WO2010024713A1 - Crucible for evaporating aluminium in the molecular beam epitaxy process - Google Patents

Crucible for evaporating aluminium in the molecular beam epitaxy process Download PDF

Info

Publication number
WO2010024713A1
WO2010024713A1 PCT/RU2008/000796 RU2008000796W WO2010024713A1 WO 2010024713 A1 WO2010024713 A1 WO 2010024713A1 RU 2008000796 W RU2008000796 W RU 2008000796W WO 2010024713 A1 WO2010024713 A1 WO 2010024713A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
flange
molecular beam
beam epitaxy
flask
Prior art date
Application number
PCT/RU2008/000796
Other languages
French (fr)
Russian (ru)
Inventor
Алексей Николаевич АЛЕКСЕЕВ
Дмитрий Аркадьевич БАРАНОВ
Алексей Петрович ШКУРКО
Юрий Васильевич ПОГОРЕЛЬСКИЙ
Original Assignee
Закрытое акционерное общество "Научное и технологическое оборудование"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Научное и технологическое оборудование" filed Critical Закрытое акционерное общество "Научное и технологическое оборудование"
Publication of WO2010024713A1 publication Critical patent/WO2010024713A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles

Definitions

  • the invention relates to a technique used for the evaporation of aluminum when growing thin epitaxial films and nanostructures by molecular beam epitaxy (MPE), in particular based on InAlGaN, AlGaN and other compounds
  • MPE molecular beam epitaxy
  • means for supplying the elements involved in the reaction are necessary.
  • One such means is a crucible, in which the evaporation of a compound containing the desired element occurs. Based on the conditions of the MPE, a number of requirements are imposed on the material and design of the crucible: chemical and temperature resistance, purity of the material, etc.
  • a crucible for metal evaporation in the MPE process comprising a housing made of at least five layers of boron nitride, alternating thickness, US 4913652 A.
  • the design allows to reduce heat loss from the crucible cavity.
  • a common disadvantage of the analogues described above is the possibility of leakage of molten material through the upper edge of the crucible body during the evaporation of the material.
  • Known crucible for the evaporation of metals, in particular aluminum, in the MPE process comprising a housing of several layers of boron nitride, containing a flask with an annular flange; the plane of the flange is perpendicular to the longitudinal axis of symmetry of the crucible.
  • Most of the body is equipped with a two-layer coating, including the inner layer of pyrolytic graphite and the outer layer of boron nitride, US 5075055 A.
  • the high temperature of the crucible (1300 0 C) not only in the lower, heated part, but also in its upper part causes a rather noticeable deposition of nitrides on the flask and flange surfaces.
  • the wettability of the surface of the flask and flange sharply increases, which leads to the overflow of aluminum through the flange. In other metals, under these conditions, this phenomenon is much less pronounced and is rarely observed.
  • the crucible heating system breaks down as a result of short circuits in the current-carrying electrical circuits of the system, as well as due to the thermal action of molten active metal, such as aluminum, on it.
  • the objective of the present invention is to prevent the leakage of molten aluminum from the crucible during molecular beam epitaxy and the failure of the heating system as a result.
  • a crucible for the evaporation of aluminum during molecular beam epitaxy including a boron nitride housing containing a flask with a flange in the upper part, as well as a coating containing pyrolytic graphite
  • the flange is made in the form of a conical socket
  • the coating is made a single layer of pyrolytic graphite with a layer thickness of 20-50 microns, while the outer surface of the flask is open, and a single layer coating is applied to the outer surface of the conical bell.
  • this layer Due to the application of a very thin layer of pyrolytic graphite on the outer surface of the flange, this layer, due to its extremely small thickness, is not a heat insulator, as is the case in the prototype device, but, on the contrary, removes heat from the flange to the environment. Due to this, as well as the fact that the outer surface of the flask is open, the temperature of the crucible decreases along its height in the direction from bottom to top (figure 2). As a result of this, on the surface of the upper part of the flask and flange, the deposition rate of nitrides is significantly reduced and, accordingly, the wettability of these surfaces is reduced, which prevents aluminum from flowing out of the crucible.
  • Fig. 1 is a longitudinal section of a crucible
  • figure 2 is a graph of the distribution of temperature of the crucible along its height
  • Fig.3 is a longitudinal section of the prototype crucible, combined with a graph of the distribution of the temperature of the crucible along its height
  • figure 4 - dependence of heat removed from a unit surface of a layer of pyrolytic graphite on its thickness.
  • the crucible for the evaporation of aluminum in the MPE process includes a housing consisting of a flask 1 and a flange 2, made in the form of a conical socket.
  • the angle ⁇ between the generatrix of the conical surface of the flange 2 and the longitudinal axis of symmetry of the crucible is PO - 150 °.
  • Flask 1 and flange 2 are made of boron nitride.
  • the crucible body has a single-layer coating 3 of pyrolytic graphite with a layer thickness of 20-50 ⁇ m, in a specific example, 30 ⁇ m, while a single-layer coating of pyrolytic graphite is applied only to the outer surface 4 of flange 2, and the outer surface 5 of flask 1 is open.
  • the device operates as follows. Aluminum is charged into flask 1 and heated using an external heater (not shown in the drawings) to a temperature of 1300 ° C. In addition, atomic nitrogen or ammonia is fed into the chamber in which the crucible is placed (not shown). The chamber contains a substrate on which a semiconductor film is grown. Vapors of aluminum, as well as vapors of other elements (In, Ga, etc.) coming from other sources reach the substrate and react between themselves and nitrogen, forming a thin semiconductor film on the substrate.
  • the flange Due to the fact that the flange is provided with a thin coating of pyrolytic graphite, heat is removed from the flange to the environment, while the temperature of the flange is much lower than the temperature of the flask. As a result, the intensity decreases deposition of nitrides on the surface of the flange and the upper part of the flask, and thereby the wettability of these surfaces is reduced, which prevents the leakage of aluminum from the crucible and the destruction of its heating system.

Abstract

The invention relates to a technology used for evaporating aluminium when growing thin epitaxial films and nanostructures by molecular beam epitaxy (MBE), in particular on the basis of the compounds InAlGaN, AlGaN etc. In the crucible for evaporating aluminium during the molecular beam epitaxy process, which crucible comprises a boron nitride body comprising a flask 1 with a flange 2 in the upper part thereof, as well as a coating 3 containing pyrolytic graphite, the flange 2 is in the form of a conical funnel and the coating 3 is a single layer of pyrolytic graphite with a layer thickness of 20-50 μm. The outer surface 5 of the flask 1 is open and the single-layered coating 3 is applied to the outer surface 4 of the conical funnel. Molten aluminium is prevented from escaping from the crucible during the molecular beam epitaxy process and thus causing the heating system to fail.

Description

Тигель для испарения алюминия в процессе молекулярно-пучковой эпитаксии Crucible for the evaporation of aluminum during molecular beam epitaxy
Область техникиTechnical field
Изобретение относится к технике, используемой для испарения алюминия при выращивании тонких эпитаксиальных пленок и наноструктур методом молекулярно-пучковой эпитаксии (МПЭ), в частности на основе соединений InAlGaN, AlGaN и др.The invention relates to a technique used for the evaporation of aluminum when growing thin epitaxial films and nanostructures by molecular beam epitaxy (MPE), in particular based on InAlGaN, AlGaN and other compounds
Для получения полупроводниковых пленок методом МПЭ необходимы средства подачи элементов, участвующих в реакции. Одним из таких средств является тигель, в котором происходит испарение соединения, содержащего требуемый элемент. Исходя из условий проведения МПЭ, к материалу и конструкции тигля предъявляется ряд требований: химическая и температурная стойкость, чистота материала и др.To obtain semiconductor films by the MPE method, means for supplying the elements involved in the reaction are necessary. One such means is a crucible, in which the evaporation of a compound containing the desired element occurs. Based on the conditions of the MPE, a number of requirements are imposed on the material and design of the crucible: chemical and temperature resistance, purity of the material, etc.
Предшествующий уровень техникиState of the art
Известен тигель для испарения металла в процессе МПЭ, содержащий корпус, выполненный из двух слоев нитрида бора; внутренний слой - более тонкий по сравнению с наружным; данное техническое решение позволяет увеличить срок службы тигля, US 3986822 А.Known crucible for the evaporation of metal in the MPE process, comprising a housing made of two layers of boron nitride; the inner layer is thinner compared to the outer; this The technical solution allows to increase the life of the crucible, US 3986822 A.
Известен также тигель для испарения металла в процессе МПЭ, содержащий корпус, выполненный, по меньшей мере, из пяти слоев нитрида бора, чередующейся толщины, US 4913652 А.Also known is a crucible for metal evaporation in the MPE process, comprising a housing made of at least five layers of boron nitride, alternating thickness, US 4913652 A.
Конструкция позволяет уменьшить потери тепла из полости тигля.The design allows to reduce heat loss from the crucible cavity.
Общим недостатком описанных выше аналогов является возможность вытекания расплавленного материала через верхний край корпуса тигля в процессе испарения материала.A common disadvantage of the analogues described above is the possibility of leakage of molten material through the upper edge of the crucible body during the evaporation of the material.
Известен тигель для испарения металлов, в частности алюминия, в процессе МПЭ, включающий корпус из нескольких слоев нитрида бора, содержащий колбу с кольцевым фланцем; плоскость фланца перпендикулярна продольной оси симметрии тигля. Большая часть корпуса снабжена двухслойным покрытием, включающим внутренний слой пиролитического графита и наружный слой нитрида бора, US 5075055 А.Known crucible for the evaporation of metals, in particular aluminum, in the MPE process, comprising a housing of several layers of boron nitride, containing a flask with an annular flange; the plane of the flange is perpendicular to the longitudinal axis of symmetry of the crucible. Most of the body is equipped with a two-layer coating, including the inner layer of pyrolytic graphite and the outer layer of boron nitride, US 5075055 A.
Данное техническое решение принято в качестве прототипа настоящего изобретения. Двухслойное покрытие, практически, всего корпуса тигля обеспечивает однородность температурного профиля нагреваемого извне тигля (фиг.4). Как известно, пиролитический графит представляет собой материал с выраженной анизотропностью (заметно проявляющейся при толщине слоя более 1,0 мм). При толщине слоя 2,54 мм, как это указано в прототипе, теплопроводность в плоскости аb составляет 700 Bт/м°C, в то время, как в направлении, перпендикулярном плоскости аb, это значение составляет 3,5 Bт/м°C.This technical solution is made as a prototype of the present invention. A two-layer coating of practically the entire crucible body ensures uniformity of the temperature profile of the crucible heated from the outside (Fig. 4). As is known, pyrolytic graphite is a material with pronounced anisotropy (noticeably manifested when the layer thickness is more than 1.0 mm). With a layer thickness of 2.54 mm, as indicated in the prototype, the thermal conductivity in the ab plane is 700 W / m ° C, while as in the direction perpendicular to the ab plane, this value is 3.5 W / m ° C.
Однако высокая температура тигля (1300 0C) не только в нижней, нагреваемой части, но и в верхней его части обусловливает довольно заметное осаждение нитридов на поверхностях колбы и фланца. При этом, главным образом при испарении алюминия, резко увеличивается смачиваемость поверхности колбы и фланца, что приводит к перетеканию алюминия через фланец. У других металлов в этих условиях данное явление выражено в значительно меньшей степени и наблюдается редко.However, the high temperature of the crucible (1300 0 C) not only in the lower, heated part, but also in its upper part causes a rather noticeable deposition of nitrides on the flask and flange surfaces. In this case, mainly during the evaporation of aluminum, the wettability of the surface of the flask and flange sharply increases, which leads to the overflow of aluminum through the flange. In other metals, under these conditions, this phenomenon is much less pronounced and is rarely observed.
В результате вытекания алюминия происходит выход из строя системы нагревания тигля в результате коротких замыканий в токоведущих электрических цепях системы, а также вследствие термического воздействия на нее расплавленного активного металла, каким является алюминий.As a result of leakage of aluminum, the crucible heating system breaks down as a result of short circuits in the current-carrying electrical circuits of the system, as well as due to the thermal action of molten active metal, such as aluminum, on it.
Раскрытие изобретенияDisclosure of invention
Задачей настоящего изобретения является предотвращение вытекания расплавленного алюминия из тигля в процессе молекулярно-пучковой эпитаксии и выхода в результате этого из строя системы нагревания.The objective of the present invention is to prevent the leakage of molten aluminum from the crucible during molecular beam epitaxy and the failure of the heating system as a result.
Согласно изобретению, в тигле для испарения алюминия в процессе молекулярно-пучковой эпитаксии, включающем корпус из нитрида бора, содержащий колбу с фланцем в верхней части, а также покрытие, содержащее пиролитический графит, фланец выполнен в виде конического раструба, покрытие выполнено однослойным из пиролитического графита с толщиной слоя 20-50 мкм, при этом наружная поверхность колбы открыта, а однослойное покрытие нанесено на наружную поверхность конического раструба. Заявителем не выявлены какие-либо технические решения, идентичные заявленному, что позволяет сделать вывод о соответствии изобретения критерию «нoвизнa» (N).According to the invention, in a crucible for the evaporation of aluminum during molecular beam epitaxy, including a boron nitride housing containing a flask with a flange in the upper part, as well as a coating containing pyrolytic graphite, the flange is made in the form of a conical socket, the coating is made a single layer of pyrolytic graphite with a layer thickness of 20-50 microns, while the outer surface of the flask is open, and a single layer coating is applied to the outer surface of the conical bell. The applicant has not identified any technical solutions identical to the claimed one, which allows us to conclude that the invention meets the criterion of "novelty" (N).
Благодаря тому, что фланец корпуса тигля выполнен в виде конического раструба, растекание расплавленного алюминия в определенной степени тормозится силой гравитации; кроме того, в весьма тонких слоях пиролитического графита (меньше 100 мкм) анизотропность этого материала проявляется незначительно. Вместе с тем, пиролитический графит проявляет свойства, близкие к свойствам абсолютно черного тела (чернота ε = 0,7 - 0,75). При t° = 1300 0C излучательная способность пиролитического графита составляет около 40 Вт/см . Благодаря нанесению на наружную поверхность фланца весьма тонкого слоя пиролитического графита, этот слой в силу его чрезвычайно малой толщины является не теплоизолятором, как это имеет место в устройстве-прототипе, но, напротив, отводит тепло от фланца в окружающую среду. Благодаря этому, а также тому, что наружная поверхность колбы открыта, температура тигля уменьшается по его высоте в направлении снизу вверх (фиг.2). Вследствие этого на поверхности верхней части колбы и фланца значительно уменьшается интенсивность осаждения нитридов и, соответственно, уменьшается смачиваемость этих поверхностей, что позволяет предотвратить вытекание алюминия из тигля. При толщине слоя пиролитического графита более 50 мкм начинают проявляться анизотропные и теплоизоляционные свойства пиролитического графита, а при толщине этого слоя менее 20 мкм не обеспечивается требуемый теплоотвод (фиг.4). Заявителем не выявлены какие-либо источники информации, содержащие сведения о влиянии отличительных признаков настоящего изобретения на достигаемый технический результат.Due to the fact that the flange of the crucible body is made in the form of a conical bell, the spreading of molten aluminum to a certain extent is inhibited by the force of gravity; in addition, in very thin layers of pyrolytic graphite (less than 100 μm), the anisotropy of this material is slightly manifested. At the same time, pyrolytic graphite exhibits properties close to those of an absolutely black body (blackness ε = 0.7 - 0.75). At t ° = 1300 0 C, the emissivity of pyrolytic graphite is about 40 W / cm. Due to the application of a very thin layer of pyrolytic graphite on the outer surface of the flange, this layer, due to its extremely small thickness, is not a heat insulator, as is the case in the prototype device, but, on the contrary, removes heat from the flange to the environment. Due to this, as well as the fact that the outer surface of the flask is open, the temperature of the crucible decreases along its height in the direction from bottom to top (figure 2). As a result of this, on the surface of the upper part of the flask and flange, the deposition rate of nitrides is significantly reduced and, accordingly, the wettability of these surfaces is reduced, which prevents aluminum from flowing out of the crucible. At layer thickness pyrolytic graphite more than 50 μm, the anisotropic and heat-insulating properties of pyrolytic graphite begin to appear, and with the thickness of this layer less than 20 μm, the required heat sink is not provided (Fig. 4). The applicant has not identified any sources of information containing information about the influence of the distinguishing features of the present invention on the achieved technical result.
Все изложенное выше позволяет, по мнению заявителя, сделать вывод о соответствии заявленного решения критерию «изoбpeтaтeльcкий уровень)) (IS).All of the above allows, in the applicant's opinion, to conclude that the claimed decision meets the criterion of “inventive step)) (IS).
Краткое описание чертежейBrief Description of the Drawings
В дальнейшем изобретение поясняется подробным описанием примера его осуществления со ссылками на чертежи, на которых представлены: на фиг.1 - продольный разрез тигля; на фиг.2 - график распределения температуры тигля по его высоте; на фиг.З - продольный разрез тигля-прототипа, совмещенный с графиком распределения температуры тигля по его высоте; на фиг.4 - зависимость тепла, отводимого с единицы поверхности слоя пиролитического графита от его толщины. Лучший вариант осуществления изобретенияThe invention is further explained in the detailed description of an example of its implementation with reference to the drawings, in which are presented: in Fig. 1 is a longitudinal section of a crucible; figure 2 is a graph of the distribution of temperature of the crucible along its height; in Fig.3 is a longitudinal section of the prototype crucible, combined with a graph of the distribution of the temperature of the crucible along its height; figure 4 - dependence of heat removed from a unit surface of a layer of pyrolytic graphite on its thickness. The best embodiment of the invention
Тигель для испарения алюминия в процессе МПЭ включает корпус, состоящий из колбы 1 и фланца 2, выполненного в виде конического раструба. Угол α между образующей конической поверхностью фланца 2 и продольной осью симметрии тигля составляет ПО - 150°. Колба 1 и фланец 2 выполнены из нитрида бора. Корпус тигля имеет однослойное покрытие 3 из пиролитического графита с толщиной слоя 20 - 50 мкм, в конкретном примере, 30 мкм, при этом однослойное покрытие из пиролитического графита нанесено только на наружную поверхность 4 фланца 2, а наружная поверхность 5 колбы 1 открыта.The crucible for the evaporation of aluminum in the MPE process includes a housing consisting of a flask 1 and a flange 2, made in the form of a conical socket. The angle α between the generatrix of the conical surface of the flange 2 and the longitudinal axis of symmetry of the crucible is PO - 150 °. Flask 1 and flange 2 are made of boron nitride. The crucible body has a single-layer coating 3 of pyrolytic graphite with a layer thickness of 20-50 μm, in a specific example, 30 μm, while a single-layer coating of pyrolytic graphite is applied only to the outer surface 4 of flange 2, and the outer surface 5 of flask 1 is open.
Устройство работает следующим образом. В колбу 1 загружают алюминий и нагревают ее с помощью внешнего нагревателя (на чертежах не показан) до температуры 1300 0C. Кроме того, в камеру, в которой размещен тигель (на чертежах не показана) подают атомарный азот или аммиак. В камере находится подложка, на которой выращивается полупроводниковая пленка. Пары алюминия, а также пары других элементов (In, Ga и др.), поступающие из других источников, достигают подложки и вступают в реакцию между собой и азотом, образуя на подложке тонкую полупроводниковую пленку.The device operates as follows. Aluminum is charged into flask 1 and heated using an external heater (not shown in the drawings) to a temperature of 1300 ° C. In addition, atomic nitrogen or ammonia is fed into the chamber in which the crucible is placed (not shown). The chamber contains a substrate on which a semiconductor film is grown. Vapors of aluminum, as well as vapors of other elements (In, Ga, etc.) coming from other sources reach the substrate and react between themselves and nitrogen, forming a thin semiconductor film on the substrate.
Благодаря тому, что фланец снабжен тонким покрытием из пиролитического графита, происходит отвод тепла от фланца в окружающую среду, при этом температура фланца значительно ниже температуры колбы. В результате снижается интенсивность осаждения нитридов на поверхность фланца и верхней части колбы и благодаря этому уменьшается смачиваемость этих поверхностей, что позволяет предотвратить вытекание алюминия из тигля и разрушение системы его нагревания.Due to the fact that the flange is provided with a thin coating of pyrolytic graphite, heat is removed from the flange to the environment, while the temperature of the flange is much lower than the temperature of the flask. As a result, the intensity decreases deposition of nitrides on the surface of the flange and the upper part of the flask, and thereby the wettability of these surfaces is reduced, which prevents the leakage of aluminum from the crucible and the destruction of its heating system.
Промышленная применимостьIndustrial applicability
Для изготовления устройства использованы обычные конструкционные материалы и заводское оборудование. Это обстоятельство, по мнению заявителя, позволяет сделать вывод о том, что данное изобретение соответствует критерию промышленная применимость)) (IA). For the manufacture of the device used conventional structural materials and factory equipment. This circumstance, according to the applicant, allows us to conclude that this invention meets the criterion of industrial applicability)) (IA).

Claims

Формула изобретенияClaim
Тигель для испарения алюминия в процессе молекулярно- пучковой эпитаксии, включающий корпус из нитрида бора, содержащий колбу с фланцем в верхней части, а также покрытие, содержащее пиролитический графит, отлич аю щийся т е м, что фланец выполнен в виде конического раструба, покрытие выполнено однослойным из пиролитического графита с толщиной слоя 20-50 мкм, при этом наружная поверхность колбы открыта, а однослойное покрытие нанесено на наружную поверхность конического раструба. Crucible for aluminum evaporation during molecular beam epitaxy, including a boron nitride housing, containing a flask with a flange in the upper part, as well as a coating containing pyrolytic graphite, characterized in that the flange is made in the form of a conical socket, the coating is made a single layer of pyrolytic graphite with a layer thickness of 20-50 μm, while the outer surface of the flask is open, and a single layer coating is applied to the outer surface of the conical socket.
PCT/RU2008/000796 2008-08-26 2008-12-19 Crucible for evaporating aluminium in the molecular beam epitaxy process WO2010024713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2008135251/02A RU2365842C1 (en) 2008-08-26 2008-08-26 Crucible aluminium evaporator for molecular-beam epitaxy
RU2008135251 2008-08-26

Publications (1)

Publication Number Publication Date
WO2010024713A1 true WO2010024713A1 (en) 2010-03-04

Family

ID=41149927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2008/000796 WO2010024713A1 (en) 2008-08-26 2008-12-19 Crucible for evaporating aluminium in the molecular beam epitaxy process

Country Status (2)

Country Link
RU (1) RU2365842C1 (en)
WO (1) WO2010024713A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978574A (en) * 2012-12-12 2013-03-20 中国科学院长春光学精密机械与物理研究所 Evaporation boat for depositing metal alumium film through vacuum thermal evaporation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085417A1 (en) * 2011-12-05 2013-06-13 Общество С Ограниченной Ответственностью "Комплект Ющие И Материалы" Crucible for evaporating aluminium in an epitaxy process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3986822A (en) * 1975-02-27 1976-10-19 Union Carbide Corporation Boron nitride crucible
SU866381A1 (en) * 1979-12-14 1981-09-23 Предприятие П/Я Г-4696 Induction crucible furnace
RU2059025C1 (en) * 1990-06-06 1996-04-27 Юнион Карбайд Коатингс Сервис Текнолоджи Корпорейшн Boron nitride crucible manufacture method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3986822A (en) * 1975-02-27 1976-10-19 Union Carbide Corporation Boron nitride crucible
SU866381A1 (en) * 1979-12-14 1981-09-23 Предприятие П/Я Г-4696 Induction crucible furnace
RU2059025C1 (en) * 1990-06-06 1996-04-27 Юнион Карбайд Коатингс Сервис Текнолоджи Корпорейшн Boron nitride crucible manufacture method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978574A (en) * 2012-12-12 2013-03-20 中国科学院长春光学精密机械与物理研究所 Evaporation boat for depositing metal alumium film through vacuum thermal evaporation

Also Published As

Publication number Publication date
RU2365842C1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
US8540819B2 (en) Ceramic heater
JP4713612B2 (en) Single crucible and effusion source using such crucible
US9824911B2 (en) Substrate support and semiconductor manufacturing apparatus
CN104040675A (en) Inorganic materials, methods and apparatus for making same, and uses thereof
US9156743B2 (en) Carbon component and method for manufacturing the same
US11970775B2 (en) Showerhead for providing multiple materials to a process chamber
US11279620B2 (en) Carbon material coated with tantalum carbide
TW200904999A (en) Evaporation crucible and evaporation apparatus with adapted evaporation characteristic
US6299692B1 (en) Head for vaporizing and flowing various precursor materials onto semiconductor wafers during chemical vapor deposition
EP2082420B1 (en) Chemical vapor deposition apparatus for equalizing heating temperature
KR102103573B1 (en) Method for SiC Coating on Graphite using Hybrid Coating Method
US8034411B2 (en) Method of preventing abnormal large grains from being included into thin nano-crystalline diamond film
WO2010024713A1 (en) Crucible for evaporating aluminium in the molecular beam epitaxy process
US20200198980A1 (en) Method of manufacturing tantalum carbide material
KR20190039323A (en) Apparatus and method for applying carbon layer
US8617967B2 (en) Vertically oriented nanostructure and fabricating method thereof
US20150132486A1 (en) Vapor deposition apparatus and method using the same
GB2478269A (en) Nanomaterials growth system and method
TW201223315A (en) Heater with liquid heating element
KR101947485B1 (en) Method for SiC Coating of Graphite Base Substrate
US20150259827A1 (en) Susceptor
US7037834B2 (en) Constant emissivity deposition member
Izak et al. Diamond‐coated three‐dimensional GaN micromembranes: Effect of nucleation and deposition techniques
KR102109930B1 (en) Continuous method of forming boron nitride layer, method of preparing field effect transistors using the same, and field effect transistors prepared therefrom
JP6058491B2 (en) Vapor growth reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08876851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 499/MUMNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 08876851

Country of ref document: EP

Kind code of ref document: A1