WO2010026630A1 - Traffic flow control system and its method - Google Patents

Traffic flow control system and its method Download PDF

Info

Publication number
WO2010026630A1
WO2010026630A1 PCT/JP2008/065884 JP2008065884W WO2010026630A1 WO 2010026630 A1 WO2010026630 A1 WO 2010026630A1 JP 2008065884 W JP2008065884 W JP 2008065884W WO 2010026630 A1 WO2010026630 A1 WO 2010026630A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
information
route
flow control
vehicle
Prior art date
Application number
PCT/JP2008/065884
Other languages
French (fr)
Japanese (ja)
Inventor
裕 江▲崎▼
慎哉 加藤
淳 内田
崇 奥野
祝守 富田
岳 谷藤
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/065884 priority Critical patent/WO2010026630A1/en
Publication of WO2010026630A1 publication Critical patent/WO2010026630A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/08Controlling traffic signals according to detected number or speed of vehicles

Definitions

  • the present disclosure relates to a traffic flow control system, a traffic flow control method, a control server and a movement information device in the system.
  • control for changing the time (opening) of the green light is generally performed based on congestion information obtained from vehicle sensors installed on the road.
  • the parameters at that time include the cycle length, that is, the cycle in which the control of the traffic light makes a round, the split, that is, the ratio of the green light time that the traffic light gives to the traffic flow in each direction, and the offset, that is, the difference in the green light start time between adjacent traffic lights.
  • system control that collectively controls traffic signals arranged on a large street, and wide area control that collects and controls all information in a city in a computer at a traffic control center are introduced.
  • the information used for controlling these traffic lights is only objective information such as “number of passing cars” and “congestion level (passing speed)” as seen from vehicle sensors installed on the road.
  • the “will” of the existing vehicle is not considered. For this reason, it is not possible to control the traffic flow from a long-term perspective.
  • ITS Intelligent Transport Systems
  • public vehicle priority system PTPS: Public Transport Priority System
  • FAST Fast Emergency Vehicle Preemption System
  • ADS advanced demand signal control method
  • P-DRGS Plasma Dynamic Route Guidance Systems
  • sensor information loaded in a car is collected on a server and a route is reset based on the collected information.
  • this is only collecting current sensing information.
  • the traffic charges within the traffic management target area are limited by varying the traffic volume collected by the probe car according to the traffic volume and time zone, and the traffic signal control according to the traffic congestion situation Techniques to alleviate traffic congestion are known.
  • a technique is known in which location data is collected from a mobile phone and processed to determine traffic flow.
  • the present disclosure has been made in view of the above-described problems, and an object of the present disclosure is to calculate vehicle route information set in a mobile information device such as a mobile phone or a car navigator as a calculation parameter for traffic flow control.
  • Traffic flow control system and method capable of carrying out traffic flow control based on the intention of the vehicle and enabling high-precision control in consideration of the future prospects and future prospects It is another object of the present invention to provide a control server and a mobile information device used in the system.
  • a traffic information control system in which a mobile information device and a control server are connected via a communication network, the mobile information device includes a departure place and a destination place.
  • a route information setting unit for setting route information including the route information transmitting unit for transmitting the route information to the control server, and the control server uses the route information collected from each vehicle.
  • a control policy determining unit that calculates a predicted traffic volume and a delay time for each intersection or link, and determines a traffic volume control policy based on the calculation result, and parameters of each traffic signal based on the determined control policy
  • a traffic flow control system comprising a traffic light parameter calculation unit that changes the value of.
  • a method executed in the above-described traffic flow control system, and a control server and a movement information device used in the system are provided.
  • the route information including the departure point and the destination set in the mobile information device is collected in the control server and used for the calculation of the predicted traffic volume and the delay time.
  • the parameter value of the traffic signal is controlled. Therefore, traffic flow control based on the intention of the vehicle becomes possible, and high-precision and high-accuracy traffic flow control considering future prospects is realized.
  • FIG. 1 is a diagram illustrating a basic configuration of a traffic flow control system according to the disclosed technique together with peripheral systems.
  • the traffic flow control system and its peripheral system of this embodiment are a car navigator 100, a mobile phone 102, a GPS (Global Positioning System) satellite 110, a vehicle sensor 112, a traffic flow control server 120, a traffic It includes a traffic light 130, an optical beacon 140, a base station 142, an information collection network 144, a traffic light control network 146, and the like.
  • the car navigator 100 and the mobile phone 102 are mobile information devices capable of interacting with users in a vehicle such as a driver and a passenger, and users who walk, and provide position information to the users based on signals received from the GPS satellite 110. In addition, it has a function of performing route guidance to the destination.
  • the vehicle sensor 112 is installed on the road and senses a vehicle passing on the road.
  • the traffic flow control server 120 is located in the traffic control center, and is transmitted from the car navigator 100, the mobile phone 102, the vehicle sensor 112, etc. via the optical beacon 140, the base station 142, the information collection network 144, etc. Collect information.
  • the traffic flow control server 120 calculates a parameter value for each traffic signal based on the collected information for the purpose of traffic flow control, and provides it to each traffic signal 130 as control information via the traffic signal control network 146 or the like.
  • Each of the car navigator 100, the mobile phone 102, and the traffic flow control server 120 is a computer including a processor, a memory, an input / output mechanism, and the like. These computers realize respective processing functions by the processor operating according to a program loaded in the memory.
  • the optical beacon 140 is attached to a road sign pillar or a traffic light near the intersection, and transmits / receives information by an optical signal to / from a vehicle passing therearound. Further, a radio beacon may be used instead of the optical beacon.
  • the information collection network 144 is a communication network that transmits information transmitted from the car navigator 100, the mobile phone 102, the vehicle sensor 112, and the like to the traffic flow control server 120.
  • the traffic signal control network 146 is a communication network that transmits information transmitted from the traffic flow control server 120 to each traffic signal 130.
  • the base station 142 is a communication facility that wirelessly communicates with the mobile phone 102 in the zone under its jurisdiction.
  • FIG. 2 is a diagram illustrating the operation of the traffic flow control system shown in FIG.
  • a user such as a driver or a passenger searches for information on a route to which the user wants to go, that is, a destination by using the car navigator 100 or the mobile phone 102 to determine a route to the destination (block 202). ).
  • the car navigator 100 or the mobile phone 102 calculates the current position, that is, the estimated time to reach the main point on the route from the departure point to the destination ( Block 204).
  • the car navigator 100 or the mobile phone 102 transmits the route information including the departure point, the destination, the route, and the arrival time of the main point to the traffic flow control server 120 (block 206). That is, route information is transmitted from the car navigator 100 to the optical beacon 140 as an optical signal, and further, the route information is transmitted from the optical beacon 140 to the traffic flow control server 120 via the information collection network 144. Alternatively, the route information is transmitted from the mobile phone 102 to the base station 142 by radio waves, and further transmitted from the base station 142 to the traffic flow control server 120 via the information collection network 144.
  • the traffic flow control server 120 obtains an optimum policy for processing the traffic flow based on the route information from the car navigator 100 or the mobile phone 102 and the congestion information based on the signal from the vehicle sensor 112, and follows the obtained policy. To determine parameter values for controlling each traffic light 130 (block 208).
  • the traffic light parameters are the aforementioned cycle length, split and offset.
  • the traffic flow control server 120 calculates the optimal control parameter value for processing the traffic flow based on the traffic volume flowing into each intersection, that is, the traffic volume and the traffic volume expected to flow into the intersection. .
  • the traffic flow control server 120 transmits the determined parameter value to each traffic signal 130 using the traffic signal control network 146 to control each traffic signal (block 210).
  • the result of controlling each traffic signal is fed back to the traffic flow control server 120 via the information collection network 144 as congestion information from the vehicle sensor 112 (block 212).
  • congestion information from the vehicle sensor 112 (block 212).
  • the traffic flow control server can determine the traffic signal control policy thereafter by discriminating the traffic flow based on the information collected by the vehicle sensor.
  • the traffic flow control server 120 determines that the vehicle is delayed with respect to the expected arrival time at the main point only by controlling the traffic light 130, the car navigator 100 or the mobile phone mounted on the vehicle predicted to be delayed.
  • a route change recommendation is notified to the navigation function 102 (block 214). Based on this, a car navigator, a mobile phone, or a user using these devices can change the route.
  • information for prompting the user to change the route is output to the car navigator or the mobile phone.
  • the car navigator 100 or the mobile phone 102 mounted on the vehicle reports a change in the route information to the traffic flow control server 120 whenever a change occurs in the situation or the route information (block 216). Thereafter, the processing of blocks 208 to 216 is repeated based on the information collected every moment.
  • FIG. 3 is a diagram for explaining the configuration of a traffic flow control system including a premium priority service.
  • a premium service server 300 that provides a premium priority service is further provided in the traffic control center.
  • premium priority service refers to raising the priority of a charged vehicle so that the vehicle can pass the route earlier in exchange for charging the vehicle or user. It is a service that constructs a pseudo priority road for the vehicle by controlling.
  • the user decides the route information to the destination he wants to go to, and if he / she wants to reach the destination sooner, he / she selects “premium priority service”. (Block 402).
  • the car navigator 100 that has activated the car navigation service with premium priority service transmits route information to the traffic flow control server 120 as a premium user who uses the premium priority service (block 404).
  • the traffic flow control server 120 requests the premium service server 300 to authenticate the premium user (block 406).
  • the traffic flow control server 120 increases the passing priority of the user and calculates the parameter value of the traffic light ( Block 408).
  • the traffic flow control server 120 executes the control of the traffic light 130 as described above using the calculated traffic light parameter value (block 410).
  • the premium service server 300 When it is reported from the car navigator 100 to the traffic flow control server 120 that the vehicle has arrived at the destination, the premium service server 300 generates a charge for the premium user (block 412).
  • a charging system a fixed fee, a pay-as-you-go fee according to the length of the route and the number of controlled traffic signals, an effect fee indicating how much time it has arrived in less than the normal expected arrival time, and the like are used.
  • FIG. 5 is a diagram illustrating a configuration example of the traffic flow control server 120.
  • the traffic flow control server 120 includes a control policy determination unit 500, a traffic light parameter calculation unit 502, and a navigator control unit 504.
  • the traffic flow control server 120 receives the following three items as information for controlling the traffic flow.
  • Route information 510 such as a departure point, a destination, a route, and a predicted arrival time of a main point collected from a car navigator 100 or a mobile phone 102 of a user such as a vehicle driver or a passenger.
  • Traffic information 512 from the vehicle sensor 112 on the road
  • Management policy information 514 from an administrator that concentrates traffic on a certain road or blocks a certain road.
  • control policy determination unit 500 predicts the traffic passing through each intersection or road, that is, the traffic volume, and determines a policy for processing the traffic volume well. Furthermore, the control policy determination unit 500 performs user authentication in cooperation with the premium service server 300 for a user who desires premium priority service, and the party realizes priority control for the user.
  • the traffic light parameter calculation unit 502 determines a parameter value 520 for controlling each traffic light, and distributes the parameter to each traffic light.
  • the navigator control unit 504 makes a recommendation 522 for the navigation function of each car navigator 100 or the mobile phone 102 as necessary. The recommendation message is changed into a form suitable for the medium or device used by the receiving user.
  • FIG. 6 is a diagram illustrating a configuration example of the control policy determination unit 500 in the traffic flow control server 120.
  • the control policy determination unit 500 shown in FIG. 6 includes a passing traffic measurement data collection unit 600, a route data collection unit 602, each vehicle route determination unit 604, a traffic amount calculation unit 606, a delay calculation unit 608, and an abnormal delay point detection unit. 610 is provided.
  • the passing traffic measurement data collection unit 600 collects measurement data, for example, the number and speed of passing vehicles, from each vehicle sensor 112 installed on the road, and stores it in a traffic integrated value (current value) table 620 for each link or each intersection. save.
  • the link means a road between intersections.
  • the traffic integrated value (current value) table the integrated value of the traffic volume at each link or each intersection is recorded.
  • stores traffic is arbitrary.
  • each car route data table 622 route information, that is, the departure point, the destination, the route from the departure point to the destination, and the expected arrival time at the main point are recorded for each vehicle / user.
  • the route data collection unit 602 collects route information of each user from the car navigator 100 or the mobile phone 102 and stores it in each vehicle route data table 622.
  • the timing of collecting route information includes (1) when the user sets a route at the time of departure, (2) when the user changes the route, and (3) when the navigation software changes the route, that is, at the time of reroute. Can be mentioned.
  • the map data 624 is data relating to a map that shows information on each place that can be a road layout or a destination.
  • the map data 624 may include information other than the above.
  • the route-specific metric information 626 is information indicating an evaluation value of the traffic volume in each route, that is, a metric.
  • a metric for example, an evaluation value for each link can be set, but the setting unit of the metric and how to have the information are arbitrary.
  • the delay time table 628 stores information indicating delay times occurring at various places such as intersections and links, that is, differences in actual pass / arrival times with respect to expected pass / arrival times. If the actual pass / arrival time is smaller than the expected pass / arrival time, information “no delay time” may be set, or a shortened pass / arrival time may be set. .
  • Each vehicle route determination unit 604 determines a route through which each vehicle passes using information in each vehicle route data table 622, map data 624, metric information for each route 626, and delay time table 628. In determining the route of the vehicle, the following measures can be taken. Each vehicle route determination unit 604 first refers to map data using the route information of each vehicle, and determines a road through which each vehicle passes and a passing point including an intersection or a link. Subsequently, each vehicle route determination unit refers to the metric information 626 for each route and the delay time table 628 based on the determined passing point, and selects a route with an appropriate evaluation value and a small delay time. The route with the shortest expected arrival time to the destination is selected. The specific procedure for determining the route is not limited to this procedure. The route determined by each vehicle route determination unit 604 is more detailed than the data collected by the route data collection unit 602. Each vehicle route determination unit 604 stores the determined route in each vehicle route data table 622 again.
  • the traffic amount calculation unit 606 determines each intersection or link, that is, an intersection at a future time. The number of vehicles expected to gather on the road in between, that is, the traffic is accumulated. The traffic amount calculation unit 606 stores the result of integrating the number of vehicles in a traffic integrated value (predicted value) table 630 for each link or each intersection. In order to increase the vehicle passing priority as the premium priority service, the weight of the vehicle to which the premium priority service is applied is increased as compared with other vehicles, and the traffic is calculated. For example, the number of vehicles to which the premium priority service is applied may be converted into several vehicles and the traffic at each location may be calculated.
  • the delay calculation unit 608 calculates the delay time at each intersection or link based on the traffic integrated value (predicted value) table 630 and the traffic capacity data 632 for each link given in advance.
  • the traffic capacity data is data indicating the number of vehicles that can pass through each link per unit time.
  • the delay calculation unit 608 calculates the delay time in consideration of the road construction schedule and the road closure schedule recorded in the construction / propagation schedule table 634.
  • the delay calculation unit 608 corrects the delay time table 628 based on the calculation result of the delay time.
  • the abnormal delay point detection unit 610 refers to the delay time table 628, extracts a point where the vehicle traffic is delayed more than the value specified in the management policy 636, and records the extraction result in the delay avoidance point data table 638. To do.
  • the traffic light parameter calculation unit 502 controls traffic light parameters so as to increase traffic passing through intersections and links listed in the delay avoidance point data table 638. Further, the navigator control unit 504 notifies the navigation function of the car navigator 100 or the mobile phone 102 based on the delay avoidance location data table 638 of a reroute recommendation such as avoiding an abnormal delay location.
  • FIGS. 7A and 7B are diagrams for explaining processing of each vehicle route determination unit 604 in the control policy determination unit 500.
  • FIG. The method by which each vehicle route determination unit 604 determines the detailed route of each vehicle is as follows. Now, there is a road network composed of roads as shown in FIG. 7 (A). Numbers “1" to “3" run up and down, and “A" to “C” run left and right. It is assumed that the symbol is attached. Further, as shown in FIG. 7A, it is assumed that an evaluation value, that is, a metric is set for each road between intersections, that is, between nodes, that is, a link.
  • the metric is a value obtained by comprehensively evaluating the time required for passing, that is, the delay time, the number of vehicles that can pass per unit time, that is, the traffic capacity, the policy of the road manager, and the like, and is described in FIG.
  • the numbers with parentheses correspond to the metrics for each link.
  • the Dijkstra method is well known as an algorithm for determining the route of the vehicle.
  • the Dijkstra method is a method of evaluating a path that can be taken for each node by using a binary tree, and finally selecting a path that maximizes or minimizes the metric sum of each link.
  • FIG. 7B shows the evaluation result when the vehicle goes from the “A1” point to the “C3” point.
  • the numerical values arranged below are the integrated values of the metrics in each route, and the evaluation is performed based on the integrated location. From FIG.
  • each vehicle route determination unit 604 calculates the route and passage time of each vehicle.
  • FIG. 8 is a diagram for explaining the processing of the traffic amount calculation unit 606 in the control policy determination unit 500.
  • the traffic amount calculating unit 606 calculates the traffic amount of each intersection or road as follows.
  • the vehicle passes through the route obtained by the algorithm of FIGS. 7A and 7B together with the flow of time (t) as shown in FIG.
  • FIG. 8 shows the position where the vehicle is present and the direction in which the vehicle is present at regular time intervals (t1 to t5).
  • the traffic amount calculation unit 606 calculates the traffic amount at a certain time by accumulating the number of vehicles gathered at each intersection or each link at a certain time based on each vehicle route data table 622. Then, the delay calculation unit 608 calculates the delay time of the intersection or link from the relationship between the calculated traffic volume and the number of vehicles that the intersection or link can pass in unit time, that is, the traffic capacity.
  • a mathematical model such as a cellular automaton
  • the re-route function of the current car navigator not only controls switching to an empty road route to avoid traffic congestion, but also controls traffic lanes that are normally prohibited from traffic such as police. By permitting the person, it becomes possible to alleviate traffic jams and speed up the arrival time. Specifically, there are the following applications.
  • An existing bus priority road is made a pedestrian zone for premium priority services for a specific time.
  • a service such as a taxi that requires consideration by transportation
  • an optimum route is presented according to the urgency of the passenger, and the premium priority service fee is changed according to the result, etc.
  • Service is also possible.
  • applications such as presenting a premium priority service route so as not to meet an emergency car rushing to the site, or presenting an over route to a vehicle escaping due to a crime are possible.
  • the premium service server can be set up for each operator, the application range can be expanded by mutual entry with other operators and services.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

A traffic flow control system in which a mobile information device and control server capable of having a conversation with the user in a vehicle are connected through a communication network. The mobile information device includes a route information setting section for setting route information including a departure place, a destination, a route, and a main place arrival expected time on the basis of the conversation with the user and a route information transmitting section for transmitting the route information to the control server. The control server includes a control policy determining section for computing the predicted traffic amount and delay time of each intersection or each link by using the route information collected from each vehicle and detecting an abnormal delay point to create delay avoidance point information and a signal parameter computing section for varying the value of the parameter of each traffic signal on the basis of the delay avoidance point information.

Description

交通流制御システム及びその方法Traffic flow control system and method
 本開示技術は、交通流制御システム及び交通流制御方法並びに当該システムにおける制御サーバ及び移動情報装置に関する。 The present disclosure relates to a traffic flow control system, a traffic flow control method, a control server and a movement information device in the system.
 近年、カーナビゲーション装置(カーナビゲータ)の発達と普及により、目的地に向かって最も経済的で早く到着するルートを簡単な操作で検索し、経路案内を行わせることが可能になっている。さらに、FMラジオからの情報、光又は電波ビーコンからのVICS(Vehicle Information and Communication System、自動車情報通信システム)情報等を用いて、経路上の障害情報、混雑情報等をリアルタイムに受信し、それに応じた情報表示、経路変更等の処理をカーナビゲータ上で簡単に行うことができるようになっている。 In recent years, with the development and popularization of car navigation devices (car navigators), it has become possible to search for the most economical and fastest route to a destination with a simple operation and perform route guidance. In addition, information from FM radio, VICS (Vehicle Information and Communication System) from light or radio wave beacons, etc. are received in real time on route information, congestion information, etc. Information display, route change, etc. can be easily performed on the car navigator.
 一方、交差点に設置された信号機については、道路上に設置された車両センサから得られる混雑情報に基づいて青信号の時間(開度)を変更する制御が一般的に行われている。その際のパラメータとしては、サイクル長つまり信号機の制御が一巡する周期、スプリットつまり信号機が各方向の交通流に与える青信号時間の比、及びオフセットつまり隣接する信号機同士の青信号開始時刻の差がある。さらに、大きな通りでは並んだ信号機を一括して制御する系統制御、大都市では都市内全ての情報を交通管制センタのコンピュータに集めて一括して制御する広域制御等が導入されている。 On the other hand, for traffic lights installed at intersections, control for changing the time (opening) of the green light is generally performed based on congestion information obtained from vehicle sensors installed on the road. The parameters at that time include the cycle length, that is, the cycle in which the control of the traffic light makes a round, the split, that is, the ratio of the green light time that the traffic light gives to the traffic flow in each direction, and the offset, that is, the difference in the green light start time between adjacent traffic lights. In addition, system control that collectively controls traffic signals arranged on a large street, and wide area control that collects and controls all information in a city in a computer at a traffic control center are introduced.
 しかし、これらの信号機制御に使用される情報は、道路に設置された車両センサから見た“自動車の通過台数”、“混雑度(通過速度)”等の客観的な情報のみであり、通過している車両の“意思”は考慮されていない。そのため、現状を如何に的確に処理するかということに終始し、長期的な視点で交通流の制御をすることは実現されていない。 However, the information used for controlling these traffic lights is only objective information such as “number of passing cars” and “congestion level (passing speed)” as seen from vehicle sensors installed on the road. The “will” of the existing vehicle is not considered. For this reason, it is not possible to control the traffic flow from a long-term perspective.
 道路や交差点を通過する車両には、必ず、どこへ行きたい、どちらを経由して行きたい、等の意思があり、それに従った制御をすることで、より長期の視点で最適な交通流制御を行うことができるはずである。そのため、各車両の意図、運転者個々の意図等を、交通流を制御しているコンピュータに伝えることにより、当該コンピュータは、その意図に基づいて交通信号機を制御することで、より最適な制御を行うことできる。 Vehicles that pass through roads and intersections always have a willingness to go where and where they want to go, and by controlling accordingly, optimal traffic flow control from a long-term perspective Should be able to do. Therefore, by transmitting the intention of each vehicle, the intention of each driver, etc. to the computer that controls the traffic flow, the computer controls the traffic signal based on the intention, thereby enabling more optimal control. Can be done.
 従来からも、ITS(Intelligent Transport Systems、高度道路交通システム)のサブシステムとして、バスなどの公共車両が近づいたら青信号に優先して変更される公共車両優先システム(PTPS: Public Transportation Priority System)や、現場急行支援システム(FAST: Fast Emergency Vehicle Preemption System)が実用化されてきた。しかし、これらのシステムは、限られた数の車両に対して予め固定された経路上の信号を優先させるに留まっている。 Conventionally, as a sub-system of ITS (Intelligent Transport Systems), public vehicle priority system (PTPS: Public Transport Priority System) that changes in priority to the green light when public vehicles such as buses approach, On-site express support system (FAST: Fast Emergency Vehicle Preemption System) has been put into practical use. However, these systems only prioritize signals on a pre-fixed path for a limited number of vehicles.
 また、車両や通行人の位置を検出してその経路上の多さを比較することで青信号の開度を調整する高度デマンド信号制御方式(Advanced Demand Signals scheme:ADS)も提案されている。しかし、これも、運転者や歩行者の意図を基に制御するところまではできていない。 Also, an advanced demand signal control method (ADS) is proposed in which the position of a vehicle or a passerby is detected and the degree of the green signal is adjusted by comparing the amount of the route on the route. However, this has not been achieved up to control based on the intention of the driver or pedestrian.
 また、自動車に積まれたセンサ情報をサーバに集め、それを基に経路の再設定を行うP-DRGS(Probed Dynamic Route Guidance Systems)も提案されている。しかし、これも、現在のセンシング情報を集めているにすぎない。 Also, P-DRGS (Probed Dynamic Route Guidance Systems) has been proposed in which sensor information loaded in a car is collected on a server and a route is reset based on the collected information. However, this is only collecting current sensing information.
 なお、本開示技術に関連する技術として、交通量管理対象エリア内における通行料金をプローブカーで収集した交通量、時間帯により変動させて交通量の制限を行い、渋滞状況に応じた信号機制御を行うことで、渋滞を緩和する技術が知られている。また、携帯電話機から位置データを収集し、処理して、交通流を判定する技術が知られている。 In addition, as a technology related to the disclosed technology, the traffic charges within the traffic management target area are limited by varying the traffic volume collected by the probe car according to the traffic volume and time zone, and the traffic signal control according to the traffic congestion situation Techniques to alleviate traffic congestion are known. In addition, a technique is known in which location data is collected from a mobile phone and processed to determine traffic flow.
特開2005-352615号公報JP-A-2005-352615 特開2002-183872号公報JP 2002-183872 A
 本開示技術は、上述した問題点に鑑みてなされたものであり、その目的は、携帯電話機、カーナビゲータ等の移動情報装置に設定された車両の経路情報を交通流の制御のための演算パラメータに加えることで、車両の意図を汲んだ交通流制御を行うことができるようにし、その場限りでなく将来の見込みを考慮した高度で高精度な制御を可能にした交通流制御システム及びその方法並びにそのシステムに使用される制御サーバ及び移動情報装置を提供することにある。 The present disclosure has been made in view of the above-described problems, and an object of the present disclosure is to calculate vehicle route information set in a mobile information device such as a mobile phone or a car navigator as a calculation parameter for traffic flow control. Traffic flow control system and method capable of carrying out traffic flow control based on the intention of the vehicle and enabling high-precision control in consideration of the future prospects and future prospects It is another object of the present invention to provide a control server and a mobile information device used in the system.
 上記目的を達成するために、本開示技術によれば、移動情報装置と制御サーバとが通信ネットワークを介して接続される交通流制御システムであって、前記移動情報装置が、出発地及び目的地を含む経路情報を設定する経路情報設定部と、該経路情報を前記制御サーバ宛に送信する経路情報送信部と、を具備し、前記制御サーバが、各車両から収集した経路情報を使用して、交差点毎又はリンク毎の予測交通量及び遅延時間を演算し、演算結果に基づいて交通量の制御ポリシーを決定する制御ポリシー決定部と、決定された制御ポリシーに基づいて、各交通信号機のパラメータの値を変更する信号機パラメータ演算部と、を具備する交通流制御システムが提供される。 In order to achieve the above object, according to the present disclosure, a traffic information control system in which a mobile information device and a control server are connected via a communication network, the mobile information device includes a departure place and a destination place. A route information setting unit for setting route information including the route information transmitting unit for transmitting the route information to the control server, and the control server uses the route information collected from each vehicle. A control policy determining unit that calculates a predicted traffic volume and a delay time for each intersection or link, and determines a traffic volume control policy based on the calculation result, and parameters of each traffic signal based on the determined control policy There is provided a traffic flow control system comprising a traffic light parameter calculation unit that changes the value of.
 さらに、本開示技術の他の面によれば、上述の交通流制御システムで実行される方法、並びに当該システムに使用される制御サーバ及び移動情報装置が提供される。 Furthermore, according to another aspect of the disclosed technology, a method executed in the above-described traffic flow control system, and a control server and a movement information device used in the system are provided.
 開示の交通流制御システムによれば、移動情報装置に設定された出発地及び目的地を含む経路情報が、制御サーバに収集され、予測交通量及び遅延時間の演算に利用され、その演算結果により、交通信号機のパラメータの値が制御される。そのため、車両の意図を汲んだ交通流制御が可能となり、将来の見込みを考慮した高度で高精度な交通流制御が実現される。 According to the disclosed traffic flow control system, the route information including the departure point and the destination set in the mobile information device is collected in the control server and used for the calculation of the predicted traffic volume and the delay time. The parameter value of the traffic signal is controlled. Therefore, traffic flow control based on the intention of the vehicle becomes possible, and high-precision and high-accuracy traffic flow control considering future prospects is realized.
本開示技術による交通流制御システムの基本的な構成を周辺システムとともに示す図である。It is a figure which shows the basic composition of the traffic flow control system by this indication technique with a peripheral system. 図1に示される交通流制御システムの基本的な動作を例示する図である。It is a figure which illustrates basic operation | movement of the traffic flow control system shown by FIG. プレミアム優先サービスを含む交通流制御システムの基本的な構成について説明するための図である。It is a figure for demonstrating the basic composition of the traffic flow control system containing a premium priority service. 図3に示される交通流制御システムの基本的な動作を例示する図である。It is a figure which illustrates basic operation | movement of the traffic flow control system shown by FIG. 交通流制御サーバの一構成例を示す図である。It is a figure which shows one structural example of a traffic flow control server. 交通流制御サーバにおける制御ポリシー決定部の一構成例を示す図である。It is a figure which shows one structural example of the control policy determination part in a traffic flow control server. (A)及び(B)は、制御ポリシー決定部における各車経路決定部の処理について説明するための図である。(A) And (B) is a figure for demonstrating the process of each vehicle route determination part in a control policy determination part. 制御ポリシー決定部におけるトラフィック量演算部の処理について説明するための図である。It is a figure for demonstrating the process of the traffic amount calculating part in a control policy determination part.
符号の説明Explanation of symbols
 100  カーナビゲータ
 102  携帯電話機
 110  GPS衛星
 112  車両センサ
 120  交通流制御サーバ
 130  交通信号機
 140  光ビーコン
 142  基地局
 144  情報収集ネットワーク
 146  信号機制御ネットワーク
 300  プレミアムサービスサーバ
 500  制御ポリシー決定部
 502  信号機パラメータ演算部
 504  ナビゲータ制御部
 600  通過トラフィック計測データ収集部
 602  経路データ収集部
 604  各車経路決定部
 606  トラフィック量演算部
 608  遅延演算部
 610  異常遅延箇所検出部
DESCRIPTION OF SYMBOLS 100 Car navigator 102 Mobile phone 110 GPS satellite 112 Vehicle sensor 120 Traffic flow control server 130 Traffic signal 140 Optical beacon 142 Base station 144 Information collection network 146 Traffic signal control network 300 Premium service server 500 Control policy determination part 502 Traffic signal parameter calculation part 504 Navigator Control unit 600 Passing traffic measurement data collection unit 602 Route data collection unit 604 Each vehicle route determination unit 606 Traffic amount calculation unit 608 Delay calculation unit 610 Abnormal delay point detection unit
 以下、添付図面を参照して本開示技術の実施形態について説明する。図1は、本開示技術による交通流制御システムの基本的な構成を周辺システムとともに示す図である。図1に示されるように、本実施形態の交通流制御システム及びその周辺システムは、カーナビゲータ100、携帯電話機102、GPS(Global Positioning System)衛星110、車両センサ112、交通流制御サーバ120、交通信号機130、光ビーコン140、基地局142、情報収集ネットワーク144、信号機制御ネットワーク146、等を含む。なお、交通流制御サーバ120以外の各装置は、複数個存在する。 Hereinafter, embodiments of the disclosed technology will be described with reference to the accompanying drawings. FIG. 1 is a diagram illustrating a basic configuration of a traffic flow control system according to the disclosed technique together with peripheral systems. As shown in FIG. 1, the traffic flow control system and its peripheral system of this embodiment are a car navigator 100, a mobile phone 102, a GPS (Global Positioning System) satellite 110, a vehicle sensor 112, a traffic flow control server 120, a traffic It includes a traffic light 130, an optical beacon 140, a base station 142, an information collection network 144, a traffic light control network 146, and the like. There are a plurality of devices other than the traffic flow control server 120.
 カーナビゲータ100や携帯電話機102は、運転者や搭乗者などの車両内のユーザや歩行するユーザと対話可能な移動情報装置であり、GPS衛星110から受信する信号に基づいてユーザに位置情報を提供し、更に目的地までの経路案内を行う機能を有する。車両センサ112は、道路上に設置され、道路上を通行する車両を感知する。交通流制御サーバ120は、交通管制センタ内にあって、各所に配置された光ビーコン140、基地局142、情報収集ネットワーク144等を介して、カーナビゲータ100、携帯電話機102、車両センサ112等から情報を収集する。また、交通流制御サーバ120は、交通流の制御を目的として、収集した情報に基づき各信号機に対するパラメータ値を演算し、信号機制御ネットワーク146等を介し制御情報として各信号機130へ提供する。 The car navigator 100 and the mobile phone 102 are mobile information devices capable of interacting with users in a vehicle such as a driver and a passenger, and users who walk, and provide position information to the users based on signals received from the GPS satellite 110. In addition, it has a function of performing route guidance to the destination. The vehicle sensor 112 is installed on the road and senses a vehicle passing on the road. The traffic flow control server 120 is located in the traffic control center, and is transmitted from the car navigator 100, the mobile phone 102, the vehicle sensor 112, etc. via the optical beacon 140, the base station 142, the information collection network 144, etc. Collect information. The traffic flow control server 120 calculates a parameter value for each traffic signal based on the collected information for the purpose of traffic flow control, and provides it to each traffic signal 130 as control information via the traffic signal control network 146 or the like.
 カーナビゲータ100、携帯電話機102及び交通流制御サーバ120の各々は、プロセッサ、メモリ、入出力機構等を備えるコンピュータである。プロセッサが、メモリにロードされたプログラムに従って動作することにより、これらのコンピュータは、各々の処理機能を実現する。 Each of the car navigator 100, the mobile phone 102, and the traffic flow control server 120 is a computer including a processor, a memory, an input / output mechanism, and the like. These computers realize respective processing functions by the processor operating according to a program loaded in the memory.
 光ビーコン140は、交差点近傍の道路標識柱や信号機などに取付けられ、その付近を通過する車両と光信号による情報を送受信する。また、光ビーコンに代えて電波ビーコンが使用されてもよい。情報収集ネットワーク144は、カーナビゲータ100、携帯電話機102、車両センサ112などから送信される情報を交通流制御サーバ120へ伝達する通信ネットワークである。信号機制御ネットワーク146は、交通流制御サーバ120から送信される情報を各信号機130へ伝達する通信ネットワークである。基地局142は、管轄するゾーン内の携帯電話機102と無線交信する通信施設である。 The optical beacon 140 is attached to a road sign pillar or a traffic light near the intersection, and transmits / receives information by an optical signal to / from a vehicle passing therearound. Further, a radio beacon may be used instead of the optical beacon. The information collection network 144 is a communication network that transmits information transmitted from the car navigator 100, the mobile phone 102, the vehicle sensor 112, and the like to the traffic flow control server 120. The traffic signal control network 146 is a communication network that transmits information transmitted from the traffic flow control server 120 to each traffic signal 130. The base station 142 is a communication facility that wirelessly communicates with the mobile phone 102 in the zone under its jurisdiction.
 図2は、図1に示される交通流制御システムの動作を例示する図である。まず、運転者、搭乗者等のユーザは、カーナビゲータ100又は携帯電話機102にて、自分の行きたい先つまり目的地への経路情報を検索して、目的地までの経路を確定する(ブロック202)。 FIG. 2 is a diagram illustrating the operation of the traffic flow control system shown in FIG. First, a user such as a driver or a passenger searches for information on a route to which the user wants to go, that is, a destination by using the car navigator 100 or the mobile phone 102 to determine a route to the destination (block 202). ).
 カーナビゲータ100又は携帯電話機102は、確定した経路に基づいてユーザに対する経路案内を開始するとき、現在の位置つまり出発地から目的地へ到る経路上の主要地点に到達する予想時刻を算出する(ブロック204)。 When the car navigator 100 or the mobile phone 102 starts route guidance for the user based on the confirmed route, the car navigator 100 or the mobile phone 102 calculates the current position, that is, the estimated time to reach the main point on the route from the departure point to the destination ( Block 204).
 次いで、カーナビゲータ100又は携帯電話機102は、出発地、目的地、経路及び主要地点到達時刻を含む経路情報を交通流制御サーバ120に伝達する(ブロック206)。すなわち、経路情報が、カーナビゲータ100から光信号として光ビーコン140へ伝達され、更に、光ビーコン140から情報収集ネットワーク144を介して交通流制御サーバ120に経路情報が伝達される。あるいは、経路情報が、携帯電話機102から電波により基地局142に伝達され、更に、基地局142から情報収集ネットワーク144を介して交通流制御サーバ120に伝達される。 Next, the car navigator 100 or the mobile phone 102 transmits the route information including the departure point, the destination, the route, and the arrival time of the main point to the traffic flow control server 120 (block 206). That is, route information is transmitted from the car navigator 100 to the optical beacon 140 as an optical signal, and further, the route information is transmitted from the optical beacon 140 to the traffic flow control server 120 via the information collection network 144. Alternatively, the route information is transmitted from the mobile phone 102 to the base station 142 by radio waves, and further transmitted from the base station 142 to the traffic flow control server 120 via the information collection network 144.
 交通流制御サーバ120は、カーナビゲータ100や携帯電話機102からの経路情報と車両センサ112からの信号に基づく混雑情報とに基づき交通流を処理するための最適な方針を求め、求めた方針に沿って各信号機130を制御するためのパラメータ値を決定する(ブロック208)。ここで、信号機パラメータは、前述のサイクル長、スプリット及びオフセットである。交通流制御サーバ120は、各交差点に流入している交通量つまりトラフィック量及びこれから交差点への流入が予想される交通量を基に、交通流を処理するのに最適な制御パラメータ値を計算する。 The traffic flow control server 120 obtains an optimum policy for processing the traffic flow based on the route information from the car navigator 100 or the mobile phone 102 and the congestion information based on the signal from the vehicle sensor 112, and follows the obtained policy. To determine parameter values for controlling each traffic light 130 (block 208). Here, the traffic light parameters are the aforementioned cycle length, split and offset. The traffic flow control server 120 calculates the optimal control parameter value for processing the traffic flow based on the traffic volume flowing into each intersection, that is, the traffic volume and the traffic volume expected to flow into the intersection. .
 交通流制御サーバ120は、決定したパラメータ値を、信号機制御ネットワーク146を用いて各信号機130に送信して、各信号機を制御する(ブロック210)。 The traffic flow control server 120 transmits the determined parameter value to each traffic signal 130 using the traffic signal control network 146 to control each traffic signal (block 210).
 各信号機が制御された結果は、車両センサ112からの混雑情報として、情報収集ネットワーク144を介し交通流制御サーバ120にフィードバックされる(ブロック212)。各信号機を制御することにより、交通流に変化が生じる。信号機の制御が適切であれば、混雑緩和などが期待できる。その一方で、交通量の混雑緩和などが達成できない場合には、信号機の制御が適切ではないと考えることができる。そのため、交通流制御サーバは、車両センサが収集した情報に基づいて交通流などを判別することで、以後の信号機の制御方針を決定することが可能となる。 The result of controlling each traffic signal is fed back to the traffic flow control server 120 via the information collection network 144 as congestion information from the vehicle sensor 112 (block 212). By controlling each traffic light, a change occurs in the traffic flow. If traffic signal control is appropriate, congestion can be reduced. On the other hand, if traffic congestion cannot be alleviated, it can be considered that control of traffic lights is not appropriate. Therefore, the traffic flow control server can determine the traffic signal control policy thereafter by discriminating the traffic flow based on the information collected by the vehicle sensor.
 交通流制御サーバ120は、信号機130の制御だけでは、車両が主要地点到達予想時刻に対して遅れを生ずると判断するときには、遅れを生じると予測される車両に搭載されたカーナビゲータ100又は携帯電話機102のナビゲーション機能に対して、経路変更の勧告を通知する(ブロック214)。これに基づいて、カーナビゲータや携帯電話機、あるいはこれらの装置を利用するユーザは、経路を変更することができる。ユーザに対して経路変更を促す場合には、カーナビゲータや携帯電話機に経路変更を促すための情報が出力される。 When the traffic flow control server 120 determines that the vehicle is delayed with respect to the expected arrival time at the main point only by controlling the traffic light 130, the car navigator 100 or the mobile phone mounted on the vehicle predicted to be delayed. A route change recommendation is notified to the navigation function 102 (block 214). Based on this, a car navigator, a mobile phone, or a user using these devices can change the route. When prompting the user to change the route, information for prompting the user to change the route is output to the car navigator or the mobile phone.
 車両に搭載されたカーナビゲータ100又は携帯電話機102は、状況や経路情報に変化が生ずる度に交通流制御サーバ120に経路情報の変化を報告する(ブロック216)。以降、時々刻々と収集される情報に基づいて、ブロック208~216の処理が繰り返される。 The car navigator 100 or the mobile phone 102 mounted on the vehicle reports a change in the route information to the traffic flow control server 120 whenever a change occurs in the situation or the route information (block 216). Thereafter, the processing of blocks 208 to 216 is repeated based on the information collected every moment.
 図3は、プレミアム優先サービスを含む交通流制御システムの構成について説明するための図である。図3の交通流制御システムでは、図1のシステムに対し、更に、プレミアム優先サービスを提供するプレミアムサービスサーバ300が交通管制センタ内に設けられる。ここで、「プレミアム優先サービス」とは、車両あるいはユーザに対して課金するのと引き換えに、車両がより早期に経路を通過し得るように、課金された車両の優先度を上げて交通流を制御することで、その車両に対する擬似的な優先道路を構築するサービスである。 FIG. 3 is a diagram for explaining the configuration of a traffic flow control system including a premium priority service. In the traffic flow control system of FIG. 3, a premium service server 300 that provides a premium priority service is further provided in the traffic control center. Here, “premium priority service” refers to raising the priority of a charged vehicle so that the vehicle can pass the route earlier in exchange for charging the vehicle or user. It is a service that constructs a pseudo priority road for the vehicle by controlling.
 図3に示される交通流制御システムの動作が図4に例示される。まず、ユーザは、カーナビゲータ100にて、自分の行きたい先への経路情報を確定させるとともに、有料でもよいのでより早く目的地に到達したいと考える場合には、「プレミアム優先サービス」を選択する(ブロック402)。 The operation of the traffic flow control system shown in FIG. 3 is illustrated in FIG. First, in the car navigator 100, the user decides the route information to the destination he wants to go to, and if he / she wants to reach the destination sooner, he / she selects “premium priority service”. (Block 402).
 次いで、プレミアム優先サービス付きカーナビゲーションサービスを起動したカーナビゲータ100は、交通流制御サーバ120にプレミアム優先サービスを利用するプレミアムユーザとして経路情報を送信する(ブロック404)。 Next, the car navigator 100 that has activated the car navigation service with premium priority service transmits route information to the traffic flow control server 120 as a premium user who uses the premium priority service (block 404).
 次いで、交通流制御サーバ120は、プレミアムサービスサーバ300に対してプレミアムユーザの認証の依頼を行う(ブロック406)。 Next, the traffic flow control server 120 requests the premium service server 300 to authenticate the premium user (block 406).
 プレミアムサービスサーバ300により、経路情報を送信したユーザがプレミアムユーザであることの確認が完了すると、交通流制御サーバ120は、そのユーザの通過優先度を上げて、信号機のパラメータの値を算出する(ブロック408)。 When the premium service server 300 confirms that the user who has transmitted the route information is a premium user, the traffic flow control server 120 increases the passing priority of the user and calculates the parameter value of the traffic light ( Block 408).
 次いで、交通流制御サーバ120は、算出された信号機パラメータ値を使用して、前述したように信号機130の制御を実行する(ブロック410)。 Next, the traffic flow control server 120 executes the control of the traffic light 130 as described above using the calculated traffic light parameter value (block 410).
 カーナビゲータ100から交通流制御サーバ120に対して車両が目的地に到着したことが報告されると、プレミアムサービスサーバ300は、そのプレミアムユーザに対する課金請求を発生する(ブロック412)。課金体系としては、固定料金、経路の長さや制御された信号機の数に応じた従量料金、通常の到着予想時間よりもどれだけ短い時間で到着できたかという効果料金、等が使用される。 When it is reported from the car navigator 100 to the traffic flow control server 120 that the vehicle has arrived at the destination, the premium service server 300 generates a charge for the premium user (block 412). As a charging system, a fixed fee, a pay-as-you-go fee according to the length of the route and the number of controlled traffic signals, an effect fee indicating how much time it has arrived in less than the normal expected arrival time, and the like are used.
 プレミアム優先サービスでは、無駄のない最適経路をユーザに通知することができるため、渋滞や工事などによる時間遅延、即ち余分な走行を回避することができ、結果的に環境への負荷を少なくすることができる。 With premium priority services, users can be notified of the optimal route without waste, so it is possible to avoid time delays due to traffic jams, construction work, etc., that is, unnecessary travel, and consequently reduce the burden on the environment. Can do.
 図5は、交通流制御サーバ120の一構成例を示す図である。図5に示されるように、交通流制御サーバ120は、制御ポリシー決定部500、信号機パラメータ演算部502及びナビゲータ制御部504を備える。そして、交通流制御サーバ120には、交通流を制御するための情報として、以下の三つが入力される。 FIG. 5 is a diagram illustrating a configuration example of the traffic flow control server 120. As shown in FIG. 5, the traffic flow control server 120 includes a control policy determination unit 500, a traffic light parameter calculation unit 502, and a navigator control unit 504. The traffic flow control server 120 receives the following three items as information for controlling the traffic flow.
 (1)車両の運転者、搭乗者等のユーザのカーナビゲータ100や携帯電話機102から収集される出発地、目的地、経路及び主要地点到達予想時刻といった経路情報510
 (2)道路上の車両センサ112からのトラフィック情報512
 (3)ある道路にトラフィックを集中させたり、ある道路を通行止めにしたりするという、管理者からの管理ポリシー情報514
(1) Route information 510 such as a departure point, a destination, a route, and a predicted arrival time of a main point collected from a car navigator 100 or a mobile phone 102 of a user such as a vehicle driver or a passenger.
(2) Traffic information 512 from the vehicle sensor 112 on the road
(3) Management policy information 514 from an administrator that concentrates traffic on a certain road or blocks a certain road.
 これらの情報に基づいて、制御ポリシー決定部500は、各交差点や道路の通過トラフィックつまり交通量を予想し、交通量をうまく処理するための方針を決定する。更に、制御ポリシー決定部500は、プレミアム優先サービスを要望するユーザについて、プレミアムサービスサーバ300と連携してユーザの認証を行い、党がユーザに対する優先制御を実現する。 Based on these pieces of information, the control policy determination unit 500 predicts the traffic passing through each intersection or road, that is, the traffic volume, and determines a policy for processing the traffic volume well. Furthermore, the control policy determination unit 500 performs user authentication in cooperation with the premium service server 300 for a user who desires premium priority service, and the party realizes priority control for the user.
 決定された制御ポリシーに基づいて、信号機パラメータ演算部502は、各信号機を制御するためのパラメータの値520を決定し、各信号機にパラメータを配布する。また、ナビゲータ制御部504は、必要に応じて各カーナビゲータ100又は携帯電話機102のナビゲーション機能に対する勧告522を行う。勧告メッセージは、受信するユーザが使用している媒体や装置に合った形に変更される。 Based on the determined control policy, the traffic light parameter calculation unit 502 determines a parameter value 520 for controlling each traffic light, and distributes the parameter to each traffic light. In addition, the navigator control unit 504 makes a recommendation 522 for the navigation function of each car navigator 100 or the mobile phone 102 as necessary. The recommendation message is changed into a form suitable for the medium or device used by the receiving user.
 図6は、交通流制御サーバ120における制御ポリシー決定部500の一構成例を示す図である。図6に示される制御ポリシー決定部500は、通過トラフィック計測データ収集部600、経路データ収集部602、各車経路決定部604、トラフィック量演算部606、遅延演算部608、及び異常遅延箇所検出部610を備える。 FIG. 6 is a diagram illustrating a configuration example of the control policy determination unit 500 in the traffic flow control server 120. The control policy determination unit 500 shown in FIG. 6 includes a passing traffic measurement data collection unit 600, a route data collection unit 602, each vehicle route determination unit 604, a traffic amount calculation unit 606, a delay calculation unit 608, and an abnormal delay point detection unit. 610 is provided.
 通過トラフィック計測データ収集部600は、道路に設置された各車両センサ112から計測データ、例えば通過する車両の台数及び速度を収集し、リンク毎又は交差点毎のトラフィック積算値(現在値)テーブル620に保存する。ここで、リンクとは、交差点間の道路を意味する。トラフィック積算値(現在値)テーブルには、各リンクあるいは各交差点における交通量の積算値が記録されている。なお、交通量を積算する期間は任意である。 The passing traffic measurement data collection unit 600 collects measurement data, for example, the number and speed of passing vehicles, from each vehicle sensor 112 installed on the road, and stores it in a traffic integrated value (current value) table 620 for each link or each intersection. save. Here, the link means a road between intersections. In the traffic integrated value (current value) table, the integrated value of the traffic volume at each link or each intersection is recorded. In addition, the period which accumulate | stores traffic is arbitrary.
 各車経路データテーブル622には、経路情報、つまり出発地、目的地、出発地から目的地までの経路および主要地点到達予想時刻が、車両/ユーザ毎に記録される。経路データ収集部602は、カーナビゲータ100や携帯電話機102から、各ユーザの経路情報を収集し、各車経路データテーブル622に保存する。経路情報の収集タイミングとしては、(1)ユーザが出発時に経路を設定したとき、(2)ユーザが経路を変更したとき、及び(3)ナビゲーションソフトが経路を変更したとき、つまりリルート時、が挙げられる。 In each car route data table 622, route information, that is, the departure point, the destination, the route from the departure point to the destination, and the expected arrival time at the main point are recorded for each vehicle / user. The route data collection unit 602 collects route information of each user from the car navigator 100 or the mobile phone 102 and stores it in each vehicle route data table 622. The timing of collecting route information includes (1) when the user sets a route at the time of departure, (2) when the user changes the route, and (3) when the navigation software changes the route, that is, at the time of reroute. Can be mentioned.
 地図データ624は、道路の配置や目的地となり得る各地の情報を示した地図に関するデータである。なお、地図データ624には、上記以外の情報が含まれてもよい。 The map data 624 is data relating to a map that shows information on each place that can be a road layout or a destination. The map data 624 may include information other than the above.
 経路毎メトリック情報626は、各経路における交通量の評価値つまりメトリックを示す情報である。メトリックとしては、例えばリンク毎の評価値を設定することができるが、メトリックの設定単位や情報の持たせ方は任意である。 The route-specific metric information 626 is information indicating an evaluation value of the traffic volume in each route, that is, a metric. As the metric, for example, an evaluation value for each link can be set, but the setting unit of the metric and how to have the information are arbitrary.
 遅延時間テーブル628には、交差点やリンクなど、道路各所で発生している遅延時間、つまり予想される通過/到達時間に対する実際の通過/到達時間の差分を示す情報が格納される。なお、予想通過/到達時間よりも実際の通過/到達時間の方が小さい場合は、「遅延時間なし」という情報を設定してもよく、また短縮された通過/到達時間を設定してもよい。 The delay time table 628 stores information indicating delay times occurring at various places such as intersections and links, that is, differences in actual pass / arrival times with respect to expected pass / arrival times. If the actual pass / arrival time is smaller than the expected pass / arrival time, information “no delay time” may be set, or a shortened pass / arrival time may be set. .
 各車経路決定部604は、各車経路データテーブル622、地図データ624、経路毎メトリック情報626、及び遅延時間テーブル628の情報を用いて、各車両が通過する経路を決定する。車両の経路決定にあたっては、以下のような対応が可能である。各車経路決定部604は、まず、各車の経路情報を用いて地図データを参照し、各車が通過する道路と、交差点やリンクを含む通過点を判別する。続いて、各車経路決定部は、判別された通過点に基づいて、経路毎メトリック情報626及び遅延時間テーブル628を参照し、評価値が適切で、且つ遅延時間が小さい経路を選択することで、目的地までの予想到達時間が最も小さくなる経路を選択する。なお、経路決定の具体的な手順はこの手順には限定されない。各車経路決定部604により決定された経路は、経路データ収集部602で収集されたデータよりも綿密な内容となる。各車経路決定部604は、決定した経路を各車経路データテーブル622に再び保存する。 Each vehicle route determination unit 604 determines a route through which each vehicle passes using information in each vehicle route data table 622, map data 624, metric information for each route 626, and delay time table 628. In determining the route of the vehicle, the following measures can be taken. Each vehicle route determination unit 604 first refers to map data using the route information of each vehicle, and determines a road through which each vehicle passes and a passing point including an intersection or a link. Subsequently, each vehicle route determination unit refers to the metric information 626 for each route and the delay time table 628 based on the determined passing point, and selects a route with an appropriate evaluation value and a small delay time. The route with the shortest expected arrival time to the destination is selected. The specific procedure for determining the route is not limited to this procedure. The route determined by each vehicle route determination unit 604 is more detailed than the data collected by the route data collection unit 602. Each vehicle route determination unit 604 stores the determined route in each vehicle route data table 622 again.
 トラフィック量演算部606は、各車経路データテーブル622に保存された各車両の経路情報とトラフィック積算値(現在値)テーブル620の情報と基づいて、将来のある時刻にそれぞれの交差点又はリンクつまり交差点間の道路に集まると予想される車両の数つまりトラフィックを積算する。トラフィック量演算部606は、車両数の積算結果をリンク毎又は交差点毎のトラフィック積算値(予測値)テーブル630に保存する。なお、プレミアム優先サービスとして車両の通過優先度を上げるためには、プレミアム優先サービスを適用する車両の重み付けを、他の車両と比較して大きくして、トラフィックを算出する。例えば、プレミアム優先サービスを適用する車両を数台分に換算して、各所のトラフィックの演算を行えばよい。 Based on the route information of each vehicle stored in each vehicle route data table 622 and the information in the traffic integrated value (current value) table 620, the traffic amount calculation unit 606 determines each intersection or link, that is, an intersection at a future time. The number of vehicles expected to gather on the road in between, that is, the traffic is accumulated. The traffic amount calculation unit 606 stores the result of integrating the number of vehicles in a traffic integrated value (predicted value) table 630 for each link or each intersection. In order to increase the vehicle passing priority as the premium priority service, the weight of the vehicle to which the premium priority service is applied is increased as compared with other vehicles, and the traffic is calculated. For example, the number of vehicles to which the premium priority service is applied may be converted into several vehicles and the traffic at each location may be calculated.
 遅延演算部608は、トラフィック積算値(予測値)テーブル630と、予め与えられたリンク毎の交通容量データ632と、に基づいて、各交差点やリンクにおける遅延時間を演算する。交通容量データとは、単位時間当たりに各リンクを通過可能な車両数を示すデータである。その際、遅延演算部608は、工事・通行止め予定表634に記録されている道路の工事予定や通行止めの予定をも考慮に入れて、遅延時間を演算する。遅延演算部608は、遅延時間の演算結果に基づいて遅延時間テーブル628を修正する。 The delay calculation unit 608 calculates the delay time at each intersection or link based on the traffic integrated value (predicted value) table 630 and the traffic capacity data 632 for each link given in advance. The traffic capacity data is data indicating the number of vehicles that can pass through each link per unit time. At that time, the delay calculation unit 608 calculates the delay time in consideration of the road construction schedule and the road closure schedule recorded in the construction / propagation schedule table 634. The delay calculation unit 608 corrects the delay time table 628 based on the calculation result of the delay time.
 異常遅延箇所検出部610は、遅延時間テーブル628を参照し、管理ポリシー636に規定された値以上に車両の通行が遅延している箇所を抽出し、抽出結果を遅延回避箇所データテーブル638に記録する。 The abnormal delay point detection unit 610 refers to the delay time table 628, extracts a point where the vehicle traffic is delayed more than the value specified in the management policy 636, and records the extraction result in the delay avoidance point data table 638. To do.
 信号機パラメータ演算部502は、遅延回避箇所データテーブル638に挙げられた交差点やリンクの通過トラフィックを上げるように、信号機パラメータを制御する。また、ナビゲータ制御部504は、遅延回避箇所データテーブル638に基づいて、カーナビゲータ100や携帯電話機102のナビゲーション機能に対して、異常遅延箇所を回避するなどリルートの勧告を通知する。 The traffic light parameter calculation unit 502 controls traffic light parameters so as to increase traffic passing through intersections and links listed in the delay avoidance point data table 638. Further, the navigator control unit 504 notifies the navigation function of the car navigator 100 or the mobile phone 102 based on the delay avoidance location data table 638 of a reroute recommendation such as avoiding an abnormal delay location.
 図7(A)及び(B)は、制御ポリシー決定部500における各車経路決定部604の処理について説明するための図である。各車経路決定部604が各車両の詳細な経路を決定する方法は、以下のとおりである。いま、図7(A)で示されるような道路で構成される道路網があり、上下に走る道路に“1”~“3”の番号が、左右に走る道路に“A”~“C”の符号が付けられているものとする。また、図7(A)で示されるように、各道路の交差点間つまりノード間の部分すなわちリンクには、それぞれ、評価値つまりメトリックが設定されているものとする。メトリックは、通過に必要な時間つまり遅延時間、単位時間に通過することができる車両数つまり交通容量、道路管理者のポリシー等を総合的に評価した値であり、図7(A)に記載されたかっこ付きの数値が各リンクのメトリックに相当する。 FIGS. 7A and 7B are diagrams for explaining processing of each vehicle route determination unit 604 in the control policy determination unit 500. FIG. The method by which each vehicle route determination unit 604 determines the detailed route of each vehicle is as follows. Now, there is a road network composed of roads as shown in FIG. 7 (A). Numbers "1" to "3" run up and down, and "A" to "C" run left and right. It is assumed that the symbol is attached. Further, as shown in FIG. 7A, it is assumed that an evaluation value, that is, a metric is set for each road between intersections, that is, between nodes, that is, a link. The metric is a value obtained by comprehensively evaluating the time required for passing, that is, the delay time, the number of vehicles that can pass per unit time, that is, the traffic capacity, the policy of the road manager, and the like, and is described in FIG. The numbers with parentheses correspond to the metrics for each link.
 ある車両が、“A1”地点から“C3”地点に行く場合、車両の経路を決定するアルゴリズムとしては、ダイクストラ(Dijkstra)法が有名である。ダイクストラ法は、ノードごとに取り得る経路を二分木で評価していき、最終的に各リンクのメトリックの合計が最大あるいは最小になる経路を選択する方法である。当該車両が“A1”地点から“C3”地点に行く場合の評価結果が図7(B)に示される。図7(B)において下に並ぶ数値が、各経路でのメトリックの積算値であり、積算地に基づいて評価が行われる。図7(B)から、“A1”→“B1” →“B2” →“B3” →“C3”の経路が最適、すなわち、メトリックが最大であることが求められる。この方法を用いて、各車経路決定部604は、各車両の経路と通過時刻とを算出していく。 When a certain vehicle goes from the “A1” point to the “C3” point, the Dijkstra method is well known as an algorithm for determining the route of the vehicle. The Dijkstra method is a method of evaluating a path that can be taken for each node by using a binary tree, and finally selecting a path that maximizes or minimizes the metric sum of each link. FIG. 7B shows the evaluation result when the vehicle goes from the “A1” point to the “C3” point. In FIG. 7B, the numerical values arranged below are the integrated values of the metrics in each route, and the evaluation is performed based on the integrated location. From FIG. 7B, it is determined that the route “A1” → “B1” → “B2” → “B3” → “C3” is optimal, that is, the metric is maximum. Using this method, each vehicle route determination unit 604 calculates the route and passage time of each vehicle.
 図8は、制御ポリシー決定部500におけるトラフィック量演算部606の処理について説明するための図である。各車経路決定部604によって決定された各車両の経路に基づいて、トラフィック量演算部606が各交差点や道路のトラフィック量を計算する方法は、以下のとおりである。車両は、図7(A)及び(B)のアルゴリズムで求められた経路を、図8のような時間(t)の流れとともに通過していく。図8は、一定間隔の時刻(t1~t5)毎に車両が存在する位置と選択する方向とを示したものである。 FIG. 8 is a diagram for explaining the processing of the traffic amount calculation unit 606 in the control policy determination unit 500. Based on the route of each vehicle determined by each vehicle route determining unit 604, the traffic amount calculating unit 606 calculates the traffic amount of each intersection or road as follows. The vehicle passes through the route obtained by the algorithm of FIGS. 7A and 7B together with the flow of time (t) as shown in FIG. FIG. 8 shows the position where the vehicle is present and the direction in which the vehicle is present at regular time intervals (t1 to t5).
 トラフィック量演算部606は、各車経路データテーブル622に基づいて、ある時刻に各交差点又は各リンクに集まる車両数を積算することで、ある時刻のトラフィック量を計算する。そして、遅延演算部608は、計算されたトラフィック量とその交差点又はリンクが単位時間に通過させ得る車両数つまり交通容量との関係から、その交差点又はリンクの遅延時間を算出する。なお、以上で説明した簡易なやり方の他にも、セルオートマトン等の数理モデルを用いてミクロな動きをシミュレーションする方法についても研究が進んでおり、これらの結果を利用することも可能である。 The traffic amount calculation unit 606 calculates the traffic amount at a certain time by accumulating the number of vehicles gathered at each intersection or each link at a certain time based on each vehicle route data table 622. Then, the delay calculation unit 608 calculates the delay time of the intersection or link from the relationship between the calculated traffic volume and the number of vehicles that the intersection or link can pass in unit time, that is, the traffic capacity. In addition to the simple method described above, research is also progressing on a method of simulating micro movements using a mathematical model such as a cellular automaton, and these results can also be used.
 本開示技術を用いることで、現状のカーナビゲータが持つリルート機能による、渋滞を避けて空いている道の経路に切り替えるという制御だけでなく、ふだんは通行が禁止されている車線を警察などの管制者が許可することで、渋滞を緩和したり、到達時間を早めることが可能になる。具体的には、以下のような応用がある。 By using the disclosed technology, the re-route function of the current car navigator not only controls switching to an empty road route to avoid traffic congestion, but also controls traffic lanes that are normally prohibited from traffic such as police. By permitting the person, it becomes possible to alleviate traffic jams and speed up the arrival time. Specifically, there are the following applications.
 (1)既存のバス優先道路を、特定の時間だけプレミアム優先サービス用の通行帯にする。
 (2)プレミアム優先サービス専用の道路を造る。この場合、既存の高速道路や有料道路の利用)といった対応が可能となる。
 (3)私有地内道路をプレミアム優先サービス向けに解放し、私有地の所有者に通行料金の一部を還元する。
(1) An existing bus priority road is made a pedestrian zone for premium priority services for a specific time.
(2) Build a road dedicated to premium priority services. In this case, it is possible to handle existing highways and toll roads).
(3) Release private roads for premium priority services and return a portion of tolls to private land owners.
 また、本開示技術によれば、タクシー等、運送することにより対価を求めるサービスにおいて、乗客の緊急度に応じて、最適な経路を提示し、その成果によって、プレミアム優先サービス料金を変える、等のサービスも可能となる。また、現場に急行する緊急自動車と出会わないようにプレミアム優先サービスの経路を提示したり、犯罪で逃走する車両には過った経路を提示するなどの応用も可能となる。更に、プレミアムサービスサーバは、運用業者ごとに立てることが可能なため、他の運用業者やサービスとの相互乗り入れによって、適用範囲を広げることも可能である。 In addition, according to the disclosed technology, in a service such as a taxi that requires consideration by transportation, an optimum route is presented according to the urgency of the passenger, and the premium priority service fee is changed according to the result, etc. Service is also possible. In addition, applications such as presenting a premium priority service route so as not to meet an emergency car rushing to the site, or presenting an over route to a vehicle escaping due to a crime are possible. Furthermore, since the premium service server can be set up for each operator, the application range can be expanded by mutual entry with other operators and services.

Claims (10)

  1.  移動情報装置と制御サーバとが通信ネットワークを介して接続される交通流制御システムであって、
     前記移動情報装置が、
     出発地及び目的地を含む経路情報を設定する経路情報設定部と、
     該経路情報を前記制御サーバ宛に送信する経路情報送信部と、
     を具備し、
     前記制御サーバが、
     各車両から収集した経路情報を使用して、交差点毎又はリンク毎の予測交通量及び遅延時間を演算し、演算結果に基づいて交通量の制御ポリシーを決定する制御ポリシー決定部と、
     決定された制御ポリシーに基づいて、各交通信号機のパラメータの値を変更する信号機パラメータ演算部と、
     を具備する交通流制御システム。
    A traffic flow control system in which a mobile information device and a control server are connected via a communication network,
    The mobile information device is
    A route information setting unit for setting route information including a starting point and a destination,
    A route information transmitting unit for transmitting the route information to the control server;
    Comprising
    The control server is
    Using the route information collected from each vehicle, calculate the predicted traffic volume and delay time for each intersection or link, and determine a traffic volume control policy based on the calculation results;
    Based on the determined control policy, a traffic light parameter calculation unit that changes the parameter value of each traffic light,
    A traffic flow control system comprising:
  2.  前記交通流制御システムにおいて、
     前記制御ポリシー決定部は、予測交通量及び遅延時間の演算結果に基づいて、遅延時間が大きな箇所を示す遅延回避箇所情報を作成し、
     前記信号機パラメータ演算部は、前記遅延回避箇所情報に基づいて、対応する交通信号機のパラメータの値を変更することを特徴とする、請求項1に記載の交通流制御システム。
    In the traffic flow control system,
    The control policy determination unit creates delay avoidance point information indicating a point where the delay time is large based on the calculation result of the predicted traffic volume and the delay time,
    2. The traffic flow control system according to claim 1, wherein the traffic light parameter calculation unit changes a parameter value of a corresponding traffic light based on the delay avoidance point information.
  3.  前記移動情報装置がカーナビゲータである、請求項1に記載の交通流制御システム。 The traffic flow control system according to claim 1, wherein the movement information device is a car navigator.
  4.  前記移動情報装置が携帯電話機である、請求項1に記載の交通流制御システム。 The traffic flow control system according to claim 1, wherein the mobile information device is a mobile phone.
  5.  前記制御ポリシー決定部は、前記予測交通量を計算する際、道路上の車両センサからの情報を更に使用する、請求項1に記載の交通流制御システム。 The traffic flow control system according to claim 1, wherein the control policy determination unit further uses information from a vehicle sensor on a road when calculating the predicted traffic volume.
  6.  前記制御ポリシー決定部は、前記予測交通量を計算する際、管理者からの管理ポリシー情報を更に使用する、請求項1に記載の交通流制御システム。 The traffic flow control system according to claim 1, wherein the control policy determination unit further uses management policy information from an administrator when calculating the predicted traffic volume.
  7.  前記制御サーバは、遅延回避箇所情報に基づいて前記移動情報装置内のナビゲーション機能に対する勧告を行うナビゲータ制御部を更に具備する、請求項1に記載の交通流制御システム。 The traffic flow control system according to claim 1, wherein the control server further includes a navigator control unit that makes a recommendation for a navigation function in the mobile information device based on delay avoidance point information.
  8.  車両内のユーザと対話可能な移動情報装置と制御サーバと交通信号機とが通信ネットワークを介して接続されるシステムにおける交通流制御方法であって、
     前記移動情報装置が、出発地、目的地、経路及び主要地点到達予想時刻を含む経路情報を設定するステップと、
     前記移動情報装置が、該経路情報を前記制御サーバ宛に送信するステップと、
     前記制御サーバが、各車両から収集された経路情報を使用して、交差点毎又はリンク毎の予測交通量及び遅延時間を演算し、異常遅延箇所を検出することにより、遅延回避箇所情報を作成するステップと、
     前記制御サーバが、該遅延回避箇所情報に基づいて、各交通信号機のパラメータの値を変更するステップと、
     を具備する交通流制御方法。
    A traffic flow control method in a system in which a mobile information device capable of interacting with a user in a vehicle, a control server, and a traffic signal are connected via a communication network,
    The movement information device sets route information including a departure point, a destination, a route, and a predicted arrival time of a main point;
    The mobile information device transmitting the route information to the control server;
    Using the route information collected from each vehicle, the control server calculates the predicted traffic volume and delay time for each intersection or link, and creates an abnormal delay location information by detecting an abnormal delay location. Steps,
    The control server changing a parameter value of each traffic signal based on the delay avoidance point information;
    A traffic flow control method comprising:
  9.  移動情報装置と交通信号機とに通信ネットワークを介して接続される情報処理装置であって、
     前記移動情報装置から出発地及び目的地を含む経路情報を受信する経路情報受信部と、
     各車両から収集した経路情報を使用して、交差点毎又はリンク毎の予測交通量及び遅延時間を演算し、演算結果に基づいて交通量の制御ポリシーを決定する制御ポリシー決定部と、
     決定された制御ポリシーに基づいて、各交通信号機を制御するパラメータの値を変更する信号機パラメータ演算部と、
     を具備する情報処理装置。
    An information processing device connected to a mobile information device and a traffic signal via a communication network,
    A route information receiving unit for receiving route information including a departure point and a destination from the movement information device;
    Using the route information collected from each vehicle, calculate the predicted traffic volume and delay time for each intersection or link, and determine a traffic volume control policy based on the calculation results;
    Based on the determined control policy, a traffic light parameter calculation unit that changes a value of a parameter for controlling each traffic light,
    An information processing apparatus comprising:
  10.  車両内のユーザと対話可能な移動情報装置と交通信号機とに通信ネットワークを介して接続されるコンピュータを交通流制御サーバとして機能させるプログラムであって、
     前記移動情報装置から出発地、目的地、経路及び主要地点到達予想時刻を含む経路情報を受信するステップと、
     各車両から収集した経路情報を使用して、交差点毎又はリンク毎の予測交通量及び遅延時間を演算し、演算結果に基づいて遅延回避箇所情報を作成するステップと、
     該遅延回避箇所情報に基づいて、各交通信号機のパラメータの値を変更するステップと、
     を前記コンピュータに実行させるプログラム。
    A program for causing a computer connected to a mobile information device and a traffic signal capable of interacting with a user in a vehicle via a communication network to function as a traffic flow control server,
    Receiving route information including a departure point, a destination, a route, and a predicted arrival time of a main point from the movement information device;
    Using the route information collected from each vehicle, calculating the predicted traffic volume and delay time for each intersection or link, and creating delay avoidance point information based on the calculation results;
    Changing the parameter value of each traffic signal based on the delay avoidance point information;
    A program for causing the computer to execute.
PCT/JP2008/065884 2008-09-03 2008-09-03 Traffic flow control system and its method WO2010026630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065884 WO2010026630A1 (en) 2008-09-03 2008-09-03 Traffic flow control system and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065884 WO2010026630A1 (en) 2008-09-03 2008-09-03 Traffic flow control system and its method

Publications (1)

Publication Number Publication Date
WO2010026630A1 true WO2010026630A1 (en) 2010-03-11

Family

ID=41796818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065884 WO2010026630A1 (en) 2008-09-03 2008-09-03 Traffic flow control system and its method

Country Status (1)

Country Link
WO (1) WO2010026630A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111126A1 (en) * 2015-12-23 2017-06-29 京セラ株式会社 Server device, vehicle control device, and communication device
CN109559513A (en) * 2018-12-12 2019-04-02 武汉理工大学 A kind of Adaptive Signal Control method based on the prediction of adjacent periods flow difference
JP2019530871A (en) * 2016-09-30 2019-10-24 ニッサン ノース アメリカ,インク Optimization of travel time and user experience of autonomous vehicles using traffic signal information
US10994748B2 (en) 2018-02-28 2021-05-04 Nissan North America, Inc. Transportation network infrastructure for autonomous vehicle decision making
CN112991783A (en) * 2021-02-05 2021-06-18 青岛海信网络科技股份有限公司 Bus priority control method and device based on real-time position of internet public transport
CN113196358A (en) * 2019-11-29 2021-07-30 无人驾驶方案株式会社 Signal lamp system analysis system required by automatic driving path
CN113393055A (en) * 2021-07-05 2021-09-14 苏州清研捷运信息科技有限公司 Preprocessing and using method of freight car navigation along-the-way traffic control data

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151074A (en) * 2001-11-13 2003-05-23 Mitsubishi Corp Signal navigation system
JP2006343814A (en) * 2005-06-07 2006-12-21 Sumitomo Electric Ind Ltd Traffic control system and on-vehicle device to transmit information to this system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151074A (en) * 2001-11-13 2003-05-23 Mitsubishi Corp Signal navigation system
JP2006343814A (en) * 2005-06-07 2006-12-21 Sumitomo Electric Ind Ltd Traffic control system and on-vehicle device to transmit information to this system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111126A1 (en) * 2015-12-23 2017-06-29 京セラ株式会社 Server device, vehicle control device, and communication device
JP2019530871A (en) * 2016-09-30 2019-10-24 ニッサン ノース アメリカ,インク Optimization of travel time and user experience of autonomous vehicles using traffic signal information
US10994748B2 (en) 2018-02-28 2021-05-04 Nissan North America, Inc. Transportation network infrastructure for autonomous vehicle decision making
CN109559513A (en) * 2018-12-12 2019-04-02 武汉理工大学 A kind of Adaptive Signal Control method based on the prediction of adjacent periods flow difference
CN109559513B (en) * 2018-12-12 2021-07-20 武汉理工大学 Adaptive signal control method based on adjacent period flow difference prediction
CN113196358A (en) * 2019-11-29 2021-07-30 无人驾驶方案株式会社 Signal lamp system analysis system required by automatic driving path
CN112991783A (en) * 2021-02-05 2021-06-18 青岛海信网络科技股份有限公司 Bus priority control method and device based on real-time position of internet public transport
CN112991783B (en) * 2021-02-05 2022-04-29 青岛海信网络科技股份有限公司 Bus priority control method and device based on real-time position of internet public transport
CN113393055A (en) * 2021-07-05 2021-09-14 苏州清研捷运信息科技有限公司 Preprocessing and using method of freight car navigation along-the-way traffic control data

Similar Documents

Publication Publication Date Title
US10928209B2 (en) Assessing inter-modal passenger travel options
US10782138B2 (en) Method, apparatus, and computer program product for pedestrian behavior profile generation
US10830598B2 (en) Navigating to a moving target in an augmented reality environment
US11867517B2 (en) Navigating to a moving target
JP4657728B2 (en) Apparatus and method for providing traffic information
US6879907B2 (en) Method and system for modeling and processing vehicular traffic data and information and applying thereof
WO2010026630A1 (en) Traffic flow control system and its method
US20190114909A1 (en) Method and Apparatus for Identifying Congestion Bottlenecks
CN102413231A (en) Mobile terminal and schedule reminding method
JP2006337182A (en) Car navigation system, traffic information providing device, car navigation device, traffic information providing method, and traffic information providing program
Minelli et al. Evaluation of connected vehicle impact on mobility and mode choice
EP1582841B1 (en) Route search server, system and method
JP2014115877A (en) Traffic jam prediction device, traffic jam prediction system, traffic jam prediction method and program
JP2010191614A (en) Traffic information estimation system, estimation method, provision system and computer program
JP2021182332A (en) Congestion prediction information provision system, congestion prediction information provision method, and congestion prediction information provision program
JP5528723B2 (en) Driving evaluation device, driving evaluation system, driving evaluation method
Liao et al. Field testing and evaluation of a wireless-based transit signal priority system
JP5892425B2 (en) Cost calculation device, cost calculation program, and navigation device
JP2011075392A (en) Navigation device
JP4799001B2 (en) Information sharing system, information sharing server, information sharing method, and information sharing program
JP2004077360A (en) Traffic information providing method, traffic information providing center, and traffic information acquiring system
JP7136178B2 (en) Management device, in-vehicle device, data collection system, data collection method and data collection program
Lv et al. Optimization of dynamic parking guidance information for special events
Sub-R-Pa et al. Route recommendation system to support multiple destinations and multiple routes to minimise road congestion
JP5733248B2 (en) Information collection system, information collection method, and information collection program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08809939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08809939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP