WO2010026738A2 - 酵素活性をコンピュータを用いたシミュレーションにより予測する方法 - Google Patents

酵素活性をコンピュータを用いたシミュレーションにより予測する方法 Download PDF

Info

Publication number
WO2010026738A2
WO2010026738A2 PCT/JP2009/004286 JP2009004286W WO2010026738A2 WO 2010026738 A2 WO2010026738 A2 WO 2010026738A2 JP 2009004286 W JP2009004286 W JP 2009004286W WO 2010026738 A2 WO2010026738 A2 WO 2010026738A2
Authority
WO
WIPO (PCT)
Prior art keywords
protein
substrate
docking
simulation
enzyme activity
Prior art date
Application number
PCT/JP2009/004286
Other languages
English (en)
French (fr)
Other versions
WO2010026738A3 (ja
Inventor
高岡裕
三浦研爾
西尾久英
Original Assignee
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学 filed Critical 国立大学法人神戸大学
Priority to JP2010527692A priority Critical patent/JP5447383B2/ja
Publication of WO2010026738A2 publication Critical patent/WO2010026738A2/ja
Publication of WO2010026738A3 publication Critical patent/WO2010026738A3/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment

Definitions

  • the present invention relates to a method for predicting the enzyme activity of a specific protein A using a mathematical formula by simulation using a computer.
  • the present invention also relates to a recording medium and apparatus capable of executing such an enzyme activity prediction method. Further, the present invention relates to a method for judging enzyme compatibility, a method for judging the suitability of a substrate for an enzyme, and a method for evaluating an administration interval of a substrate to a living body using a result predicted using the enzyme activity prediction method, the recording medium or the apparatus.
  • Non-patent Document 2 A plurality of software groups related to these simulations have been developed and are generally available (Non-Patent Documents 2 to 6). As a result, it has become possible to easily use protein structure simulation for research.
  • Proteins include enzymes that catalyze various chemical reactions in vivo. As an enzyme in a living body, there is UDP-glucuronosyltransferase (EC 2.4.1.17) (hereinafter referred to as “UGT”). UGT catalyzes glucuronidation. UGT is an important enzyme in the excretion of primary metabolites because glucuronidation provides an exit pathway for endogenous substances, drugs administered ex vivo, chemicals in food, environmental pollutants, and the like. Among UGTs, UGT1A1 is known to be a major enzyme involved in glucuronidation of bilirubin.
  • the activity level of the enzyme varies depending on the structure of the protein itself and the substrate to be catalyzed. If you want to obtain information about the enzyme activity of a specific protein on a specific substrate, you have to measure the actual enzyme activity by creating a recombinant protein, which takes time and effort. There is.
  • An object of the present invention is to make it possible to predict enzyme activity based on the three-dimensional structure data of the protein without actually measuring the enzyme activity using the protein.
  • the inventors of the present invention have made extensive studies to solve the above-mentioned problems, perform molecular simulations of proteins and substrates using a computer, and analyze the results of docking simulations using mathematical formulas.
  • the present invention has been completed by finding out that it can be predicted.
  • this invention consists of the following. 1.
  • a method for predicting the enzyme activity of protein A by computer simulation A protein whose enzymatic activity is defined by the direction of substrate entry into protein A;
  • g is a constant specific to each substrate
  • E is the contribution to the enzyme activity of the docking of protein A and coenzyme
  • is the contribution to the enzyme activity in the direction of substrate entry into the protein.
  • a is a constant representing the influence of the in vivo environment
  • N and n are values obtained by the docking simulation between protein A and the substrate
  • N is the total number of docking simulations between protein A and the substrate
  • N is 2 or more
  • n is the number of times the substrate has entered protein A in such a direction that it can undergo an enzymatic reaction.
  • N w and n w is a value obtained by docking simulation of the protein B and the substrate
  • N w is the total number of docking simulation of protein B and the substrate
  • N w is 2 or more
  • nw is the number of times the substrate has entered protein B in such a direction that it can undergo an enzymatic reaction.
  • g is a constant specific to each substrate
  • E is the contribution of the docking of protein A and coenzyme to the enzyme activity
  • a is a constant representing the influence of the in vivo environment
  • is the protein.
  • N and n are values obtained by docking simulation of protein A and substrate, N is the total number of docking simulations of protein A and substrate, N is 2 or more, and n can undergo an enzymatic reaction a number of times the substrate enters the protein a in the direction, n w and n w is a value obtained by docking simulation of the protein B and the substrate, n w is the total number of docking simulation of protein B and the substrate , Nw is 2 or more, and nw is the number of times the substrate has entered protein B in such a direction that it can undergo an enzymatic reaction. 4).
  • E is represented by the following formula 16 or formula 17:
  • is the contribution to the enzyme activity in the direction of coenzyme entry into the protein, and is expressed by the following formula 21:
  • L and l are values obtained by docking simulation of protein A and coenzyme, L is the total number of docking simulations of protein A and coenzyme, L is 2 or more, and l is an enzyme reaction a number of times a coenzyme enters the protein a in a direction may proceed, L w and l w is a value obtained by docking simulation of protein B as a coenzyme, L w is docking with protein B coenzyme is the total number of simulations, L w is 2 or more, l w is the number of orientations in coenzyme enters the protein B of the enzymatic reaction can proceed);
  • m is the number of models in the cluster obtained by clustering the docking model of protein A and coenzyme, and
  • the docking simulation between the protein and the substrate comprises the following steps: (A) Obtaining the three-dimensional structure data of protein B, calculating the three-dimensional structure data of protein A based on the three-dimensional structure data of protein B, (B) performing docking simulation of protein A or B and coenzyme to determine a thermodynamically stable docking model; (C) setting a grid for docking protein A or B and substrate; (D) The docking simulation of protein B and the substrate is performed Nw times, Nw is 2 or more, and the number nw of times the substrate has entered protein B in a direction capable of undergoing an enzymatic reaction is counted.
  • step (E) The docking simulation between the protein A and the substrate is performed N times, and N is 2 or more. 8).
  • Step (b) is followed by the next step (b-1);
  • Step (b-1) Clustering the docking model of protein A or B and coenzyme, performing induced fit on two or more models in the cluster obtained by clustering,
  • step (d) a docking simulation with the substrate is performed for each model after induced fit.
  • 8. The method according to any one of 1 to 7 above. 9.
  • the protein A is a mutant protein.
  • 10. 10 The method according to any one of items 4 to 9, wherein the protein A is UDP-glucuronic acid transferase and the coenzyme is UDP-glucuronic acid. 11.
  • the method described in 1. 12 A recording medium carrying a program for causing a computer to function as the following means for executing the method according to any one of 1 to 11 above: (1) means for calculating the three-dimensional structure data of protein A based on the inputted amino acid sequence information; (2) means for storing the three-dimensional structure data of protein A and the three-dimensional structure data of the substrate to be docked simulation; (3) Simulation means for performing docking simulation of protein A and substrate using the stored three-dimensional structure data of protein A and three-dimensional structure data of substrate, (4) Means for storing results obtained by simulation, (5) means for calculating the enzyme activity of protein A based on the stored simulation results; (6) A means for displaying the calculated enzyme activity.
  • An apparatus carrying the following means for carrying out the method according to any one of 1 to 11 above: (1) means for calculating the three-dimensional structure data of protein A based on the input amino acid sequence information; (2) means for storing the three-dimensional structure data of protein A and the three-dimensional structure data of the substrate to be docked simulation; (3) Simulation means for performing docking simulation of protein A and substrate using the stored three-dimensional structure data of protein A and three-dimensional structure data of substrate, (4) Means for storing results obtained by simulation, (5) means for calculating the enzyme activity of protein A based on the stored simulation results; (6) A means for displaying the calculated enzyme activity.
  • the enzyme activity of protein A for each substrate is predicted for two or more substrates, A method for determining substrate compatibility, wherein a target substrate is selected based on two or more obtained prediction results.
  • the substrate is a drug administered to a living body, and the dose and / or administration interval and administration frequency of the drug are evaluated using the method described in the above item 14.
  • the enzyme activity can be predicted based on the three-dimensional structure data of the protein without actually measuring the enzyme activity using the protein. For example, when a recombinant protein is prepared and enzyme activity is actually measured, it takes several weeks. However, by using the method of the present invention, it is possible to predict enzyme activity in several hours. is there. In addition, the enzyme activity predicted by the present invention is highly reliable because it is correlated with the value obtained by actually measuring the protein.
  • Example 1 The docking model of various UGT1A1 and UDPGA is shown.
  • Example 2 The distribution of docking energy in docking with various UGT1A1 and UDPGA is shown.
  • Example 2 Two orientations of entry of substrate into UGT1A1 are shown.
  • Example 3 The conjugation activity of mutant
  • Example 4 The comparison of the in-vitro measured value of the conjugation activity of mutant
  • Example 6 The calculated value based on the simulation of the conjugation activity of wild type UGT1A1 and 34 types of mutant UGT1A1 is shown.
  • Example 6 The grid for docking simulation of UGT1A1 and bilirubin is shown (a: The figure which displayed the cross section of the conjugation reaction space, b: The figure seen from the front of the conjugation reaction space).
  • Example 7) The comparison of the in-vitro measured value (literature report) of the conjugation activity of mutant
  • Example 7 The comparison of the in-vivo measured value (literature report) of the conjugation activity of mutant
  • Example 8 The comparison of the in-vitro measured value (literature report) of the conjugation activity of mutant
  • Example 9 The comparison of the in-vivo measured value (literature report) of the conjugation activity of mutant
  • Example 10 The comparison of the in-vivo measured value (literature report) of the conjugation activity of mutant
  • Example 11 The distribution of docking energy in docking simulations of various UGT1A1 and UDPGA calculated by adding water molecules to the structure is shown.
  • Example 12 The result of the docking simulation of various UGT1A1 and substrate which carried out the structure calculation by adding a water molecule is shown.
  • Example 12 The comparison of the result of the docking simulation of various UGT1A1 and substrate calculated by adding water molecules and the in vitro measurement of the conjugation activity of various UGT1A1 is shown.
  • Example 12 The result of a docking simulation between mutant Arl6, the structure of which is calculated by adding water molecules, and GTP ⁇ S or GDP is shown.
  • Example 12 The result of the docking simulation of various UGT1A1 and a substrate at the time of induced fit is shown.
  • Example 13 The comparison of the result of the docking simulation of various UGT1A1 and a substrate in the case of induced fit and in-vitro measurement value of conjugation activity of various UGT1A1 is shown.
  • Example 13 The comparison of the result of the docking simulation of various UGT1A1 and substrate which induced fit with respect to all the models in a cluster, and the in-vitro measurement value of the conjugation activity of various UGT1A1 is shown.
  • Example 13 The comparison of the calculated value of the conjugation activity of various UGT1A1 calculated by introducing the Sigmoid function into the term R in Equation 10 and the in vitro measurement value of the conjugation activity of various UGT1A1 is shown.
  • Example 15 The calculated values of the conjugation activity of wild-type UGT1A1 and 34 mutant UGT1A1 calculated by introducing the Sigmoid function into the term R in Formula 10 are shown.
  • Example 15 The comparison of the in-vitro measured value of the conjugation activity of various UGT1A1 and the calculated value based on a simulation is shown.
  • Example 16 The comparison of the in-vitro measured value of the conjugation activity of various UGT1A1 and the calculated value based on a simulation is shown.
  • the present invention relates to a method for predicting the enzyme activity of a specific protein A by simulation using a computer.
  • the enzyme activity of a protein varies depending on the type of substrate.
  • the enzyme activity of a specific protein A with respect to a specific substrate can be predicted by using the following formula 1, and various types of substrate and protein A are selected, combined, and analyzed. be able to.
  • the protein A to be analyzed in the present invention is a protein whose enzyme activity is defined by the direction of the substrate entering the protein A.
  • the level of enzymatic activity of a protein is defined by the amount of protein and the nature of the protein. In vivo, the amount of protein is controlled by the balance between protein synthesis and decomposition, and the protein properties change due to the reversible action of the protein with other biomolecules or the change of the three-dimensional structure.
  • the “enzyme activity” predicted in the present invention is a property (catalytic ability) of a protein based on the three-dimensional structure of the protein, and the catalytic ability based on the three-dimensional structure depends on the docking energy with the coenzyme and the protein of the coenzyme.
  • Such protein A may be an enzyme that catalyzes any reaction, and may be an enzyme that exists in any location, such as in the cell membrane or in the cytoplasm.
  • Protein A is preferably a transferase that catalyzes the transfer of an atomic group from a coenzyme to a substrate.
  • glycosyltransferase is preferable, and examples of the glycosyltransferase include UDP-glucuronyltransferase (hereinafter referred to as “UGT”) and lactose synthase (EC 2.4.1.22).
  • UGT is divided into three subfamilies, UGT1A, UGT2A, and UGT2B, based on sequence homology and gene structure.
  • Subfamily UGT1A is located on chromosome 2q37, and there are nine isoforms, UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9 and UGT1A10. These isoforms consist of the first exon that changes by alternative splicing and four common exons. UGT1A1, which is one of nine isoforms, is particularly preferred as the protein analyzed in the present invention.
  • the three-dimensional structure data of protein A necessary for docking simulation is downloaded from a known database, obtained by X-ray crystal structure analysis, nuclear magnetic resonance, or the like, or based on the known three-dimensional structure data of protein B It can be obtained by calculation.
  • the three-dimensional structure data of the known protein B can be downloaded from a known database or obtained by X-ray crystal structure analysis or the like.
  • Protein B is a standard protein for calculating the three-dimensional structure data of protein A, and is a protein different from protein A, but has the same catalytic action as protein A. Protein B preferably has high amino acid homology with protein A (25 to 30% or more, preferably 40% or more) and has structural similarity with protein A.
  • Protein A has a different amino acid sequence from the standard protein (Protein B).
  • Examples of the relationship between protein A and protein B include a relationship between a mutant protein and a wild-type protein, and a relationship between isoforms. More specifically, in the relationship between the mutant protein and the wild-type protein, protein A is the mutant UGT1A1, protein B is the wild-type UGT1A1, and in the isoform relationship, the protein A is UGT1A6. A case where B is UGT1A1 is exemplified.
  • the amino acid sequence of the protein A is an amino acid sequence in which the amino acid is substituted, deleted, inserted, and / or added in the amino acid sequence of the protein B is there.
  • the number of amino acids substituted, deleted, inserted and / or added may be one or more.
  • Mutant proteins include proteins having any mutation site that has not been identified. The mutation site that is not currently identified may be a naturally occurring mutation site or an artificial mutation site that does not exist in nature.
  • the docking simulation of protein A and substrate will be described.
  • the three-dimensional structure data of protein A is obtained.
  • the three-dimensional structure data of protein A can be downloaded from a known database, obtained by X-ray crystal structure analysis, nuclear magnetic resonance, or the like, or calculated and obtained based on the known three-dimensional structure data of protein B. it can.
  • the three-dimensional structure data of the known protein B can be downloaded from a known database, or can be obtained by X-ray crystal structure analysis or the like.
  • PDB http://www.pdbj.org/
  • MODBASE http://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi, Morris GM et al .: J Comput Chem 1998 19: 1639-1662).
  • the three-dimensional structure data of protein A can be calculated based on the three-dimensional structure data of known protein B using a method and software known per se. For example, calculation may be performed using a technique such as homology modeling using the three-dimensional structure data of protein B.
  • software used for the calculation of the three-dimensional structure known software can be used, and software developed in the future can also be used.
  • a method for constructing the three-dimensional structure data will be described below specifically. A case where protein A is a mutant UGT1A1 with 1 amino acid substitution and protein B is a wild type UGT1A1 is illustrated.
  • G71R mutant UGT1A1 (71st glycine is replaced by arginine), F83L mutant UGT1A1 (83th phenylalanine is replaced by leucine), I322V mutant UGT1A1 (322th isoleucine is valine) having known mutation sites
  • the three-dimensional structure data can be created with respect to (for example). Perform the energy minimization calculation with the minimize program and AMBER99 force field parameters in the TINKER package (Ren P, Ponder JW: J Phys Chem B 2003, 107: 5933-5947) until the RMS gradient becomes 0.3, for example, Calculate the structure.
  • the force field and the like can be appropriately set according to docking simulation software used in a later process.
  • the calculated three-dimensional structures of G71R mutant UGT1A1, F83L mutant UGT1A1, and I322V mutant UGT1A1 are shown in FIG.
  • calculation may be performed without adding water molecules as in the case of UGT1A1, but calculation may be performed with addition of water molecules.
  • protein A is a protein present in the cell membrane
  • protein A is a protein present in the cytoplasm
  • the addition of water molecules to protein A can be performed using a program such as MOE (Chemical Computing Group Inc.).
  • a docking simulation is performed using the three-dimensional structure data of protein A by a docking program.
  • Substrate and coenzyme data can be downloaded from an existing database (for example, ChemIDPlus (http://chem.sis.nlm.nih.gov/chemidplus/), etc.).
  • software used for docking simulation publicly known software or software developed in the future can be used. Dock (http://dock.compbio.ucsf.edu/), AutoDock (http://scripps.edu/mb / olson / doc / autodock /), GOLD (http://ccdc.cam.ac.uk/products/life_sciences/gold/), MOE, and the like.
  • the docking simulation may be performed according to the usage method of each software.
  • a stable docking model of coenzyme and protein A may be used for docking simulation with the substrate.
  • the most stable docking model can be selected and used by a method described later.
  • two or more docking models in a cluster obtained by performing hierarchical clustering on the docking model of coenzyme and protein A by the method described later.
  • a full docking model can be used.
  • UGT is an enzyme involved in glucuronic acid conjugation, and it is used as a coenzyme from UDP-glucuronic acid (hereinafter referred to as “UDPGA”) to a substrate (for example, bilirubin as an in vivo substance or irinotecan as a drug) to glucuronic acid. It has the function of transferring.
  • UDPGA UDP-glucuronic acid
  • a substrate for example, bilirubin as an in vivo substance or irinotecan as a drug
  • the three-dimensional structure data of UDPGA can be used by downloading data registered in ChemIDPlus (registry number: 2616-64-0). Although there are five types of UDPGA three-dimensional structure data, docking simulation may be performed using these five types of three-dimensional structure data. Hereinafter, an example in which docking simulation is performed using AutoDock will be described. First, a map for searching the arrangement of UDPGA is generated as a cube with a grid interval of 0.375 mm and 60 ⁇ 60 ⁇ 60 points using the AutoGrid program. As the grid search algorithm, a Lamarck genetic algorithm may be used. For other parameters, use the default values of AutoDock 4.
  • the docking simulation is executed a plurality of times, for example, 10 to 100 times, for each combination of the mutant UGT1A1 and the five types of UDPGA.
  • 50 calculation results are obtained for one type of mutant UGT1A1.
  • the average value of docking energy is calculated for those in which UDPGA is docked in a direction that allows conjugation reaction.
  • the docking energy ⁇ G is calculated by the following formula 6.
  • the 50 results obtained by the docking simulation between the mutant UGT1A1 and UDPGA are ranked in ascending order of intermolecular energy, UDPGA molecular internal energy, and unbound energy. For each result, a rank sum of three kinds of ranks of intermolecular energy, UDPGA internal energy, and unbound energy is calculated, and the docking result with the smallest rank sum is selected as the most stable docking model, and the mutant UGT1A1 It can be determined as a docking model for UDPGA. At this time, hydrogen bonds included in the docking model may be detected using PyMOL.
  • FIG. 2 shows docking models of various UGT1A1 and UDPGA.
  • a group of simulation results having a low docking energy are grouped and defined by clustering by a group average method (a kind of hierarchical clustering in which two clusters are sequentially integrated) from a docking model of a mutant UGT1A1 and UDPGA.
  • the distance between all the clusters is calculated, and two clusters having the smallest distance are integrated.
  • the distance d (X, Y) between the clusters X and Y is defined as the following Expression 7.
  • Clustering is performed by the group average method using the order sum of intermolecular energy, internal molecular energy, and unbound energy with UDPGA that is conjugated to the mutant UGT1A1 in the direction capable of conjugation reaction.
  • a set of “several types of docking structures” (also referred to herein as “most stable set C”) is obtained.
  • grouping is possible by determining the optimum granularity of the most stable set C.
  • the particle size G (X) of the cluster X is calculated by the following equation 8 where S is a set of all UDPGAs capable of conjugation reaction.
  • clustering results with various granularities can be obtained.
  • clustering by the group average method is performed using the wild type, G71R mutant UGT1A1, F83L mutant UGT1A1, I322V mutant UGT1A1, and UDPGA docking simulation results to calculate the particle size of all clusters And analyze the distribution. For example, since the particle size significantly larger than the average is excluded at the 5% level, the value of the rejection area is 0.56. That is, the largest cluster among the clusters having a particle size of 0.56 or less can be defined as a group.
  • a cluster obtained by the group average method from docking results capable of conjugation reaction is defined as gac (S) and calculated as in the following Expression 9.
  • the field of the conjugation reaction can be determined from the position of the cluster defined by Equation 9 above, taking into account molecular fluctuations.
  • the innermost position of the grid may be determined in accordance with the size of the substrate.
  • the substrate is a relatively small compound such as acetaminophen
  • one grid may be set.
  • a plurality of grids for example, three may be set. .
  • the number of grids is determined in consideration of not only the size of the substrate but also the three-dimensional structure of the protein reaction field.
  • two or more of the docking models of the coenzyme and UGT1A1 included in the cluster (the most stable set C) obtained by such clustering can be selected and used for docking simulation with the substrate.
  • the docking simulation with the substrate is performed for all docking models included in the most stable set C.
  • AAP acetaminophen
  • E2 estradiol
  • bilirubin bilirubin
  • the docking simulation may be performed a plurality of times, for example, 10 to 1000 times for each docking model and / or substrate. It may be about 100 times.
  • the direction of substrate entry into UGT1A1 is evaluated. The number of cases where the direction of entry of the substrate into the mutant UGT1A1 is such that the conjugation reaction is possible is counted.
  • the direction of entry of the substrate into the protein can be considered to be two types shown in FIG. 4 taking the direction of entry of the substrate into UGT1A1 as an example.
  • ⁇ Direction I> the hydroxyl group of the substrate is directed to UDPGA, and the glucuronic acid conjugation reaction can proceed.
  • ⁇ Direction II> the hydroxyl group of the substrate faces the opposite side of UDPGA, making it difficult for the glucuronidation reaction to proceed.
  • the number of times that the substrate has entered the protein in a direction capable of undergoing an enzymatic reaction that is, in the case of UGT1A1
  • the number of docking simulations in which the substrate has entered UGT1A1 in the ⁇ direction I> is counted.
  • an induced fit may be performed before docking simulation with the substrate.
  • induced fit means changing the three-dimensional structure of the active site of the protein by performing Flexible Docking.
  • Flexible Docking can be performed by a program such as MOE (Chemical Computing Group Inc.).
  • “Induced fit” is performed on a docking model used for a docking simulation with a substrate after obtaining a docking model of protein A and a coenzyme. Although it may be performed on one kind of docking model or two or more docking models, all included in the cluster of “most stable set C” clustered by the above-described method. It is preferable to carry out with respect to the docking model. Using the docking model with the coenzyme after the induced fit is performed, a docking simulation with the substrate is performed, and the number of times the substrate has entered the protein in a direction that can undergo an enzyme reaction is counted.
  • the enzyme activity of protein A is predicted using the results obtained by docking simulation.
  • the enzyme activity f of protein A can be generally calculated using the following formula 10.
  • g is a constant specific to each substrate
  • E is the contribution of the docking of protein A and coenzyme to the enzyme activity
  • R is the rate at which the substrate has entered in a direction that can undergo an enzymatic reaction
  • a is It is a constant that represents the influence of the environment in which the enzyme reaction of protein A proceeds, for example, the in vivo environment.
  • N and n are values obtained by docking simulation of protein A and substrate, N is the total number of docking simulations of protein A and substrate, N is 2 or more, and n is an enzyme reaction This is the number of times the substrate has entered protein A in a direction that can be received (in the case of UGT1A1, ⁇ direction I>).
  • is the contribution to the enzyme activity in the direction of substrate entry into the protein.
  • protein A is a mutant type and the three-dimensional structure data of protein A is calculated on the basis of the three-dimensional structure data of protein B
  • is the contribution to the enzyme activity in the direction of substrate entry into protein B. Good.
  • the enzyme activity f of protein A can be predicted using the result obtained from the docking simulation using the following Equation 1.
  • N w and n w is a value obtained by docking simulation of the protein B and the substrate
  • N w is the total number of docking simulation of protein B and the substrate
  • N w is 2 or more
  • nw is the number of times the substrate has entered protein B in such a direction that it can undergo an enzymatic reaction.
  • can be calculated by the following equation 2.
  • E 1 can be set.
  • the case where the docking energy is not involved in the enzyme activity means a case where the docking energy result obtained by the docking simulation has no correlation with the measured value y ′.
  • Formula 1 and Formula 3 are represented by the following Formula 12 and Formula 13, respectively.
  • Equation 16 degree of contribution of the coenzyme and protein A docking to the enzyme activity
  • Equation 16 Equation when the direction of entry of the coenzyme into the enzyme contributes to the enzyme activity: Any one of 17 can be substituted. Preferably, Expression 17 is substituted.
  • is the contribution to the enzyme activity in the direction of coenzyme entry into the protein, and is expressed by the following formula 21:
  • L and l are values obtained by docking simulation of protein A and coenzyme, L is the total number of docking simulations of protein A and coenzyme, L is 2 or more, and l is an enzyme reaction a number of times a coenzyme enters the protein a in a direction may proceed,
  • L w and l w is a value obtained by docking simulation of protein B as a coenzyme
  • L w is docking with protein B coenzyme is the total number of simulations, L w is 2 or more
  • l w is the number of orientations in coenzyme enters the protein B of the enzymatic reaction can proceed);
  • m is the number of models in the cluster obtained by clustering the docking model of protein A and coenzyme
  • mw is obtained by clustering the docking model of protein B and coenzyme.
  • the number of models in the cluster where ⁇ represents the degree of contribution of the number of models in the cluster to the enzyme activity, and ⁇ is the calculated value y and the measured value calculated using Equation 17 based on the result of the docking simulation. It can be calculated using the following equation 23 so as to minimize the square error with y ′.
  • y w and y ′ w are values for protein B
  • y Ap and y ′ Ap are values for protein A
  • p represents a number of 2 or more.
  • g and a can use numerical values set in advance for the substrate to be predicted.
  • the values of g and a are unknown, the values of g and a are calculated using the calculated value y obtained as a result of the docking simulation for two or more proteins A and the measured value y ′. can do.
  • g and a can be calculated using Equation 4 below so as to minimize the square error between the calculated value y and the measured value y ′.
  • the measured value y ′ is preferably selected from large values to small values evenly. For example, in terms of relative activity to protein B, it is preferable to use a wide range from 100% to less than 1%.
  • g and a can be set to values that take into account the in vivo environment that would be affected by the in vitro environment such as smoking.
  • y w and y ′ w are values for protein B
  • y Ap and y ′ Ap are values for protein A
  • p represents a number of 2 or more.
  • the measured value y ′ in the above equation 4 is not a calculated value based on the docking simulation but means some actually measured value.
  • the measured value y ′ includes, for example, an experimental value obtained by an assay using a recombinant protein, a value predicted from a literature report such as a paper or a clinical test result.
  • the conjugation activity of UGT1A1 to bilirubin can be estimated from the blood concentration of bilirubin, and the estimated value can be used as the measured value y ′.
  • the prediction of enzyme activity of mutant UGT1A1 against AAP, E2 or bilirubin will be described as an example.
  • g and a are calculated for AAP, E2, and bilirubin, respectively.
  • the measured value y ′ can be obtained by measuring the enzyme activity of the recombinant protein.
  • a method for producing a recombinant protein and a method for measuring enzyme activity can be carried out by methods known per se. For example, the method described in the embodiment may be performed.
  • the measured values y ′ are substituted for AAP, E2, and bilirubin, and the values of g and a that minimize the square error are calculated.
  • g 1.1055
  • a 0.0722
  • E2 5.9410
  • a 1.2548
  • a 0.04.
  • the enzyme activity of the mutant UGT1A1 can be predicted using the above calculated g and a. By substituting g and a into Equation 3 and using N and n obtained by the docking simulation, the mutant UGT1A1 can be calculated.
  • FIG. 7 shows the results of calculating the enzyme activities of 34 types of mutant UGT1A1 for AAP and E2.
  • Equation 1 and Equation 3 It is also possible to introduce a Sigmoid function for.
  • the Sigmoid function is an S-shaped function represented by the following Expression 19.
  • a calculation formula that introduces the Sigmoid function can be expressed by Formula 20 below.
  • t represents the sensitivity of the enzyme activity to the direction of the substrate, and as the value of t increases, a slight difference in the direction of the substrate greatly changes the enzyme activity.
  • the value of t can be calculated using the calculated value y obtained as a result of performing the docking simulation for two or more proteins A and the measured value y ′, and is obtained in the same manner as the calculation method of d below. be able to.
  • d is calculated using the following equation 22 as a value that minimizes the square error between the calculated value y obtained by substituting the simulation result into the above equation and the measured value y ′ obtained by in vitro analysis or the like. be able to.
  • the present invention extends to a recording medium carrying a program for executing a method for predicting the enzyme activity of protein A, and an apparatus carrying means for executing the method for predicting the enzyme activity of protein A.
  • the program carried on the recording medium causes the computer to function as the following means, and the apparatus includes the following means.
  • the present invention also extends to a method for predicting the enzyme activity of protein A, and a method for determining substrate compatibility using the recording medium or the apparatus.
  • a method for predicting the enzyme activity of protein A for two or more substrates, the enzyme activity of a specific protein A for each substrate is predicted, and the target substrate is selected based on the obtained two or more prediction results.
  • this method can detect and select a drug having the highest conjugation activity by the mutant UGT1A1. This method makes it possible to select a drug in view of the balance between the efficacy and metabolism of the drug in vivo.
  • the present invention extends to a method for predicting the enzyme activity of protein A, a method for evaluating the dose and / or administration interval, and administration frequency of the drug using the recording medium or the apparatus.
  • the substrate is a specific drug and the drug is administered to a living body, and the living body has a mutation in UGT1A1, for example, the enzyme activity of the mutant UGT1A1 with respect to the drug is predicted, and based on the prediction result
  • Example 1 Calculation of three-dimensional structure data of UGT1A1 Three-dimensional structure data of wild-type UGT1A1 was downloaded from MODBASE (accession number: Q5DT03). Hydrogen atoms were added using the PyMOL program, and data of each of the G71R mutant UGT1A1, F83L mutant UGT1A1, and I322V mutant UGT1A1 were created using the SWISS-PDB Viewer program. Using these data, the energy minimization calculation using the minimize program of the TINKER package and AMBER99 force field parameters was performed until the RMS gradient became 0.3, and the three-dimensional structure of each mutant was obtained.
  • FIG. 1 shows the calculated three-dimensional structure of each variant.
  • Example 2 Docking simulation of various UGT1A1 and UDPGA Docking simulation of various UGT1A1 (wild type UGT1A1, G71R mutant UGT1A1, F83L mutant UGT1A1, I322V mutant UGT1A1) and UDPGA was performed using the AutoDock 4 program.
  • As the three-dimensional structure data of UDPGA five data registered in ChemIDPlus were used (registry number: 2616-64-0).
  • a map for searching the UDPGA layout was generated as a cube with a grid interval of 0.375 mm and 60 ⁇ 60 ⁇ 60 points using the AutoGrid program.
  • the grid search algorithm a Lamarck genetic algorithm was used. For other parameters, the default values of AutoDock 4 were used.
  • the docking simulation was executed 10 times for each combination of various UGT1A1 and 5 UDPGAs. 50 calculation results were obtained for one type of mutant UGT1A1. For each mutant UGT1A1, out of the 50 calculation results obtained, the average value of the docking energy of UDPGA in the orientation capable of conjugation reaction was calculated. The docking energy ⁇ G was calculated by the following formula 6.
  • the 50 results obtained in the docking simulation between each mutant UGT1A1 and UDPGA were ranked in ascending order of intermolecular energy, UDPGA molecular internal energy, and unbound energy.
  • the docking result having the smallest rank sum of the three kinds of ranks of intermolecular energy, UDPGA internal energy, and unbound energy was selected as the most stable docking model, and determined as the docking model of each of the mutant UGT1A1 and UDPGA. .
  • hydrogen bonds included in the docking model were detected using PyMOL.
  • FIG. 2 shows the structure of the docking model.
  • the uracil ring of UDPGA has the 357th glutamine (Q) in the wild type, the 42nd serine (S), the 173th histidine (H), the 375th serine (S), and the 396th serine in the G71R mutant UGT1A1.
  • Aspartic acid (D) and F83L mutant UGT1A1 interacted with the 374th glycine (G).
  • I322V mutant UGT1A1 no amino acid interacting with the uracil ring was found.
  • the glucuronic acid part of UDPGA includes 396th aspartic acid (D) in wild type UGT1A1, 310th methionine (M), 312th serine (S), 393th leucine (L) in G71R mutant UGT1A1. Interaction was observed. In F83L mutant UGT1A1, no amino acid interacting with the glucuronic acid moiety was found. In I322V mutant UGT1A1, interaction between the 153rd phenylalanine (F) and the glucuronic acid moiety was observed. There was no significant difference in the hydrophobicity of the UDPGA reaction field.
  • the distribution of the docking energy of UDPGA and each UGT1A1 in the direction capable of conjugation reaction is shown in FIG. There was no significant difference in the docking energy between the wild type and the G71R mutant and the docking energy between the F83L mutant and the I322V mutant.
  • the F83L mutant had significantly higher docking energy than the wild type and G71R mutant.
  • the I322V mutant had significantly higher docking energy than the wild type and the G71R mutant.
  • Example 3 Docking simulation of substrate in complex of UGT1A1 and UDPGA Among the docking simulation conditions of UGT1A1 and substrate, in order to determine the grid, first, a group of simulation results with low docking energy is selected from the docking model. , Defined by grouping by clustering by group average method (a kind of hierarchical clustering in which two clusters are sequentially integrated). In the group average method, the distance between all the clusters is calculated, and two clusters having the smallest distance are integrated. The distance d (X, Y) between the clusters X and Y was defined as in Equation 7 below.
  • Clustering is performed by the group average method using the order sum of intermolecular energy, internal molecular energy, and unbound energy of UDPGA oriented in a conjugative reaction with UGT1A1 as an index, and “several types of docking structures with relatively low docking energy” I asked for a set.
  • grouping is possible by determining the optimum granularity of the most stable set C.
  • the particle size G (X) of the cluster X was calculated according to the following formula 8 where S is the aggregate of the entire UDPGA capable of conjugation reaction.
  • clustering results with various granularities are obtained.
  • clustering is performed using the group average method using the wild type, G71R mutant UGT1A1, F83L mutant UGT1A1, I322V mutant UGT1A1, and UDPGA docking simulation results to calculate the granularity of all clusters. And the distribution was analyzed. Since the particle size significantly larger than the average was excluded at the 5% level, the value of the rejection area was 0.56. That is, the largest cluster among the clusters having a particle size of 0.56 or less could be defined as a group.
  • a cluster obtained by the group average method from docking results capable of conjugation reaction was defined as gac (S) and calculated as in the following Equation 9.
  • the field of the conjugation reaction in consideration of molecular fluctuations was determined from the position of the cluster defined by Equation 9. Then, in the docking simulation between each mutant UGT1A1 and AAP or E2, the innermost position of the grid in accordance with the size of each substrate was determined. Using this grid position, the direction of entry of each substrate into the glucuronidation reaction field of UGT1A1 was analyzed. The molecular structure data of AAP and E2 was registered in ChemIDPlus, and docking simulation was executed 100 times for each substrate.
  • FIG. 4 shows the two orientations of the substrate.
  • the hydroxyl group of the substrate is directed to UDPGA, and the glucuronic acid conjugation reaction can proceed.
  • the hydroxyl group of the substrate faces the opposite side of UDPGA, and it is difficult for the glucuronidation reaction to proceed.
  • Table 1 shows the number of times docked in each of direction I and direction II.
  • AAP most of the docking results were orientation I in the wild type, G71R mutant type, and I322V mutant type.
  • For the F83L mutant most docking results were orientation II.
  • E2 wild type and I322V mutant were orientation I in most docking results.
  • the G71R mutant and the F83L mutant most of the docking results were orientation II.
  • UGT1A1 Various expression vectors of UGT1A1 were introduced into COS-7 cells using Lipofectamine TM 2000 together with a luciferase reporter vector (pGL3-vector). Cells were harvested after 48 hours, homogenized with 70 ⁇ l of 0.1M Tri-HCl and used as enzyme source for luciferase and UGT1A1 assays. Luciferase activity was measured using a TD-20 / 20 luminometer (Promega, Madison, Wis., USA) and subjected to standardization of the enzyme activity of UGT1A1. The glucuronidation reaction of E2 was analyzed using UGT Reaction Mix (BD Gentest, Franklin Lakes, NJ, USA).
  • reaction product was centrifuged, it was subjected to LC / MS / MS analysis, and the amount of the conjugate of E2 and glucuronic acid (E2G) was measured.
  • E2G glucuronic acid
  • AAP the conjugate (AAPG) was measured using the same method.
  • the API-3000 TM LC / MS / MS system (Applied Biosystems-MDS Sciex, Tronto, Canada) was operated with Analyst 1.3.1 software for data acquisition and analysis.
  • the in vitro conjugation activity of each mutant UGT1A1 when AAP and E2 are used as substrates is shown in FIG.
  • Process (ii) reflects the involvement of the substrate entry direction.
  • R in the process (ii) is defined by the following formula 11.
  • is expressed by Equation 2 below.
  • N w is the total number of docking simulation with wild-type UGT1A1 and the substrate
  • n w is the number of times the total of N w times
  • substrate enters in conjugation reactions possible directions to wild-type UGT1A1.
  • Equation 12 the equation for calculating enzyme activity is expressed by Equation 12 below.
  • the constants g and a are set to different values for each substrate so that the square error between the calculation formula and the in-vitro experiment result is minimized.
  • the relative enzyme activity f ′ of the mutant UGT1A1 with respect to the wild-type enzyme activity can be calculated as the following expression 13.
  • N and n were counted as N A , N B , N C , n A , n B , and n C for each grid.
  • the sum of the N N A and N B and N C (i.e. 300 times) was calculated n as the sum of n A and n B and n C.
  • Table 2 The results are shown in Table 2.
  • Example 8 Prediction of enzyme activity for bilirubin 2 Using the values of g and a obtained in Example 7, the activity against bilirubin was calculated for the R336L mutant, the N400D mutant, and the W461R mutant. First, a docking simulation between each mutant UGT1A1 and bilirubin was performed. Table 3 shows the results of the docking simulation. Using these results and the values of g and a obtained in Example 7, conjugation activity was calculated using Equation 3.
  • the range of the value of the bilirubin conjugation activity of the R336L mutant, the N400D mutant, and the W461R mutant was calculated from the data described in the literature.
  • the bilirubin conjugation activity of mutant UGT1A1 found in patients with Crigler-Najjar syndrome type I (CN-I) is calculated as 0-10% of the wild type (Yamamoto K et al .: Biochem Biophys Acta 1998, 1406: 267 -273).
  • a homozygous W461R variant (TA6 / TA6) has been found in CN-I patients (Maruo Y, et al .: J Pediatr Gastroenterol Nutr 2003, 37 (5): 627-30). Therefore, the enzyme activity of the homozygous W461R mutant was calculated to be 0-10% of the wild type.
  • the bilirubin conjugation activity of mutant UGT1A1 found in patients with Crigler-Najjar syndrome type II (CN-II) and Gilbert syndrome (GS) is calculated as 26-66% of the wild type (Udomuksorn W et al .: Pharmacogenetics & Genomics 2007, 17: 1017-1029; Yamamoto K et al .: Biochem Biophys Acta 1998, 1406: 267-273; Seppen J, et al .: J Clin Invest 1994, 94 (6): 2385-2391).
  • a homozygous N400D variant is found in CN-II patients (Labrune P et al .: Hum Mutat 2002, 20 (5): 399-401). Therefore, the enzyme activity of the homozygous N400D mutant was calculated to be 26-66% of the wild type.
  • a heterozygous R336L variant is found in CN-II patients (Servedio V et al .: Hum Mutat 2005, 25 (3): 325).
  • CN-II patients described in Servedio V et al. A TA7 / TA7 mutation has also been confirmed in the promoter region.
  • bilirubin conjugation activity has been reported to be reduced to 50% compared to wild type (Peterson et al .: J Nutr 2005, 135: 1051-1055). From these reports, when the conjugation activity reduction per chromosome of the R336L type mutation is x (%), the following formula 14 is established: The following formula 15 was obtained from the formula 14. Therefore, the conjugation activity of the homozygous R336L mutant was calculated to be 52 to 132% (average value 92%) of the wild type.
  • FIG. 10 shows a comparison between the value (calculated value) calculated from the docking simulation result shown in Table 3 and the value obtained from the literature (in-vivo measured value (literature report)).
  • UGT1A1 is an enzyme that works in the liver. Considering that UGT1A1 conjugation activity in the human body is likely to be affected by drinking and smoking, the value obtained by the formula used in the present invention is very accurate. It was considered.
  • Example 9 Prediction of enzyme activity for bilirubin 3
  • G71R mutant type, P229Q mutant type, and I294T mutant type were used instead of G71R mutant type, F83L mutant type, and I294T mutant type as in vitro enzyme activity values. And a were calculated.
  • the value of the P229Q mutant was referred to Udomuksorn W et al: Pharmacogenetics and genomics 2007, 17 (12): 1017-29.
  • the ratio (relative activity) of the P229Q mutant to the normal value (wild type) is 61%.
  • Table 4 shows the results of the docking simulation of each mutant UGT1A1 and bilirubin.
  • Example 10 Prediction of enzyme activity for bilirubin 4 Using the results of the docking simulation obtained in Example 8 and the values of g and a obtained in Example 9 for the R336L mutant, the N400D mutant, and the W461R mutant, the conjugation activity is expressed by Formula 3. Used to calculate.
  • FIG. 12 shows a comparison between the value calculated from the docking simulation result (calculated value) and the value obtained from the literature described in Example 8 (in vivo measured value (literature report)).
  • FIG. 13 shows a comparison between the calculated results (calculated values) and the values obtained from the literature described in Example 8 (in-vivo measured values (literature report)).
  • Example 12 Effect of water molecule addition during structure calculation UGT1A1 (cell membrane protein) and G protein Arl6 (present in cytoplasm) with or without water molecule (Gas Phase) A simulation was performed on two types of proteins.
  • MOE was used instead of the TINKER package (wild-type UGT1A1, G71R mutant UGT1A1, F83L mutant UGT1A1, I322V mutant UGT1A1 : Wild type Arl6, T31R mutant Arl6, G169A mutant Arl6, L170W mutant Arl6).
  • the three-dimensional structure was calculated in the same manner as in Example 1 using the TINKER package.
  • FIG. 14 shows the docking energy distributions of UDPGA and each UGT1A1 in the direction capable of conjugation reaction.
  • FIG. 15 shows the result of using MOE Dock for the docking program and b for AutoDock4.
  • FIG. 17 is a result of using AutoDock4 for the docking program.
  • FIG. 16 shows a comparison between the number of times the substrate has entered in the direction I and in-vitro measurement values for various UGT1A1.
  • Fig. 16a shows the result of the docking simulation with the substrate using the MOE Dock when water molecules are added
  • b shows the result of the docking simulation with the substrate using AutoDock4 when the water molecules are added. It is a result.
  • UGT1A1 is a protein present in the cell membrane, and it is considered that a catalytic reaction occurs inside the enzyme.
  • Arl6 is a protein present in the cytoplasm, and binding to GTP is considered to occur on the protein surface. From these results, it is possible to determine whether or not water molecules should be added during the structure calculation in consideration of the hydrophobicity and hydrophilicity of the target enzyme protein and the catalytic reaction site. It has been suggested.
  • Example 13 Influence of induced fit (1) Three-dimensional structure data of various UGT1A1 was calculated without adding water molecules, and docking simulation with UDPGA was performed. Simulation was performed in the same manner as in Examples 1 and 2 using MOE or TINKER for structural calculation and using MOE Dock or AutoDock4 for docking simulation. For one docking model with UDPGA, induced fit was performed using MOE, and docking simulation with a substrate (AAP or E2) was performed.
  • Results are shown in FIG. 18 and FIG. FIG. 18a shows the result of using MOE for structural calculation and MOEMODock for docking simulation, and FIG. 18b shows the result of using TINKER for structural calculation and AutoDock4 for docking simulation.
  • 19a shows a comparison between the results of using MOEMODock for docking simulation and MOE dock for docking simulation and in vitro measurement values
  • Fig. 19b shows TINKER for structure calculation and AutoDock4 for docking simulation. It is a comparison between the results used and in-vitro measurements.
  • E 1 (there is no contribution of the direction of the coenzyme)
  • E the following formula 16 (contribution of the number of times the coenzyme has entered the various UGT1A1 in the direction in which the enzyme reaction can be performed)
  • E Formula 17 (contribution of the number of models selected by clustering after simulation with coenzyme) It is.
  • L, l, ⁇ , m, m w , and ⁇ are as defined in this specification.
  • induced fit was performed on all models in the cluster of the docking model with UDPGA, and docking simulation with the substrate was performed.
  • each formula was used to calculate G71R mutant UGT1A1, F83L mutant UGT1A1, I322V mutant UGT1A1, R336L mutant UGT1A1, H376R mutant UGT1A1, P387S mutant UGT1A1.
  • (Calculated value) was calculated (g and a were the same as those in Example 6, and ⁇ was 0.37).
  • a double error (Formula 18) between the obtained calculated value and the in vitro conjugation ability (substrate is AAP or E2) was calculated, and the prediction accuracy of the conjugation ability of each calculation formula was evaluated.
  • Sigmoid function is an S-shaped function expressed by the following equation 19, and has a range of (0, 1) with respect to a real number x Monotonically increasing function. p is called gain and affects the shape of the function.
  • Formula 1 which is a calculation formula for conjugation ability, a calculation formula in which the Sigmoid function is applied to the term R in Formula 10 (the entry of the substrate into the conjugation reaction space of UGT1A1) was created (Formula 20).
  • d and t are the results of Example 13 and the in vitro enzyme activity values of the wild type, G71R mutant, F83L mutant, and I322V mutant are used to minimize the double error.
  • the in vitro conjugation ability of various UGT1A1 was measured in the same manner as in the method of Example 4. Further, other 28 types of mutant UGT1A1 currently reported were subjected to docking simulation in the same manner as in this Example, and conjugation activity was measured using Formula 17 and Formula 20 using the results.
  • FIG. 21 shows a comparison between in vitro measured values and calculated values based on simulation.
  • FIG. 22 shows the results of calculated values based on simulations of wild-type UGT1A1 and all 34 types of mutant UGT1A1. It was found that in vitro conjugation activity was well reproducible when the Sigmoid function was used in the calculation formula (FIGS. 21 and 22). Therefore, it was suggested that it is preferable to apply the Sigmoid function to the term R in Formula 10 (the substrate entry into the conjugation reaction space of UGT1A1).
  • the method of the present invention is useful because it can predict the enzyme activity of a mutant protein whose enzyme activity against a specific substrate cannot be predicted.
  • UGT1A1 mutants important for drug metabolism as an example, analysis results of naturally occurring mutation sites are useful as information for drug administration when individual genome analysis results are obtained in the future.
  • the enzyme activity f or f ′ is an enzyme activity derived from the three-dimensional structure of the protein itself. Using the above formula, a formula that includes other environmental factors and the like is created, and a risk factor is added. It is also possible to obtain reference information for preparing a drug administration plan for each patient. Furthermore, by predicting enzyme activity of a protein with a mutation site comprehensively, including artificial mutation sites for a specific protein, it is possible to determine the important site of the protein in the catalytic action of the enzyme, and drug discovery targets Is available.

Landscapes

  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明は、タンパク質を用いて実際に酵素活性を測定しなくても、タンパク質の立体構造に基づいて酵素活性を予測可能とすることを課題とする。かかる課題は、コンピュータによりタンパク質と基質とのドッキングシミュレーションを行い、かかるドッキングシミュレーションの結果を式1または3に代入して、タンパク質の酵素活性を予測することにより解決される。

Description

酵素活性をコンピュータを用いたシミュレーションにより予測する方法
 本発明は、特定のタンパク質Aの酵素活性をコンピュータを用いたシミュレーションにより数式を用いて予測する方法に関する。また本発明は、かかる酵素活性予測方法を実行可能な記録媒体、および装置に関する。さらに、前記酵素活性予測方法、前記記録媒体、または装置を用いて予測された結果を用いた、酵素の基質適合性の判断方法、および、基質の生体への投与間隔等を評価する方法に関する。
 本出願は、参照によりここに援用されるところの日本出願特願2008-228434号優先権を請求する。
 近年、タンパク質の構造解析に、コンピュータを用いた構造シミュレーションが取り入れられるようになっている。タンパク質の3次元構造の決定などが、コンピュータを用いて行われており、X線結晶解析により決定された3次元構造データからなるデータベースや、ホモロジーモデリング等で決定した3次元構造データからなるデータベースが構築されている(非特許文献1)。タンパク質の3次元構造データは、これらのデータベースから容易に取得することができる。
 タンパク質の3次元構造データを利用および解析して、タンパク質立体構造構築の原理や、タンパク質の作用メカニズムなどの研究が進んでいるところである。タンパク質の3次元構造データを利用した解析として、タンパク質と低分子化合物であるリガンドとのドッキングシミュレーションが挙げられる(非特許文献2)。これらのシミュレーションに関連するソフトウェア群は、複数開発されており、一般的に利用可能なレベルになっている(非特許文献2~6)。その結果、容易にタンパク質構造シミュレーションを研究に用いることが可能になってきた。
 ドッキングシミュレーションは、タンパク質とリガンドとの結合能の予測や、化合物ライブラリーから薬剤候補化合物を探索するスクリーニングなどに利用されている(特許文献1,2)。
 タンパク質には生体内で種々の化学反応を触媒する酵素が含まれる。
 生体内の酵素に、UDP-グルクロン酸転移酵素(EC 2.4.1.17)(以下「UGT」と称する)がある。UGTはグルクロン酸抱合を触媒する。グルクロン酸抱合により、内因性物質、生体外から投与された薬剤、食物中の化学物質、環境汚染物質などの排出パスウェイが提供されるため、UGTは一次代謝産物の排泄において重要な酵素である。UGTのうち、UGT1A1はビリルビンのグルクロン酸抱合に関与する主要な酵素であることが知られている。UGT1A1遺伝子に変異が生じた場合には、UGT1A1のビリルビンに対する酵素活性が消失または深刻に低下し、黄疸を主症状とするGilbert症候群やCrigler-Najjar症候群の原因となる。UGT1A1の変異型は多数あり、変異部位によって、ビリルビンに対する酵素活性のレベルが異なっている(非特許文献7,8)。また、同じ変異部位を持つ場合でも、変異型UGT1A1の抱合活性は、薬剤によって異なる。
 UGT1A1にみられるように、タンパク質自体の構造や、触媒対象である基質に応じて、酵素の活性レベルは変化する。特定のタンパク質の特定の基質に対する酵素活性について情報を得たい場合は、組換えタンパク質を作製するなどして、実際に酵素活性を測定しなくてはならず、手間と時間がかかってしまうという問題がある。
特開2005-181104号公報 特開2007-272627号公報
Pieper U, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A, Marti-Renom M, Karchin R, Webb BM, Eramian D, Shen MY, Kelly L, Melo F, Sali A: MODBASE: Nucleic Acids Research 2006, 1(34):D291-D295. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ: J Comput Chem 1998, 19:1639-1662. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: Electrophoresis 1997, 18:2714-2723. Ren P, Ponder JW: J Phys Chem B 2003, 107:5933-5947. DeLano, W.L. The PyMOL Molecular Graphics System. (2008) DeLano Scientific LLC, Palo Alto, CA, USA., インターネット<URL:http://www.pymol.org> Molecular Operating Environment (moe), version 2008.10. Chemical Computing Group, Inc. Montreal, Quebec, Canada, 2008, インターネット<URL:http://www.chemcomp.com> Udomuksorn W, Eliot DJ, Lewis BC, Mackenzie PI, Yoovathaworn K, Miners JO: Pharmacogenetics & Genomics 2007, 17(12):1017-1029. Yamamoto K, Sato H, Fujiwara Y, Doida Y, Bamba T: Biochimica et Biophysica Acta 1998, 1406:267-273.
 本発明は、タンパク質を用いて実際に酵素活性を測定しなくても、タンパク質の立体構造データに基づいて酵素活性を予測可能とすることを課題とする。
 本発明者らは上記課題を解決するために鋭意検討を重ね、コンピュータによりタンパク質と基質との分子シミュレーションを行い、なかでもドッキングシミュレーションの結果を数式を用いて解析することにより、タンパク質の酵素活性を予測することが可能であることを見出し、本発明を完成した。
 すなわち、本発明は以下よりなる。
1.タンパク質Aの酵素活性をコンピュータを用いたシミュレーションにより予測する方法であって、
酵素活性がタンパク質Aへの基質の進入の向きにより規定されるようなタンパク質であり、
タンパク質Aの酵素活性fが以下の式1により算出される方法;
Figure JPOXMLDOC01-appb-M000001
式中、gは基質ごとに固有の定数であり、Eはタンパク質Aと補酵素とのドッキングの酵素活性に対する寄与度であり、βはタンパク質への基質の進入の向きの酵素活性に対する寄与度であり、aは生体内環境による影響を表す定数であり、Nとnは、タンパク質Aと基質とのドッキングシミュレーションにより得られる値であり、Nはタンパク質Aと基質とのドッキングシミュレーションの総回数であり、Nは2以上であり、nは酵素反応を受け得る向きで基質がタンパク質Aに進入した回数である。
2.タンパク質Aの立体構造データが、タンパク質Aとは別のタンパク質Bの立体構造データに基づいて計算されるものであり、βが以下の式2によって算出される前項1に記載の方法:
式中、Nとnは、タンパク質Bと基質とのドッキングシミュレーションにより得られる値であり、Nはタンパク質Bと基質とのドッキングシミュレーションの総回数であり、Nは2以上であり、nは酵素反応を受け得る向きで基質がタンパク質Bに進入した回数である。
3.タンパク質Bの酵素活性に対するタンパク質Aの相対的な酵素活性をコンピュータを用いたシミュレーションにより予測する方法であって、
酵素活性がタンパク質Aへの基質の進入の向きにより規定されるようなタンパク質であり、
タンパク質Aの相対的な酵素活性f’が以下の式3により算出される方法;
Figure JPOXMLDOC01-appb-M000003
式中、gは基質ごとに固有の定数であり、Eはタンパク質Aと補酵素とのドッキングの酵素活性に対する寄与度であり、aは生体内環境による影響を表す定数であり、βはタンパク質への基質の進入の向きの酵素活性に対する寄与度であり、次の式2により表され;
Figure JPOXMLDOC01-appb-M000004
Nとnは、タンパク質Aと基質とのドッキングシミュレーションにより得られる値であり、Nはタンパク質Aと基質とのドッキングシミュレーションの総回数であり、Nは2以上であり、nは酵素反応を受け得る向きで基質がタンパク質Aに進入した回数であり、Nとnはタンパク質Bと基質とのドッキングシミュレーションにより得られる値であり、Nはタンパク質Bと基質とのドッキングシミュレーションの総回数であり、Nは2以上であり、nは酵素反応を受け得る向きで基質がタンパク質Bに進入した回数である。
4.Eが、下記の式16または式17により表される、前項1~3のいずれか1に記載の方法:
Figure JPOXMLDOC01-appb-M000005
(式16中、γはタンパク質への補酵素の進入の向きの酵素活性に対する寄与度であり、次の式21により表され、
Figure JPOXMLDOC01-appb-M000006
Lとlは、タンパク質Aと補酵素とのドッキングシミュレーションにより得られる値であり、Lはタンパク質Aと補酵素とのドッキングシミュレーションの総回数であり、Lは2以上であり、lは酵素反応が進行し得る向きで補酵素がタンパク質Aに進入した回数であり、Lとlはタンパク質Bと補酵素とのドッキングシミュレーションにより得られる値であり、Lはタンパク質Bと補酵素とのドッキングシミュレーションの総回数であり、Lは2以上であり、lは酵素反応が進行し得る向きで補酵素がタンパク質Bに進入した回数である);
Figure JPOXMLDOC01-appb-M000007
(式17中、mはタンパク質Aと補酵素とのドッキングモデルをクラスタリングして得られたクラスタ内のモデル数であり、mはタンパク質Bと補酵素とのドッキングモデルをクラスタリングして得られたクラスタ内のモデル数であり、δはクラスタ内のモデル数の酵素活性への寄与度を表す。)
5.式1または式3において、
Figure JPOXMLDOC01-appb-M000008
について、Sigmoid関数を導入する、前項1~4のいずれか1に記載の方法。
6.2以上のタンパク質Aについてドッキングシミュレーションを行い、
gとaが、ドッキングシミュレーションにより得られた計算値yと、測定された値y’との二乗誤差を最小にする値であり、下記の式4を用いて算出される、前項2~5のいずれか1に記載の方法。
Figure JPOXMLDOC01-appb-M000009
式中、yとy’はタンパク質Bについての値であり、yA1とy’A1、yApとy’Apはタンパク質Aについての値であり、pは2以上の数を表す。
7.タンパク質と基質とのドッキングシミュレーションが以下の工程を含む前項1~6のいずれか1に記載の方法:
(a)タンパク質Bの立体構造データを入手し、タンパク質Aの立体構造データをタンパク質Bの立体構造データに基づいて計算し、
(b)タンパク質AまたはBと補酵素とのドッキングシミュレーションを行い、熱力学的に安定なドッキングモデルを決定し;
(c)タンパク質AまたはBと基質とのドッキングのグリッドを設定し;
(d)タンパク質Bと基質とのドッキングシミュレーションをN回行い、Nは2以上であり、酵素反応を受け得る向きで基質がタンパク質Bに進入した回数nを計数し、
(e)タンパク質Aと基質とのドッキングシミュレーションをN回行い、Nは2以上であり、酵素反応を受け得る向きで基質がタンパク質Aに進入した回数nを計数する。
8.工程(b)の後に次の工程(b-1)を行い;
工程(b-1)タンパク質AまたはBと補酵素とのドッキングモデルをクラスタリングし、クラスタリングして得られたクラスタ内の2以上のモデルについてinduced fitを行い、
工程(d)において、induced fit後の各モデルについて、基質とのドッキングシミュレーションを行う、
前項1~7のいずれか1に記載の方法。
9.タンパク質Aが変異型タンパク質である前項1~7のいずれか1に記載の方法。
10.タンパク質AがUDP-グルクロン酸転移酵素であり、補酵素がUDP-グルクロン酸である、前項4~9のいずれか1に記載の方法。
11.タンパク質Aがgとaの算出のために用いた変異型タンパク質以外の変異型タンパク質であり、算出されたgとaの値を用いて酵素活性の予測を行う、前項6~10のいずれか1に記載の方法。
12.前項1~11のいずれか1に記載の方法を実行するために、コンピュータを下記の手段として機能させるプログラムを担持する記録媒体:
 (1)入力されたアミノ酸配列情報に基づいて、タンパク質Aの立体構造データを計算する手段、
 (2)タンパク質Aの立体構造データと、ドッキングシミュレーションの対象となる基質の立体構造データを記憶する手段、
 (3)前記記憶された、タンパク質Aの立体構造データと基質の立体構造データを用いて、タンパク質Aと基質とのドッキングシミュレーションを行うシミュレーション手段、
 (4)シミュレーションにより得られた結果を記憶する手段、
 (5)記憶されたシミュレーション結果に基づいて、タンパク質Aの酵素活性を算出する手段、
 (6)算出された酵素活性を表示する手段。
13.前項1~11のいずれか1に記載の方法を実行するために、下記の手段を担持する装置;
 (1)入力されたアミノ酸配列情報に基づいて、タンパク質Aの立体構造データを計算する手段、
 (2)タンパク質Aの立体構造データと、ドッキングシミュレーションの対象となる基質の立体構造データを記憶する手段、
 (3)前記記憶された、タンパク質Aの立体構造データと基質の立体構造データを用いて、タンパク質Aと基質とのドッキングシミュレーションを行うシミュレーション手段、
 (4)シミュレーションにより得られた結果を記憶する手段、
 (5)記憶されたシミュレーション結果に基づいて、タンパク質Aの酵素活性を算出する手段、
 (6)算出された酵素活性を表示する手段。
14.前項1~11のいずれか1に記載の方法、前項12に記載の記録媒体、または前項13に記載の装置を用いて、2以上の基質について、基質ごとのタンパク質Aの酵素活性を予測し、得られた2以上の予測結果に基づいて目的の基質を選択する、基質適合性の判定方法。
15.前記基質が生体に投与される薬剤であって、前項14に記載の方法を用いて、薬剤の投与量および/または投与間隔、投与頻度を評価する方法。
 本発明によれば、実際にタンパク質を用いて酵素活性の測定をすることなく、タンパク質の立体構造データに基づいて酵素活性を予測することができる。例えば組換えタンパク質を作製し、実際に酵素活性の測定をする場合には、数週間の時間を要するが、本発明の方法を用いることにより、数時間で酵素活性の予測をすることが可能である。また、本発明により予測された酵素活性は、実際にタンパク質を用いて測定して得られた値と相関性が見られ、信頼性が高い。
コンピュータを用いて計算された各種UGT1A1の立体構造を示す。(実施例1) 各種UGT1A1とUDPGAとのドッキングモデルを示す。(実施例2) 各種UGT1A1とUDPGAとのドッキングにおけるドッキングエネルギーの分布を示す。(実施例2) 基質のUGT1A1への進入の2つの向きを示す。(実施例3) in vitro実験における変異型UGT1A1の抱合活性を示す。(実施例4) 変異型UGT1A1の抱合活性のin vitro測定値と、シミュレーションに基づく計算値との比較を示す。(実施例6) 野生型UGT1A1と34種の変異型UGT1A1の抱合活性のシミュレーションに基づく計算値を示す。(実施例6) UGT1A1とビリルビンとのドッキングシミュレーションのためのグリッドを示す(a:抱合反応空間の断面を表示した図、b:抱合反応空間の正面から見た図)。(実施例7) 変異型UGT1A1の抱合活性のin vitro測定値(文献報告)と、シミュレーションに基づく計算値との比較を示す。(実施例7) 変異型UGT1A1の抱合活性のin vivo測定値(文献報告)と、シミュレーションに基づく計算値との比較を示す。(実施例8) 変異型UGT1A1の抱合活性のin vitro測定値(文献報告)と、シミュレーションに基づく計算値との比較を示す。(実施例9) 変異型UGT1A1の抱合活性のin vivo測定値(文献報告)と、シミュレーションに基づく計算値との比較を示す。(実施例10) 変異型UGT1A1の抱合活性のin vivo測定値(文献報告)と、シミュレーションに基づく計算値との比較を示す。(実施例11) 水分子を付加して構造計算した各種UGT1A1とUDPGAとのドッキングシミュレーションにおけるドッキングエネルギーの分布を示す。(実施例12) 水分子を付加して構造計算した各種UGT1A1と基質とのドッキングシミュレーションの結果を示す。(実施例12) 水分子を付加して構造計算した各種UGT1A1と基質とのドッキングシミュレーションの結果と、各種UGT1A1の抱合活性のin vitro測定値との比較を示す。(実施例12) 水分子を付加して構造計算した変異型Arl6と、GTPγSもしくはGDPとのドッキングシミュレーションの結果を示す。(実施例12) induced fitを行った場合の、各種UGT1A1と基質とのドッキングシミュレーションの結果を示す。(実施例13) induced fitを行った場合の、各種UGT1A1と基質とのドッキングシミュレーションの結果と、各種UGT1A1の抱合活性のin vitro測定値との比較を示す。(実施例13) クラスタ内の全モデルに対してinduced fitを行った各種UGT1A1と基質とのドッキングシミュレーションの結果と、各種UGT1A1の抱合活性のin vitro測定値との比較を示す。(実施例13) 式10における項RにSigmoid関数を導入して算出した、各種UGT1A1の抱合活性の計算値と、各種UGT1A1の抱合活性のin vitro測定値との比較を示す。(実施例15) 式10における項RにSigmoid関数を導入して算出した、野生型UGT1A1と34種の変異型UGT1A1の抱合活性の計算値を示す。(実施例15) 各種UGT1A1の抱合活性のin vitro測定値と、シミュレーションに基づく計算値との比較を示す。(実施例16)
 本発明は、特定のタンパク質Aの酵素活性をコンピュータを用いたシミュレーションにより予測する方法に関する。一般にタンパク質の酵素活性は、基質の種類に応じて違いがある。本発明においては、下記の式1を用いることにより、特定の基質に対する特定のタンパク質Aの酵素活性を予測することができ、基質、タンパク質Aともに、種々の種類を選択して組み合わせ、解析を行うことができる。
Figure JPOXMLDOC01-appb-M000010
 本発明において解析の対象となるタンパク質Aは、酵素活性がタンパク質Aへの基質の進入の向きにより規定されるようなタンパク質である。一般的にタンパク質の酵素活性のレベルは、タンパク質の量と、タンパク質の性質により規定される。生体内では、タンパク質の量はタンパク質の合成・分解のバランスにより制御され、タンパク質が他の生体分子と可逆的に作用したり、立体構造が変化することによりタンパク質の性質が変化する。本発明において予測される「酵素活性」は、タンパク質の立体構造に基づくタンパク質の性質(触媒能)であり、かかる立体構造に基づく触媒能は、補酵素とのドッキングエネルギー、補酵素のタンパク質への進入の向き、基質の進入口の断面の大きさ、基質とのドッキングエネルギー、基質と触媒部位との距離、基質のタンパク質への進入の向きなど、種々の要因により規定されると考えられる。これらの要因のうち、特に基質のタンパク質への進入の向きにより酵素活性(タンパク質の立体構造に基づく触媒能)が規定されるタンパク質について、式1を用いた本発明により酵素活性(タンパク質の立体構造に基づく触媒能)を予測することが可能である。
 かかるタンパク質Aは、いかなる反応を触媒する酵素であってもよく、細胞膜や、細胞質内等のいかなる場所に存在する酵素であってもよい。タンパク質Aは、補酵素から基質への原子団の転移を触媒する転移酵素であることが好ましい。中でも、グリコシル基転移酵素が好ましく、グリコシル基転移酵素としては、例えばUDP-グルクロン酸転移酵素(以下「UGT」と称する)、ラクトースシンターゼ(lactose synthase)(EC 2.4.1.22)が挙げられる。UGTは配列相同性と遺伝子構造によってUGT1A、UGT2A、UGT2Bの3つのサブファミリーに区別される。サブファミリーUGT1Aは染色体2q37に位置し、9種類のアイソフォーム、UGT1A1、UGT1A3、UGT1A4、UGT1A5、UGT1A6、UGT1A7、UGT1A8、UGT1A9、UGT1A10が存在する。これらのアイソフォームは選択的スプライシングにより変化する最初のエキソンと、共通する4つのエキソンとからなる。9種類のアイソフォームの1種である、UGT1A1が本発明において解析されるタンパク質として特に好ましい。
 本発明では、タンパク質Aと基質のドッキングシミュレーションをコンピュータ上で行うことが必須である。ドッキングシミュレーションに必要なタンパク質Aの立体構造データは、公知のデータベースからダウンロードするか、X線結晶構造解析、核磁気共鳴法などにより入手するか、または、公知のタンパク質Bの立体構造データに基づいて計算して入手することができる。公知のタンパク質Bの立体構造データは、公知のデータベースからダウンロードするか、X線結晶構造解析などにより入手することができる。
 タンパク質Bは、タンパク質Aの立体構造データを計算するための基準となるタンパク質であり、タンパク質Aとは異なるタンパク質であるが、タンパク質Aと同様の触媒作用を有するものである。またタンパク質Bは、タンパク質Aと高いアミノ酸相同性(25~30%以上、好ましくは40%以上)を有しており、かつタンパク質Aと構造類似性を有しているものが好ましい。
 タンパク質Aは、基準となるタンパク質(タンパク質B)とアミノ酸配列が相違するものである。タンパク質Aとタンパク質Bの関係としては、例えば、変異型タンパク質と野生型タンパク質の関係や、互いにアイソフォームの関係などが挙げられる。さらに具体的には、変異型タンパク質と野生型タンパク質との関係では、タンパク質Aが変異型UGT1A1であり、タンパク質Bは野生型UGT1A1であり、アイソフォームの関係では、タンパク質AがUGT1A6であり、タンパク質BがUGT1A1である場合などが例示される。
 タンパク質Aとタンパク質Bの関係が変異型タンパク質と野生型タンパク質である場合、タンパク質Aのアミノ酸配列は、タンパク質Bのアミノ酸配列においてアミノ酸が置換、欠失、挿入、および/または付加されているものである。置換、欠失、挿入、および/または付加されているアミノ酸の個数は1以上であればよい。また、変異型タンパク質には、現在同定されていないあらゆる変異部位を持つタンパク質が含まれる。現在同定されていない変異部位は、天然に存在する変異部位であってもよいし、天然には存在しない人工的な変異部位であってもよい。
 タンパク質Aと基質のドッキングシミュレーションについて説明する。
 まず、タンパク質Aの立体構造データを入手する。タンパク質Aの立体構造データは、公知のデータベースからダウンロードする、X線結晶構造解析、核磁気共鳴法などにより入手する、または、公知のタンパク質Bの立体構造データに基づいて計算して入手することができる。公知のタンパク質Bの立体構造データは、公知のデータベースからダウンロードする、または、X線結晶構造解析などにより入手することができる。データベースとしては、PDB(http://www.pdbj.org/)、MODBASE(http://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi, Morris GM et al.: J Comput Chem 1998, 19:1639-1662)が例示される。
 タンパク質Aの立体構造データは、自体公知の方法およびソフトウェアを用いて、公知のタンパク質Bの立体構造データに基づいて計算することが可能である。例えば、タンパク質Bの立体構造データを用いてホモロジーモデリングなどの手法を用いて計算すればよい。立体構造の計算に用いるソフトウェアとしては、公知のものを使用可能であり、今後開発されるものも使用可能である。以下に具体的に例示して、立体構造データの構築の方法を説明する。タンパク質Aが1アミノ酸置換の変異型UGT1A1であり、タンパク質Bが野生型UGT1A1である場合を例示する。
 野生型UGT1A1の立体構造データを、MODBASE(accession number: Q5DT03)よりダウンロードする。ダウンロードした野生型UGT1A1の立体構造データに、PyMOLプログラム(http://pymol.sourceforge.net/, DeLano WL: DeLano Scientific, Palo alto, CA, USA; 2002)を用いて適切に水素原子を追加し、SWISS-PDBViewerプログラム(http://spdbv.vital-it.ch/, Guex N, Peitsch MC: Electrophoresis 1997, 18: 2714-2723)を用いて、変異型UGT1A1の立体構造データを作成する。例えば、公知の変異部位を持つ、G71R変異型UGT1A1(71番目のグリシンがアルギニンに置換)、F83L変異型UGT1A1(83番目のフェニルアラニンがロイシンに置換)、I322V変異型UGT1A1(322番目のイソロイシンがバリンに置換)などについて、立体構造データを作成することができる。TINKERパッケージ(Ren P, Ponder JW: J Phys Chem B 2003, 107:5933-5947)のminimizeプログラムとAMBER99力場パラメータによるエネルギー最小化計算を、RMS勾配が例えば0.3になるまで行い、各タンパク質の立体構造を計算する。力場等は、後の工程で用いるドッキングシミュレーションのソフトウェアに応じて適宜設定可能である。計算されたG71R変異型UGT1A1、F83L変異型UGT1A1、I322V変異型UGT1A1の三次元構造を図1に示す。
 タンパク質Aの立体構造データを計算する際、UGT1A1の場合と同様に水分子を付加せずに計算をおこなってもよいが、水分子を付加して計算を行ってもよい。例えば、タンパク質Aが細胞膜に存在するタンパク質の場合は、水分子を付加せずに、上述の手法で計算することが好ましい。タンパク質Aが細胞質に存在するタンパク質の場合は、上述の手法に加えて、水分子を付加して立体構造データを計算することが好ましい。タンパク質Aの存在する箇所や、触媒反応の起こる部位などについて、疎水性度および親水性度を考慮することにより水分子付加の要否を決定して、立体構造データの計算を行うことが可能である。なお、タンパク質Aへの水分子の付加は、MOE(Chemical Computing Group Inc.)等のプログラムを用いて行うことができる。
 次に、ドッキングプログラムにより、タンパク質Aの立体構造データを用いてドッキングシミュレーションを行う。基質や補酵素のデータは、既存のデータベース(例えば、ChemIDPlus(http://chem.sis.nlm.nih.gov/chemidplus/)など)からダウンロードすることができる。ドッキングシミュレーションに用いるソフトウェアとしては、公知のものや今後開発されるものを使用可能であり、Dock(http://dock.compbio.ucsf.edu/)、AutoDock(http://scripps.edu/mb/olson/doc/autodock/)、GOLD(http://ccdc.cam.ac.uk/products/life_sciences/gold/)、MOEなどが例示される。それぞれのソフトウェアの使用方法に従って、ドッキングシミュレーションを行えばよい。
 タンパク質Aが補酵素を必要とする酵素(例えば転移酵素)である場合は、まず補酵素とタンパク質Aとのドッキングシミュレーションを行い、安定なドッキングモデルを決定する必要がある。基質とのドッキングシミュレーションには、補酵素とタンパク質Aとの安定なドッキングモデルを用いればよい。補酵素とタンパク質Aとの安定なドッキングモデルは、1つであっても複数であってもよい。1つの安定なドッキングモデルを用いる場合は、後述する手法にて最も安定なドッキングモデルを選択して用いることができる。複数の安定なドッキングモデルを用いる場合は、後述する手法にて、補酵素とタンパク質Aとのドッキングモデルについて階層型クラスタリングを行って得られるクラスタ(最も安定な集合C)内の2以上のドッキングモデル、好ましくは全ドッキングモデルを用いることができる。
 変異型UGT1A1について、AutoDock 4プログラム(Morris GM et al.: J Comput Chem 1998, 19:1639-1662)を用いたドッキングシミュレーションを例示しながら説明する。
 UGTはグルクロン酸抱合に関与する酵素であり、補酵素であるUDP-グルクロン酸(以下「UDPGA」と称する)から、基質(例えば、生体内物質であるビリルビンや、薬剤であるイリノテカン)にグルクロン酸を転移させる機能を持つ。UGT1A1と基質とのドッキングシミュレーションを行うために、まず、UGT1A1とUDPGAのドッキングシミュレーションを行う。
 UDPGAの立体構造データは、ChemIDPlusに登録されているデータをダウンロードして用いることができる(registry number: 2616-64-0)。5種類のUDPGAの立体構造データが存在するが、これら5種類の立体構造データを用いてドッキングシミュレーションを行えばよい。
 以下にAutoDockを用いてドッキングシミュレーションを行った例を用いて説明する。まず、UDPGAの配置を探索するマップを、グリッド間隔0.375Å、60×60×60ポイントの立方体としてAutoGridプログラムを用いて生成する。グリッド探索アルゴリズムは、ラマルク型遺伝アルゴリズムを使用すればよい。その他のパラメータはAutoDock 4のデフォルト値を使用すればよい。
 変異型UGT1A1と5種類のUDPGAの組み合わせ毎に、複数回、例えば10~100回ずつドッキングシミュレーションを実行する。10回ずつシミュレーションを行った場合は、1種の変異型UGT1A1について、50個の計算結果が得られる。得られた50個の計算結果のうち、抱合反応可能な向きでUDPGAがドッキングしているものについて、ドッキングエネルギーの平均値を計算する。ドッキングエネルギーΔGは下記の式6で計算される。
Figure JPOXMLDOC01-appb-M000011
 変異型UGT1A1とUDPGAとのドッキングシミュレーションにて得られた50個の結果を、分子間エネルギー、UDPGAの分子内部エネルギー、およびアンバウンドエネルギーのそれぞれについて、低い順に順位づけを行う。各結果について分子間エネルギー、UDPGAの分子内部エネルギー、およびアンバウンドエネルギーの3種類の順位の順位和を算出し、順位和が最小のドッキング結果を最も安定なドッキングモデルとして選択し、変異型UGT1A1とUDPGAのドッキングモデルとして決定することができる。この時、ドッキングモデルに含まれる水素結合は、PyMOLを用いて検出すればよい。図2に各種UGT1A1とUDPGAとのドッキングモデルを示す。
 変異型UGT1A1と基質のドッキングシミュレーションを行うために、グリッドを決定する必要がある。
 変異型UGT1A1とUDPGAとのドッキングモデルから、ドッキングエネルギーが低い一群のシミュレーション結果を、群平均法(2つのクラスタを順次統合していく階層型クラスタリングの一種)によるクラスタリングで、グループ化して定義する。
 群平均法では、全てのクラスタ間の距離を計算し、最も距離の小さい2つのクラスタを統合する。クラスタXとYの間の距離d(X,Y)は以下の式7のように定義される。
Figure JPOXMLDOC01-appb-M000012
 変異型UGT1A1と抱合反応可能な向きで結合しているUDPGAとの分子間エネルギー、分子内部エネルギー、アンバウンドエネルギーの順位和を指標として群平均法でクラスタリングを行い、「相対的に低いドッキングエネルギーを有する数種類のドッキング構造」の集合(本明細書にて「最も安定な集合C」とも称する。)を求める。
 ここで、最も安定な集合Cの至適な粒度を決定することで、グループ化が可能である。クラスタXの粒度G(X)を、抱合反応可能なUDPGA全体の集合をSとした次式8により計算する。
Figure JPOXMLDOC01-appb-M000013
 階層型クラスタリングでは、様々な粒度のクラスタリング結果が得られる。粒度の決定のために、野生型、G71R変異型UGT1A1、F83L変異型UGT1A1、I322V変異型UGT1A1と、UDPGAのドッキングシミュレーション結果を使って、群平均法によるクラスタリングを行い、全てのクラスタの粒度を計算してその分布を解析する。例えば、5%水準で、平均と比して有意に大きい粒度を除外するものとしたので、棄却域の値は0.56であった。つまり、粒度0.56以下のクラスタのうち最大のものを、グループとして定義可能であった。
 最も安定な集合Cは、抱合反応可能なドッキング結果から群平均法で得られたクラスタをgac(S)と定義して、次の式9のように計算する。
Figure JPOXMLDOC01-appb-M000014
 上記式9により定義されたクラスタの位置から分子の揺らぎを加味した抱合反応の場を決定することができる。
 変異型UGT1A1と基質とのドッキングシミュレーションにおいて、基質の大きさに合わせて、グリッドの最奥の位置を決定すればよい。基質が、アセトアミノフェンなどの比較的小さな化合物である場合は、グリッドは1つ設定すればよいが、ビリルビンなどの比較的大きな化合物である場合は、グリッドを複数、例えば3つ設定すればよい。グリッドの個数は、基質の大きさだけではなく、タンパク質の反応の場の立体構造も加味して決定される。
 また、かかるクラスタリングにより得られたクラスタ(最も安定な集合C)に含まれる補酵素とUGT1A1とのドッキングモデルのうち、2以上を選択して、基質とのドッキングシミュレーションに用いることができる。好ましくは、最も安定な集合Cに含まれる全ドッキングモデルについて、基質とのドッキングシミュレーションを行う。
 定めたグリッド位置を用いて、UGT1A1と基質(例えば、アセトアミノフェン(以下「AAP」と称する)、エストラジオール(以下「E2」と称する)、ビリルビン等)とのドッキングシミュレーションを行う。AAPとE2の立体構造データはChemIDPlusに登録されているものを用いればよい。ドッキングシミュレーションは、ドッキングモデルごと及び/又は基質ごとに複数回、例えば10~1000回行えばよい。100回程度でもよい。ドッキングシミュレーションごとに、基質のUGT1A1への進入の向きを評価する。基質の変異型UGT1A1への進入の向きが、抱合反応可能な向きであった場合を計数する。
 基質のタンパク質への進入の向きは、基質のUGT1A1への進入の向きを例にすると、図4に示す2種類が考えられる。<向きI>では、基質のヒドロキシル基がUDPGAに向いており、グルクロン酸抱合反応の進行が可能である。<向きII>では、基質のヒドロキシル基がUDPGAの反対側に向いており、グルクロン酸抱合反応の進行が困難である。本発明では、基質が酵素反応を受け得る向きでタンパク質に進入した回数、すなわちUGT1A1の場合は、基質が<向きI>でUGT1A1に進入したドッキングシミュレーションの回数を計数する。
 また、タンパク質Aと補酵素とのドッキングモデルを得た後、基質とのドッキングシミュレーションの前に、induced fit(誘導結合)を行ってもよい。本発明においてinduced fitとは、Flexible Dockingを行うことによりタンパク質の活性部位の立体構造を変化させることを意味する。Flexible Dockingは、MOE(Chemical Computing Group Inc.)等のプログラムにより行うことができる。
 induced fitは、タンパク質Aと補酵素とのドッキングモデルを得た後、基質とのドッキングシミュレーションに用いるドッキングモデルを対象に行う。1種のドッキングモデルに対して行ってもよいし、2以上の複数のドッキングモデルに対して行ってもよいが、上述の手法でクラスタリングされた「最も安定な集合C」のクラスタに含まれる全てのドッキングモデルに対して行うことが好ましい。induced fitを行った後の補酵素とのドッキングモデルを用いて、基質とのドッキングシミュレーションを行い、基質が酵素反応を受け得る向きでタンパク質に進入した回数を計数する。
 ドッキングシミュレーションにより得られた結果を用いて、タンパク質Aの酵素活性を予測する。タンパク質Aの酵素活性fは、以下の式10を用いて一般的に算出することができる。
Figure JPOXMLDOC01-appb-M000015
 gは基質ごとに固有の定数であり、Eはタンパク質Aと補酵素とのドッキングの酵素活性に対する寄与度であり、Rは基質が酵素反応を受け得る向きで進入した割合であり、aは、タンパク質Aの酵素反応が進行している環境、例えば生体内環境による影響を表す定数である。
 Rはドッキングシミュレーションにより得られた結果を用いて以下の式11を用いて表される。
Figure JPOXMLDOC01-appb-M000016
式中、Nとnは、タンパク質Aと基質とのドッキングシミュレーションにより得られる値であり、Nはタンパク質Aと基質とのドッキングシミュレーションの総回数であり、Nは2以上であり、nは酵素反応を受け得る向き(UGT1A1の場合は、<向きI>)で基質がタンパク質Aに進入した回数である。βはタンパク質への基質の進入の向きの酵素活性に対する寄与度である。例えば、タンパク質Aが変異型であり、タンパク質Aの立体構造データをタンパク質Bの立体構造データに基づいて計算した場合、βはタンパク質Bへの基質の進入の向きの酵素活性に対する寄与度とすればよい。
 したがって、本発明の方法では下記の式1を用いて、ドッキングシミュレーションから得られた結果を用いてタンパク質Aの酵素活性fを予測することができる。
Figure JPOXMLDOC01-appb-M000017
 また、タンパク質Bの酵素活性に対するタンパク質Aの相対的な酵素活性f’は、以下の式3により算出される。
Figure JPOXMLDOC01-appb-M000018
 式中、Nとnは、タンパク質Bと基質とのドッキングシミュレーションにより得られる値であり、Nはタンパク質Bと基質とのドッキングシミュレーションの総回数であり、Nは2以上であり、nは酵素反応を受け得る向きで基質がタンパク質Bに進入した回数である。
 また、βは以下の式2によって算出することができる。
Figure JPOXMLDOC01-appb-M000019
 タンパク質Aと補酵素とのドッキングにおける、補酵素の向きやドッキングエネルギーなどが酵素活性に寄与していないか、もしくは、関与が極めて小さい場合は、E=1とすることができる。ドッキングエネルギーが酵素活性に関与していない場合とは、例えばドッキングシミュレーションにより得られたドッキングエネルギー結果が、測定された値y’と相関がない場合を意味する。この場合、式1と式3はそれぞれ以下の式12と式13により表される。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021

 また、式1におけるE(補酵素とタンパク質Aとのドッキングの酵素活性に対する寄与度)は、補酵素の酵素への進入の向きが酵素活性に対して寄与する場合は、以下の式16または式17のいずれかを代入することも可能である。好ましくは、式17を代入する。
Figure JPOXMLDOC01-appb-M000022
(式16中、γはタンパク質への補酵素の進入の向きの酵素活性に対する寄与度であり、次の式21により表され、
Figure JPOXMLDOC01-appb-M000023
Lとlは、タンパク質Aと補酵素とのドッキングシミュレーションにより得られる値であり、Lはタンパク質Aと補酵素とのドッキングシミュレーションの総回数であり、Lは2以上であり、lは酵素反応が進行し得る向きで補酵素がタンパク質Aに進入した回数であり、Lとlはタンパク質Bと補酵素とのドッキングシミュレーションにより得られる値であり、Lはタンパク質Bと補酵素とのドッキングシミュレーションの総回数であり、Lは2以上であり、lは酵素反応が進行し得る向きで補酵素がタンパク質Bに進入した回数である);
Figure JPOXMLDOC01-appb-M000024
(式17中、mはタンパク質Aと補酵素とのドッキングモデルをクラスタリングして得られたクラスタ内のモデル数であり、mはタンパク質Bと補酵素とのドッキングモデルをクラスタリングして得られたクラスタ内のモデル数であり、δはクラスタ内のモデル数の酵素活性への寄与度を表す。δは、ドッキングシミュレーションの結果に基づいて式17を用いて算出した計算値yと測定された値y’との二乗誤差を最小にするように、下記式23を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000025
 式23中、yとy’はタンパク質Bについての値であり、yA1とy’A1、yApとy’Apはタンパク質Aについての値であり、pは2以上の数を表す。)
 式1、3、12、13等において、gとaは、予測対象となる基質について予め設定された数値を用いることができる。あるいは、gとaの値が不明である場合は、2以上のタンパク質Aについてドッキングシミュレーションを行った結果得られる計算値yと、測定された値y’を用いて、gとaの値を算出することができる。例えば、計算値yと、測定された値y’との二乗誤差を最小にするように、下記の式4を用いて、gとaを算出することができる。測定された値y’は、大きな値から小さな値を満遍なく選択して用いることが好ましい。例えば、タンパク質Bに対する相対活性で示すと、100%~1%未満まで幅広く用いることが好ましい。測定された値y’が偏っている場合、例えば相対活性では100%~50%の値である場合は、a=0として酵素活性を算出することもできる。なお、gとaは、喫煙等の生体外環境により影響をうけるであろう生体内環境を加味した値を設定することも可能である。
Figure JPOXMLDOC01-appb-M000026
 式中、yとy’はタンパク質Bについての値であり、yA1とy’A1、yApとy’Apはタンパク質Aについての値であり、pは2以上の数を表す。
 上記式4における測定された値y’は、ドッキングシミュレーションに基づく計算値ではなく、何らかの実測値を意味する。測定された値y’は例えば、組換えタンパク質を用いたアッセイで得られた実験値、論文などの文献報告や臨床検査結果などから予測される値を含む。例えばUGT1A1のビリルビンに対する抱合活性は、ビリルビンの血中濃度から推定することができ、推定された値を測定された値y’として使用することができる。
 変異型UGT1A1の、AAP、E2もしくはビリルビンに対する酵素活性の予測を例示して説明する。
 まず、AAP、E2、ビリルビンについて、各々gとaを算出する。G71R変異型UGT1A1、F83L変異型UGT1A1、I322V変異型UGT1A1の各々について、組換えタンパク質の酵素活性を測定することにより、測定された値y’を得ることができる。組換えタンパク質の作製方法、および酵素活性の測定方法は自体公知の方法により行うことができる。例えば、実施例に記載の方法により行えばよい。また、ビリルビンに対する測定された値y’として、文献報告のビリルビン抱合活性(例えば、Yamamoto K et al.: Biochem Biophys Acta 1998, 1406:267-273, Udomuksorn W et al: Pharmacogenetics & Genomics 2007, 17:1017-1029, Ciotti M et al: Biochimica et Biophysica Acta 1998, 1407:40-50)を使用することもできる。
 下記の式5を用いて、AAP、E2、ビリルビンについて、測定された値y’を代入して、二乗誤差を最小にするgとaの値を算出する。
Figure JPOXMLDOC01-appb-M000027
 その結果、AAPについて、g=1.1055、a=0.0722、E2について、g=5.9410、a=1.2548、ビリルビンについて、g=47.58、a=0.04の値を算出することができる。
 上記算出されたgとaを用いて、変異型UGT1A1の酵素活性を予測することができる。式3にg、aを代入し、ドッキングシミュレーションにより得られるNとnを利用して、変異型UGT1A1の算出することができる。34種類の変異型UGT1A1の、AAPおよびE2についての酵素活性を算出した結果を図7に示す。
 さらに、式1および式3における
Figure JPOXMLDOC01-appb-M000028
について、Sigmoid関数を導入することも可能である。Sigmoid関数とは、下記式19で表されるS字型の関数である。
Figure JPOXMLDOC01-appb-M000029
 本発明の式1において、Sigmoid関数を導入した計算式は、下記式20にて表すことができる。
Figure JPOXMLDOC01-appb-M000030
 ここでtは、基質の向きに対する酵素活性の感受性を表すものであり、tの値が大きい程基質の向きの僅かな差異が酵素活性を大きく変化させることとなる。tの値は、2以上のタンパク質Aについてドッキングシミュレーションを行った結果得られる計算値yと、測定された値y’を用いて算出することができ、以下のdの算出方法と同様にして求めることができる。dは、シミュレーションの結果を上記の式に代入して得られる計算値yと、in vitro 解析等による測定値y’との二乗誤差を最小化する値として、下記の式22を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000031
 本発明は、タンパク質Aの酵素活性を予測する方法を実行するプログラムを担持する記録媒体、およびタンパク質Aの酵素活性を予測する方法を実行する手段を担持する装置にも及ぶ。記録媒体に担持されるプログラムは、コンピュータを以下の手段として機能させるものであり、装置は、以下の手段を含むものである。
 (1)入力されたアミノ酸配列情報に基づいて、タンパク質Aの立体構造データを計算する手段、
 (2)タンパク質Aの立体構造データと、ドッキングシミュレーションの対象となる基質の立体構造データを記憶する手段、
 (3)前記記憶された、タンパク質Aの立体構造データと基質の立体構造データを用いて、タンパク質Aと基質とのドッキングシミュレーションを行うシミュレーション手段、
 (4)シミュレーションにより得られた結果を記憶する手段、
 (5)記憶されたシミュレーション結果に基づいて、タンパク質Aの酵素活性を算出する手段、
 (6)算出された酵素活性を表示する手段。
 また、本発明は、タンパク質Aの酵素活性を予測する方法、前記記録媒体、または前記装置を用いた、基質適合性の判断方法にも及ぶ。本発明における式1または3を用いて、2以上の基質について、基質ごとの特定のタンパク質Aの酵素活性を予測し、得られた2以上の予測結果に基づいて目的の基質を選択する。例えば、タンパク質Aが特定の変異型UGT1A1であり、基質が薬剤である場合に、本方法により、当該変異型UGT1A1による抱合活性が最も高い薬剤を検出し、選択することができる。本方法により生体内での薬剤の効能と代謝とのバランスを鑑み、薬剤を選択することも可能となる。
 さらに、本発明はタンパク質Aの酵素活性を予測する方法、前記記録媒体、または前記装置を用いて、当該薬剤の投与量および/または投与間隔、投与頻度を評価する方法にも及ぶ。基質が特定の薬剤であり、当該薬剤が生体に投与される場合であって、生体が例えばUGT1A1に変異を持つ場合に、かかる変異型UGT1A1の当該薬剤に対する酵素活性を予測し、予測結果に基づいて、当該薬剤の投与量および/または投与間隔、投与頻度を評価することが可能である。例えば、薬剤に対する変異型UGT1A1の抱合活性が低い場合は、投与量、投与頻度を低くすることを検討することが可能である。
 以下、実施例により本発明を説明するが、本発明はこれらに限定されるものではない。
(実施例1)UGT1A1の立体構造データの計算
 野生型UGT1A1の立体構造データを、MODBASEからダウンロードした(accession number: Q5DT03)。PyMOLプログラムを用いて水素原子を追加し、SWISS-PDB Viewerプログラムを用いて、G71R変異型UGT1A1、F83L変異型UGT1A1、I322V変異型UGT1A1の各変異型のデータを作成した。これらのデータを用いて、TINKERパッケージのminimizeプログラムとAMBER99力場パラメータによるエネルギー最小化計算をRMS勾配が0.3になるまで行い、各変異型の立体構造を求めた。計算された各変異型の三次元構造を図1に示す。
(実施例2)各種UGT1A1とUDPGAとのドッキングシミュレーション
 AutoDock 4プログラムを用いて、各種UGT1A1(野生型UGT1A1、G71R変異型UGT1A1、F83L変異型UGT1A1、I322V変異型UGT1A1)とUDPGAのドッキングシミュレーションを行った。UDPGAの立体構造データは、ChemIDPlusに登録されている5個のデータを用いた(registry number: 2616-64-0)。UDPGAの配置を探索するマップを、グリッド間隔0.375Å、60×60×60ポイントの立方体としてAutoGridプログラムを用いて生成した。グリッド探索アルゴリズムは、ラマルク型遺伝アルゴリズムを使用した。その他のパラメータはAutoDock 4のデフォルト値を使用した。
 各種UGT1A1と5個のUDPGAの組み合わせ毎に、10回ずつドッキングシミュレーションを実行した。計算結果は、1種の変異型UGT1A1について、50個得られた。各々の変異型UGT1A1について、得られた50個の計算結果のうち、抱合反応可能な向きのUDPGAのドッキングエネルギーの平均値を計算した。なお、ドッキングエネルギーΔGは下記の式6で計算した。
Figure JPOXMLDOC01-appb-M000032
 各変異型UGT1A1とUDPGAとのドッキングシミュレーションにて得られた50個の結果を、分子間エネルギー、UDPGAの分子内部エネルギー、およびアンバウンドエネルギーのそれぞれについて、低い順に順位づけを行った。分子間エネルギー、UDPGAの分子内部エネルギー、およびアンバウンドエネルギーの3種類の順位の順位和が最小のドッキング結果を最も安定なドッキングモデルとして選択し、それぞれの変異型UGT1A1とUDPGAのドッキングモデルに決定した。この時、ドッキングモデルに含まれる水素結合は、PyMOLを用いて検出した。
 図2にドッキングモデルの構造を示す。UDPGAのウラシル環は、野生型では357番目のグルタミン(Q)と、G71R変異型UGT1A1では42番目のセリン(S)、173番目のヒスチジン(H)、375番目のセリン(S)、396番目のアスパラギン酸(D)と、F83L変異型UGT1A1では374番目のグリシン(G)との相互作用が見られた。I322V変異型UGT1A1ではウラシル環と相互作用するアミノ酸は見られなかった。UDPGAのグルクロン酸部分は、野生型UGT1A1では396番目のアスパラギン酸(D)と、G71R変異型UGT1A1では310番目のメチオニン(M)、312番目のセリン(S)、393番目のロイシン(L)との相互作用が見られた。F83L変異型UGT1A1においては、グルクロン酸部分と相互作用するアミノ酸は見られなかった。I322V変異型UGT1A1においては、153番目のフェニルアラニン(F)とグルクロン酸部分との相互作用が見られた。なお、UDPGA反応の場の疎水性度には大きな違いはなかった。
 抱合反応可能な向きのUDPGAと各UGT1A1のドッキングエネルギーの分布を図3に示す。野生型とG71R変異型とのドッキングエネルギー、および、F83L変異型とI322V変異型とのドッキングエネルギーに有意差は無かった。F83L変異型は、野生型およびG71R変異型よりもドッキングエネルギーが有意に高かった。また、I322V変異型は野生型およびG71R変異型よりもドッキングエネルギーが有意に高かった。
(実施例3)UGT1A1とUDPGAとの複合体における基質のドッキングシミュレーション
 UGT1A1と基質とのドッキングシミュレーション条件のうち、グリッドを決定するために、まずドッキングモデルのうちからドッキングエネルギーが低い一群のシミュレーション結果を、群平均法(2つのクラスタを順次統合していく階層型クラスタリングの一種)によるクラスタリングで、グループ化して定義した。群平均法では、全てのクラスタ間の距離を計算し、最も距離の小さい2つのクラスタを統合する。クラスタXとYの間の距離d(X,Y)は以下の式7のように定義された。
Figure JPOXMLDOC01-appb-M000033
 UGT1A1と抱合反応可能な向きのUDPGAの分子間エネルギー、分子内部エネルギー、アンバウンドエネルギーの順位和を指標として群平均法でクラスタリングを行い、「相対的に低いドッキングエネルギーを有する数種類のドッキング構造」の集合を求めた。
 ここで、最も安定な集合Cの至適な粒度を決定することで、グループ化が可能である。クラスタXの粒度G(X)を、抱合反応可能なUDPGA全体の集合をSとした次の式8により計算した。
Figure JPOXMLDOC01-appb-M000034
 階層型クラスタリングでは、様々な粒度のクラスタリング結果が得られる。
 粒度の決定のために、野生型、G71R変異型UGT1A1、F83L変異型UGT1A1、I322V変異型UGT1A1と、UDPGAのドッキングシミュレーション結果を使って、群平均法によるクラスタリングを行い、全てのクラスタの粒度を計算してその分布を解析した。5%水準で、平均と比して有意に大きい粒度を除外するものとしたので、棄却域の値は0.56であった。つまり、粒度0.56以下のクラスタのうち最大のものを、グループとして定義可能であった。
 最も安定な集合Cは、抱合反応可能なドッキング結果から群平均法で得られたクラスタをgac(S)と定義して、次の式9のように計算した。
Figure JPOXMLDOC01-appb-M000035
 式9により定義されたクラスタの位置から分子の揺らぎを加味した抱合反応の場を決定した。そして、各変異型UGT1A1とAAPもしくはE2とのドッキングシミュレーションにおいて、各基質の大きさに合わせたグリッドの最奥の位置を決定した。かかるグリッド位置を用いて、UGT1A1のグルクロン酸抱合反応の場への各基質の進入方向を解析した。AAPとE2の分子構造データはChemIDPlusに登録されているものを用い、ドッキングシミュレーションを基質ごとに100回実行した。
 図4に基質の2つの向きを示す。向きIは基質のヒドロキシル基がUDPGAに向いており、グルクロン酸抱合反応の進行が可能である。向きIIは基質のヒドロキシル基がUDPGAの反対側に向いており、グルクロン酸抱合反応の進行が困難である。
 表1に向きIおよび向きIIの各々でドッキングした回数を示す。
Figure JPOXMLDOC01-appb-T000001
 AAPでは、野生型、G71R変異型、I322V変異型では大部分のドッキング結果が向きIであった。F83L変異型では大部分のドッキング結果が、向きIIであった。
 E2では、野生型、I322V変異型では大部分のドッキング結果において、向きIであった。G71R変異型、F83L変異型では、大部分のドッキング結果が、向きIIであった。
(実施例4)UGT1A1のin vitroでの酵素活性測定
 ヒト肝臓cDNAライブラリーから、PCR増幅によりヒトUGT1A1 cDNAを抽出し、pENTERTM/D-TOPOベクター(Invitrogen, Carlsbad, CA, USA)に挿入した。Site-directed mutagenesis法を用いて、遺伝子変異をクローンcDNAに導入した。正常型および各変異型のcDNA配列を、組み換えを用いて発現ベクターpcDNA-DEST40 GatewayTM(Invitrogen, Carlsbad, CA, USA)に移植した。各種UGT1A1の発現ベクターをルシフェラーゼレポーターベクター(pGL3-vector)とともにLipofectamineTM2000を用いてCOS-7細胞に導入した。48時間後に細胞を採取し、0.1M Tri-HCl 70μl で均質化し、ルシフェラーゼとUGT1A1のアッセイの酵素ソースとして使用した。TD-20/20 luminometer(Promega, Madison, WI, USA)を用いてルシフェラーゼ活性を計測し、UGT1A1の酵素活性の標準化に供した。E2のグルクロン酸抱合反応を、UGT Reaction Mix (BD Gentest, Franklin Lakes, NJ, USA)を使用して分析した。反応生成物を遠心した後、LC/MS/MS解析に供し、E2とグルクロン酸の抱合体(E2G)の量を測定した。AAPについても同様の手法を用いて抱合体(AAPG)の測定を行った。
 Analyst 1.3.1ソフトウェアでAPI-3000TMLC/MS/MSシステム (Applied Biosystems-MDS Sciex, Tronto, Canada)を操作し、データ取得と解析を行った。
 AAPおよびE2を基質とした時の各変異型UGT1A1のin vitro抱合活性を図5に示す。F83L変異型のAAPに対する酵素活性は、野生型と比較して有意に低下していた (n=5, p<0.005)。G71R変異型およびF83L変異型のE2に対する酵素活性は、野生型と比較して有意に低下していた (n=5, p<0.005)。F83L変異型のE2に対する酵素活性は、G71R変異型のE2に対する酵素活性よりも有意に低かった (n=5, p<0.05)。
(実施例5) UGT1A1酵素活性を予測するための数式の作成
 UGT1A1の酵素活性は、(i)UGT1A1とUDPGAのドッキング、と(ii)UGT1A1の抱合反応空間への基質の進入、の積で規定され、プロセス(i)をE、プロセス(ii)をRと定義することで、抱合活性fは次式10で表される。
Figure JPOXMLDOC01-appb-M000036
 gは基質に固有の定数、aは内因性UGT1A1等の生体内環境による影響を表す定数である。ここでは、実施例2と実施例4の結果から、UDPGAとUGT1A1とのドッキングエネルギーの抱合反応活性への関与は認められないと考えられたため、E=1を代入した。
 プロセス(ii)では、基質の進入方向の関与を反映させる。変異型UGT1A1と基質とのドッキングシミュレーションをN回行い、そのうち基質が抱合反応可能な向きである結果がn回であった場合、プロセス(ii)のRは次式11で定義される。
Figure JPOXMLDOC01-appb-M000037
βは、以下の式2で表される。式中、Nは野生型UGT1A1と基質とのドッキングシミュレーションの総回数であり、nは全N回中、基質が野生型UGT1A1に抱合反応可能な方向で進入した回数である。
Figure JPOXMLDOC01-appb-M000038
EとRを式10に代入すると、酵素活性の計算式は下記式12で表される。
Figure JPOXMLDOC01-appb-M000039
 ここで定数g,aは、計算式とin vitro実験結果の二乗誤差が最小となるように基質ごとに異なる値を設定する。
 また、式12を用いて、変異型UGT1A1の、野生型の酵素活性に対する相対的な酵素活性f’は次の式13のように計算できる。
Figure JPOXMLDOC01-appb-M000040
(実施例6)AAPと、E2に対する酵素活性の予測
 上記実施例5の式により算出された計算値yと、野生型およびG71R変異型、F83L変異型、I322V変異型のUGT1A1の各基質に対する抱合活性の実験値y’(実施例4)を用いて、二乗誤差を最小化するg,aを次式5で計算することができる。
Figure JPOXMLDOC01-appb-M000041
 式5にAAPおよびE2のin vitro実験結果を代入し、g,aの値を求めた。その結果、AAPについて、g=1.1055、a=0.0722、E2について、g=5.9410、a=1.2548の値が算出された。
 まずG71R変異型、F83L変異型、I322V変異型のin vitroでの抱合活性の測定結果(in vitro測定値)と、式3を用いた抱合活性の算出結果(計算値)を比較した。結果を図6に示す。式3を用いて算出した抱合活性(計算値)はin vitroの抱合活性(in vitro測定値)を良く再現可能であることがわかった。
 式3を用いて、現在報告されている他の31種類の変異型UGT1A1について、ドッキングシミュレーションを行い、抱合活性を式3を用いて算出した。全34種類の変異型UGT1A1に関する算出結果を、図7に示した。
(実施例7)ビリルビンに対する酵素活性の予測
 ビリルビンを基質とした時の抱合活性を式3を用いて算出した。
 まず、ビリルビンとUGT1A1のドッキングシミュレーションを行った。基質(ビリルビン)の分子が大きいため、基質進入方向のグリッドとして、グリッドA~Cの3つを設定した。3つのグリッドを図8に示す。野生型、およびG71R変異型、F83L変異型、I294T変異型とビリルビンとのドッキングシミュレーションを行い、基質の進入の向きを解析した。グリッドA~Cのそれぞれについて100回ずつドッキングシミュレーションを行った。各グリッドについてNとnは、各々N,N,N,n,n,nとして計数した。NをNとNとNの和(すなわち300回)、nをnとnとnの和として算出した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記結果と、野生型および文献で報告されているG71R変異型、F83L変異型、I294T変異型のin vitro酵素活性の値y’(y'w=1.00, y'G71R=0.32, y'F83L=0.05, y'I294T=0.50)を用いて二乗誤差を最小化するg,aを計算したところ、g=44.06、a=0.17であった。in vitro酵素活性は、G71R変異型については、Yamamoto K et al.: Biochem Biophys Acta 1998, 1406:267-273を、F83L変異型についてはUdomuksorn W et al.: Pharmacogenetics & Genomics 2007, 17:1017-1029を、I294T変異型については、Ciotti M et al: Biochimica et Biophysica Acta 1998, 1407:40-50を参照した。これらの文献では、酵素活性は正常値(野生型)に対する割合(相対活性)で示されており、G71R変異型は32%、F83L変異型は5%、I294T変異型は50%である。
 これらの結果を用いて式3により、各変異型UGT1A1のビリルビンに対する相対抱合活性を算出した。
 G71R変異型、F83L変異型、I294T変異型のin vitroでの抱合活性値(in vitro測定値(文献報告))と、式3を用いた抱合活性の算出結果(計算値)を比較した。結果を図9に示す。式3を用いて算出した抱合活性(計算値)はin vitroの抱合活性(in vitro測定値(文献報告))を良く再現可能であることがわかった。
(実施例8)ビリルビンに対する酵素活性の予測2
 実施例7にて得られたgとaの値を用いて、R336L変異型、N400D変異型、W461R変異型についてビリルビンに対する活性を算出した。
 まず、各変異型UGT1A1とビリルビンとのドッキングシミュレーションを行った。ドッキングシミュレーションの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 これらの結果と実施例7にて得られたgとaの値を用いて、抱合活性を式3を用いて算出した。
 次に、文献に記載のデータからR336L変異型、N400D変異型、W461R変異型のビリルビン抱合活性の値の範囲を算出した。
 Crigler-Najjar症候群I型(CN-I)患者に見られる変異型UGT1A1のビリルビン抱合活性は、野生型の0~10%と算出される(Yamamoto K et al.: Biochem Biophys Acta 1998, 1406:267-273)。ホモ型のW461R変異型(TA6/TA6)が、CN-I患者にて発見されている(Maruo Y, et al.: J Pediatr Gastroenterol Nutr 2003, 37(5):627-30)。よって、ホモ型のW461R変異型の酵素活性は、野生型の0~10%と計算された。
 Crigler-Najjar症候群II型(CN-II)およびGilbert症候群(GS)患者に見られる変異型UGT1A1のビリルビン抱合活性は、野生型の26~66%と算出される(Udomuksorn W et al.: Pharmacogenetics & Genomics 2007, 17:1017-1029; Yamamoto K et al.: Biochem Biophys Acta 1998, 1406:267-273; Seppen J, et al.: J Clin Invest 1994, 94(6):2385-2391)。ホモ型のN400D変異型が、CN-II患者に見られる(Labrune P et al.: Hum Mutat 2002, 20(5):399-401)。よって、ホモ型のN400D変異型の酵素活性は、野生型の26~66%と計算された。
 ヘテロ型のR336L変異型は、CN-II患者に見られる(Servedio V et al.: Hum Mutat 2005, 25(3):325)。Servedio V et al.に記載のCN-II患者ではプロモータ領域にTA7/TA7の変異も確認されている。TA7/TA7変異のある患者では、ビリルビン抱合活性が野生型と比べて50%に低下することが報告されている(Peterson et al.: J Nutr 2005, 135:1051-1055)。これらの報告から、R336L型変異の染色体あたりの抱合活性低下をx(%)とすると、下記の式14が成り立つ:
Figure JPOXMLDOC01-appb-M000042
式14から以下の式15が得られた。
Figure JPOXMLDOC01-appb-M000043
したがって、ホモ型のR336L変異型の抱合活性は野生型の52~132%(平均値92%)と計算された。
 表3に記載のドッキングシミュレーションの結果から算出した値(計算値)と、文献から得られた値(in vivo測定値(文献報告))の比較を図10に示す。この結果、高い精度で正しい抱合活性を導出可能なことが分かった。UGT1A1は肝臓で働く酵素であり、ヒト生体内でのUGT1A1抱合活性は飲酒や喫煙の影響を受ける可能性が高いことを考慮すると、本発明に用いられる式により得られる値は非常に精度が高いと考えられた。
(実施例9)ビリルビンに対する酵素活性の予測3
 in vitro酵素活性の値として、G71R変異型、F83L変異型、I294T変異型ではなく、G71R変異型、P229Q変異型、I294T変異型のものを用いた以外は、実施例7と同様にして、gとaを算出した。P229Q変異型の値は、Udomuksorn W et al: Pharmacogenetics and genomics 2007, 17(12):1017-29を参照した。この文献では、P229Q変異型の正常値(野生型)に対する割合(相対活性)は、61%と示されている。各変異型UGT1A1とビリルビンとのドッキングシミュレーションを行った結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
上記結果と、野生型および文献で報告されているG71R変異型、P229Q変異型、I294T変異型のin vitro酵素活性の値y’(y'w=1.00, y'G71R=0.32, y'P229Q=0.61, y'I294T=0.50)を用いて二乗誤差を最小化するg,aを計算したところ、g=29.36、a=0.40であった。
 これらの結果を用いて式3により、各変異型UGT1A1のビリルビンに対する相対抱合活性を算出した。
 G71R変異型、P229Q変異型、I294T変異型のin vitroでの抱合活性値(in vitro測定値(文献報告))と、式3を用いた抱合活性の算出結果(計算値)を比較した。結果を図11に示す。
(実施例10)ビリルビンに対する酵素活性の予測4
 R336L変異型、N400D変異型、W461R変異型について、実施例8にて得られたドッキングシミュレーションの結果と、実施例9にて得られたgとaの値を用いて、抱合活性を式3を用いて算出した。
 ドッキングシミュレーションの結果から算出した値(計算値)と、実施例8に記載の文献から得られた値(in vivo測定値(文献報告))の比較を図12に示す。
(実施例11)ビリルビンに対する酵素活性の予測5
 R336L変異型、N400D変異型、W461R変異型について、g=29.36、a=0を代入して、抱合活性(相対活性)を式3を用いて算出した。
 算出した結果(計算値)と、実施例8に記載の文献から得られた値(in vivo測定値(文献報告))の比較を、図13に示す。
(実施例12)構造計算時の水分子付加の影響
 水分子を付加して、又は水分子を付加せず(Gas Phase)に、UGT1A1(細胞膜タンパク質)およびGタンパクであるArl6(細胞質に存在)のタンパク質2種類について、シミュレーションを行った。
 水分子を付加する場合は、TINKERパッケージの代わりにMOEを用いた以外は実施例1と同様にして立体構造を計算した(野生型UGT1A1、G71R変異型UGT1A1、F83L変異型UGT1A1、I322V変異型UGT1A1:野生型Arl6、T31R変異型Arl6、G169A変異型Arl6、L170W変異型Arl6)。また、水分子を付加しない場合は、TINKERパッケージを用いて、実施例1と同様にして立体構造を計算した。
 その後UGT1A1について、水分子を付加した場合はMOE DockもしくはAutoDock 4プログラムを用いて、水分子を付加していない場合はAutoDock 4プログラムを用いて、実施例2と同様にして、UDPGAとのドッキングシミュレーションを行った。抱合反応可能な向きのUDPGAと各UGT1A1のドッキングエネルギーの分布を図14に示す。
 次に、水分子を付加した各変異型UGT1A1と基質(AAPもしくはE2)とのドッキングシミュレーションまたは、水分子を付加した各変異型Arl6と基質(GTPγSもしくはGDP)とのドッキングシミュレーションを行った。基質とのドッキングシミュレーションは、MOE DockもしくはAutoDock4を用いて、実施例3と同様にして行った。ドッキングシミュレーションの結果を図15(UGT1A1)と図17(Arl6)に示す。図15のaは、ドッキングプログラムにMOE Dockを使用し、bはAutoDock4を用いた結果である。図17の結果は、ドッキングプログラムにAutoDock4を用いた結果である。
 各種UGT1A1について、基質が向きIで進入した回数とin vitro測定値との比較を図16に示す。図16のaは、水分子付加した場合に基質とのドッキングシミュレーションをMOE Dockを用いて行った結果であり、bは水分子を付加した場合に基質とのドッキングシミュレーションをAutoDock4を用いて行った結果である。
 UGT1A1では、水分子を付加して構造計算を行った場合、基質と各種UGT1A1のドッキングシミュレーションの結果(基質が向きIで各種UGT1A1に進入した回数)がin vitroの抱合活性(in vitro測定値)に相関しないことがわかった。また、ドッキングシミュレーションにMOE DockおよびAutoDock4のいずれを使用した場合でも同様に相関がみられず、基質がAAPおよびE2のいずれの場合でも相関がみられなかった。
 また、Arl6では水分子を付加して構造計算を行った結果、基質(GTPγSまたはGDP)と各種Arl6のドッキングシミュレーションの結果(GTPγSまたはGDPが各種Arl6に結合し得る向きで進入した回数)と、in vitroのArl6実験値(Kobayashi et.al, BBRC 381, 439-442, 2009および東京大学大学院薬学研究科機能薬学教室生理化学教室の紺谷圏二先生の実験データ)とに高い相関が見られることを確認した。なおArl6は酵素タンパク質ではないが、酵素タンパク質について酵素反応が進むためには基質との結合が必須であることから、Arl6の基質との結合能は酵素タンパク質の触媒能と同義に考えることができる。
 UGT1A1は、細胞膜に存在するタンパク質であり、触媒反応が酵素内部で起こると考えられる。一方、Arl6は細胞質に存在するタンパク質であり、GTPとの結合がタンパク質表面で起こると考えられる。これらの結果から、対象となる酵素タンパク質の存在する箇所や、触媒反応の起こる部位などの疎水性度および親水性度を考慮して、構造計算時における水分子付加の要否を決定可能であることが示唆された。
(実施例13)induced fitの影響
(1)水分子を付加せずに各種UGT1A1の立体構造データの計算を行い、UDPGAとのドッキングシミュレーションを行った。構造計算にMOE又はTINKERを使用し、ドッキングシミュレーションにMOE Dock又はAutoDock4を使用して、実施例1および2と同様の手法でシミュレーションを行った。UDPGAとのドッキングモデル1つに対して、MOEを用いてinduced fitを行い、基質(AAPまたはE2)とのドッキングシミュレーションを行った。
 結果を図18および図19に示す。図18のaは、構造計算にMOEを用いてドッキングシミュレーションにMOE Dockを用いた結果であり、図18のbは、構造計算にTINKERを用いてドッキングシミュレーションにAutoDock4を用いた結果である。図19のaは構造計算にMOEを用いてドッキングシミュレーションにMOE Dockを用いた結果とin vitro測定値との比較であり、図19のbは、構造計算にTINKERを用いてドッキングシミュレーションにAutoDock4を用いた結果とin vitro測定値との比較である。
 induced fitを行わなかった結果(図19のグラフ、実線)と比較すると、induced fitを行った場合(図19のグラフ、点線)では、基質と各種UGT1A1のドッキングシミュレーションの結果(基質が向きIで各種UGT1A1に進入した回数)がin vitroの抱合活性(in vitro測定値)に相関しないことがわかった。本実施例では、UDPGAとのドッキングモデルを1種類(最も安定なドッキングモデル)としている。induced fitのシミュレーションに対する影響をさらに検討するため、UDPGAとのドッキングモデルについてクラスタリングを行い(実施例3参照)、クラスタリングの結果得られたクラスタ(最も安定な集合C)内の全ドッキングモデルについて、induced fitを行い影響を検討した。
(2)実施例1および2と同様にして、TINKERを使用して水分子を付加せずに各種UGT1A1の立体構造データの計算を行い、AutoDock4でUDPGAとのドッキングシミュレーションを行った。次にUDPGAとのドッキングモデルについてクラスタリングを行い(実施例3参照)、クラスタリングの結果得られた最も安定な集合C内の全ドッキングモデルについて、MOEを用いてinduced fitを行い、AutoDock4を用いて基質(AAPまたはE2)とのドッキングシミュレーションを行った。これらの結果を用いて、式3(gとaの値は、実施例6のものを使用)により、各変異型UGT1A1のAAPもしくはE2に対する相対抱合活性を算出した。
 結果を図20に示す。最も安定な集合C内の全ドッキングモデルについてinduced fitを行った場合(図20(B))、induced fitなしの場合(図20(C))およびクラスタ内の1種類のモデルについてinduced fitを行った場合(図20(A))と比較して、式3を用いて算出した抱合活性(計算値)がin vitroの抱合活性(in vitro測定値)と高い相関を持つことがわかった。従って、UDPGAとのドッキングモデルのクラス内の複数のモデル、好ましくは全てのモデルについて、induced fitを行い、基質とのドッキングシミュレーションを行うことが好ましいことが、示唆された。
(実施例14)補酵素の各種UGT1A1への進入の向きの抱合能への影響
 補酵素のドッキングエネルギーがUGT1A1の抱合能に影響をしないことを実施例2および4にて確認した。補酵素の各種UGT1A1への進入の向きが、抱合能へ影響するかについて検討を行うため、式1について3種類のin silico抱合能計算式を導出した。すなわち、E=1(補酵素の向きの寄与が皆無)、E=下記式16(補酵素が酵素反応を受け得る向きで各種UGT1A1へ進入した回数の寄与)、
Figure JPOXMLDOC01-appb-M000044
E=下記式17(補酵素とのシミュレーションを行った後、クラスタリングにより選択されたモデル数の寄与)
Figure JPOXMLDOC01-appb-M000045
である。L、l、γ、m、m、δについては本明細書にて定義したとおりである。
 実施例13の手法により、UDPGAとのドッキングモデルのクラスタ内の全てのモデルについて、induced fitを行い、基質とのドッキングシミュレーションを行った。基質とのドッキングシミュレーションの結果を用いて、各計算式を用いてG71R変異型UGT1A1、F83L変異型UGT1A1、I322V変異型UGT1A1、R336L変異型UGT1A1、H376R変異型UGT1A1、P387S変異型UGT1A1の抱合活性(計算値)を算出した(gとaは実施例6のものを使用、δは0.37を用いた)。得られた計算値とin vitro抱合能(基質はAAPまたはE2)との二重誤差(式18)を算出し、各計算式の抱合能の予測精度を評価した。
Figure JPOXMLDOC01-appb-M000046
 E=1(補酵素の寄与が皆無)の場合は、二重誤差が0.137062であり、E=式16(補酵素が酵素反応を受け得る向きで各種UGT1A1へ進入した回数の寄与)の場合は0.117838、E=式17(補酵素とのシミュレーションを行った後、クラスタリングにより選択されたモデル数の寄与)の場合は0.053017であった。補酵素とのドッキングシミュレーションを行った後、クラスタリングにより選択されたモデル数を計算式に使用した場合に、最も二重誤差が減少した。従って、補酵素のオリエンテーションが抱合能に関与しており、これを考慮することにより、さらに正確に抱合能を予測可能となることが示唆された。
(実施例15)基質のオリエンテーションについてSigmoid関数を用いた場合の影響
 Sigmoid関数とは下記式19で表されるS字型の関数であり、実数xに対して(0, 1)の値域を持つ単調増加関数である。pをゲインと呼び、関数の形状に影響する。
Figure JPOXMLDOC01-appb-M000047
 抱合能の計算式である式1において、式10における項R(UGT1A1の抱合反応空間への基質の進入)にSigmoid関数を適用した計算式を作成した(式20)。
Figure JPOXMLDOC01-appb-M000048
 G71R変異型UGT1A1、F83L変異型UGT1A1、I322V変異型UGT1A1、R336L変異型UGT1A1、H376R変異型UGT1A1、P387S変異型UGT1A1について、実施例13の手法により、UDPGAとのドッキングモデルのクラス内の全てのモデルについて、induced fitを行い、基質とのドッキングシミュレーションを行った。基質とのドッキングシミュレーションの結果を用いて、実施例14の3種類のEのうち式17を上記式20と組み合わせた計算式により、各種UGT1A1の抱合活性(計算値)を算出した(gとaは実施例6のものを使用。d、tは実施例13の結果と、野生型およびG71R変異型、F83L変異型、I322V変異型のin vitro酵素活性の値を用いて、二重誤差を最小化する値を計算した。その結果、t=7.00、d=0.54であった。δは0.37を用いた)。なお、各種UGT1A1(G71R変異型、F83L変異型、I322V変異型、R336L変異型、H376R変異型、P387S変異型)のin vitro抱合能は、実施例4の手法と同様にして測定した。さらに、現在報告されている他の28種類の変異型UGT1A1について、本実施例と同様にしてドッキングシミュレーションを行い、その結果を用いて式17および式20を用いて、抱合活性を測定した。
 図21に、in vitro測定値とシミュレーションに基づく計算値との比較を示す。また図22に、野生型UGT1A1と、全34種の変異型UGT1A1のシミュレーションに基づく計算値の結果を示す。
 計算式にSigmoid関数を使用した場合、in vitroの抱合活性を良く再現可能であることがわかった(図21および図22)。よって、式10における項R(UGT1A1の抱合反応空間への基質の進入)へSigmoid関数を適用することが好ましいことが示唆された。
(実施例16)AAPと、E2に対する酵素活性の予測
 実施例15と同様の手法を用いて、ドッキングシミュレーションを行った。かかるドッキングシミュレーションの結果を用いて、実施例14の3種類のEのうちE=1を式3と組み合わせた計算式により、G71R変異型UGT1A1、F83L変異型UGT1A1、I322V変異型UGT1A1、R336L変異型UGT1A1、H376R変異型UGT1A1、P387S変異型UGT1A1の抱合活性(計算値)を算出した(gとaは実施例6のものを使用)。なお、各種UGT1A1(G71R変異型、F83L変異型、I322V変異型、R336L変異型、H376R変異型、P387S変異型)のin vitro抱合能は、実施例4の手法と同様にして測定した。
 これらの結果を図23に示す。
 本発明の方法を用いれば、特定の基質に対する酵素活性が予測できない変異型タンパク質についての、酵素活性を予測することができ有用である。薬剤代謝に重要なUGT1A1の変異型を例に説明すると、天然に存在する変異部位の解析結果は、将来的に個人のゲノム解析結果が得られた場合、薬剤投与のための情報として有益である。また、上記酵素活性fまたはf’は、タンパク質の立体構造自体に由来する酵素活性であり、上記数式を使用して、その他の環境要因等を含めるような数式を作成し、リスクファクターを加味した患者ごとの薬剤投与計画の作成のための参考情報を得ることも可能である。さらに、特定のタンパク質について、人工変異部位を含めて、網羅的に変異部位を持つタンパク質について酵素活性の予測を行うことにより、酵素の触媒作用におけるタンパク質の重要部位の決定が可能となり、創薬ターゲットに利用可能である。
1 野生型
2 P34Q変異型
3 H39D変異型
4 G71R変異型
5 F83L変異型
6 L175Q変異型
7 C177R変異型
8 R209W変異型
9 V225G変異型
10 P229Q変異型
11 G276R変異型
12 E291V変異型
13 A292V変異型
14 I294T変異型
15 G308E変異型
16 I322V変異型
17 Q331R変異型
18 R336L変異型
19 R336Q変異型
20 R336W変異型
21 W354R変異型
22 Q357R変異型
23 R367G変異型
24 A368T変異型
25 S375F変異型
26 H376R変異型
27 G377V変異型
28 S381R変異型
29 P387S変異型
30 G395V変異型
31 N400D変異型
32 A401P変異型
33 R403C変異型
34 K428E変異型
35 W461R変異型
(A) induced fit有り、1モデル
(B) induced fit有り、クラスタ内の全モデル
(C) induced fitなし
(D) UDPGAが酵素反応を受け得る向きで各種UGT1A1に進入した回数
(E) クラスタ内のモデル数
(F) 基質が向きIで各種UGT1A1に進入した回数(向きIの回数/シミュレーションの全回数)

Claims (15)

  1. タンパク質Aの酵素活性をコンピュータを用いたシミュレーションにより予測する方法であって、
    酵素活性がタンパク質Aへの基質の進入の向きにより規定されるようなタンパク質であり、
    タンパク質Aの酵素活性fが以下の式1により算出される方法;
    Figure JPOXMLDOC01-appb-M000049
    式中、gは基質ごとに固有の定数であり、Eはタンパク質Aと補酵素とのドッキングの酵素活性に対する寄与度であり、βはタンパク質への基質の進入の向きの酵素活性に対する寄与度であり、aは生体内環境による影響を表す定数であり、Nとnは、タンパク質Aと基質とのドッキングシミュレーションにより得られる値であり、Nはタンパク質Aと基質とのドッキングシミュレーションの総回数であり、Nは2以上であり、nは酵素反応を受け得る向きで基質がタンパク質Aに進入した回数である。
  2. タンパク質Aの立体構造データが、タンパク質Aとは別のタンパク質Bの立体構造データに基づいて計算されるものであり、βが以下の式2によって算出される請求の範囲第1項に記載の方法:
    Figure JPOXMLDOC01-appb-M000050
    式中、Nとnは、タンパク質Bと基質とのドッキングシミュレーションにより得られる値であり、Nはタンパク質Bと基質とのドッキングシミュレーションの総回数であり、Nは2以上であり、nは酵素反応を受け得る向きで基質がタンパク質Bに進入した回数である。
  3. タンパク質Bの酵素活性に対するタンパク質Aの相対的な酵素活性をコンピュータを用いたシミュレーションにより予測する方法であって、
    酵素活性がタンパク質Aへの基質の進入の向きにより規定されるようなタンパク質であり、
    タンパク質Aの相対的な酵素活性f’が以下の式3により算出される方法;
    Figure JPOXMLDOC01-appb-M000051
    式中、gは基質ごとに固有の定数であり、Eはタンパク質Aと補酵素とのドッキングの酵素活性に対する寄与度であり、aは生体内環境による影響を表す定数であり、βはタンパク質への基質の進入の向きの酵素活性に対する寄与度であり、次の式2により表され;
    Figure JPOXMLDOC01-appb-M000052
    Nとnは、タンパク質Aと基質とのドッキングシミュレーションにより得られる値であり、Nはタンパク質Aと基質とのドッキングシミュレーションの総回数であり、Nは2以上であり、nは酵素反応を受け得る向きで基質がタンパク質Aに進入した回数であり、Nとnはタンパク質Bと基質とのドッキングシミュレーションにより得られる値であり、Nはタンパク質Bと基質とのドッキングシミュレーションの総回数であり、Nは2以上であり、nは酵素反応を受け得る向きで基質がタンパク質Bに進入した回数である。
  4. Eが、下記の式16または式17により表される、請求の範囲第1項~第3項のいずれか1に記載の方法:
    Figure JPOXMLDOC01-appb-M000053
    (式16中、γはタンパク質への補酵素の進入の向きの酵素活性に対する寄与度であり、次の式21により表され、
    Figure JPOXMLDOC01-appb-M000054
    Lとlは、タンパク質Aと補酵素とのドッキングシミュレーションにより得られる値であり、Lはタンパク質Aと補酵素とのドッキングシミュレーションの総回数であり、Lは2以上であり、lは酵素反応が進行し得る向きで補酵素がタンパク質Aに進入した回数であり、Lとlはタンパク質Bと補酵素とのドッキングシミュレーションにより得られる値であり、Lはタンパク質Bと補酵素とのドッキングシミュレーションの総回数であり、Lは2以上であり、lは酵素反応が進行し得る向きで補酵素がタンパク質Bに進入した回数である);
    Figure JPOXMLDOC01-appb-M000055
    (式17中、mはタンパク質Aと補酵素とのドッキングモデルをクラスタリングして得られたクラスタ内のモデル数であり、mはタンパク質Bと補酵素とのドッキングモデルをクラスタリングして得られたクラスタ内のモデル数であり、δはクラスタ内のモデル数の酵素活性への寄与度を表す。)
  5. 式1または式3において、
    Figure JPOXMLDOC01-appb-M000056
    について、Sigmoid関数を導入する、請求の範囲第1項~第4項のいずれか1に記載の方法。
  6. 2以上のタンパク質Aについてドッキングシミュレーションを行い、
    gとaが、ドッキングシミュレーションにより得られた計算値yと、測定された値y’との二乗誤差を最小にする値であり、下記の式4を用いて算出される、請求の範囲第2項~第5項のいずれか1に記載の方法。
    Figure JPOXMLDOC01-appb-M000057
    式中、yとy’はタンパク質Bについての値であり、yA1とy’A1、yApとy’Apはタンパク質Aについての値であり、pは2以上の数を表す。
  7. タンパク質と基質とのドッキングシミュレーションが以下の工程を含む請求の範囲第1項~第6項のいずれか1に記載の方法:
    (a)タンパク質Bの立体構造データを入手し、タンパク質Aの立体構造データをタンパク質Bの立体構造データに基づいて計算し、
    (b)タンパク質AまたはBと補酵素とのドッキングシミュレーションを行い、熱力学的に安定なドッキングモデルを決定し;
    (c)タンパク質AまたはBと基質とのドッキングのグリッドを設定し;
    (d)タンパク質Bと基質とのドッキングシミュレーションをN回行い、Nは2以上であり、酵素反応を受け得る向きで基質がタンパク質Bに進入した回数nを計数し、
    (e)タンパク質Aと基質とのドッキングシミュレーションをN回行い、Nは2以上であり、酵素反応を受け得る向きで基質がタンパク質Aに進入した回数nを計数する。
  8. 工程(b)の後に次の工程(b-1)を行い;
    工程(b-1)タンパク質AまたはBと補酵素とのドッキングモデルをクラスタリングし、クラスタリングして得られたクラスタ内の2以上のモデルについてinduced fitを行い、
    工程(d)において、induced fit後の各モデルについて、基質とのドッキングシミュレーションを行う、
    請求の範囲第1項~第7項のいずれか1に記載の方法。
  9. タンパク質Aが変異型タンパク質である請求の範囲第1項~第7項のいずれか1に記載の方法。
  10. タンパク質AがUDP-グルクロン酸転移酵素であり、補酵素がUDP-グルクロン酸である、請求の範囲第4項~第9項のいずれか1に記載の方法。
  11. タンパク質Aがgとaの算出のために用いた変異型タンパク質以外の変異型タンパク質であり、算出されたgとaの値を用いて酵素活性の予測を行う、請求の範囲第6項~第10項のいずれか1に記載の方法。
  12. 請求の範囲第1項~第11項のいずれか1に記載の方法を実行するために、コンピュータを下記の手段として機能させるプログラムを担持する記録媒体:
     (1)入力されたアミノ酸配列情報に基づいて、タンパク質Aの立体構造データを計算する手段、
     (2)タンパク質Aの立体構造データと、ドッキングシミュレーションの対象となる基質の立体構造データを記憶する手段、
     (3)前記記憶された、タンパク質Aの立体構造データと基質の立体構造データを用いて、タンパク質Aと基質とのドッキングシミュレーションを行うシミュレーション手段、
     (4)シミュレーションにより得られた結果を記憶する手段、
     (5)記憶されたシミュレーション結果に基づいて、タンパク質Aの酵素活性を算出する手段、
     (6)算出された酵素活性を表示する手段。
  13. 請求の範囲第1項~第11項のいずれか1に記載の方法を実行するために、下記の手段を担持する装置;
     (1)入力されたアミノ酸配列情報に基づいて、タンパク質Aの立体構造データを計算する手段、
     (2)タンパク質Aの立体構造データと、ドッキングシミュレーションの対象となる基質の立体構造データを記憶する手段、
     (3)前記記憶された、タンパク質Aの立体構造データと基質の立体構造データを用いて、タンパク質Aと基質とのドッキングシミュレーションを行うシミュレーション手段、
     (4)シミュレーションにより得られた結果を記憶する手段、
     (5)記憶されたシミュレーション結果に基づいて、タンパク質Aの酵素活性を算出する手段、
     (6)算出された酵素活性を表示する手段。
  14. 請求の範囲第1項~第11項のいずれか1に記載の方法、請求の範囲第12項に記載の記録媒体、または請求の範囲第13項に記載の装置を用いて、2以上の基質について、基質ごとのタンパク質Aの酵素活性を予測し、得られた2以上の予測結果に基づいて目的の基質を選択する、基質適合性の判定方法。
  15. 前記基質が生体に投与される薬剤であって、請求の範囲第14項に記載の方法を用いて、薬剤の投与量および/または投与間隔、投与頻度を評価する方法。
PCT/JP2009/004286 2008-09-05 2009-09-01 酵素活性をコンピュータを用いたシミュレーションにより予測する方法 WO2010026738A2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010527692A JP5447383B2 (ja) 2008-09-05 2009-09-01 酵素活性をコンピュータを用いたシミュレーションにより予測する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008228434 2008-09-05
JP2008-228434 2008-09-05

Publications (2)

Publication Number Publication Date
WO2010026738A2 true WO2010026738A2 (ja) 2010-03-11
WO2010026738A3 WO2010026738A3 (ja) 2010-05-14

Family

ID=41797601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004286 WO2010026738A2 (ja) 2008-09-05 2009-09-01 酵素活性をコンピュータを用いたシミュレーションにより予測する方法

Country Status (2)

Country Link
JP (1) JP5447383B2 (ja)
WO (1) WO2010026738A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255467A (ja) * 2012-06-13 2013-12-26 Okinawa Institute Of Science & Technology Graduate Univ 相互作用予測装置、相互作用予測方法、および、プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004295654A (ja) * 2003-03-27 2004-10-21 National Institute Of Agrobiological Sciences リガンドライブラリを利用したタンパク質の機能推定法
JP2007272627A (ja) * 2006-03-31 2007-10-18 Nec Corp スクリーニング方法およびスクリーニングシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004295654A (ja) * 2003-03-27 2004-10-21 National Institute Of Agrobiological Sciences リガンドライブラリを利用したタンパク質の機能推定法
JP2007272627A (ja) * 2006-03-31 2007-10-18 Nec Corp スクリーニング方法およびスクリーニングシステム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
'80th The Japanese Biochemical Society Taikai, 30th Annual Meeting of the Molecular Biology Society of Japan Godo Taikai Koen Yoshishu, 2007.12', article YUTAKA TAKAOKA ET AL.: 'Hen'igata UDP-glucuronic Acid Ten'i Koso no Kozo Oyobi Kishitsu tono Sogo Sayo no in silico Kaiseki' *
BJELIC, S. ET AL.: 'Computational Prediction of Structure, Substrate Binding Mode, Mechanism, and Rate for a Malaria Protease with a Novel Type of Active Site' BIOCHEMISTRY vol. 43, no. 46, 2004, pages 14521 - 8 *
HERMANN, J.C.: 'Structure-based activity prediction for an enzyme of unknown function' NATURE vol. 448, no. 7155, 16 August 2007, pages 775 - 9 *
WANG, Q.: 'Prediction of the binding modes between BB-83698 and peptide deformylase from Bacillus stearothermophilus by docking and molecular dynamics simulation' BIOPHYSICAL CHEMISTRY vol. 134, no. 3, May 2008, pages 178 - 84 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255467A (ja) * 2012-06-13 2013-12-26 Okinawa Institute Of Science & Technology Graduate Univ 相互作用予測装置、相互作用予測方法、および、プログラム

Also Published As

Publication number Publication date
JP5447383B2 (ja) 2014-03-19
JPWO2010026738A1 (ja) 2012-01-26
WO2010026738A3 (ja) 2010-05-14

Similar Documents

Publication Publication Date Title
Chen et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases
Berka et al. Behavior of human cytochromes P450 on lipid membranes
Ando et al. Allosteric inhibition of human ribonucleotide reductase by dATP entails the stabilization of a hexamer
Bouvignies et al. Solution structure of a minor and transiently formed state of a T4 lysozyme mutant
Caliandro et al. Protein crystallography and fragment-based drug design
Shen et al. Structural evidence for direct interactions between the BRCT domains of human BRCA1 and a phospho-peptide from human ACC1
Rogawski et al. Two loops undergoing concerted dynamics regulate the activity of the ASH1L histone methyltransferase
Mills et al. A novel disulfide bond in the SH2 Domain of the C-terminal Src kinase controls catalytic activity
Gaßel et al. Mutants of protein kinase A that mimic the ATP-binding site of protein kinase B (AKT)
Moscato et al. Induced fit in the selection of correct versus incorrect nucleotides by DNA polymerase β
Vanarotti et al. Structural basis for the interaction between Pyk2-FAT domain and leupaxin LD repeats
Wang et al. Elucidation of the interaction loci of the human pyruvate dehydrogenase complex E2· E3BP core with pyruvate dehydrogenase kinase 1 and kinase 2 by H/D exchange mass spectrometry and nuclear magnetic resonance
Rose et al. Structures of class Id ribonucleotide reductase catalytic subunits reveal a minimal architecture for deoxynucleotide biosynthesis
Zhang et al. Dynamics of post-translational modification inspires drug design in the kinase family
Onuk et al. Effects of catalytic action and ligand binding on conformational ensembles of adenylate kinase
Gizzio et al. Evolutionary divergence in the conformational landscapes of tyrosine vs serine/threonine kinases
Xu et al. Structural insights into the human mitochondrial pyruvate carrier complexes
Juyoux et al. Architecture of the MKK6-p38α complex defines the basis of MAPK specificity and activation
Ke et al. LPCAT3 is a potential prognostic biomarker and may be correlated with immune infiltration and ferroptosis in acute myeloid leukemia: a pan-cancer analysis
Yang et al. Discovery of novel inhibitors targeting multi-UDP-hexose pyrophosphorylases as anticancer agents
Pond et al. Membrane anchoring of Hck kinase via the intrinsically disordered SH4-U and length scale associated with subcellular localization
Boros et al. Use of metabolic pathway flux information in targeted cancer drug design
JP5447383B2 (ja) 酵素活性をコンピュータを用いたシミュレーションにより予測する方法
Taslimifar et al. Quantifying the relative contributions of different solute carriers to aggregate substrate transport
Sapienza et al. Widespread perturbation of function, structure, and dynamics by a conservative single-atom substitution in thymidylate synthase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811268

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010527692

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811268

Country of ref document: EP

Kind code of ref document: A2