WO2010026808A1 - Decoupling device and assembly - Google Patents

Decoupling device and assembly Download PDF

Info

Publication number
WO2010026808A1
WO2010026808A1 PCT/JP2009/059843 JP2009059843W WO2010026808A1 WO 2010026808 A1 WO2010026808 A1 WO 2010026808A1 JP 2009059843 W JP2009059843 W JP 2009059843W WO 2010026808 A1 WO2010026808 A1 WO 2010026808A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
decoupling device
capacitor
capacitor elements
power supply
Prior art date
Application number
PCT/JP2009/059843
Other languages
French (fr)
Japanese (ja)
Inventor
一也 二木
一善 村田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2010527726A priority Critical patent/JPWO2010026808A1/en
Publication of WO2010026808A1 publication Critical patent/WO2010026808A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/26Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices with each other

Definitions

  • the present invention relates to a decoupling device capable of removing noise generated from a load circuit such as a CPU, and a mounting body on which the decoupling device is mounted.
  • a load circuit such as a CPU (Central Processing Unit) and a power supply circuit for supplying a direct current to the load circuit are connected via a power supply line formed on a circuit board, and a capacitor is connected to a power supply. Connected between line and ground.
  • the capacitor functions as a storage battery and supplies electric charge to the load circuit.
  • a high frequency current noise
  • the capacitor functions as a noise filter and removes the high frequency current by guiding the high frequency current from the power supply line to the ground.
  • the above function is called power supply decoupling.
  • Patent Document 1 listed below proposes a solid electrolytic capacitor having a three-terminal structure.
  • the fixed electrolytic capacitor includes a pair of anode terminals that are electrically connected to each other and a cathode terminal, and a dielectric layer is interposed between the pair of anode terminals and the cathode terminal.
  • Such a three-terminal capacitor is connected to the power supply line as follows. That is, between the load circuit and the power supply circuit, one end of the power supply line extending from the load circuit toward the power supply circuit and one end of the power supply line extending from the power supply circuit toward the load circuit have a three-terminal structure. A pair of anode terminals provided with a capacitor are connected. One cathode terminal is connected to the ground. Thus, a direct current can be supplied to the load circuit by the power supply circuit, and the solid electric field capacitor functions as a noise filter between the power supply line and the ground. JP 2004-80773 A
  • the conductive portion having a high electric resistance generates heat, which may cause destruction of the capacitor itself and further destruction of components arranged around the capacitor.
  • An object of the present invention is to provide a decoupling device capable of flowing a direct current having a large amount of current through a power supply line and removing high-frequency current from the power supply line.
  • a decoupling device includes a first capacitor element (11), a second capacitor element (12), a pair of anode terminals (21, 22), a cathode terminal (23), and a transmission member (3).
  • the first capacitor element includes an anode part (102), a cathode part (105), and a dielectric layer (103) interposed between the anode part and the cathode part.
  • the second capacitor element includes an anode part (102) electrically insulated from an anode part of the first capacitor element, a cathode part (105), and a dielectric interposed between the anode part and the cathode part.
  • Layer (103) The cathode terminal is connected to the cathode portions of the first and second capacitor elements.
  • the transmission member conducts between the pair of anode terminals outside the first and second capacitor elements, and the anode portions of the first and second capacitor elements are connected.
  • the transmission member is plate-shaped and is disposed along the surfaces of the first and second capacitor elements, and extends between the anode portions of the first and second capacitor elements (3a). Further, it has a constricted portion (34) that is narrower than the other region (3b) of the transmission member.
  • the decoupling device According to the decoupling device, the direct current flowing between the pair of anode terminals passes through the transmission member outside the first and second capacitor elements without passing through the anode portions of the first and second capacitor elements. Therefore, it is possible to pass a larger direct current than the conventional decoupling device. Further, by providing the constricted portion in the transmission member, the inductance of the transmission member is increased in a portion existing between the anode portions of the first and second capacitor elements. As a result, the high-frequency current flowing into the decoupling device from the pair of anode terminals is easily guided toward the first or second capacitor element. Therefore, the high frequency current can be removed from the power supply line by connecting the first and second anode terminals to two separated power supply lines and connecting the cathode terminal to the ground. That is, the decoupling device functions as a noise filter.
  • an inductance of a portion of the transmission member (3) existing between the anode portions (102, 102) of the first and second capacitor elements (11, 12) is , Greater than the equivalent series inductance of each of the first and second capacitor elements.
  • the high-frequency current flowing into the decoupling device from the pair of anode terminals is guided toward the first or second capacitor element having an inductance smaller than that of the transmission member. Therefore, the function as a noise filter of the decoupling device is enhanced.
  • the anode parts (102, 102) of the first and second capacitor elements (11, 12) are the pair of anode terminals of the transmission member (3). It is connected to the part existing between (21, 22).
  • the high-frequency current flowing into the decoupling device from the pair of anode terminals is easily guided toward the first or second capacitor element.
  • each of the first and second capacitor elements (11, 12) includes an anode body (101) in which the anode portion (102) is protruded, and the anode An oxide film that covers the surface of the body and constitutes the dielectric layer (103), an electrolyte layer (104) that is formed on the surface of the oxide film, and a cathode part (105 that is formed on the surface of the electrolyte layer) And a cathode layer constituting the solid electrolytic capacitor.
  • the anode parts of the first and second capacitor elements are electrically insulated from each other by the oxide film.
  • the solid electrolytic capacitor has a small equivalent series resistance (ESR)
  • ESR equivalent series resistance
  • the anode parts (102, 102) of the first and second capacitor elements (11, 12) are electrically insulated from each other by a resin layer (4) covering the first and second capacitor elements. Also good.
  • the transmission member (3) includes a first facing portion (31), a second facing portion (32), and a third facing portion (33).
  • the first facing portion contacts the anode portion (102) of the first capacitor element (11) and faces the region (11a) where the anode portion projects from the surface of the first capacitor element.
  • the second facing portion contacts the anode portion of the second capacitor element (12) and faces a region (12a) of the surface of the second capacitor where the anode portion protrudes.
  • the third facing portion extends between the first and second facing portions and is connected to the first and second facing portions and faces at least a part of the surface of the first or second capacitor element.
  • the said narrow part (34) is formed in the said 3rd opposing part.
  • the inductance of the transmission member is increased in a portion existing between the anode portions of the first and second capacitor elements. Moreover, since the transmission member can be disposed along the first and second capacitor elements, the decoupling device can be reduced in size.
  • the first and second capacitor elements (11, 12) are opposite to each other in the protruding direction (91, 92) of the anode part (102, 102) from the anode body (101, 101). It may be arranged in the direction along the protruding direction. Thereby, the length of the part which exists between the anode parts of the 1st and 2nd capacitor elements among transmission members becomes large, and, thereby, the inductance of this part becomes large. Therefore, the high-frequency current that has flowed into the decoupling device from the pair of anode terminals is likely to flow to the first or second capacitor element. That is, the function of the decoupling device as a noise filter is enhanced.
  • the first and second capacitor elements (11, 12) are opposite to each other in the protruding direction (91, 92) of the anode part (102, 102) from the anode body (101, 101). It may be aligned along a direction (93) perpendicular to the protruding direction. Alternatively, the first and second capacitor elements (11, 12) may have the protruding direction (91, 92) of the anode portion (102, 102) from the anode body (101, 101) oriented in the same direction. Good.
  • the decoupling device further includes a resin layer (4) covering the first and second capacitor elements (11, 12), and the transmission member (3) is formed of the resin layer. Exposed on the surface.
  • the heat generated in the transmission member can be released efficiently. Therefore, it is possible to prevent the decoupling device from being destroyed due to heat generation of the transmission member.
  • the cathode terminal (23) is a single terminal connected to the cathode portions (105, 105) of the first and second capacitor elements (11, 12). It is.
  • a decoupling device having a three-terminal structure including a pair of anode terminals and one cathode terminal can be obtained.
  • a mounting body includes the decoupling device (80), a load circuit (81), a power supply circuit (82) for supplying a direct current to the load circuit, and a circuit board (83).
  • a ring device, a load circuit, and a power supply circuit are mounted on a circuit board.
  • the circuit board includes a first power line (841), a second power line (842), and a ground line.
  • the first power supply line is connected to the load circuit and extends from the load circuit toward the power supply circuit.
  • the power supply circuit is connected to the second power supply line, and extends from the power supply circuit toward the load circuit.
  • the ground line is connected to the ground.
  • the pair of anode terminals (21, 22) of the decoupling device (80) is connected to one end of the first power supply line and one end of the second power supply line between the load circuit and the power supply circuit.
  • the cathode terminal (23) is connected to the ground line (851).
  • the decoupling device includes a first capacitor element 11, a second capacitor element 12, a pair of anode terminals 21 and 22, and a cathode terminal. 23, the transmission member 3, and the resin layer 4.
  • Each of the first and second capacitor elements 11 and 12 is a solid electrolytic capacitor, and includes an anode body 101, an anode portion 102, a dielectric layer 103, an electrolyte layer 104, and a cathode portion 105, as shown in FIG. Yes.
  • the anode body 101 is composed of a porous sintered body made of a metal having a valve action.
  • the metal having a valve action for example, tantalum, niobium, titanium, aluminum or the like is used.
  • the anode part 102 is constituted by an anode wire protruding from the anode body 101.
  • the anode wire constituting the anode portion 102 is formed on the anode body 101 with one end portion 102a protruding from the anode body 101 and the other end portion 102b buried in the anode body 101. Deployed.
  • the anode wire is made of the same kind of metal as that of the anode body 101 and is electrically connected to the anode body 101.
  • the dielectric layer 103 is composed of an oxide film formed by oxidizing the surface of the anode body 101. Specifically, the oxide film constituting the dielectric layer 103 is formed by immersing the anode body 101 in an electrolytic solution such as an aqueous phosphoric acid solution and electrochemically oxidizing the surface of the anode body 101 (anodic oxidation).
  • an electrolytic solution such as an aqueous phosphoric acid solution
  • electrochemically oxidizing the surface of the anode body 101 anodic oxidation.
  • the electrolyte layer 104 is formed on the surface of the dielectric layer 103.
  • the electrolyte layer 104 is made of a conductive inorganic material such as manganese dioxide, a conductive organic material such as a TCNQ (Tetracyano-quinodimethane) complex salt, or a conductive polymer.
  • the cathode portion 105 is constituted by a cathode layer formed on the surface of the electrolyte layer 104.
  • the cathode layer constituting the cathode portion 105 is composed of a carbon layer formed on the surface of the electrolyte layer 14 and a silver paste layer formed on the surface of the carbon layer, and is electrically connected to the electrolyte layer 14. It is connected to the.
  • the dielectric layer 103 is interposed between the anode portion 102 and the cathode portion 105.
  • the anode parts 102 and 102 of the first and second capacitor elements 11 and 12 are electrically insulated from each other.
  • dielectric layers 103 and 103 constituting the first and second capacitor elements 11 and 12 are interposed between the anode portions 102 and 102, as shown in FIG. That is, the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 are electrically insulated from each other by the dielectric layer 103.
  • the first and second capacitor elements 11 and 12 are arranged as follows. That is, as shown in FIG. 4, the first and second capacitor elements 11, 12 direct the protruding directions 91, 92 of the anode portions 102, 102 from the respective anode bodies 101, 101 in opposite directions, They are arranged along a direction 93 perpendicular to the protruding direction 91.
  • the resin layer 4 has the first and second capacitors in a state where the end portions 102 a and 102 a of the first and second capacitor elements 11 and 12 are exposed on the surface of the resin layer 4.
  • the periphery of the elements 11 and 12 is covered. This increases the overall strength of the decoupling device. Therefore, even if an impact is applied to the decoupling device, the first and second capacitor elements 11 and 12 are not easily broken.
  • the resin layer 4 is comprised by resin materials, such as an epoxy resin, for example.
  • the resin layer 4 is disposed between the transmission member 3 and the first and second capacitor elements 11 and 12 in a state in which the transmission member 3 described later is covered from above with respect to the first and second capacitor elements 11 and 12. It is formed by injecting a resin material.
  • the resin layer 4 is interposed between the first and second capacitor elements 11 and 12 as shown in FIG. Therefore, it can be understood that the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 are electrically insulated from each other by the resin layer 4.
  • the pair of anode terminals 21 and 22 are arranged in a state of being exposed from the resin layer 4 on the bottom surface 1a of the decoupling device as shown in FIG. Thereby, a pair of anode terminals 21 and 22 can be connected to the outside. Specifically, it is possible to connect to first and second power supply lines 841 and 842 (see FIG. 9) described later.
  • the pair of anode terminals 21 and 22 extend along the edge of the bottom surface 1a while facing each other. More specifically, one anode terminal 21 extends along the edge 1 b located in the protruding direction 91 of the anode portion 102 of the first capacitor element 11, and the other anode terminal 22 is the second capacitor element 12. It extends to the edge 1c located in the protruding direction 92 of the anode portion 102 of the first electrode 102.
  • the cathode terminal 23 is a single terminal connected to both the cathode portions 105 and 105 of the first and second capacitor elements 11 and 12. As shown in FIG. 3, the cathode terminal 23 is disposed on the bottom surface 1 a of the decoupling device so as to be exposed on the surface of the resin layer 4, and a pair of anode terminals 23 are disposed at a position between the pair of anode terminals 21 and 22. It is deployed in a state of being electrically insulated from the anode terminals 21 and 22.
  • the decoupling device is a device having a three-terminal structure including a pair of anode terminals 21 and 22 and one cathode terminal 23.
  • the transmission member 3 conducts between the pair of anode terminals 21 and 22 outside the first and second capacitor elements 11 and 12, and the first and second capacitor elements 11 and 12.
  • the anode part 102 is connected.
  • the transmission member 3 is provided in a state of being exposed on the surface of the resin layer 4.
  • the transmission member 3 is a plate-shaped metal plate, and is configured by a first facing portion 31, a second facing portion 32, and a third facing portion 33, as shown in FIGS. Yes.
  • a copper plate is employed as the metal plate constituting the transmission member 3.
  • the first facing portion 31 faces the region 11 a of the surface of the first capacitor element 11 where the anode portion 102 protrudes, and the lower end portion 311 is connected to one anode terminal 21.
  • the second facing portion 32 faces the region 12 a where the anode portion 102 projects from the surface of the second capacitor element 12, and the lower end portion 321 is connected to the other anode terminal 22.
  • the third facing portion 33 extends between the first and second facing portions 31 and 32 and is connected to the first and second facing portions 31 and 32. Thereby, the transmission member 3 conducts between the pair of anode terminals 21 and 22.
  • the third facing portion 33 faces at least a part of the surfaces of the first and second capacitor elements 11 and 12. In the decoupling device according to the present embodiment, the third facing portion 33 faces the upper surfaces 11 b and 12 b of the first and second capacitor elements 11 and 12.
  • the first and second facing portions 31 and 32 have cuts 31 a for contacting the anode portions 102 and 102 of the first and second capacitor elements 11 and 12, respectively. , 32a are formed.
  • the cuts 31a and 32a extend from the lower end portions 311 and 321 of the first and second facing portions 31 and 32 toward the third facing portion 33, respectively.
  • the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 are respectively The cuts 31a and 32a enter from the lower end portions 311 and 321 side and come into contact with the first and second opposing portions 31 and 32 at the closed ends 31b and 32b of the cuts 31a and 32a.
  • the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 are connected to a portion of the transmission member 3 existing between the pair of anode terminals 21 and 22 as shown in FIG. Is done.
  • the transmission member 3 can be disposed along the first and second capacitor elements 11 and 12, so that the decoupling device can be reduced in size.
  • the transmission member 3 is in a region 3 a extending between the anode portions 102, 102 of the first and second capacitor elements 11, 12 than in the other region 3 b of the transmission member 3.
  • a narrow portion 34 having a narrow width W1 is provided.
  • the constricted portion 34 is formed in the third facing portion 33, and the first and second capacitor elements 11, 12 extends straight along the upper surface 11b, 12b (see FIG. 4) with a uniform width W1.
  • the decoupling device described above can be represented by an equivalent circuit shown in FIG. That is, the equivalent circuit includes coils L1 to L3 representing the inductance of the transmission member 3, the capacitors C11 and L11 representing the capacitance and equivalent series inductance of the first capacitor element 11, and the capacitance of the second capacitor element 12. And a capacitor C12 representing an equivalent series inductance and a coil L12.
  • the coils L1 to L3 are connected in series between the pair of anode terminals 21 and 22.
  • the capacitor C11 and the coil L11 are connected in series between the connection portion 301 of the coils L1 and L2 and the cathode terminal 23.
  • the capacitor C12 and the coil L12 are connected in series between the connection portion 302 of the coils L2 and L3 and the cathode terminal 23.
  • the coil L1 represents the inductance of the portion of the transmission member 3 that exists between the anode portion 102 and the anode terminal 21 of the first capacitor element 11.
  • the coil L2 represents the inductance of a portion of the transmission member 3 that exists between the anode portions 102 of the first and second capacitor elements 11 and 12.
  • the coil L ⁇ b> 3 represents the inductance of a portion of the transmission member 3 that exists between the anode portion 102 and the anode terminal 22 of the second capacitor element 12.
  • the mounting body on which the decoupling device is mounted includes a load circuit 81 such as a CPU and a power supply circuit 82 that supplies a direct current to the load circuit 81. And a circuit board 83.
  • the decoupling device is denoted by reference numeral 80.
  • the circuit board 83 has a four-layer structure, and the inner two layers are used as the power supply layer 84 and the ground layer 85, respectively.
  • a first power supply line 841 and a second power supply line 842 are provided in a state of being separated from each other.
  • the first power supply line 841 is drawn to the surface 83 a of the circuit board 83 by through vias 861 and 862.
  • the second power supply line 842 is drawn out to the surface 83 a of the circuit board 83 by through vias 863 and 864.
  • the through vias 862 and 863 are arranged so that the distance between them is approximately the same as the distance between the pair of anode terminals 21 and 22 constituting the decoupling device 80.
  • a ground line 851 is provided in the ground layer 85.
  • the ground line 851 is drawn to the surface 83 a of the circuit board 83 by the through via 865.
  • the through via 865 is disposed at a position between the through vias 862 and 863 while being electrically insulated from the first and second power supply lines 841 and 842.
  • the ground line 851 is drawn out to the back surface 83b of the circuit board 83 by the through via 866 and connected to the ground.
  • the load circuit 81 is connected to the through via 861 on the surface 83 a of the circuit board 83.
  • the power supply circuit 82 is connected to the through via 864 on the surface 83 a of the circuit board 83. Thereby, the load circuit 81 is connected to the first power supply line 841 through the through via 861, and the power supply circuit 82 is connected to the second power supply line 842 through the through via 864.
  • the decoupling device 80 is mounted on the surface 83a of the circuit board 83 as follows. That is, the pair of anode terminals 21 and 22 of the decoupling device 80 are connected to the through vias 862 and 863, respectively, and the cathode terminal 23 is connected to the through via 865. Thus, the pair of anode terminals 21 and 22 are connected to the first and second power supply lines 841 and 842 through the through vias 862 and 863, respectively, and the cathode terminal 23 is connected through the through visa 865 and the ground line 851. Connected to ground.
  • the first and second power supply lines 841 and 842 are electrically connected by the transmission member 3 of the decoupling device 80, and the transmission member 3 and the ground are connected.
  • Capacitors C11 and C12 are formed between the two.
  • the mounting body described above can be grasped as follows. That is, the load circuit 81 is connected to the first power supply line 841, and the power supply layer 84 extends from the load circuit 81 toward the power supply circuit 82.
  • the power supply circuit 82 is connected to the second power supply line 842, and the power supply layer 84 extends from the power supply circuit 82 toward the load circuit 81.
  • the ground line 851 is connected to the ground.
  • the pair of anode terminals 21 and 22 of the decoupling device 80 are connected to one end of the first power supply line 841 and one end of the second power supply line 842 between the load circuit 81 and the power supply circuit 82.
  • the terminal 23 is connected to the ground line 851.
  • the direct current flowing between the pair of anode terminals 21 and 22 does not pass through the anode portions 102 and 102 of the first and second capacitor elements 11 and 12, Since it passes through the transmission member 3 outside the second capacitor elements 11 and 12, it is possible to pass a larger direct current than the conventional decoupling device.
  • a direct current of about 2 A to 6 A can be passed, but in the decoupling device according to the present embodiment, a direct current of 10 A or more can be passed.
  • a large direct current can be passed through the first and second power supply lines 841 and 842. That is, it becomes possible to supply a direct current having a large amount of current from the power supply circuit 82 to the load circuit 81. Therefore, it is possible to cope with an increase in the operating speed of the load circuit.
  • the first and second capacitor elements 11 and 12 can guide the high-frequency current flowing from the pair of anode terminals 21 and 22 to the cathode terminal 23.
  • the high-frequency current flows from the cathode terminal 23 through the ground layer 85 to the ground (see FIGS. 9 and 10). Therefore, the high frequency current can be removed from the first and second power supply lines 841 and 842. That is, the decoupling device functions as a noise filter.
  • the constricted portion 34 in the transmission member 3 as described above (FIG. 7), specifically, the constricted portion 34 is provided in the third facing portion 33.
  • the inductance of the transmission member 3 is increased in a portion (a portion including the third facing portion 33) existing between the anode portions 102, 102 of the first and second capacitor elements 11, 12. Therefore, the high-frequency current that has flowed into the decoupling device from the pair of anode terminals 21 and 22 is easily guided toward the first or second capacitor element 11 or 12. Thereby, the function as a noise filter of a decoupling device is improved.
  • the portion of the transmission member 3 that exists between the anode portions 102 of the first and second capacitor elements 11 and 12 is included. It is preferable to set the inductance (inductance of the coil L2 shown in FIG. 8) to be larger than the equivalent series inductance of the first and second capacitor elements (inductance of the coils L11 and L12 shown in FIG. 8).
  • a solid electrolytic capacitor having a small equivalent series resistance is used as the first and second capacitor elements 11 and 12, thereby functioning as a noise filter of the decoupling device. Is increasing.
  • the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 exist between the pair of anode terminals 21 and 22 in the transmission member 3. Connected to the part (FIG. 1). Therefore, the high-frequency current flowing into the decoupling device from the pair of anode terminals 21 and 22 is easily guided toward the first or second capacitor element 11 or 12.
  • the decoupling device described above since the transmission member 3 is disposed in a state exposed on the surface of the resin layer 4, the heat generated in the transmission member 3 can be efficiently released. This prevents the decoupling device from being destroyed due to the heat generated by the transmission member 3.
  • FIG. 11 shows the result of the simulation, and the high-frequency current transmission characteristics are represented by the relationship between the frequency and the S parameter.
  • the above simulation is performed for the decoupling device according to the present embodiment, the configuration without the constricted portion 34 in the decoupling device as shown in FIGS. 12 and 13, and the conventional configuration. It was.
  • solid electrolytic capacitors having a capacitance of 470 ⁇ F are used as the first and second capacitor elements 11 and 12.
  • a copper plate having a thickness T (see FIG. 4) of 0.5 mm is used as the transmission member 3, and the length L and width W (see FIG. 4) of the third facing portion 33 are 8 mm and 4 mm, respectively, and the constricted portion
  • the length Y1 and the width W1 were 6 mm and 1 mm.
  • two capacitors C21 and C22 having a two-terminal structure are connected between the power supply line 7 and the ground, and capacitors C21 and C22 having a two-terminal structure are formed as static.
  • a solid electrolytic capacitor having a capacitance of 470 ⁇ F was used. Then, the S parameter of the high-frequency current flowing from the one end 7a to the other end 7b of the power supply line 7 was obtained for frequencies in the range of 1 ⁇ 10 +4 Hz to 1 ⁇ 10 +10 Hz.
  • the result of the simulation for the conventional configuration is shown by a graph G2 in FIG.
  • the S parameter increases monotonously as the frequency increases.
  • the S parameter is approximately the same as that in the conventional mode in the frequency range of 1 ⁇ 10 +4 Hz to 1.3 ⁇ 10 +5 Hz.
  • the S parameter gradually decreases and becomes a minimum at a frequency near 1.2 ⁇ 10 +6 Hz.
  • the S parameter increases monotonically, but its value remains smaller than that of the conventional form. That is, according to the decoupling device according to the present embodiment, the high-frequency current is more easily removed at a frequency higher than 1.3 ⁇ 10 +5 Hz than the conventional configuration.
  • the decoupling device according to the present embodiment has a function as a noise filter that is higher than that of the conventional configuration.
  • FIG. 11 shows that the S parameter is smaller in the decoupling device (graph G0) according to the present embodiment than in the configuration without the constricted portion 34 (graph G1).
  • Modification ⁇ Modification 1> In the decoupling device described above (see FIG. 7), the constricted portion 34 extends straight along the upper surfaces of the first and second capacitor elements 11 and 12 with a uniform width W1, but the constricted portion 34 is As shown in FIGS. 15 and 16, the width W ⁇ b> 1 may be gradually reduced from both ends 34 a and 34 b toward the center.
  • the inductance of the transmission member 3 is increased in the portion existing between the anode portions 102 and 102 of the first and second capacitor elements 11 and 12.
  • the shape of the constricted portion 34 is not limited to the shape shown in FIG. That is, in the region 3a of the transmission member 3 (see FIG. 4 or 16), if the width W1 of the constricted portion 34 is narrower than the width of the other region 3b of the transmission member 3, this shape is the constricted portion 34. It can be adopted as a shape.
  • the arrangement of the first and second capacitor elements 11 and 12 may be changed as follows. That is, as shown in FIG. 17, the positions of the first and second capacitor elements 11 and 12 can be changed without changing the protruding directions 91 and 92 of the anode portions 102 and 102 from the anode bodies 101 and 101. Good (first aspect).
  • the first and second capacitor elements 11, 12 have the protruding directions 91, 92 of the anode portions 102, 102 facing in opposite directions, and along the protruding direction 91. You may line up (2nd aspect).
  • the length of the portion of the transmission member 3 existing between the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 is increased, so that the inductance (see FIG. The inductance of the coil L2 shown in FIG. Therefore, the high-frequency current that has flowed into the decoupling device from the pair of anode terminals 21 and 22 easily flows to the first or second capacitor element 11 or 12. That is, the function of the decoupling device as a noise filter is enhanced.
  • the first and second capacitor elements 11 and 12 may have the protruding directions 91 and 92 of the anode portions 102 and 102 directed in the same direction (third mode). .
  • the first and second capacitor elements 11 and 12 are arranged such that the regions 11a and 12a (see FIG. 21) where the anode portions 102 and 102 protrude are positioned in the same plane,
  • the transmission member 3 extends along both the regions 11a and 12a.
  • the constricted portion 34 is formed in a region 3 a extending between the anode portions 102, 102 of the first and second capacitor elements 11, 12, that is, a position between the cuts 31 a, 32 a.
  • the width is narrower than the region 3b.
  • the pair of anode terminals 21 and 22 and the transmission member 3 are separate members. However, as shown in FIG. 22, the pair of anode terminals 21 and 22 and the transmission member 3 are integrally formed. It may be formed. For example, a pair of anode terminals 21 and 22 formed integrally with the transmission member 3 can be obtained by bending both ends of the transmission member formed in a U-shape. Further, the lower end portions 311 and 321 (FIG. 4) of the transmission member 3 may be used as the anode terminals 21 and 22.
  • a pair of anode terminals 21 and 22 and the transmission member 3 are integrally formed.
  • the transmission member 3 is configured by a strip-shaped metal plate. However, as illustrated in FIG. 23, the transmission member 3 may be configured by a zigzag metal plate.
  • the length of the portion existing between the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 is increased, and thus the inductance (see FIG.
  • the inductance of the coil L2 shown in FIG. Specifically, the length of the third facing portion 33 that was about 8 mm in the decoupling device shown in FIG. 1 can be increased to about 10 to 15 mm in the decoupling device according to this modification.
  • the high-frequency current flowing into the decoupling device from the pair of anode terminals 21 and 22 is likely to flow to the first or second capacitor elements 11 and 12, thereby enhancing the function of the decoupling device as a noise filter.
  • each part of the present invention is not limited to the above-described embodiment, and various modifications can be made within the technical scope described in the claims.
  • the arrangement of the first and second capacitor elements 11 and 12 can be changed according to the power supply line provided on the circuit board.
  • Various capacitors other than solid electrolytic capacitors may be used for the first and second capacitor elements 11 and 12.
  • the capacitances of the first and second capacitor elements 11 and 12 may be different from each other.
  • the decoupling device described above is configured by two capacitor elements (first and second capacitor elements 11 and 12), the decoupling device may be configured by three or more capacitor elements. .
  • FIG. 5 is a cross-sectional view of the solid electrolytic capacitor along the line VV shown in FIG. 4.
  • FIG. 6 is a cross-sectional view of the decoupling device taken along line VI-VI shown in FIG. 1.
  • FIG. 10 is a perspective view showing a decoupling device according to Modification 1.
  • FIG. 10 is an exploded perspective view of a decoupling device according to Modification 1.
  • 10 is a perspective view showing a decoupling device according to a first aspect of modification 2.
  • FIG. 10 is a perspective view showing a decoupling device according to a second aspect of Modification 2.
  • FIG. It is a disassembled perspective view of the decoupling device which concerns on a 2nd aspect.
  • FIG. 10 is a perspective view showing a decoupling device according to a third aspect of modification 2. It is a disassembled perspective view of the decoupling device which concerns on a 3rd aspect.
  • FIG. 10 is a perspective view showing a decoupling device according to Modification 3.
  • FIG. 10 is a perspective view showing a decoupling device according to Modification 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Filters And Equalizers (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The issue is to provide a decoupling device that can send a large DC current to a power supply line and eliminate high‑frequency current from the power supply line. The decoupling device has first and second capacitor elements (11, 12), a pair of positive pole terminals (21, 22), a negative pole terminal (23), and a transmission member (3). The first and second capacitor elements (11, 12) are solid‑state electrolytic capacitors, and positive pole parts (102, 102) thereof are electrically insulated from each other. The transmission member (3) is a plate‑shaped member for realizing conduction between the pair of positive pole terminals (21, 22) outside the first and second capacitor elements (11, 12), and the positive pole parts (102, 102) of the two capacitor elements are connected. The transmission member (3) is disposed along the surface of the two capacitor elements and has a constricted part (34), the width of which is narrower than the other areas of said transmission member (3) in the area extending between the positive pole parts (102, 102) of the two capacitor elements.

Description

デカップリングデバイス及び実装体Decoupling device and mounting body
 本発明は、CPUなどの負荷回路から生じたノイズを除去することが可能であるデカップリングデバイス、及び該デカップリングデバイスが実装された実装体に関する。 The present invention relates to a decoupling device capable of removing noise generated from a load circuit such as a CPU, and a mounting body on which the decoupling device is mounted.
 従来から、CPU(Central Processing Unit)などの負荷回路と、該負荷回路に直
流電流を供給するための電源回路とは、回路基板に形成された電源ラインを介して接続されており、コンデンサが電源ラインとグランドとの間に接続されている。負荷回路に負荷変動が生じた場合には、かかるコンデンサは蓄電池として機能し、負荷回路に対して電荷を供給する。また、負荷回路の駆動によって高周波電流(ノイズ)が生じた場合には、かかるコンデンサはノイズフィルタとして機能し、高周波電流を電源ラインからグランドへ導くことによって高周波電流を除去する。上記機能は、電源デカップリングと呼ばれている。
Conventionally, a load circuit such as a CPU (Central Processing Unit) and a power supply circuit for supplying a direct current to the load circuit are connected via a power supply line formed on a circuit board, and a capacitor is connected to a power supply. Connected between line and ground. When a load change occurs in the load circuit, the capacitor functions as a storage battery and supplies electric charge to the load circuit. When a high frequency current (noise) is generated by driving the load circuit, the capacitor functions as a noise filter and removes the high frequency current by guiding the high frequency current from the power supply line to the ground. The above function is called power supply decoupling.
 従来は上記コンデンサとして2端子構造のコンデンサが用いられていた。しかし、負荷回路の動作速度の高速化や、回路の複雑化に伴い、高周波電流の帯域が高周波側にシフトすると共にその帯域が拡がっており、2端子構造のコンデンサによって高周波電流を効率良く除去することが困難になりつつあった。 Conventionally, a two-terminal capacitor has been used as the capacitor. However, as the operating speed of the load circuit increases and the circuit becomes more complex, the high-frequency current band shifts to the high-frequency side and widens, and the two-terminal capacitor efficiently removes the high-frequency current. It was becoming difficult.
 そこで、上記コンデンサに代えて、等価直列インダクタンス(ESL)が小さい3端子構造のコンデンサ(デカップリングデバイス)を用いることが提案されている。例えば下掲の特許文献1では、3端子構造の固体電解コンデンサが提案されている。該固定電解コンデンサは、互いに導通した一対の陽極端子と、1つの陰極端子とを具え、該一対の陽極端子と陰極端子との間に誘電体層が介在している。 Therefore, it has been proposed to use a three-terminal capacitor (decoupling device) having a small equivalent series inductance (ESL) instead of the capacitor. For example, Patent Document 1 listed below proposes a solid electrolytic capacitor having a three-terminal structure. The fixed electrolytic capacitor includes a pair of anode terminals that are electrically connected to each other and a cathode terminal, and a dielectric layer is interposed between the pair of anode terminals and the cathode terminal.
 このような3端子構造のコンデンサは、電源ラインに対して次のように接続される。すなわち、負荷回路と電源回路の間において、負荷回路から電源回路に向かって延びた電源ラインの一端と、電源回路から負荷回路に向かって延びた電源ラインの一端とに対して、3端子構造のコンデンサが具える一対の陽極端子が接続される。また、1つの陰極端子は、グランドに接続される。これにより、電源回路によって負荷回路に直流電流を供給することが可能になると共に、固体電界コンデンサは、電源ラインとグランドとの間でノイズフィルタとして機能する。
特開2004-80773号公報
Such a three-terminal capacitor is connected to the power supply line as follows. That is, between the load circuit and the power supply circuit, one end of the power supply line extending from the load circuit toward the power supply circuit and one end of the power supply line extending from the power supply circuit toward the load circuit have a three-terminal structure. A pair of anode terminals provided with a capacitor are connected. One cathode terminal is connected to the ground. Thus, a direct current can be supplied to the load circuit by the power supply circuit, and the solid electric field capacitor functions as a noise filter between the power supply line and the ground.
JP 2004-80773 A
 しかし、従来の3端子構造のコンデンサでは、電源ラインに電流量の大きな直流電流を流すことが困難である。なぜなら、例えば特許文献1に開示されているように、一対の陽極端子の間を流れる直流電流は、固体電解コンデンサ内部に存在する導電部分を通るが、該導電部分の電気抵抗は高いからである。このため、負荷回路の動作速度の高速化に対応しにくくなっている。 However, with a conventional three-terminal capacitor, it is difficult to pass a large direct current through the power line. This is because, for example, as disclosed in Patent Document 1, a direct current flowing between a pair of anode terminals passes through a conductive portion existing inside the solid electrolytic capacitor, but the electrical resistance of the conductive portion is high. . For this reason, it is difficult to cope with an increase in the operating speed of the load circuit.
 また、従来の3端子構造のコンデンサでは、電気抵抗が高い上記導電部分が発熱し、コンデンサ自身の破壊、延いてはその周辺に配置されている部品の破壊を招く虞がある。 Further, in the conventional three-terminal structure capacitor, the conductive portion having a high electric resistance generates heat, which may cause destruction of the capacitor itself and further destruction of components arranged around the capacitor.
 本発明の目的は、電源ラインに電流量の大きな直流電流を流すことが可能であると共に、電源ラインから高周波電流を除去することが可能であるデカップリングデバイスを提供
することである。
An object of the present invention is to provide a decoupling device capable of flowing a direct current having a large amount of current through a power supply line and removing high-frequency current from the power supply line.
 本発明に係るデカップリングデバイスは、第1コンデンサ素子(11)と、第2コンデンサ素子(12)と、一対の陽極端子(21,22)と、陰極端子(23)と、伝送部材(3)とを具える。前記第1コンデンサ素子は、陽極部(102)と、陰極部(105)と、該陽極部と陰極部の間に介在する誘電体層(103)とから構成される。前記第2コンデンサ素子は、前記第1コンデンサ素子の陽極部とは電気的に絶縁された陽極部(102)と、陰極部(105)と、該陽極部と陰極部の間に介在する誘電体層(103)とから構成される。前記陰極端子は、前記第1及び第2コンデンサ素子の陰極部に接続されている。前記伝送部材は、前記第1及び第2コンデンサ素子の外部において前記一対の陽極端子の間を導通させると共に、該第1及び第2コンデンサ素子の陽極部が接続されている。そして、前記伝送部材は、板状であって、前記第1及び第2コンデンサ素子の表面に沿って配置されており、前記第1及び第2コンデンサ素子の陽極部の間を延びる領域(3a)に、該伝送部材の他の領域(3b)よりも幅が狭いくびれ部(34)を有している。 A decoupling device according to the present invention includes a first capacitor element (11), a second capacitor element (12), a pair of anode terminals (21, 22), a cathode terminal (23), and a transmission member (3). With. The first capacitor element includes an anode part (102), a cathode part (105), and a dielectric layer (103) interposed between the anode part and the cathode part. The second capacitor element includes an anode part (102) electrically insulated from an anode part of the first capacitor element, a cathode part (105), and a dielectric interposed between the anode part and the cathode part. Layer (103). The cathode terminal is connected to the cathode portions of the first and second capacitor elements. The transmission member conducts between the pair of anode terminals outside the first and second capacitor elements, and the anode portions of the first and second capacitor elements are connected. The transmission member is plate-shaped and is disposed along the surfaces of the first and second capacitor elements, and extends between the anode portions of the first and second capacitor elements (3a). Further, it has a constricted portion (34) that is narrower than the other region (3b) of the transmission member.
 上記デカップリングデバイスによれば、一対の陽極端子の間を流れる直流電流は、第1及び第2コンデンサ素子の陽極部内を通ることなく、第1及び第2コンデンサ素子の外部にある伝送部材を通るため、従来のデカップリングデバイスよりも大きな直流電流を流すことができる。また、伝送部材にくびれ部を設けることによって、伝送部材のインダクタンスが、第1及び第2コンデンサ素子の陽極部の間に存在する部分において大きくなる。これにより、一対の陽極端子からデカップリングデバイスに流れ込んだ高周波電流は、第1又は第2コンデンサ素子の方へ導かれやすくなる。よって、第1及び第2陽極端子を離間した2つの電源ラインに接続し、陰極端子をグランドに接続することによって、該電源ラインから高周波電流を除去することができる。すなわち、デカップリングデバイスはノイズフィルタとして機能する。 According to the decoupling device, the direct current flowing between the pair of anode terminals passes through the transmission member outside the first and second capacitor elements without passing through the anode portions of the first and second capacitor elements. Therefore, it is possible to pass a larger direct current than the conventional decoupling device. Further, by providing the constricted portion in the transmission member, the inductance of the transmission member is increased in a portion existing between the anode portions of the first and second capacitor elements. As a result, the high-frequency current flowing into the decoupling device from the pair of anode terminals is easily guided toward the first or second capacitor element. Therefore, the high frequency current can be removed from the power supply line by connecting the first and second anode terminals to two separated power supply lines and connecting the cathode terminal to the ground. That is, the decoupling device functions as a noise filter.
 上記デカップリングデバイスの具体的な態様において、前記伝送部材(3)のうち、前記第1及び第2コンデンサ素子(11,12)の陽極部(102,102)の間に存在する部分のインダクタンスが、前記第1及び第2コンデンサ素子のそれぞれの等価直列インダクタンスよりも大きい。 In a specific aspect of the decoupling device, an inductance of a portion of the transmission member (3) existing between the anode portions (102, 102) of the first and second capacitor elements (11, 12) is , Greater than the equivalent series inductance of each of the first and second capacitor elements.
 上記具体的な態様によれば、一対の陽極端子からデカップリングデバイスに流れ込んだ高周波電流は、伝送部材よりもインダクタンスが小さい第1又は第2コンデンサ素子の方へ導かれる。よって、デカップリングデバイスのノイズフィルタとしての機能が高まる。 According to the specific embodiment, the high-frequency current flowing into the decoupling device from the pair of anode terminals is guided toward the first or second capacitor element having an inductance smaller than that of the transmission member. Therefore, the function as a noise filter of the decoupling device is enhanced.
 上記デカップリングデバイスの他の具体的な態様において、前記第1及び第2コンデンサ素子(11,12)の陽極部(102,102)は、前記伝送部材(3)のうち、前記一対の陽極端子(21,22)の間に存在する部分に接続されている。 In another specific aspect of the decoupling device, the anode parts (102, 102) of the first and second capacitor elements (11, 12) are the pair of anode terminals of the transmission member (3). It is connected to the part existing between (21, 22).
 上記具体的な態様によれば、一対の陽極端子からデカップリングデバイスに流れ込んだ高周波電流は、第1又は第2コンデンサ素子の方へ導かれやすくなる。 According to the specific aspect, the high-frequency current flowing into the decoupling device from the pair of anode terminals is easily guided toward the first or second capacitor element.
 上記デカップリングデバイスの他の具体的な態様において、前記第1及び第2コンデンサ素子(11,12)はいずれも、前記陽極部(102)が突設された陽極体(101)と、該陽極体の表面を覆って前記誘電体層(103)を構成する酸化被膜と、該酸化被膜の表面に形成される電解質層(104)と、該電解質層の表面に形成されて前記陰極部(105)を構成する陰極層とを具えている固体電解コンデンサである。そして、前記第1及び第2コンデンサ素子の陽極部は、前記酸化被膜によって互いに電気的に絶縁されている。 In another specific aspect of the decoupling device, each of the first and second capacitor elements (11, 12) includes an anode body (101) in which the anode portion (102) is protruded, and the anode An oxide film that covers the surface of the body and constitutes the dielectric layer (103), an electrolyte layer (104) that is formed on the surface of the oxide film, and a cathode part (105 that is formed on the surface of the electrolyte layer) And a cathode layer constituting the solid electrolytic capacitor. The anode parts of the first and second capacitor elements are electrically insulated from each other by the oxide film.
 上記具体的な態様によれば、固体電解コンデンサは等価直列抵抗(ESR)が小さいため、デカップリングデバイスのノイズフィルタとしての機能を高めることができる。尚、前記第1及び第2コンデンサ素子(11,12)の陽極部(102,102)は、該第1及び第2コンデンサ素子を被覆する樹脂層(4)によって互いに電気的に絶縁されていてもよい。 According to the above specific embodiment, since the solid electrolytic capacitor has a small equivalent series resistance (ESR), the function as a noise filter of the decoupling device can be enhanced. The anode parts (102, 102) of the first and second capacitor elements (11, 12) are electrically insulated from each other by a resin layer (4) covering the first and second capacitor elements. Also good.
 上記具体的な態様において、前記伝送部材(3)は、第1対向部(31)と、第2対向部(32)と、第3対向部(33)とによって構成される。前記第1対向部は、前記第1コンデンサ素子(11)の陽極部(102)に接触すると共に、前記第1コンデンサ素子の表面のうち該陽極部が突設されている領域(11a)に対向する。第2対向部は、前記第2コンデンサ素子(12)の陽極部に接触すると共に、前記第2コンデンサの表面のうち該陽極部が突設されている領域(12a)に対向する。第3対向部は、前記第1及び第2対向部の間を延びて該第1及び第2対向部に連結すると共に、前記第1又は第2コンデンサ素子の表面の少なくとも一部に対向する。そして、前記くびれ部(34)は前記第3対向部に形成されている。 In the specific embodiment, the transmission member (3) includes a first facing portion (31), a second facing portion (32), and a third facing portion (33). The first facing portion contacts the anode portion (102) of the first capacitor element (11) and faces the region (11a) where the anode portion projects from the surface of the first capacitor element. To do. The second facing portion contacts the anode portion of the second capacitor element (12) and faces a region (12a) of the surface of the second capacitor where the anode portion protrudes. The third facing portion extends between the first and second facing portions and is connected to the first and second facing portions and faces at least a part of the surface of the first or second capacitor element. And the said narrow part (34) is formed in the said 3rd opposing part.
 これにより、第3対向部のインダクタンスが大きくなる。よって、伝送部材のインダクタンスは、前記第1及び第2コンデンサ素子の陽極部の間に存在する部分において大きくなる。また、伝送部材を第1及び第2コンデンサ素子に沿って配置することができるので、デカップリングデバイスを小型化することができる。 This increases the inductance of the third facing portion. Therefore, the inductance of the transmission member is increased in a portion existing between the anode portions of the first and second capacitor elements. Moreover, since the transmission member can be disposed along the first and second capacitor elements, the decoupling device can be reduced in size.
 上記具体的な態様において、前記第1及び第2コンデンサ素子(11,12)は、前記陽極体(101,101)からの陽極部(102,102)の突出方向(91,92)を互いに反対方向に向けると共に、該突出方向に沿って並んでいてもよい。これにより、伝送部材のうち、第1及び第2コンデンサ素子の陽極部の間に存在する部分の長さが大きくなり、以って該部分のインダクタンスが大きくなる。よって、一対の陽極端子からデカップリングデバイスに流れ込んだ高周波電流は、第1又は第2コンデンサ素子へ流れやすくなる。すなわち、デカップリングデバイスのノイズフィルタとしての機能が高まる。 In the specific embodiment, the first and second capacitor elements (11, 12) are opposite to each other in the protruding direction (91, 92) of the anode part (102, 102) from the anode body (101, 101). It may be arranged in the direction along the protruding direction. Thereby, the length of the part which exists between the anode parts of the 1st and 2nd capacitor elements among transmission members becomes large, and, thereby, the inductance of this part becomes large. Therefore, the high-frequency current that has flowed into the decoupling device from the pair of anode terminals is likely to flow to the first or second capacitor element. That is, the function of the decoupling device as a noise filter is enhanced.
 上記具体的な態様において、前記第1及び第2コンデンサ素子(11,12)は、前記陽極体(101,101)からの陽極部(102,102)の突出方向(91,92)を互いに反対方向に向けると共に、該突出方向に垂直な方向(93)に沿って並んでいてもよい。或いは、前記第1及び第2コンデンサ素子(11,12)は、前記陽極体(101,101)からの陽極部(102,102)の突出方向(91,92)を同じ方向に向けていてもよい。 In the specific embodiment, the first and second capacitor elements (11, 12) are opposite to each other in the protruding direction (91, 92) of the anode part (102, 102) from the anode body (101, 101). It may be aligned along a direction (93) perpendicular to the protruding direction. Alternatively, the first and second capacitor elements (11, 12) may have the protruding direction (91, 92) of the anode portion (102, 102) from the anode body (101, 101) oriented in the same direction. Good.
 上記デカップリングデバイスの他の具体的な態様において、前記第1及び第2コンデンサ素子(11,12)を被覆する樹脂層(4)を更に具え、前記伝送部材(3)は、前記樹脂層の表面に露出している。 In another specific aspect of the decoupling device, the decoupling device further includes a resin layer (4) covering the first and second capacitor elements (11, 12), and the transmission member (3) is formed of the resin layer. Exposed on the surface.
 上記具体的な態様によれば、伝送部材で発生した熱を、効率良く放出することができる。よって、伝送部材の発熱が原因となってデカップリングデバイスが破壊されることを防止することができる。 According to the specific aspect, the heat generated in the transmission member can be released efficiently. Therefore, it is possible to prevent the decoupling device from being destroyed due to heat generation of the transmission member.
 上記デカップリングデバイスの他の具体的な態様において、前記陰極端子(23)は、前記第1及び第2コンデンサ素子(11,12)の陰極部(105,105)に接続された単一の端子である。 In another specific aspect of the decoupling device, the cathode terminal (23) is a single terminal connected to the cathode portions (105, 105) of the first and second capacitor elements (11, 12). It is.
 上記具体的な態様によれば、一対の陽極端子と、1つの陰極端子を具える3端子構造の
デカップリングデバイスを得ることができる。
According to the specific aspect, a decoupling device having a three-terminal structure including a pair of anode terminals and one cathode terminal can be obtained.
 本発明に係る実装体は、上記デカップリングデバイス(80)と、負荷回路(81)と、前記負荷回路に直流電流を供給する電源回路(82)と、回路基板(83)とを具え、デカップリングデバイス、負荷回路、及び電源回路を回路基板上に実装してなる。前記回路基板は、第1電源ライン(841)、第2電源ライン(842)、及びグランド線路を具える。前記第1電源ラインは、前記負荷回路が接続されており、負荷回路から電源回路に向かって延びている。前記第2電源ラインは、前記電源回路が接続されており、電源回路から負荷回路に向かって延びている。前記グランド線路は、グランドに接続されている。そして、前記デカップリングデバイス(80)の一対の陽極端子(21,22)は、前記負荷回路と電源回路との間において、前記第1電源ラインの一端と前記第2電源ラインの一端に接続されており、陰極端子(23)は、グランド線路(851)に接続されている。 A mounting body according to the present invention includes the decoupling device (80), a load circuit (81), a power supply circuit (82) for supplying a direct current to the load circuit, and a circuit board (83). A ring device, a load circuit, and a power supply circuit are mounted on a circuit board. The circuit board includes a first power line (841), a second power line (842), and a ground line. The first power supply line is connected to the load circuit and extends from the load circuit toward the power supply circuit. The power supply circuit is connected to the second power supply line, and extends from the power supply circuit toward the load circuit. The ground line is connected to the ground. The pair of anode terminals (21, 22) of the decoupling device (80) is connected to one end of the first power supply line and one end of the second power supply line between the load circuit and the power supply circuit. The cathode terminal (23) is connected to the ground line (851).
 本発明によれば、電源ラインに電流量の大きな直流電流を流すことが可能になると共に、電源ラインから高周波電流を除去することが可能になる。 According to the present invention, it becomes possible to flow a direct current having a large amount of current through the power supply line and to remove high-frequency current from the power supply line.
 以下、本発明の実施の形態につき、図面に沿って具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
 1.デカップリングデバイスについて
 本発明の実施の形態に係るデカップリングデバイスは、図1乃至図4に示される様に、第1コンデンサ素子11、第2コンデンサ素子12、一対の陽極端子21,22、陰極端子23、伝送部材3、及び樹脂層4を具える。
1. About Decoupling Device As shown in FIGS. 1 to 4, the decoupling device according to the embodiment of the present invention includes a first capacitor element 11, a second capacitor element 12, a pair of anode terminals 21 and 22, and a cathode terminal. 23, the transmission member 3, and the resin layer 4.
 <第1及び第2コンデンサ素子>
 第1及び第2コンデンサ素子11,12はいずれも固体電解コンデンサであり、図5に示される様に、陽極体101、陽極部102、誘電体層103、電解質層104及び陰極部105を具えている。陽極体101は、弁作用を有する金属からなる多孔質焼結体によって構成される。弁作用を有する金属には、例えばタンタル、ニオブ、チタン、アルミニウムなどが用いられる。
<First and second capacitor elements>
Each of the first and second capacitor elements 11 and 12 is a solid electrolytic capacitor, and includes an anode body 101, an anode portion 102, a dielectric layer 103, an electrolyte layer 104, and a cathode portion 105, as shown in FIG. Yes. The anode body 101 is composed of a porous sintered body made of a metal having a valve action. As the metal having a valve action, for example, tantalum, niobium, titanium, aluminum or the like is used.
 陽極部102は、陽極体101に突設された陽極線によって構成される。具体的には、陽極部102を構成する陽極線は、一方の端部102aを陽極体101から突出させると共に、他方の端部102bを陽極体101内に埋没させた状態で、陽極体101に配備される。陽極線は、陽極体101を構成する金属と同種の金属によって構成され、陽極体101と電気的に接続されている。 The anode part 102 is constituted by an anode wire protruding from the anode body 101. Specifically, the anode wire constituting the anode portion 102 is formed on the anode body 101 with one end portion 102a protruding from the anode body 101 and the other end portion 102b buried in the anode body 101. Deployed. The anode wire is made of the same kind of metal as that of the anode body 101 and is electrically connected to the anode body 101.
 誘電体層103は、陽極体101の表面を酸化することによって形成された酸化皮膜によって構成される。具体的には、陽極体101をリン酸水溶液などの電解溶液に浸し、陽極体101の表面を電気化学的に酸化させること(陽極酸化)によって、誘電体層103を構成する酸化皮膜が形成される。 The dielectric layer 103 is composed of an oxide film formed by oxidizing the surface of the anode body 101. Specifically, the oxide film constituting the dielectric layer 103 is formed by immersing the anode body 101 in an electrolytic solution such as an aqueous phosphoric acid solution and electrochemically oxidizing the surface of the anode body 101 (anodic oxidation). The
 電解質層104は、誘電体層103の表面に形成される。電解質層104は、二酸化マンガン等の導電性無機材料、TCNQ(Tetracyano-quinodimethane)錯塩、導電性ポリ
マー等の導電性有機材料などによって構成される。
The electrolyte layer 104 is formed on the surface of the dielectric layer 103. The electrolyte layer 104 is made of a conductive inorganic material such as manganese dioxide, a conductive organic material such as a TCNQ (Tetracyano-quinodimethane) complex salt, or a conductive polymer.
 陰極部105は、電解質層104の表面に形成された陰極層によって構成される。具体的には、陰極部105を構成する陰極層は、電解質層14の表面に形成されたカーボン層
と、カーボン層の表面に形成された銀ペースト層とから構成され、電解質層14と電気的に接続されている。
The cathode portion 105 is constituted by a cathode layer formed on the surface of the electrolyte layer 104. Specifically, the cathode layer constituting the cathode portion 105 is composed of a carbon layer formed on the surface of the electrolyte layer 14 and a silver paste layer formed on the surface of the carbon layer, and is electrically connected to the electrolyte layer 14. It is connected to the.
 尚、上述した第1及び第2コンデンサ素子11,12において、誘電体層103は、陽極部102と陰極部105の間に介在していると把握することができる。 In the first and second capacitor elements 11 and 12 described above, it can be understood that the dielectric layer 103 is interposed between the anode portion 102 and the cathode portion 105.
 第1及び第2コンデンサ素子11,12の陽極部102,102は、互いに電気的に絶縁されている。具体的には、これらの陽極部102,102の間には、図6に示される様に、第1及び第2コンデンサ素子11,12を構成する誘電体層103,103が介在している。すなわち、第1及び第2コンデンサ素子11,12の陽極部102,102は、誘電体層103によって互いに電気的に絶縁されている。 The anode parts 102 and 102 of the first and second capacitor elements 11 and 12 are electrically insulated from each other. Specifically, dielectric layers 103 and 103 constituting the first and second capacitor elements 11 and 12 are interposed between the anode portions 102 and 102, as shown in FIG. That is, the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 are electrically insulated from each other by the dielectric layer 103.
 本実施の形態に係るデカップリングデバイスでは、第1及び第2コンデンサ素子11,12は次のように配置される。すなわち、第1及び第2コンデンサ素子11,12は、図4に示される様に、それぞれの陽極体101,101からの陽極部102,102の突出方向91,92を互いに反対方向に向けると共に、突出方向91に垂直な方向93に沿って並んでいる。 In the decoupling device according to the present embodiment, the first and second capacitor elements 11 and 12 are arranged as follows. That is, as shown in FIG. 4, the first and second capacitor elements 11, 12 direct the protruding directions 91, 92 of the anode portions 102, 102 from the respective anode bodies 101, 101 in opposite directions, They are arranged along a direction 93 perpendicular to the protruding direction 91.
 <樹脂層>
 樹脂層4は、図2に示される様に、第1及び第2コンデンサ素子11,12のそれぞれの端部102a,102aを樹脂層4の表面に露出させた状態で、第1及び第2コンデンサ素子11,12の周囲を被覆している。これにより、デカップリングデバイスの全体の強度が高まる。よって、デカップリングデバイスに衝撃が加わっても、第1及び第2コンデンサ素子11,12は壊れにくい。尚、樹脂層4は、例えばエポキシ樹脂などの樹脂材によって構成される。
<Resin layer>
As shown in FIG. 2, the resin layer 4 has the first and second capacitors in a state where the end portions 102 a and 102 a of the first and second capacitor elements 11 and 12 are exposed on the surface of the resin layer 4. The periphery of the elements 11 and 12 is covered. This increases the overall strength of the decoupling device. Therefore, even if an impact is applied to the decoupling device, the first and second capacitor elements 11 and 12 are not easily broken. In addition, the resin layer 4 is comprised by resin materials, such as an epoxy resin, for example.
 尚、樹脂層4は、後述する伝送部材3を第1及び第2コンデンサ素子11,12に対して上から被せた状態で、伝送部材3と第1及び第2コンデンサ素子11,12との間に樹脂材を注入することによって形成される。 The resin layer 4 is disposed between the transmission member 3 and the first and second capacitor elements 11 and 12 in a state in which the transmission member 3 described later is covered from above with respect to the first and second capacitor elements 11 and 12. It is formed by injecting a resin material.
 本実施の形態に係るデカップリングデバイスでは、樹脂層4は、図6に示される様に、第1及び第2コンデンサ素子11,12の間に介在している。よって、第1及び第2コンデンサ素子11,12の陽極部102,102は、樹脂層4によって互いに電気的に絶縁されていると把握することもできる。 In the decoupling device according to the present embodiment, the resin layer 4 is interposed between the first and second capacitor elements 11 and 12 as shown in FIG. Therefore, it can be understood that the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 are electrically insulated from each other by the resin layer 4.
 <一対の陽極端子及び陰極端子>
 一対の陽極端子21,22は、図3に示される様にデカップリングデバイスの底面1aにおいて、樹脂層4から露出した状態で配備される。これにより、一対の陽極端子21,22を外部に接続することが可能となっている。具体的には、後述する第1及び第2電源ライン841,842(図9参照)に接続することが可能となっている。
<A pair of anode terminal and cathode terminal>
The pair of anode terminals 21 and 22 are arranged in a state of being exposed from the resin layer 4 on the bottom surface 1a of the decoupling device as shown in FIG. Thereby, a pair of anode terminals 21 and 22 can be connected to the outside. Specifically, it is possible to connect to first and second power supply lines 841 and 842 (see FIG. 9) described later.
 具体的には、一対の陽極端子21,22は、互いに対向した状態で、底面1aの縁に沿って延びている。より具体的には、一方の陽極端子21は、第1コンデンサ素子11の陽極部102の突出方向91に位置する縁1bに沿って延びており、他方の陽極端子22は、第2コンデンサ素子12の陽極部102の突出方向92に位置する縁1cに延びている。 Specifically, the pair of anode terminals 21 and 22 extend along the edge of the bottom surface 1a while facing each other. More specifically, one anode terminal 21 extends along the edge 1 b located in the protruding direction 91 of the anode portion 102 of the first capacitor element 11, and the other anode terminal 22 is the second capacitor element 12. It extends to the edge 1c located in the protruding direction 92 of the anode portion 102 of the first electrode 102.
 陰極端子23は、図6に示される様に、第1及び第2コンデンサ素子11,12の陰極部105,105の両方に接続された単一の端子である。陰極端子23は、図3に示される様にデカップリングデバイスの底面1aにおいて、樹脂層4の表面に露出した状態で配
備されると共に、一対の陽極端子21,22の間の位置にて一対の陽極端子21,22から電気的に絶縁された状態で配備される。
As shown in FIG. 6, the cathode terminal 23 is a single terminal connected to both the cathode portions 105 and 105 of the first and second capacitor elements 11 and 12. As shown in FIG. 3, the cathode terminal 23 is disposed on the bottom surface 1 a of the decoupling device so as to be exposed on the surface of the resin layer 4, and a pair of anode terminals 23 are disposed at a position between the pair of anode terminals 21 and 22. It is deployed in a state of being electrically insulated from the anode terminals 21 and 22.
 すなわち、本実施の形態に係るデカップリングデバイスは、一対の陽極端子21,22と1つの陰極端子23とを具えた3端子構造のデバイスである。 That is, the decoupling device according to the present embodiment is a device having a three-terminal structure including a pair of anode terminals 21 and 22 and one cathode terminal 23.
 <伝送部材>
 伝送部材3は、図1に示される様に、第1及び第2コンデンサ素子11,12の外部において一対の陽極端子21,22の間を導通させる共に、第1及び第2コンデンサ素子11,12の陽極部102が接続されている。また、本実施の形態に係るデカップリングデバイスでは、伝送部材3は、樹脂層4の表面に露出した状態で配備される。
<Transmission member>
As shown in FIG. 1, the transmission member 3 conducts between the pair of anode terminals 21 and 22 outside the first and second capacitor elements 11 and 12, and the first and second capacitor elements 11 and 12. The anode part 102 is connected. Further, in the decoupling device according to the present embodiment, the transmission member 3 is provided in a state of being exposed on the surface of the resin layer 4.
 具体的には伝送部材3は、板状の金属板であり、図1及び図4に示される様に、第1対向部31、第2対向部32、及び第3対向部33によって構成されている。尚、本実施の形態に係る伝送部材では、伝送部材3を構成する金属板として銅板が採用されている。 Specifically, the transmission member 3 is a plate-shaped metal plate, and is configured by a first facing portion 31, a second facing portion 32, and a third facing portion 33, as shown in FIGS. Yes. In the transmission member according to the present embodiment, a copper plate is employed as the metal plate constituting the transmission member 3.
 第1対向部31は、第1コンデンサ素子11の表面のうち陽極部102が突設されている領域11aに対向しており、下端部311が一方の陽極端子21に接続されている。第2対向部32は、第2コンデンサ素子12の表面のうち陽極部102が突設されている領域12aに対向しており、下端部321が他方の陽極端子22に接続されている。 The first facing portion 31 faces the region 11 a of the surface of the first capacitor element 11 where the anode portion 102 protrudes, and the lower end portion 311 is connected to one anode terminal 21. The second facing portion 32 faces the region 12 a where the anode portion 102 projects from the surface of the second capacitor element 12, and the lower end portion 321 is connected to the other anode terminal 22.
 第3対向部33は、第1及び第2対向部31,32の間を延びて該第1及び第2対向部31,32に連結している。これにより、一対の陽極端子21,22の間が、伝送部材3によって導通されることとなる。また、第3対向部33は、第1及び第2コンデンサ素子11,12の表面の少なくとも一部に対向している。本実施の形態に係るデカップリングデバイスでは、第3対向部33は、第1及び第2コンデンサ素子11,12の上面11b,12bに対向している。 The third facing portion 33 extends between the first and second facing portions 31 and 32 and is connected to the first and second facing portions 31 and 32. Thereby, the transmission member 3 conducts between the pair of anode terminals 21 and 22. The third facing portion 33 faces at least a part of the surfaces of the first and second capacitor elements 11 and 12. In the decoupling device according to the present embodiment, the third facing portion 33 faces the upper surfaces 11 b and 12 b of the first and second capacitor elements 11 and 12.
 そして、第1及び第2対向部31,32にはそれぞれ、図1及び図4に示される様に、第1及び第2コンデンサ素子11,12の陽極部102,102を接触させるための切り込み31a,32aが形成されている。切り込み31a,32aはそれぞれ、第1及び第2対向部31,32の下端部311,321から第3対向部33の方に向かって延びている。 As shown in FIGS. 1 and 4, the first and second facing portions 31 and 32 have cuts 31 a for contacting the anode portions 102 and 102 of the first and second capacitor elements 11 and 12, respectively. , 32a are formed. The cuts 31a and 32a extend from the lower end portions 311 and 321 of the first and second facing portions 31 and 32 toward the third facing portion 33, respectively.
 図4に示されるように、伝送部材3を第1及び第2コンデンサ素子11,12に対して上から被せることによって、第1及び第2コンデンサ素子11,12の陽極部102,102はそれぞれ、切り込み31a,32aに対して下端部311,321側から入り込み、切り込み31a,32aの閉塞端31b,32bにおいて第1及び第2対向部31,32に接触する。これにより、第1及び第2コンデンサ素子11,12の陽極部102,102は、図1に示される様に、伝送部材3のうち、一対の陽極端子21,22の間に存在する部分に接続される。 As shown in FIG. 4, by covering the first and second capacitor elements 11 and 12 with the transmission member 3 from above, the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 are respectively The cuts 31a and 32a enter from the lower end portions 311 and 321 side and come into contact with the first and second opposing portions 31 and 32 at the closed ends 31b and 32b of the cuts 31a and 32a. As a result, the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 are connected to a portion of the transmission member 3 existing between the pair of anode terminals 21 and 22 as shown in FIG. Is done.
 上述した形状を呈する伝送部材3によれば、伝送部材3を第1及び第2コンデンサ素子11,12に沿って配置することができるので、デカップリングデバイスを小型化することができる。 According to the transmission member 3 having the above-described shape, the transmission member 3 can be disposed along the first and second capacitor elements 11 and 12, so that the decoupling device can be reduced in size.
 伝送部材3は、図4及び図7に示される様に、第1及び第2コンデンサ素子11,12の陽極部102,102の間を延びる領域3aに、伝送部材3の他の領域3bよりも幅W1が狭いくびれ部34を有している。本実施の形態に係るデカップリングデバイスでは、くびれ部34は、第3対向部33に形成されており、第1及び第2コンデンサ素子11,
12の上面11b,12b(図4参照)に沿って、均一な幅W1で真っ直ぐに延びている。
As shown in FIGS. 4 and 7, the transmission member 3 is in a region 3 a extending between the anode portions 102, 102 of the first and second capacitor elements 11, 12 than in the other region 3 b of the transmission member 3. A narrow portion 34 having a narrow width W1 is provided. In the decoupling device according to the present embodiment, the constricted portion 34 is formed in the third facing portion 33, and the first and second capacitor elements 11,
12 extends straight along the upper surface 11b, 12b (see FIG. 4) with a uniform width W1.
 上述したデカップリングデバイスは、図8に示される等価回路によって表すことができる。すなわち、等価回路は、伝送部材3のインダクタンスを表すコイルL1~L3と、第1コンデンサ素子11の静電容量及び等価直列インダクタンスを表すコンデンサC11及びコイルL11と、第2コンデンサ素子12の静電容量及び等価直列インダクタンスを表すコンデンサC12及びコイルL12とによって構成される。そして、コイルL1~L3は、一対の陽極端子21,22の間で直列に接続される。コンデンサC11及びコイルL11は、コイルL1,L2の接続部301と陰極端子23との間に直列に接続される。コンデンサC12及びコイルL12は、コイルL2,L3の接続部302と陰極端子23との間に直列に接続される。 The decoupling device described above can be represented by an equivalent circuit shown in FIG. That is, the equivalent circuit includes coils L1 to L3 representing the inductance of the transmission member 3, the capacitors C11 and L11 representing the capacitance and equivalent series inductance of the first capacitor element 11, and the capacitance of the second capacitor element 12. And a capacitor C12 representing an equivalent series inductance and a coil L12. The coils L1 to L3 are connected in series between the pair of anode terminals 21 and 22. The capacitor C11 and the coil L11 are connected in series between the connection portion 301 of the coils L1 and L2 and the cathode terminal 23. The capacitor C12 and the coil L12 are connected in series between the connection portion 302 of the coils L2 and L3 and the cathode terminal 23.
 尚、コイルL1は、伝送部材3のうち、第1コンデンサ素子11の陽極部102と陽極端子21との間に存在する部分のインダクタンスを表す。コイルL2は、伝送部材3のうち、第1及び第2コンデンサ素子11,12の陽極部102の間に存在する部分のインダクタンスを表す。コイルL3は、伝送部材3のうち、第2コンデンサ素子12の陽極部102と陽極端子22との間に存在する部分のインダクタンスを表す。 The coil L1 represents the inductance of the portion of the transmission member 3 that exists between the anode portion 102 and the anode terminal 21 of the first capacitor element 11. The coil L2 represents the inductance of a portion of the transmission member 3 that exists between the anode portions 102 of the first and second capacitor elements 11 and 12. The coil L <b> 3 represents the inductance of a portion of the transmission member 3 that exists between the anode portion 102 and the anode terminal 22 of the second capacitor element 12.
 2.デカップリングデバイスが実装された実装体について
 上記デカップリングデバイスが実装された実装体は、図9に示されるように、CPUなどの負荷回路81と、負荷回路81に直流電流を供給する電源回路82と、回路基板83とを具える。尚、図9では、デカップリングデバイスを符号80によって表している。
2. As shown in FIG. 9, the mounting body on which the decoupling device is mounted includes a load circuit 81 such as a CPU and a power supply circuit 82 that supplies a direct current to the load circuit 81. And a circuit board 83. In FIG. 9, the decoupling device is denoted by reference numeral 80.
 回路基板83は、4層構造を有し、内側の2層をそれぞれ電源層84及びグランド層85として用いている。電源層84には、第1電源ライン841及び第2電源ライン842が互いに離間した状態で配備されている。そして、第1電源ライン841は、貫通ビア861,862によって回路基板83の表面83aに引き出されている。第2電源ライン842は、貫通ビア863,864によって回路基板83の表面83aに引き出されている。尚、貫通ビア862,863は、これらの間の距離が、デカップリングデバイス80を構成する一対の陽極端子21,22の間の距離と同程度となるように配置されている。 The circuit board 83 has a four-layer structure, and the inner two layers are used as the power supply layer 84 and the ground layer 85, respectively. In the power supply layer 84, a first power supply line 841 and a second power supply line 842 are provided in a state of being separated from each other. The first power supply line 841 is drawn to the surface 83 a of the circuit board 83 by through vias 861 and 862. The second power supply line 842 is drawn out to the surface 83 a of the circuit board 83 by through vias 863 and 864. The through vias 862 and 863 are arranged so that the distance between them is approximately the same as the distance between the pair of anode terminals 21 and 22 constituting the decoupling device 80.
 グランド層85には、グランド線路851が配備されている。そして、グランド線路851は、貫通ビア865によって、回路基板83の表面83aに引き出されている。尚、貫通ビア865は、貫通ビア862,863の間の位置にて、第1及び第2電源ライン841,842から電気的に絶縁された状態で配置されている。また、グランド線路851は、貫通ビア866によって回路基板83の裏面83bに引き出され、グランドに接続されている。 In the ground layer 85, a ground line 851 is provided. The ground line 851 is drawn to the surface 83 a of the circuit board 83 by the through via 865. The through via 865 is disposed at a position between the through vias 862 and 863 while being electrically insulated from the first and second power supply lines 841 and 842. The ground line 851 is drawn out to the back surface 83b of the circuit board 83 by the through via 866 and connected to the ground.
 負荷回路81は、回路基板83の表面83aにおいて貫通ビア861に接続される。電源回路82は、回路基板83の表面83aにおいて貫通ビア864に接続される。これにより、負荷回路81は、貫通ビア861を介して第1電源ライン841に接続され、電源回路82は、貫通ビア864を介して第2電源ライン842に接続される。 The load circuit 81 is connected to the through via 861 on the surface 83 a of the circuit board 83. The power supply circuit 82 is connected to the through via 864 on the surface 83 a of the circuit board 83. Thereby, the load circuit 81 is connected to the first power supply line 841 through the through via 861, and the power supply circuit 82 is connected to the second power supply line 842 through the through via 864.
 デカップリングデバイス80は、回路基板83の表面83aに次のように実装される。すなわち、デカップリングデバイス80の一対の陽極端子21,22がそれぞれ貫通ビア862,863に接続され、陰極端子23が貫通ビア865に接続される。これにより、一対の陽極端子21,22はそれぞれ、貫通ビア862,863を介して第1及び第2電源ライン841,842に接続され、陰極端子23は、貫通ビザ865及びグランド線路851を介してグランドに接続される。 The decoupling device 80 is mounted on the surface 83a of the circuit board 83 as follows. That is, the pair of anode terminals 21 and 22 of the decoupling device 80 are connected to the through vias 862 and 863, respectively, and the cathode terminal 23 is connected to the through via 865. Thus, the pair of anode terminals 21 and 22 are connected to the first and second power supply lines 841 and 842 through the through vias 862 and 863, respectively, and the cathode terminal 23 is connected through the through visa 865 and the ground line 851. Connected to ground.
 これにより、上述した実装体では、図10に示される様に、第1及び第2電源ライン841,842の間がデカップリングデバイス80の伝送部材3によって導通されると共に、伝送部材3とグランドとの間にコンデンサC11,C12が形成される。 Thereby, in the mounting body described above, as shown in FIG. 10, the first and second power supply lines 841 and 842 are electrically connected by the transmission member 3 of the decoupling device 80, and the transmission member 3 and the ground are connected. Capacitors C11 and C12 are formed between the two.
 尚、上述した実装体は、次のように把握することができる。すなわち、第1電源ライン841は、負荷回路81が接続されており、電源層84を負荷回路81から電源回路82に向かって延びている。第2電源ライン842は、電源回路82が接続されており、電源層84を電源回路82から負荷回路81に向かって延びている。グランド線路851は、グランドに接続されている。そして、デカップリングデバイス80の一対の陽極端子21,22は、負荷回路81と電源回路82との間において、第1電源ライン841の一端と第2電源ライン842の一端に接続されており、陰極端子23は、グランド線路851に接続されている。 The mounting body described above can be grasped as follows. That is, the load circuit 81 is connected to the first power supply line 841, and the power supply layer 84 extends from the load circuit 81 toward the power supply circuit 82. The power supply circuit 82 is connected to the second power supply line 842, and the power supply layer 84 extends from the power supply circuit 82 toward the load circuit 81. The ground line 851 is connected to the ground. The pair of anode terminals 21 and 22 of the decoupling device 80 are connected to one end of the first power supply line 841 and one end of the second power supply line 842 between the load circuit 81 and the power supply circuit 82. The terminal 23 is connected to the ground line 851.
 3.効果
 上述したデカップリングデバイスによれば、一対の陽極端子21,22の間を流れる直流電流は、第1及び第2コンデンサ素子11,12の陽極部102,102内を通ることなく、第1及び第2コンデンサ素子11,12の外部にある伝送部材3を通るため、従来のデカップリングデバイスよりも大きな直流電流を流すことができる。具体的には、従来のデカップリングデバイスでは、2A~6A程度の直流電流しか流すことができないが、本実施の形態に係るデカップリングデバイスでは、10A以上の直流電流を流すことができる。
3. Effect According to the decoupling device described above, the direct current flowing between the pair of anode terminals 21 and 22 does not pass through the anode portions 102 and 102 of the first and second capacitor elements 11 and 12, Since it passes through the transmission member 3 outside the second capacitor elements 11 and 12, it is possible to pass a larger direct current than the conventional decoupling device. Specifically, in the conventional decoupling device, only a direct current of about 2 A to 6 A can be passed, but in the decoupling device according to the present embodiment, a direct current of 10 A or more can be passed.
 よって、上記デカップリングデバイスが実装された実装体(図9参照)において、第1及び第2電源ライン841,842に、電流量の大きな直流電流を流すことが可能になる。すなわち、電源回路82から負荷回路81に電流量の大きな直流電流を供給することが可能になる。よって、負荷回路の動作速度の高速化に対応することができる。 Therefore, in the mounting body (see FIG. 9) on which the decoupling device is mounted, a large direct current can be passed through the first and second power supply lines 841 and 842. That is, it becomes possible to supply a direct current having a large amount of current from the power supply circuit 82 to the load circuit 81. Therefore, it is possible to cope with an increase in the operating speed of the load circuit.
 また、上述したデカップリングデバイスによれば、第1及び第2コンデンサ素子11,12によって、一対の陽極端子21,22から流れ込んだ高周波電流を陰極端子23へ導くことができる。上述した実装体においては、高周波電流は、陰極端子23からグランド層85を通ってグランドへ流れ出る(図9及び図10参照)。よって、第1及び第2電源ライン841,842から高周波電流を除去することができる。すなわち、デカップリングデバイスはノイズフィルタとして機能する。 Further, according to the above-described decoupling device, the first and second capacitor elements 11 and 12 can guide the high-frequency current flowing from the pair of anode terminals 21 and 22 to the cathode terminal 23. In the mounting body described above, the high-frequency current flows from the cathode terminal 23 through the ground layer 85 to the ground (see FIGS. 9 and 10). Therefore, the high frequency current can be removed from the first and second power supply lines 841 and 842. That is, the decoupling device functions as a noise filter.
 そして、本実施の形態に係るデカップリングデバイスでは、上述したように伝送部材3にくびれ部34を設けることによって(図7)、具体的には、第3対向部33にくびれ部34を設けることによって、伝送部材3のインダクタンスが、第1及び第2コンデンサ素子11,12の陽極部102,102の間に存在する部分(第3対向部33を含む部分)において大きくなっている。よって、一対の陽極端子21,22からデカップリングデバイスに流れ込んだ高周波電流は、第1又は第2コンデンサ素子11,12の方へ導かれやすい。これにより、デカップリングデバイスのノイズフィルタとしての機能が高められている。 In the decoupling device according to the present embodiment, by providing the constricted portion 34 in the transmission member 3 as described above (FIG. 7), specifically, the constricted portion 34 is provided in the third facing portion 33. Thus, the inductance of the transmission member 3 is increased in a portion (a portion including the third facing portion 33) existing between the anode portions 102, 102 of the first and second capacitor elements 11, 12. Therefore, the high-frequency current that has flowed into the decoupling device from the pair of anode terminals 21 and 22 is easily guided toward the first or second capacitor element 11 or 12. Thereby, the function as a noise filter of a decoupling device is improved.
 デカップリングデバイスのノイズフィルタとしての機能を高めるという観点からは、上述したデカップリングデバイスにおいて、伝送部材3のうち、第1及び第2コンデンサ素子11,12の陽極部102の間に存在する部分のインダクタンス(図8に示されるコイルL2のインダクタンス)が、第1及び第2コンデンサ素子の等価直列インダクタンス(図8に示されるコイルL11,L12のインダクタンス)よりも大きくなるように設定することが好ましい。 From the viewpoint of improving the function of the decoupling device as a noise filter, in the above-described decoupling device, the portion of the transmission member 3 that exists between the anode portions 102 of the first and second capacitor elements 11 and 12 is included. It is preferable to set the inductance (inductance of the coil L2 shown in FIG. 8) to be larger than the equivalent series inductance of the first and second capacitor elements (inductance of the coils L11 and L12 shown in FIG. 8).
 これにより、一対の陽極端子21,22からデカップリングデバイスに流れ込んだ高周波電流は、伝送部材3(コイルL2)よりもインダクタンスが小さい第1又は第2コンデンサ素子11,12の方へ導かれやすくなる。 As a result, the high-frequency current flowing into the decoupling device from the pair of anode terminals 21 and 22 is easily guided toward the first or second capacitor element 11 or 12 having an inductance smaller than that of the transmission member 3 (coil L2). .
 また、本実施の形態に係るデカップリングデバイスでは、等価直列抵抗(ESR)が小さい固体電解コンデンサを、第1及び第2コンデンサ素子11,12として用いることによって、デカップリングデバイスのノイズフィルタとしての機能を高めている。 Further, in the decoupling device according to the present embodiment, a solid electrolytic capacitor having a small equivalent series resistance (ESR) is used as the first and second capacitor elements 11 and 12, thereby functioning as a noise filter of the decoupling device. Is increasing.
 更には、本実施の形態に係るデカップリングデバイスでは、第1及び第2コンデンサ素子11,12の陽極部102,102は、伝送部材3のうち、一対の陽極端子21,22の間に存在する部分に接続されている(図1)。よって、一対の陽極端子21,22からデカップリングデバイスに流れ込んだ高周波電流は、第1又は第2コンデンサ素子11,12の方へ導かれやすくなっている。 Furthermore, in the decoupling device according to the present embodiment, the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 exist between the pair of anode terminals 21 and 22 in the transmission member 3. Connected to the part (FIG. 1). Therefore, the high-frequency current flowing into the decoupling device from the pair of anode terminals 21 and 22 is easily guided toward the first or second capacitor element 11 or 12.
 更に、上述したデカップリングデバイスによれば、伝送部材3が、樹脂層4の表面に露出した状態で配備されているので、伝送部材3で発生した熱を、効率良く放出することができる。これにより、伝送部材3の発熱が原因となってデカップリングデバイスが破壊されることを防止している。 Furthermore, according to the decoupling device described above, since the transmission member 3 is disposed in a state exposed on the surface of the resin layer 4, the heat generated in the transmission member 3 can be efficiently released. This prevents the decoupling device from being destroyed due to the heat generated by the transmission member 3.
 <効果の検証>
 本願発明者は、デカップリングデバイスのノイズフィルタとしての機能が高まるという効果について、シミュレーションによって検証を行った。図11は、シミュレーションの結果を示しており、高周波電流の伝送特性が、周波数とSパラメータとの関係によって表わされている。
<Verification of effects>
This inventor verified by simulation about the effect that the function as a noise filter of a decoupling device increases. FIG. 11 shows the result of the simulation, and the high-frequency current transmission characteristics are represented by the relationship between the frequency and the S parameter.
 具体的に上記シミュレーションは、本実施の形態に係るデカップリングデバイスと、図12及び図13に示される様に該デカップリングデバイスにおいてくびれ部34がない形態と、従来の形態とに対して行われた。本実施の形態に係るデカップリングデバイスでは、第1及び第2コンデンサ素子11,12として、静電容量が470μFである固体電解コンデンサを用いた。また、伝送部材3として厚さT(図4参照)が0.5mmである銅板を用い、第3対向部33の長さL及び幅W(図4参照)をそれぞれ8mm及び4mmとし、くびれ部の長さY1及び幅W1(図4参照)を6mm及び1mmとした。そして、陰極端子23をグランドに接続した状態で、第1陽極端子21から第2陽極端子22へ流れる高周波電流のSパラメータを、1×10+4Hzから1×10+10Hzの範囲の周波数について求めた。本実施の形態に係るデカップリングデバイスについてのシミュレーションの結果は、図11においてグラフG0によって示されている。 Specifically, the above simulation is performed for the decoupling device according to the present embodiment, the configuration without the constricted portion 34 in the decoupling device as shown in FIGS. 12 and 13, and the conventional configuration. It was. In the decoupling device according to the present embodiment, solid electrolytic capacitors having a capacitance of 470 μF are used as the first and second capacitor elements 11 and 12. Further, a copper plate having a thickness T (see FIG. 4) of 0.5 mm is used as the transmission member 3, and the length L and width W (see FIG. 4) of the third facing portion 33 are 8 mm and 4 mm, respectively, and the constricted portion The length Y1 and the width W1 (see FIG. 4) were 6 mm and 1 mm. Then, the S parameter of the high-frequency current flowing from the first anode terminal 21 to the second anode terminal 22 with the cathode terminal 23 connected to the ground is obtained for a frequency in the range of 1 × 10 +4 Hz to 1 × 10 +10 Hz. It was. The result of the simulation for the decoupling device according to the present embodiment is shown by a graph G0 in FIG.
 他方、上記デカップリングデバイスにおいてくびれ部34がない形態では、くびれ部34がないという条件以外の条件(静電容量等の条件)については、上述したデカップリングデバイスの条件と同じにした。くびれ部34がない形態についてのシミュレーションの結果は、図11においてグラフG1によって示されている。 On the other hand, in the above-described form of the decoupling device without the constricted portion 34, the conditions other than the condition that the constricted portion 34 is not present (conditions such as capacitance) are the same as the conditions of the decoupling device described above. The result of the simulation for the form without the constricted portion 34 is shown by the graph G1 in FIG.
 また、従来の形態では、図14に示されるように、2端子構造を有する2つのコンデンサC21,C22を電源ライン7とグランドとの間に接続し、2端子構造のコンデンサC21,C22として、静電容量が470μFである固体電解コンデンサを用いた。そして、電源ライン7の一端7aから他端7bへ流れる高周波電流のSパラメータを、1×10+4Hzから1×10+10Hzの範囲の周波数について求めた。従来の形態についてのシミュレーションの結果は、図11においてグラフG2によって示されている。 Further, in the conventional form, as shown in FIG. 14, two capacitors C21 and C22 having a two-terminal structure are connected between the power supply line 7 and the ground, and capacitors C21 and C22 having a two-terminal structure are formed as static. A solid electrolytic capacitor having a capacitance of 470 μF was used. Then, the S parameter of the high-frequency current flowing from the one end 7a to the other end 7b of the power supply line 7 was obtained for frequencies in the range of 1 × 10 +4 Hz to 1 × 10 +10 Hz. The result of the simulation for the conventional configuration is shown by a graph G2 in FIG.
 図11に示される様に、従来の形態(グラフG2)では、周波数の増加に伴って、Sパラメータが単調に増加する。これに対し、本実施の形態に係るデカップリングデバイス(グラフG0)では、1×10+4Hzから1.3×10+5Hzの範囲の周波数においては、Sパラメータは従来の形態と同程度であるが、周波数が1.3×10+5Hzから増加すると、Sパラメータは徐々に小さくなり、1.2×10+6Hz近傍の周波数において極小となる。そして、周波数が更に増加するとSパラメータは単調に増加するが、その値は従来の形態のSパラメータよりも小さいままである。すなわち、本実施の形態に係るデカップリングデバイスによれば、1.3×10+5Hzよりも大きな周波数において、従来の形態よりも高周波電流が除去されやすくなっている。 As shown in FIG. 11, in the conventional form (graph G2), the S parameter increases monotonously as the frequency increases. On the other hand, in the decoupling device (graph G0) according to the present embodiment, the S parameter is approximately the same as that in the conventional mode in the frequency range of 1 × 10 +4 Hz to 1.3 × 10 +5 Hz. However, as the frequency increases from 1.3 × 10 +5 Hz, the S parameter gradually decreases and becomes a minimum at a frequency near 1.2 × 10 +6 Hz. As the frequency further increases, the S parameter increases monotonically, but its value remains smaller than that of the conventional form. That is, according to the decoupling device according to the present embodiment, the high-frequency current is more easily removed at a frequency higher than 1.3 × 10 +5 Hz than the conventional configuration.
 これにより、本実施の形態に係るデカップリングデバイスでは、ノイズフィルタとしての機能が従来の形態よりも高まるということが検証された。 Thus, it was verified that the decoupling device according to the present embodiment has a function as a noise filter that is higher than that of the conventional configuration.
 また図11に示される様に、くびれ部34がない形態(グラフG1)では、本実施の形態に係るデカップリングデバイスと同様に、1.3×10+5Hzよりも大きな周波数において、従来の形態よりもSパラメータが小さく、高周波電流が除去されやすくなっている。しかし、図11から、本実施の形態に係るデカップリングデバイス(グラフG0)の方が、くびれ部34がない形態(グラフG1)よりもSパラメータが小さいことがわかる。 Further, as shown in FIG. 11, in the configuration without the constricted portion 34 (graph G1), the conventional configuration is used at a frequency larger than 1.3 × 10 +5 Hz, similarly to the decoupling device according to the present embodiment. The S parameter is smaller than that, and the high-frequency current is easily removed. However, FIG. 11 shows that the S parameter is smaller in the decoupling device (graph G0) according to the present embodiment than in the configuration without the constricted portion 34 (graph G1).
 これにより、伝送部材3にくびれ部34を設けることによって、デカップリングデバイスのノイズフィルタとしての機能が高まりやすくなっていることがわかる。 Thus, it can be seen that by providing the constricted portion 34 in the transmission member 3, the function as a noise filter of the decoupling device is easily enhanced.
 4.変形例
 <変形例1>
 上述したデカップリングデバイス(図7参照)では、くびれ部34は、第1及び第2コンデンサ素子11,12の上面に沿って、均一な幅W1で真っ直ぐに延びていたが、くびれ部34は、図15及び図16に示される様に、両端34a,34bから中央に行くに従って幅W1が徐々に小さくなるような形状を呈していてもよい。
4). Modification <Modification 1>
In the decoupling device described above (see FIG. 7), the constricted portion 34 extends straight along the upper surfaces of the first and second capacitor elements 11 and 12 with a uniform width W1, but the constricted portion 34 is As shown in FIGS. 15 and 16, the width W <b> 1 may be gradually reduced from both ends 34 a and 34 b toward the center.
 本変形例に係るデカップリングデバイスにおいても、第1及び第2コンデンサ素子11,12の陽極部102,102の間に存在する部分において、伝送部材3のインダクタンスが大きくなる。 Also in the decoupling device according to this modification, the inductance of the transmission member 3 is increased in the portion existing between the anode portions 102 and 102 of the first and second capacitor elements 11 and 12.
 尚、くびれ部34の形状は、図7や図15に示される形状に限られるものではない。すなわち、伝送部材3の領域3a(図4又は図16参照)において、くびれ部34の幅W1が伝送部材3の他の領域3bの幅よりも狭くなる形状であれば、該形状をくびれ部34の形状として採用することができる。 It should be noted that the shape of the constricted portion 34 is not limited to the shape shown in FIG. That is, in the region 3a of the transmission member 3 (see FIG. 4 or 16), if the width W1 of the constricted portion 34 is narrower than the width of the other region 3b of the transmission member 3, this shape is the constricted portion 34. It can be adopted as a shape.
 <変形例2>
 上述したデカップリングデバイスにおいて、第1及び第2コンデンサ素子11,12の配置を次のように変更してもよい。すなわち、図17に示される様に、陽極体101,101からの陽極部102,102の突出方向91,92は変えずに、第1及び第2コンデンサ素子11,12の位置だけを入れ替えてもよい(第1態様)。
<Modification 2>
In the decoupling device described above, the arrangement of the first and second capacitor elements 11 and 12 may be changed as follows. That is, as shown in FIG. 17, the positions of the first and second capacitor elements 11 and 12 can be changed without changing the protruding directions 91 and 92 of the anode portions 102 and 102 from the anode bodies 101 and 101. Good (first aspect).
 また、第1及び第2コンデンサ素子11,12は、図18及び図19に示される様に、陽極部102,102の突出方向91,92を互いに反対方向に向けると共に、突出方向91に沿って並んでいてもよい(第2態様)。 Further, as shown in FIGS. 18 and 19, the first and second capacitor elements 11, 12 have the protruding directions 91, 92 of the anode portions 102, 102 facing in opposite directions, and along the protruding direction 91. You may line up (2nd aspect).
 上記配置によれば、伝送部材3のうち、第1及び第2コンデンサ素子11,12の陽極
部102,102の間に存在する部分の長さが大きくなり、以って該部分のインダクタンス(図8に示されるコイルL2のインダクタンス)が大きくなる。よって、一対の陽極端子21,22からデカップリングデバイスに流れ込んだ高周波電流は、第1又は第2コンデンサ素子11,12へ流れやすくなる。すなわち、デカップリングデバイスのノイズフィルタとしての機能が高まる。
According to the above arrangement, the length of the portion of the transmission member 3 existing between the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 is increased, so that the inductance (see FIG. The inductance of the coil L2 shown in FIG. Therefore, the high-frequency current that has flowed into the decoupling device from the pair of anode terminals 21 and 22 easily flows to the first or second capacitor element 11 or 12. That is, the function of the decoupling device as a noise filter is enhanced.
 その他、第1及び第2コンデンサ素子11,12は、図20及び図21に示される様に、陽極部102,102の突出方向91,92を同じ方向に向けていてもよい(第3態様)。かかる態様では、第1及び第2コンデンサ素子11,12は、陽極部102,102が突設されている領域11a,12a(図21参照)が同一平面内に位置するように配置されており、伝送部材3は両領域11a,12aに沿って拡がっている。そして、くびれ部34は、第1及び第2コンデンサ素子11,12の陽極部102,102の間を延びる領域3a、すなわち切り込み31a,32aの間の位置に形成されており、伝送部材3の他の領域3bよりも幅が狭くなっている。 In addition, as shown in FIGS. 20 and 21, the first and second capacitor elements 11 and 12 may have the protruding directions 91 and 92 of the anode portions 102 and 102 directed in the same direction (third mode). . In such an aspect, the first and second capacitor elements 11 and 12 are arranged such that the regions 11a and 12a (see FIG. 21) where the anode portions 102 and 102 protrude are positioned in the same plane, The transmission member 3 extends along both the regions 11a and 12a. The constricted portion 34 is formed in a region 3 a extending between the anode portions 102, 102 of the first and second capacitor elements 11, 12, that is, a position between the cuts 31 a, 32 a. The width is narrower than the region 3b.
 <変形例3>
 上述したデカップリングデバイスでは、一対の陽極端子21,22と伝送部材3とを別の部材としたが、図22に示される様に、一対の陽極端子21,22と伝送部材3とを一体に形成してもよい。例えば、コの字状に成形した伝送部材の両端部を折り曲げることによって、伝送部材3と一体に形成された一対の陽極端子21,22を得ることができる。また、伝送部材3の下端部311,321(図4)を陽極端子21,22として用いてもよい。
<Modification 3>
In the decoupling device described above, the pair of anode terminals 21 and 22 and the transmission member 3 are separate members. However, as shown in FIG. 22, the pair of anode terminals 21 and 22 and the transmission member 3 are integrally formed. It may be formed. For example, a pair of anode terminals 21 and 22 formed integrally with the transmission member 3 can be obtained by bending both ends of the transmission member formed in a U-shape. Further, the lower end portions 311 and 321 (FIG. 4) of the transmission member 3 may be used as the anode terminals 21 and 22.
 尚、図18及び図20に示されるデカップリングデバイスにおいても、一対の陽極端子21,22と伝送部材3とが一体に形成されている。 In addition, also in the decoupling device shown by FIG.18 and FIG.20, a pair of anode terminals 21 and 22 and the transmission member 3 are integrally formed.
 <変形例4>
 上述したデカップリングデバイスでは、伝送部材3は帯状の金属板によって構成されていたが、図23に示されるように、伝送部材3はつづら折状の金属板によって構成されてもよい。
<Modification 4>
In the decoupling device described above, the transmission member 3 is configured by a strip-shaped metal plate. However, as illustrated in FIG. 23, the transmission member 3 may be configured by a zigzag metal plate.
 本変形例に係るデカップリングデバイスによれば、第1及び第2コンデンサ素子11,12の陽極部102,102の間に存在する部分の長さが大きくなり、以って該部分のインダクタンス(図8に示されるコイルL2のインダクタンス)が大きくなる。具体的には、図1に示されるデカップリングデバイスでは8mm程度であった第3対向部33の長さを、本変形例に係るデカップリングデバイスでは、10~15mm程度まで大きくすることができる。 According to the decoupling device according to this modification, the length of the portion existing between the anode portions 102 and 102 of the first and second capacitor elements 11 and 12 is increased, and thus the inductance (see FIG. The inductance of the coil L2 shown in FIG. Specifically, the length of the third facing portion 33 that was about 8 mm in the decoupling device shown in FIG. 1 can be increased to about 10 to 15 mm in the decoupling device according to this modification.
 よって、一対の陽極端子21,22からデカップリングデバイスに流れ込んだ高周波電流は、第1又は第2コンデンサ素子11,12へ流れやすくなり、以ってデカップリングデバイスのノイズフィルタとしての機能が高まる。 Therefore, the high-frequency current flowing into the decoupling device from the pair of anode terminals 21 and 22 is likely to flow to the first or second capacitor elements 11 and 12, thereby enhancing the function of the decoupling device as a noise filter.
 尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、回路基板に配備されている電源ラインに応じて、第1及び第2コンデンサ素子11,12の配置を変更することが可能である。第1及び第2コンデンサ素子11,12には、固体電解コンデンサ以外の種々のコンデンサを用いてもよい。また、第1及び第2コンデンサ素子11,12の静電容量は、互いに異なっていてもよい。更には、上述したデカップリングデバイスは、2つのコンデンサ素子(第1及び第2コンデンサ素子11,12)によって構成されていたが、該デカップリングデバイスを3つ以上のコンデンサ素子で構成してもよい。 The configuration of each part of the present invention is not limited to the above-described embodiment, and various modifications can be made within the technical scope described in the claims. For example, the arrangement of the first and second capacitor elements 11 and 12 can be changed according to the power supply line provided on the circuit board. Various capacitors other than solid electrolytic capacitors may be used for the first and second capacitor elements 11 and 12. Further, the capacitances of the first and second capacitor elements 11 and 12 may be different from each other. Furthermore, although the decoupling device described above is configured by two capacitor elements (first and second capacitor elements 11 and 12), the decoupling device may be configured by three or more capacitor elements. .
本発明の実施の形態に係るデカップリングデバイスを示した斜視図である。It is the perspective view which showed the decoupling device which concerns on embodiment of this invention. 伝送部材の図示が省略されたデカップリングデバイスの斜視図である。It is a perspective view of a decoupling device with illustration of a transmission member omitted. デカップリングデバイスを上下逆転させて示した斜視図である。It is the perspective view which turned upside down and showed the decoupling device. デカップリングデバイスの分解斜視図である。It is a disassembled perspective view of a decoupling device. 図4に示されるV-V線に沿う固体電解コンデンサの断面図である。FIG. 5 is a cross-sectional view of the solid electrolytic capacitor along the line VV shown in FIG. 4. 図1に示されるVI-VI線に沿うデカップリングデバイスの断面図である。FIG. 6 is a cross-sectional view of the decoupling device taken along line VI-VI shown in FIG. 1. 伝送部材のくびれ部を説明するためのデカップリングデバイスの斜視図である。It is a perspective view of a decoupling device for explaining a constriction part of a transmission member. デカップリングデバイスの等価回路を示した回路図である。It is the circuit diagram which showed the equivalent circuit of the decoupling device. デカップリングデバイスが実装された実装体を示した断面図である。It is sectional drawing which showed the mounting body with which the decoupling device was mounted. デカップリングデバイスが実装された実装体を示した回路図である。It is the circuit diagram which showed the mounting body with which the decoupling device was mounted. 高周波電流の伝送特性をグラフによって示した図である。It is the figure which showed the transmission characteristic of the high frequency current with the graph. くびれ部がないデカップリングデバイスを示した斜視図である。It is the perspective view which showed the decoupling device without a constriction part. くびれ部がないデカップリングデバイスの分解斜視図である。It is a disassembled perspective view of the decoupling device without a constriction part. 従来の形態を示した回路図である。It is the circuit diagram which showed the conventional form. 変形例1に係るデカップリングデバイスを示した斜視図である。FIG. 10 is a perspective view showing a decoupling device according to Modification 1. 変形例1に係るデカップリングデバイスの分解斜視図である。FIG. 10 is an exploded perspective view of a decoupling device according to Modification 1. 変形例2の第1態様に係るデカップリングデバイスを示した斜視図である。10 is a perspective view showing a decoupling device according to a first aspect of modification 2. FIG. 変形例2の第2態様に係るデカップリングデバイスを示した斜視図である。10 is a perspective view showing a decoupling device according to a second aspect of Modification 2. FIG. 第2態様に係るデカップリングデバイスの分解斜視図である。It is a disassembled perspective view of the decoupling device which concerns on a 2nd aspect. 変形例2の第3態様に係るデカップリングデバイスを示した斜視図である。FIG. 10 is a perspective view showing a decoupling device according to a third aspect of modification 2. 第3態様に係るデカップリングデバイスの分解斜視図である。It is a disassembled perspective view of the decoupling device which concerns on a 3rd aspect. 変形例3に係るデカップリングデバイスを示した斜視図である。FIG. 10 is a perspective view showing a decoupling device according to Modification 3. 変形例4に係るデカップリングデバイスを示した斜視図である。FIG. 10 is a perspective view showing a decoupling device according to Modification 4.
 11 第1コンデンサ素子
 11a 陽極部が突設されている領域
 12 第2コンデンサ素子
 12a 陽極部が突設されている領域
 101 陽極体
 102 陽極部
 103 誘電体層
 104 電解質層
 105 陰極部
 21,22 一対の陽極端子
 23 陰極端子
 3 伝送部材
 31 第1対向部
 32 第2対向部
 33 第3対向部
 34 くびれ部
 W1 くびれ部の幅
 4 樹脂層
 80 デカップリングデバイス
 81 負荷回路
 82 電源回路
 83 回路基板
 841 第1電源ライン
 842 第2電源ライン
 851 グランド線路
 91,92 陽極部の突出方向
 93 突出方向に垂直な方向
DESCRIPTION OF SYMBOLS 11 1st capacitor | condenser element 11a Area | region where the anode part protrudes 12 Second capacitor element 12a Area | region where the anode part protrudes 101 Anode body 102 Anode part 103 Dielectric layer 104 Electrolyte layer 105 Cathode part 21,22 Pair Anode terminal 23 cathode terminal 3 transmission member 31 first facing portion 32 second facing portion 33 third facing portion 34 constricted portion W1 width of constricted portion 4 resin layer 80 decoupling device 81 load circuit 82 power supply circuit 83 circuit board 841 first 1 power supply line 842 2nd power supply line 851 Ground line 91, 92 Projection direction of anode part 93 Direction perpendicular to projection direction

Claims (12)

  1.  陽極部と、陰極部と、該陽極部と陰極部の間に介在する誘電体層とから構成される第1コンデンサ素子と、
     前記第1コンデンサ素子の陽極部とは電気的に絶縁された陽極部と、陰極部と、該陽極部と陰極部の間に介在する誘電体層とから構成される第2コンデンサ素子と、
     一対の陽極端子と、
     前記第1及び第2コンデンサ素子の陰極部に接続された陰極端子と、
     前記第1及び第2コンデンサ素子の外部において前記一対の陽極端子の間を導通させると共に、該第1及び第2コンデンサ素子の陽極部が接続された伝送部材と
    を具え、
     前記伝送部材は、板状であって、前記第1及び第2コンデンサ素子の表面に沿って配置されており、前記第1及び第2コンデンサ素子の陽極部の間を延びる領域に、該伝送部材の他の領域よりも幅が狭いくびれ部を有している、デカップリングデバイス。
    A first capacitor element comprising an anode part, a cathode part, and a dielectric layer interposed between the anode part and the cathode part;
    A second capacitor element comprising an anode part electrically insulated from the anode part of the first capacitor element, a cathode part, and a dielectric layer interposed between the anode part and the cathode part;
    A pair of anode terminals;
    A cathode terminal connected to the cathode portions of the first and second capacitor elements;
    A conduction member between the pair of anode terminals outside the first and second capacitor elements, and a transmission member connected to the anode portions of the first and second capacitor elements;
    The transmission member is plate-shaped and is disposed along the surfaces of the first and second capacitor elements, and the transmission member is disposed in a region extending between the anode portions of the first and second capacitor elements. A decoupling device having a constriction narrower than other regions.
  2.  前記伝送部材のうち、前記第1及び第2コンデンサ素子の陽極部の間に存在する部分のインダクタンスが、前記第1及び第2コンデンサ素子のそれぞれの等価直列インダクタンスよりも大きい、請求項1に記載のデカップリングデバイス。 The inductance of the part which exists between the anode parts of the said 1st and 2nd capacitor | condenser element among the said transmission members is larger than each equivalent series inductance of the said 1st and 2nd capacitor | condenser element. Decoupling device.
  3.  前記第1及び第2コンデンサ素子の陽極部は、前記伝送部材のうち、前記一対の陽極端子の間に存在する部分に接続されている、請求項1又は請求項2に記載のデカップリングデバイス。 The decoupling device according to claim 1 or 2, wherein anode portions of the first and second capacitor elements are connected to a portion of the transmission member that exists between the pair of anode terminals.
  4.  前記第1及び第2コンデンサ素子はいずれも、前記陽極部が突設された陽極体と、該陽極体の表面を覆って前記誘電体層を構成する酸化被膜と、該酸化被膜の表面に形成される電解質層と、該電解質層の表面に形成されて前記陰極部を構成する陰極層とを具えている固体電解コンデンサであり、
     前記第1及び第2コンデンサ素子の陽極部は、前記酸化被膜によって互いに電気的に絶縁されている、請求項1乃至請求項3に記載のデカップリングデバイス。
    Each of the first and second capacitor elements is formed on the anode body in which the anode portion projects, an oxide film that covers the surface of the anode body and forms the dielectric layer, and the surface of the oxide film A solid electrolytic capacitor comprising: an electrolyte layer to be formed; and a cathode layer that is formed on a surface of the electrolyte layer and constitutes the cathode portion;
    4. The decoupling device according to claim 1, wherein anode portions of the first and second capacitor elements are electrically insulated from each other by the oxide film. 5.
  5.  前記伝送部材は、前記第1コンデンサ素子の陽極部に接触すると共に、前記第1コンデンサ素子の表面のうち該陽極部が突設されている領域に対向する第1対向部と、前記第2コンデンサ素子の陽極部に接触すると共に、前記第2コンデンサの表面のうち該陽極部が突設されている領域に対向する第2対向部と、前記第1及び第2対向部の間を延びて該第1及び第2対向部に連結すると共に、前記第1又は第2コンデンサ素子の表面の少なくとも一部に対向する第3対向部とによって構成され、前記くびれ部は前記第3対向部に形成されている、請求項4に記載のデカップリングデバイス。 The transmission member is in contact with the anode portion of the first capacitor element, and has a first facing portion that faces a region of the surface of the first capacitor element where the anode portion protrudes, and the second capacitor A contact between the anode portion of the element, a second facing portion facing a region where the anode portion projects from the surface of the second capacitor, and extending between the first and second facing portions. The first and second opposing portions are connected to each other and the third opposing portion is opposed to at least a part of the surface of the first or second capacitor element. The constricted portion is formed in the third opposing portion. The decoupling device according to claim 4.
  6.  前記第1及び第2コンデンサ素子は、前記陽極体からの陽極部の突出方向を互いに反対方向に向けると共に、該突出方向に沿って並んでいる、請求項4又は請求項5に記載のデカップリングデバイス。 6. The decoupling according to claim 4, wherein the first capacitor element and the second capacitor element have their anode portions protruding from the anode body in directions opposite to each other, and are arranged along the protruding direction. device.
  7.  前記第1及び第2コンデンサ素子は、前記陽極体からの陽極部の突出方向を互いに反対方向に向けると共に、該突出方向に垂直な方向に沿って並んでいる、請求項4又は請求項5に記載のデカップリングデバイス。 The said 1st and 2nd capacitor | condenser element orient | assigns the protrusion direction of the anode part from the said anode body to a mutually opposing direction, and is located in a line with the direction perpendicular | vertical to this protrusion direction. The decoupling device described.
  8.  前記第1及び第2コンデンサ素子は、前記陽極体からの陽極部の突出方向を同じ方向に向けている、請求項4又は請求項5に記載のデカップリングデバイス。 The decoupling device according to claim 4 or 5, wherein the first and second capacitor elements have the anode portion protruding from the anode body in the same direction.
  9.  前記第1及び第2コンデンサ素子を被覆する樹脂層を更に具え、前記第1及び第2コン
    デンサ素子の陽極部は、該樹脂層によって互いに電気的に絶縁されている、請求項1乃至請求項8のいずれか1つに記載のデカップリングデバイス。
    9. A resin layer covering the first and second capacitor elements is further provided, and anode portions of the first and second capacitor elements are electrically insulated from each other by the resin layer. The decoupling device according to any one of the above.
  10.  前記第1及び第2コンデンサ素子を被覆する樹脂層を更に具え、前記伝送部材は、前記樹脂層の表面に露出している、請求項1乃至請求項9のいずれか1つに記載のデカップリングデバイス。 The decoupling according to any one of claims 1 to 9, further comprising a resin layer covering the first and second capacitor elements, wherein the transmission member is exposed on a surface of the resin layer. device.
  11.  前記陰極端子は、前記第1及び第2コンデンサ素子の陰極部に接続された単一の端子である、請求項1乃至請求項10のいずれか1つに記載のデカップリングデバイス。 The decoupling device according to any one of claims 1 to 10, wherein the cathode terminal is a single terminal connected to cathode portions of the first and second capacitor elements.
  12.  請求項1乃至請求項11のいずれか1つに記載のデカップリングデバイスと、
     負荷回路と、
     前記負荷回路に直流電流を供給する電源回路と、
     第1電源ライン、第2電源ライン、及びグランド線路が形成された回路基板と
    を具え、デカップリングデバイス、負荷回路、及び電源回路を回路基板上に実装してなる実装体であって、
     前記第1電源ラインは、前記負荷回路が接続され、負荷回路から電源回路に向かって延びており、前記第2電源ラインは、前記電源回路が接続され、電源回路から負荷回路に向かって延びており、前記グランド線路は、グランドに接続されており、
     前記デカップリングデバイスの一対の陽極端子は、前記負荷回路と電源回路との間において、前記第1電源ラインの一端と前記第2電源ラインの一端に接続されており、陰極端子は、前記グランド線路に接続されている、実装体。
    A decoupling device according to any one of claims 1 to 11,
    A load circuit;
    A power supply circuit for supplying a direct current to the load circuit;
    A mounting body comprising a circuit board on which a first power line, a second power line, and a ground line are formed, wherein a decoupling device, a load circuit, and a power circuit are mounted on the circuit board,
    The first power supply line is connected to the load circuit and extends from the load circuit toward the power supply circuit, and the second power supply line is connected to the power supply circuit and extends from the power supply circuit toward the load circuit. The ground line is connected to the ground,
    The pair of anode terminals of the decoupling device is connected to one end of the first power supply line and one end of the second power supply line between the load circuit and the power supply circuit, and the cathode terminal is connected to the ground line An implementation that is connected to
PCT/JP2009/059843 2008-09-04 2009-05-29 Decoupling device and assembly WO2010026808A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010527726A JPWO2010026808A1 (en) 2008-09-04 2009-05-29 Decoupling device and mounting body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-227363 2008-09-04
JP2008227363 2008-09-04

Publications (1)

Publication Number Publication Date
WO2010026808A1 true WO2010026808A1 (en) 2010-03-11

Family

ID=41796982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059843 WO2010026808A1 (en) 2008-09-04 2009-05-29 Decoupling device and assembly

Country Status (2)

Country Link
JP (1) JPWO2010026808A1 (en)
WO (1) WO2010026808A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040353A1 (en) * 2009-09-30 2011-04-07 三洋電機株式会社 Electrolytic capacitor
US20120162852A1 (en) * 2010-12-28 2012-06-28 Industrial Technology Research Institute Decoupling device
US8922976B2 (en) 2011-11-10 2014-12-30 Industrial Technology Research Institute Decoupling device and fabricating method thereof
JP2021057589A (en) * 2019-09-24 2021-04-08 株式会社村田製作所 Electronic component module and using method of electronic component module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120088A (en) * 1992-09-30 1994-04-28 Nichicon Corp Chip-type solid-state electrolytic capacitor
JPH11288845A (en) * 1998-04-03 1999-10-19 Matsuo Electric Co Ltd Solid electrolytic capacitor
WO2003107365A1 (en) * 2002-06-18 2003-12-24 ティーディーケイ株式会社 Solid electrolytic capacitor and production method therefor
JP2004080773A (en) * 2002-07-31 2004-03-11 Nec Tokin Corp Transmission line noise filter
JP2005191504A (en) * 2003-12-26 2005-07-14 Rohm Co Ltd Solid electrolytic capacitor and electric circuit
WO2008050739A1 (en) * 2006-10-25 2008-05-02 Panasonic Corporation Printed board and filter using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120088A (en) * 1992-09-30 1994-04-28 Nichicon Corp Chip-type solid-state electrolytic capacitor
JPH11288845A (en) * 1998-04-03 1999-10-19 Matsuo Electric Co Ltd Solid electrolytic capacitor
WO2003107365A1 (en) * 2002-06-18 2003-12-24 ティーディーケイ株式会社 Solid electrolytic capacitor and production method therefor
JP2004080773A (en) * 2002-07-31 2004-03-11 Nec Tokin Corp Transmission line noise filter
JP2005191504A (en) * 2003-12-26 2005-07-14 Rohm Co Ltd Solid electrolytic capacitor and electric circuit
WO2008050739A1 (en) * 2006-10-25 2008-05-02 Panasonic Corporation Printed board and filter using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040353A1 (en) * 2009-09-30 2011-04-07 三洋電機株式会社 Electrolytic capacitor
US20120162852A1 (en) * 2010-12-28 2012-06-28 Industrial Technology Research Institute Decoupling device
US8773844B2 (en) * 2010-12-28 2014-07-08 Industrial Technology Research Institute Solid electrolytic capacitor
US9058933B2 (en) 2010-12-28 2015-06-16 Industrial Technology Research Institute Decoupling device including a plurality of capacitor unit arrayed in a same plane
US8922976B2 (en) 2011-11-10 2014-12-30 Industrial Technology Research Institute Decoupling device and fabricating method thereof
TWI511172B (en) * 2011-11-10 2015-12-01 財團法人工業技術研究院 Decoupling device and fabricating method thereof
JP2021057589A (en) * 2019-09-24 2021-04-08 株式会社村田製作所 Electronic component module and using method of electronic component module
JP7318616B2 (en) 2019-09-24 2023-08-01 株式会社村田製作所 Electronic component module and how to use the electronic component module

Also Published As

Publication number Publication date
JPWO2010026808A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP4802585B2 (en) Solid electrolytic capacitor
JP2007116064A (en) Laminated solid electrolytic capacitor
JP4688675B2 (en) Multilayer solid electrolytic capacitor
JP5516593B2 (en) Electrolytic capacitor
JP4830875B2 (en) Solid electrolytic capacitor
JP2005223113A (en) Solid electrolytic capacitor
JP6406440B2 (en) Power storage device
WO2010026808A1 (en) Decoupling device and assembly
JP6451835B2 (en) Power storage device
WO2011040352A1 (en) Electrolytic capacitor
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
JP5040255B2 (en) Chip type solid electrolytic capacitor
WO2010023990A1 (en) Decoupling device and mounting body
JP2010056411A (en) Decoupling device and package
JP2010027900A (en) Stacked solid electrolytic capacitor
JP2006190925A (en) Solid electrolytic capacitor and its manufacturing method
JP2008021774A (en) Chip-type solid electrolytic capacitor, and manufacturing method thereof
WO2010026807A1 (en) Packaging structure
JP5040230B2 (en) Chip type solid electrolytic capacitor
JP2008177200A (en) Solid electrolytic capacitor
JP5294311B2 (en) Solid electrolytic capacitor
JP2008258193A (en) Solid electrolytic capacitor
JP2007180391A (en) Electrolytic capacitor
JP5371865B2 (en) 3-terminal capacitor
JP4287680B2 (en) Capacitor element, solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811337

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527726

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811337

Country of ref document: EP

Kind code of ref document: A1