧が出力される。内部電極2iは、圧電薄板20の略全面に形成されている。そして、これら内部電極2d、2e、2f、2gは、駆動電極2b-1、2b-2、2b-3、2b-4とそれぞれ接続されている。また、内部電極2hは、振動検知電極2b-5と接続されている。また、内部電極2iは接地電極2b-6と接続されている。駆動電極2b-1、2b-2、2b-3、2b-4は、駆動電流生成部13と接続され、振動検知電極2b-5は検知電圧変換部15と接続され、接地電極2b-6は接地されている。上記接続および接地については、図示していないが、リード線やFPC(フレキシブルプリント配線基板)等を介して行われる。なお、圧電薄板20が圧電特性を示すためには、これらに所定の分極処理を行う必要がある。 5 is a cross-sectional view showing the electrode configuration in each layer of the piezoelectric vibrator according to Embodiment 1, and FIG. 5 (A) is a cross-sectional view taken along the line VA-VA of FIG. 4 (B). ) Is a cross-sectional view taken along line VB-VB in FIG. The piezoelectric vibrator 2b includes a piezoelectric thin plate 20 on which the internal electrodes 2d to 2h shown in FIGS. 5A and 5B are formed, and a piezoelectric thin plate on which the internal electrode 2i that is the vibration state detector 14 is formed. 20 is a multilayer structure in which 20 and 20 are alternately stacked. That is, the internal electrode layer having the internal electrodes 2d to 2h and the internal electrode layer having the internal electrode 2i are alternately laminated, and the piezoelectric thin plate 20 is inserted between the internal electrode layers. The internal electrodes 2d to 2i are formed by printing silver palladium on the piezoelectric thin plate 20. The internal electrodes 2d to 2g are formed in the vicinity of each corner of the piezoelectric thin plate 20, respectively. Further, the internal electrode 2h is disposed on at least a part of the portion on the piezoelectric thin plate 20 where the portion where any of the protrusions 2c is arranged is moved along the direction perpendicular to the rotor 1. With this arrangement, the internal electrode 2i can accurately detect the vibration state of the piezoelectric vibrator 2b. That is, the vibration detection voltage is output from the internal electrode 2i according to the vibration of the piezoelectric vibrator 2b. The internal electrode 2 i is formed on substantially the entire surface of the piezoelectric thin plate 20. The internal electrodes 2d, 2e, 2f, and 2g are connected to the drive electrodes 2b-1, 2b-2, 2b-3, and 2b-4, respectively. The internal electrode 2h is connected to the vibration detection electrode 2b-5. The internal electrode 2i is connected to the ground electrode 2b-6. The drive electrodes 2b-1, 2b-2, 2b-3, 2b-4 are connected to the drive current generator 13, the vibration detection electrode 2b-5 is connected to the detection voltage converter 15, and the ground electrode 2b-6 is Grounded. The connection and grounding are not shown, but are performed via lead wires, FPC (flexible printed wiring board), or the like. In order for the piezoelectric thin plate 20 to exhibit piezoelectric characteristics, it is necessary to perform a predetermined polarization process on these.
 次に、圧電振動子2bの振動およびそれによる突起部2cの振動について説明する。図6は振動体の屈曲1次モードを示す概念図である。また、図7は突起部の回転を説明するための図であって、図7(A)は接触部の側面図であり、図7(B)は接触部の平面図である。上述のように、圧電振動子2bにおいて、駆動電極2b-1、2b-2、2b-4、2b-3に高周波駆動信号(駆動電流)を、それぞれ位相を90度ずらして印加すると、内部電極2d、2e、2g、2fの各領域が90度位相のずれた伸縮振動を行う。駆動信号の周波数を共振周波数に近づけると、圧電振動子2bには、屈曲1次モードが、90度位相がずれて励起される。ここで、屈曲1次モードが励起された場合に、直方体である圧電振動子2bは、図6に示すように、2箇所の節Pにより1次の曲げ変形運動を左右に繰り返す。超音波アクチュエータ100の場合は、各駆動電極2b-1、2b-2、2b-4、2b-3に印加される高周波駆動信号は、それぞれ90度位相がずれていることから、圧電振動子2bには各内部電極2d、2e、2g、2fにより屈曲1次モードによる振動がずれながら生じる。それにより、接触部2aと接合された圧電振動子2bの先端は公転運動(首振り振動)を行う。そして、圧電振動子2bがこのような動きをすることで、圧電振動子2b上に設置された接触部2aの突起部2cは、図7(A)および図7(B)において、矢印で示したような楕円振動を行う。なお、隣接する各突起部2cの楕円振動はそれぞれ位相が120度ずれている。上述のように、ロータ1は接触部2aに押圧されている。したがって、ロータ1と突起部2cとの間の摩擦係数は大きい。そのため、各突起部2cが上述の、位相が120度ずれた楕円振動を行うことで、ロータ1は突起部2cに突き動かされるように、回転駆動を行う。 Next, the vibration of the piezoelectric vibrator 2b and the vibration of the protrusion 2c caused thereby will be described. FIG. 6 is a conceptual diagram showing the bending primary mode of the vibrating body. 7A and 7B are diagrams for explaining the rotation of the protruding portion. FIG. 7A is a side view of the contact portion, and FIG. 7B is a plan view of the contact portion. As described above, in the piezoelectric vibrator 2b, when a high frequency drive signal (drive current) is applied to the drive electrodes 2b-1, 2b-2, 2b-4, 2b-3 with a phase shifted by 90 degrees, the internal electrodes The 2d, 2e, 2g, and 2f regions perform stretching vibrations that are 90 degrees out of phase. When the frequency of the drive signal is brought close to the resonance frequency, the bending primary mode is excited 90 degrees out of phase in the piezoelectric vibrator 2b. Here, when the bending primary mode is excited, the piezoelectric vibrator 2b, which is a rectangular parallelepiped, repeats the primary bending deformation motion to the left and right by two nodes P as shown in FIG. In the case of the ultrasonic actuator 100, the high-frequency drive signals applied to the drive electrodes 2b-1, 2b-2, 2b-4, and 2b-3 are 90 degrees out of phase with each other. Is generated by the internal electrodes 2d, 2e, 2g, and 2f while the vibration in the bending primary mode is shifted. Thereby, the tip of the piezoelectric vibrator 2b joined to the contact portion 2a performs a revolving motion (oscillation vibration). As the piezoelectric vibrator 2b moves in this manner, the protrusion 2c of the contact portion 2a installed on the piezoelectric vibrator 2b is indicated by an arrow in FIGS. 7A and 7B. Elliptical vibration is performed. Note that the phases of the elliptical vibrations of the adjacent protrusions 2c are shifted by 120 degrees. As described above, the rotor 1 is pressed against the contact portion 2a. Therefore, the friction coefficient between the rotor 1 and the protrusion 2c is large. Therefore, each protrusion 2c performs the above-described elliptical vibration whose phase is shifted by 120 degrees, so that the rotor 1 is rotationally driven so as to be moved by the protrusion 2c.
 また、ロータ1は、ロータ1に対する圧電振動子2bの位置に応じて、圧電振動子2bにおける共振状態が変化するような構造を有している。具体的には、ロータ1は、ロータ1が回転駆動する際に、圧電振動子2bに異なる力が周期的に加わるような形態を有している。具体的には、ロータ1の被接触部において、接触部2aの突起部2cから振動を受容し易い振動高受容部と接触部2aの突起部2cから振動を受容し難い振動低受容部を形成して、ロータの被接触部が一様でないようにしている。つまりロータ1の振動高受容部と振動低受容部で突起部2cと接する面の形状を均一にしないとか、あるいはロータ1の振動高受容部と振動低受容部で異なる性質の材料で構成する等で、駆動電圧と駆動電流の位相差が変化するような構造している。 The rotor 1 has a structure in which the resonance state of the piezoelectric vibrator 2b changes according to the position of the piezoelectric vibrator 2b with respect to the rotor 1. Specifically, the rotor 1 has a configuration in which different forces are periodically applied to the piezoelectric vibrator 2b when the rotor 1 is rotationally driven. Specifically, in the contacted portion of the rotor 1, a vibration high receiving portion that easily receives vibration from the protrusion portion 2c of the contact portion 2a and a vibration low receiving portion that hardly receives vibration from the protrusion portion 2c of the contact portion 2a are formed. Thus, the contacted part of the rotor is not uniform. That is, the vibration high receiving portion and the low vibration receiving portion of the rotor 1 should not be made uniform in the shape of the surface in contact with the projection 2c, or the vibration high receiving portion and the low vibration receiving portion of the rotor 1 may be made of different materials. Thus, the phase difference between the driving voltage and the driving current is changed.
 より具体的には、ロータ1の振動高受容部は突起部2cと接触する平坦面で形成して突起部2cからの振動を受けれるようにし、振動低受容部は振動高受容部を構成する平坦面に溝を形成して突起部2cと接触しないようにして突起部2cからの振動を受けられないようにしている。溝の数は、正確な位置制御を行うため、複数形成している。またロータ1の振動高受容部は表面粗さを粗くして摩擦係数を高めて突起部2cからの振動を受けやすくし、振動低受容部は表面粗さを小さくして滑りやすくして振動を受け難くしてもよい。さらにロータ1の振動高受容部は密度の高い材料や弾性度の低い材料等の振動性材料で形成して突起部2cからの振動を受けやすくし、振動低受容部は密度の低い材料や弾性度の高い材料等の振動吸収性材料で形成して突起部2cからの振動を受け難くしてもよい。このように、振動体2の接触部2aと接するロータ1の被接触部を不均一にすることで、圧電振動子2bにおける駆動信号の駆動電圧と駆動電流の位相差を変化されている。つまり、ロータ1が駆動している際に、ロータ1が上記構造を有していることから、振動している圧電振動子2bには異なる力がかかる複数の状態が存在することになる。圧電振動子2bが位置する箇所のロータ1の形態に応じて、圧電振動子2bには加わる力が異なることから、圧電振動子2bの共振状態が変化する。超音波アクチュエータ100は、この共振状態の変化に基づいてロータ1の移動量等を検出する。 More specifically, the vibration high receiving portion of the rotor 1 is formed by a flat surface that comes into contact with the protruding portion 2c so as to receive vibration from the protruding portion 2c, and the vibration low receiving portion constitutes a vibration high receiving portion. A groove is formed on the flat surface so as not to come into contact with the protrusion 2c so as not to receive vibration from the protrusion 2c. A plurality of grooves are formed for accurate position control. In addition, the high vibration receiving portion of the rotor 1 has a rough surface to increase the coefficient of friction to make it easy to receive vibration from the protrusion 2c, and the low vibration receiving portion has a small surface roughness to make it slip easily and vibrate. It may be difficult to receive. Further, the high vibration receiving portion of the rotor 1 is made of a vibrating material such as a high density material or a low elastic material so as to be easily subjected to vibration from the protrusion 2c, and the low vibration receiving portion is a low density material or elastic. It may be made of a vibration-absorbing material such as a high-grade material so that it is difficult to receive vibration from the protrusion 2c. Thus, the phase difference between the drive voltage and drive current of the drive signal in the piezoelectric vibrator 2b is changed by making the contacted portion of the rotor 1 in contact with the contact portion 2a of the vibrating body 2 non-uniform. In other words, since the rotor 1 has the above structure when the rotor 1 is driven, there are a plurality of states in which different forces are applied to the vibrating piezoelectric vibrator 2b. Since the force applied to the piezoelectric vibrator 2b varies depending on the form of the rotor 1 where the piezoelectric vibrator 2b is located, the resonance state of the piezoelectric vibrator 2b changes. The ultrasonic actuator 100 detects the amount of movement of the rotor 1 based on the change in the resonance state.
 ロータ1における突起部2cと接する被接触部についてさらに詳しく説明する。上述のように、ロータ1の被接触部に異なる形態を周期的に形成して、高精度の位置決め制御を実現している。振動体2の接触部2aと接するロータ1の被接触部には、径方向に沿って伸びる複数の溝(凹部)が円周に沿って等間隔に形成して振動低受容部を形成している。図8~図12を用いて、ロータの被接触部について説明する。図8はロータ1と接触部2aの分解斜視図である。図9はロータ1の被接触部の形状を示す図である。図10はロータ1の被接触部の要部拡大断面図である。図11はロータ1の被接触部の別の構造を示す要部拡大断面図である。図12はロータ1の被接触部のさらに別の構造を示す要部拡大断面図である。 The contacted portion in contact with the protrusion 2c in the rotor 1 will be described in more detail. As described above, high-precision positioning control is realized by periodically forming different forms in the contacted portion of the rotor 1. In the contacted portion of the rotor 1 that is in contact with the contact portion 2a of the vibrating body 2, a plurality of grooves (concave portions) extending along the radial direction are formed at equal intervals along the circumference to form a vibration low receiving portion. Yes. The contacted part of the rotor will be described with reference to FIGS. FIG. 8 is an exploded perspective view of the rotor 1 and the contact portion 2a. FIG. 9 is a diagram showing the shape of the contacted portion of the rotor 1. FIG. 10 is an enlarged cross-sectional view of the main part of the contacted portion of the rotor 1. FIG. 11 is an enlarged cross-sectional view of a main part showing another structure of the contacted portion of the rotor 1. FIG. 12 is an enlarged cross-sectional view of a main part showing still another structure of the contacted portion of the rotor 1.
 図8に示すように、振動体2(図示せず)の接触部2aは、ロータ1側の面に複数の突起部2cを備えている。ロータ1と接触部2aとの間には所定の付勢力がかかり、これらは密着している。この場合に、接触部2aは、突起部2cにおいてロータ1の被接触部と接触している。したがって、ロータ1から力が加わるのは突起部2cのみであり、接触部2a全面に力が加わるわけではない。 As shown in FIG. 8, the contact portion 2a of the vibrating body 2 (not shown) includes a plurality of protrusions 2c on the surface on the rotor 1 side. A predetermined urging force is applied between the rotor 1 and the contact portion 2a, and these are in close contact with each other. In this case, the contact portion 2a is in contact with the contacted portion of the rotor 1 at the protrusion 2c. Therefore, the force is applied only from the rotor 1 to the protrusion 2c, and the force is not applied to the entire contact portion 2a.
 図9に示すように、ロータ1における接触部2aと接触する被接触部には、ロータ1の中心を通り、径方向に沿って伸びる複数の溝1aすなわち振動低受容部が形成されている。なお、溝1aは円周に沿って等間隔に形成されている。つまり、溝1aが形成されている箇所と形成されていない箇所とが交互に、ロータ1の円周上に沿って配置されている。このような構成であることから、圧電振動子2b(図示せず)が振動することによりロータ1の被接触部に接触している突起部2cが楕円振動し、それによりロータ1が駆動した場合に、突起部2cは周期的に溝1aを通過することとなる。突起部2cが溝1aの形成箇所(振動低受容部)に位置する場合と、溝1aが形成されていない箇所(振動高受容部)に位置する場合とでは、接触部2aに加わる力が異なる。また、そのため、圧電振動子2bに加わる力も異なることから、圧電振動子2bの共振状態は変化する。また、図10に示すように、ロータ1は、接触部2a側の面を覆うように薄板1bが貼り付けられている。このような構成にすることで、ロータ1の被接触部の平坦性が形成され、突起部2cが溝1aを通過する際のガタツキを防止することができる。ロータ1はステンレスなどの金属で形成され、溝1aはロータ1に機械加工又はエッチングなどで形成される。薄板1bもステンレスなどの金属で形成されている。なお薄板1bには、耐摩耗性を向上させるため、窒化処理などを施しておくことが好ましい。ロータ1と薄板1bとは、それらの間に薄い接着層を形成するなどして接合、または、中心付近をスポット溶接などで結合すればよい。この場合は、突起部2cと薄板1bとが接触し、突起部2cの楕円振動により薄板1bがつき動かされるので、薄板1bからロータ1に回転駆動が確実に伝達される。このような構成では、溝1aが形成されている箇所は空洞なので、溝1aの形成箇所と溝1aが形成されていない箇所とでは、薄板1bのばね定数が異なる。つまり、薄板1bにおいて溝1aの形成箇所は、溝1aが形成されていない箇所に比べて剛性が低い。したがって、薄板1bにおいて、溝1aの形成箇所に突起部2cが位置する場合は、圧電振動子2bの共振周波数は低下する。このように、ロータ1の被接触部に対する突起部2cの位置に応じて圧電振動子2bの共振状態が変化する。 As shown in FIG. 9, a plurality of grooves 1 a that extend along the radial direction through the center of the rotor 1, that is, vibration low receptive portions, are formed in the contacted portion that contacts the contact portion 2 a in the rotor 1. The grooves 1a are formed at equal intervals along the circumference. That is, the location where the groove 1 a is formed and the location where the groove 1 a is not formed are alternately arranged along the circumference of the rotor 1. With this configuration, when the piezoelectric vibrator 2b (not shown) vibrates, the protrusion 2c that is in contact with the contacted portion of the rotor 1 elliptically vibrates, whereby the rotor 1 is driven. Moreover, the protrusion 2c periodically passes through the groove 1a. The force applied to the contact portion 2a is different between the case where the protrusion 2c is located at the location where the groove 1a is formed (vibration low receiving portion) and the location where the groove 1a is not formed (vibration high accepting portion). . For this reason, since the force applied to the piezoelectric vibrator 2b is also different, the resonance state of the piezoelectric vibrator 2b changes. As shown in FIG. 10, the rotor 1 has a thin plate 1b attached so as to cover the surface on the contact portion 2a side. By adopting such a configuration, the flatness of the contacted portion of the rotor 1 is formed, and rattling when the protruding portion 2c passes through the groove 1a can be prevented. The rotor 1 is formed of a metal such as stainless steel, and the groove 1a is formed in the rotor 1 by machining or etching. The thin plate 1b is also formed of a metal such as stainless steel. The thin plate 1b is preferably subjected to nitriding treatment or the like in order to improve wear resistance. The rotor 1 and the thin plate 1b may be joined by forming a thin adhesive layer between them, or the vicinity of the center may be joined by spot welding or the like. In this case, the protrusion 2c and the thin plate 1b come into contact with each other and the thin plate 1b is moved by the elliptical vibration of the protrusion 2c, so that the rotational drive is reliably transmitted from the thin plate 1b to the rotor 1. In such a configuration, since the portion where the groove 1a is formed is a cavity, the spring constant of the thin plate 1b is different between the portion where the groove 1a is formed and the portion where the groove 1a is not formed. That is, in the thin plate 1b, the location where the groove 1a is formed is less rigid than the location where the groove 1a is not formed. Therefore, in the thin plate 1b, when the protrusion 2c is located at the position where the groove 1a is formed, the resonance frequency of the piezoelectric vibrator 2b is lowered. Thus, the resonance state of the piezoelectric vibrator 2b changes according to the position of the protrusion 2c with respect to the contacted portion of the rotor 1.
 さらに、ロータ1における突起部2cと接する被接触部の同一平坦面上に、摩擦係数の高い非滑動性表面を有する振動高受容部と摩擦係数の低い滑動性表面を有する振動低受容部を形成してもよい。振動低受容部は、溝ではなくロータの中心を通り径方向に沿って伸びる低摩擦領域で形成し、摩擦係数の異なる領域を交互にロータ1の円周上に沿って配置する。摩擦係数を異ならすには、例えば、表面粗さを変化させればよい。このような構成であれば、振動高受容部も振動低受容部も同一平坦面上に形成されているので、ロータ1が駆動する際にガタツキが生じることもない。また、突起部2cが位置する領域の摩擦係数により、突起部2cに加わる力が異なる。そのため、圧電振動子2bに加わる力も異なることから、圧電振動子2bの共振状態が変化する。 Further, on the same flat surface of the contacted portion in contact with the protrusion 2c in the rotor 1, a vibration high receiving portion having a non-sliding surface having a high friction coefficient and a vibration low receiving portion having a sliding surface having a low friction coefficient are formed. May be. The low vibration receiving portion is formed not by a groove but by a low friction region extending along the radial direction through the center of the rotor, and regions having different friction coefficients are alternately arranged along the circumference of the rotor 1. In order to make the friction coefficient different, for example, the surface roughness may be changed. With such a configuration, since the vibration high receiving portion and the vibration low receiving portion are formed on the same flat surface, there is no backlash when the rotor 1 is driven. Further, the force applied to the protrusion 2c varies depending on the friction coefficient of the region where the protrusion 2c is located. Therefore, since the force applied to the piezoelectric vibrator 2b is also different, the resonance state of the piezoelectric vibrator 2b changes.
 また、図11に示すように、振動高受容部を形成する材料より密度が低いか、質量が低いか、弾性度が高い物質で形成した振動低受容部1cを、ロータ1の円周に沿って周期的に配置してもよい。また振動低受容部の形成範囲を、図12に示すように、広げてもよい。例えば、振動低受容部1cがロータ1の半周分を占めるようにしてもよい。このような構成にすることで、ロータ1における突起部2cと接する被接触部が複数の異なる材料により形成され、突起部2cが位置する領域の材質により、突起部2cに加わる力が異なる。そのため、圧電振動子2bに加わる力も異なることから、圧電振動子2bの共振状態は変化する。この構成では、振動高受容部と振動低受容部は材質が異なるだけで、突起部2cと接触する面は同一平坦面であるので、ロータ1が駆動する際にガタツキが生じることもない。なお、ロータ1が異なる材料により構成される場合であっても、図10に示したように、ロータ1における突起部2c側の面を薄板で覆ってもよい。 Further, as shown in FIG. 11, the vibration low receiving portion 1 c formed of a material having a lower density, lower mass, or higher elasticity than the material forming the vibration high receiving portion is provided along the circumference of the rotor 1. May be arranged periodically. Further, the formation range of the low vibration receiving portion may be widened as shown in FIG. For example, the vibration low receiving portion 1c may occupy a half circumference of the rotor 1. With such a configuration, the contacted portion in contact with the protrusion 2c in the rotor 1 is formed of a plurality of different materials, and the force applied to the protrusion 2c varies depending on the material of the region where the protrusion 2c is located. Therefore, since the force applied to the piezoelectric vibrator 2b is also different, the resonance state of the piezoelectric vibrator 2b changes. In this configuration, only the material of the vibration high receiving portion and the vibration low receiving portion are different from each other, and the surfaces that come into contact with the protrusions 2c are the same flat surface, so that no rattling occurs when the rotor 1 is driven. Even when the rotor 1 is made of a different material, the surface of the rotor 1 on the side of the protrusion 2c may be covered with a thin plate as shown in FIG.
 上述のようにロータ1の相対位置に応じて、圧電振動子2bの共振状態が変化する。上述の溝1aや摩擦係数の異なる領域等が形成されることで、ロータ1の円周上に沿って2種類の領域が周期的に配置されていることから、圧電振動子2bの共振状態を監視することで、ロータ1の位置情報を算出することができる。なお、突起部2cのすべてが、同時刻においては、2種類の領域のいずれか一方に位置することが必要である。ロータ1における突起部2cと接する面の形状は、このような関係にあるように構成する必要がある。 As described above, the resonance state of the piezoelectric vibrator 2b changes according to the relative position of the rotor 1. Since the groove 1a and the regions having different friction coefficients are formed, two types of regions are periodically arranged along the circumference of the rotor 1, so that the resonance state of the piezoelectric vibrator 2b can be changed. By monitoring, the position information of the rotor 1 can be calculated. Note that all of the protrusions 2c need to be located in one of the two types of regions at the same time. The shape of the surface of the rotor 1 that is in contact with the protrusion 2c needs to be configured to have such a relationship.
 また、2種類の領域を周期的に設けることとしたが、これら2種類の領域とは異なる形状あるいは性質が異なる箇所を一箇所形成しておき、その位置をロータ1の原点位置とするようにしてもよい。すなわち、ロータ1における突起部2cと接する被接触部に3種類の異なる形態を設け、そのうち1種類は一箇所のみ形成し、残りの2種類は周期的に交互に形成するようにしてもよい。また、ロータ1の被接触部に3種類よりも多くの種類の異なる形態を形成してもよい。なお突起部2cと接するロータ1の被接触部を一様でない形態にする構成は、上述した例に限定されるものではない。圧電振動子2bの共振状態を変化させ得るものであればよい。 In addition, although two types of regions are provided periodically, one place having a shape or property different from those of the two types of regions is formed, and the position is set as the origin position of the rotor 1. May be. That is, three types of different forms may be provided in the contacted portion of the rotor 1 that is in contact with the protruding portion 2c, one of which may be formed in only one place, and the remaining two types may be formed alternately alternately. Also, more than three types of different forms may be formed on the contacted portion of the rotor 1. In addition, the structure which makes the to-be-contacted part of the rotor 1 which contact | connects the projection part 2c a non-uniform | heterogenous form is not limited to the example mentioned above. Any device that can change the resonance state of the piezoelectric vibrator 2b may be used.
 次に、共振状態の具体的な検出方法について説明する。振動検知電極2b-5から出力される信号により共振状態の変化を検出する。すなわち、ロータ1が回転することで、駆動検知電極2b-5に接続される内部電極2hの形成箇所の圧電薄板20に加わる力は周期的に変化する。それにより、内部電極2hから出力される振動検知電圧と駆動電圧との位相差が変化する。図13は、振動検知電圧と駆動信号の周波数との関係を示すグラフであり、図14は、振動検知電圧と駆動電圧間の位相差と、駆動信号の周波数との関係を示すグラフである。図13において、縦軸は電圧を示し、横軸は周波数を示す。図13は、図10に示すようにロータ1の被接触部に溝1aが形成され、薄板1bが形成された場合に、突起部2cが溝1aの形成箇所に位置している場合と、突起部2cが溝1aの形成されていない箇所に位置している場合について、電圧の振幅と周波数の関係を表している。図13において、実線は突起部2cが溝1aの形成箇所に位置している場合を示していて、破線は突起部2cが溝1aの形成されていない箇所に位置している場合を示している。このように、突起部2cが溝1aの形成されていない箇所に位置している場合と、突起部2cが溝1aの形成箇所に位置している場合とでは、振動検知電圧の振幅は異なる。なお、図13において、各線において、最大値における周波数が共振点である。実線の方が最大値における周波数が低いことから、突起部2cが溝1aの形成箇所に位置している場合の方が、圧電振動子2bの共振周波数が低い。なお、共振点の近傍で、振動検知電圧と駆動電圧間の位相差が大きく変化する。 Next, a specific method for detecting the resonance state will be described. A change in the resonance state is detected by a signal output from the vibration detection electrode 2b-5. That is, as the rotor 1 rotates, the force applied to the piezoelectric thin plate 20 at the location where the internal electrode 2h connected to the drive detection electrode 2b-5 is changed periodically. Thereby, the phase difference between the vibration detection voltage output from the internal electrode 2h and the drive voltage changes. FIG. 13 is a graph showing the relationship between the vibration detection voltage and the frequency of the drive signal, and FIG. 14 is a graph showing the relationship between the phase difference between the vibration detection voltage and the drive voltage and the frequency of the drive signal. In FIG. 13, the vertical axis represents voltage and the horizontal axis represents frequency. FIG. 13 shows a case where the groove 1a is formed in the contacted portion of the rotor 1 and the thin plate 1b is formed as shown in FIG. The relationship between the amplitude of the voltage and the frequency is shown for the case where the portion 2c is located at a location where the groove 1a is not formed. In FIG. 13, the solid line indicates the case where the protrusion 2c is located at the position where the groove 1a is formed, and the broken line indicates the case where the protrusion 2c is located where the groove 1a is not formed. . As described above, the amplitude of the vibration detection voltage is different between the case where the protrusion 2c is located at the position where the groove 1a is not formed and the case where the protrusion 2c is located at the position where the groove 1a is formed. In FIG. 13, the frequency at the maximum value is the resonance point in each line. Since the solid line has a lower frequency at the maximum value, the resonance frequency of the piezoelectric vibrator 2b is lower when the protrusion 2c is located at the position where the groove 1a is formed. Note that the phase difference between the vibration detection voltage and the drive voltage changes greatly in the vicinity of the resonance point.
 また、図14において、縦軸は位相差を示し、横軸は周波数を示す。図14は、図10に示すようにロータ1の被接触部に溝1aが形成され、薄板1bが形成された場合に、突起部2cが溝1aの形成箇所に位置している場合と、突起部2cが溝1aの形成されていない箇所に位置している場合について、振動検知電圧と駆動電圧間の位相差と、駆動信号の周波数との関係を表している。図14において、実線は突起部2cが溝1aの形成箇所に位置している場合を示し、破線は突起部2cが溝1aの形成されていない箇所に位置している場合を示している。このように、前記位相差は、突起部2cが溝1aの形成されていない箇所に位置している場合と、突起部2cが溝1aの形成箇所に位置している場合とでは異なる。このように、突起部2cのロータ1に対する位置により、振動検知電圧および前記位相差が異なることから、振動検知電圧に基づいて、これらを算出することで共振状態の変化を検出することができる。 In FIG. 14, the vertical axis represents the phase difference and the horizontal axis represents the frequency. FIG. 14 shows a case in which the groove 1a is formed in the contacted portion of the rotor 1 and the thin plate 1b is formed as shown in FIG. In the case where the part 2c is located at a location where the groove 1a is not formed, the relationship between the phase difference between the vibration detection voltage and the drive voltage and the frequency of the drive signal is shown. In FIG. 14, a solid line indicates a case where the protruding portion 2c is positioned at a position where the groove 1a is formed, and a broken line indicates a case where the protruding portion 2c is positioned where the groove 1a is not formed. As described above, the phase difference is different between the case where the protrusion 2c is located at a position where the groove 1a is not formed and the case where the protrusion 2c is located where the groove 1a is formed. Thus, since the vibration detection voltage and the phase difference differ depending on the position of the protrusion 2c with respect to the rotor 1, the change in the resonance state can be detected by calculating them based on the vibration detection voltage.
 次に、超音波アクチュエータ100の動作について説明する。まず、制御部11がロータ1を駆動する指令のための電気信号である駆動信号を出力する。駆動電圧生成部12は、制御部11からの駆動信号に応じた駆動電圧を生成する。このとき、生成された駆動電圧は、駆動電圧変換部16にて検出され、パルス信号へと変換される。また、駆動電圧は駆動電流生成部13に入力され、駆動電流生成部13は駆動電圧に対応する駆動電流を生成する。なお、駆動電圧および駆動電流は交流である。駆動電流は、圧電振動子2bに入力され、圧電振動子2bが振動することで、突起部2cは楕円振動を行い、それによって、ロータ1が駆動する。なお、このときに発生する振動検知電圧は、振動状態検知部14(内部電極2h)により検出され、検知電圧変換部15に出力される。検知電圧変換部15は振動検知電圧をパルス信号に変換する。演算部17は、パルス信号とされた駆動電圧と振動検知電圧の位相差を求める。それにより、演算部17は、ロータ1の位置等を算出することができ、ロータ1の移動量等の位置情報を算出することができる。また、パルス信号を変換することで、位相差を信号情報(レベル)として検出する。それにより、容易に位相差を検出することができる。また、演算部17が、振動検知電圧の振幅より、ロータ1の移動量等の位置情報を算出してもよい。また、各突起部2cはロータ1の被接触部と、その頂点で接触している。したがって、異なる領域の検出においては、それらの境界付近においても、正確に高精度に検出することができる。 Next, the operation of the ultrasonic actuator 100 will be described. First, the control unit 11 outputs a drive signal that is an electric signal for a command to drive the rotor 1. The drive voltage generation unit 12 generates a drive voltage according to the drive signal from the control unit 11. At this time, the generated drive voltage is detected by the drive voltage converter 16 and converted into a pulse signal. Further, the drive voltage is input to the drive current generation unit 13, and the drive current generation unit 13 generates a drive current corresponding to the drive voltage. The drive voltage and drive current are alternating current. The drive current is input to the piezoelectric vibrator 2b, and when the piezoelectric vibrator 2b vibrates, the protrusion 2c performs elliptical vibration, thereby driving the rotor 1. The vibration detection voltage generated at this time is detected by the vibration state detection unit 14 (internal electrode 2h) and output to the detection voltage conversion unit 15. The detection voltage converter 15 converts the vibration detection voltage into a pulse signal. The calculating part 17 calculates | requires the phase difference of the drive voltage made into the pulse signal, and a vibration detection voltage. Thereby, the calculating part 17 can calculate the position etc. of the rotor 1, and can calculate position information, such as the moving amount | distance of the rotor 1. FIG. Further, the phase difference is detected as signal information (level) by converting the pulse signal. Thereby, the phase difference can be easily detected. Further, the calculation unit 17 may calculate position information such as the movement amount of the rotor 1 from the amplitude of the vibration detection voltage. Each protrusion 2c is in contact with the contacted portion of the rotor 1 at its apex. Therefore, in the detection of different regions, it is possible to detect accurately and with high accuracy even in the vicinity of the boundary between them.
 位置情報の算出について具体的に説明する。ロータ1は、上述したように3種類の異なる形態を有することとする。1つは原点形態であり、残りは第1の形態および第2の形態である。したがって、それぞれの形態に突起部2cが位置する場合には共振状態が互いに異なる。例えば、第1の形態と第2の形態とをそれぞれロータ1の中心に対して所定の角度ずつ交互に形成しておき、第1の形態、第2の形態を何回通過したかをカウントすればよい。所定の角度および通過回数によりロータ1の回転角を検出することができる。このように、振動体2とロータ1との相対位置の関係を検出することができる。また、原点形態も検出できることから、原点形態を何回通過したかをカウントしておくことで、ロータ1が何回転したかを容易に検出することができる。このように、突起部2cとロータ1との絶対位置の関係を検出することができる。また、これらを組み合わせることで、ロータ1の移動量や位置等の移動量等の位置情報を検出することができる。 The calculation of location information will be specifically described. As described above, the rotor 1 has three different forms. One is the origin form, and the rest is the first form and the second form. Therefore, when the protrusion 2c is located in each form, the resonance states are different from each other. For example, the first form and the second form are alternately formed at a predetermined angle with respect to the center of the rotor 1, and the number of passes through the first form and the second form is counted. That's fine. The rotation angle of the rotor 1 can be detected from the predetermined angle and the number of passes. In this way, the relative position relationship between the vibrating body 2 and the rotor 1 can be detected. In addition, since the origin form can also be detected, it is possible to easily detect how many times the rotor 1 has rotated by counting how many times the origin form has been passed. Thus, the absolute position relationship between the protrusion 2c and the rotor 1 can be detected. Further, by combining these, position information such as a movement amount and a movement amount of the rotor 1 can be detected.
 また超音波アクチュエータ100において、接触部2aは、ロータ1の被接触部に突起部2cの頂点で接していることから、圧電振動子2bの振動状態の変化(共振状態の変化)を、デジタル的すなわち高い分解能で検出することができる。振動検知電圧および前記位相差の変化が顕著に表れることになり、位相差の検出が容易であり、より高精度の位置制御が可能である。 Further, in the ultrasonic actuator 100, the contact portion 2a is in contact with the contacted portion of the rotor 1 at the apex of the projection 2c, so that the vibration state change (resonance state change) of the piezoelectric vibrator 2b is digitally changed. That is, it can be detected with high resolution. Changes in the vibration detection voltage and the phase difference appear remarkably, the phase difference can be easily detected, and more accurate position control is possible.
 このようにして、演算部17で検出されたロータ1の位置情報は制御部11へと送られ、制御部11は演算部17において検出されたロータ1の位置情報を考慮して、ロータ1の駆動を制御することができる。それにより、ロータリーエンコーダ等を取り付けることなく、高精度の位置制御が可能な超音波アクチュエータ100が実現できる。 Thus, the position information of the rotor 1 detected by the calculation unit 17 is sent to the control unit 11, and the control unit 11 considers the position information of the rotor 1 detected by the calculation unit 17, and The drive can be controlled. Thereby, the ultrasonic actuator 100 capable of highly accurate position control can be realized without attaching a rotary encoder or the like.
 (実施の形態2)
 次に、本発明の実施の形態2に係る超音波アクチュエータについて説明する。なお、上述した実施の形態1に係る超音波アクチュエータ100と同一の部材については同一の符号を付して詳細な説明を省略する。図15は実施の形態2に係る超音波アクチュエータ200の電気的構成を示すブロック図である。
(Embodiment 2)
Next, an ultrasonic actuator according to Embodiment 2 of the present invention will be described. The same members as those of the ultrasonic actuator 100 according to Embodiment 1 described above are denoted by the same reference numerals, and detailed description thereof is omitted. FIG. 15 is a block diagram showing an electrical configuration of the ultrasonic actuator 200 according to the second embodiment.
 図15に示すように、超音波アクチュエータ200は、移動体であるロータ1と、ロータ1と接触する突起部2c(図示せず)を有する接触部2aおよび圧電振動子2bを有する振動体(ステータ)2と、ロータ1の回転中心にロータ1と一体的に設置された回転軸3と、制御部11と、駆動電圧生成部12と、駆動電流生成部13と、駆動電流検出部18と、駆動電流変換部19と、駆動電圧変換部16と、演算部17とを備えている。制御部11と、駆動電圧生成部12と、駆動電流生成部13と、駆動電流検出部18と、駆動電流変換部19と、駆動電圧変換部16と、演算部17とは、例えば基板上に抵抗、コンデンサ、コイル等の電子素子が配置されて構成される。 As shown in FIG. 15, the ultrasonic actuator 200 includes a rotor 1 that is a moving body, a vibrating portion (stator) having a contact portion 2 a having a protrusion 2 c (not shown) that contacts the rotor 1, and a piezoelectric vibrator 2 b. ) 2, the rotation shaft 3 integrally installed with the rotor 1 at the rotation center of the rotor 1, a control unit 11, a drive voltage generation unit 12, a drive current generation unit 13, a drive current detection unit 18, A drive current conversion unit 19, a drive voltage conversion unit 16, and a calculation unit 17 are provided. The control unit 11, the drive voltage generation unit 12, the drive current generation unit 13, the drive current detection unit 18, the drive current conversion unit 19, the drive voltage conversion unit 16, and the calculation unit 17 are, for example, on a substrate. Electronic elements such as resistors, capacitors and coils are arranged.
 超音波アクチュエータ200の機械的構成は、前述の実施の形態1に係る超音波アクチュエータ100と同じある。但し、超音波アクチュエータ200は、振動状態検知をする必要がないので、図4および図5に示されている振動状態検知部に接続された振動検知電極2b-5および内部電極2hは設けられていない。 The mechanical configuration of the ultrasonic actuator 200 is the same as that of the ultrasonic actuator 100 according to the first embodiment. However, since the ultrasonic actuator 200 does not need to detect the vibration state, the vibration detection electrode 2b-5 and the internal electrode 2h connected to the vibration state detection unit shown in FIGS. 4 and 5 are provided. Absent.
 制御部11は、ロータ1が回転駆動するよう電気信号である駆動信号を発生させる。駆動信号は振動体2の接触部2aに設置された突起部2cに、楕円振動を生じさせるものである。実施の形態1で説明したように、圧電振動子2bの振動により、突起部2cは図7に示すように楕円振動を行う。そして、突起部2cに突き動かされるようにロータ1が駆動する。 The control unit 11 generates a drive signal that is an electrical signal so that the rotor 1 is rotationally driven. The drive signal causes elliptical vibration to occur in the protrusion 2c installed on the contact portion 2a of the vibrating body 2. As described in the first embodiment, the protrusion 2c performs elliptical vibration as shown in FIG. 7 due to the vibration of the piezoelectric vibrator 2b. Then, the rotor 1 is driven so as to be pushed by the protrusion 2c.
 駆動電圧生成部12は、制御部11により指示された前記駆動信号に応じた駆動電圧を発生させる。また、圧電振動子2bの駆動制御は電流で行うことから、駆動電流生成部13では、前記駆動電圧に基づいた駆動電流を生成する。駆動電流生成部13により生成された駆動電流は、駆動電流生成部13から出力され、圧電振動子2bに入力される。 The drive voltage generator 12 generates a drive voltage according to the drive signal instructed by the controller 11. In addition, since the drive control of the piezoelectric vibrator 2b is performed by a current, the drive current generation unit 13 generates a drive current based on the drive voltage. The drive current generated by the drive current generator 13 is output from the drive current generator 13 and input to the piezoelectric vibrator 2b.
 駆動電流検出部18は、駆動電流を検出するものであり、具体的には駆動電流の波形および値を検出する。駆動電流検出部18は、駆動電流生成部13と圧電振動子2bとの間に設置され、圧電振動子2bにおける駆動電流を検出する。 The drive current detector 18 detects the drive current, and specifically detects the waveform and value of the drive current. The drive current detector 18 is installed between the drive current generator 13 and the piezoelectric vibrator 2b and detects the drive current in the piezoelectric vibrator 2b.
 駆動電流変換部19は駆動電流検出部18において検出された駆動電流をパルス信号に変換して演算部17に入力する。また、駆動電圧変換部16は駆動電圧生成部12で生成された駆動電圧をパルス信号に変換して、演算部17に入力する。このように、パルス信号に変換することにより、演算処理が容易になる。 The drive current converter 19 converts the drive current detected by the drive current detector 18 into a pulse signal and inputs it to the calculator 17. The drive voltage conversion unit 16 converts the drive voltage generated by the drive voltage generation unit 12 into a pulse signal and inputs the pulse signal to the calculation unit 17. As described above, the arithmetic processing is facilitated by converting the pulse signal.
 演算部17は、駆動電流変換部19からの駆動電流と駆動電圧変換部16からの駆動電圧の位相差を算出する。演算部17は、算出した位相差に基づきロータ1の移動量等の位置情報を算出して、制御部11に指示する。制御部11では演算部17から位置情報を考慮して駆動信号を作成する。なお位置情報とは、ロータ1の移動量や位置等の、演算部17により算出された情報である。 The calculation unit 17 calculates the phase difference between the drive current from the drive current conversion unit 19 and the drive voltage from the drive voltage conversion unit 16. The calculation unit 17 calculates position information such as the movement amount of the rotor 1 based on the calculated phase difference, and instructs the control unit 11. The control unit 11 generates a drive signal in consideration of the position information from the calculation unit 17. The position information is information calculated by the calculation unit 17 such as the movement amount and position of the rotor 1.
 また、ロータ1は、ロータ1に対する圧電振動子2bの位置に応じて、圧電振動子2bにおける駆動電圧と駆動電流の位相差が変化するような構造を有している。なお、駆動電圧と駆動電流の位相差の変化は共振状態の変化により生じる。ロータ1は、ロータ1が回転駆動することで圧電振動子2bが変形するような形態を有している。具体的には、実施の形態1と同様に、ロータ1における接触部2aの突起部2cと接する面が一様ではないようにしている。つまり、ロータ1における突起部2cと接している被接触部の形状を不均一にするか、あるいはロータ1の被接触部を異なる性質を有する複数の材料により構成する等で、駆動電圧と駆動電流の位相差が変化するような構造にしている。このように、ロータ1における突起部2cと接する被接触部が一様でないことで、圧電振動子2bにおける駆動信号の駆動電圧と駆動電流の位相差が変化する。つまり、ロータ1が駆動している際に、ロータ1の被接触部が上記構造を有していることから、振動している圧電振動子2bには異なる力がかかる複数の状態が存在することになる。圧電振動子2bが位置する箇所のロータ1の形態に応じて、圧電振動子2bには加わる力が異なることから、圧電振動子2bの駆動電圧と駆動電流の位相差が変化する。超音波アクチュエータ200は、この位相差に基づいてロータ1の移動量等を検出する。以下に、駆動電流と駆動電圧との位相差に基づいて、ロータ1の移動量等を検出する方法についてさらに詳しく説明する。 The rotor 1 has a structure in which the phase difference between the drive voltage and the drive current in the piezoelectric vibrator 2b changes according to the position of the piezoelectric vibrator 2b with respect to the rotor 1. Note that the change in the phase difference between the drive voltage and the drive current is caused by the change in the resonance state. The rotor 1 has a configuration in which the piezoelectric vibrator 2b is deformed when the rotor 1 is rotationally driven. Specifically, as in the first embodiment, the surface of the rotor 1 that contacts the protrusion 2c of the contact portion 2a is not uniform. In other words, the drive voltage and the drive current can be reduced by making the shape of the contacted part in contact with the protrusion 2c in the rotor 1 non-uniform or by configuring the contacted part of the rotor 1 with a plurality of materials having different properties. The phase difference is changed. As described above, the contacted portion in contact with the protrusion 2c in the rotor 1 is not uniform, so that the phase difference between the drive voltage and the drive current of the drive signal in the piezoelectric vibrator 2b changes. That is, when the rotor 1 is driven, the contacted portion of the rotor 1 has the above-described structure, and therefore there are a plurality of states in which different forces are applied to the vibrating piezoelectric vibrator 2b. become. Since the force applied to the piezoelectric vibrator 2b differs depending on the form of the rotor 1 where the piezoelectric vibrator 2b is located, the phase difference between the drive voltage and the drive current of the piezoelectric vibrator 2b changes. The ultrasonic actuator 200 detects the amount of movement of the rotor 1 based on this phase difference. Hereinafter, a method for detecting the moving amount of the rotor 1 based on the phase difference between the drive current and the drive voltage will be described in more detail.
 圧電振動子2bは、上述のように駆動信号が入力されることで駆動する。圧電振動子2bが振動するためには、この駆動信号は交流である。すなわち、駆動信号による駆動電流および駆動電圧は交流である。図16は圧電振動子の等価回路を示す図である。図16に示すように、圧電振動子2bはキャパシタンスがCのコンデンサと、インダクタンスがLのコイル、キャパシタンスがCのコンデンサおよび抵抗がRの抵抗素子からなる直列回路とが並列接続された回路である。なお、Cの値は圧電振動子2bの誘電率と電極寸法から決まる容量である。また、LおよびC値は、圧電振動子2bの圧電的機械振動により決定される値で、具体的には圧電振動子2bの振動モード、寸法、弾性定数、密度、圧電定数等によって決まる。また、Rの値は、圧電振動子2bの機械的振動損失により決定される値である。 The piezoelectric vibrator 2b is driven by receiving a drive signal as described above. In order for the piezoelectric vibrator 2b to vibrate, this drive signal is an alternating current. That is, the drive current and drive voltage based on the drive signal are alternating current. FIG. 16 is a diagram showing an equivalent circuit of the piezoelectric vibrator. As shown in FIG. 16, the piezoelectric transducer 2b is a capacitor of capacitance C d, inductance L 1 of the coil, the capacitance is a capacitor and resistance of C 1 and a series circuit composed of the resistor element R 1 is connected in parallel Circuit. The value of C d is the capacitance determined by the dielectric constant and electrode size of the piezoelectric vibrator 2b. The L 1 and C 1 values are values determined by the piezoelectric mechanical vibration of the piezoelectric vibrator 2b, and are specifically determined by the vibration mode, dimensions, elastic constant, density, piezoelectric constant, etc. of the piezoelectric vibrator 2b. . The value of R 1 is a value determined by the mechanical vibration loss of piezoelectric vibrators 2b.
 図16に示す等価回路の電気的入力側から観測したアドミッタンスは式1で表すことができる。
Figure JPOXMLDOC01-appb-I000001
The admittance observed from the electrical input side of the equivalent circuit shown in FIG.
Figure JPOXMLDOC01-appb-I000001
 式1において、第1項は制動アドミッタンスであり、第2項は動アドミッタンスである。ここで、圧電振動子2bが歪んだ場合には、動アドミッタンスが変化する。そこで、動アドミッタンスにおける電圧と電流の関係を説明する。なお、式1の第2項に示された動アドミッタンスは、抵抗素子、コイル、コンデンサの直列回路である。そこで抵抗素子の抵抗をR、コイルのインダクタンスをL、コンデンサのキャパシタンスをCとし、この直列回路に印加される入力電圧をEsinωtとした場合に、流れる電流をiとすると、以下の式2に示す関係が成り立つ。
Figure JPOXMLDOC01-appb-I000002
In Equation 1, the first term is braking admittance, and the second term is dynamic admittance. Here, when the piezoelectric vibrator 2b is distorted, the dynamic admittance changes. Therefore, the relationship between voltage and current in dynamic admittance will be described. The dynamic admittance shown in the second term of Equation 1 is a series circuit of a resistance element, a coil, and a capacitor. Therefore, when the resistance of the resistance element is R, the inductance of the coil is L, the capacitance of the capacitor is C, and the input voltage applied to the series circuit is E m sin ωt, the current that flows is assumed to be i. The relationship shown in is established.
Figure JPOXMLDOC01-appb-I000002
 ここで、式2におけるiを、i=Asinωt+Bcosωtとして、式2に代入すると、以下の式3が得られる。
Figure JPOXMLDOC01-appb-I000003
Here, when i in Expression 2 is substituted into Expression 2 as i = Asinωt + Bcosωt, the following Expression 3 is obtained.
Figure JPOXMLDOC01-appb-I000003
 式3の両辺を比較することで、以下に示す連立方程式である式4が得られる。
Figure JPOXMLDOC01-appb-I000004
By comparing both sides of Formula 3, Formula 4 which is a simultaneous equation shown below is obtained.
Figure JPOXMLDOC01-appb-I000004
 式4を解いて、AおよびBを求め、これらよりiを求めると、iは以下に示す式5で表される。
Figure JPOXMLDOC01-appb-I000005
When Equation 4 is solved to obtain A and B, and i is obtained from these, i is represented by Equation 5 shown below.
Figure JPOXMLDOC01-appb-I000005
 ここで、Iは電流(駆動電流)の振幅であり、Eは入力電圧の振幅である。また、θは圧電振動子2bにおける電流(駆動電流)と電圧(駆動電圧)の位相差を表している。また、式6にθの値を表す。
Figure JPOXMLDOC01-appb-I000006
Here, I is the amplitude of the current (driving current), the amplitude of E m is the input voltage. Θ represents the phase difference between the current (drive current) and the voltage (drive voltage) in the piezoelectric vibrator 2b. Equation 6 represents the value of θ.
Figure JPOXMLDOC01-appb-I000006
 式6より、圧電振動子2bにおけるインダクタンスL、キャパシタンスC、抵抗Rが変化すれば、駆動電流および駆動電圧の位相差θがずれることがわかる。例えば、圧電振動子2bが変形すれば、抵抗Rが変化し得る。つまり、その断面積が大きくなった場合および長さが短くなった場合は、抵抗が小さくなる。例えば、圧電振動子2bが伸びると、その断面積も小さくなり、抵抗値は大きくなる。このように、圧電振動子2bが変形することで、駆動電流と駆動電圧との位相差は変化する。そこで、上述のように、ロータ1の被接触部が異なる形態を有する場合は、その形態に応じて圧電振動子2bの駆動電流と駆動電圧の位相差が異なる。 From Equation 6, it can be seen that if the inductance L, capacitance C, and resistance R of the piezoelectric vibrator 2b are changed, the phase difference θ between the drive current and the drive voltage is shifted. For example, if the piezoelectric vibrator 2b is deformed, the resistance R can change. That is, when the cross-sectional area becomes large and the length becomes short, the resistance becomes small. For example, when the piezoelectric vibrator 2b is extended, its cross-sectional area is also reduced and the resistance value is increased. Thus, the phase difference between the drive current and the drive voltage changes as the piezoelectric vibrator 2b is deformed. Therefore, as described above, when the contacted portion of the rotor 1 has a different form, the phase difference between the drive current and the drive voltage of the piezoelectric vibrator 2b differs depending on the form.
 図17は駆動電流と駆動電圧の位相差のずれについて説明するグラフであって、図17(A)は第1の形態の駆動電流と駆動電圧の波形を示すグラフであり、図17(B)は第2の形態の駆動電流と駆動電圧の波形を示すグラフである。 FIG. 17 is a graph for explaining a difference in phase difference between the drive current and the drive voltage. FIG. 17A is a graph showing the waveforms of the drive current and the drive voltage in the first embodiment, and FIG. These are graphs showing the waveforms of the drive current and drive voltage of the second embodiment.
 図17(A)および図17(B)において、縦軸はそれぞれ電圧値または電流値であり、横軸は時間(t)を示している。また、上段に示されているグラフは駆動電圧波形であり、下段に示されているグラフは駆動電流波形である。また、駆動電圧および駆動電流におけるそれぞれの閾値も示している。図17(A)において、駆動電圧と駆動電流の位相差はtaで表されている。また、ロータ1の表面の状態が第1の形態とは異なる形状である第2の形態である場合は、図17(B)に示すように、駆動電圧と駆動電流の位相差はtbであり、図17(A)における位相差taとは異なる値である。超音波アクチュエータ200においては、このようにして、駆動電圧と駆動電流との位相差が異なるような形状をロータ1の被接触部に形成している。なお位相差taおよびtbは駆動電圧と駆動電流との閾値を基準に算出している。この閾値は、これら駆動電圧と駆動電流をパルス信号に変換する際のパルスの立ち上がり位置を示している。 17A and 17B, the vertical axis represents voltage value or current value, respectively, and the horizontal axis represents time (t). The graph shown in the upper part is a drive voltage waveform, and the graph shown in the lower part is a drive current waveform. In addition, threshold values for the drive voltage and the drive current are also shown. In FIG. 17A, the phase difference between the drive voltage and the drive current is represented by ta. Further, when the surface state of the rotor 1 is the second form which is different from the first form, the phase difference between the drive voltage and the drive current is tb as shown in FIG. The value is different from the phase difference ta in FIG. In the ultrasonic actuator 200, a shape in which the phase difference between the drive voltage and the drive current is different is formed in the contacted portion of the rotor 1 in this way. The phase differences ta and tb are calculated based on the threshold value between the drive voltage and the drive current. This threshold value indicates the rising position of the pulse when the drive voltage and the drive current are converted into a pulse signal.
 実施の形態2においては、駆動電圧および駆動電流を駆動電圧変換部16および駆動電流変換部19を用いて、それぞれパルス信号に変換し、それらパルス信号の立ち上がり時のパルスエッジ間隔に基づいて位相差を検出している。この駆動電圧変換部16および駆動電流変換部19について説明する。図18は電流変換部または電圧変換部の構成例を示す回路図である。また、図19はパルス信号への変換を説明するためのグラフである。駆動電流変換部19および駆動電圧変換部16は、図18に示すように、オペアンプ、抵抗がR3、R4の抵抗素子、電圧がVrefである電圧源を備えている。このような構成を有する駆動電流変換部19および駆動電圧変換部16に、図19の上段に示す入力電圧が入力された場合、下段に示すパルス波形に変換されて出力される。つまり、入力電圧が増加していき、第1閾値ThHに達するまではHレベルの一定の出力である。さらに、入力電圧が第1閾値ThHに達するとLレベルの出力となり、入力電圧が減少していき、第2閾値ThLに達するとHレベルの出力となる。このようにして、駆動電圧生成部12および駆動電流検出部18からの駆動電圧および駆動電流を示すアナログ信号をパルス信号に変換される。また、図19からわかるように、アナログ信号である入力信号にノイズが乗っていても安定した出力信号を得ることができる。第1閾値ThHおよび第2閾値ThLは、抵抗R3、R4および電圧Vrefを用いて式7により表される。式7において、Vout
minはLレベルの出力電圧であり、Vout maxはHレベルの出力電圧である。
Figure JPOXMLDOC01-appb-I000007
In the second embodiment, the drive voltage and the drive current are converted into pulse signals by using the drive voltage conversion unit 16 and the drive current conversion unit 19, respectively, and the phase difference is based on the pulse edge interval at the rising edge of the pulse signals. Is detected. The drive voltage converter 16 and the drive current converter 19 will be described. FIG. 18 is a circuit diagram illustrating a configuration example of the current conversion unit or the voltage conversion unit. FIG. 19 is a graph for explaining conversion to a pulse signal. As shown in FIG. 18, the drive current conversion unit 19 and the drive voltage conversion unit 16 include an operational amplifier, a resistance element having resistances R3 and R4, and a voltage source having a voltage of Vref. When the input voltage shown in the upper part of FIG. 19 is input to the drive current converter 19 and the drive voltage converter 16 having such a configuration, it is converted into a pulse waveform shown in the lower part and outputted. That is, the input voltage increases and is a constant output at the H level until the first threshold value ThH is reached. Furthermore, when the input voltage reaches the first threshold value ThH, the output becomes an L level, the input voltage decreases, and when the input voltage reaches the second threshold value ThL, the output becomes an H level. In this way, the analog signal indicating the drive voltage and drive current from the drive voltage generator 12 and the drive current detector 18 is converted into a pulse signal. Further, as can be seen from FIG. 19, a stable output signal can be obtained even if noise is added to the input signal which is an analog signal. The first threshold value ThH and the second threshold value ThL are expressed by Equation 7 using the resistors R3 and R4 and the voltage Vref. In Equation 7, Vout
min is an L level output voltage, and Vout max is an H level output voltage.
Figure JPOXMLDOC01-appb-I000007
 第1閾値ThHおよび第2閾値ThLの差は、以下に示す式8により表される。
Figure JPOXMLDOC01-appb-I000008
The difference between the first threshold value ThH and the second threshold value ThL is expressed by Expression 8 shown below.
Figure JPOXMLDOC01-appb-I000008
 式8からわかるように、出力フルスケールに対する閾値電圧の差は抵抗R3およびR4の比率を変更することで、変更可能である。 As can be seen from Equation 8, the threshold voltage difference with respect to the output full scale can be changed by changing the ratio of the resistors R3 and R4.
 超音波アクチェータ200においては、上述のように、ロータ1の駆動によって圧電振動子2bの駆動電圧と駆動電流の位相差は変化する。また、演算部16による、位相差の検出にはパルス信号を用いて、特に各パルスエッジの間隔に基づいて位相差を検出するので、容易に位相差を検出することができる。 In the ultrasonic actuator 200, as described above, the phase difference between the driving voltage and the driving current of the piezoelectric vibrator 2b is changed by driving the rotor 1. Further, since the phase difference is detected by the calculation unit 16 using a pulse signal, particularly based on the interval between the pulse edges, the phase difference can be easily detected.
 実施の形態1で説明したように、ロータ1から力が加わるのは突起部2cのみであり、接触部2a全面に力が加わらないので、駆動電流および駆動電圧の位相差が顕著に表れることになり、位相差の検出が容易であり、より高精度の位置制御が可能である。 As described in the first embodiment, the force from the rotor 1 is applied only to the protrusion 2c, and no force is applied to the entire contact portion 2a, so that the phase difference between the drive current and the drive voltage appears remarkably. Therefore, it is easy to detect the phase difference, and position control with higher accuracy is possible.
 なお駆動電流と駆動電圧の位相差の検出は、複数の圧電振動子2bのうち少なくとも1つについて行なえばよい。 Note that the phase difference between the drive current and the drive voltage may be detected for at least one of the plurality of piezoelectric vibrators 2b.
 次に、実施の形態2に係る超音波アクチュエータ200の動作について説明する。まず、制御部11がロータ1を駆動する指令のための電気信号である駆動信号を出力する。駆動電圧生成部12は、制御部11からの駆動信号に応じた駆動電圧を生成する。このとき、生成された駆動電圧は、駆動電圧変換部16にて検出され、パルス信号へと変換される。また、駆動電圧は駆動電流生成部13に入力され、駆動電流生成部13は駆動電圧に対応する駆動電流を生成する。なお、駆動電圧および駆動電流は交流である。駆動電流は、圧電振動子2bに入力され、圧電振動子2bが振動することで、突起部2cには楕円振動が生じ、それによって、ロータ1が駆動する。なお、駆動電流は、駆動電流検出部18により検出され、駆動電流変換部19によりパルス信号に変換される。演算部17は、パルス信号とされた駆動電圧と駆動電流の位相差を求める。それにより、ロータ1の移動量等の位置情報を算出することができる。 Next, the operation of the ultrasonic actuator 200 according to the second embodiment will be described. First, the control unit 11 outputs a drive signal that is an electric signal for a command to drive the rotor 1. The drive voltage generation unit 12 generates a drive voltage according to the drive signal from the control unit 11. At this time, the generated drive voltage is detected by the drive voltage converter 16 and converted into a pulse signal. Further, the drive voltage is input to the drive current generation unit 13, and the drive current generation unit 13 generates a drive current corresponding to the drive voltage. The drive voltage and drive current are alternating current. The drive current is input to the piezoelectric vibrator 2b, and when the piezoelectric vibrator 2b vibrates, elliptical vibration is generated in the protrusion 2c, thereby driving the rotor 1. The drive current is detected by the drive current detector 18 and converted into a pulse signal by the drive current converter 19. The calculating part 17 calculates | requires the phase difference of the drive voltage made into the pulse signal, and a drive current. Thereby, position information such as the amount of movement of the rotor 1 can be calculated.
 図20は超音波アクチュエータ200の位置決めを説明するためのグラフである。なお、図20はわかりやすさを考慮して本来は円形であるロータ1を展開して直線状で表している。図20に示すように、ロータ1の被接触部は、上述したように3種類の異なる形態を有している。1つは原点形態であり、残りは第1の形態および第2の形態である。したがって、それぞれの形態で駆動電圧と駆動電流の位相差が異なる。図20においては、原点形態に圧電振動子2bが位置する場合にはその位相差はtzであり、第1の形態に突起部2cが位置する場合にはその位相差はtaであり、第2の形態に突起部2cが位置する場合にはその位相差はtbである。このように、ロータ1の被接触部の形態に応じて位相差は異なる。したがって、演算部17は位相差を求めることで、ロータ1の位置情報を算出することができる。例えば、第1の形態と第2の形態とをそれぞれロータ1の中心に対して所定の角度ずつ交互に形成しておき、第1の形態、第2の形態を何回通過したかをカウントするようにすればよい。所定の角度および通過回数よりロータ1の回転角を検出することができる。このように、ロータ1の位置情報を検出することができる。また、原点形態も検出できることから、原点形態を何回通過したかをカウントしておくことで、ロータ1が何回転したかを容易に検出することができる。このように、圧電振動子2bとロータ1との絶対位置の関係を検出することができる。また、これらを組み合わせることで、ロータ1の移動量や位置等の移動量等の位置情報を算出することができる。 FIG. 20 is a graph for explaining the positioning of the ultrasonic actuator 200. In FIG. 20, the rotor 1 that is originally circular is developed and expressed in a straight line in consideration of easy understanding. As shown in FIG. 20, the contacted portion of the rotor 1 has three different forms as described above. One is the origin form, and the rest is the first form and the second form. Therefore, the phase difference between the drive voltage and the drive current differs in each form. In FIG. 20, when the piezoelectric vibrator 2b is located in the origin form, the phase difference is tz, and when the protrusion 2c is located in the first form, the phase difference is ta. When the protruding portion 2c is positioned in the form, the phase difference is tb. Thus, the phase difference varies depending on the form of the contacted portion of the rotor 1. Therefore, the calculating part 17 can calculate the position information of the rotor 1 by obtaining the phase difference. For example, the first form and the second form are alternately formed at a predetermined angle with respect to the center of the rotor 1, and the number of times the first form and the second form are passed is counted. What should I do? The rotation angle of the rotor 1 can be detected from the predetermined angle and the number of passes. Thus, the position information of the rotor 1 can be detected. In addition, since the origin form can also be detected, it is possible to easily detect how many times the rotor 1 has rotated by counting how many times the origin form has been passed. Thus, the absolute position relationship between the piezoelectric vibrator 2b and the rotor 1 can be detected. Further, by combining these, position information such as the movement amount and the movement amount of the rotor 1 can be calculated.
 また超音波アクチュエータ200において、接触部2aは、ロータ1に突起部2cの頂点で接していることから、圧電振動子2bの駆動電圧と駆動電流の位相差の変化(共振状態の変化)を、デジタル的に検出することができる。すなわち、振動検知電圧および前記位相差の変化が顕著に表れることになり、位相差の検出が容易であり、より高精度の位置制御が可能である。 Further, in the ultrasonic actuator 200, since the contact portion 2a is in contact with the rotor 1 at the apex of the protrusion 2c, the change in the phase difference between the drive voltage and the drive current of the piezoelectric vibrator 2b (change in the resonance state) It can be detected digitally. That is, the vibration detection voltage and the phase difference change remarkably appear, the phase difference can be easily detected, and position control with higher accuracy is possible.
 このようにして、演算部17で検出されたロータ1の位置情報は制御部11へと送られ、制御部11は演算部17において検出されたロータ1の位置情報を考慮して、ロータ1の駆動を制御することができる。それにより、ロータリーエンコーダ等を取り付けることなく、高精度の位置制御が可能な超音波アクチュエータ200を実現できる。 Thus, the position information of the rotor 1 detected by the calculation unit 17 is sent to the control unit 11, and the control unit 11 considers the position information of the rotor 1 detected by the calculation unit 17, and The drive can be controlled. Thereby, it is possible to realize the ultrasonic actuator 200 capable of highly accurate position control without attaching a rotary encoder or the like.
 図21は超音波アクチュエータ200の具体的な回路構成の一部を示す回路図である。図21には、超音波アクチュエータ200のうち、演算部17、駆動電流変換部19、駆動電圧変換部16、駆動電流検出部18、圧電振動子2b、駆動電圧生成部12および駆動電流生成部13が示されている。このうち、演算部17、駆動電流変換部19、駆動電圧変換部16、駆動電流検出部18、圧電振動子2bは電気回路で表されている。なお、圧電振動子2bは上述したように、その等価回路を示している。ここで、駆動電流検出部18は抵抗素子であり、その両端の電圧を検出することで、駆動電流を検出することができる。駆動電流変換部19および駆動電圧変換部16は上述した回路構成とは異なるが、同様の働きをする回路である。すなわち、駆動電流および駆動電圧をアナログ信号からパルス信号へと変換する。具体的には、駆動電流変換部19は信号を増幅するための差動増幅回路19aおよびパルス変換回路19bを備え、同様に、駆動電圧変換部16は差動増幅回路16aおよびパルス変換回路16bを備える。また、演算部17はロジック回路17a、ローパスフィルタ17bおよびハイパスフィルタ17cを備えている。図21に示す回路を用いて、実際に測定したデータは、図22~図24に示されている。図22~図24は、図21に示す回路を用いて求めた駆動電圧および駆動電流に関するデータの波形を示すグラフである。 FIG. 21 is a circuit diagram showing a part of a specific circuit configuration of the ultrasonic actuator 200. In FIG. 21, among the ultrasonic actuator 200, the calculation unit 17, the drive current conversion unit 19, the drive voltage conversion unit 16, the drive current detection unit 18, the piezoelectric vibrator 2 b, the drive voltage generation unit 12, and the drive current generation unit 13. It is shown. Among these, the calculating part 17, the drive current conversion part 19, the drive voltage conversion part 16, the drive current detection part 18, and the piezoelectric vibrator 2b are represented by an electric circuit. The piezoelectric vibrator 2b is an equivalent circuit as described above. Here, the drive current detection unit 18 is a resistance element, and the drive current can be detected by detecting the voltage at both ends thereof. The drive current conversion unit 19 and the drive voltage conversion unit 16 are circuits having the same functions, although they are different from the circuit configuration described above. That is, the drive current and drive voltage are converted from an analog signal to a pulse signal. Specifically, the drive current converter 19 includes a differential amplifier circuit 19a and a pulse converter circuit 19b for amplifying a signal. Similarly, the drive voltage converter 16 includes a differential amplifier circuit 16a and a pulse converter circuit 16b. Prepare. The arithmetic unit 17 includes a logic circuit 17a, a low-pass filter 17b, and a high-pass filter 17c. Data actually measured using the circuit shown in FIG. 21 is shown in FIGS. 22 to 24 are graphs showing waveforms of data relating to the drive voltage and drive current obtained using the circuit shown in FIG.
 図22は超音波アクチュエータ200の駆動電流と駆動電圧を示すグラフであって、図22(A)は第1の形態における駆動電流と駆動電圧を示すグラフであり、図22(B)は第2の形態における駆動電流と駆動電圧を示すグラフである。また、図23は超音波アクチュエータ200のロジック回路からの出力信号およびローパスフィルタ処理後の信号を示すグラフであって、図23(A)は第1の形態におけるグラフであり、図23(B)は第2の形態におけるグラフである。また、図24は超音波アクチュエータ200のハイパスフィルタ処理後の信号およびローパスフィルタ処理後の信号を示すグラフである。 FIG. 22 is a graph showing the drive current and drive voltage of the ultrasonic actuator 200, FIG. 22A is a graph showing the drive current and drive voltage in the first embodiment, and FIG. It is a graph which shows the drive current and drive voltage in the form. FIG. 23 is a graph showing an output signal from the logic circuit of the ultrasonic actuator 200 and a signal after the low-pass filter processing. FIG. 23A is a graph in the first embodiment, and FIG. Is a graph in the second form. FIG. 24 is a graph showing the signal after the high-pass filter processing and the signal after the low-pass filter processing of the ultrasonic actuator 200.
 図22には、互いに異なる第1の形態および第2の形態を有するロータ1を駆動させた場合に、駆動電流変換部19の差動増幅回路19aから出力された駆動電流波形および駆動電圧変換部16の差動増幅回路16aから出力された駆動電圧波形が示されている。ここで、第1の形態は具体的にはロータ1に凹み(溝)を設けており、第2の形態は凹みを設けずそのままの状態である。第1の形態および第2の形態をそれぞれ示す図22(A)および図22(B)を対比させるとわかるように、これらは駆動電流と駆動電圧の位相差が異なる。また、差動増幅回路19aからの出力および差動増幅回路16aからの出力は、それぞれパルス変換回路19bおよび16bに入力された後、ロジック回路17aに入力される。ロジック回路17aに入力されることでそれらは、駆動電流と駆動電圧の位相差を情報として含む信号へと変換されて出力される。具体的には、図23に示すような信号に変換される。また、ロジック回路17aから出力され、ローパスフィルタ17bにより処理された後の信号波形も図23に示されている。図23(A)および図23(B)に示されているように、第1の形態および第2の形態におけるロジック回路17aからの出力信号の違いは明瞭ではないが、ローパスフィルタ処理することで、これらの位相差の違いが信号レベルの違いとして表されている。さらに、ローパスフィルタ処理後の信号はハイパスフィルタ17cに入力され、ハイパスフィルタ処理される。図24に示すように、ハイパスフィルタ処理後の信号のレベル差は、ローパスフィルタ処理後の信号のレベル差よりも顕著に表れている。このように、信号を変換することで、位相差を信号情報(レベル)として検出することができ、容易に位相差を検出することができる。つまり、ハイパスフィルタ処理後の信号のレベルを読み取ることで位相差を検出でき、突起部2cが第1の形態および第2の形態のいずれに位置するかを容易に検出できる。このハイパスフィルタ処理後の信号が制御部11(図21では不図示)に入力されることで、制御部11は、ロータ1の位置情報を把握することができ、この位置情報を考慮して、高精度の位置制御を行うことができる。 FIG. 22 shows a drive current waveform and a drive voltage converter output from the differential amplifier circuit 19a of the drive current converter 19 when the rotor 1 having the first and second forms different from each other is driven. The drive voltage waveforms output from the 16 differential amplifier circuits 16a are shown. Here, specifically, in the first embodiment, a recess (groove) is provided in the rotor 1, and in the second embodiment, no recess is provided. As can be seen by comparing FIGS. 22A and 22B showing the first mode and the second mode, respectively, the phase difference between the drive current and the drive voltage is different. The output from the differential amplifier circuit 19a and the output from the differential amplifier circuit 16a are input to the pulse conversion circuits 19b and 16b, respectively, and then input to the logic circuit 17a. By being input to the logic circuit 17a, they are converted into a signal including the phase difference between the drive current and the drive voltage as information and output. Specifically, it is converted into a signal as shown in FIG. The signal waveform output from the logic circuit 17a and processed by the low-pass filter 17b is also shown in FIG. As shown in FIGS. 23A and 23B, the difference between the output signals from the logic circuit 17a in the first embodiment and the second embodiment is not clear, but by performing low-pass filter processing. These phase difference differences are expressed as signal level differences. Further, the signal after the low-pass filter processing is input to the high-pass filter 17c and subjected to high-pass filter processing. As shown in FIG. 24, the level difference of the signal after the high-pass filter processing is more noticeable than the level difference of the signal after the low-pass filter processing. Thus, by converting the signal, the phase difference can be detected as signal information (level), and the phase difference can be easily detected. In other words, the phase difference can be detected by reading the level of the signal after the high-pass filter processing, and it can be easily detected whether the protrusion 2c is located in the first form or the second form. By inputting the signal after the high-pass filter processing to the control unit 11 (not shown in FIG. 21), the control unit 11 can grasp the position information of the rotor 1, and in consideration of this position information, High-precision position control can be performed.
 以上説明してきた超音波アクチュエータは、主に以下のような特徴を備えている。 The ultrasonic actuator described above mainly has the following features.
 超音波アクチュエータは、電気信号によって振動を生じる圧電振動子と、最上部が曲面または針状の突起部を有し前記振動を伝達する接触部を有する振動体と、前記突起部からの振動を受容し易い振動高受容部と前記突起部からの振動を受容し難い振動低受容部が形成された被接触部を有し、前記振動高受容部を介して前記圧電振動子の振動を受けて移動する移動体と、前記移動体の前記振動低受容部が前記振動体の前記突起部を通過するときに生じる前記圧電振動子の共振状態変化を検出して、前記共振状態変化に基づいて前記移動体の位置情報を算出する演算部と、前記演算部により算出された位置情報に基づいて前記移動体の駆動を制御する制御部とを備えている。 The ultrasonic actuator receives a vibration from the projection, a piezoelectric vibrator that generates a vibration by an electric signal, a vibrating body having a curved surface or a needle-like protrusion, and a contact portion that transmits the vibration. And a contacted part formed with a low vibration receiving part that is difficult to receive vibration from the protrusion, and is moved by receiving the vibration of the piezoelectric vibrator through the high vibration receiving part. Detecting a change in a resonance state of the piezoelectric vibrator that occurs when the vibration low-accepting portion of the moving body passes through the protrusion of the vibration body, and the movement is performed based on the change in the resonance state. A calculation unit that calculates body position information; and a control unit that controls driving of the moving body based on the position information calculated by the calculation unit.
 上記構成によって、圧電振動子の共振状態変化を検出して、移動体の移動量や位置等の位置情報を算出して、それにより移動体の移動量等を制御するので、エンコーダなどのセンサを必要とせず、小型の超音波アクチュエータを提供することができる。 With the above configuration, the resonance state change of the piezoelectric vibrator is detected, the positional information such as the moving amount and position of the moving body is calculated, and the moving amount and the like of the moving body are thereby controlled. A small ultrasonic actuator can be provided without the need.
 また、振動体に設けられた突起部は最上部が曲面または針状であるので、移動体の振動被接触部との接触面積が極めて微小であり、移動体からの力は点接触に近い突起部に集まり、圧電振動子の共振状態変化の検出が高い分解能で行うことができる。そのため、位相差が顕著に表れることになり、位相差の変化をより高精度に検出することができ、より高精度の位置制御が可能である。 In addition, since the uppermost portion of the protrusion provided on the vibrating body is curved or needle-shaped, the contact area of the moving body with the vibration contacted portion is extremely small, and the force from the moving body is a protrusion close to point contact. The resonance state change of the piezoelectric vibrator can be detected with high resolution. Therefore, a phase difference appears remarkably, a change in phase difference can be detected with higher accuracy, and position control with higher accuracy can be performed.
 前記振動低受容部は、前記振動低受容部が前記突起部と相対移動する方向と直交する方向にライン状にするのが好ましい。前記振動低受容部を相対移動方向と直交する方向にライン状に形成することによって、前記振動体の前記突起部が確実に前記振動低受容部を通過させることができる。それによって、圧電振動子に共振状態変化を確実に生じ、正確な位置制御が行なえる。 It is preferable that the vibration low receiving portion is formed in a line shape in a direction orthogonal to the direction in which the vibration low receiving portion moves relative to the protrusion. By forming the low vibration receiving portion in a line shape in a direction perpendicular to the relative movement direction, the protrusion of the vibrating body can surely pass through the low vibration receiving portion. Accordingly, the resonance state change is surely generated in the piezoelectric vibrator, and accurate position control can be performed.
 前記被接触部は、平坦面からなる振動高受容部と、前記平坦面に形成された複数の溝によって形成された複数の振動低受容部と、前記平坦面と前記複数の溝を覆うカバー部材を設けるのが好ましい。 The contacted portion includes a vibration high receiving portion formed of a flat surface, a plurality of vibration low receiving portions formed by a plurality of grooves formed on the flat surface, and a cover member that covers the flat surface and the plurality of grooves. Is preferably provided.
 上記構成では、平坦面に複数の溝を形成して振動高受容部と振動低受容部を区切っているので、両部の境が形状的に明確になり、簡単な構造で圧電振動子に共振状態変化を起こさせることができる。また平坦面と溝を覆うカバー部材を設けているので、前記振動体の前記突起部と接触する面は平坦であり、接触のガタツキを防げる。さらに複数の溝を形成する、すなわち複数の振動低受容部を設けることで、移動体の位置情報をより正確に得ることができる。 In the above configuration, a plurality of grooves are formed on the flat surface to separate the vibration high receptive part and the vibration low receptive part, so that the boundary between the two parts is clear in shape and resonates with the piezoelectric vibrator with a simple structure. A state change can be caused. In addition, since the cover member that covers the flat surface and the groove is provided, the surface of the vibrating body that comes into contact with the protrusion is flat, thereby preventing rattling of the contact. Further, by forming a plurality of grooves, that is, by providing a plurality of vibration low receiving portions, the position information of the moving body can be obtained more accurately.
 前記振動高受容部と前記振動低受容部を同一平坦面上に形成して、前記振動高受容部は振動性材料で形成し、前記振動低受容部は振動吸収性材料で形成するようにしてもよい。 The high vibration receiving portion and the low vibration receiving portion are formed on the same flat surface, the high vibration receiving portion is formed of a vibrating material, and the low vibration receiving portion is formed of a vibration absorbing material. Also good.
 また前記振動高受容部と前記振動低受容部を同一平坦面上に形成して、前記振動高受容部の表面は非滑動的に、前記振動低受容部の表面を滑動的にしてもよい。 Further, the high vibration receiving portion and the low vibration receiving portion may be formed on the same flat surface so that the surface of the high vibration receiving portion is non-sliding and the surface of the low vibration receiving portion is slid.
 これらの構成であれば、移動体の被接触部は平坦面に形成され、その平坦面に振動高受容部と振動低受容部が形成されているので、前記被接触部と前記振動体の前記突起部との接触時のガタツキがなく、接触を均一安定的に維持できる。 If it is these structures, since the to-be-contacted part of a moving body is formed in the flat surface, and the vibration high receiving part and the vibration low receiving part are formed in the flat surface, the said to-be-contacted part and the said vibrating body of said There is no backlash at the time of contact with the protrusion, and the contact can be maintained uniformly and stably.
 前記接触部は3個の突起部を設け、前記3個の突起部は所定円周上に等間隔に配置され、前記移動体は前記所定円周の中心を通る中心軸回りに回転可能で、3の倍数の振動低受容部が周方向に等間隔に配置するのが好ましい。 The contact portion is provided with three protrusions, the three protrusions are arranged at equal intervals on a predetermined circumference, and the movable body is rotatable about a central axis passing through the center of the predetermined circumference, It is preferable that vibration low receiving portions of multiples of 3 are arranged at equal intervals in the circumferential direction.
 この構成であれば、周方向に等間隔で配置された3個の突起部で移動体と接触するので、最小の数すなわち3個で、移動体の被接触部と安定的に接触できる。また振動低受容部が3の倍数形成されているので、3個の突起部が同時に振動低受容部に位置させることができて、圧電振動子の共振状態を所定の周期で確実に変化させることができる。 In this configuration, since the three protrusions arranged at equal intervals in the circumferential direction come into contact with the moving body, the minimum number, that is, three, can stably contact the contacted part of the moving body. In addition, since the vibration low receptive portion is formed by a multiple of 3, the three protrusions can be simultaneously positioned on the vibration low receptive portion, and the resonance state of the piezoelectric vibrator can be reliably changed at a predetermined cycle. Can do.
 前記振動体には、さらに前記圧電振動子の振動状態を検出して振動検知電圧を出力する振動状態検知部を設け、前記演算部は、前記振動検知電圧と前記圧電振動子における駆動電圧の位相差を信号情報として算出するのが好ましい。 The vibrating body is further provided with a vibration state detection unit that detects a vibration state of the piezoelectric vibrator and outputs a vibration detection voltage, and the arithmetic unit is configured to output a vibration voltage between the vibration detection voltage and the piezoelectric vibrator. The phase difference is preferably calculated as signal information.
 この構成であれば、圧電振動子の共振状態の変化を、振動検知電圧と圧電振動子における駆動電圧の位相差によって容易に検出することができる。 With this configuration, a change in the resonance state of the piezoelectric vibrator can be easily detected by the phase difference between the vibration detection voltage and the driving voltage in the piezoelectric vibrator.
 前記振動検知電圧および前記圧電振動子における駆動電圧をそれぞれパルス信号に変換するパルス変換部をさらに設け、前記演算部は、パルス信号に変換された前記駆動電圧および前記振動検知電圧の各パルスエッジ間隔に基づいて前記駆動電圧と前記振動検知電圧との位相差を算出するのが好ましい。 A pulse conversion unit that converts the vibration detection voltage and the drive voltage in the piezoelectric vibrator into pulse signals is further provided, and the calculation unit includes each pulse edge interval between the drive voltage converted into a pulse signal and the vibration detection voltage. The phase difference between the drive voltage and the vibration detection voltage is preferably calculated based on
 この構成であれば、振動検知電圧および前記駆動電圧がパルス信号に変換され、各パルスエッジ間隔に基づいて前記位相差を算出するので、演算処理が簡単に行なえる。 With this configuration, the vibration detection voltage and the drive voltage are converted into pulse signals, and the phase difference is calculated based on each pulse edge interval, so that arithmetic processing can be performed easily.
 前記圧電振動子における駆動電圧と駆動電流との位相差を信号情報として算出してもよい。 The phase difference between the driving voltage and the driving current in the piezoelectric vibrator may be calculated as signal information.
 この構成であれば、圧電振動子の駆動電圧と駆動電流の位相差によって、圧電振動子の共振状態の変化を容易に算出することができる。 With this configuration, the change in the resonance state of the piezoelectric vibrator can be easily calculated from the phase difference between the driving voltage and the driving current of the piezoelectric vibrator.
 前記圧電振動子における駆動電圧および駆動電流をそれぞれパルス信号に変換するパルス変換部をさらに設け、前記演算部は、パルス信号に変換された前記駆動電圧と前記駆動電流の各パルスエッジ間隔に基づいて前記駆動電圧と前記振動検知電圧との位相差を算出するのが好ましい。 A pulse conversion unit that converts the drive voltage and drive current in the piezoelectric vibrator into pulse signals is further provided, and the calculation unit is based on each pulse edge interval of the drive voltage and the drive current converted into a pulse signal. It is preferable to calculate a phase difference between the drive voltage and the vibration detection voltage.
 この構成であれば、振動検知電圧および前記駆動電圧がパルス信号に変換され、各パルスエッジ間隔に基づいて前記位相差を算出するので、演算処理が簡単に行なえる。 With this configuration, the vibration detection voltage and the drive voltage are converted into pulse signals, and the phase difference is calculated based on each pulse edge interval, so that arithmetic processing can be performed easily.
 前記振動状態検知部を、前記移動体に垂直で前記突起部を通る線上に設けるのが好ましい。 It is preferable that the vibration state detection unit is provided on a line perpendicular to the moving body and passing through the protrusion.
 この構成にあれば、前記突起部から伝わってくる移動体からの押圧力の影響をより強く受ける箇所に振動状態検知部を設けているので、より正確な圧電振動子の振動状態の検出が可能である。 With this configuration, the vibration state detection unit is provided at a location that is more strongly affected by the pressing force from the moving body transmitted from the protrusion, so that the vibration state of the piezoelectric vibrator can be detected more accurately. It is.
 前記共振状態において、前記移動体の原点位置に対応する形態を前記移動体の被接触部に形成するのが好ましい。 In the resonance state, it is preferable that a form corresponding to the origin position of the moving body is formed in the contacted portion of the moving body.
 これにより、移動体と圧電振動子との絶対位置を検出することができ、より高精度の位置制御が可能である。 This makes it possible to detect the absolute position of the moving body and the piezoelectric vibrator, and to control the position with higher accuracy.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Accordingly, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. It is interpreted that it is included in

Claims (10)

  1.  電気信号によって振動を生じる圧電振動子と、最上部が曲面または針状の突起部を有し前記振動を伝達する接触部を有する振動体と、
     前記突起部からの振動を受容し易い振動高受容部と前記突起部からの振動を受容し難い振動低受容部が形成された被接触部を有し、前記振動高受容部を介して前記圧電振動子の振動を受けて移動する移動体と、
     前記移動体の前記振動低受容部が前記振動体の前記突起部を通過するときに生じる前記圧電振動子の共振状態変化を検出して、前記共振状態変化に基づいて前記移動体の位置情報を算出する演算部と、
     前記演算部により算出された位置情報に基づいて前記移動体の駆動を制御する制御部とを備えることを特徴とする超音波アクチュエータ。
    A piezoelectric vibrator that generates vibration by an electrical signal, and a vibrating body having a contact portion that has a curved surface or a needle-like protrusion at the top and transmits the vibration;
    And a contacted portion formed with a vibration high receiving portion that easily receives vibration from the protrusion and a vibration low receiving portion that hardly receives vibration from the protrusion, and the piezoelectric through the vibration high receiving portion. A moving body that moves under the vibration of the vibrator;
    Detecting a resonance state change of the piezoelectric vibrator that occurs when the vibration low-accepting portion of the moving body passes through the protrusion of the vibration body, and obtaining positional information of the moving body based on the resonance state change. A computing unit to calculate,
    An ultrasonic actuator comprising: a control unit that controls driving of the moving body based on position information calculated by the calculation unit.
  2.  前記振動低受容部は、前記振動低受容部が前記突起部と相対移動する方向と直交する方向にライン状に延びていることを特徴とする請求項1に記載の超音波アクチュエータ。 2. The ultrasonic actuator according to claim 1, wherein the low vibration receiving portion extends in a line shape in a direction orthogonal to a direction in which the low vibration receiving portion moves relative to the protrusion.
  3.  前記被接触部は、平坦面からなる振動高受容部と、前記平坦面に形成された複数の溝によって形成された複数の振動低受容部と、前記平坦面と前記複数の溝を覆うカバー部材を備え、前記カバー部材の外表面は平坦であることを特徴とする請求項2に記載の超音波アクチュエータ。 The contacted portion includes a vibration high receiving portion formed of a flat surface, a plurality of vibration low receiving portions formed by a plurality of grooves formed on the flat surface, and a cover member that covers the flat surface and the plurality of grooves. The ultrasonic actuator according to claim 2, wherein an outer surface of the cover member is flat.
  4.  前記振動高受容部と前記振動低受容部は同一平坦面上に形成され、前記振動高受容部は振動性材料で形成され、前記振動低受容部は振動吸収性材料で形成されていることを特徴とする請求項1に記載の超音波アクチュエータ。 The vibration high receiving portion and the vibration low receiving portion are formed on the same flat surface, the vibration high receiving portion is formed of a vibrating material, and the vibration low receiving portion is formed of a vibration absorbing material. The ultrasonic actuator according to claim 1.
  5.  前記振動高受容部と前記振動低受容部は同一平坦面上に形成され、前記振動高受容部の表面は非滑動性であり、前記振動低受容部の表面は滑動性であることを特徴とする請求項1に記載の超音波アクチュエータ。 The vibration high receiving portion and the vibration low receiving portion are formed on the same flat surface, the surface of the vibration high receiving portion is non-sliding, and the surface of the vibration low receiving portion is slidable. The ultrasonic actuator according to claim 1.
  6.  前記接触部は3個の突起部を有し、前記3個の突起部は所定円周上に等間隔に配置され、前記移動体は前記所定円周の中心を通る中心軸回りに回転可能で、3の倍数の振動低受容部が周方向に等間隔に配置されていることを特徴とする請求項1に記載の超音波アクチュエータ。 The contact portion has three protrusions, the three protrusions are arranged at equal intervals on a predetermined circumference, and the movable body is rotatable around a central axis passing through the center of the predetermined circumference. The ultrasonic actuator according to claim 1, wherein the vibration low-accepting portions having a multiple of 3 are arranged at equal intervals in the circumferential direction.
  7.  前記振動体は、さらに前記圧電振動子の振動状態を検出して振動検知電圧を出力する振動状態検知部を有し、前記演算部は、前記振動検知電圧と前記圧電振動子における駆動電圧の位相差を信号情報として算出することを特徴とする請求項1に記載の超音波アクチュエータ。 The vibrator further includes a vibration state detection unit that detects a vibration state of the piezoelectric vibrator and outputs a vibration detection voltage, and the calculation unit is configured to output a level of the vibration detection voltage and a drive voltage of the piezoelectric vibrator. The ultrasonic actuator according to claim 1, wherein the phase difference is calculated as signal information.
  8.  前記振動検知電圧および前記圧電振動子における駆動電圧をそれぞれパルス信号に変換するパルス変換部をさらに備え、前記演算部は、パルス信号に変換された前記駆動電圧および前記振動検知電圧の各パルスエッジ間隔に基づいて前記駆動電圧と前記振動検知電圧との位相差を算出することを特徴とする請求項7に記載の超音波アクチュエータ。 The apparatus further includes a pulse conversion unit that converts the vibration detection voltage and the drive voltage in the piezoelectric vibrator into pulse signals, respectively, and the calculation unit includes pulse pulse intervals of the drive voltage and the vibration detection voltage converted into pulse signals. The ultrasonic actuator according to claim 7, wherein a phase difference between the drive voltage and the vibration detection voltage is calculated based on the equation.
  9.  前記演算部は、前記圧電振動子における駆動電圧と駆動電流との位相差を信号情報として算出することを特徴とする請求項1に記載の超音波アクチュエータ。 The ultrasonic actuator according to claim 1, wherein the calculation unit calculates a phase difference between a driving voltage and a driving current in the piezoelectric vibrator as signal information.
  10.  前記圧電振動子における駆動電圧および駆動電流をそれぞれパルス信号に変換するパルス変換部をさらに備え、前記演算部は、パルス信号に変換された前記駆動電圧と前記駆動電流の各パルスエッジ間隔に基づいて前記駆動電圧と前記振動検知電圧との位相差を算出することを特徴とする請求項9に記載の超音波アクチュエータ。 The apparatus further includes a pulse conversion unit that converts the drive voltage and the drive current in the piezoelectric vibrator into pulse signals, respectively, and the calculation unit is based on each pulse edge interval of the drive voltage and the drive current converted into a pulse signal. The ultrasonic actuator according to claim 9, wherein a phase difference between the drive voltage and the vibration detection voltage is calculated.
PCT/JP2009/065387 2008-09-04 2009-09-03 Ultrasonic actuator WO2010027007A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010527808A JP5152336B2 (en) 2008-09-04 2009-09-03 Ultrasonic actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-227258 2008-09-04
JP2008227258 2008-09-04

Publications (1)

Publication Number Publication Date
WO2010027007A1 true WO2010027007A1 (en) 2010-03-11

Family

ID=41797173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065387 WO2010027007A1 (en) 2008-09-04 2009-09-03 Ultrasonic actuator

Country Status (2)

Country Link
JP (1) JP5152336B2 (en)
WO (1) WO2010027007A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018061418A (en) * 2016-10-05 2018-04-12 キヤノン株式会社 Controller for vibration-type actuator, control method for vibration-type actuator, vibration-type driver, and electronic apparatus
US11078989B2 (en) * 2018-10-31 2021-08-03 Nidec Corporation Reduction gear and electromechanical device
JP2022523999A (en) * 2019-03-06 2022-04-27 フィジック インストゥルメント(ピーアイ)ゲーエムベーハー アンド ツェーオー.カーゲー How to operate electromechanical elements, actuators, drives, and motors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166787A (en) * 1986-01-17 1987-07-23 Canon Inc Driving circuit for ultrasonic motor
JPH0382380A (en) * 1989-08-24 1991-04-08 Shinji Kawase Ultrasonic motor
JPH08336289A (en) * 1995-06-08 1996-12-17 Sony Corp Driver for ultrasonic motor
JP2000166263A (en) * 1998-11-27 2000-06-16 Seiko Instruments Inc Ultrasonic motor and electronic apparatus with ultrasonic motor
JP2007040967A (en) * 2005-06-29 2007-02-15 Seiko Epson Corp Drive amount detection device of piezoelectric actuator and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166787A (en) * 1986-01-17 1987-07-23 Canon Inc Driving circuit for ultrasonic motor
JPH0382380A (en) * 1989-08-24 1991-04-08 Shinji Kawase Ultrasonic motor
JPH08336289A (en) * 1995-06-08 1996-12-17 Sony Corp Driver for ultrasonic motor
JP2000166263A (en) * 1998-11-27 2000-06-16 Seiko Instruments Inc Ultrasonic motor and electronic apparatus with ultrasonic motor
JP2007040967A (en) * 2005-06-29 2007-02-15 Seiko Epson Corp Drive amount detection device of piezoelectric actuator and electronic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018061418A (en) * 2016-10-05 2018-04-12 キヤノン株式会社 Controller for vibration-type actuator, control method for vibration-type actuator, vibration-type driver, and electronic apparatus
US11078989B2 (en) * 2018-10-31 2021-08-03 Nidec Corporation Reduction gear and electromechanical device
JP2022523999A (en) * 2019-03-06 2022-04-27 フィジック インストゥルメント(ピーアイ)ゲーエムベーハー アンド ツェーオー.カーゲー How to operate electromechanical elements, actuators, drives, and motors
JP7426399B2 (en) 2019-03-06 2024-02-01 フィジック インストゥルメント(ピーアイ)ゲーエムベーハー アンド ツェーオー.カーゲー Methods of operation of electromechanical elements, actuators, drives and motors

Also Published As

Publication number Publication date
JPWO2010027007A1 (en) 2012-02-02
JP5152336B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP4891053B2 (en) Ultrasonic motor
JP5679781B2 (en) Control device for vibration actuator
US7759840B2 (en) Ultrasonic motor and vibration detection method for ultrasonic motor
KR101524447B1 (en) Electromechanical conversion device, vibration actuator, driving device of vibration actuator, lens barrel, and camera
US7573180B2 (en) Ultrasonic motor
JP5152336B2 (en) Ultrasonic actuator
US8035276B2 (en) Vibration actuator, lens barrel and camera
US7069795B2 (en) Sensor using electro active curved helix and double helix
JP5229098B2 (en) Ultrasonic actuator
US11469689B2 (en) Vibration wave motor, drive control system, and optical apparatus
JP5470954B2 (en) Ultrasonic actuator
US20090039736A1 (en) Ultrasonic actuator and method for manufacturing piezoelectric deformation portion used in the same
JP5206425B2 (en) Ultrasonic actuator
JP2010141979A (en) Ultrasonic motor
JP2010074912A (en) Ultrasonic motor
JP4461736B2 (en) Actuator drive
JP2002165469A (en) Piezo-electric actuator
JP2020089161A (en) Piezoelectric drive device and robot
JPH06225550A (en) Ultrasonic motor
JP2003107389A (en) Scanner driver, scanner and three-dimensional measurement device
JP2011024312A (en) Ultrasonic motor
WO2010041533A1 (en) Ultrasonic motor and piezoelectric oscillator
JP2009055779A (en) Ultrasonic actuator, magnetic recording apparatus
LT2022015A (en) Piezoelectric sliding-rotary motion drive
JP2980399B2 (en) Vibration type driving device and device using vibration type driving device as driving source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527808

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811532

Country of ref document: EP

Kind code of ref document: A1