WO2010024593A2 - 가변형 회전익을 이용한 수직이착륙기 - Google Patents

가변형 회전익을 이용한 수직이착륙기 Download PDF

Info

Publication number
WO2010024593A2
WO2010024593A2 PCT/KR2009/004773 KR2009004773W WO2010024593A2 WO 2010024593 A2 WO2010024593 A2 WO 2010024593A2 KR 2009004773 W KR2009004773 W KR 2009004773W WO 2010024593 A2 WO2010024593 A2 WO 2010024593A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor blade
wing
tilting
fuselage
blades
Prior art date
Application number
PCT/KR2009/004773
Other languages
English (en)
French (fr)
Other versions
WO2010024593A3 (ko
Inventor
임채호
Original Assignee
Lim Chaeho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lim Chaeho filed Critical Lim Chaeho
Publication of WO2010024593A2 publication Critical patent/WO2010024593A2/ko
Publication of WO2010024593A3 publication Critical patent/WO2010024593A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft

Definitions

  • the present invention generates a thrust to propel the propeller engine mounted on the main wing or the aircraft fuselage in order to fly more efficiently at medium and low speed, while taking off vertically and flying forward by generating lift using the take-off rotorcraft. And it is related to a vertical take-off and landing machine using a variable rotor blade to rotate forward mounted rotor blades on both sides of the main wing 90 degrees in the direction of flight to fly forward while generating thrust to the rear.
  • the present invention is not safe due to the instability of the air flow around the propeller when the conventional vertical take-off and landing to rotate to rotate the rotor blades 90 ° in the vertical take-off and landing form to propeller fixed-wing aircraft form as described above.
  • the propeller engine is used to remove the instability of airflow around the propellers and to fly more safely and efficiently when converting from a rotorcraft to a fixed-wing aircraft type that is more likely to occur, or from a rotorcraft to a fixed-wing aircraft that is required to fly efficiently at high speeds. The purpose is to solve this problem.
  • the present invention allows the flying fuselage of the vertical take-off and the fuselage to generate lift when taking off vertically, and the efficient vertical take-off and landing in the middle and high speed flight rotors mounted on both sides of the main wing Vertical takeoff to allow lift to take off when the flying fuselage is taken off vertically.
  • propeller engines are mounted on the main wing or the aircraft fuselage to generate thrust so that they can fly forward.
  • the rotorcraft, mounted on both sides of the main wing, is designed to drive forward by rotating the rotor engine forward to generate thrust backwards.
  • the vertical takeoff and landing machine using the variable rotor blade according to the present invention is generated in the form of a rotorcraft during takeoff and advances in the form of a helicopter by taking off vertically in a length, parking lot, ship deck, etc., and safely and efficiently flying at high speed.
  • the propeller engine was attached so that the rotor blades attached to both sides of the main wing could also be rotated forward by 90 degrees to generate thrust backwards for efficient flight.
  • FIG. 1 is a perspective view of the vertical takeoff of the vertical takeoff and landing machine using the variable rotor blade according to the present invention
  • FIG. 2 is a perspective view of the vertical takeoff of the vertical takeoff and landing machine using a variable rotor blade
  • FIG. 3 is a perspective view of the vertical takeoff of the vertical takeoff and landing machine using a variable rotor blade
  • FIG. 4 is a perspective view of the vertical takeoff of the vertical takeoff and landing machine using a variable rotor blade
  • FIG. 5 is a perspective view showing the main portion of the variable rotor blade is cut off
  • FIG. 6 is a plan view showing the main portion of the variable rotor blade is cut off
  • FIG. 7 is a plan view showing the main portion of the state in which the angle between the respective wings is adjusted to the fixed rotor blade state
  • FIG. 8 is a perspective view showing the main portion of the variable rotor blade is cut off
  • FIG. 9 is a plan view showing the main portion of the variable rotor blade is cut off
  • FIG. 10 is a plan view showing the main part of the state in which the angle between the respective blades is adjusted in a state of the fixed rotor blade fixed state
  • 11 is a front view showing a receiver, a control device and a server motor
  • FIG. 12 is a perspective view of a medium-speed flight using a propeller engine of a vertical takeoff and landing machine using a variable rotor blade;
  • FIG. 13 is a perspective view of a mid-high speed flight using a propeller engine of a vertical takeoff and landing machine using a variable rotor blade;
  • FIG. 14 is a perspective view of a medium-speed flight using a propeller engine of a vertical takeoff and landing machine using a variable rotor blade;
  • 15 is a perspective view of a medium-speed flight using a propeller engine of a vertical takeoff and landing machine using a variable rotor blade;
  • 16 is a perspective view of a medium-speed flight using a propeller engine of a vertical takeoff and landing machine using a variable rotor blade;
  • 17 is a perspective view of a medium-speed flight using a propeller engine of a vertical takeoff and landing machine using a variable rotor blade;
  • FIG. 18 is a perspective view of a receiver and a control device of a vertical takeoff and landing machine using a variable rotor blade, and a switching device of a rotor blade using a server motor;
  • 19 is a perspective view at the time of landing of the vertical takeoff and landing machine using a variable rotor blade.
  • the overall configuration of the present invention includes a flying fuselage 100, a flying wing 101 fixedly mounted to the side of the fuselage 100, and mounted on the side of the flying wing 101.
  • the means 104 and the propeller engine 107 are configured to be mounted on the flying body 100.
  • the propeller angle adjusting means 104 is a drive shaft that can adjust the retreat angle to fly while balancing the drag and lift of both wings during flight when controlling the angle between the wings of each of the rotor blades 102 on the inside 108 is mounted, and the drive shaft 108 has a receiver and a control unit 116 to receive and control a signal from the cockpit, and controls the receiver and the control unit 116 to generate a rotational power pinion 110
  • the pinion 110 is gear Power is transmitted by being engaged with the gear 112 in a state fixed with the drive shaft 108 and the pin P1, and the gear 112 is connected to the rotary blade 102 and the driven shaft 114, and the driven shaft 114.
  • the rotor blade 102 is fixed by the pin (P2)
  • Each word is composed so as to adjust the distance between the wings.
  • the vertical takeoff and landing machine 100 rotates the rotor blades 102 during takeoff to generate lift and take off.
  • the rotary wing drive shaft 105 is inclined to rotate in the front direction of the vertical takeoff and landing machine 100 to lift direction. Adjust so that you can fly forward.
  • the rotor blade 102 rotates the blades of the respective rotor blades 102 using the rotor blade angle adjusting means 104, and when the blades are below the critical Mach number, the retraction blade angle is 0 so that the lift of both blades can be balanced and fly. Adjust to close to ° so that you can fly.
  • the rotor blade drive shaft 105 is rotated 90 ° in front of the flight wing 101 and each wing of the fixed blade 102 The deformed to the shape of the rotor blades 102 so as to generate a good propulsion force to take an efficient form to fly forward and to be able to fly.
  • tractor is the propeller in front of the attachment position.
  • the overall configuration of the present invention includes a flying fuselage 100, a flying wing 101 fixedly mounted to the side of the fuselage 100, and mounted on the side of the flying wing 101.
  • the rotor blades rotated by the rotor blade engine 103, the rotor blade angle adjusting means 104 mounted at the center of the rotor blade 102, and the propeller engine 107 are mounted in the middle of the wing 101. will be.
  • the overall configuration of the present invention includes a flying fuselage 100, a flying wing 101 fixedly mounted to the side of the fuselage 100, and mounted on the side of the flying wing 101.
  • the rotor blades rotated by the rotor blade engine 103, the rotor blade angle adjusting means 104 mounted at the center of the rotor blade 102, and the propeller engine 107 are mounted in the middle of the wing 101. will be.
  • the overall configuration of the present invention includes a flying fuselage 100, a flying wing 101 fixedly mounted to the side of the fuselage 100, and mounted on the side of the flying wing 101.
  • the means 104 and the propeller engine 107 are configured to be mounted on the flying body 100.
  • the pusher has a propeller behind the attachment position.
  • heavy engines were placed at the top of the front to increase stability by reducing the fuselage length and the tail area. It also introduces an airflow that is not disturbed by the propeller and the wake can be used directly for cooling.
  • Propelled airplanes are seen more today because of several advantages. Most importantly, the surface friction stress (Skin Friction Drag) can be reduced by placing the aircraft in an undisturbed air stream. Propelled propellers mounted on the fuselage can reduce the aircraft's wetted area. The combination of the canard and the propeller is much more effective due to the shorter tail wings.
  • Propelled propellers reduce the vibrations in the cabin because the engine's exhaust goes away from the cabin and the windshield is not vibrated by the propeller wake. It also improves the pilot's vision. Propelled propellers require longer landing gear to prevent the propellers from reaching the runway when the nose is raised during takeoff.
  • the propellers must be at least 9 inches from the ground in all flight positions. Propelled propellers are also susceptible to damage from the stones bouncing off the wheels. Propulsion installation of a turboprop propeller can cause problems because the engine exhaust hits the propeller.
  • the engine When there are multiple engines, the engine is usually tied to the wing. This method gives the wing span loading effect, which reduces the structural weight of the wing during flight and reduces drag on the fuselage caused by propeller wake. If you put the engine on the wing, you need to increase the size of the rudder and vertical tail wings to maintain control when the engine is turned off. For the sake of safety, the crew cabin should be located within ⁇ 5 ° of the propeller disc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)
  • Catching Or Destruction (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명은 VTOL 수직이착륙기에 대한 것으로써 이륙 시에는 헬기 형태의 회전익으로 양력을 발생하여 이륙한 후 앞으로 비행을 하고, 중·저속에서 더욱더 효율적으로 비행하기 위해서 프로펠러엔진을 주날개 중간지점 또는 비행기 동체에 장착하여 앞으로 추진할 수 있도록 추력을 발생시키고 주날개 양쪽에 있는 장착되어 있는 회전익을 비행방향으로 90도 회전시켜서 뒤쪽으로 추력을 발생시키면서 앞으로 비행할 수 있도록 한다.

Description

[규칙 제26조에 의한 보정 29.10.2009] 가변형 회전익을 이용한 수직이착륙기
본 발명은 비행기가 이륙 회전익을 이용하여 양력을 발생시켜 수직으로 이륙하고 앞으로 비행하면서, 중·저속에서 더욱더 효율적으로 비행하기 위해서 프로펠러엔진을 주날개 또는 비행기 동체에 장착하여 앞으로 추진할 수 있도록 추력을 발생시키고 주날개 양쪽에 있는 장착되어 있는 회전익을 비행방향으로 90도 회전시켜서 뒤쪽으로 추력을 발생시키면서 앞으로 비행할 수 있도록 하는 가변형 회전익을 이용한 수직이착륙기에 관한 것이다.
산악지대가 많고 비행장을 건설하기에 많은 어려움이 있는 우리나라뿐만 아니라 많은 나라들이 비행장이 부족하고, 있다고 하여도 비행기 소음이 많이 발생함으로 인해 주거지역과 먼 거리에 위치에 있는 상황 가운데 비행기를 이용하여 소중규모의 단체나 개인적으로 먼 거리에 위치한 비행장까지 이동하는데 소중한 시간과 에너지를 소비하지 않고 회사나 집 근처에서 출발하여 도착하고자 하는 곳까지 직접적으로 가까이 이동할 수 있도록 하거나 위험한 지역에 가고자 할 때 또는 군대에서 작전을 수행하기 위하여 작전지까지 빠르게 이동하여 비상 수직 이착륙하고자 할 때 많은 어려움이 있을 뿐만 아니라 기존의 수직 이착륙기의 경우 회전익을 앞으로 90° 회전시킬 때 기류의 불안정성으로 인하여 비행 시에 안전성에 대한 결함으로 많은 사고와 인명피해가 발생하는 문제가 있었다.
이에 본 발명은 상기와 같은 종래 수직 이착륙기가 수직 이착륙 형태에서 회전익을 90°로 회전하여 프로펠러 고정익 항공기 형태로 전환하여 비행하고자 할 때 프로펠러의 주위에 발생하는 기류의 불안정성으로 인하여 안전하지 못하여 인명피해를 발생시킬 확률이 높아지는 문제나, 중고속에서 효율적으로 비행하는데 필요한 회전익 항공기에서 고정익 항공기 형태로 전환 시 프로펠러의 주위에 발생하는 기류의 불안전성을 없애고 더욱더 안전하면서 효율적으로 비행 할 수 있도록 프로펠러엔진을 활용하여 이러한 문제를 해결하는데 목적이 있다.
상기와 같은 목적을 달성하기 위하여 본 발명은 수직이착륙기의 비행 동체와 상기 동체가 수직으로 이륙 시 양력을 발생시킬 수 있도록 하고, 중·고속 비행 시에 효율적인 수직이착륙기는 주날개 양쪽 옆면에 장착된 회전익으로 비행 동체가 수직으로 이륙 시 양력을 발생시킬 수 있도록 하여 수직이륙을 하고, 중·고속으로 앞으로 비행 시에는 프로펠러엔진을 주날개 또는 비행기 동체에 장착시켜서 추력을 발생시켜서 앞으로 비행할 수 있도록 하며, 주날개 양쪽 옆면에 장착된 회전익은 회전익 엔진을 앞쪽으로 회전시켜서 뒤쪽으로 추력을 발생시켜서 앞쪽으로 나아가도록 이루어져 있다.
상기와 같이 본 발명에 따른 가변형 회전익을 이용한 수직이착륙기는 이륙 시에는 회전익 형태로 발생하여 길이나 주차장, 배 갑판 등에서도 수직 이륙하여 헬기와 같은 형태로 전진하고, 중고속에서 안전하면서 효율적으로 비행을 할 수 있도록 프로펠러 엔진을 부착하고 주날개 양쪽 옆면에 부착된 회전익도 90도로 앞으로 회전하여 뒤로 추력을 발생 할 수 있도록 하여 효율적으로 비행할 수 있도록 하였다.
도 1은 본 발명에 따른 가변형 회전익을 이용한 수직이착륙기의 수직이륙시의 사시도이고,
도 2는 가변형 회전익을 이용한 수직이착륙기의 수직이륙시의 사시도이며,
도 3은 가변형 회전익을 이용한 수직이착륙기의 수직이륙시의 사시도이고,
도 4는 가변형 회전익을 이용한 수직이착륙기의 수직이륙시의 사시도이며,
도 5는 가변형 회전익 주요부가 절개되어 도시된 사시도이며,
도 6은 가변형 회전익 주요부가 절개되어 도시된 평면도이며,
도 7은 가변형 회전익을 고정익 상태로 각각의 날개 간의 각도를 조정한 상태의 주요부를 절개하여 도시된 평면도이고,
도 8는 가변형 회전익 주요부가 절개되어 도시된 사시도이며,
도 9은 가변형 회전익 주요부가 절개되어 도시된 평면도이며,
도 10은 가변형 회전익을 고정익 상태로 각각의 날개 간의 각도를 조정한 상태의 주요부를 절개하여 도시된 평면도이고,
도 11은 수신기 및 제어장치와 서버모터를 도시한 정면도이며,
도 12은 가변형 회전익을 이용한 수직이착륙기의 프로펠러엔진을 이용한 중고속 비행 시의 사시도이고,
도 13는 가변형 회전익을 이용한 수직 이착륙기의 프로펠러엔진을 이용한 중고속 비행 시의 사시도이며,
도 14은 가변형 회전익을 이용한 수직 이착륙기의 프로펠러엔진을 이용한 중고속 비행 시의 사시도이며,
도 15은 가변형 회전익을 이용한 수직 이착륙기의 프로펠러엔진을 이용한 중고속 비행 시의 사시도이며,
도 16은 가변형 회전익을 이용한 수직 이착륙기의 프로펠러엔진을 이용한 중고속 비행 시의 사시도이며,
도 17은 가변형 회전익을 이용한 수직 이착륙기의 프로펠러엔진을 이용한 중고속 비행 시의 사시도이며,
도 18은 가변형 회전익을 이용한 수직이착륙기의 수신기 및 제어장치와 서버모터를 이용한 회전익의 전환 장치가 절개되어 있는 사시도이며,
도 19은 가변형 회전익을 이용한 수직이착륙기의 착륙시의 사시도이다.
도면 2에 예시되어 있는 바와 같이, 본 발명의 전체적인 구성은 비행동체(100)와, 동체(100)에 옆면에 고정 장착되는 비행날개(101)와, 상기 비행날개(101)의 옆면에 장착된 회전익 엔진(103)에 의해 회전되는 회전익(102)과, 비행동체(100) 앞쪽 면에 회전익엔진(103)에 의해 회전되는 회전익(102)과, 회전익(102)의 중앙에 장착된 회전익 각도조절수단(104)과, 비행동체(100)에 프로펠러엔진(107)을 장착하도록 구성된 것이다.
상기 프로펠러각도조절수단(104)은 내측에 회전 익(102) 각각의 날개 간의 각도를 제어할 때 비행 시 양쪽 날개의 항력과 양력이 효율적으로 균형을 이루면서 비행할 수 있도록 후퇴각을 조절할 수 있는 구동축(108)이 장착되어 있고, 구동축(108) 내부에는 조종석으로부터 신호를 받고 제어하는 수신기 및 제어장치(116)가 있으며, 수신기 및 제어장치(116)로 제어하며 회전동력을 발생시켜서 피니언(110)을 구동하는 서버모터(118)가 장착되어 있으며, 서버모터(118)를 수신기 및 제어장치(116)로 제어하며 구동하면서 위쪽 끝에 장착되어 있는 피니언(110)을 구동하고, 피니언(110)은 기어구동축(108)과 핀(P1)으로 고정된 상태에서 기어(112)와 치합 되어 동력이 전달하며, 기어(112)는 회전 익(102)과 종동축(114)으로 연결되며, 종동축(114)과 회전 익(102)은 핀(P2)으로써 고정되어 각각의 날개 간의 간격을 조절할 수 있도록 구성되어 있다. 수직이착륙기(100)는 이륙 시에는 회전 익(102)을 회전시켜 양력을 발생하여 이륙을 하며 앞으로 진행시에는 회전 익 구동축(105)을 수직이착륙기(100)의 정면 방향으로 기울게 회전시켜 양력의 방향을 조정하여 앞으로 전진 비행할 수 있도록 한다.
저속에서는 회전 익(102)은 회전익각도조절수단(104)을 이용하여 각각의 회전익(102)의 날개를 회전시켜 임계마하수 이하일 때는 날개 양쪽 날개의 양력이 균형을 이루며 비행할 수 있도록 후퇴익 각도가 0°에 가깝게 조절을 하여 비행할 수 있도록 한다.
그리고 저속에서 효율적인 비행을 하고 싶을 경우 프로펠러엔진(107)을 가동시켜서 추진력을 발생하도록 하며, 회전 익 구동축(105)을 비행날개(101)의 앞으로 90°회전시키고 고정 익(102)의 각각의 날개는 회전 익(102) 형태로 변형시켜 추진력을 잘 발생할 수 있도록 하여 앞으로 전진 비행하는데 효율적인 형태를 취하고 비행 할 수 있도록 한다.
그리고 견인식 비행기(Tractor)는 프로펠러가 부착위치보다 앞에 있는 것이다.
도면 1에 예시되어 있는 바와 같이, 본 발명의 전체적인 구성은 비행동체(100)와, 동체(100)에 옆면에 고정 장착되는 비행날개(101)와, 상기 비행날개(101)의 옆면에 장착된 회전익 엔진(103)에 의해 회전되는 회전익(102)과, 회전익(102)의 중앙에 장착된 회전익 각도조절수단(104)과, 비행날개(101)의 중간에 프로펠러엔진(107)을 장착하도록 구성된 것이다.
도면 3에 예시되어 있는 바와 같이, 본 발명의 전체적인 구성은 비행동체(100)와, 동체(100)에 옆면에 고정 장착되는 비행날개(101)와, 상기 비행날개(101)의 옆면에 장착된 회전익 엔진(103)에 의해 회전되는 회전익(102)과, 회전익(102)의 중앙에 장착된 회전익 각도조절수단(104)과, 비행날개(101)의 중간에 프로펠러엔진(107)을 장착하도록 구성된 것이다.
도면 4에 예시되어 있는 바와 같이, 본 발명의 전체적인 구성은 비행동체(100)와, 동체(100)에 옆면에 고정 장착되는 비행날개(101)와, 상기 비행날개(101)의 옆면에 장착된 회전익 엔진(103)에 의해 회전되는 회전익(102)과, 비행동체(100) 앞쪽 면에 회전익엔진(103)에 의해 회전되는 회전익(102)과, 회전익(102)의 중앙에 장착된 회전익 각도조절수단(104)과, 비행동체(100)에 프로펠러엔진(107)을 장착하도록 구성된 것이다.
그리고 추진식 비행기(Pusher)는 프로펠러가 부착위치 보다 뒤에 있다. 전통적인 견인식 비행기에서는 무거운 엔진을 전방 상단에 두어 동체 길이를 줄이고 꼬리부분의 면적을 줄임으로써 안정성을 높였다. 또한 프로펠러로 교란되지 않는 기류가 들어오고 후류는 냉각용으로 바로 사용될 수 있다. 추진식 비행기는 여러 가지 장점 때문에 오늘날 더욱 많이 볼 수 있다. 가장 중요한 점은 항공기를 교란되지 않은 기류 속에 둠으로써 표면 마찰 응력(Skin Friction Drag)을 줄일 수 있는 점이다. 동체에 장착된 추진식 프로펠러는 항공기의 습윤 면적(Wetted Area)을 줄일 수 있다. 커나드와 추진식 프로펠러의 결합은 커나드 때문에 꼬리 날개의 길이가 짧아져서 훨씬 효과적이다.
추진식 프로펠러는 엔진의 배기 가스가 객실에서 멀어지는 방향으로 나가고 바람막이(Windshield)가 프로펠러 후류에 의해서 진동하지 않으므로 객실의 진동이 줄어든다. 또한 조종사의 시야를 좋게 한다. 추진식 프로펠러를 사용하면 이륙 시에 기수를 상승시킬 때 프로펠러가 활주로에 닿지 않게 하기 위해서 랜딩 기어가 더 길어야 한다.
이때 프로펠러는 모든 비행자세에서 지면에서 9 inch(약 23cm)이상 떨어져야 한다. 추진식 프로펠러는 또한 바퀴에서 튕겨져 나온 돌멩이에 의해서 손상이 가기 쉽다. 터보프롭 프로펠러를 추진식으로 장착 할 때는 엔진 배기 가스가 프로펠러에 부딪히기 때문에 문제를 야기 시킬 수 있다.
엔진이 복수일 때는 보통 날개에 엔진을 매다는 방법을 사용한다. 이 방법은 날개 스팬 하중 효과(Span Loading Effect)를 주기 때문에 비행 중 날개의 구조적 중량을 줄여주고 프로펠러 후류에 의한 동체의 항력을 줄여준다. 날개에 엔진을 다는 경우 엔진이 꺼졌을 때 조종성을 유지하려면 러더와 수직꼬리날개의 크기를 증가시켜야 한다. 또한 안전을 위해서 승무원 객실이 프로펠러 디스크에서 ± 5° 이내의 위치에서 벗어나도록 하여야 한다.
대부분 쌍발 엔진 항공기는 저익기이다. 따라서 엔진과 프로펠러가 날개에 부착되면 착륙장치가 길어져야 한다. 종종 착륙장치의 높이를 줄이기 위해서 프로펠러를 날개위로 올리기도 하지만 이 경우는 날개와 프로펠러 사이에 부가적인 간섭이 발생한다. 날개에 장착된 추진식 배치는 동체의 길이를 늘릴 수는 있지만 착륙장치의 길이도 길어져야 한다. 또한 프로펠러가 반은 날개 아래의 후류 속에 있고 나머지 반은 날개 위의 후류에 놓이게 되므로 위아래면의 압력차에 의해서 프로펠러 효율이 떨어지고 진동을 유발할 수도 있다. 따라서 프로펠러를 가능한 한 날개 뒤로 멀리 둠으로써 이러한 영향을 최소화한다.

Claims (2)

  1. 수직이착륙기(100)의 이륙 시 양력을 발생하는 1개 이상의 회전 익(102)과, 회전익(102)을 비행기가 중고속 비행 시 구동축(105)을 틸팅시켜 비행날개(101) 앞쪽으로 회전익(102)을 90°회전하게 위하여 틸팅 구동유닛이 비행동체(100) 내부에 구비되어 조종석으로 부터 신호를 받아 제어를 하면서 틸팅 구동유닛으로 비행날개(101) 앞쪽으로 회전익(102)을 회전하게 하는 틸팅 구동유닛과, 틸팅 구동유닛으로 구동축(105)을 틸팅시켜 비행날개(101) 앞쪽으로 회전되어 추진하는 회전익(102)과 함께 앞으로 전진 할 수 있도록 추진력을 발생시키는 프로펠러엔진 (107)으로 이루어져 비행하는 가변형 회전익을 이용한 수직이착륙기
  2. 제 1항에 있어서,
    틸팅 구동유닛은 조종석으로부터 신호를 받고 제어하는 수신기 및 제어장치가 있으며, 수신기 및 제어장치로 제어하며 회전동력을 발생시켜서 피니언을 구동하는 서버모터가 장착되어 있으며, 서버모터를 수신기 및 제어장치로 제어하며 구동하면서 위쪽 끝에 장착되어 있는 피니언을 구동하고, 피니언은 기어구동축과 핀으로 고정된 상태에서 기어와 치합되어 동력이 전달하며, 기어는 회전익 구동축(105)과 종동축으로 연결되어 있으며, 종동축은 회전익 구동축(105)과 핀으로 연결되어 있어 회전익 구동축(105)이 동력을 받아 비행방향으로 90도 전환할 수 있도록 구성되어 있는 가변형 회전익을 이용한 수직이착류기
PCT/KR2009/004773 2008-08-29 2009-08-27 가변형 회전익을 이용한 수직이착륙기 WO2010024593A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0085010 2008-08-29
KR1020080085010A KR20100026130A (ko) 2008-08-29 2008-08-29 가변형 회전익을 이용한 수직이착륙기

Publications (2)

Publication Number Publication Date
WO2010024593A2 true WO2010024593A2 (ko) 2010-03-04
WO2010024593A3 WO2010024593A3 (ko) 2010-07-22

Family

ID=41722115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004773 WO2010024593A2 (ko) 2008-08-29 2009-08-27 가변형 회전익을 이용한 수직이착륙기

Country Status (2)

Country Link
KR (1) KR20100026130A (ko)
WO (1) WO2010024593A2 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105346714A (zh) * 2015-09-29 2016-02-24 上海圣尧智能科技有限公司 一种垂直起降无人机
WO2017049806A1 (zh) * 2015-09-24 2017-03-30 康坚 一种倾角同时动态变化的四旋翼喷气式飞行器
CN106882373A (zh) * 2017-03-13 2017-06-23 北京天宇新超航空科技有限公司 一种复合式倾转旋翼直升机
CN107672786A (zh) * 2017-11-02 2018-02-09 中国科学院、水利部成都山地灾害与环境研究所 一种固定翼和旋翼互变的飞行器及其互变飞行方法
EP3778388A1 (en) * 2014-03-18 2021-02-17 Joby Aero, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
EP3798123A1 (en) * 2014-03-18 2021-03-31 Joby Aero, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
CN112937851A (zh) * 2021-02-01 2021-06-11 河北利翔航空科技有限公司 一种使用康达效应增升的垂直起降固定翼飞行器
US11453490B2 (en) 2014-03-18 2022-09-27 Joby Aero, Inc. Articulated electric propulsion system with fully stowing blades and lightweight vertical take-off and landing aircraft using same
US11560221B2 (en) 2014-03-18 2023-01-24 Joby Aero, Inc. Rotor deployment mechanism for electric vertical take-off and landing aircraft
US11613370B2 (en) 2014-03-18 2023-03-28 Joby Aero, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with deployable rotors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101938459B1 (ko) 2016-12-15 2019-01-14 한국항공우주연구원 비행체
CN110329492A (zh) * 2019-06-25 2019-10-15 李海刚 无人机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990065465A (ko) * 1998-01-14 1999-08-05 고종석 수직 이착륙기
US6644588B2 (en) * 2000-05-16 2003-11-11 Bell Helicopter Textron, Inc. Multi-mode tiltrotor nacelle control system with integrated envelope protection
KR20070001117U (ko) * 2007-10-02 2007-10-22 임채호 가변형 회전 익을 이용한 수직이착륙기

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990065465A (ko) * 1998-01-14 1999-08-05 고종석 수직 이착륙기
US6644588B2 (en) * 2000-05-16 2003-11-11 Bell Helicopter Textron, Inc. Multi-mode tiltrotor nacelle control system with integrated envelope protection
KR20070001117U (ko) * 2007-10-02 2007-10-22 임채호 가변형 회전 익을 이용한 수직이착륙기

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613370B2 (en) 2014-03-18 2023-03-28 Joby Aero, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with deployable rotors
EP3778388A1 (en) * 2014-03-18 2021-02-17 Joby Aero, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
EP3798123A1 (en) * 2014-03-18 2021-03-31 Joby Aero, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
US11866186B2 (en) 2014-03-18 2024-01-09 Joby Aero, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft
US11453490B2 (en) 2014-03-18 2022-09-27 Joby Aero, Inc. Articulated electric propulsion system with fully stowing blades and lightweight vertical take-off and landing aircraft using same
US11661202B2 (en) 2014-03-18 2023-05-30 Joby Aero, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and box wing design
US11560221B2 (en) 2014-03-18 2023-01-24 Joby Aero, Inc. Rotor deployment mechanism for electric vertical take-off and landing aircraft
WO2017049806A1 (zh) * 2015-09-24 2017-03-30 康坚 一种倾角同时动态变化的四旋翼喷气式飞行器
CN105346714A (zh) * 2015-09-29 2016-02-24 上海圣尧智能科技有限公司 一种垂直起降无人机
CN106882373A (zh) * 2017-03-13 2017-06-23 北京天宇新超航空科技有限公司 一种复合式倾转旋翼直升机
CN107672786A (zh) * 2017-11-02 2018-02-09 中国科学院、水利部成都山地灾害与环境研究所 一种固定翼和旋翼互变的飞行器及其互变飞行方法
CN112937851B (zh) * 2021-02-01 2022-10-18 河北利翔航空科技有限公司 一种使用康达效应增升的垂直起降固定翼飞行器
CN112937851A (zh) * 2021-02-01 2021-06-11 河北利翔航空科技有限公司 一种使用康达效应增升的垂直起降固定翼飞行器

Also Published As

Publication number Publication date
KR20100026130A (ko) 2010-03-10
WO2010024593A3 (ko) 2010-07-22

Similar Documents

Publication Publication Date Title
WO2010024593A2 (ko) 가변형 회전익을 이용한 수직이착륙기
US8070089B2 (en) Hybrid helicopter that is fast and has long range
EP3140190B1 (en) Vtol aircraft
EP2738091B1 (en) Vertical take-off and landing (VTOL) aerial vehicle and method of operating such a VTOL aerial vehicle
US9266607B2 (en) Compound helicopter with tail booms
US8540184B2 (en) Long-range aircraft with high forward speed in cruising flight
US8950698B1 (en) Convertible compounded rotorcraft
RU2520843C2 (ru) Высокоскоростной летательный аппарат с большой дальностью полета
KR20090057504A (ko) 가변형 회전익을 이용한 수직이착륙기
US20170240273A1 (en) Fixed-wing vtol aircraft with rotors on outriggers
RU2507121C1 (ru) Скоростной винтокрыл
US20140061368A1 (en) Vertical/short take-off and landing passenger aircraft
CN109131867B (zh) 飞行器
KR20090054027A (ko) 가변형 회전익을 이용한 수직이착륙기
AU5722100A (en) Unmanned aerial vehicle with counter-rotating ducted rotors and shrouded pusher-prop
RU2629478C2 (ru) Скоростной вертолет с движительно-рулевой системой
CN105711832A (zh) 一种倾转三旋翼长航时复合式飞行器
CN202728571U (zh) 私人飞行器
CN105905294A (zh) 垂直起降固定翼无人机
CN105711831A (zh) 垂直起降的固定翼无人机
KR20070001117U (ko) 가변형 회전 익을 이용한 수직이착륙기
CA2963502A1 (en) Vtol high speed aricraft
CN110861770A (zh) 一种无人自转旋翼机
US20120111997A1 (en) Rotorcraft empennage
CN211253005U (zh) 一种无人自转旋翼机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810198

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09810198

Country of ref document: EP

Kind code of ref document: A2