WO2010024099A1 - Hard gold plating liquid - Google Patents

Hard gold plating liquid Download PDF

Info

Publication number
WO2010024099A1
WO2010024099A1 PCT/JP2009/063931 JP2009063931W WO2010024099A1 WO 2010024099 A1 WO2010024099 A1 WO 2010024099A1 JP 2009063931 W JP2009063931 W JP 2009063931W WO 2010024099 A1 WO2010024099 A1 WO 2010024099A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
acid
hard gold
plating solution
gold plating
Prior art date
Application number
PCT/JP2009/063931
Other languages
French (fr)
Japanese (ja)
Inventor
理恵 菊池
新吾 渡邊
Original Assignee
日本エレクトロプレイテイング・エンジニヤース株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エレクトロプレイテイング・エンジニヤース株式会社 filed Critical 日本エレクトロプレイテイング・エンジニヤース株式会社
Priority to KR1020117004292A priority Critical patent/KR101275886B1/en
Priority to CN200980133847.4A priority patent/CN102131962B/en
Priority to US13/055,038 priority patent/US20110127168A1/en
Publication of WO2010024099A1 publication Critical patent/WO2010024099A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/62Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the present invention relates to a hard gold plating technique, and more particularly to a hard gold plating solution for performing hard gold plating and hard gold alloy plating suitable for forming contact materials for electronic devices such as connectors.
  • the hard gold plating in the present application refers to either hard gold plating or hard gold alloy plating, and a plating solution for performing hard gold plating is referred to as a hard gold plating solution.
  • gold plating has been used for electronic devices and electronic parts for reasons such as excellent electrical properties and corrosion resistance of gold, and has been widely used for applications that protect the surface of connection terminals such as electronic parts.
  • Gold plating is used as a surface treatment for electronic components such as electrode terminals of semiconductor elements, leads formed on resin films, and connectors for connecting electronic devices.
  • Patent Document 1 Patent Document 2
  • copper or copper alloy is generally used as the material.
  • nickel plating is applied to the surface of copper or copper alloy
  • Hard gold plating is applied to the surface of the nickel plating.
  • the gold-cobalt alloy plating solution in this prior art deposits a gold alloy plating film only at a desired location on an electronic component such as a connector, and suppresses the deposition at an unnecessary location, thereby producing a hard gold system. Plating can be performed.
  • the present invention has been made in the background as described above, and an object of the present invention is to provide a hard gold plating solution that can be selectively subjected to partial plating and is suitable for electronic parts such as connectors.
  • the present invention is characterized in that a hard gold plating solution containing a soluble gold salt or gold complex, a conductive salt, and a chelating agent contains an aromatic compound having one or more nitro groups. Selective partial plating treatment by hard gold plating when an aromatic compound having one or more nitro groups is contained in a hard gold plating solution containing a soluble gold salt or gold complex, a conductive salt, and a chelating agent. Is possible.
  • the hard gold plating solution according to the present invention preferably contains at least one metal salt of a cobalt salt, a nickel salt, and a silver salt. With these metal salts, the plating film can be made into a gold alloy and the film can be hardened.
  • the hard gold plating solution according to the present invention may contain a polyethyleneimine organic additive instead of a metal salt such as a cobalt salt, a nickel salt, or a silver salt.
  • a polyethyleneimine organic additive such as a cobalt salt, a nickel salt, or a silver salt.
  • the polyethyleneimine those having various molecular weights can be used, and any structure such as a linear structure or a branched structure can be used.
  • this organic additive the plating film is hardened in the same manner as the addition of the metal salt.
  • a soluble gold salt or a gold complex can be used as the gold ion source.
  • potassium potassium cyanide, potassium potassium cyanide, ammonium gold cyanide, potassium chloride gold, potassium chloride chloride, sodium chloride chloride, sodium chloride chloride, thiosulfuric acid Gold potassium, sodium gold thiosulfate, potassium gold sulfite, sodium gold sulfite, and combinations of two or more thereof can be used.
  • Particularly preferable is potassium gold cyanide.
  • the gold concentration in the hard gold plating solution of the present invention is preferably in the range of 1 g / L to 20 g / L in terms of gold. If it is less than 1 g / L, it becomes difficult to process at a high current density, and high-speed plating tends to be difficult. If the amount exceeds 20 g / L, the amount of gold taken out from the plating solution (a slight amount of plating solution is attached to the connector to be plated, etc., and is taken out to the next process. For example, several drops of plating solution are taken out. This is because the higher the gold concentration, the greater the amount of gold lost from the plating solution), which increases the manufacturing cost.
  • a more preferable gold salt concentration is 2 g / L to 16 g / L in terms of gold.
  • a soluble cobalt compound can be used as the cobalt source.
  • cobalt sulfate, cobalt chloride, cobalt carbonate, cobalt sulfamate, cobalt gluconate, and combinations of two or more thereof can be used.
  • it is an inorganic cobalt salt, especially cobalt sulfate.
  • the concentration of this cobalt salt in the plating solution is preferably in the range of 0.05 g / L to 10 g / L in terms of cobalt. If it is less than 0.05 g / L, the amount of eutectoid of cobalt in the plating film decreases, and it becomes difficult to improve the hardening of the hard gold plating. Moreover, when it exceeds 10 g / L, it will become the tendency for stability of a plating solution to fall. A more preferable cobalt salt concentration is 0.1 g / L to 3 g / L in terms of cobalt.
  • a soluble nickel compound can be used as the nickel source.
  • nickel sulfate, nickel chloride, nickel carbonate, nickel sulfamate, nickel gluconate, and combinations of two or more thereof can be used.
  • nickel sulfate is particularly preferred.
  • the concentration of this nickel salt in the plating solution is preferably in the range of 0.05 g / L to 30 g / L in terms of nickel. If it is less than 0.05 g / L, the amount of eutectoid of nickel in the plating film is lowered, and the hard gold plating tends to be hardened. Moreover, when it exceeds 30 g / L, it will become the tendency for stability of a plating solution to fall. A more preferable nickel concentration is 0.1 g / L to 20 g / L in terms of nickel.
  • the hard gold plating solution according to the present invention contains a silver salt
  • a soluble silver compound can be used as the silver source.
  • silver cyanide and its salt, silver chloride, silver carbonate, silver nitrate and combinations of two or more thereof can be used. Particularly preferred is silver cyanide.
  • the concentration of this silver salt in the plating solution is preferably in the range of 0.05 g / L to 100 g / L in terms of silver. If it is less than 0.05 g / L, the amount of silver eutectoid in the plating film decreases, and it becomes difficult to improve the hardening of the hard gold plating. Moreover, when it exceeds 100 g / L, it will become the tendency for stability of a plating solution to fall. A more preferable silver concentration is 0.1 g / L to 50 g / L in terms of silver.
  • the concentration of the organic additive in the plating solution is preferably 0.1 g / L to 300 g / L. If it is less than 0.1 g / L, the hardening of the hard gold plating tends to be impossible to improve, and if it exceeds 300 g / L, the stability of the plating solution tends to be lowered. A more preferred concentration is 1 g / L to 200 g / L.
  • an organic compound or an inorganic compound can be used as the conductive salt in the hard gold plating solution of the present invention.
  • the organic compound include citric acid, tartaric acid, adipic acid, malic acid, succinic acid, lactic acid,
  • carboxylic acids such as benzoic acid and salts thereof, and compounds containing phosphonic acid groups and salts thereof.
  • Inorganic compounds include alkali metal salts such as phosphoric acid, sulfurous acid, nitrous acid, nitric acid, sulfuric acid, ammonium salts, and cyanide. Examples include alkali and ammonium cyanide. A combination of two or more of these can also be used.
  • the concentration of the conductive salt in the plating solution is preferably in the range of 0.1 g / L to 300 g / L. A more preferred concentration is 1 g / L to 200 g / L.
  • a carboxyl group-containing compound such as citric acid, potassium citrate, sodium citrate, tartaric acid, oxalic acid and succinic acid, a phosphonic acid group or a salt thereof is contained in the molecule.
  • the phosphonic acid group containing compound etc. which have can be used.
  • the phosphonic acid group-containing compound for example, aminotrimethylenephosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetramethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid and the like have a plurality of phosphonic acid groups in the molecule.
  • nitrogen compounds such as ammonia, ethylenediamine, and triethanolamine, can also be used with a carboxyl group-containing compound as an auxiliary chelating agent.
  • a chelating agent can also use 2 or more types of combinations.
  • the concentration of this chelating agent in the plating solution is preferably in the range of 0.1 g / L to 300 g / L. When the amount is less than 0.1 g / L, the chelating action tends not to work, and when the amount exceeds 300 g / L, the chelating solution tends not to be dissolved. A more preferred concentration is 1 g / L to 200 g / L.
  • the aromatic compound having one or more nitro groups in the hard gold plating solution of the present invention dinitrobenzoic acid, nitrobenzoic acid, and nitrobenzenesulfonic acid can be used.
  • dinitrobenzoic acid, nitrobenzoic acid, and nitrobenzenesulfonic acid can be used.
  • these aromatic compounds are added to the plating solution, selective partial plating treatment is possible, and precipitation of hard gold plating on unnecessary portions is effectively suppressed.
  • the concentration of the aromatic compound having one or more nitro groups in the plating solution is preferably in the range of 0.01 g / L to 30 g / L. If it is less than 0.01 g / L, deposition of gold alloy plating on unnecessary portions tends to occur. On the other hand, if it exceeds 30 g / L, the plating deposition amount is excessively suppressed as a whole, and it becomes difficult to perform hard gold plating on a necessary portion. A more preferred concentration is 0.05 g / L to 15 g / L.
  • the hard gold plating solution in the present invention can contain a pH adjusting agent, a buffering agent and the like in addition to the above basic composition.
  • a pH adjuster alkali metal hydroxides such as potassium citrate and potassium hydroxide, or acidic substances such as citric acid and phosphoric acid can be used.
  • acidic substances such as citric acid and phosphoric acid
  • buffer citric acid, tartaric acid, oxalic acid, succinic acid, phosphoric acid, sulfurous acid, or a salt thereof can be used.
  • the above-described hard gold plating solution according to the present invention preferably has a plating solution pH of 3 or more as a plating treatment condition, and is preferably performed at a solution temperature of 5 ° C. to 90 ° C. If the pH is less than 3, cyan gas is likely to be generated. More preferable plating conditions are pH 4 or more and a liquid temperature of 20 ° C. to 70 ° C. About the current density at the time of a plating process, the applicable range is wide and it can select an optimal current density value according to conditions, such as a plating target object, a plating apparatus, and a plating solution flow rate.
  • the hard gold plating solution according to the present invention is particularly applicable to high current density plating treatment conditions such as high-speed plating treatment.
  • the hard gold plating solution according to the present invention it is possible to perform hard gold plating only on necessary portions of electronic parts such as connectors.
  • hard gold plating is performed on the surface of the base plated with nickel, it is possible to selectively perform partial plating.
  • Example 1 the result of examining the electrodeposition characteristics by conducting a hull cell test using dinitrobenzoic acid as an aromatic compound having one or more nitro groups will be described.
  • the composition of the hard gold plating solution was as follows.
  • the hull cell test uses a commercially available hull cell tester (manufactured by Yamamoto Kakin Tester Co., Ltd.), and the substrate to be plated is nickel-plated (thickness 70 mm, width 100 mm, thickness 0.3 mm) on a brass hull cell plate. 10 ⁇ m) was used on both sides.
  • the plating treatment time was 30 seconds, and the energization current was 3A. During the plating process, the plating solution was vigorously stirred.
  • Hull cell evaluation was performed by measuring the plating film thickness of nine places of the plated hull cell plate.
  • Nine locations on this Hull cell plate are the portion about 2 cm above the bottom of the Hull cell plate that touches the inner bottom surface of the Hull cell tester (the portion that has been immersed in the plating solution). Selected.
  • the plating film thickness was measured with a fluorescent X-ray film thickness measuring instrument (manufactured by SII Nanotechnology Co., Ltd.).
  • the approximate current density value at each of the nine points (Nos. 1 to 9) where the film thickness was measured is 1 is 0.3 A / dm 2 , No. 1 2 is 1 A / dm 2 , No. 2 3 is 2 A / dm 2 , No.
  • Table 1 also shows the results of a blank hard gold plating solution to which dinitrobenzoic acid is not added for comparison.
  • the numbers 1 to 9 shown in Table 1 indicate the measurement points at nine locations on the Hull cell plate, and the results of the hyphen row are the results of the blank hard gold plating solution.
  • 1 g / L, 5 g / L Are the results of the hard gold-based plating solution containing dinitrobenzoic acid at that concentration (the same applies to the table of film thickness measurement results of the hull cell plate shown below). As can be seen from the results of the film thickness measurement on the surface of the Hull cell plate, it was found that the addition of dinitrobenzoic acid sharply decreased the plating film thickness on the low current density side.
  • Example 2 nitrobenzoic acid was used as an aromatic compound having one or more nitro groups.
  • the composition of the hard gold plating solution of Example 2 is the same as that of Example 1, except that nitrobenzoic acid is used instead of dinitrobenzoic acid of Example 1. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. Table 2 shows the results of measuring the film thickness at each point according to Example 2.
  • Example 3 nitrobenzenesulfonic acid was used as an aromatic compound having one or more nitro groups.
  • the composition of the hard gold plating solution of Example 3 is the same as that of Example 1, except that nitrobenzenesulfonic acid is used instead of dinitrobenzoic acid of Example 1. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. Table 3 shows the results of measuring the film thickness at each point according to Example 3.
  • Example 4 the results of examining the electrodeposition characteristics of a high-speed partial plating test using dinitrobenzoic acid as an aromatic compound having one or more nitro groups will be described.
  • the composition of the gold-cobalt alloy hard gold plating solution was as follows.
  • this groove portion Since this groove portion has a mask above it, it becomes a low current density portion during electrolysis as compared with a circular exposed portion without a mask. Therefore, when plating is performed by this high-speed partial plating apparatus, it is an ideal plating process that only the circular portion is plated and the groove portion is not plated.
  • Plating conditions were adjusted to a flow rate of 15 L / min and a current density of 50 A / dm 2 to form a gold-cobalt alloy plating film having a thickness of 0.5 ⁇ m.
  • Second Embodiment In this embodiment, the results of investigating the plating characteristics of a hard gold plating solution of a gold-nickel alloy will be described.
  • Table 5 also shows the results of a blank hard gold plating solution to which dinitrobenzoic acid is not added for comparison.
  • Table 5 shows the results of a blank hard gold plating solution to which dinitrobenzoic acid is not added for comparison.
  • nitrobenzoic acid was added, the plating film thickness on the low current density side was abruptly reduced as in the case of the first embodiment. And when the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed.
  • hard gold plating was also performed on the back side of the hull cell plate, but it was found that when dinitrobenzoic acid was added, the back side was hardly plated.
  • Example 6 nitrobenzoic acid was used as an aromatic compound having one or more nitro groups.
  • the composition of the hard gold plating solution of Example 6 is the same as that of Example 5 except that nitrobenzoic acid is used instead of dinitrobenzoic acid of Example 5. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. Table 6 shows the results of measuring the film thickness at each point according to Example 6.
  • Example 7 nitrobenzenesulfonic acid was used as an aromatic compound having one or more nitro groups.
  • the composition of the hard gold plating solution of Example 7 is the same as that of Example 5, except that nitrobenzenesulfonic acid is used instead of dinitrobenzoic acid of Example 5. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. Table 7 shows the results of measuring the film thickness at each point according to Example 7.
  • Example 8 As in Example 4, the electrodeposition characteristics were examined by conducting a high-speed partial plating test using dinitrobenzoic acid as an aromatic compound having one or more nitro groups. Will be described.
  • the composition of the gold-nickel alloy hard gold plating solution was as follows.
  • test sample, equipment, plating conditions, etc. for the high-speed partial plating test were the same as in Example 4.
  • Example 8 when the plating state when the concentration of dinitrobenzoic acid in the plating solution was changed was observed in appearance, as the amount of dinitrobenzoic acid added increased, the groove portion was not plated. Turned out to be.
  • Example 8 the results of investigating the average plating film thickness of the groove portions as in Example 4 are shown in Table 8. This film thickness investigation was performed in the same manner as in Example 4 above.
  • Potassium cyanide 50g / L Dinitrobenzoic acid 1g / L, 5g / L pH 12 Liquid temperature 20 °C
  • Table 9 also shows the results of a blank hard gold plating solution to which dinitrobenzoic acid is not added for comparison.
  • Table 9 shows the results of a blank hard gold plating solution to which dinitrobenzoic acid is not added for comparison.
  • nitrobenzoic acid was added, the plating film thickness on the low current density side was abruptly reduced as in the case of the first embodiment.
  • the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed.
  • dinitrobenzoic acid was added, there was almost no plating treatment on the back side of the hull cell plate.
  • Example 10 nitrobenzoic acid was used as an aromatic compound having one or more nitro groups.
  • the composition of the hard gold plating solution of Example 10 is the same as that of Example 9, except that nitrobenzoic acid is used instead of dinitrobenzoic acid of Example 10. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. In Table 10, the result of having measured the film thickness of each point in Example 10 is shown.
  • Example 11 nitrobenzenesulfonic acid was used as an aromatic compound having one or more nitro groups.
  • the composition of the hard gold plating solution of Example 11 is the same as that of Example 9, except that nitrobenzenesulfonic acid is used instead of dinitrobenzoic acid of Example 9. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. In Table 11, the result of having measured the film thickness of each point in Example 11 is shown.
  • Example 12 As in Example 4, the electrodeposition characteristics were examined by conducting a high-speed partial plating test using dinitrobenzoic acid as an aromatic compound having one or more nitro groups. Will be described.
  • the composition of the gold-silver alloy hard gold plating solution was as follows.
  • Potassium cyanide 50g / L Dinitrobenzoic acid 0.5 g / L, 1.0 g / L, 1.5 g / L, 2.0 g / L, 3.0g / L, 5.0g / L pH 12 Liquid temperature 20 °C
  • test sample, equipment, plating conditions, etc. for the high-speed partial plating test were the same as in Example 4.
  • Example 12 the results of investigating the average plating film thickness of the groove portions as in Example 4 are shown in Table 12. This film thickness investigation was performed in the same manner as in Example 4 above.
  • Table 13 also shows the results of a blank hard gold plating solution to which dinitrobenzoic acid was not added for comparison.
  • Table 13 shows the results of a blank hard gold plating solution to which dinitrobenzoic acid was not added for comparison.
  • Example 14 nitrobenzoic acid was used as an aromatic compound having one or more nitro groups.
  • the composition of the hard gold plating solution of Example 14 is the same as that of Example 13, except that nitrobenzoic acid is used instead of dinitrobenzoic acid of Example 13. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. In Table 14, the result of having measured the film thickness of each point in Example 13 is shown.
  • Example 15 nitrobenzenesulfonic acid was used as an aromatic compound having one or more nitro groups.
  • the composition of the hard gold plating solution of Example 15 is the same as that of Example 13 except that nitrobenzenesulfonic acid is used instead of dinitrobenzoic acid of Example 9. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. Table 15 shows the results of measuring the film thickness at each point in Example 15.
  • Example 16 as in Example 4, the electrodeposition characteristics were examined by performing a high-speed partial plating test using dinitrobenzoic acid as an aromatic compound having one or more nitro groups. Will be described.
  • the composition of the hard gold plating solution was as follows.
  • Potassium cyanide potassium 12g / L (8g / L in terms of gold) Polyethyleneamine 10g / L Citric acid 150g / L Dinitrobenzoic acid 0.5 g / L, 1.0 g / L, 1.5 g / L, 2.0 g / L, 3.0g / L, 5.0g / L pH 7 Liquid temperature 65 °C
  • test sample, equipment, plating conditions, etc. for the high-speed partial plating test were the same as in Example 4.
  • Example 16 when the plating state when the concentration of dinitrobenzoic acid in the plating solution was changed was observed in appearance, as the amount of dinitrobenzoic acid added increased, the groove portion was not plated. Turned out to be.
  • Example 16 the result of investigating the average plating film thickness of the groove portion as in Example 4 is shown in Table 16. This film thickness investigation was performed in the same manner as in Example 4 above.
  • the present invention it is possible to perform hard gold plating only on a necessary portion of an electronic component such as a connector.
  • hard gold plating is performed on the surface of the base plated with nickel, partial plating can be selectively performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

A hard gold plating liquid which enables selective partial plating and is suitable for electronic components such as connectors. The hard gold plating liquid contains a soluble gold salt or gold complex, a conductive salt and a chelating agent, and is characterized by also containing an aromatic compound having one or more nitro groups such as one selected from the group consisting of nitrobenzoic acids, dinitrobenzoic acids and nitrobenzene sulfonic acids.  The hard gold plating liquid is also characterized by additionally containing at least one metal salt selected from cobalt salts, nickel salts and silver salts, or alternatively an organic additive of a polyethylene imine.

Description

硬質金系めっき液Hard gold plating solution
 本発明は、硬質金系めっき処理技術に関し、特に、コネクターなどの電子機器等の接点材を形成する際に好適な、硬質金めっき、硬質金合金めっきを施すための硬質金系めっき液に関する。本願における硬質金系めっきとは、硬質金めっき又は硬質金合金めっきのいずれかを指し、硬質金系めっきを施すためのめっき液を硬質金系めっき液と呼ぶ。 The present invention relates to a hard gold plating technique, and more particularly to a hard gold plating solution for performing hard gold plating and hard gold alloy plating suitable for forming contact materials for electronic devices such as connectors. The hard gold plating in the present application refers to either hard gold plating or hard gold alloy plating, and a plating solution for performing hard gold plating is referred to as a hard gold plating solution.
 従来より、金めっきは、金の優れた電気特性、耐食性などの理由から、電子機器や電子部品に用いられ、電子部品などの接続端子表面を保護する用途に広く利用されている。金めっきは、半導体素子の電極端子、樹脂フィルムに形成されたリード、電子機器を接続するコネクターなどの電子部品の表面処理として用いられている。 Conventionally, gold plating has been used for electronic devices and electronic parts for reasons such as excellent electrical properties and corrosion resistance of gold, and has been widely used for applications that protect the surface of connection terminals such as electronic parts. Gold plating is used as a surface treatment for electronic components such as electrode terminals of semiconductor elements, leads formed on resin films, and connectors for connecting electronic devices.
 電子機器を接続するコネクターのような電子部品では、表面処理として金めっきが用いられるが、その特性として耐食性、耐摩擦性および電気伝導性が要求されるため、硬質金系めっきを使用されることが多い。この硬質金系めっきとしては、例えば金-コバルト系合金めっき、金-ニッケル系合金めっきなど硬質金合金めっきが古くから知られている(特許文献1、特許文献2)。 Electronic parts such as connectors for connecting electronic devices use gold plating as a surface treatment, but they require hard gold plating because their properties require corrosion resistance, friction resistance, and electrical conductivity. There are many. As this hard gold plating, hard gold alloy plating such as gold-cobalt alloy plating and gold-nickel alloy plating has been known for a long time (Patent Document 1, Patent Document 2).
コネクターなどの電子部品には、一般的に銅または銅合金がその材料として用いられるが、硬質金系めっきを行う場合、通常、銅または銅合金表面にニッケルめっきを施すことが行われ、その後、ニッケルめっきの表面に硬質金系めっきが施される。 For electronic parts such as connectors, copper or copper alloy is generally used as the material. However, when performing hard gold plating, usually nickel plating is applied to the surface of copper or copper alloy, Hard gold plating is applied to the surface of the nickel plating.
 このようなコネクターなどの電子部品に硬質金系めっきを行う場合、必要な部分のみに硬質金系めっきがされるように、部分的なめっき処理が要求される。つまり、必要な部分にのみ硬質金系めっきがされ、不必要な部分には、硬質金系めっきの析出が生じないことが必要とされる。その理由としては、コネクターの不必要な部分にまで硬質金系めっきがされていると、電気的な接続を行うための半田処理を行う際、その不必要な部分にも半田が這い上がり、電気的な特性が低下してしまうためである。さらに、不必要な部分に析出しなければ、使用する金量を抑制できるので少金化が可能となるからである。このような要求に対し、必要である部分にのみ選択的に硬質金系めっき処理を行える技術が提案されている(例えば、特許文献3)。 When carrying out hard gold plating on such electronic parts such as connectors, a partial plating process is required so that hard gold plating is applied only to necessary parts. That is, it is necessary that the hard gold plating is applied only to a necessary portion, and the hard gold plating is not deposited on an unnecessary portion. The reason for this is that if hard gold plating is applied to the unnecessary part of the connector, the solder will crawl up on the unnecessary part when soldering to make an electrical connection. This is because the typical characteristics deteriorate. Furthermore, if it does not precipitate in unnecessary parts, the amount of gold to be used can be suppressed, so that the amount of gold can be reduced. In response to such a requirement, a technique has been proposed in which hard gold plating can be selectively performed only on necessary portions (for example, Patent Document 3).
 この先行技術における金コバルト合金めっき液は、コネクターなどの電子部品に対して、所望の箇所にのみ金合金めっき皮膜を析出し、必要のない箇所には析出することを抑制して、硬質金系めっきを行うことができる。 The gold-cobalt alloy plating solution in this prior art deposits a gold alloy plating film only at a desired location on an electronic component such as a connector, and suppresses the deposition at an unnecessary location, thereby producing a hard gold system. Plating can be performed.
西独国特許第1111987号公報German Patent No. 1111987 特開昭60-155696号公報JP-A-60-155696 特開2008-45194号公報JP 2008-45194 A
 ところで、昨今の電子部品においては、その優れた材料特性より、電気的な接続を必要とする部分に、金又は金合金めっきを施すことが非常に多くなっている。その対象部品は様々なものがあり、選択的に部分めっき処理が可能な硬質金系めっき液が要求されるものの、そのような硬質金系めっき液の種類は数少ない。つまり、特許文献3で提案されたような、選択的な部分めっき処理が可能な、新たな硬質金系めっき液を要望されているのが現状である。 By the way, in recent electronic parts, gold or gold alloy plating is very often applied to a portion requiring electrical connection because of its excellent material characteristics. There are various target parts, and although a hard gold plating solution capable of selective partial plating is required, there are few types of such hard gold plating solutions. In other words, there is a demand for a new hard gold plating solution capable of selective partial plating as proposed in Patent Document 3.
 本発明は、以上のような事情を背景になされたものであり、選択的な部分めっき処理が可能で、コネクターなどの電子部品に好適な硬質金系めっき液を提供することを目的とする。 The present invention has been made in the background as described above, and an object of the present invention is to provide a hard gold plating solution that can be selectively subjected to partial plating and is suitable for electronic parts such as connectors.
 本発明は、可溶性金塩または金錯体、伝導塩、キレート化剤を含む硬質金系めっき液において、1つ以上のニトロ基を有する芳香族化合物を含有することを特徴とする。可溶性金塩または金錯体、伝導塩、キレート化剤を含む硬質金系めっき液に、1つ以上のニトロ基を有する芳香族化合物を含有させると、硬質金系めっきによる、選択的な部分めっき処理が可能となる。 The present invention is characterized in that a hard gold plating solution containing a soluble gold salt or gold complex, a conductive salt, and a chelating agent contains an aromatic compound having one or more nitro groups. Selective partial plating treatment by hard gold plating when an aromatic compound having one or more nitro groups is contained in a hard gold plating solution containing a soluble gold salt or gold complex, a conductive salt, and a chelating agent. Is possible.
 本発明に係る硬質金系めっき液は、コバルト塩、ニッケル塩、銀塩の少なくとも1種の金属塩を含むことが好ましい。これらの金属塩により、めっき膜が金合金化し膜の硬質化が図れる。 The hard gold plating solution according to the present invention preferably contains at least one metal salt of a cobalt salt, a nickel salt, and a silver salt. With these metal salts, the plating film can be made into a gold alloy and the film can be hardened.
 本発明に係る硬質系金めっき液は、コバルト塩、ニッケル塩、銀塩等の金属塩に代えてポリエチレンイミンの有機添加剤を含ませてもよい。ポリエチレンイミンとしては、種々の分子量を有するものを用いることができ、直鎖構造のものや分岐構造のもの等の構造は問わずに用いることができる。この有機添加剤によっても金属塩の添加と同様、めっき膜の硬質化がはかれる。 The hard gold plating solution according to the present invention may contain a polyethyleneimine organic additive instead of a metal salt such as a cobalt salt, a nickel salt, or a silver salt. As the polyethyleneimine, those having various molecular weights can be used, and any structure such as a linear structure or a branched structure can be used. With this organic additive, the plating film is hardened in the same manner as the addition of the metal salt.
 本発明に係る硬質金系めっき液において、金イオン源としては、可溶性金塩または金錯体を用いることができる。具体的には、シアン化第一金カリウム、シアン化第二金カリウム、シアン化金アンモニウム、塩化第一金カリウム、塩化第二金カリウム、塩化第一金ナトリウム、塩化第二金ナトリウム、チオ硫酸金カリウム、チオ硫酸金ナトリウム、亜硫酸金カリウム、亜硫酸金ナトリウム、およびこれら2つ以上の組み合わせを用いることができる。特に好ましいものとしては、シアン化第一金カリウムである。 In the hard gold plating solution according to the present invention, a soluble gold salt or a gold complex can be used as the gold ion source. Specifically, potassium potassium cyanide, potassium potassium cyanide, ammonium gold cyanide, potassium chloride gold, potassium chloride chloride, sodium chloride chloride, sodium chloride chloride, thiosulfuric acid Gold potassium, sodium gold thiosulfate, potassium gold sulfite, sodium gold sulfite, and combinations of two or more thereof can be used. Particularly preferable is potassium gold cyanide.
 本発明の硬質金系めっき液における金濃度としては、金換算で、1g/L~20g/Lの範囲が望ましい。1g/L未満であると、高電流密度で処理することが困難となり、高速のめっき処理が難しくなる傾向となる。また、20g/Lを超えると、金自体のめっき液からの持ち出し量(めっき対象物となるコネクターなどに若干のめっき液が付いて次工程へ持ち出されること。たとえば、数滴のめっき液が持ち出されたとしても、金濃度が高ければ高いほど、めっき液から金の減量が多くなる)が多くなり、製造コストの増加になるからである。より好ましい金塩濃度は、金換算で、2g/L~16g/Lである。 The gold concentration in the hard gold plating solution of the present invention is preferably in the range of 1 g / L to 20 g / L in terms of gold. If it is less than 1 g / L, it becomes difficult to process at a high current density, and high-speed plating tends to be difficult. If the amount exceeds 20 g / L, the amount of gold taken out from the plating solution (a slight amount of plating solution is attached to the connector to be plated, etc., and is taken out to the next process. For example, several drops of plating solution are taken out. This is because the higher the gold concentration, the greater the amount of gold lost from the plating solution), which increases the manufacturing cost. A more preferable gold salt concentration is 2 g / L to 16 g / L in terms of gold.
 本発明に係る硬質金系めっき液に、コバルト塩を含有させる場合、コバルト源としては、可溶性のコバルト化合物を用いることができる。例えば、硫酸コバルト、塩化コバルト、炭酸コバルト、スルファミン酸コバルト、グルコン酸コバルトおよびこれらの2以上の組み合わせを用いることができる。好ましくは、無機コバルト塩、特に硫酸コバルトである。 When the hard gold plating solution according to the present invention contains a cobalt salt, a soluble cobalt compound can be used as the cobalt source. For example, cobalt sulfate, cobalt chloride, cobalt carbonate, cobalt sulfamate, cobalt gluconate, and combinations of two or more thereof can be used. Preferably, it is an inorganic cobalt salt, especially cobalt sulfate.
 このコバルト塩のめっき液中の濃度としては、コバルト換算で、0.05g/L~10g/Lの範囲が望ましい。0.05g/L未満であると、めっき膜中のコバルトの共析量が低下し、硬質金系めっきの硬化向上が図れなくなる傾向となる。また、10g/Lを超えると、めっき液の安定性が低下する傾向となる。より好ましいコバルト塩濃度は、コバルト換算で、0.1g/L~3g/Lである。 The concentration of this cobalt salt in the plating solution is preferably in the range of 0.05 g / L to 10 g / L in terms of cobalt. If it is less than 0.05 g / L, the amount of eutectoid of cobalt in the plating film decreases, and it becomes difficult to improve the hardening of the hard gold plating. Moreover, when it exceeds 10 g / L, it will become the tendency for stability of a plating solution to fall. A more preferable cobalt salt concentration is 0.1 g / L to 3 g / L in terms of cobalt.
 本発明に係る硬質金系めっき液に、ニッケル塩を含有させる場合、ニッケル源としては、可溶性のニッケル化合物を用いることができる。例えば、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、グルコン酸ニッケル、およびこれらの2以上の組み合わせを用いることができる。好ましくは、特に硫酸ニッケルである。 When the hard gold plating solution according to the present invention contains a nickel salt, a soluble nickel compound can be used as the nickel source. For example, nickel sulfate, nickel chloride, nickel carbonate, nickel sulfamate, nickel gluconate, and combinations of two or more thereof can be used. Particularly preferred is nickel sulfate.
 このニッケル塩のめっき液中の濃度としては、ニッケル換算で、0.05g/L~30g/Lの範囲が望ましい。0.05g/L未満であると、めっき膜中のニッケルの共析量が低下し、硬質金系めっきの硬化向上が図れなくなる傾向となる。また、30g/Lを超えると、めっき液の安定性が低下する傾向となる。より好ましいニッケル濃度は、ニッケル換算で、0.1g/L~20g/Lである。 The concentration of this nickel salt in the plating solution is preferably in the range of 0.05 g / L to 30 g / L in terms of nickel. If it is less than 0.05 g / L, the amount of eutectoid of nickel in the plating film is lowered, and the hard gold plating tends to be hardened. Moreover, when it exceeds 30 g / L, it will become the tendency for stability of a plating solution to fall. A more preferable nickel concentration is 0.1 g / L to 20 g / L in terms of nickel.
 本発明に係る硬質金系めっき液に、銀塩を含有させる場合、銀源としては、可溶性の銀化合物を用いることができる。例えば、シアン化銀及びその塩、塩化銀、炭酸銀、硝酸銀およびこれらの2以上の組み合わせを用いることができる。好ましくは、特にシアン化銀である。 When the hard gold plating solution according to the present invention contains a silver salt, a soluble silver compound can be used as the silver source. For example, silver cyanide and its salt, silver chloride, silver carbonate, silver nitrate and combinations of two or more thereof can be used. Particularly preferred is silver cyanide.
 この銀塩のめっき液中の濃度としては、銀換算で、0.05g/L~100g/Lの範囲が望ましい。0.05g/L未満であると、めっき膜中の銀の共析量が低下し、硬質金系めっきの硬化向上が図れなくなる傾向となる。また、100g/Lを超えると、めっき液の安定性が低下する傾向となる。より好ましい銀濃度は、銀換算で、0.1g/L~50g/Lである。 The concentration of this silver salt in the plating solution is preferably in the range of 0.05 g / L to 100 g / L in terms of silver. If it is less than 0.05 g / L, the amount of silver eutectoid in the plating film decreases, and it becomes difficult to improve the hardening of the hard gold plating. Moreover, when it exceeds 100 g / L, it will become the tendency for stability of a plating solution to fall. A more preferable silver concentration is 0.1 g / L to 50 g / L in terms of silver.
 本発明に係る硬質金系めっき液に、ポリエチレンイミンの有機添加剤を含有させる場合、めっき液中の有機添加剤の濃度としては、0.1g/L~300g/Lとすることが好ましい。0.1g/L未満であると、硬質金系めっきの硬化向上が図れなくなる傾向となり、300g/Lを超えるとめっき液の安定性が低下する傾向となる。より好ましい濃度としては、1g/L~200g/Lである。 When the hard gold plating solution according to the present invention contains a polyethyleneimine organic additive, the concentration of the organic additive in the plating solution is preferably 0.1 g / L to 300 g / L. If it is less than 0.1 g / L, the hardening of the hard gold plating tends to be impossible to improve, and if it exceeds 300 g / L, the stability of the plating solution tends to be lowered. A more preferred concentration is 1 g / L to 200 g / L.
 本発明の硬質金系めっき液における伝導塩としては、有機化合物或いは無機化合物のどちらでも用いることができ、有機化合物としては、例えば、クエン酸、酒石酸、アジピン酸、リンゴ酸、コハク酸、乳酸、安息香酸などのカルボン酸およびその塩ならびにホスホン酸基およびその塩を含む化合物が挙げられ、無機化合物としては、リン酸、亜硫酸、亜硝酸、硝酸、硫酸等のアルカリ金属塩またはアンモニウム塩やシアン化アルカリ、シアン化アンモニウム等が挙げられる。また、これらの2種以上の組み合わせを用いることもできる。 As the conductive salt in the hard gold plating solution of the present invention, either an organic compound or an inorganic compound can be used. Examples of the organic compound include citric acid, tartaric acid, adipic acid, malic acid, succinic acid, lactic acid, Examples include carboxylic acids such as benzoic acid and salts thereof, and compounds containing phosphonic acid groups and salts thereof. Inorganic compounds include alkali metal salts such as phosphoric acid, sulfurous acid, nitrous acid, nitric acid, sulfuric acid, ammonium salts, and cyanide. Examples include alkali and ammonium cyanide. A combination of two or more of these can also be used.
 この伝導塩のめっき液中の濃度としては、0.1g/L~300g/Lの範囲が望ましい。より好ましい濃度は、1g/L~200g/Lである。 The concentration of the conductive salt in the plating solution is preferably in the range of 0.1 g / L to 300 g / L. A more preferred concentration is 1 g / L to 200 g / L.
 本発明の硬質金系めっき液におけるキレート化剤としては、クエン酸、クエン酸カリウム、クエン酸ナトリウム、酒石酸、シュウ酸、コハク酸などのカルボキシル基含有化合物、ホスホン酸基またはその塩を分子内に有するホスホン酸基含有化合物などを用いることができる。ホスホン酸基含有化合物としては、例えば、アミノトリメチレンホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、エチレンジアミンテトラメチレンホスホン酸、ジエチレントリアミンペンタメチレンホスホン酸など分子内に複数のホスホン酸基を有する化合物またはそれらのアルカリ金属塩若しくはアンモニウム塩が含まれる。また、アンモニア、エチレンジアミン、トリエタノールアミンなどの窒素化合物を補助キレート化剤としてカルボキシル基含有化合物と共に用いることもできる。キレート化剤は、2種以上の組み合わせを用いることもできる。 As a chelating agent in the hard gold plating solution of the present invention, a carboxyl group-containing compound such as citric acid, potassium citrate, sodium citrate, tartaric acid, oxalic acid and succinic acid, a phosphonic acid group or a salt thereof is contained in the molecule. The phosphonic acid group containing compound etc. which have can be used. As the phosphonic acid group-containing compound, for example, aminotrimethylenephosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetramethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid and the like have a plurality of phosphonic acid groups in the molecule. Compounds or their alkali metal or ammonium salts are included. Moreover, nitrogen compounds, such as ammonia, ethylenediamine, and triethanolamine, can also be used with a carboxyl group-containing compound as an auxiliary chelating agent. A chelating agent can also use 2 or more types of combinations.
 このキレート化剤のめっき液中の濃度としては、0.1g/L~300g/Lの範囲が望ましい。0.1g/L未満であると、キレート化の作用が働かなくなる傾向となり、300g/Lを超えると、めっき液中に溶解できなくなる傾向となる。より好ましい濃度は、1g/L~200g/Lである。 The concentration of this chelating agent in the plating solution is preferably in the range of 0.1 g / L to 300 g / L. When the amount is less than 0.1 g / L, the chelating action tends not to work, and when the amount exceeds 300 g / L, the chelating solution tends not to be dissolved. A more preferred concentration is 1 g / L to 200 g / L.
 本発明の硬質金系めっき液における、1つ以上のニトロ基を有する芳香族化合物としては、ジニトロ安息香酸、ニトロ安息香酸、ニトロベンゼンスルホン酸を用いることできる。これらの芳香族化合物をめっき液に添加すると、選択的な部分めっき処理が可能となり、不必要な部分への硬質金系めっきの析出が効果的に抑制される。 As the aromatic compound having one or more nitro groups in the hard gold plating solution of the present invention, dinitrobenzoic acid, nitrobenzoic acid, and nitrobenzenesulfonic acid can be used. When these aromatic compounds are added to the plating solution, selective partial plating treatment is possible, and precipitation of hard gold plating on unnecessary portions is effectively suppressed.
 この1つ以上のニトロ基を有する芳香族化合物のめっき液中の濃度としては、0.01g/L~30g/Lの範囲が望ましい。0.01g/L未満であると、不必要な部分への金合金めっきの析出が生じやすくなる。また、30g/Lを超えると、めっき析出量が全体的に抑制され過ぎて、必要個所への硬質金系めっきが困難となる傾向となる。より好ましい濃度は、0.05g/L~15g/Lである。 The concentration of the aromatic compound having one or more nitro groups in the plating solution is preferably in the range of 0.01 g / L to 30 g / L. If it is less than 0.01 g / L, deposition of gold alloy plating on unnecessary portions tends to occur. On the other hand, if it exceeds 30 g / L, the plating deposition amount is excessively suppressed as a whole, and it becomes difficult to perform hard gold plating on a necessary portion. A more preferred concentration is 0.05 g / L to 15 g / L.
 本発明における硬質金系めっき液は、上記した基本組成に加え、pH調整剤、緩衝剤などを含むことも可能である。pH調整剤としては、アルカリ金属水酸化物、例えば、クエン酸カリウム、水酸化カリウムなど、または酸性物質、例えばクエン酸、燐酸などを用いることができる。また、緩衝剤としては、クエン酸、酒石酸、シュウ酸、コハク酸、リン酸、亜硫酸またはこれらの塩などを用いることができる。 The hard gold plating solution in the present invention can contain a pH adjusting agent, a buffering agent and the like in addition to the above basic composition. As the pH adjuster, alkali metal hydroxides such as potassium citrate and potassium hydroxide, or acidic substances such as citric acid and phosphoric acid can be used. As the buffer, citric acid, tartaric acid, oxalic acid, succinic acid, phosphoric acid, sulfurous acid, or a salt thereof can be used.
 上記した本発明に係る硬質金系めっき液は、そのめっき処理条件として、めっき液pHをpH3以上にすることが好ましく、液温5℃~90℃で行うことが好ましい。pH3未満であると、シアンガスの発生が生じやすくなる傾向となる。より好ましいめっき処理条件は、pH4以上、液温20℃~70℃である。めっき処理時の電流密度については、その適用範囲が広く、めっき対象物、めっき装置、めっき液流量などの条件に合わせて、最適な電流密度値を選択することができる。本発明に係る硬質金系めっき液は、特に、高速めっき処理のような高電流密度のめっき処理条件に対応可能である。 The above-described hard gold plating solution according to the present invention preferably has a plating solution pH of 3 or more as a plating treatment condition, and is preferably performed at a solution temperature of 5 ° C. to 90 ° C. If the pH is less than 3, cyan gas is likely to be generated. More preferable plating conditions are pH 4 or more and a liquid temperature of 20 ° C. to 70 ° C. About the current density at the time of a plating process, the applicable range is wide and it can select an optimal current density value according to conditions, such as a plating target object, a plating apparatus, and a plating solution flow rate. The hard gold plating solution according to the present invention is particularly applicable to high current density plating treatment conditions such as high-speed plating treatment.
 本発明に係る硬質金系めっき液によれば、コネクターなどの電子部品において、必要な部分にのみ、硬質金系めっき処理が行うことが可能となる。特に、下地にニッケルめっきを施したものの表面に、硬質金系めっきを行う場合、選択的に部分めっき処理を行うことが可能となる。 According to the hard gold plating solution according to the present invention, it is possible to perform hard gold plating only on necessary portions of electronic parts such as connectors. In particular, when hard gold plating is performed on the surface of the base plated with nickel, it is possible to selectively perform partial plating.
 以下に、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
第一実施形態:本実施形態では、金-コバルト合金の硬質金系めっき液について、そのめっき特性を調査した結果について説明する。 First Embodiment: In this embodiment, the results of investigating the plating characteristics of a hard gold plating solution of a gold-cobalt alloy will be described.
 この実施例1では、1つ以上のニトロ基を有する芳香族化合物として、ジニトロ安息香酸を用いて、ハルセル試験を行うことにより、その電着特性を調べた結果について説明する。硬質金系めっき液の組成は、以下のようにした。 In this Example 1, the result of examining the electrodeposition characteristics by conducting a hull cell test using dinitrobenzoic acid as an aromatic compound having one or more nitro groups will be described. The composition of the hard gold plating solution was as follows.
 シアン化第一金カリウム  12g/L(金換算で8g/L)
 硫酸コバルト      3.6g/L(コバルト換算で0.76g/L)
 クエン酸        150g/L
 水酸化カリウム      20g/L
 ジニトロ安息香酸      1g/L、5g/L 
 pH          4.4
 液温           60℃
Potassium cyanide potassium 12g / L (8g / L in terms of gold)
Cobalt sulfate 3.6 g / L (0.76 g / L in terms of cobalt)
Citric acid 150g / L
Potassium hydroxide 20g / L
Dinitrobenzoic acid 1g / L, 5g / L
pH 4.4
Liquid temperature 60 ℃
 ハルセル試験は、市販のハルセル試験器(山本鍍金試験器社製)を用い、めっき対象の基材は、真鍮製ハルセル板(縦70mm、横100mm、厚さ0.3mm)にニッケルめっき(厚さ10μm)を両面に施したものを使用した。めっき処理時間は、30秒間で、通電電流を3Aとした。また、めっき処理中は、めっき液を強撹拌した。 The hull cell test uses a commercially available hull cell tester (manufactured by Yamamoto Kakin Tester Co., Ltd.), and the substrate to be plated is nickel-plated (thickness 70 mm, width 100 mm, thickness 0.3 mm) on a brass hull cell plate. 10 μm) was used on both sides. The plating treatment time was 30 seconds, and the energization current was 3A. During the plating process, the plating solution was vigorously stirred.
 ハルセル評価は、めっき処理したハルセル板の9個所のめっき膜厚を測定することにより行った。このハルセル板の9個所は、ハルセル試験器の内部底面に接したハルセル板底辺から約2cm上側の部分(めっき液に浸せきした部分)で、水平方向に、ハルセル板幅方向に所定間隔を明けて選択した。また、めっき膜厚は、蛍光X線膜厚測定器(エスアイアイ・ナノテクノロジー(株)社製)によって測定した。膜厚を測定した9個所の各ポイント(No.1~9)における、おおよその各電流密度値は、No.1が0.3A/dm、No.2が1A/dm、No.3が2A/dm、No.4が3A/dm、No.5が4A/dm、No.6が5.5A/dm、No.7が7.5A/dm、No.8が10A/dm、No.9が13.5A/dmであった。このハルセル評価は、めっき処理がされたハルセル板表面と、その裏面との両面について行った。表1に各ポイントの膜厚を測定した結果を示す。尚、上記した9個所の電流密度値は、ハルセル板の表面側の電流密度を示すもので、ハルセル板の裏面側の電流密度値は不明である。ハルセル板の裏面側では、表面側に比べ、かなり低い電流密度値となる。 Hull cell evaluation was performed by measuring the plating film thickness of nine places of the plated hull cell plate. Nine locations on this Hull cell plate are the portion about 2 cm above the bottom of the Hull cell plate that touches the inner bottom surface of the Hull cell tester (the portion that has been immersed in the plating solution). Selected. Moreover, the plating film thickness was measured with a fluorescent X-ray film thickness measuring instrument (manufactured by SII Nanotechnology Co., Ltd.). The approximate current density value at each of the nine points (Nos. 1 to 9) where the film thickness was measured is 1 is 0.3 A / dm 2 , No. 1 2 is 1 A / dm 2 , No. 2 3 is 2 A / dm 2 , No. 3 4 is 3 A / dm 2 , No. 4 5 is 4 A / dm 2 , No. 5 6 is 5.5 A / dm 2 , No. 6 7 is 7.5 A / dm 2 , No. 7 8 is 10 A / dm 2 , No. 8 9 was 13.5 A / dm 2 . This hull cell evaluation was performed on both the surface of the hull cell plate subjected to plating and the back surface thereof. Table 1 shows the results of measuring the film thickness at each point. The nine current density values described above indicate the current density on the front side of the hull cell plate, and the current density value on the back side of the hull cell plate is unknown. On the back side of the hull cell plate, the current density value is considerably lower than that on the front side.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1には、比較のために、ジニトロ安息香酸を添加していないブランクの硬質金系めっき液の結果も示している。この表1に示す1~9の番号は、ハルセル板の9個所において測定ポイントを示しており、ハイフンの列の結果がブランクの硬質金系めっき液の結果であり、1g/L、5g/Lの各列が、その濃度のジニトロ安息香酸を含む硬質金系めっき液の結果である(以下に示すハルセル板の膜厚測定結果の表についても同様である)。ハルセル板表面の膜厚測定の結果を見ると判るように、ジニトロ安息香酸を添加すると、低電流密度側のめっき膜厚が急激に減少することが判明した。また、その添加量を5g/Lにすると、低電流密度側のめっきがさらに抑制されることが判った。さらに、ブランクの場合では、ハルセル板裏面側にも硬質金系めっきがされていたが、ジニトロ安息香酸を添加すると、裏面側にはほとんどめっき処理がされないことが判明した。 Table 1 also shows the results of a blank hard gold plating solution to which dinitrobenzoic acid is not added for comparison. The numbers 1 to 9 shown in Table 1 indicate the measurement points at nine locations on the Hull cell plate, and the results of the hyphen row are the results of the blank hard gold plating solution. 1 g / L, 5 g / L Are the results of the hard gold-based plating solution containing dinitrobenzoic acid at that concentration (the same applies to the table of film thickness measurement results of the hull cell plate shown below). As can be seen from the results of the film thickness measurement on the surface of the Hull cell plate, it was found that the addition of dinitrobenzoic acid sharply decreased the plating film thickness on the low current density side. Further, it was found that when the addition amount is 5 g / L, plating on the low current density side is further suppressed. Further, in the case of the blank, hard gold plating was also performed on the back side of the hull cell plate, but it was found that when dinitrobenzoic acid was added, the back side was hardly plated.
 この実施例2では、1つ以上のニトロ基を有する芳香族化合物として、ニトロ安息香酸を用いた。この実施例2の硬質金系めっき液の組成は、実施例1と同じで、実施例1のジニトロ安息香酸の替わりにニトロ安息香酸を用いた点のみが異なる。また、ハルセル試験条件及びその評価も実施例1と同様とした。表2に、実施例2による各ポイントの膜厚を測定した結果を示す。 In Example 2, nitrobenzoic acid was used as an aromatic compound having one or more nitro groups. The composition of the hard gold plating solution of Example 2 is the same as that of Example 1, except that nitrobenzoic acid is used instead of dinitrobenzoic acid of Example 1. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. Table 2 shows the results of measuring the film thickness at each point according to Example 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果を見ると判るように、ニトロ安息香酸を添加すると、低電流密度側のめっき膜厚が急激に減少することが判明した。そして、その添加量を5g/Lにすると、低電流密度側のめっきがさらに抑制されることが判った。また、ブランクの場合と異なり、ニトロ安息香酸を添加すると、ハルセル板裏面側にはほとんどめっき処理がされないことが判明した。 As can be seen from the results shown in Table 2, when nitrobenzoic acid was added, it was found that the plating film thickness on the low current density side sharply decreased. And when the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed. Also, unlike the blank, it was found that when nitrobenzoic acid was added, the Hull cell plate was hardly plated on the back side.
 この実施例3では、1つ以上のニトロ基を有する芳香族化合物としてニトロベンゼンスルホン酸を用いた。この実施例3の硬質金系めっき液の組成は、実施例1と同じで、実施例1のジニトロ安息香酸の替わりに、ニトロベンゼンスルホン酸を用いた点のみが異なる。また、ハルセル試験条件及びその評価も実施例1と同様とした。表3に、実施例3による各ポイントの膜厚を測定した結果を示す。 In this Example 3, nitrobenzenesulfonic acid was used as an aromatic compound having one or more nitro groups. The composition of the hard gold plating solution of Example 3 is the same as that of Example 1, except that nitrobenzenesulfonic acid is used instead of dinitrobenzoic acid of Example 1. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. Table 3 shows the results of measuring the film thickness at each point according to Example 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果を見ると判るように、ニトロベンゼンスルホン酸を添加すると、低電流密度側のめっき膜厚が急激に減少することが判明した。そして、その添加量を5g/Lにすると、低電流密度側のめっきがさらに抑制されることが判った。また、ブランクの場合と異なり、ニトロベンゼンスルホン酸を添加すると、ハルセル板裏面側にはほとんどめっき処理がされないことが判明した。 As can be seen from the results shown in Table 3, when nitrobenzenesulfonic acid was added, it was found that the plating film thickness on the low current density side rapidly decreased. And when the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed. Also, unlike the blank, it was found that when nitrobenzenesulfonic acid was added, the Hull cell plate was hardly plated on the back side.
 この実施例4では、1つ以上のニトロ基を有する芳香族化合物としてジニトロ安息香酸を用いて、高速部分めっき試験を行うことにより、その電着特性を調べた結果について説明する。金-コバルト合金の硬質金系めっき液の組成は、以下のようにした。 In Example 4, the results of examining the electrodeposition characteristics of a high-speed partial plating test using dinitrobenzoic acid as an aromatic compound having one or more nitro groups will be described. The composition of the gold-cobalt alloy hard gold plating solution was as follows.
 シアン化第一金カリウム   12g/L(金換算で8g/L)
 硫酸コバルト       3.6g/L(コバルト換算で0.76g/L)
 クエン酸         150g/L
 水酸化カリウム       20g/L
 ジニトロ安息香酸      0.5g/L、1.0g/L、
               1.5g/L、2.0g/L、
               3.0g/L、5.0g/L
 pH            4.4
 液温            60℃
Potassium cyanide potassium 12g / L (8g / L in terms of gold)
Cobalt sulfate 3.6 g / L (0.76 g / L in terms of cobalt)
Citric acid 150g / L
Potassium hydroxide 20g / L
Dinitrobenzoic acid 0.5 g / L, 1.0 g / L,
1.5 g / L, 2.0 g / L,
3.0g / L, 5.0g / L
pH 4.4
Liquid temperature 60 ℃
 高速部分めっき試験では、被めっき物として真鍮板にニッケルめっき(10μm厚)を施したものを使用した。金めっき皮膜の析出選択性を確認するために、直径9mmの円形の部分が露出した状態となるように、シリコンパッキンにより液密的にシールされるようにした。ただし、円形の露出した部分の一端から延びる溝(幅2mm、長さ20mm、深さ3mm)を、ニッケルめっきとシリコンパッキンのマスクとの間に形成した。シリコンパッキンでマスクされていない露出した円形部分に対してめっき液を噴流すると、円形部分にめっきが形成され、めっき液は溝部分に形成された間隙を通過して、溝部分の終端側から排出されるようになっている。この溝部分はマスクがその上部に存在するため、マスクのない円形の露出部分に比較して、電解時には低電流密度部分となるものである。従って、この高速部分めっき装置によりめっき処理をした場合、円形部分にのみにめっき処理がされて、溝部分にはめっき処理が施されないことが理想的なめっき処理となる。 In the high-speed partial plating test, a brass plate subjected to nickel plating (10 μm thickness) was used as an object to be plated. In order to confirm the deposition selectivity of the gold plating film, it was liquid-tightly sealed with silicon packing so that a circular portion having a diameter of 9 mm was exposed. However, a groove (width 2 mm, length 20 mm, depth 3 mm) extending from one end of the circular exposed portion was formed between the nickel plating and the silicon packing mask. When the plating solution is jetted onto an exposed circular portion that is not masked with silicon packing, plating is formed in the circular portion, and the plating solution passes through the gap formed in the groove portion and is discharged from the end side of the groove portion. It has come to be. Since this groove portion has a mask above it, it becomes a low current density portion during electrolysis as compared with a circular exposed portion without a mask. Therefore, when plating is performed by this high-speed partial plating apparatus, it is an ideal plating process that only the circular portion is plated and the groove portion is not plated.
 めっき処理条件は、流量は15L/min、電流密度50A/dmに調整し、厚み0.5μmの金-コバルト合金めっき膜を形成した。 Plating conditions were adjusted to a flow rate of 15 L / min and a current density of 50 A / dm 2 to form a gold-cobalt alloy plating film having a thickness of 0.5 μm.
 めっき液中のジニトロ安息香酸の濃度を変えた時のめっき状態を外観にて観察したところ、ジニトロ安息香酸の添加量が多くなるほど、溝部分にはめっき処理がされないようになることが判明した。 When the plating state when the concentration of dinitrobenzoic acid in the plating solution was changed was observed in appearance, it was found that as the amount of dinitrobenzoic acid added increased, the groove portion was not plated.
 そこで、各濃度でめっき処理した試験サンプルについて、その溝部分の4個所のめっき膜厚を測定し、その平均めっき膜厚を調査した。その結果を表4に示す。このめっき膜厚は、蛍光X線膜厚測定器(エスアイアイ・ナノテクノロジー(株)社製)によって測定した。 Therefore, for the test samples plated at various concentrations, the plating film thickness at four locations in the groove portion was measured, and the average plating film thickness was investigated. The results are shown in Table 4. This plating film thickness was measured with a fluorescent X-ray film thickness measuring instrument (manufactured by SII Nanotechnology Inc.).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果より、めっき液中のジニトロ安息香酸の濃度が大きくなると、基板の円形めっき部分に選択的にめっき処理が進行し、めっき処理の不必要な部分の溝部分にはめっき処理がされないことが判明した。 From the results shown in Table 4, when the concentration of dinitrobenzoic acid in the plating solution increases, the plating process proceeds selectively to the circular plating part of the substrate, and the groove part of the unnecessary part of the plating process is not plated. It has been found.
第二実施形態:本実施形態では、金-ニッケル合金の硬質金系めっき液について、そのめっき特性を調査した結果について説明する。 Second Embodiment: In this embodiment, the results of investigating the plating characteristics of a hard gold plating solution of a gold-nickel alloy will be described.
 この実施例5では、1つ以上のニトロ基を有する芳香族化合物として、ジニトロ安息香酸を用いた。硬質金系めっき液の組成は、以下のようにした。 In this Example 5, dinitrobenzoic acid was used as an aromatic compound having one or more nitro groups. The composition of the hard gold plating solution was as follows.
 シアン化第一金カリウム  12g/L(金換算で8g/L)
 硫酸ニッケル        9g/L(ニッケル換算で2g/L)
 クエン酸        150g/L
 水酸化カリウム      20g/L
 ジニトロ安息香酸      1g/L、5g/L 
 pH          4.4
 液温           60℃
Potassium cyanide potassium 12g / L (8g / L in terms of gold)
Nickel sulfate 9g / L (2g / L in terms of nickel)
Citric acid 150g / L
Potassium hydroxide 20g / L
Dinitrobenzoic acid 1g / L, 5g / L
pH 4.4
Liquid temperature 60 ℃
 ハルセル試験条件及び評価は実施例1と同様とした。表5に、実施例5による各ポイントの膜厚を測定した結果を示す。 Halcell test conditions and evaluation were the same as in Example 1. Table 5 shows the results of measuring the film thickness at each point according to Example 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5には、比較のために、ジニトロ安息香酸を添加していないブランクの硬質金系めっき液の結果も示している。表5に示す結果を見ると判るように、上記第一実施形態の場合と同様に、ニトロ安息香酸を添加すると、低電流密度側のめっき膜厚が急激に減少することが判明した。そして、その添加量を5g/Lにすると、低電流密度側のめっきがさらに抑制されることが判った。また、ブランクの場合では、ハルセル板裏面側にも硬質金系めっきがされていたが、ジニトロ安息香酸を添加すると、裏面側にはほとんどめっき処理がされないことが判明した。 Table 5 also shows the results of a blank hard gold plating solution to which dinitrobenzoic acid is not added for comparison. As can be seen from the results shown in Table 5, when nitrobenzoic acid was added, the plating film thickness on the low current density side was abruptly reduced as in the case of the first embodiment. And when the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed. In the case of the blank, hard gold plating was also performed on the back side of the hull cell plate, but it was found that when dinitrobenzoic acid was added, the back side was hardly plated.
 この実施例6では、1つ以上のニトロ基を有する芳香族化合物として、ニトロ安息香酸を用いた。この実施例6の硬質金系めっき液の組成は、実施例5と同じで、実施例5のジニトロ安息香酸の替わりに、ニトロ安息香酸を用いた点のみが異なる。また、ハルセル試験条件及びその評価は実施例1と同様とした。表6に、実施例6による各ポイントの膜厚を測定した結果を示す。 In Example 6, nitrobenzoic acid was used as an aromatic compound having one or more nitro groups. The composition of the hard gold plating solution of Example 6 is the same as that of Example 5 except that nitrobenzoic acid is used instead of dinitrobenzoic acid of Example 5. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. Table 6 shows the results of measuring the film thickness at each point according to Example 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示す結果を見ると判るように、ニトロ安息香酸を添加すると、低電流密度側のめっき膜厚が急激に減少することが判明した。そして、その添加量を5g/Lにすると、低電流密度側のめっきがさらに抑制されることが判った。また、ブランクの場合と異なり、ニトロ安息香酸を添加すると、ハルセル板裏面側にはほとんどめっき処理がされないことが判明した。 As can be seen from the results shown in Table 6, when nitrobenzoic acid was added, the plating film thickness on the low current density side was abruptly decreased. And when the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed. Also, unlike the blank, it was found that when nitrobenzoic acid was added, the Hull cell plate was hardly plated on the back side.
 この実施例7では、1つ以上のニトロ基を有する芳香族化合物としてニトロベンゼンスルホン酸を用いた。この実施例7の硬質金系めっき液の組成は、実施例5と同じで、実施例5のジニトロ安息香酸の替わりに、ニトロベンゼンスルホン酸を用いた点のみが異なる。また、ハルセル試験条件及びその評価も実施例1と同様とした。表7に、実施例7による各ポイントの膜厚を測定した結果を示す。 In this Example 7, nitrobenzenesulfonic acid was used as an aromatic compound having one or more nitro groups. The composition of the hard gold plating solution of Example 7 is the same as that of Example 5, except that nitrobenzenesulfonic acid is used instead of dinitrobenzoic acid of Example 5. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. Table 7 shows the results of measuring the film thickness at each point according to Example 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示す結果を見ると判るように、ニトロベンゼンスルホン酸を添加すると、低電流密度側のめっき膜厚が急激に減少することが判明した。そして、その添加量を5g/Lにすると、低電流密度側のめっきがさらに抑制されることが判った。また、ブランクの場合と異なり、ニトロベンゼンスルホン酸を添加すると、ハルセル板裏面側にはほとんどめっき処理がされないことが判明した。 As can be seen from the results shown in Table 7, it was found that when nitrobenzene sulfonic acid was added, the plating film thickness on the low current density side rapidly decreased. And when the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed. Also, unlike the blank, it was found that when nitrobenzenesulfonic acid was added, the Hull cell plate was hardly plated on the back side.
 この実施例8では、上記実施例4と同様に、1つ以上のニトロ基を有する芳香族化合物としてジニトロ安息香酸を用いて、高速部分めっき試験を行うことにより、その電着特性を調べた結果について説明する。金-ニッケル合金の硬質金系めっき液の組成は、以下のようにした。 In this Example 8, as in Example 4, the electrodeposition characteristics were examined by conducting a high-speed partial plating test using dinitrobenzoic acid as an aromatic compound having one or more nitro groups. Will be described. The composition of the gold-nickel alloy hard gold plating solution was as follows.
 シアン化第一金カリウム   12g/L(金換算で8g/L)
 硫酸ニッケル         9g/L(ニッケル換算で2g/L)
 クエン酸         150g/L
 水酸化カリウム       20g/L
 ジニトロ安息香酸      0.5g/L、1.0g/L、
               1.5g/L、2.0g/L、
               3.0g/L、5.0g/L
 pH            4.4
 液温            60℃
Potassium cyanide potassium 12g / L (8g / L in terms of gold)
Nickel sulfate 9g / L (2g / L in terms of nickel)
Citric acid 150g / L
Potassium hydroxide 20g / L
Dinitrobenzoic acid 0.5 g / L, 1.0 g / L,
1.5 g / L, 2.0 g / L,
3.0g / L, 5.0g / L
pH 4.4
Liquid temperature 60 ℃
 高速部分めっき試験の試験サンプル、装置、めっき条件等については、実施例4と同様にした。 The test sample, equipment, plating conditions, etc. for the high-speed partial plating test were the same as in Example 4.
 この実施例8においても、めっき液中のジニトロ安息香酸の濃度を変えた時のめっき状態を外観にて観察したところ、ジニトロ安息香酸の添加量が多くなるほど、溝部分にはめっき処理がされないようになることが判明した。 In Example 8 as well, when the plating state when the concentration of dinitrobenzoic acid in the plating solution was changed was observed in appearance, as the amount of dinitrobenzoic acid added increased, the groove portion was not plated. Turned out to be.
 この実施例8において、上記実施例4と同様に溝部分の平均めっき膜厚を調査した結果を表8に示す。この膜厚調査に関しても、上記実施例4と同様にして行った。 In this Example 8, the results of investigating the average plating film thickness of the groove portions as in Example 4 are shown in Table 8. This film thickness investigation was performed in the same manner as in Example 4 above.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8の結果より、上記実施例4と同様に、めっき液中のジニトロ安息香酸の濃度が大きくなると、基板の円形めっき部分に選択的にめっき処理が進行し、めっき処理の不必要な部分の溝部分にはめっき処理がされないことが判明した。 From the results of Table 8, as in Example 4 above, when the concentration of dinitrobenzoic acid in the plating solution increases, the plating process proceeds selectively to the circular plating part of the substrate, and the unnecessary part of the plating process is obtained. It was found that the groove was not plated.
第三実施形態:本実施形態では、金-銀合金の硬質金系めっき液について、そのめっき特性を調査した結果について説明する。 Third Embodiment: In this embodiment, the results of investigating the plating characteristics of a hard gold plating solution of gold-silver alloy will be described.
 この実施例9では、1つ以上のニトロ基を有する芳香族化合物として、ジニトロ安息香酸を用いた。硬質金系めっき液の組成は、以下のようにした。 In this Example 9, dinitrobenzoic acid was used as an aromatic compound having one or more nitro groups. The composition of the hard gold plating solution was as follows.
 シアン化第一金カリウム  12g/L(金換算で8g/L)
 シアン化銀        10g/L(銀換算で8g/L)
 シアン化カリウム     50g/L
 ジニトロ安息香酸      1g/L、5g/L 
 pH           12
 液温           20℃
Potassium cyanide potassium 12g / L (8g / L in terms of gold)
Silver cyanide 10g / L (8g / L in terms of silver)
Potassium cyanide 50g / L
Dinitrobenzoic acid 1g / L, 5g / L
pH 12
Liquid temperature 20 ℃
 ハルセル試験条件及び評価は実施例1と同様とした。表9に、実施例9による各ポイントの膜厚を測定した結果を示す。 Halcell test conditions and evaluation were the same as in Example 1. Table 9 shows the results of measuring the film thickness at each point according to Example 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9には、比較のために、ジニトロ安息香酸を添加していないブランクの硬質金系めっき液の結果も示している。表9に示す結果を見ると判るように、上記第一実施形態の場合と同様に、ニトロ安息香酸を添加すると、低電流密度側のめっき膜厚が急激に減少することが判明した。そして、その添加量を5g/Lにすると、低電流密度側のめっきがさらに抑制されることが判った。また、ブランクの場合と異なり、ジニトロ安息香酸を添加すると、ハルセル板裏面側にはほとんどめっき処理がされないことが判明した。 Table 9 also shows the results of a blank hard gold plating solution to which dinitrobenzoic acid is not added for comparison. As can be seen from the results shown in Table 9, when nitrobenzoic acid was added, the plating film thickness on the low current density side was abruptly reduced as in the case of the first embodiment. And when the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed. Also, unlike the blank case, it was found that when dinitrobenzoic acid was added, there was almost no plating treatment on the back side of the hull cell plate.
 この実施例10では、1つ以上のニトロ基を有する芳香族化合物として、ニトロ安息香酸を用いた。この実施例10の硬質金系めっき液の組成は、実施例9と同じで、実施例10のジニトロ安息香酸の替わりに、ニトロ安息香酸を用いた点のみが異なる。また、ハルセル試験条件及びその評価は実施例1と同様とした。表10に、実施例10における各ポイントの膜厚を測定した結果を示す。 In Example 10, nitrobenzoic acid was used as an aromatic compound having one or more nitro groups. The composition of the hard gold plating solution of Example 10 is the same as that of Example 9, except that nitrobenzoic acid is used instead of dinitrobenzoic acid of Example 10. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. In Table 10, the result of having measured the film thickness of each point in Example 10 is shown.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10に示す結果を見ると判るように、ニトロ安息香酸を添加すると、低電流密度側のめっき膜厚が急激に減少することが判明した。そして、その添加量を5g/Lにすると、低電流密度側のめっきがさらに抑制されることが判った。また、ブランクの場合と異なり、ニトロ安息香酸を添加すると、ハルセル板裏面側にはほとんどめっき処理がされないことが判明した。 As can be seen from the results shown in Table 10, when nitrobenzoic acid was added, it was found that the plating film thickness on the low current density side rapidly decreased. And when the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed. Also, unlike the blank, it was found that when nitrobenzoic acid was added, the Hull cell plate was hardly plated on the back side.
 この実施例11では、1つ以上のニトロ基を有する芳香族化合物としてニトロベンゼンスルホン酸を用いた。この実施例11の硬質金系めっき液の組成は、実施例9と同じで、実施例9のジニトロ安息香酸の替わりに、ニトロベンゼンスルホン酸を用いた点のみが異なる。また、ハルセル試験条件及びその評価も実施例1と同様とした。表11に、実施例11における各ポイントの膜厚を測定した結果を示す。 In this Example 11, nitrobenzenesulfonic acid was used as an aromatic compound having one or more nitro groups. The composition of the hard gold plating solution of Example 11 is the same as that of Example 9, except that nitrobenzenesulfonic acid is used instead of dinitrobenzoic acid of Example 9. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. In Table 11, the result of having measured the film thickness of each point in Example 11 is shown.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11に示す結果を見ると判るように、ニトロベンゼンスルホン酸を添加すると、低電流密度側のめっき膜厚が急激に減少することが判明した。そして、その添加量を5g/Lにすると、低電流密度側のめっきがさらに抑制されることが判った。また、ブランクの場合と異なり、ニトロベンゼンスルホン酸を添加すると、ハルセル板裏面側にはほとんどめっき処理がされないことが判明した。 As can be seen from the results shown in Table 11, when nitrobenzenesulfonic acid was added, it was found that the plating film thickness on the low current density side rapidly decreased. And when the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed. Also, unlike the blank, it was found that when nitrobenzenesulfonic acid was added, the Hull cell plate was hardly plated on the back side.
 この実施例12では、上記実施例4と同様に、1つ以上のニトロ基を有する芳香族化合物としてジニトロ安息香酸を用いて、高速部分めっき試験を行うことにより、その電着特性を調べた結果について説明する。金-銀合金の硬質金系めっき液の組成は、以下のようにした。 In this Example 12, as in Example 4, the electrodeposition characteristics were examined by conducting a high-speed partial plating test using dinitrobenzoic acid as an aromatic compound having one or more nitro groups. Will be described. The composition of the gold-silver alloy hard gold plating solution was as follows.
 シアン化第一金カリウム  12g/L(金換算で8g/L)
 シアン化銀        10g/L(銀換算で8g/L)
 シアン化カリウム     50g/L
 ジニトロ安息香酸      0.5g/L、1.0g/L、
               1.5g/L、2.0g/L、
               3.0g/L、5.0g/L
 pH           12
 液温           20℃
Potassium cyanide potassium 12g / L (8g / L in terms of gold)
Silver cyanide 10g / L (8g / L in terms of silver)
Potassium cyanide 50g / L
Dinitrobenzoic acid 0.5 g / L, 1.0 g / L,
1.5 g / L, 2.0 g / L,
3.0g / L, 5.0g / L
pH 12
Liquid temperature 20 ℃
 高速部分めっき試験の試験サンプル、装置、めっき条件等については、実施例4と同様にした。 The test sample, equipment, plating conditions, etc. for the high-speed partial plating test were the same as in Example 4.
 この実施例12においても、めっき液中のジニトロ安息香酸の濃度を変えた時のめっき状態を外観にて観察したところ、ジニトロ安息香酸の添加量が多くなるほど、溝部分にはめっき処理がされないようになることが判明した。 Also in this Example 12, when the plating state when the concentration of dinitrobenzoic acid in the plating solution was changed was observed in appearance, as the amount of dinitrobenzoic acid added increased, the groove portion was not plated. Turned out to be.
 この実施例12において、上記実施例4と同様に溝部分の平均めっき膜厚を調査した結果を表12に示す。この膜厚調査に関しても、上記実施例4と同様にして行った。 In this Example 12, the results of investigating the average plating film thickness of the groove portions as in Example 4 are shown in Table 12. This film thickness investigation was performed in the same manner as in Example 4 above.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表12の結果より、上記実施例4と同様に、めっき液中のジニトロ安息香酸の濃度が大きくなると、基板の円形めっき部分に選択的にめっき処理が進行し、めっき処理の不必要な部分の溝部分にはめっき処理がされないことが判明した。 From the results of Table 12, as in Example 4 above, when the concentration of dinitrobenzoic acid in the plating solution increases, the plating process proceeds selectively to the circular plating part of the substrate, and the unnecessary part of the plating process is obtained. It was found that the groove was not plated.
第四実施形態:本実施形態では、金のみの硬質金系めっき液について、そのめっき特性を調査した結果について説明する。硬質化に寄与する有機添加剤としてはポリエチレンアミンを用いた。 Fourth Embodiment: In this embodiment, the results of investigating the plating characteristics of a hard gold plating solution containing only gold will be described. Polyethyleneamine was used as an organic additive that contributes to hardening.
 この実施例13では、1つ以上のニトロ基を有する芳香族化合物としてジニトロ安息香酸を用いた。金のみの硬質金系めっき液の組成は、以下のようにした。 In this Example 13, dinitrobenzoic acid was used as an aromatic compound having one or more nitro groups. The composition of the hard gold plating solution containing only gold was as follows.
 シアン化第一金カリウム  12g/L(金換算で8g/L)
 ポリエチレンアミン    10g/L
 クエン酸         150g/L
 ジニトロ安息香酸      1g/L、5g/L 
 pH            7
 液温           65℃
Potassium cyanide potassium 12g / L (8g / L in terms of gold)
Polyethyleneamine 10g / L
Citric acid 150g / L
Dinitrobenzoic acid 1g / L, 5g / L
pH 7
Liquid temperature 65 ℃
 ハルセル試験条件及び評価は実施例1と同様とした。表13に、実施例13による各ポイントの膜厚を測定した結果を示す。 Halcell test conditions and evaluation were the same as in Example 1. Table 13 shows the results of measuring the film thickness at each point according to Example 13.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表13には、比較のために、ジニトロ安息香酸を添加していないブランクの硬質金系めっき液の結果も示している。表13に示す結果を見ると判るように、上記第一実施形態の場合と同様に、ニトロ安息香酸を添加すると、低電流密度側のめっき膜厚が急激に減少することが判明した。そして、その添加量を5g/Lにすると、低電流密度側のめっきがさらに抑制されることが判った。また、ブランクの場合と異なり、ジニトロ安息香酸を添加すると、ハルセル板裏面側にはほとんどめっき処理がされないことが判明した。 Table 13 also shows the results of a blank hard gold plating solution to which dinitrobenzoic acid was not added for comparison. As can be seen from the results shown in Table 13, as in the case of the first embodiment described above, it was found that when nitrobenzoic acid was added, the plating film thickness on the low current density side rapidly decreased. And when the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed. Also, unlike the blank case, it was found that when dinitrobenzoic acid was added, there was almost no plating treatment on the back side of the hull cell plate.
 この実施例14では、1つ以上のニトロ基を有する芳香族化合物として、ニトロ安息香酸を用いた。この実施例14の硬質金系めっき液の組成は、実施例13と同じで、実施例13のジニトロ安息香酸の替わりに、ニトロ安息香酸を用いた点のみが異なる。また、ハルセル試験条件及びその評価は実施例1と同様とした。表14に、実施例13における各ポイントの膜厚を測定した結果を示す。 In Example 14, nitrobenzoic acid was used as an aromatic compound having one or more nitro groups. The composition of the hard gold plating solution of Example 14 is the same as that of Example 13, except that nitrobenzoic acid is used instead of dinitrobenzoic acid of Example 13. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. In Table 14, the result of having measured the film thickness of each point in Example 13 is shown.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表14に示す結果を見ると判るように、ニトロ安息香酸を添加すると、低電流密度側のめっき膜厚が急激に減少することが判明した。そして、その添加量を5g/Lにすると、低電流密度側のめっきがさらに抑制されることが判った。また、ブランクの場合と異なり、ニトロ安息香酸を添加すると、ハルセル板裏面側にはほとんどめっき処理がされないことが判明した。 As can be seen from the results shown in Table 14, it was found that when nitrobenzoic acid was added, the plating film thickness on the low current density side rapidly decreased. And when the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed. Also, unlike the blank, it was found that when nitrobenzoic acid was added, the Hull cell plate was hardly plated on the back side.
 この実施例15では、1つ以上のニトロ基を有する芳香族化合物としてニトロベンゼンスルホン酸を用いた。この実施例15の硬質金系めっき液の組成は、実施例13と同じで、実施例9のジニトロ安息香酸の替わりに、ニトロベンゼンスルホン酸を用いた点のみが異なる。また、ハルセル試験条件及びその評価も実施例1と同様とした。表15に、実施例15における各ポイントの膜厚を測定した結果を示す。 In Example 15, nitrobenzenesulfonic acid was used as an aromatic compound having one or more nitro groups. The composition of the hard gold plating solution of Example 15 is the same as that of Example 13 except that nitrobenzenesulfonic acid is used instead of dinitrobenzoic acid of Example 9. Further, the Hull cell test conditions and the evaluation thereof were the same as those in Example 1. Table 15 shows the results of measuring the film thickness at each point in Example 15.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表15に示す結果を見ると判るように、ニトロベンゼンスルホン酸を添加すると、低電流密度側のめっき膜厚が急激に減少することが判明した。そして、その添加量を5g/Lにすると、低電流密度側のめっきがさらに抑制されることが判った。また、ブランクの場合と異なり、ニトロベンゼンスルホン酸を添加すると、ハルセル板裏面側にはほとんどめっき処理がされないことが判明した。 As can be seen from the results shown in Table 15, it was found that when nitrobenzenesulfonic acid was added, the plating film thickness on the low current density side decreased rapidly. And when the addition amount was 5 g / L, it turned out that the plating by the side of a low current density is further suppressed. Also, unlike the blank, it was found that when nitrobenzenesulfonic acid was added, the Hull cell plate was hardly plated on the back side.
 この実施例16では、上記実施例4と同様に、1つ以上のニトロ基を有する芳香族化合物としてジニトロ安息香酸を用いて、高速部分めっき試験を行うことにより、その電着特性を調べた結果について説明する。硬質金系めっき液の組成は、以下のようにした。 In Example 16, as in Example 4, the electrodeposition characteristics were examined by performing a high-speed partial plating test using dinitrobenzoic acid as an aromatic compound having one or more nitro groups. Will be described. The composition of the hard gold plating solution was as follows.
 シアン化第一金カリウム  12g/L(金換算で8g/L)
 ポリエチレンアミン    10g/L
 クエン酸         150g/L
 ジニトロ安息香酸      0.5g/L、1.0g/L、
               1.5g/L、2.0g/L、
               3.0g/L、5.0g/L
 pH            7
 液温           65℃
Potassium cyanide potassium 12g / L (8g / L in terms of gold)
Polyethyleneamine 10g / L
Citric acid 150g / L
Dinitrobenzoic acid 0.5 g / L, 1.0 g / L,
1.5 g / L, 2.0 g / L,
3.0g / L, 5.0g / L
pH 7
Liquid temperature 65 ℃
 高速部分めっき試験の試験サンプル、装置、めっき条件等については、実施例4と同様にした。 The test sample, equipment, plating conditions, etc. for the high-speed partial plating test were the same as in Example 4.
 この実施例16においても、めっき液中のジニトロ安息香酸の濃度を変えた時のめっき状態を外観にて観察したところ、ジニトロ安息香酸の添加量が多くなるほど、溝部分にはめっき処理がされないようになることが判明した。 In Example 16 as well, when the plating state when the concentration of dinitrobenzoic acid in the plating solution was changed was observed in appearance, as the amount of dinitrobenzoic acid added increased, the groove portion was not plated. Turned out to be.
 この実施例16において、上記実施例4と同様に溝部分の平均めっき膜厚を調査した結果を表16に示す。この膜厚調査に関しても、上記実施例4と同様にして行った。 In this Example 16, the result of investigating the average plating film thickness of the groove portion as in Example 4 is shown in Table 16. This film thickness investigation was performed in the same manner as in Example 4 above.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表16の結果より、上記実施例4と同様に、めっき液中のジニトロ安息香酸の濃度が大きくなると、基板の円形めっき部分に選択的にめっき処理が進行し、めっき処理の不必要な部分の溝部分にはめっき処理がされないことが判明した。 From the results of Table 16, as in Example 4 above, when the concentration of dinitrobenzoic acid in the plating solution increases, the plating process proceeds selectively to the circular plating part of the substrate, and the unnecessary part of the plating process is obtained. It was found that the groove was not plated.
 本発明によれば、コネクターなどの電子部品において、必要な部分にのみ、硬質金系めっき処理が行うことが可能となる。特に、下地にニッケルめっきを施したものの表面に、硬質金系めっきを行う場合、選択的に部分めっき処理を行うことが可能となる。 According to the present invention, it is possible to perform hard gold plating only on a necessary portion of an electronic component such as a connector. In particular, when hard gold plating is performed on the surface of the base plated with nickel, partial plating can be selectively performed.

Claims (4)

  1. 可溶性金塩または金錯体、伝導塩、キレート化剤を含む硬質金系めっき液において、
     1つ以上のニトロ基を有する芳香族化合物を含有することを特徴とする硬質金系めっき液。
    In hard gold plating solution containing soluble gold salt or gold complex, conductive salt, chelating agent,
    A hard gold plating solution containing an aromatic compound having one or more nitro groups.
  2.  コバルト塩、ニッケル塩、銀塩の少なくとも1種の金属塩をさらに含む請求項1に記載の硬質金系めっき液。 The hard gold plating solution according to claim 1, further comprising at least one metal salt of a cobalt salt, a nickel salt, and a silver salt.
  3.  ポリエチレンイミンの有機添加剤をさらに含む請求項1に記載の硬質金系めっき液。 The hard gold plating solution according to claim 1, further comprising an organic additive of polyethyleneimine.
  4.  前記芳香族化合物が、ニトロ安息香酸、ジニトロ安息香酸、ニトロベンゼンスルホン酸のいずれかから選ばれる請求項1~請求項3いずれかに記載の硬質金系めっき液。 The hard gold plating solution according to any one of claims 1 to 3, wherein the aromatic compound is selected from any of nitrobenzoic acid, dinitrobenzoic acid, and nitrobenzenesulfonic acid.
PCT/JP2009/063931 2008-08-25 2009-08-06 Hard gold plating liquid WO2010024099A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117004292A KR101275886B1 (en) 2008-08-25 2009-08-06 Hard gold-based plating solution
CN200980133847.4A CN102131962B (en) 2008-08-25 2009-08-06 Hard gold plating solution
US13/055,038 US20110127168A1 (en) 2008-08-25 2009-08-06 Hard gold-based plating solution

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-215592 2008-08-25
JP2008215592 2008-08-25
JP2009-147253 2009-06-22
JP2009147253A JP5513784B2 (en) 2008-08-25 2009-06-22 Hard gold plating solution

Publications (1)

Publication Number Publication Date
WO2010024099A1 true WO2010024099A1 (en) 2010-03-04

Family

ID=41721271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063931 WO2010024099A1 (en) 2008-08-25 2009-08-06 Hard gold plating liquid

Country Status (6)

Country Link
US (1) US20110127168A1 (en)
JP (1) JP5513784B2 (en)
KR (1) KR101275886B1 (en)
CN (1) CN102131962B (en)
TW (1) TWI495766B (en)
WO (1) WO2010024099A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458036A3 (en) * 2010-11-25 2013-02-20 Rohm and Haas Electronic Materials LLC Gold plating solution

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021217A (en) * 2009-07-14 2011-02-03 Ne Chemcat Corp Electrolytic hard-gold-plating liquid and plating method using the same
DE102011114931B4 (en) * 2011-10-06 2013-09-05 Umicore Galvanotechnik Gmbh Process for more selective electrolytic deposition of gold or a gold alloy
US20160145756A1 (en) * 2014-11-21 2016-05-26 Rohm And Haas Electronic Materials Llc Environmentally friendly gold electroplating compositions and methods
US10577704B2 (en) 2015-06-26 2020-03-03 Metalor Technologies Corporation Electrolytic hard gold plating solution substitution inhibitor and electrolytic hard gold plating solution including same
TWI575623B (en) * 2015-12-10 2017-03-21 南茂科技股份有限公司 Bump structure and manufacturing method thereof
JP2017186627A (en) * 2016-04-07 2017-10-12 小島化学薬品株式会社 Hard gold plating solution
TWI807443B (en) * 2016-10-14 2023-07-01 日商上村工業股份有限公司 Electroless nickel plating bath
CN109881223B (en) * 2019-03-11 2020-02-14 深圳市联合蓝海科技开发有限公司 Cyanide-free gold plating solution and preparation method and application thereof
CN110894618A (en) * 2019-10-10 2020-03-20 深圳市金质金银珠宝检验研究中心有限公司 Environment-friendly surface modified electroformed gold solution and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2723910A1 (en) * 1976-06-01 1977-12-15 Systeme De Traitements De Surf ADDITIONAL MIXTURE FOR ELECTROLYSIS BATTERIES
JPH0288788A (en) * 1988-09-26 1990-03-28 Hitachi Ltd Gold plating solution
JPH02232378A (en) * 1989-03-06 1990-09-14 Hitachi Ltd Gold plating liquid
US5277790A (en) * 1992-07-10 1994-01-11 Technic Incorporated Non-cyanide electroplating solution for gold or alloys thereof
JPH0959792A (en) * 1995-08-22 1997-03-04 Shinko Electric Ind Co Ltd Gold sulfite plating solution
JPH1161480A (en) * 1997-08-08 1999-03-05 Electroplating Eng Of Japan Co Gold sulfite plating bath and gold salt replenisher for this bath

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE570261A (en) * 1957-08-13
US3864222A (en) * 1973-03-26 1975-02-04 Technic Baths for Electrodeposition of Gold and Gold Alloys and Method Therefore
US4121982A (en) * 1978-02-03 1978-10-24 American Chemical & Refining Company Incorporated Gold alloy plating bath and method
GB8334226D0 (en) * 1983-12-22 1984-02-01 Learonal Uk Ltd Electrodeposition of gold alloys
DE3805627A1 (en) * 1988-02-24 1989-09-07 Wieland Edelmetalle GOLD BATH
JP3331261B2 (en) * 1994-08-19 2002-10-07 日本エレクトロプレイテイング・エンジニヤース株式会社 Electroless gold plating solution
JP3331260B2 (en) * 1994-08-19 2002-10-07 日本エレクトロプレイテイング・エンジニヤース株式会社 Electroless gold plating solution
JP3124735B2 (en) * 1997-03-25 2001-01-15 メルテックス株式会社 Gold plating stripper
JP4713290B2 (en) * 2005-09-30 2011-06-29 エヌ・イーケムキャット株式会社 Forming method of gold bump or gold wiring
JP4945193B2 (en) * 2006-08-21 2012-06-06 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Hard gold alloy plating solution
JP4719822B2 (en) * 2008-06-11 2011-07-06 日本高純度化学株式会社 Electrolytic gold plating solution and gold film obtained using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2723910A1 (en) * 1976-06-01 1977-12-15 Systeme De Traitements De Surf ADDITIONAL MIXTURE FOR ELECTROLYSIS BATTERIES
JPH0288788A (en) * 1988-09-26 1990-03-28 Hitachi Ltd Gold plating solution
JPH02232378A (en) * 1989-03-06 1990-09-14 Hitachi Ltd Gold plating liquid
US5277790A (en) * 1992-07-10 1994-01-11 Technic Incorporated Non-cyanide electroplating solution for gold or alloys thereof
JPH0959792A (en) * 1995-08-22 1997-03-04 Shinko Electric Ind Co Ltd Gold sulfite plating solution
JPH1161480A (en) * 1997-08-08 1999-03-05 Electroplating Eng Of Japan Co Gold sulfite plating bath and gold salt replenisher for this bath

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458036A3 (en) * 2010-11-25 2013-02-20 Rohm and Haas Electronic Materials LLC Gold plating solution

Also Published As

Publication number Publication date
TWI495766B (en) 2015-08-11
KR20110034683A (en) 2011-04-05
CN102131962B (en) 2014-08-13
KR101275886B1 (en) 2013-06-17
JP2010077527A (en) 2010-04-08
TW201022483A (en) 2010-06-16
CN102131962A (en) 2011-07-20
US20110127168A1 (en) 2011-06-02
JP5513784B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5513784B2 (en) Hard gold plating solution
TWI403619B (en) A hard gold alloy plating bath
JP5317433B2 (en) Acid gold alloy plating solution
TW200902758A (en) Electroless gold plating bath, electroless gold plating method and electronic parts
JP6017726B2 (en) Reduced electroless gold plating solution and electroless gold plating method using the plating solution
WO2012026159A1 (en) Gold displacement plating solution, and method for formation of joint part
JP6773079B2 (en) Non-cyan electrolytic gold plating solution
US11248305B2 (en) Copper electrolytic plating bath and copper electrolytic plating film
JP2008177261A (en) Multilayer plating film and printed wiring board
JP2007009305A (en) Electroless palladium plating liquid, and three layer-plated film terminal formed using the same
JP2014139348A (en) Hard gold-based plating solution
WO2012011305A1 (en) Electroless gold plating solution, and electroless gold plating method
CN105051254B (en) For the method for the copper surface active of electroless-plating
EP2511400A1 (en) Electrolytic hard gold plating solution and plating method using same
JP2005163153A (en) Electroless nickel substituted gold plating treatment layer, electroless nickel plating solution, and electroless nickel substituted gold plating treatment method
TWI820921B (en) Ptru alloy plating solution and method for plating ptru alloy film
JP2620816B2 (en) Palladium-nickel-phosphorus alloy electroplating solution
JP2008240083A (en) Electroless gold plating solution
US20230111446A1 (en) Electroless gold plating bath
JP2013177654A (en) Electrolytic hard gold plating liquid, plating method, and manufacturing method of gold-iron alloy film
CN115244221A (en) Cyanide-free electrolytic gold plating solution
JP2010031312A (en) Pattern plating film, and forming method thereof
JP2013144835A (en) ELECTROLESS Ni-P-Sn PLATING SOLUTION
JPWO2016208340A1 (en) Displacement inhibitor for electrolytic hard gold plating solution and electrolytic hard gold plating solution containing the same
JP2012184468A (en) Plating film, electronic part, plating liquid, and method for forming plating film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133847.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809753

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13055038

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117004292

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809753

Country of ref document: EP

Kind code of ref document: A1