WO2010024038A1 - Medium-agitating powder processing device - Google Patents

Medium-agitating powder processing device Download PDF

Info

Publication number
WO2010024038A1
WO2010024038A1 PCT/JP2009/061930 JP2009061930W WO2010024038A1 WO 2010024038 A1 WO2010024038 A1 WO 2010024038A1 JP 2009061930 W JP2009061930 W JP 2009061930W WO 2010024038 A1 WO2010024038 A1 WO 2010024038A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
medium
stirring
gas
powder
Prior art date
Application number
PCT/JP2009/061930
Other languages
French (fr)
Japanese (ja)
Inventor
河原正佳
吉川雅浩
柴田高志
Original Assignee
ホソカワミクロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホソカワミクロン株式会社 filed Critical ホソカワミクロン株式会社
Priority to CN2009801324081A priority Critical patent/CN102131586A/en
Priority to EP20090809693 priority patent/EP2351616A4/en
Priority to KR1020137023295A priority patent/KR101431045B1/en
Publication of WO2010024038A1 publication Critical patent/WO2010024038A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/10Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft and axial flow
    • B02C13/12Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft and axial flow with vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
    • B02C13/18Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/28Shape or construction of beater elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • B02C17/161Arrangements for separating milling media and ground material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/183Feeding or discharging devices
    • B02C17/186Adding fluid, other than for crushing by fluid energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/24Driving mechanisms

Definitions

  • the present invention relates to a medium stirring type powder processing apparatus that stirs and crushes a raw material to be processed together with a medium in a container.
  • a stirrer is provided that protrudes radially outward from the stirrer shaft in one or more stages and is rotatable about the vertical axis.
  • a medium stirring type pulverizer and a ball mill are known (for example, see Patent Documents 1 to 4 below).
  • the medium is stirred in the container by rotating the stirring member around the vertical axis.
  • the raw material to be treated is pulverized by a pulverizing force between the media generated at this time, that is, a shearing force, an impact force, a compressive force, a grinding force and the like.
  • a classifier for selecting the raw material to be processed (fine powder) according to the particle diameter is provided in the upper part of the container, and the fine powder is passed through the classifier.
  • a medium stirring type pulverizer of a type that is classified and collected For example, the medium stirring type pulverizer described in Patent Documents 1 and 2 among the documents cited above corresponds to this.
  • the medium agitation type pulverizer described in Patent Document 3 includes an upper agitation member (upper agitation agitator) and a lower agitation blade that are provided so as to be relatively rotatable, and the upper agitation member and the lower agitation blade are opposite to each other. Rotate at different speeds. This makes it possible to improve the grinding efficiency by preventing the fine powder after grinding from adhering in the container as much as possible.
  • Patent Document 3 describes that the inner surface of the container is formed on an inclined surface that gradually becomes smaller in diameter toward the top.
  • Patent Document 4 describes that an inclined surface having a smaller diameter toward the upper part is formed on the upper part of the container.
  • the medium agitation type pulverizer described in Patent Document 4 is a so-called wet type medium agitation type pulverizer in which the raw material to be treated is supplied in a slurry state.
  • the medium is scraped to the agitation member as the agitation member rotates about the vertical axis, and is given a centrifugal force by rotating inside the container. While rotating around the vertical axis in the container, it collides with the inner wall of the container and rises in the container along the inner wall of the container. Thereafter, the movement of descending to the center of the container due to gravity and ascending again in the container is repeated.
  • the containers at the height positions of all the agitation members (in particular, the upper end surface of the uppermost agitation member) provided over a plurality of stages.
  • the inner wall is a vertical surface orthogonal to the bottom surface.
  • the pulverizing force can be improved as the agitation speed is increased.
  • the medium greatly increases along the vertical plane, and before and after the increase to the decrease. In this case, the medium rises greatly.
  • energy input for stirring the medium is not sufficiently converted to energy for pulverization, and energy loss increases. Therefore, in the medium agitation type pulverizers described in Patent Documents 1 and 2, if the agitation speed is increased above a predetermined speed, the pulverization efficiency decreases due to an increase in the lift of the medium near the inner wall of the container. There was a problem.
  • the medium agitating pulverizer described in Patent Document 3 has the same problem. That is, in the medium agitation type pulverizer described in Patent Document 3, although the adhesion of the fine powder to the inner surface of the container is reduced by the lower agitation blade, the shape of the inner wall of the container is the same as the upper agitation member (here Then, in particular, at the height position of the upper end surface of the uppermost upper stirring member, a vertical surface perpendicular to the bottom surface is formed. Therefore, the medium scraped by the upper stirring member and given centrifugal force by rotating in the container also rises greatly along the inner surface (vertical surface) of the container, and before and after the medium turns from rising to falling, It will rise greatly. Therefore, energy loss becomes large, and the pulverization efficiency of the raw material to be processed decreases.
  • the medium agitation type pulverizer described in Patent Document 4 is a wet type medium agitation type pulverizer as described above.
  • a wet type medium agitating type pulverizer as indicated by an arrow A in the drawing of Patent Document 4, the behavior of the medium and the material to be treated in the container is a dry type medium agitating type pulverizer. Is different. For this reason, the problem of a decrease in the powder grinding efficiency due to the floating of the medium in the vicinity of the inner wall of the container, which is inherent in the medium stirring type pulverizer described in Patent Documents 1 to 3, is represented by Patent Document 4. It hardly occurs in a wet type medium stirring type pulverizer.
  • the raw material to be treated is supplied in the form of a slurry, in order to obtain a dry powder, the process of drying the fine powder after pulverization, or the fine powder that is in an agglomerated state after drying is solved. A step of crushing is required. Therefore, as compared with a dry type medium agitating pulverizer, a series of processing efficiencies until a dry powder corresponding to the particle diameter is obtained must be reduced.
  • the present invention has been made in view of the above-mentioned problems, and while stirring a material to be treated together with a medium in a container by a stirring member and pulverizing the medium, medium stirring for recovering the pulverized powder through a classifier
  • An object of the present invention is to improve a series of processing efficiency from pulverization of a raw material to be processed to classification and collection of the pulverized powder in a mold powder processing apparatus.
  • the present invention comprises a stirring member that protrudes radially outward from the stirring shaft according to the present invention in one or more stages and is provided so as to be rotatable about the vertical axis.
  • a characteristic configuration of a medium stirring type powder processing apparatus that stirs and pulverizes a raw material to be processed together with a medium in a container, and classifies and collects the powder after pulverization through a classifier provided in the upper part of the container
  • the inner wall of the container has an inclined surface that is displaced toward the center toward the upper part, and the inclined surface is formed from the height position of the lower end surface of the uppermost stirring member or from below to above. It is in the point.
  • the inner surface of the container at least at the height position of the lower end surface of the uppermost stirrer is an inclined surface that is displaced toward the center toward the upper part.
  • the medium to which the force is applied receives an oblique downward force when it collides with the inner wall (inclined surface) of the container. .
  • the ascending force acting on the medium pushed up along the inner wall by the centrifugal force can be reduced, and the excessive lifting of the medium in the container can be suppressed. Therefore, the energy input for stirring the medium can be effectively converted as the energy for pulverization, and the pulverization efficiency can be improved.
  • the material to be treated and the powder after pulverization are likely to adhere to the inner wall in the lifted portion.
  • the medium, the raw material to be processed, and the pulverized powder (hereinafter referred to as “powder / medium”) are formed between the vicinity of the inner wall of the container and the center of the container. The height difference of the envelope surface can be reduced.
  • the flow rate of the gas for conveying the pulverized powder can be made uniform, and the powder can be conveyed to the classifier well. Therefore, a series of processing efficiencies from pulverization of the raw material to be processed to collection of the pulverized powder through the classifier can be improved.
  • the inclined surface is formed from the bottom of the container.
  • the lifting force of the medium can be reliably reduced in the height region occupied by many stirring members. Therefore, excessive lifting of the medium in the container can be more reliably suppressed. Therefore, the powder processing efficiency can be further improved.
  • the stirring member is provided in a plurality of stages with respect to the stirring shaft, and the length from the axial center of the stirring shaft to the tip of the stirring member at the uppermost stage is a stage one step below It is preferable that the length is set shorter than the length to the tip of the stirring member.
  • the peripheral speed at the tip of the uppermost stirrer is greater than the peripheral speed at the tip of the stirrer of the lowermost stage. Can be small. Therefore, the centrifugal force applied to the medium by the uppermost stirring member can be reduced. As a result, the ascending force in the container can be reduced to prevent the medium from rising.
  • an interposing member is provided between the upper end surface of the stirring shaft and the lower end surface of the classifier.
  • the gas for conveying the pulverized powder to the classifier can be raised around the insertion member while maintaining a substantially constant speed. Therefore, since the pulverized powder can be efficiently conveyed to the classifier, a series of processing efficiency from pulverization to classification can be further improved.
  • a gas outlet that is provided along the circumferential direction on the side surface of the container and jets gas inward in the radial direction.
  • pulverization mixed in the medium and the raw material to be processed by increasing the dispersion force in the region (stirring region) where the powder / medium in the container is agitated by the gas ejected from the gas ejection port.
  • the latter powder can be extracted from the stirring area and conveyed above the container. Therefore, unnecessary stagnation in the stirring region of the powder after the pulverization treatment can be reduced, and the raw material to be processed can be prevented from being excessively pulverized, and the series of processing efficiency in the container can be improved.
  • FIG. 1 is a diagram showing a structure of a medium stirring type powder processing apparatus 1 according to the present embodiment.
  • FIG. 2 is an explanatory diagram for explaining the force acting on the medium 6 in the vicinity of the inner wall of the container 2
  • FIG. 3 is a schematic diagram showing the state of the envelope surface 24 in the container 2.
  • the medium stirring type powder processing apparatus 1 includes a stirring member 3, a medium 6, a bottom plate 7, and a classification rotor 10 as a classifier in a container 2, as shown in FIG.
  • a gas outlet 13 provided on the side surface of the container 2
  • a jacket 16 provided on the outer periphery of the container 2
  • a gas inlet 17 are provided.
  • a raw material supply port 8 is provided in the upper part of the container 2, and the raw material is supplied from a screw feeder 9 connected to the raw material supply port 8.
  • the container 2 has an inclined surface 21 that is displaced toward the center toward the upper part on the inner wall thereof.
  • a plurality of stirring members 5 protrude radially outward from the substantially cylindrical stirring shaft 4 in a plurality of stages. That is, the stirring member 5 is rotatably provided around the vertical axis (rotation axis Z) in the container 2, and is pulverized as a raw material to be treated by rotating around the vertical axis (rotation axis Z). The raw material is stirred with the medium 6 and pulverized.
  • the length from the rotation axis Z in one stage to the tip of the stirring member 5 (hereinafter, sometimes referred to as “stirring diameter”) is in the lower stage. It is set to be shorter than each of the stirring members 5.
  • the stirrer 5 is set so that the stirrer diameter is sequentially shortened as the stirrer 5 is arranged in the upper stage.
  • paragraph and the inner wall (specifically inclined surface 21) of the container 2 mentioned later is made constant.
  • the clearance C is preferably 4 times or more or 1/3 or less of the diameter of the medium 6 so that the medium 6 is not sandwiched between the stirring member 5 and the inner wall of the container 2.
  • the clearance C is constant means that the clearance C in each stage is substantially equal, and is not a concept that is required to be strictly equal.
  • the degree of variation is, for example, about 1/3 or less of the diameter of the medium 6, “clearance C is constant” here is included.
  • two stirrers 5 are provided at the same height in five stages, and are arranged in a staggered arrangement in which each stage is sequentially displaced by 90 degrees.
  • the stirring shaft 4 is connected to an output portion of a drive motor (not shown), and the stirring shaft 4 and the stirring member 5 rotate based on the drive.
  • the material of the medium 6 is selected according to the type of raw material to be pulverized, and for example, a material made of metal such as stainless steel or a material made of ceramics is appropriately used. In order to increase the impact force generated between the media 6, it is preferable to use a material having a high density.
  • the size of the medium 6 is selected according to the particle size of the fine powder to be taken out. However, generally, when the diameter is reduced, the impact force generated between the media 6 is reduced, and conversely, when the diameter is increased, the number of contact points is reduced and the chance of collision is reduced, making it difficult to pulverize. Therefore, it is preferable to use a medium 6 having a diameter of 2 to 6 mm. In consideration of the fact that the diameter of the medium 6 gradually decreases due to wear with use, it is optimal to set the initial value of the diameter to about 5 to 6 mm.
  • the bottom plate 7 is a disk-shaped member that is disposed at the bottom of the container 2 and covers an area from the center to the inner wall.
  • the bottom plate 7 divides the inside of the container 2 into two regions, a powder processing chamber P and a gas chamber G.
  • the powder processing chamber P is a space from the bottom plate 7 to the classification rotor 10 in the container 2, and is a space for stirring the pulverized raw material together with the medium 6 by the stirring member 5 to perform pulverization.
  • the gas chamber G is a space for temporarily storing the flowing gas supplied from the flowing gas supply path 15a.
  • air is usually used as the flowing gas.
  • an inert gas such as nitrogen, helium, or argon may be used.
  • the flowing gas may be cooled and heated, or a humidified gas may be used. Alternatively, it may be introduced through a filter or the like.
  • the bottom plate 7 is provided with a through hole 7a through which gas can pass.
  • a porous plate for example, a plate having slit-like through holes, a punching metal, a porous plate, or the like can be used. Then, the flowing gas is blown from the gas chamber G to the powder processing chamber P through the through holes 7a provided in the bottom plate 7, and the fine powder pulverized in the powder processing chamber P is raised by the flowing gas. Is guided to the classification rotor 10.
  • the number of the through holes 7a is as large as possible and the total area of the through holes 7a is increased. Is preferred. However, the size is kept at least so that the medium 6 in the powder processing chamber P does not fall.
  • a raw material supply port 8 is provided on the upper side surface of the container 2.
  • a screw feeder 9 as a raw material supply means is connected to the raw material supply port 8, and the pulverized raw material is supplied into the container 2 by the screw feeder 9.
  • a screw feeder 9 is suitably used when the raw material is solid, particularly powdery, and the raw material is continuously charged at a constant speed.
  • a double damper, a rotary valve, or the like may be used instead of the screw feeder.
  • the raw material supply means such as a screw feeder can be directly supplied to the raw material supply port 8 without supplying the raw material via the air transport pipe.
  • the weight of the medium stirring type powder processing apparatus 1 is controlled by weight measuring means such as a load cell, the raw material supply is performed so that the amount of residence in the apparatus is constant even when continuous processing is performed. The amount can be adjusted.
  • the inside of the container 2 is divided into a gas chamber G and a powder processing chamber P with the bottom plate 7 interposed therebetween, a gas outlet 13 near the upper surface of the bottom plate 7, and a rotating shaft ( A classifying rotor 10 that rotates around is provided.
  • the gas chamber G From the gas chamber G, the flowing gas flows into the powder processing chamber P through the through holes 7 a provided in the bottom plate 7.
  • the gas ejection port 13 From the gas ejection port 13, the ejection gas is ejected into the powder processing chamber P.
  • the space in the powder processing chamber P is constituted by an agitation region R where the medium 6 is agitated and a classification region Q located above the agitation region R.
  • the fine powder stirred and pulverized together with the medium 6 by the stirring member 5 in the stirring region R is raised to the classification region Q by the transport gas for transporting it.
  • carrier gas refers to one or both of a flowing gas and a jet gas.
  • a classification rotor 10 that rotates around the vertical axis is provided at the center upper portion inside the container 2, and the raised fine powder is classified by the classification rotor 10 and collected as product powder.
  • the classification rotor 10 has a plurality of classification blades 10a provided radially. The fine powder is classified based on the balance between the radial centrifugal force generated by the rotation of the classification rotor 10 and the inflow of gas into the classification rotor 10.
  • the rotation speed of the classification rotor 10 is set according to the particle diameter of the product powder to be collected.
  • the classifying rotor 10 constitutes a “classifier” in the present invention.
  • the container 2 has an inclined surface 21 that is displaced toward the center on the inner wall thereof.
  • the inclined surface 21 is formed from the bottom of the container 2.
  • the inclined surface 21 is formed from the position of the bottom plate 7.
  • the inner wall of the container 2 in the height position of all the stirring members 5 is the inclined surface 21.
  • the inclined surface 21 has a constant inclination, and the container as a whole has a conical shape with the tip cut off.
  • the inclination angle at this time is preferably 3 degrees or more and 35 degrees or less with respect to the vertical direction, and more preferably 6 degrees or more and 35 degrees or less. It is even more preferable if it is 6 degrees or more and 25 degrees or less, and the optimum inclination angle is 11 degrees.
  • Centrifugal force F acts on the medium 6 as the stirring member 5 rotates about the vertical axis (rotation axis Z).
  • the medium 6 to which the centrifugal force F is applied collides with the inner wall of the container 2, is pushed up by another medium 6, and rises in the container 2 along the inner wall of the container 2. Thereafter, the movement of lowering to the center of the container 2 due to gravity and then rising again in the container 2 is repeated (see the two-dot chain arrow in FIG. 1).
  • an inclined surface 21 is formed on the inner wall of the container 2 so as to be displaced toward the center as it goes upward, the medium 6 is inclined when the medium 6 collides with the inner wall of the container 2 as shown in FIG.
  • the surface 21 receives a drag force N in a direction opposite to the component perpendicular to the inclined surface 21 of the centrifugal force F (diagonally downward).
  • the medium 6 receives the vertically downward vertical component Ny of the drag N, and the upward force pushed up by the other medium 6 in the vicinity of the inner wall is reduced, so that excessive lifting of the medium 6 in the container 2 is suppressed.
  • the inclined surface 21 is formed from the position of the bottom plate 7, and the lifting force of the medium 6 is reduced at all positions above the bottom plate 7, so that the lifting of the medium 6 is effectively performed. It is suppressed.
  • each of the stirring members 5 is stirred so that the length (stirring diameter) from the rotation axis Z to the tip end portion thereof becomes shorter as it is arranged in the upper stage.
  • the length of the member 5 is set. Therefore, when the stirring shaft 4 rotates at a constant angular velocity, the peripheral speed at the tip of each stirring member 5 becomes smaller as it is arranged in the upper stage. Therefore, in the stirring region R of the medium 6, the centrifugal force F (see FIG. 2) applied to the medium 6 by the stirring member 5 becomes smaller toward the upper part. Therefore, the floating of the medium 6 in the container 2 is also suppressed from this point.
  • the energy input for stirring the medium 6 can be effectively used as the energy for pulverization. Therefore, the pulverization efficiency can be improved as compared with a conventional medium stirring type powder processing apparatus in which the container 2 is formed in a straight body.
  • the carrier gas passing through the same region is likely to escape from the portion where the ventilation resistance by the powder / medium is low. Therefore, when the height difference of the envelope surface 24 increases, the carrier gas easily escapes from the center portion of the container 2 where the height of the envelope surface 24 decreases, and conversely from the vicinity of the inner wall of the container 2 where the height of the envelope surface 24 increases.
  • the carrier gas is difficult to escape, and the ventilation of the carrier gas in the stirring region R becomes uneven depending on the location. As a result, it becomes difficult to transport the fine powder uniformly to the classification region Q. For example, a powder larger than the desired particle diameter is conveyed, while the desired particle diameter is also achieved.
  • the height difference of the envelope surface 24 formed by the powder / medium can be reduced by suppressing excessive lifting of the medium 6.
  • the two-dot broken line indicates a state in which the container 2 is formed in a straight body.
  • the series of processing efficiency from pulverization to classification is improved by suppressing the occurrence of excessive pulverization by suppressing the retention of fine powder in the agitation region R. Can be made.
  • the gas ejection port 13 is provided on the side surface of the container 2 along the circumferential direction so that gas can be ejected radially inward.
  • a slit-like gas ejection port 13 is provided over the entire circumference of the container 2 on the side surface of the container 2 located in the vicinity of the upper surface of the bottom plate 7.
  • a plurality of gas jets 13 are arranged in a substantially uniform manner along the circumferential direction, or a porous member or the like is provided to provide the gas jets 13 over the entire circumference of the container 2.
  • the gas may be ejected substantially uniformly radially inward from a plurality of positions.
  • the gas to be ejected can be the same type of gas as the flowing gas, and can be air or an inert gas such as nitrogen as described above. In addition to controlling the temperature and humidity of the jet gas, it may be introduced through a filter or the like.
  • the same gas supplied from the gas supply passage 15 is branched into two supply passages, that is, a flowing gas supply passage 15a and an ejection gas supply passage 15b. It flows out from the outlet 13 into the container 2 (powder processing chamber P).
  • the gas ejected from the gas ejection port 13 plays a role of extracting the fine powder after pulverization mixed in the medium 6 and the pulverized raw material from the agitation region R and transporting it above the container 2 in the agitation region R. Therefore, the unnecessary residence in the stirring area
  • An annular channel 14 is provided on the outer periphery of the container 2 so as to cover the gas ejection port 13.
  • the annular flow channel 14 is interposed between the gas ejection port 13 and the gas ejection channel 15 b for supplying the gas ejection gas to the gas ejection port 13.
  • the space formed inside the annular flow path 14 is a space for temporarily storing the jet gas supplied from the jet gas supply path 15 b and jetted into the container 2 through the gas jet port 13. Play a role.
  • the jet gas supplied from the jet gas supply channel 15 b is supplied to the gas jet port 13 after the pressure is equalized in the annular channel 14. Thereby, a jet gas can be jetted from the gas jet port 13 substantially uniformly. As a result, the fine powder can be uniformly dispersed in the container 2, and the series of processing efficiency can be further improved.
  • a gas inlet 17 is provided on the side surface of the container 2 above the stirring member 5 to allow gas to flow inwardly from the side surface of the container 2.
  • the gas inflow port 17 can be formed in a slit shape provided so that gas flows upward from the entire circumference of the side surface of the container 2, for example. Moreover, it is good also as a structure which provides the gas inflow port 17 in the tangential direction with respect to the container 2 so that gas may flow in swirling, or the structure which inclines in a tangential direction many blade
  • the inflowing gas (inflowing gas) can be the same type of gas as the flowing gas or the jetting gas, and can be an air or an inert gas such as nitrogen as described above.
  • the inflowing gas In addition to adjusting the temperature and humidity of the inflowing gas, it may be introduced through a filter or the like.
  • the inflow gas from the gas inlet 17 prevents the fine powder from adhering to the inner wall of the container 2 and at the same time serves as a dispersion gas for classification.
  • the jacket 16 is provided on the outer periphery of the container 2 and functions as a temperature adjusting means for adjusting the temperature of the container 2 to an arbitrary temperature.
  • the container 2 is cooled by flowing cooling water into the jacket 16.
  • the temperature of the inner wall of the container 2 increases.
  • the pulverized raw material and the fine powder adhering to the inner wall cause thermal deterioration. Therefore, if the cooling water is allowed to flow into the jacket 16 and used as a cooling means as in the present embodiment, the temperature of the inner wall of the container 2 can be prevented from rising.
  • the medium stirring type powder processing apparatus 1 according to the present embodiment can also be effectively applied to the pulverization.
  • the insertion member 12 is provided between the upper end surface 4 u of the stirring shaft 4 and the lower end surface 10 d of the classification rotor 10.
  • the insertion member 12 is a substantially cylindrical member having a lower end surface that substantially matches the shape of the upper end surface 4 u of the stirring shaft 4, and is connected to the stirring shaft 4.
  • the upper end surface 12u of the insertion member 12 connected to the stirring shaft 4 and the lower end surface 10d of the classifying rotor 10 are disposed close to each other.
  • the space between the upper end surface 4u of the stirring shaft 4 and the lower end surface 10d of the classification rotor 10 is substantially filled, and the classification region Q positioned above the stirring region R has an annular cross section. It has become.
  • the carrier gas and the fine powder that has risen in the powder processing chamber P due to this are classified from the upper end surface 4u of the stirring shaft 4 where the opening area increases.
  • the rising speed is reduced.
  • the fine powder cannot be sufficiently conveyed to the classification rotor 10, and the fine powder once pulverized is agglomerated in the middle of conveyance and stalled, and again falls into the stirring region R of the medium 6. May end up. This has been one of the causes of overgrinding.
  • the medium stirring type powder processing apparatus 1 interposes the insertion member so as to fill a space formed between the upper end surface 4u of the stirring shaft 4 and the lower end surface 10d of the classification rotor 10. 12 is provided.
  • the cross section of the classification region Q becomes an annular space having a hollow portion at the center, and the opening area is substantially the same over the entire classification region Q. Therefore, the carrier gas and the fine powder conveyed by this Rises while maintaining a substantially constant speed. Therefore, since fine powder can be efficiently conveyed to the classification rotor 10, a series of processing efficiency from pulverization to classification can be further improved.
  • a container (hereinafter referred to as a conical container) formed with an inclined surface 21 that is displaced toward the center from the position of the bottom plate 7 and a container (hereinafter referred to as a cylindrical container) formed entirely in a straight body are used.
  • the inclined surface 21 of the conical container has an inclination of 11 degrees, and both the conical container and the cylindrical container have a bottom plate 7 with a diameter of 600 mm.
  • a steel ball having a diameter of 5.0 mm is used as the medium 6 and heavy calcium carbonate (specific surface area equivalent diameter: 1.0 ⁇ m) is used as a pulverized raw material, and the processing air volume is 10 m 3 which is the total amount of flowing gas, jetting gas and inflowing gas. / Min, continuous processing was performed under the operating conditions of a stirring member rotating at 120 rpm.
  • the classification rotation speed of the classification rotor 10 was set to 3000 rpm and 7000 rpm, the specific surface area converted diameter was determined by measurement by the BET method, and the processing capacity was determined as a processing amount per unit time. The results are shown in Table 1.
  • the conical container when used, it was confirmed that the specific surface area equivalent diameter was larger and the processing capacity was higher when the classification rotation speed was 3000 rpm than when it was 7000 rpm. Further, when compared with a conical container and a cylindrical container when the classification rotation speed is 7000 rpm, the conical container has a processing capacity of about 15% in order to obtain a fine powder having a substantially equivalent specific surface area diameter. It was confirmed that there was an improvement. As a result, it was confirmed that a series of processing efficiency from pulverization to classification was improved.
  • the average particle diameter was determined by measuring by a laser diffraction / scattering method, and the processing capacity was determined as a processing amount per unit time.
  • the grinding efficiency was determined by dividing the processing capacity by the power required for the grinding process. The results are shown in FIG. In Table 2, the pulverization efficiency at each inclination angle with respect to the pulverization efficiency when the inclination of the inclined surface 21 is 0 degrees is shown as a pulverization efficiency ratio.
  • a zirconia ball having a diameter of 5.0 mm is used as the medium 6
  • glass powder (average particle diameter: 33 ⁇ m) is used as a pulverized raw material, and a continuous treatment is performed under the operating conditions of a treatment air volume of 10 m 3 / min and a stirring member rotating speed of 130 rpm. It was.
  • classifying rotation speed of the classifying rotor 10 was set to 3000 rpm and 7000 rpm, the average particle diameter was determined by measurement by a laser diffraction scattering method, and the processing capacity was determined as a processing amount per unit time. The results are shown in Table 3.
  • the inclined surface 21 is formed from the position of the bottom plate 7 in the container 2, and the inner wall of the container 2 at the height position of all the stirring members 5 is the inclined surface 21.
  • the embodiment of the present invention is not limited to this. That is, if the inclined surface 21 is configured to be formed at least at the height position of the lower end surface of the uppermost stirrer member 5 or from the lower side to the upper side, the intermediate portion of the plurality of steps is provided. May be formed from the height position of the upper end surface or the lower end surface of the stirring member 5, that is, the inner wall of the container 2 at the height position of all the stirring members 5 may not necessarily be the inclined surface 21. For example, as shown in FIG.
  • the container 2 can be configured to have a straight body portion having a vertical surface 22 that is substantially orthogonal to the bottom surface from the bottom surface of the container 2 to a predetermined height position.
  • the inclined surface 21 is formed continuously from the vertical surface 22.
  • a second inclination that is displaced outward as the upper part is formed. It is good also as a structure which has the surface 23.
  • the second inclined surface 23 can be configured to extend from the bottom plate 7 to any height position below the uppermost stirring member 5.
  • the first inclined surface 21 is formed continuously from the second inclined surface 23.
  • the embodiment of the present invention is not limited to this.
  • forming the inclined surface 21 such that the inclination of the inclined surface 21 increases toward the upper part is one of the preferred embodiments of the present invention.
  • the vertical component Ny see FIG. 2 of the drag N that the medium particle 6 receives from the inclined surface 21 increases toward the upper part, so that the floating of the medium 6 in the container 2 is further suppressed. Is done.
  • the case where the inner wall of the container 2 forms the inclined surface 21 has been described as an example.
  • the embodiment of the present invention is not limited to this.
  • the inclined surface 21 may be formed by attaching another member in the container 2 while the shape of the container 2 is a straight body.
  • the inner wall above the height position where the lift of the medium can be suppressed may be a straight cylinder without being inclined.
  • the inner diameter of the upper body of the container 2 is preferably in the range of 1.3 to 2 times the outer diameter of the classification rotor 10.
  • the stirring diameter in one stage is partially set to be equal to the stirring diameter in the lower stage. It is. However, in order to make the peripheral speed at the tip portion of the uppermost stirring member 5 smaller than that of the other stirring members 5, the stirring diameter at least at the uppermost stage is set shorter than the stirring diameter in the stage one stage lower than the uppermost stage.
  • the stirring diameter in one stage is preferably set to be shorter or equal to the stirring diameter in the lower stage.
  • the stirring diameter from the bottom to the third stage is set to be equal, and thereafter, the stirring diameter is set to be sequentially shortened toward the upper stage.
  • the stirring diameter is set along the shape of the inner wall of the container 2, and the clearance C between the tip of the stirring member 5 and the inner wall of the container 2 at each stage is made substantially constant.
  • the stirring diameters in all the stages may be set to be equal, or the stirring diameter in one stage may be set to be partly larger than the stirring diameter in the lower stage.
  • the stirrer members 5 are provided in five stages of two at the same height and are displaced by 90 degrees in each stage.
  • the embodiment of the present invention is not limited to this. That is, the number of stirring members 5 and the number of stirring members 5 in each step can be set arbitrarily. In addition, when the number of stages of the stirring member 5 is only one, the one stage is the uppermost stage. Further, the displacement angle in the case of the staggered arrangement can be arbitrarily set.
  • the shape of the agitating member 5 may be circular, elliptical, polygonal, such as a quadrilateral, or other shapes, and the tip may be paddle-shaped.
  • slit-like gas jets 13 are provided on the side of the container 2 over the entire circumference of the container 2, and the entire circumference of the container 2 is covered so as to cover these gas jets 13.
  • the case where the annular flow path 14 is provided as an example has been described.
  • the embodiment of the present invention is not limited to this.
  • a plurality or a plurality of rows of gas jets 13 are arranged in the circumferential direction on the side surface of the container 2, and an annular flow path provided at a part of the outer periphery of the container 2 so as to cover at least these gas jets 13. It may be a configuration provided.
  • the gas ejection port 13 is provided on the side surface of the container 2 located near the upper surface of the bottom plate 7 .
  • the embodiment of the present invention is not limited to this.
  • it is good also as a structure which provides the gas jet nozzle 13 in the side surface of the container 2 in the intermediate position of the stirring area
  • the dispersion efficiency of the fine powder in the container 2 can be improved by raising the fine powder after pulverization above the container 2.
  • a relatively large classification can be achieved by using a plurality of relatively small classification rotors 10 in combination. Compared with the case where only one rotor 10 is used, the classification accuracy can be improved.
  • the rotating outer peripheral surface of the classifying blade 10a located at the bottom corresponds to the “lower end surface 10d of the classifier”.
  • the classifier other classifiers that do not use the classifying rotor 10 may be used.
  • a plurality of classifying rotors 10 that are used in combination are integrally configured via a product recovery pipe (or a connection pipe for product recovery) 11, and an insertion member 12 is connected to the product recovery pipe 11.
  • the plurality of classifying rotors 10 and the product recovery pipes 11 constitute a single “classifier” as a whole, and the upper end surface 4u of the stirring shaft 4 and the insertion member 12 connected to the classifier The lower end surface 12d is disposed in proximity.
  • the insertion member 12 may be supported from the container 2 using a support member without being connected to the stirring shaft 4 or the classification rotor 10.
  • the insertion member 12 has a shape in which the outer diameter becomes smaller toward the upper part, but according to the outer diameter of the stirring shaft 4 and the outer diameter of the classification rotor 10, or the rising speed of the carrier gas.
  • the outer diameter of the insertion member 12 may be changed as appropriate, for example, by increasing the outer diameter of the insertion member 12 toward the top or by making it cylindrical with the same upper and lower diameters.
  • the height of the container 2 may be lowered so that the upper end surface 4 u of the stirring shaft 4 and the lower end surface 10 d of the classification rotor 10 are arranged close to each other. It is one of the preferred embodiments of the present invention. Also by adopting such a configuration, the fine powder can be efficiently conveyed to the classification rotor 10, so that a series of processing efficiency from pulverization to classification can be improved.
  • Table 4 shows the relationship between the classification rotational speed, the average particle diameter of the recovered product powder, and the treatment capacity in this case.
  • the experimental conditions are the same as in Experiment 3 above.
  • the shape of the stirring shaft 4 is substantially cylindrical has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, for example, the shape of the stirring shaft 4 may be an inverted conical shape having a larger diameter at the top, which is one preferred embodiment of the present invention.
  • the shape of the stirring shaft 4 may be an inverted conical shape having a larger diameter at the top, which is one preferred embodiment of the present invention.
  • the embodiment of the present invention is not limited to this. That is, for example, a configuration in which the fine powder is dried simultaneously with the pulverization by heating the container 2 by circulating a heating medium heated to a predetermined temperature in the jacket 16 is also preferable implementation of the present invention.
  • a heating medium heated to a predetermined temperature in the jacket 16 is also preferable implementation of the present invention.
  • the heat medium for example, warm water, steam, oil, or the like can be used.
  • the present invention can be applied to surface treatment, spheroidization, flattening, compounding, precision mixing, drying, and other powder treatments.
  • the medium stirring type powder processing apparatus 1 includes, for example, lithium compounds such as lithium carbonate, lithium hydroxide, lithium nickelate, lithium cobaltate, and lithium manganate; sodium nitrate (sodium nitrate), sodium hydroxide, Sodium compounds such as sodium carbonate, sodium bicarbonate, sodium sulfite, sodium nitrite, sodium sulfide, sodium silicate, sodium nitrate, sodium bisulfate, sodium thiosulfate, sodium chloride; magnesium sulfate, magnesium chloride, magnesium hydroxide, magnesium oxide, carbonic acid
  • Magnesium compounds such as magnesium, magnesium acetate, magnesium nitrate, magnesium oxide, magnesium hydroxide; aluminum hydroxide, aluminum sulfate, aluminum hydroxide, polyaluminum chloride, aluminum oxide, alum, aluminum chloride
  • Aluminum compounds such as silicon nitride, aluminum nitride; silicon compounds such as silicon oxide, silicon nitride, silicon carbide, calcium silicate, magnesium si
  • Manganese compound such as manganese sulfate, manganese carbonate, manganese oxide
  • Iron compound such as iron oxide
  • Cobalt compound such as cobalt chloride, cobalt carbonate, cobalt oxide
  • Nickel compound such as nickel hydroxide, nickel oxide
  • acid Yttrium compounds such as yttrium and yttrium iron garnet
  • zirconium compounds such as zirconium hydroxide, zirconium oxide, zirconia silicate and zircon sand
  • antimony compounds such as antimony chloride, antimony oxide and antimony sulfate
  • Barium compounds such as barium, barium hydroxide, barium carbonate, barium sulfate, barium titanate
  • bismuth compounds such as bismuth oxide, bismuth carbonate, bismuth hydroxide
  • inorganic compounds such as alnico, iron, chromium, cobalt -Based, iron
  • the present invention can be suitably used for a medium stirring type powder processing apparatus for producing powders of, for example, metals, ceramics, or grains.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)

Abstract

Provided is a medium-agitating powder processing device wherein the efficiency of a series of processes from crushing of a raw material to be processed to classification and collection of crushed powder can be enhanced. The medium-agitating powder processing device (1) which comprises agitating members (5) provided to rotate freely about the vertical axis and to project radially outward from a agitating shaft (4) in a single or a plurality of stages, which agitates and crushes a raw material to be processed together with a medium (6) in a container (2) by means of the mixing members (5), and which collects crushed powder through a classification rotor (10) provided at an upper part in the container (2).  Inner wall of the container (2) has an inclined plane (21) which is displaced increasingly toward the center side as the plane extends toward the upper part, and the inclined plane (21) is formed upward from a position not higher than the lower end face of the agitating member (5) in the uppermost stage.

Description

媒体攪拌型粉体処理装置Medium stirring powder processing equipment
 本発明は、容器内で被処理原料を媒体とともに攪拌して粉砕する媒体攪拌型粉体処理装置に関する。 The present invention relates to a medium stirring type powder processing apparatus that stirs and crushes a raw material to be processed together with a medium in a container.
 撹拌軸から一段又は複数段に亘って径方向外向きに突出する、縦軸周りに回転自在に設けられた攪拌部材を備え、当該攪拌部材により容器内で被処理原料を媒体とともに攪拌して粉砕する媒体攪拌型粉砕機やボールミルが従来から知られている(例えば、以下の特許文献1~4を参照)。このような媒体攪拌型粉砕機においては、攪拌部材が縦軸周りに回転することで、容器内で媒体が攪拌される。このとき発生する媒体間の粉砕力、すなわち剪断力、衝撃力、圧縮力、磨砕力等によって被処理原料を粉砕する。 A stirrer is provided that protrudes radially outward from the stirrer shaft in one or more stages and is rotatable about the vertical axis. Conventionally, a medium stirring type pulverizer and a ball mill are known (for example, see Patent Documents 1 to 4 below). In such a medium stirring pulverizer, the medium is stirred in the container by rotating the stirring member around the vertical axis. The raw material to be treated is pulverized by a pulverizing force between the media generated at this time, that is, a shearing force, an impact force, a compressive force, a grinding force and the like.
 また、このような媒体攪拌型粉砕機において、粉砕後の被処理原料(微細粉体)をその粒子径によって選別する分級機を容器内の上部に設け、当該分級機を介して微細粉体を分級選別して回収するタイプの媒体攪拌型粉砕機も知られている。例えば、先に挙げた文献のうち特許文献1及び2に記載された媒体攪拌型粉砕機が、これに該当する。 Further, in such a medium agitating type pulverizer, a classifier for selecting the raw material to be processed (fine powder) according to the particle diameter is provided in the upper part of the container, and the fine powder is passed through the classifier. There is also known a medium stirring type pulverizer of a type that is classified and collected. For example, the medium stirring type pulverizer described in Patent Documents 1 and 2 among the documents cited above corresponds to this.
 特許文献1及び2に記載された媒体攪拌型粉砕機では、容器の底部に流動気体の吹き出し口が設けられ、容器内で粉砕された微細粉体は容器の底部から吹き出される流動気体により上昇させられて分級機へと導かれる。これにより、粉砕後の微細粉体の容器内での不要な滞留時間を減少させ、当該微細粉体どうしが凝集することを極力防止して粉砕効率を向上させることを可能としている。なお、この特許文献1及び2には、明細書中には明示の記載はないが、容器上部にその内面が上部ほど中心側に変位する傾斜面が形成された構成が、図面に表されている。 In the medium agitation type pulverizers described in Patent Documents 1 and 2, a flowing gas blowing port is provided at the bottom of the container, and the fine powder pulverized in the container rises by the flowing gas blown out from the bottom of the container. It is made to be led to the classifier. As a result, unnecessary residence time of the fine powder after pulverization in the container is reduced, and the fine powder can be prevented from aggregating as much as possible to improve the pulverization efficiency. In addition, in Patent Documents 1 and 2, although there is no explicit description in the specification, a configuration in which an inclined surface in which the inner surface of the container is displaced toward the center is formed on the upper portion of the container is illustrated in the drawings. Yes.
 また、特許文献3に記載された媒体攪拌型粉砕機では、相対回転可能に設けられた上攪拌部材(上攪拌アジテータ)及び下攪拌羽根を備え、上攪拌部材と下攪拌羽根とを互いに逆方向に異なる速度で回転させる。これにより、粉砕後の微細粉体の容器内での付着を極力防止して粉砕効率を向上させることを可能としている。なお、この特許文献3には、容器の内面を、上部ほど漸次小径となる傾斜面に形成することが記載されている。 Further, the medium agitation type pulverizer described in Patent Document 3 includes an upper agitation member (upper agitation agitator) and a lower agitation blade that are provided so as to be relatively rotatable, and the upper agitation member and the lower agitation blade are opposite to each other. Rotate at different speeds. This makes it possible to improve the grinding efficiency by preventing the fine powder after grinding from adhering in the container as much as possible. Note that Patent Document 3 describes that the inner surface of the container is formed on an inclined surface that gradually becomes smaller in diameter toward the top.
 また、特許文献4には、容器上部に、上部に向かうにしたがって小径となる傾斜面を形成することが記載されている。なお、この特許文献4に記載された媒体攪拌型粉砕機は、被処理原料がスラリーの状態で供給される、所謂湿式タイプの媒体攪拌型粉砕機となっている。 Further, Patent Document 4 describes that an inclined surface having a smaller diameter toward the upper part is formed on the upper part of the container. The medium agitation type pulverizer described in Patent Document 4 is a so-called wet type medium agitation type pulverizer in which the raw material to be treated is supplied in a slurry state.
特開2005-270780号公報JP 2005-270780 A 特開2003-265975号公報JP 2003-265975 A 特開2005-199124号公報JP 2005-199124 A 特開昭59-102452号公報JP 59-102452 A
 特許文献1及び2に記載された媒体攪拌型粉砕機では、攪拌部材の縦軸周りでの回転に伴って当該攪拌部材に掻き出され、容器内を回転することにより遠心力を付与された媒体は、容器内を縦軸周りに回転しつつ、容器内壁に衝突しては容器の内壁に沿って容器内を上昇する。その後、重力により容器の中心部側に下降して再び容器内を上昇するという運動を繰り返す。ここで、特許文献1及び2に記載された媒体攪拌型粉砕機では、複数段に亘って設けられる全ての攪拌部材(ここでは特に、最上段の攪拌部材の上端面)の高さ位置における容器の内壁が、底面に直交する垂直面となっている。このような媒体攪拌型粉砕機においては、攪拌速度を速めるほど粉砕力を向上させることができるが、攪拌速度を速めるにしたがい、媒体が垂直面に沿って大きく上昇し、上昇から下降に転じる前後において媒体が大きく浮き上がってしまう。その結果、媒体の攪拌のために投入したエネルギーが十分に粉砕のためのエネルギーに変換されずに、エネルギー損失が大きくなる。そのため、特許文献1及び2に記載された媒体攪拌型粉砕機では、所定速度以上になると、攪拌速度を速めても、容器の内壁近傍における媒体の浮き上がりの増大により、粉砕効率が低下してしまうという問題があった。 In the medium agitation type pulverizer described in Patent Documents 1 and 2, the medium is scraped to the agitation member as the agitation member rotates about the vertical axis, and is given a centrifugal force by rotating inside the container. While rotating around the vertical axis in the container, it collides with the inner wall of the container and rises in the container along the inner wall of the container. Thereafter, the movement of descending to the center of the container due to gravity and ascending again in the container is repeated. Here, in the medium agitation type pulverizers described in Patent Documents 1 and 2, the containers at the height positions of all the agitation members (in particular, the upper end surface of the uppermost agitation member) provided over a plurality of stages. The inner wall is a vertical surface orthogonal to the bottom surface. In such a medium agitation type pulverizer, the pulverizing force can be improved as the agitation speed is increased. However, as the agitation speed is increased, the medium greatly increases along the vertical plane, and before and after the increase to the decrease. In this case, the medium rises greatly. As a result, energy input for stirring the medium is not sufficiently converted to energy for pulverization, and energy loss increases. Therefore, in the medium agitation type pulverizers described in Patent Documents 1 and 2, if the agitation speed is increased above a predetermined speed, the pulverization efficiency decreases due to an increase in the lift of the medium near the inner wall of the container. There was a problem.
 この点に関しては、特許文献3に記載された媒体攪拌型粉砕機においても同様の問題がある。すなわち、特許文献3に記載された媒体攪拌型粉砕機では、下攪拌羽根により容器の内面への微細粉体の付着が低減されるものの、容器の内壁の形状は、全ての上攪拌部材(ここでは特に、最上段の上攪拌部材の上端面)の高さ位置において、底面に直交する垂直面となっている。そのため、上攪拌部材に掻き出され、容器内を回転することにより遠心力を付与された媒体は、やはり容器の内面(垂直面)に沿って大きく上昇し、上昇から下降に転じる前後において媒体が大きく浮き上がってしまう。よって、エネルギー損失が大きくなり、被処理原料の粉砕効率が低下してしまう。 In this regard, the medium agitating pulverizer described in Patent Document 3 has the same problem. That is, in the medium agitation type pulverizer described in Patent Document 3, although the adhesion of the fine powder to the inner surface of the container is reduced by the lower agitation blade, the shape of the inner wall of the container is the same as the upper agitation member (here Then, in particular, at the height position of the upper end surface of the uppermost upper stirring member, a vertical surface perpendicular to the bottom surface is formed. Therefore, the medium scraped by the upper stirring member and given centrifugal force by rotating in the container also rises greatly along the inner surface (vertical surface) of the container, and before and after the medium turns from rising to falling, It will rise greatly. Therefore, energy loss becomes large, and the pulverization efficiency of the raw material to be processed decreases.
 また、特許文献4に記載された媒体攪拌型粉砕機は、上記のとおり湿式タイプの媒体攪拌型粉砕機となっている。このような湿式タイプの媒体攪拌型粉砕機では、当該特許文献4の図面に矢印Aで示されているように、媒体及び被処理原料の容器内での挙動は乾式タイプの媒体攪拌型粉砕機とは異なる。そのため、特許文献1~3に記載された媒体攪拌型粉砕機に内在されるような、容器の内壁近傍における媒体の浮き上がりによる粉体の粉砕効率の低下の問題は、特許文献4に代表される湿式タイプの媒体攪拌型粉砕機ではほとんど生じない。ただし、被処理原料がスラリーの状態で供給されるため、乾燥した粉体を得るためには、粉砕後の微細粉体を乾燥させる工程や、乾燥後に凝集状態となっている微細粉体を解砕する工程が必要となる。そのため、乾式タイプの媒体攪拌型粉砕機と比較して、粒子径に応じた乾燥粉体を得るまでの一連の処理効率は、どうしても低くならざるを得ない。 Further, the medium agitation type pulverizer described in Patent Document 4 is a wet type medium agitation type pulverizer as described above. In such a wet type medium agitating type pulverizer, as indicated by an arrow A in the drawing of Patent Document 4, the behavior of the medium and the material to be treated in the container is a dry type medium agitating type pulverizer. Is different. For this reason, the problem of a decrease in the powder grinding efficiency due to the floating of the medium in the vicinity of the inner wall of the container, which is inherent in the medium stirring type pulverizer described in Patent Documents 1 to 3, is represented by Patent Document 4. It hardly occurs in a wet type medium stirring type pulverizer. However, since the raw material to be treated is supplied in the form of a slurry, in order to obtain a dry powder, the process of drying the fine powder after pulverization, or the fine powder that is in an agglomerated state after drying is solved. A step of crushing is required. Therefore, as compared with a dry type medium agitating pulverizer, a series of processing efficiencies until a dry powder corresponding to the particle diameter is obtained must be reduced.
 本発明は、上記の課題に鑑みてなされたものであり、攪拌部材により容器内で被処理原料を媒体とともに攪拌して粉砕すると共に、分級機を介して粉砕後の粉体を回収する媒体攪拌型粉体処理装置において、被処理原料の粉砕から粉砕後の粉体を分級して回収するまでの一連の処理効率を向上させることを目的とする。 The present invention has been made in view of the above-mentioned problems, and while stirring a material to be treated together with a medium in a container by a stirring member and pulverizing the medium, medium stirring for recovering the pulverized powder through a classifier An object of the present invention is to improve a series of processing efficiency from pulverization of a raw material to be processed to classification and collection of the pulverized powder in a mold powder processing apparatus.
 この目的を達成するための、本発明に係る撹拌軸から一段又は複数段に亘って径方向外向きに突出する、縦軸周りに回転自在に設けられた攪拌部材を備え、前記攪拌部材により容器内で被処理原料を媒体とともに攪拌して粉砕すると共に、前記容器内の上部に設けられた分級機を介して粉砕後の粉体を分級して回収する媒体攪拌型粉体処理装置の特徴構成は、前記容器の内壁が、上部ほど中心側に変位する傾斜面を有するとともに、前記傾斜面が、最上段の前記攪拌部材の下端面の高さ位置又はそれよりも下方から上方に向けて形成されている点にある。 In order to achieve this object, the present invention comprises a stirring member that protrudes radially outward from the stirring shaft according to the present invention in one or more stages and is provided so as to be rotatable about the vertical axis. A characteristic configuration of a medium stirring type powder processing apparatus that stirs and pulverizes a raw material to be processed together with a medium in a container, and classifies and collects the powder after pulverization through a classifier provided in the upper part of the container The inner wall of the container has an inclined surface that is displaced toward the center toward the upper part, and the inclined surface is formed from the height position of the lower end surface of the uppermost stirring member or from below to above. It is in the point.
 上記の特徴構成によれば、少なくとも最上段の前記攪拌部材の下端面の高さ位置における容器の内面が、上部ほど中心側に変位する傾斜面となっているので、攪拌部材により攪拌されて遠心力を付与された媒体は、最上段の攪拌部材が占める高さ領域(下端面から上端面までの高さ領域)において、容器の内壁(傾斜面)に衝突した際に斜め下向きの力を受ける。これにより、遠心力により内壁に沿って押し上げられる媒体に作用する上昇力を減少させ、容器内での媒体の過剰な浮き上がりを抑制することができる。よって、媒体の攪拌のために投入したエネルギーを粉砕のためのエネルギーとして有効に変換することができ、粉砕効率を向上させることができる。 According to the above characteristic configuration, the inner surface of the container at least at the height position of the lower end surface of the uppermost stirrer is an inclined surface that is displaced toward the center toward the upper part. In the height region (the height region from the lower end surface to the upper end surface) occupied by the uppermost stirring member, the medium to which the force is applied receives an oblique downward force when it collides with the inner wall (inclined surface) of the container. . Thereby, the ascending force acting on the medium pushed up along the inner wall by the centrifugal force can be reduced, and the excessive lifting of the medium in the container can be suppressed. Therefore, the energy input for stirring the medium can be effectively converted as the energy for pulverization, and the pulverization efficiency can be improved.
 ところで、媒体の浮き上がりが生じると、当該浮き上がった部分において、被処理原料や粉砕後の粉体の内壁への付着が生じやすくなる。この点、上記の特徴構成によれば、媒体の浮き上がりを抑制することができるので、被処理原料及び粉砕後の粉体の内壁への付着を防ぐこともできる。また、媒体の浮き上がりを抑制することで、容器の内壁近傍と容器の中心部との間で、媒体、被処理原料、粉砕後の粉体(以下「粉体・媒体」と略す)が形成する包絡面の高低差を小さくすることができる。よって、粉砕後の粉体を搬送するための気体の流速を均一化させることができ、分級機への粉体の搬送を良好に行なうことができる。したがって、被処理原料の粉砕から、分級機を介して粉砕後の粉体を回収するまでの一連の処理効率を向上させることができる。 By the way, when the medium is lifted, the material to be treated and the powder after pulverization are likely to adhere to the inner wall in the lifted portion. In this respect, according to the above-described characteristic configuration, it is possible to prevent the medium from being lifted, and thus it is possible to prevent the raw material to be processed and the powder after pulverization from adhering to the inner wall. Further, by suppressing the lifting of the medium, the medium, the raw material to be processed, and the pulverized powder (hereinafter referred to as “powder / medium”) are formed between the vicinity of the inner wall of the container and the center of the container. The height difference of the envelope surface can be reduced. Therefore, the flow rate of the gas for conveying the pulverized powder can be made uniform, and the powder can be conveyed to the classifier well. Therefore, a series of processing efficiencies from pulverization of the raw material to be processed to collection of the pulverized powder through the classifier can be improved.
 ここで、前記傾斜面が、前記容器の底部から形成されている構成とすると好適である。 Here, it is preferable that the inclined surface is formed from the bottom of the container.
 この構成によれば、多くの攪拌部材が占める高さ領域において、媒体の上昇力を確実に減少させることができる。よって、容器内での媒体の過剰な浮き上がりをより一層確実に抑制することができる。したがって、粉体の処理効率をより一層向上させることができる。 According to this configuration, the lifting force of the medium can be reliably reduced in the height region occupied by many stirring members. Therefore, excessive lifting of the medium in the container can be more reliably suppressed. Therefore, the powder processing efficiency can be further improved.
 また、前記攪拌部材は、前記撹拌軸に対して複数段に亘って設けられ、前記攪拌軸の軸芯からの、最上段における前記攪拌部材の先端部までの長さが、その一段下の段における前記攪拌部材の先端部までの長さよりも短く設定されている構成とすると好適である。 Further, the stirring member is provided in a plurality of stages with respect to the stirring shaft, and the length from the axial center of the stirring shaft to the tip of the stirring member at the uppermost stage is a stage one step below It is preferable that the length is set shorter than the length to the tip of the stirring member.
 この構成によれば、攪拌部材を一定の角速度で回転させたとき、最上段の攪拌部材の先端部における周速度を、当該最上段の一段下の段の攪拌部材の先端部における周速度よりも小さくすることができる。よって、最上段の攪拌部材により媒体に付与する遠心力を小さくすることができる。その結果、容器内での上昇力を小さくして、媒体の浮き上がりを抑制することができる。 According to this configuration, when the stirring member is rotated at a constant angular velocity, the peripheral speed at the tip of the uppermost stirrer is greater than the peripheral speed at the tip of the stirrer of the lowermost stage. Can be small. Therefore, the centrifugal force applied to the medium by the uppermost stirring member can be reduced. As a result, the ascending force in the container can be reduced to prevent the medium from rising.
 また、前記攪拌軸の上端面と前記分級機の下端面との間に介挿部材を備えた構成とすると好適である。 Further, it is preferable that an interposing member is provided between the upper end surface of the stirring shaft and the lower end surface of the classifier.
 この構成によれば、粉砕後の粉体を分級機へ搬送するための気体を、介挿部材の周囲で略一定の速度を保ったまま上昇させることができる。よって、粉砕後の粉体を効率良く分級機へ搬送することができるので、粉体の粉砕から分級までの一連の処理効率をより一層向上させることができる。 According to this configuration, the gas for conveying the pulverized powder to the classifier can be raised around the insertion member while maintaining a substantially constant speed. Therefore, since the pulverized powder can be efficiently conveyed to the classifier, a series of processing efficiency from pulverization to classification can be further improved.
 また、前記容器の側面に周方向に沿って設けられ、径方向内向きに気体を噴出する気体噴出口を備えた構成とすると好適である。 Further, it is preferable to provide a gas outlet that is provided along the circumferential direction on the side surface of the container and jets gas inward in the radial direction.
 この構成によれば、気体噴出口から噴出される気体により、容器内の粉体・媒体が攪拌される領域(攪拌領域)における分散力を高めることで、媒体及び被処理原料中に混在する粉砕後の粉体を、攪拌領域から抜き出して容器の上方に搬送させることができる。よって、粉砕処理後の粉体の攪拌領域における不要な滞留を減らすことができ、被処理原料の過粉砕を防止して、容器内での一連の処理効率を向上させることができる。 According to this configuration, pulverization mixed in the medium and the raw material to be processed by increasing the dispersion force in the region (stirring region) where the powder / medium in the container is agitated by the gas ejected from the gas ejection port. The latter powder can be extracted from the stirring area and conveyed above the container. Therefore, unnecessary stagnation in the stirring region of the powder after the pulverization treatment can be reduced, and the raw material to be processed can be prevented from being excessively pulverized, and the series of processing efficiency in the container can be improved.
本実施形態に係る媒体攪拌型粉体処理装置の構造を示す図である。It is a figure which shows the structure of the medium stirring type powder processing apparatus which concerns on this embodiment. 容器の内壁近傍における媒体に作用する力を説明するための説明図である。It is explanatory drawing for demonstrating the force which acts on the medium in the inner wall vicinity of a container. 容器内での媒体等の包絡面の状態を示す模式図である。It is a schematic diagram which shows the state of envelope surfaces, such as a medium, in a container. 傾斜面の傾斜角度と粉砕効率との関係を示すグラフである。It is a graph which shows the relationship between the inclination-angle of an inclined surface, and a grinding | pulverization efficiency. 別実施形態に係る媒体攪拌型粉体処理装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the medium stirring type powder processing apparatus which concerns on another embodiment. 別実施形態に係る媒体攪拌型粉体処理装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the medium stirring type powder processing apparatus which concerns on another embodiment. 別実施形態に係る媒体攪拌型粉体処理装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the medium stirring type powder processing apparatus which concerns on another embodiment. 別実施形態に係る媒体攪拌型粉体処理装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the medium stirring type powder processing apparatus which concerns on another embodiment.
 次に、本発明に係る媒体攪拌型粉体処理装置の実施形態について図面を参照して説明する。本実施形態に係る媒体攪拌型粉体処理装置1は、攪拌部材5により容器2内で粉砕原料を媒体6とともに攪拌して粉砕すると共に、容器2内の上部に設けられた分級ロータ10を介して粉砕後の微細粉体を回収するように構成されている。図1は、本実施形態に係る媒体攪拌型粉体処理装置1の構造を示す図である。図2は、容器2の内壁近傍における媒体6に作用する力を説明するための説明図であり、図3は、容器2内での包絡面24の状態を示す模式図である。 Next, an embodiment of a medium stirring type powder processing apparatus according to the present invention will be described with reference to the drawings. The medium stirring type powder processing apparatus 1 according to the present embodiment stirs and pulverizes the pulverized raw material together with the medium 6 in the container 2 by the stirring member 5 and through the classification rotor 10 provided in the upper part of the container 2. Thus, the fine powder after pulverization is collected. FIG. 1 is a diagram showing a structure of a medium stirring type powder processing apparatus 1 according to the present embodiment. FIG. 2 is an explanatory diagram for explaining the force acting on the medium 6 in the vicinity of the inner wall of the container 2, and FIG. 3 is a schematic diagram showing the state of the envelope surface 24 in the container 2.
 本実施形態に係る媒体攪拌型粉体処理装置1は、図1に示すように、容器2内に、攪拌部材3と媒体6と底板7と分級機としての分級ロータ10とを備えている。また、容器2の側面に設けられた気体噴出口13と、容器2の外周に設けられたジャケット16と気体流入口17と、を備えている。容器2の上部には原料供給口8が設けられ、原料供給口8に連設されたスクリューフィーダ9から原料が投入される。容器2は、その内壁に上部ほど中心側に変位する傾斜面21を有して構成されている。 The medium stirring type powder processing apparatus 1 according to the present embodiment includes a stirring member 3, a medium 6, a bottom plate 7, and a classification rotor 10 as a classifier in a container 2, as shown in FIG. In addition, a gas outlet 13 provided on the side surface of the container 2, a jacket 16 provided on the outer periphery of the container 2, and a gas inlet 17 are provided. A raw material supply port 8 is provided in the upper part of the container 2, and the raw material is supplied from a screw feeder 9 connected to the raw material supply port 8. The container 2 has an inclined surface 21 that is displaced toward the center toward the upper part on the inner wall thereof.
 本実施形態においては、攪拌部材5が、略円柱状の攪拌軸4から複数段に亘って径方向外向きに複数突出している。すなわち、攪拌部材5は、容器2内で縦軸(回転軸芯Z)周りに回転自在に設けられており、縦軸(回転軸芯Z)周りに回転することにより、被処理原料としての粉砕原料を媒体6とともに攪拌して粉砕する。ここで、本実施形態においては、一の段における回転軸芯Zから攪拌部材5の先端部までの長さ(以下では、「攪拌径」と称する場合がある)が、その一段下の段における攪拌部材5よりもそれぞれ短くなるように設定されている。つまり、攪拌部材5は、上段に配置されたものほど、攪拌径が順次短くなるように設定されている。そして、本実施形態においては、各段における攪拌部材5の先端部と、後述する容器2の内壁(具体的には傾斜面21)との間のクリアランスCが一定とされている。クリアランスCは、媒体6が攪拌部材5と容器2の内壁との間に挟み込まれることのないように、媒体6の直径に対して4倍以上又は1/3以下とするのが好ましい。なお「クリアランスCが一定」とは、各段におけるクリアランスCが略等しいことを意味し、厳密に等しいことを要求される概念ではない。よって、磨耗等によりクリアランスCが変動したとしても、ばらつきの程度が媒体6の直径に対して、例えば1/3以下程度であれば、ここでいう「クリアランスCが一定」に含まれる。なお、図示の例では、攪拌部材5をそれぞれ同じ高さに2本ずつ5段に設け、各段順次90度変位させた千鳥配列とされている。攪拌軸4は駆動モーター(図示は省略する)の出力部に連結され、その駆動に基づいて攪拌軸4及び攪拌部材5が回転する。 In this embodiment, a plurality of stirring members 5 protrude radially outward from the substantially cylindrical stirring shaft 4 in a plurality of stages. That is, the stirring member 5 is rotatably provided around the vertical axis (rotation axis Z) in the container 2, and is pulverized as a raw material to be treated by rotating around the vertical axis (rotation axis Z). The raw material is stirred with the medium 6 and pulverized. Here, in the present embodiment, the length from the rotation axis Z in one stage to the tip of the stirring member 5 (hereinafter, sometimes referred to as “stirring diameter”) is in the lower stage. It is set to be shorter than each of the stirring members 5. That is, the stirrer 5 is set so that the stirrer diameter is sequentially shortened as the stirrer 5 is arranged in the upper stage. And in this embodiment, the clearance C between the front-end | tip part of the stirring member 5 in each step | paragraph and the inner wall (specifically inclined surface 21) of the container 2 mentioned later is made constant. The clearance C is preferably 4 times or more or 1/3 or less of the diameter of the medium 6 so that the medium 6 is not sandwiched between the stirring member 5 and the inner wall of the container 2. Note that “the clearance C is constant” means that the clearance C in each stage is substantially equal, and is not a concept that is required to be strictly equal. Therefore, even if the clearance C fluctuates due to wear or the like, if the degree of variation is, for example, about 1/3 or less of the diameter of the medium 6, “clearance C is constant” here is included. In the example shown in the figure, two stirrers 5 are provided at the same height in five stages, and are arranged in a staggered arrangement in which each stage is sequentially displaced by 90 degrees. The stirring shaft 4 is connected to an output portion of a drive motor (not shown), and the stirring shaft 4 and the stirring member 5 rotate based on the drive.
 媒体6の材質は粉砕すべき原料の種類に応じて選択され、例えば、ステンレス等の金属製のものやセラミックス製のものが適宜使用される。媒体6どうしの間に発生する衝撃力を大きくするためには、密度の大きな材質のものを用いるのが好ましい。また媒体6の大きさは取り出すべき微細粉体の粒径に応じて選択される。ただし一般的には、直径が小さくなると媒体6どうしの間に発生する衝撃力が小さくなり、逆に直径が大きくなると接触点が少なくなって衝突の機会が減り粉砕しにくくなるため、両者を勘案して直径2~6mmの媒体6を使用するのが好ましい。なお、媒体6が、使用に伴い経時摩耗により少しずつ直径が小さくなっていくことを考慮すれば、直径の初期設定値は、5~6mm程度としておくのが最適である。 The material of the medium 6 is selected according to the type of raw material to be pulverized, and for example, a material made of metal such as stainless steel or a material made of ceramics is appropriately used. In order to increase the impact force generated between the media 6, it is preferable to use a material having a high density. The size of the medium 6 is selected according to the particle size of the fine powder to be taken out. However, generally, when the diameter is reduced, the impact force generated between the media 6 is reduced, and conversely, when the diameter is increased, the number of contact points is reduced and the chance of collision is reduced, making it difficult to pulverize. Therefore, it is preferable to use a medium 6 having a diameter of 2 to 6 mm. In consideration of the fact that the diameter of the medium 6 gradually decreases due to wear with use, it is optimal to set the initial value of the diameter to about 5 to 6 mm.
 底板7は、容器2内の底部に配置され、中心部から内壁に至る領域をカバーする円盤状の部材である。底板7は容器2内を粉体処理室P及び気体室Gの2つの領域に分けるものである。粉体処理室Pは、容器2内における底板7から分級ロータ10に亘る空間であり、攪拌部材5により粉砕原料を媒体6とともに攪拌して粉砕を行うための空間である。また、気体室Gは、流動気体供給路15aから供給される流動気体を一時的に貯留する空間である。ここで、流動気体として、通常は空気を用いる。ただし、原料が酸素に対して不安定な物質である場合等には、窒素、ヘリウム、アルゴン等の不活性ガスを用いても良い。また、流動気体を冷却、加熱しても良く、加湿ガスを用いても良い。或いは、フィルタ等を通してから導入させても良い。底板7には気体が通過可能な透孔7aが設けられている。底板7としては、多孔板、例えばスリット状の透孔がある板、パンチングメタル、多孔質板等を用いることができる。そして、底板7に設けられた透孔7aを通過して気体室Gから粉体処理室Pへと流動気体が吹き出され、粉体処理室Pで粉砕された微細粉体は、流動気体により上昇させられて分級ロータ10へと導かれる。ここで、気体室Gから粉体処理室Pへの流動気体の流入を多く確保するためには、透孔7aはできるだけ多く、かつ大きくして透孔7aの総面積が大きくなるようにするのが好ましい。しかし、少なくとも粉体処理室Pの内部の媒体6が落下しない程度の大きさに止めておく。 The bottom plate 7 is a disk-shaped member that is disposed at the bottom of the container 2 and covers an area from the center to the inner wall. The bottom plate 7 divides the inside of the container 2 into two regions, a powder processing chamber P and a gas chamber G. The powder processing chamber P is a space from the bottom plate 7 to the classification rotor 10 in the container 2, and is a space for stirring the pulverized raw material together with the medium 6 by the stirring member 5 to perform pulverization. The gas chamber G is a space for temporarily storing the flowing gas supplied from the flowing gas supply path 15a. Here, air is usually used as the flowing gas. However, when the raw material is a substance unstable to oxygen, an inert gas such as nitrogen, helium, or argon may be used. Further, the flowing gas may be cooled and heated, or a humidified gas may be used. Alternatively, it may be introduced through a filter or the like. The bottom plate 7 is provided with a through hole 7a through which gas can pass. As the bottom plate 7, a porous plate, for example, a plate having slit-like through holes, a punching metal, a porous plate, or the like can be used. Then, the flowing gas is blown from the gas chamber G to the powder processing chamber P through the through holes 7a provided in the bottom plate 7, and the fine powder pulverized in the powder processing chamber P is raised by the flowing gas. Is guided to the classification rotor 10. Here, in order to secure a large amount of flowing gas from the gas chamber G to the powder processing chamber P, the number of the through holes 7a is as large as possible and the total area of the through holes 7a is increased. Is preferred. However, the size is kept at least so that the medium 6 in the powder processing chamber P does not fall.
 容器2の上部側面に、原料供給口8が設けられている。原料供給口8には原料供給手段としてのスクリューフィーダ9が連設され、スクリューフィーダ9により粉砕原料が容器2内へ供給される。このようなスクリューフィーダ9は、原料が固体、特に粉状の場合であって、原料を一定速度で連続的に投入する場合に好適に用いられる。なお、スクリューフィーダに代えて、ダブルダンパーやロータリーバルブ等を用いても良い。また、スクリューフィーダ等の原料供給手段を原料供給口8に直接取り付けずに、空気輸送管を介して原料を供給することもできる。なお、図示していないが、媒体攪拌型粉体処理装置1全体をロードセル等の重量計測手段により重量管理すれば、連続処理を行ったときでも機内滞留量が一定となるように、原料の供給量を調節することができる。 A raw material supply port 8 is provided on the upper side surface of the container 2. A screw feeder 9 as a raw material supply means is connected to the raw material supply port 8, and the pulverized raw material is supplied into the container 2 by the screw feeder 9. Such a screw feeder 9 is suitably used when the raw material is solid, particularly powdery, and the raw material is continuously charged at a constant speed. Note that a double damper, a rotary valve, or the like may be used instead of the screw feeder. Further, the raw material supply means such as a screw feeder can be directly supplied to the raw material supply port 8 without supplying the raw material via the air transport pipe. Although not shown in the drawings, if the weight of the medium stirring type powder processing apparatus 1 is controlled by weight measuring means such as a load cell, the raw material supply is performed so that the amount of residence in the apparatus is constant even when continuous processing is performed. The amount can be adjusted.
 本実施形態においては、容器2内は底板7を挟んで気体室Gと粉体処理室Pに区画され、底板7の上面近傍には気体噴出口13、容器2内の上方には回転軸(図示は省略する)周りに回転する分級ロータ10が設けられている。気体室Gからは底板7に設けられた透孔7aを通過して流動気体が粉体処理室Pへ流入する。気体噴出口13からは噴出気体が粉体処理室Pへ噴出される。粉体処理室P内の空間は媒体6が攪拌される攪拌領域Rと、その上部に位置する分級領域Qにより構成される。粉体処理室P内において、攪拌領域Rで攪拌部材5により媒体6とともに攪拌され粉砕された微細粉体は、これを搬送するための搬送気体により分級領域Qに上昇させられる。ここで、「搬送気体」とは、流動気体及び噴出気体の一方又は双方をいう。容器2内部の中央上部には縦軸周りに回転する分級ロータ10が設けられており、上昇した微細粉体は分級ロータ10で分級され、製品粉体として回収される。分級ロータ10は、放射状に設けられた複数の分級羽根10aを有する。そして、分級ロータ10が回転することにより発生する径方向の遠心力と、分級ロータ10内への気体の流入とのバランスにより微細粉体を分級する。分級ロータ10の回転数は、回収する製品粉体の粒子径に応じて設定される。本実施形態においては、分級ロータ10により、本発明における「分級機」が構成されている。 In the present embodiment, the inside of the container 2 is divided into a gas chamber G and a powder processing chamber P with the bottom plate 7 interposed therebetween, a gas outlet 13 near the upper surface of the bottom plate 7, and a rotating shaft ( A classifying rotor 10 that rotates around is provided. From the gas chamber G, the flowing gas flows into the powder processing chamber P through the through holes 7 a provided in the bottom plate 7. From the gas ejection port 13, the ejection gas is ejected into the powder processing chamber P. The space in the powder processing chamber P is constituted by an agitation region R where the medium 6 is agitated and a classification region Q located above the agitation region R. In the powder processing chamber P, the fine powder stirred and pulverized together with the medium 6 by the stirring member 5 in the stirring region R is raised to the classification region Q by the transport gas for transporting it. Here, “carrier gas” refers to one or both of a flowing gas and a jet gas. A classification rotor 10 that rotates around the vertical axis is provided at the center upper portion inside the container 2, and the raised fine powder is classified by the classification rotor 10 and collected as product powder. The classification rotor 10 has a plurality of classification blades 10a provided radially. The fine powder is classified based on the balance between the radial centrifugal force generated by the rotation of the classification rotor 10 and the inflow of gas into the classification rotor 10. The rotation speed of the classification rotor 10 is set according to the particle diameter of the product powder to be collected. In the present embodiment, the classifying rotor 10 constitutes a “classifier” in the present invention.
 容器2は、その内壁に上部ほど中心側に変位する傾斜面21を有する。本実施形態においては、傾斜面21は容器2の底部から形成されている。本例では、傾斜面21は底板7の位置から形成されている。これにより、全ての攪拌部材5の高さ位置における容器2の内壁が傾斜面21とされている。また、本実施形態においては、傾斜面21は傾きが一定とされ、容器全体としては先端を切り落とした円錐状の形状とされている。このときの傾斜角度については、鉛直方向に対して3度以上35度以下であることが好ましく、6度以上35度以下であればより好ましい。6度以上25度以下であればより一層好ましく、最適な傾斜角度は11度である。 The container 2 has an inclined surface 21 that is displaced toward the center on the inner wall thereof. In the present embodiment, the inclined surface 21 is formed from the bottom of the container 2. In this example, the inclined surface 21 is formed from the position of the bottom plate 7. Thereby, the inner wall of the container 2 in the height position of all the stirring members 5 is the inclined surface 21. In the present embodiment, the inclined surface 21 has a constant inclination, and the container as a whole has a conical shape with the tip cut off. The inclination angle at this time is preferably 3 degrees or more and 35 degrees or less with respect to the vertical direction, and more preferably 6 degrees or more and 35 degrees or less. It is even more preferable if it is 6 degrees or more and 25 degrees or less, and the optimum inclination angle is 11 degrees.
 ここで、粉体処理室P内での媒体6の挙動について説明する。攪拌部材5が縦軸(回転軸芯Z)周りに回転することにより、媒体6には遠心力F(図2を参照)が作用する。遠心力Fを付与された媒体6は、容器2の内壁に衝突しては他の媒体6に押し上げられて容器2の内壁に沿って容器2内を上昇する。その後、重力により容器2の中心部側に下降して、再び容器2内を上昇するという運動を繰り返す(図1の二点鎖線矢印を参照)。このとき、容器2の内壁に上部ほど中心側に変位する傾斜面21が形成されているので、図2に示すように、媒体6が容器2の内壁に衝突した際には、媒体6は傾斜面21から、遠心力Fの傾斜面21に垂直な成分と反対方向(斜め下向き)の抗力Nを受けることになる。その結果、媒体6は抗力Nの鉛直下向きの鉛直成分Nyを受けて、当該内壁近傍で他の媒体6に押し上げられる上昇力が減少させられ、容器2内での媒体6の過剰な浮き上がりが抑制される。特に、本実施形態においては、底板7の位置から傾斜面21が形成されており、底板7より上部のすべての位置で媒体6の上昇力が減少させられるので、媒体6の浮き上がりが効果的に抑制される。 Here, the behavior of the medium 6 in the powder processing chamber P will be described. Centrifugal force F (see FIG. 2) acts on the medium 6 as the stirring member 5 rotates about the vertical axis (rotation axis Z). The medium 6 to which the centrifugal force F is applied collides with the inner wall of the container 2, is pushed up by another medium 6, and rises in the container 2 along the inner wall of the container 2. Thereafter, the movement of lowering to the center of the container 2 due to gravity and then rising again in the container 2 is repeated (see the two-dot chain arrow in FIG. 1). At this time, since an inclined surface 21 is formed on the inner wall of the container 2 so as to be displaced toward the center as it goes upward, the medium 6 is inclined when the medium 6 collides with the inner wall of the container 2 as shown in FIG. The surface 21 receives a drag force N in a direction opposite to the component perpendicular to the inclined surface 21 of the centrifugal force F (diagonally downward). As a result, the medium 6 receives the vertically downward vertical component Ny of the drag N, and the upward force pushed up by the other medium 6 in the vicinity of the inner wall is reduced, so that excessive lifting of the medium 6 in the container 2 is suppressed. Is done. In particular, in the present embodiment, the inclined surface 21 is formed from the position of the bottom plate 7, and the lifting force of the medium 6 is reduced at all positions above the bottom plate 7, so that the lifting of the medium 6 is effectively performed. It is suppressed.
 また、本実施形態においては、上述のとおり、攪拌部材5は、上段に配置されたものほど回転軸芯Zからその先端部までの長さ(攪拌径)が順次短くなるように、それぞれの攪拌部材5の長さが設定されている。そのため、攪拌軸4が一定の角速度で回転したとき、それぞれの攪拌部材5の先端部における周速度は、上段に配置されたものほど小さくなる。よって、媒体6の攪拌領域Rにおいては、上部ほど攪拌部材5により媒体6に付与される遠心力F(図2を参照)が小さくなる。よって、この点からも容器2内での媒体6の浮き上がりが抑制される。 Further, in the present embodiment, as described above, each of the stirring members 5 is stirred so that the length (stirring diameter) from the rotation axis Z to the tip end portion thereof becomes shorter as it is arranged in the upper stage. The length of the member 5 is set. Therefore, when the stirring shaft 4 rotates at a constant angular velocity, the peripheral speed at the tip of each stirring member 5 becomes smaller as it is arranged in the upper stage. Therefore, in the stirring region R of the medium 6, the centrifugal force F (see FIG. 2) applied to the medium 6 by the stirring member 5 becomes smaller toward the upper part. Therefore, the floating of the medium 6 in the container 2 is also suppressed from this point.
 このように、容器2の内壁近傍における媒体6の浮き上がりを抑制することにより、媒体6の攪拌のために投入したエネルギーを粉砕のためのエネルギーとして有効に利用することができる。よって、容器2を直胴に形成した従来型の媒体攪拌型粉体処理装置と比較して粉砕効率を向上させることができる。 Thus, by suppressing the floating of the medium 6 in the vicinity of the inner wall of the container 2, the energy input for stirring the medium 6 can be effectively used as the energy for pulverization. Therefore, the pulverization efficiency can be improved as compared with a conventional medium stirring type powder processing apparatus in which the container 2 is formed in a straight body.
 ところで、媒体6と原料粉体とが撹拌部材5によって撹拌される攪拌領域Rにおいて、同領域内を通過する搬送気体は、粉体・媒体による通気抵抗の少ない部位から抜けやすい。そのため、包絡面24の高低差が大きくなると、包絡面24の高さが低くなる容器2の中心部から搬送気体が抜けやすく、逆に包絡面24の高さが高くなる容器2の内壁近傍からは搬送気体が抜けにくくなり、攪拌領域Rにおける搬送気体の通気が場所により不均一となってしまう。その結果、微細粉体を均一に分級領域Qへ搬送することが困難となってしまい、例えば、所望の粒子径よりも大きな粉体が搬送される一方、所望の粒子径になっているにもかかわらず搬送されない粉体が攪拌領域Rに留まることで必要以上に微細化される、いわゆる過粉砕が生じる。この点、本実施形態に係る媒体攪拌型粉体処理装置1によれば、媒体6の過剰な浮き上がりを抑制することにより、粉体・媒体が形成する包絡面24の高低差を小さくすることができる(図3を参照、二点破線は容器2を直胴に形成した場合の状態を示す)ので、容器2の内壁近傍からと容器2の中心部からとの間における搬送気体の抜けやすさの差を小さくすることができる。その結果、攪拌領域Rにおける搬送気体の通気をより均一化することが可能となり、搬送気体により微細粉体をより均一に分級領域Qへ搬送することが可能となる。よって、従来型の媒体攪拌型粉体処理装置に比べて、攪拌領域Rにおける微細粉体の滞留を抑制して過粉砕の発生を抑制することで、粉砕から分級までの一連の処理効率を向上させることができる。 By the way, in the stirring region R where the medium 6 and the raw material powder are stirred by the stirring member 5, the carrier gas passing through the same region is likely to escape from the portion where the ventilation resistance by the powder / medium is low. Therefore, when the height difference of the envelope surface 24 increases, the carrier gas easily escapes from the center portion of the container 2 where the height of the envelope surface 24 decreases, and conversely from the vicinity of the inner wall of the container 2 where the height of the envelope surface 24 increases. The carrier gas is difficult to escape, and the ventilation of the carrier gas in the stirring region R becomes uneven depending on the location. As a result, it becomes difficult to transport the fine powder uniformly to the classification region Q. For example, a powder larger than the desired particle diameter is conveyed, while the desired particle diameter is also achieved. Regardless of the fact that the powder that is not transported remains in the stirring region R, the so-called over-pulverization that is unnecessarily refined occurs. In this regard, according to the medium stirring type powder processing apparatus 1 according to the present embodiment, the height difference of the envelope surface 24 formed by the powder / medium can be reduced by suppressing excessive lifting of the medium 6. (Refer to FIG. 3, the two-dot broken line indicates a state in which the container 2 is formed in a straight body.) Therefore, it is easy for the carrier gas to escape between the vicinity of the inner wall of the container 2 and the center of the container 2. Can be reduced. As a result, it is possible to make the air flow of the carrier gas in the stirring region R more uniform, and the fine powder can be more uniformly conveyed to the classification region Q by the carrier gas. Therefore, compared to the conventional medium agitation type powder processing equipment, the series of processing efficiency from pulverization to classification is improved by suppressing the occurrence of excessive pulverization by suppressing the retention of fine powder in the agitation region R. Can be made.
 気体噴出口13は、容器2の側面に、径方向内向きに気体を噴出可能に周方向に沿って設けられている。本実施形態においては、底板7の上面近傍に位置する容器2の側面に、スリット状の気体噴出口13が容器2の全周に亘って設けられている。これ以外にも、例えば複数の気体噴出口13を周方向に沿って略均等に分散配置する構成としたり、多孔質部材等を付設して容器2の全周に亘って気体噴出口13を設ける構成としたりすることにより、複数の位置から径方向内向きに気体を略均一に噴出可能な構成としてあっても良い。噴出させる気体(噴出気体)としては、流動気体と同種の気体とすることができ、先に説明したように、空気、或いは、窒素等の不活性ガスとすることができる。また、噴出気体の温度や湿度等を制御するほか、フィルタ等を通してから導入させても良い。本実施形態では、気体供給路15から供給される同一の気体が、流動気体供給路15aと噴出気体供給路15bの二つの供給路に分岐された後、それぞれ底板7の透孔7a及び気体噴出口13から容器2(粉体処理室P)内に噴出して流入する。気体噴出口13からの噴出気体は、攪拌領域Rにおいて、媒体6及び粉砕原料中に混在する粉砕後の微細粉体を、攪拌領域Rから抜き出して容器2の上方に搬送させる役割を果たす。よって、容器2内での微細粉体の攪拌領域Rにおける不要な滞留を減らすことができる。これにより、微細粉体の過粉砕を防止して、粉砕から分級までの一連の処理効率を向上させることができる。また、本実施形態においては、気体噴出口13が底板7の上面近傍に設けられているので、容器2の内壁と底板7との隅部への微細粉体の滞留や付着を防止することもできる。 The gas ejection port 13 is provided on the side surface of the container 2 along the circumferential direction so that gas can be ejected radially inward. In the present embodiment, a slit-like gas ejection port 13 is provided over the entire circumference of the container 2 on the side surface of the container 2 located in the vicinity of the upper surface of the bottom plate 7. In addition to this, for example, a plurality of gas jets 13 are arranged in a substantially uniform manner along the circumferential direction, or a porous member or the like is provided to provide the gas jets 13 over the entire circumference of the container 2. By adopting a configuration, the gas may be ejected substantially uniformly radially inward from a plurality of positions. The gas to be ejected (ejection gas) can be the same type of gas as the flowing gas, and can be air or an inert gas such as nitrogen as described above. In addition to controlling the temperature and humidity of the jet gas, it may be introduced through a filter or the like. In the present embodiment, the same gas supplied from the gas supply passage 15 is branched into two supply passages, that is, a flowing gas supply passage 15a and an ejection gas supply passage 15b. It flows out from the outlet 13 into the container 2 (powder processing chamber P). The gas ejected from the gas ejection port 13 plays a role of extracting the fine powder after pulverization mixed in the medium 6 and the pulverized raw material from the agitation region R and transporting it above the container 2 in the agitation region R. Therefore, the unnecessary residence in the stirring area | region R of the fine powder in the container 2 can be reduced. Thereby, it is possible to prevent the fine powder from being excessively pulverized and improve a series of processing efficiency from pulverization to classification. Further, in the present embodiment, since the gas ejection port 13 is provided in the vicinity of the upper surface of the bottom plate 7, it is possible to prevent stagnation and adhesion of fine powder at the corners of the inner wall of the container 2 and the bottom plate 7. it can.
 容器2の外周に、気体噴出口13を覆うように環状流路14が設けられている。環状流路14は、気体噴出口13に噴出気体を供給するための噴出気体供給路15bと、気体噴出口13との間に介装されている。このような環状流路14の内部に形成される空間は、噴出気体供給路15bから供給され、気体噴出口13を介して容器2内へ噴出される噴出気体を一時的に貯留する空間としての役割を果たす。噴出気体供給路15bから供給された噴出気体は、環状流路14の中で圧力が均等化されてから、気体噴出口13に供給される。これにより、気体噴出口13から略均一に噴出気体を噴出させることができる。その結果、容器2内で微細粉体を均一に分散させることができ、一連の処理効率をより一層向上させることができる。 An annular channel 14 is provided on the outer periphery of the container 2 so as to cover the gas ejection port 13. The annular flow channel 14 is interposed between the gas ejection port 13 and the gas ejection channel 15 b for supplying the gas ejection gas to the gas ejection port 13. The space formed inside the annular flow path 14 is a space for temporarily storing the jet gas supplied from the jet gas supply path 15 b and jetted into the container 2 through the gas jet port 13. Play a role. The jet gas supplied from the jet gas supply channel 15 b is supplied to the gas jet port 13 after the pressure is equalized in the annular channel 14. Thereby, a jet gas can be jetted from the gas jet port 13 substantially uniformly. As a result, the fine powder can be uniformly dispersed in the container 2, and the series of processing efficiency can be further improved.
 攪拌部材5の上方における容器2の側面には、容器2の側面から内向きに気体を流入させる気体流入口17が設けられている。気体流入口17は、例えば容器2の側面の全周から気体が上方に向けて流入するように設けられたスリット状とすることができる。また、気体が旋回しながら流入するように、容器2に対する接線方向に気体流入口17を設ける構成や、容器2の全周に多数の羽根を接線方向に傾斜させて設ける構成としても良い。流入させる気体(流入気体)としては、流動気体や噴出気体と同種の気体とすることができ、先に説明したように、空気、或いは、窒素等の不活性ガスとすることができる。また、流入気体の温度や湿度等を調節するほか、フィルタ等を通してから導入させてもよい。気体流入口17からの流入気体は、容器2の内壁への微細粉体の付着を防止すると同時に、分級用の分散気体としての役割も果たす。 A gas inlet 17 is provided on the side surface of the container 2 above the stirring member 5 to allow gas to flow inwardly from the side surface of the container 2. The gas inflow port 17 can be formed in a slit shape provided so that gas flows upward from the entire circumference of the side surface of the container 2, for example. Moreover, it is good also as a structure which provides the gas inflow port 17 in the tangential direction with respect to the container 2 so that gas may flow in swirling, or the structure which inclines in a tangential direction many blade | wings in the perimeter of the container 2. The inflowing gas (inflowing gas) can be the same type of gas as the flowing gas or the jetting gas, and can be an air or an inert gas such as nitrogen as described above. In addition to adjusting the temperature and humidity of the inflowing gas, it may be introduced through a filter or the like. The inflow gas from the gas inlet 17 prevents the fine powder from adhering to the inner wall of the container 2 and at the same time serves as a dispersion gas for classification.
 ジャケット16は容器2の外周に設けられており、容器2の温度を任意の温度に調節する温度調節手段として機能する。本実施形態においては、ジャケット16内に冷却水を流入させて容器2を冷却している。媒体攪拌型粉体処理装置1の運転中においては、気体噴出口13等から冷風を導入して容器2内の温度を比較的低温に維持したとしても、容器2の内壁の温度が上昇して、内壁に付着した粉砕原料及び微細粉体が熱劣化を起こしてしまう場合がある。そこで、本実施形態のようにジャケット16内に冷却水を流入させて冷却手段として用いれば、容器2の内壁の温度が上昇することを抑制できるので、例えば、熱劣化や変質を生じやすい原料の粉砕にも、本実施形態に係る媒体攪拌型粉体処理装置1を有効に適用することができる。 The jacket 16 is provided on the outer periphery of the container 2 and functions as a temperature adjusting means for adjusting the temperature of the container 2 to an arbitrary temperature. In this embodiment, the container 2 is cooled by flowing cooling water into the jacket 16. During the operation of the medium stirring type powder processing apparatus 1, even if cold air is introduced from the gas jet 13 or the like and the temperature in the container 2 is kept relatively low, the temperature of the inner wall of the container 2 increases. In some cases, the pulverized raw material and the fine powder adhering to the inner wall cause thermal deterioration. Therefore, if the cooling water is allowed to flow into the jacket 16 and used as a cooling means as in the present embodiment, the temperature of the inner wall of the container 2 can be prevented from rising. The medium stirring type powder processing apparatus 1 according to the present embodiment can also be effectively applied to the pulverization.
 また、本実施形態においては、攪拌軸4の上端面4uと分級ロータ10の下端面10dとの間に介挿部材12が設けられている。本実施形態においては、介挿部材12は、攪拌軸4の上端面4uの形状に略一致する下端面を有する略円柱状の部材であり、攪拌軸4に連結されている。攪拌軸4に連結される介挿部材12の上端面12uと分級ロータ10の下端面10dとは近接配置されている。これにより、攪拌軸4の上端面4uと分級ロータ10の下端面10dとの間の空間が実質的に埋められ、攪拌領域Rの上部に位置する分級領域Qは、その断面が環状の空間となっている。 Further, in the present embodiment, the insertion member 12 is provided between the upper end surface 4 u of the stirring shaft 4 and the lower end surface 10 d of the classification rotor 10. In the present embodiment, the insertion member 12 is a substantially cylindrical member having a lower end surface that substantially matches the shape of the upper end surface 4 u of the stirring shaft 4, and is connected to the stirring shaft 4. The upper end surface 12u of the insertion member 12 connected to the stirring shaft 4 and the lower end surface 10d of the classifying rotor 10 are disposed close to each other. As a result, the space between the upper end surface 4u of the stirring shaft 4 and the lower end surface 10d of the classification rotor 10 is substantially filled, and the classification region Q positioned above the stirring region R has an annular cross section. It has become.
 ここで、このような介挿部材12を設けない場合には、搬送気体及びこれにより粉体処理室P内を上昇した微細粉体は、開口面積が大きくなる攪拌軸4の上端面4uから分級ロータ10の下端面10dの高さ位置までにおける分級領域Qにおいて、上昇速度が低下してしまう。その結果、微細粉体を分級ロータ10まで十分に搬送することができず、さらに一度粉砕された微細粉体どうしが搬送途中で凝集するなどして失速し、再度媒体6の攪拌領域Rに落下してしまう場合がある。このことが、過粉砕を生じさせる原因の一つとなっていた。 Here, when such an insertion member 12 is not provided, the carrier gas and the fine powder that has risen in the powder processing chamber P due to this are classified from the upper end surface 4u of the stirring shaft 4 where the opening area increases. In the classification region Q up to the height position of the lower end surface 10d of the rotor 10, the rising speed is reduced. As a result, the fine powder cannot be sufficiently conveyed to the classification rotor 10, and the fine powder once pulverized is agglomerated in the middle of conveyance and stalled, and again falls into the stirring region R of the medium 6. May end up. This has been one of the causes of overgrinding.
 これに対して、本実施形態に係る媒体攪拌型粉体処理装置1は、攪拌軸4の上端面4uと分級ロータ10の下端面10dとの間に形成される空間を埋めるように介挿部材12が設けられている。これにより、分級領域Qの断面は、中心部に中空部分を有する環状の空間となり、開口面積が分級領域Qの全域に亘って略同一となるので、搬送気体及びこれに搬送される微細粉体は略一定の速度を保ったまま上昇する。よって、微細粉体を効率良く分級ロータ10へ搬送することができるので、粉砕から分級までの一連の処理効率をより一層向上させることができる。 On the other hand, the medium stirring type powder processing apparatus 1 according to the present embodiment interposes the insertion member so as to fill a space formed between the upper end surface 4u of the stirring shaft 4 and the lower end surface 10d of the classification rotor 10. 12 is provided. As a result, the cross section of the classification region Q becomes an annular space having a hollow portion at the center, and the opening area is substantially the same over the entire classification region Q. Therefore, the carrier gas and the fine powder conveyed by this Rises while maintaining a substantially constant speed. Therefore, since fine powder can be efficiently conveyed to the classification rotor 10, a series of processing efficiency from pulverization to classification can be further improved.
 以下では、本実施形態に係る媒体攪拌型粉体処理装置1の粉砕処理について、実施例に基づいて説明する。 Hereinafter, the pulverization process of the medium stirring type powder processing apparatus 1 according to the present embodiment will be described based on examples.
(実験1)
 まず、底板7の位置から上部ほど中心側に変位する傾斜面21が形成された容器(以下、円錐型容器)と、全体が直胴に形成された容器(以下、円筒型容器)とを用いて、分級回転数と回収された微細粉体の粒子径及び処理能力との関係を調べた。円錐型容器の傾斜面21は傾きが11度とされ、円錐型容器及び円筒型容器はいずれも底板7の直径が600mmのものを用いた。また、媒体6として直径5.0mmのスチールボールを用い、重質炭酸カルシウム(比表面積換算径:1.0μm)を粉砕原料として、流動気体、噴出気体、流入気体の総量である処理風量10m/min、攪拌部材の回転数120rpmの運転条件で連続処理を行った。なお、分級ロータ10の分級回転数は3000rpm及び7000rpmとし、比表面積換算径はBET法により測定して求めるとともに、処理能力は単位時間当たりの処理量として求めた。その結果を表1に示す。
(Experiment 1)
First, a container (hereinafter referred to as a conical container) formed with an inclined surface 21 that is displaced toward the center from the position of the bottom plate 7 and a container (hereinafter referred to as a cylindrical container) formed entirely in a straight body are used. Thus, the relationship between the number of rotations of classification, the particle size of the recovered fine powder, and the processing capacity was investigated. The inclined surface 21 of the conical container has an inclination of 11 degrees, and both the conical container and the cylindrical container have a bottom plate 7 with a diameter of 600 mm. Further, a steel ball having a diameter of 5.0 mm is used as the medium 6 and heavy calcium carbonate (specific surface area equivalent diameter: 1.0 μm) is used as a pulverized raw material, and the processing air volume is 10 m 3 which is the total amount of flowing gas, jetting gas and inflowing gas. / Min, continuous processing was performed under the operating conditions of a stirring member rotating at 120 rpm. In addition, the classification rotation speed of the classification rotor 10 was set to 3000 rpm and 7000 rpm, the specific surface area converted diameter was determined by measurement by the BET method, and the processing capacity was determined as a processing amount per unit time. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1によれば、円筒型容器を用いた場合には、分級回転数の違いにかかわらず略同一径の微細粉体が回収されたこと、及び、分級回転数が3000rpmの場合には7000rpmの場合に比べて処理能力が低くなっていることが確認された。ここで、分級原理を考慮すれば、理論的には、分級回転数が大きくなるほど比表面積換算径は小さくなるとともに処理能力も小さくなるはずである。しかし、円筒型容器を用いた場合の結果は、この理論に反するものとなっている。これは、円筒型容器では、媒体6の浮き上がりにより粉砕効率が低下し、また、媒体6等が形成する包絡面24の高低差が大きくなることにより容器2内を上昇する搬送気体の流速が不均一となってしまうことが原因であると考えられる。 According to Table 1, when a cylindrical container was used, a fine powder having substantially the same diameter was collected regardless of the difference in the classification rotation speed, and when the classification rotation speed was 3000 rpm, it was 7000 rpm. It was confirmed that the processing capacity was lower than the case. Here, considering the classification principle, theoretically, the larger the classification rotation speed, the smaller the specific surface area equivalent diameter and the smaller the processing capacity. However, the results when using a cylindrical container are contrary to this theory. This is because in a cylindrical container, the pulverization efficiency is lowered due to the floating of the medium 6 and the flow velocity of the carrier gas rising in the container 2 is not increased due to the difference in height of the envelope surface 24 formed by the medium 6 and the like. It is thought that the cause is that it becomes uniform.
 これに対して、円錐型容器を用いた場合には、分級回転数が3000rpmの場合には7000rpmの場合に比べて、比表面積換算径は大きく、処理能力も高いことが確認された。さらに、円錐型容器と円筒型容器との間で分級回転数が7000rpmの場合で比較すると、略同一の比表面積換算径の微細粉体を得るのに、円錐型容器では処理能力が約15%向上していることが確認された。これにより、粉砕から分級までの一連の処理効率が向上することが確認された。 On the other hand, when the conical container was used, it was confirmed that the specific surface area equivalent diameter was larger and the processing capacity was higher when the classification rotation speed was 3000 rpm than when it was 7000 rpm. Further, when compared with a conical container and a cylindrical container when the classification rotation speed is 7000 rpm, the conical container has a processing capacity of about 15% in order to obtain a fine powder having a substantially equivalent specific surface area diameter. It was confirmed that there was an improvement. As a result, it was confirmed that a series of processing efficiency from pulverization to classification was improved.
(実験2)
 次に、底板7の直径が600mmの円錐型容器を用い、傾斜面21の傾きを鉛直方向に対して0度から35度の間で変化させて、傾斜面21の傾斜角度と粉砕効率との関係を調べた。なお、傾斜面21の傾きが0度のものは、比較例としての円筒型容器に相当する。媒体6として直径3mmのジルコニアボールを用い、タルク(平均粒子径:13μm)を粉砕原料として、処理風量10m/min、攪拌部材の回転数120rpm、分級回転数7000rpmの運転条件で連続処理を行った。平均粒子径はレーザー回折散乱法により測定して求めるとともに、処理能力は単位時間当たりの処理量として求めた。また、粉砕効率は、処理能力を粉砕処理に要した動力の大きさで除して求めた。その結果を図4及び表2に示す。なお、表2においては、傾斜面21の傾きが0度の場合における粉砕効率に対する各傾斜角度での粉砕効率を粉砕効率比として示している。
(Experiment 2)
Next, using a conical container having a diameter of the bottom plate 7 of 600 mm, the inclination of the inclined surface 21 is changed between 0 degree and 35 degrees with respect to the vertical direction, and the inclination angle of the inclined surface 21 and the grinding efficiency are I investigated the relationship. In addition, the thing whose inclination of the inclined surface 21 is 0 degree | times is corresponded to the cylindrical container as a comparative example. A zirconia ball having a diameter of 3 mm is used as the medium 6, talc (average particle diameter: 13 μm) is used as a pulverized raw material, and the treatment air volume is 10 m 3 / min, the rotating speed of the stirring member is 120 rpm, and the continuous speed is 7000 rpm. It was. The average particle diameter was determined by measuring by a laser diffraction / scattering method, and the processing capacity was determined as a processing amount per unit time. The grinding efficiency was determined by dividing the processing capacity by the power required for the grinding process. The results are shown in FIG. In Table 2, the pulverization efficiency at each inclination angle with respect to the pulverization efficiency when the inclination of the inclined surface 21 is 0 degrees is shown as a pulverization efficiency ratio.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図4から明らかなように、円錐型容器の内壁が一定の傾斜角度を有している場合には、粉砕効率が向上することが確認された。また、表2によれば、円錐型容器の傾斜面21の傾斜角度が3度~35度の範囲で、円筒型容器を用いた場合に比べて粉砕効率が約11%以上向上していることが確認された。また、傾斜角度が6度~35度の範囲では、同様に粉砕効率が約21%以上向上していることが確認された。さらに、傾斜角度が6度~25度の範囲では、同様に粉砕効率が約43%以上向上し、傾斜角度が11度では、粉砕効率が約54%も向上した結果となり、円筒型容器を用いた場合に比べて格段に粉砕効率が向上していることが確認された。 As is clear from FIG. 4, it was confirmed that the crushing efficiency was improved when the inner wall of the conical container had a certain inclination angle. Further, according to Table 2, when the inclination angle of the inclined surface 21 of the conical container is in the range of 3 to 35 degrees, the pulverization efficiency is improved by about 11% or more compared to the case using the cylindrical container. Was confirmed. It was also confirmed that the crushing efficiency was improved by about 21% or more when the inclination angle was in the range of 6 to 35 degrees. Furthermore, when the inclination angle is in the range of 6 to 25 degrees, the crushing efficiency is similarly improved by about 43% or more, and when the inclination angle is 11 degrees, the crushing efficiency is improved by about 54%. It was confirmed that the pulverization efficiency was remarkably improved as compared with the case where it was.
(実験3)
 次に、底板7の直径が600mmの円錐型容器を用い、攪拌軸4の上端面4uから分級ロータ10の下端面10dまでの空間に介挿部材12を設けたものと、設けないものとについて、分級回転数と回収された微細粉体の平均粒子径及び処理能力との関係を調べた。ここで、介挿部材12を設けない場合の攪拌軸4の上端面4uから分級ロータ10の下端面10dまでの距離Hは約300mmであり、介挿部材12を設ける場合には当該距離は同様とし、分級ロータ10の下端面10dと介挿部材12の上端面12uとの隙間を約10mmとした。また、媒体6として直径5.0mmのジルコニアボールを用い、ガラス粉(平均粒子径:33μm)を粉砕原料として、処理風量10m/min、攪拌部材の回転数130rpmの運転条件で連続処理を行った。なお、分級ロータ10の分級回転数は3000rpm及び7000rpmとし、平均粒子径はレーザー回折散乱法により測定して求めるとともに、処理能力は単位時間当たりの処理量として求めた。その結果を表3に示す。
(Experiment 3)
Next, with and without the insertion member 12 provided in the space from the upper end surface 4u of the stirring shaft 4 to the lower end surface 10d of the classification rotor 10 using a conical container having a diameter of the bottom plate 7 of 600 mm. The relationship between the number of rotations of classification, the average particle size of the recovered fine powder, and the processing capacity was examined. Here, the distance H from the upper end surface 4u of the stirring shaft 4 to the lower end surface 10d of the classification rotor 10 when the insertion member 12 is not provided is about 300 mm, and when the insertion member 12 is provided, the distance is the same. The clearance between the lower end surface 10d of the classification rotor 10 and the upper end surface 12u of the insertion member 12 was about 10 mm. Further, a zirconia ball having a diameter of 5.0 mm is used as the medium 6, glass powder (average particle diameter: 33 μm) is used as a pulverized raw material, and a continuous treatment is performed under the operating conditions of a treatment air volume of 10 m 3 / min and a stirring member rotating speed of 130 rpm. It was. In addition, while classifying rotation speed of the classifying rotor 10 was set to 3000 rpm and 7000 rpm, the average particle diameter was determined by measurement by a laser diffraction scattering method, and the processing capacity was determined as a processing amount per unit time. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3によれば、介挿部材12を設けない場合には、分級回転数に大きな差がある割には、回収される製品粉体の平均粒子径及び処理能力にあまり差がないことが確認された。これは、搬送気体により粉体処理室P内を上昇した微細粉体が、開口面積が大きくなる攪拌軸4の上端面4uから分級ロータ10の下端面10dの高さ位置までの分級領域Qにおいて、搬送気体の上昇速度が低下してしまい、微細粉体を効率良く分級ロータ10へ搬送することができないことが原因であると考えられる。 According to Table 3, when the insertion member 12 is not provided, it is confirmed that there is not much difference in the average particle diameter and processing capacity of the recovered product powder for a large difference in the classification rotation speed. It was done. This is because the fine powder rising in the powder processing chamber P by the carrier gas is in the classification region Q from the upper end surface 4u of the stirring shaft 4 where the opening area becomes large to the height position of the lower end surface 10d of the classification rotor 10. It is considered that this is because the rising speed of the carrier gas decreases, and the fine powder cannot be efficiently conveyed to the classification rotor 10.
 これに対して、介挿部材12を設けた場合には、分級回転数が3000rpmの場合には7000rpmの場合に比べて、平均粒子径は大きくなり、処理能力も大きく向上することが確認された。さらに、それぞれの分級回転数において、介挿部材12を設けた場合と設けない場合とを比較すると、明らかに前者(介挿部材12を設けた場合)の方が処理能力が向上していることが確認された。 On the other hand, when the insertion member 12 was provided, it was confirmed that the average particle diameter was larger and the processing capability was greatly improved when the classification rotation speed was 3000 rpm compared to 7000 rpm. . Furthermore, in each classifying rotation speed, when the insertion member 12 is provided and when the insertion member 12 is not provided, the former (when the insertion member 12 is provided) clearly has improved processing capability. Was confirmed.
〔その他の実施形態〕
(1)上記の実施形態においては、傾斜面21が容器2内の底板7の位置から形成されており、全ての攪拌部材5の高さ位置における容器2の内壁が傾斜面21とされる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、傾斜面21は、少なくとも最上段の攪拌部材5の下端面の高さ位置、又はそれよりも下方から上方に向けて形成されるように構成されていれば、複数段のうちの中間部における攪拌部材5の上端面又は下端面の高さ位置から形成されていても良く、つまり、必ずしも全ての攪拌部材5の高さ位置における容器2の内壁を傾斜面21としなくても良い。例えば、図5に示すように、容器2の形状を、容器2の底面から所定の高さ位置まで、底面に略直交する垂直面22とした直胴部を有する構成とすることができる。この場合、垂直面22から連続して傾斜面21が形成されることになる。また、図6に示すように、容器2の内壁が、上部ほど中心側に変位する傾斜面21(これを第一の傾斜面とする)に加えて、上部ほど外側に変位する第二の傾斜面23を有する構成としても良い。このとき、第二の傾斜面23は、底板7から最上段の攪拌部材5より下部のいずれかの高さ位置にまで至る構成とすることができる。この場合、第二の傾斜面23から連続して第一の傾斜面21が形成されることになる。
 これらの場合にあっては、傾斜面21が容器2内の底板7の位置から形成される場合と比較して、容器2を大容量として処理能力を増大させることができるという利点がある。また、傾斜面21が底板7の位置から形成される場合と比較して、媒体6の浮き上がり抑制効果は多少低下するものの、媒体6や粉砕原料の滞留が比較的生じやすい容器2の底部の隅部において、媒体6の循環を促進することができるという利点がある。
[Other Embodiments]
(1) In the above embodiment, the inclined surface 21 is formed from the position of the bottom plate 7 in the container 2, and the inner wall of the container 2 at the height position of all the stirring members 5 is the inclined surface 21. Was described as an example. However, the embodiment of the present invention is not limited to this. That is, if the inclined surface 21 is configured to be formed at least at the height position of the lower end surface of the uppermost stirrer member 5 or from the lower side to the upper side, the intermediate portion of the plurality of steps is provided. May be formed from the height position of the upper end surface or the lower end surface of the stirring member 5, that is, the inner wall of the container 2 at the height position of all the stirring members 5 may not necessarily be the inclined surface 21. For example, as shown in FIG. 5, the container 2 can be configured to have a straight body portion having a vertical surface 22 that is substantially orthogonal to the bottom surface from the bottom surface of the container 2 to a predetermined height position. In this case, the inclined surface 21 is formed continuously from the vertical surface 22. Further, as shown in FIG. 6, in addition to the inclined surface 21 (this is the first inclined surface) in which the inner wall of the container 2 is displaced toward the center as the upper part, a second inclination that is displaced outward as the upper part is formed. It is good also as a structure which has the surface 23. FIG. At this time, the second inclined surface 23 can be configured to extend from the bottom plate 7 to any height position below the uppermost stirring member 5. In this case, the first inclined surface 21 is formed continuously from the second inclined surface 23.
In these cases, as compared with the case where the inclined surface 21 is formed from the position of the bottom plate 7 in the container 2, there is an advantage that the processing capacity can be increased with the container 2 having a large capacity. Further, compared with the case where the inclined surface 21 is formed from the position of the bottom plate 7, although the effect of suppressing the floating of the medium 6 is somewhat reduced, the corner of the bottom of the container 2 where the retention of the medium 6 and the pulverized raw material is relatively likely to occur. In this part, there is an advantage that circulation of the medium 6 can be promoted.
(2)上記の実施形態においては、傾斜面21の傾きが一定とされる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば傾斜面21の傾きが上部ほど大きくなるように形成することも、本発明の好適な実施形態の一つである。このようにすれば、媒体粒子6が傾斜面21から受ける抗力Nの鉛直下向きの鉛直成分Ny(図2を参照)が上部ほど大きくなるので、容器2内での媒体6の浮き上がりがよりいっそう抑制される。 (2) In the above embodiment, the case where the inclination of the inclined surface 21 is constant has been described as an example. However, the embodiment of the present invention is not limited to this. For example, forming the inclined surface 21 such that the inclination of the inclined surface 21 increases toward the upper part is one of the preferred embodiments of the present invention. By doing so, the vertical component Ny (see FIG. 2) of the drag N that the medium particle 6 receives from the inclined surface 21 increases toward the upper part, so that the floating of the medium 6 in the container 2 is further suppressed. Is done.
(3)上記の実施形態においては、容器2の内壁が傾斜面21を形成している場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、容器2の形状は直胴としたままで、容器2内に別部材を取り付けることにより傾斜面21を形成しても良い。さらに、媒体の浮き上がりを抑えられる高さ位置よりも上方の内壁は傾斜させずに直胴としても良い。この場合、容器2の上部の直胴部の内径は、分級ロータ10の外径の1.3倍から2倍の範囲にあることが望ましい。 (3) In the above embodiment, the case where the inner wall of the container 2 forms the inclined surface 21 has been described as an example. However, the embodiment of the present invention is not limited to this. For example, the inclined surface 21 may be formed by attaching another member in the container 2 while the shape of the container 2 is a straight body. Furthermore, the inner wall above the height position where the lift of the medium can be suppressed may be a straight cylinder without being inclined. In this case, the inner diameter of the upper body of the container 2 is preferably in the range of 1.3 to 2 times the outer diameter of the classification rotor 10.
(4)上記の実施形態においては、攪拌部材5が、上段に配置されたものほど、回転軸芯Zからその先端部までの長さ(攪拌径)が順次短くなっている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば図5や図6に示すように、一部、一の段における攪拌径が、その一段下の段における攪拌径と等しくなるように設定することも、本発明の好適な実施形態の一つである。ただし、最上段の攪拌部材5の先端部における周速度を他の攪拌部材5よりも小さくするため、少なくとも最上段における攪拌径は、当該最上段よりも一段下の段における攪拌径よりも短く設定されるとともに、その他の段においては、一の段における攪拌径が、その一段下の段における攪拌径よりも短いか、又は等しくなるように設定されることが好ましい。図5や図6の例では、下から三段目までの攪拌径が等しく設定されるとともに、それ以降は上段ほど攪拌径が順次短くなるように設定されている。なお、この場合にあっては、容器2の内壁形状に沿って攪拌径を設定し、各段における攪拌部材5の先端部と容器2の内壁との間のクリアランスCを略一定とすることが好ましい。なお、すべての段における攪拌径が等しくなるように設定したり、一の段における攪拌径がその一段下の段における攪拌径よりも、一部大きくなるように設定したりしても良い。 (4) In the above-described embodiment, the case where the length (stirring diameter) from the rotation axis Z to the tip thereof is sequentially shortened as the stirring member 5 is arranged in the upper stage will be described as an example. did. However, the embodiment of the present invention is not limited to this. For example, as shown in FIG. 5 and FIG. 6, it is also one of the preferred embodiments of the present invention that the stirring diameter in one stage is partially set to be equal to the stirring diameter in the lower stage. It is. However, in order to make the peripheral speed at the tip portion of the uppermost stirring member 5 smaller than that of the other stirring members 5, the stirring diameter at least at the uppermost stage is set shorter than the stirring diameter in the stage one stage lower than the uppermost stage. In addition, in the other stages, the stirring diameter in one stage is preferably set to be shorter or equal to the stirring diameter in the lower stage. In the examples of FIGS. 5 and 6, the stirring diameter from the bottom to the third stage is set to be equal, and thereafter, the stirring diameter is set to be sequentially shortened toward the upper stage. In this case, the stirring diameter is set along the shape of the inner wall of the container 2, and the clearance C between the tip of the stirring member 5 and the inner wall of the container 2 at each stage is made substantially constant. preferable. The stirring diameters in all the stages may be set to be equal, or the stirring diameter in one stage may be set to be partly larger than the stirring diameter in the lower stage.
(5)上記の実施形態においては、攪拌部材5が、それぞれ同じ高さに2本ずつ5段に設けられ、各段順次90度変位させた千鳥配列とされる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、攪拌部材5の段数や各段における攪拌部材5の本数は任意に設定することができる。なお、攪拌部材5の段数が一段のみの場合には、当該一つの段が最上段となる。また、千鳥配列とする場合における変位角も任意に設定することができる。また、攪拌部材5の形状は、断面が円形や楕円形、四角形等の多角形、その他の形状であっても良く、またその先端がパドル状であっても良い。 (5) In the above-described embodiment, the case where the stirrer members 5 are provided in five stages of two at the same height and are displaced by 90 degrees in each stage has been described as an example. However, the embodiment of the present invention is not limited to this. That is, the number of stirring members 5 and the number of stirring members 5 in each step can be set arbitrarily. In addition, when the number of stages of the stirring member 5 is only one, the one stage is the uppermost stage. Further, the displacement angle in the case of the staggered arrangement can be arbitrarily set. The shape of the agitating member 5 may be circular, elliptical, polygonal, such as a quadrilateral, or other shapes, and the tip may be paddle-shaped.
(6)上記の実施形態においては、容器2の側面にスリット状の気体噴出口13が容器2の全周に亘って設けられるとともに、これらの気体噴出口13を覆うように容器2の全周に亘る環状流路14が設けられる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば容器2の側面に複数個又は複数列の気体噴出口13を周方向に配置させるとともに、少なくともこれらの気体噴出口13を覆うように容器2の外周の一部に設けられた環状流路を備える構成としてあっても良い。 (6) In the above embodiment, slit-like gas jets 13 are provided on the side of the container 2 over the entire circumference of the container 2, and the entire circumference of the container 2 is covered so as to cover these gas jets 13. The case where the annular flow path 14 is provided as an example has been described. However, the embodiment of the present invention is not limited to this. For example, a plurality or a plurality of rows of gas jets 13 are arranged in the circumferential direction on the side surface of the container 2, and an annular flow path provided at a part of the outer periphery of the container 2 so as to cover at least these gas jets 13. It may be a configuration provided.
(7)上記の実施形態においては、底板7の上面近傍に位置する容器2の側面に気体噴出口13を設ける場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、媒体6の攪拌領域Rの中間位置における容器2の側面に気体噴出口13を設ける構成としても良い。この場合であっても、粉砕後の微細粉体を容器2の上方に上昇させることにより、容器2内での微細粉体の分散効率を向上させることができる。 (7) In the above embodiment, the case where the gas ejection port 13 is provided on the side surface of the container 2 located near the upper surface of the bottom plate 7 has been described as an example. However, the embodiment of the present invention is not limited to this. For example, it is good also as a structure which provides the gas jet nozzle 13 in the side surface of the container 2 in the intermediate position of the stirring area | region R of the medium 6. FIG. Even in this case, the dispersion efficiency of the fine powder in the container 2 can be improved by raising the fine powder after pulverization above the container 2.
(8)上記の実施形態においては、容器2内の上部中央に、分級機として、縦軸周りに回転する気流式の分級ロータ10が一つ設けられる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、横軸周りに回転する一つの分級ロータ10を用いても良い。また、図7に示すように、横軸周りに回転する複数の分級ロータ10を併用する構成とすることも、本発明の好適な実施形態の一つである。このような構成は、上述した容器2が直胴部を有する場合の構成として適している。つまり、大容量の容器2を備えた媒体攪拌型粉体処理装置1を用いて大きな処理能力を得ようとする場合、比較的小型の分級ロータ10を複数併用することで、比較的大型の分級ロータ10を一つのみ用いる場合と比較して、分級精度を向上させることができる。なお、横軸周りに回転する一つの分級ロータ10を用いる場合、最下部に位置する分級羽根10aの回転外周面が、「分級機の下端面10d」に該当する。
 また、分級機としては、分級ロータ10を用いないその他の分級機を用いても良い。
(8) In the above embodiment, the case where one airflow type classifying rotor 10 rotating around the vertical axis is provided as a classifier at the upper center in the container 2 has been described as an example. However, the embodiment of the present invention is not limited to this. For example, a single classification rotor 10 that rotates about the horizontal axis may be used. Moreover, as shown in FIG. 7, it is also one of the preferred embodiments of the present invention that a plurality of classification rotors 10 rotating around the horizontal axis are used in combination. Such a configuration is suitable as a configuration when the container 2 described above has a straight body portion. In other words, when a large processing capacity is to be obtained using the medium stirring type powder processing apparatus 1 having the large capacity container 2, a relatively large classification can be achieved by using a plurality of relatively small classification rotors 10 in combination. Compared with the case where only one rotor 10 is used, the classification accuracy can be improved. When one classifying rotor 10 that rotates around the horizontal axis is used, the rotating outer peripheral surface of the classifying blade 10a located at the bottom corresponds to the “lower end surface 10d of the classifier”.
As the classifier, other classifiers that do not use the classifying rotor 10 may be used.
(9)上記の実施形態においては、介挿部材12が攪拌軸4に連結されることにより攪拌軸4の上端面4uから分級ロータ10の下端面10dまでの空間が埋められる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、図5に示すように、介挿部材12が分級ロータ10に連結されることにより攪拌軸4の上端面4uから分級ロータ10の下端面10dまでの空間を埋めるように構成することも、本発明の好適な実施形態の一つである。なお、図7の例では、複数併用される分級ロータ10は製品回収管(又は製品回収用の連結管)11を介して一体的に構成され、当該製品回収管11に介挿部材12が連結されている。この場合にあっては、複数の分級ロータ10と製品回収管11とが全体として一つの「分級機」とされ、攪拌軸4の上端面4uと当該分級機に連結される介挿部材12の下端面12dとが近接配置されている。
 また、介挿部材12を攪拌軸4や分級ロータ10に連結させず、容器2から支持部材を用いて支持する構成としても良い。また、上記の実施形態においては、介挿部材12は上部ほど外径が小さくなる形状としているが、攪拌軸4の外径と分級ロータ10の外径に応じて、又は搬送気体の上昇速度をより速めるため、介挿部材12の外径を上部ほど大きくする、又は上下同径となる円筒状にするなど、適宜変更しても良い。
(9) In the above embodiment, the case where the space from the upper end surface 4u of the stirring shaft 4 to the lower end surface 10d of the classification rotor 10 is filled by connecting the insertion member 12 to the stirring shaft 4 will be described as an example. did. However, the embodiment of the present invention is not limited to this. For example, as shown in FIG. 5, the insertion member 12 is connected to the classification rotor 10 so as to fill a space from the upper end surface 4 u of the stirring shaft 4 to the lower end surface 10 d of the classification rotor 10. It is one of the preferred embodiments of the present invention. In the example of FIG. 7, a plurality of classifying rotors 10 that are used in combination are integrally configured via a product recovery pipe (or a connection pipe for product recovery) 11, and an insertion member 12 is connected to the product recovery pipe 11. Has been. In this case, the plurality of classifying rotors 10 and the product recovery pipes 11 constitute a single “classifier” as a whole, and the upper end surface 4u of the stirring shaft 4 and the insertion member 12 connected to the classifier The lower end surface 12d is disposed in proximity.
Further, the insertion member 12 may be supported from the container 2 using a support member without being connected to the stirring shaft 4 or the classification rotor 10. Further, in the above embodiment, the insertion member 12 has a shape in which the outer diameter becomes smaller toward the upper part, but according to the outer diameter of the stirring shaft 4 and the outer diameter of the classification rotor 10, or the rising speed of the carrier gas. In order to increase the speed, the outer diameter of the insertion member 12 may be changed as appropriate, for example, by increasing the outer diameter of the insertion member 12 toward the top or by making it cylindrical with the same upper and lower diameters.
(10)或いは、図8に示すように、容器2の高さを低くして、攪拌軸4の上端面4uと分級ロータ10の下端面10dとが近接配置されるように構成することも、本発明の好適な実施形態の一つである。このような構成を採用することによっても、微細粉体を効率良く分級ロータ10へ搬送することができるので、粉砕から分級までの一連の処理効率を向上させることができる。 (10) Alternatively, as shown in FIG. 8, the height of the container 2 may be lowered so that the upper end surface 4 u of the stirring shaft 4 and the lower end surface 10 d of the classification rotor 10 are arranged close to each other. It is one of the preferred embodiments of the present invention. Also by adopting such a configuration, the fine powder can be efficiently conveyed to the classification rotor 10, so that a series of processing efficiency from pulverization to classification can be improved.
(実験4)
 この場合における分級回転数と回収された製品粉体の平均粒子径及び処理能力との関係を表4に示す。なお、実験条件は上記の実験3におけるものと同様である。
(Experiment 4)
Table 4 shows the relationship between the classification rotational speed, the average particle diameter of the recovered product powder, and the treatment capacity in this case. The experimental conditions are the same as in Experiment 3 above.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3及び表4によれば、攪拌軸4の上端面4uと分級ロータ10の下端面10dとを近接配置させた場合、攪拌軸4に連結される介挿部材12の上端面12uと分級ロータ10の下端面10dとが近接配置される場合と比較して、同等、或いはそれ以上の処理能力向上効果が確認された。 According to Tables 3 and 4, when the upper end surface 4u of the stirring shaft 4 and the lower end surface 10d of the classification rotor 10 are arranged close to each other, the upper end surface 12u of the insertion member 12 connected to the stirring shaft 4 and the classification rotor. Compared with the case where the lower end surface 10d of 10 is arranged close to the lower end surface 10d, an effect of improving the processing capability equal to or higher than that is confirmed.
(11)上記の実施形態においては、攪拌軸4の形状が略円柱状である場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば攪拌軸4の形状を、上部ほど大径となる逆円錐状とすることも、本発明の好適な実施形態の一つである。このような構成を採用した場合、粉体・媒体が形成する包絡面24の中心部に生じる凹状の空間のうちのより多くの空間を攪拌軸4により埋めることができるので、容器2の内壁近傍と容器2の中心部とにおける搬送気体の抜けやすさの差をよりいっそう小さくすることができる。よって、容器2内を上昇する搬送気体の流速を均一化することができ、粉砕から分級までの一連の処理効率をよりいっそう向上させることができる。 (11) In the above embodiment, the case where the shape of the stirring shaft 4 is substantially cylindrical has been described as an example. However, the embodiment of the present invention is not limited to this. That is, for example, the shape of the stirring shaft 4 may be an inverted conical shape having a larger diameter at the top, which is one preferred embodiment of the present invention. When such a configuration is adopted, more of the concave space generated in the center of the envelope surface 24 formed by the powder / medium can be filled with the stirring shaft 4, so that the vicinity of the inner wall of the container 2 And the difference in the ease of escape of the carrier gas between the center portion of the container 2 and the container 2 can be further reduced. Therefore, the flow velocity of the carrier gas rising in the container 2 can be made uniform, and a series of processing efficiency from pulverization to classification can be further improved.
(12)上記の実施形態においては、温度調節手段としてのジャケット16内に冷却水を流入させて容器2を冷却する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えばジャケット16内に所定の温度に加熱された熱媒体を流通させて容器2を加熱することにより、粉砕と同時に微細粉体の乾燥を行なう構成とすることも、本発明の好適な実施形態の一つである。この場合の熱媒体としては、例えば温水やスチーム、オイル等を用いることができる。 (12) In the above embodiment, the case where the container 2 is cooled by flowing cooling water into the jacket 16 as the temperature adjusting means has been described as an example. However, the embodiment of the present invention is not limited to this. That is, for example, a configuration in which the fine powder is dried simultaneously with the pulverization by heating the container 2 by circulating a heating medium heated to a predetermined temperature in the jacket 16 is also preferable implementation of the present invention. One of the forms. As the heat medium in this case, for example, warm water, steam, oil, or the like can be used.
(13)上記の実施形態においては、本発明に係る媒体攪拌型粉体処理装置1を、粉砕処理を行うために適用する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば、表面処理、球形化、扁平化、複合化、精密混合、乾燥、その他の粉体処理にも本発明を適用することができる。 (13) In the above embodiment, the case where the medium stirring type powder processing apparatus 1 according to the present invention is applied to perform the pulverization process has been described as an example. However, the embodiment of the present invention is not limited to this. That is, for example, the present invention can be applied to surface treatment, spheroidization, flattening, compounding, precision mixing, drying, and other powder treatments.
 本発明に係る媒体攪拌型粉体処理装置1は、例えば、炭酸リチウム、水酸化リチウム、ニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、等のリチウム化合物;硝酸ナトリウム(芒硝)、水酸化ナトリウム、炭酸ナトリウム、重炭酸ソーダ、亜硫酸ソーダ、亜硝酸ソーダ、硫化ソーダ、珪酸ソーダ、硝酸ソーダ、重硫酸ソーダ、チオ硫酸ソーダ、食塩、等のナトリウム化合物;硫酸マグネシウム、塩化マグネシウム、水酸化マグネシウム、酸化マグネシウム、炭酸マグネシウム、酢酸マグネシウム、硝酸マグネシウム、酸化マグネシウム、水酸化マグネシウム、等のマグネシウム化合物;水酸化アルミニウム、硫酸アルミニウム、水酸化アルミニウム、ポリ塩化アルミニウム、酸化アルミニウム、ミョウバン、塩化アルミニウム、窒化アルミニウム等のアルミニウム化合物;酸化ケイ素、窒化ケイ素、炭化ケイ素、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸ナトリウム、ケイ酸アルミニウム、等のケイ素化合物;塩化カリウム、水酸化カリウム、硫酸カリウム、硝酸カリウム、炭酸カリウム、等のカリウム化合物;炭酸カルシウム、塩化カルシウム、硫酸カルシウム、硝酸カルシウム、水酸化カルシウム、等のカルシウム化合物;酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、炭化チタン、窒化チタン、等のチタン化合物;硫酸マンガン、炭酸マンガン、酸化マンガン、等のマンガン化合物;酸化鉄、等の鉄化合物;塩化コバルト、炭酸コバルト、酸化コバルト、等のコバルト化合物;水酸化ニッケル、酸化ニッケル、等のニッケル化合物;酸化イットリウム、イットリウム鉄ガーネット、等のイットリウム化合物;水酸化ジルコニウム、酸化ジルコニウム、ジルコニアシリケート、ジルコンサンド、等のジルコニウム化合物;塩化アンチモン、酸化アンチモン、硫酸アンチモン、等のアンチモン化合物;塩化バリウム、酸化バリウム、硝酸バリウム、水酸化バリウム、炭酸バリウム、硫酸バリウム、チタン酸バリウム、等のバリウム化合物;酸化ビスマス、次炭酸ビスマス、水酸化ビスマス、等のビスマス化合物;などの無機化合物;アルニコ系、鉄・クロム・コバルト系、鉄・マンガン系、バリウム系、ストロンチウム系、サマリウム・コバルト系、ネオジウム・鉄・ボロン系、マンガン・アルミ・カーボン系、プラセオジウム系、プラチナ系などの磁石材料;その他、顔料、ガラス、金属酸化物、有機化合物、カーボン、活性炭、コークス、鉱物、タルク、電池材料、水素吸蔵合金等の処理に好適に使用できるが、これに限定されるものではない。 The medium stirring type powder processing apparatus 1 according to the present invention includes, for example, lithium compounds such as lithium carbonate, lithium hydroxide, lithium nickelate, lithium cobaltate, and lithium manganate; sodium nitrate (sodium nitrate), sodium hydroxide, Sodium compounds such as sodium carbonate, sodium bicarbonate, sodium sulfite, sodium nitrite, sodium sulfide, sodium silicate, sodium nitrate, sodium bisulfate, sodium thiosulfate, sodium chloride; magnesium sulfate, magnesium chloride, magnesium hydroxide, magnesium oxide, carbonic acid Magnesium compounds such as magnesium, magnesium acetate, magnesium nitrate, magnesium oxide, magnesium hydroxide; aluminum hydroxide, aluminum sulfate, aluminum hydroxide, polyaluminum chloride, aluminum oxide, alum, aluminum chloride Aluminum compounds such as silicon nitride, aluminum nitride; silicon compounds such as silicon oxide, silicon nitride, silicon carbide, calcium silicate, magnesium silicate, sodium silicate, aluminum silicate; potassium chloride, potassium hydroxide, potassium sulfate, potassium nitrate Potassium compounds such as calcium carbonate; calcium compounds such as calcium carbonate, calcium chloride, calcium sulfate, calcium nitrate, calcium hydroxide; titanium such as titanium oxide, barium titanate, strontium titanate, titanium carbide, titanium nitride, etc. Compound; Manganese compound such as manganese sulfate, manganese carbonate, manganese oxide; Iron compound such as iron oxide; Cobalt compound such as cobalt chloride, cobalt carbonate, cobalt oxide; Nickel compound such as nickel hydroxide, nickel oxide; acid Yttrium compounds such as yttrium and yttrium iron garnet; zirconium compounds such as zirconium hydroxide, zirconium oxide, zirconia silicate and zircon sand; antimony compounds such as antimony chloride, antimony oxide and antimony sulfate; barium chloride, barium oxide and nitric acid Barium compounds such as barium, barium hydroxide, barium carbonate, barium sulfate, barium titanate; bismuth compounds such as bismuth oxide, bismuth carbonate, bismuth hydroxide; inorganic compounds such as alnico, iron, chromium, cobalt -Based, iron-manganese-based, barium-based, strontium-based, samarium-cobalt-based, neodymium-iron-boron-based, manganese-aluminum-carbon-based, praseodymium-based, platinum-based magnetic materials; other pigments, glass However, the present invention is not limited to this, but can be suitably used for the treatment of metal oxides, metal oxides, organic compounds, carbon, activated carbon, coke, minerals, talc, battery materials, hydrogen storage alloys and the like.
 本発明は、上記以外にも、例えば金属、セラミックス、或いは穀類等の粉末を製造するための媒体攪拌型粉体処理装置に好適に利用することができる。 In addition to the above, the present invention can be suitably used for a medium stirring type powder processing apparatus for producing powders of, for example, metals, ceramics, or grains.
1    媒体攪拌型粉体処理装置
2    容器
4    攪拌軸
5    攪拌部材
6    媒体
7    底板
10   分級ロータ(分級機)
12   介挿部材
13   気体噴出口
14   環状流路
21   傾斜面
Z    回転軸芯
DESCRIPTION OF SYMBOLS 1 Medium stirring type powder processing apparatus 2 Container 4 Stirring shaft 5 Stirring member 6 Medium 7 Bottom plate 10 Classification rotor (classifier)
12 Insertion member 13 Gas outlet 14 Annular flow path 21 Inclined surface Z Rotation axis

Claims (5)

  1.  撹拌軸から一段又は複数段に亘って径方向外向きに突出する、縦軸周りに回転自在に設けられた攪拌部材を備え、
     前記攪拌部材により容器内で被処理原料を媒体とともに攪拌して粉砕すると共に、前記容器内の上部に設けられた分級機を介して粉砕後の粉体を回収する媒体攪拌型粉体処理装置であって、
     前記容器の内壁が、上部ほど中心側に変位する傾斜面を有するとともに、
     前記傾斜面が、最上段の前記攪拌部材の下端面の高さ位置又はそれよりも下方から上方に向けて形成されている媒体攪拌型粉体処理装置。
    A stirrer member that protrudes radially outward from the stirrer shaft over one or more stages and is provided to be rotatable about the vertical axis,
    In the medium stirring type powder processing apparatus, the raw material to be processed is stirred and pulverized together with the medium in the container by the stirring member, and the pulverized powder is recovered through a classifier provided in the upper part of the container. There,
    The inner wall of the container has an inclined surface that is displaced toward the center toward the top,
    The medium agitation type powder processing apparatus, wherein the inclined surface is formed at a height position of a lower end surface of the uppermost stirring member or from below to above.
  2.  前記傾斜面が、前記容器の底部から形成されている請求項1に記載の媒体攪拌型粉体処理装置。 The medium stirring type powder processing apparatus according to claim 1, wherein the inclined surface is formed from a bottom of the container.
  3.  前記攪拌部材は、前記撹拌軸に対して複数段に亘って設けられ、
     前記攪拌軸の軸芯からの、最上段における前記攪拌部材の先端部までの長さが、その一段下の段における前記攪拌部材の先端部までの長さよりも短く設定されている請求項1又は2に記載の媒体攪拌型粉体処理装置。
    The stirring member is provided in a plurality of stages with respect to the stirring shaft,
    The length from the axial center of the stirring shaft to the tip of the stirring member in the uppermost stage is set shorter than the length to the tip of the stirring member in the lower stage. 2. The medium stirring type powder processing apparatus according to 2.
  4.  前記攪拌軸の上端面と前記分級機の下端面との間に介挿部材を備えた請求項1から3のいずれか一項に記載の媒体攪拌型粉体処理装置。 The medium stirring type powder processing apparatus according to any one of claims 1 to 3, further comprising an insertion member between an upper end surface of the stirring shaft and a lower end surface of the classifier.
  5.  前記容器の側面に周方向に沿って設けられ、径方向内向きに気体を噴出する気体噴出口を備えた請求項1から4のいずれか一項に記載の媒体攪拌型粉体処理装置。 The medium stirring type powder processing apparatus according to any one of claims 1 to 4, further comprising a gas outlet provided on a side surface of the container along a circumferential direction and ejecting gas radially inward.
PCT/JP2009/061930 2008-08-25 2009-06-30 Medium-agitating powder processing device WO2010024038A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801324081A CN102131586A (en) 2008-08-25 2009-06-30 Medium-agitating powder processing device
EP20090809693 EP2351616A4 (en) 2008-08-25 2009-06-30 Medium-agitating powder processing device
KR1020137023295A KR101431045B1 (en) 2008-08-25 2009-06-30 Medium-agitating powder processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008215717A JP5451006B2 (en) 2008-08-25 2008-08-25 Medium stirring powder processing equipment
JP2008-215717 2008-08-25

Publications (1)

Publication Number Publication Date
WO2010024038A1 true WO2010024038A1 (en) 2010-03-04

Family

ID=41721212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061930 WO2010024038A1 (en) 2008-08-25 2009-06-30 Medium-agitating powder processing device

Country Status (5)

Country Link
EP (1) EP2351616A4 (en)
JP (1) JP5451006B2 (en)
KR (2) KR20110065460A (en)
CN (1) CN102131586A (en)
WO (1) WO2010024038A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112297269A (en) * 2020-10-09 2021-02-02 辛集市旭远新材料科技有限公司 Preparation process of environment-friendly lightweight engineering plastic
CN112691629A (en) * 2020-10-16 2021-04-23 卫红红 High-temperature catalytic reaction kettle for coating processing
EP3819575A3 (en) * 2014-11-19 2021-09-08 MinEx CRC Ltd Drying apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2846917B1 (en) * 2012-05-10 2019-09-18 Belmonte Investments Limited Attritor mill and process for using it
KR20150052298A (en) * 2012-10-10 2015-05-13 호소가와미크론 가부시키가이샤 Air flow drying device
JP6317891B2 (en) * 2013-05-29 2018-04-25 日本コークス工業株式会社 Dry media agitating crusher
CN104056694B (en) * 2014-06-20 2016-08-24 重庆环德科技有限公司 One can realize accurate scattered sand mill
CN106732949B (en) * 2016-12-27 2018-09-18 安徽杨柳青钙业科技股份有限公司 A kind of dynamic streaming dry powder stirring grinding device of supercharging
DE202017003318U1 (en) 2017-06-23 2017-08-01 Hosokawa Alpine Aktiengesellschaft Rotor for agitator mills
CN108568237A (en) * 2018-04-16 2018-09-25 合肥图腾龙机械设计有限公司 A kind of feed crushing mixing arrangement
CN109225465A (en) * 2018-10-11 2019-01-18 甘肃驰奈生物能源系统有限公司 A kind of kitchen garbage breaking, screening, selection by winnowing integrated equipment
CN109759184B (en) * 2019-02-19 2021-09-28 徐金涛 Method and equipment for extracting collagen fibers by using waste finished leather
KR102386275B1 (en) * 2021-11-19 2022-04-14 안태철 Pluverization device
CN115011232B (en) * 2022-06-02 2023-05-16 无锡市英波化工有限公司 Aliphatic polyurethane advanced finish paint and process system thereof
WO2024135115A1 (en) * 2022-12-19 2024-06-27 株式会社トクヤマ Agitation method, agitation heat transfer device, and reaction device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102452A (en) 1982-11-30 1984-06-13 大久保 敏之 Shaft type mill
JPS63107737U (en) * 1986-12-29 1988-07-12
JPH04193360A (en) * 1990-11-27 1992-07-13 Hosokawa Micron Corp Dry medium mill
JP2003265975A (en) 2002-03-18 2003-09-24 Mitsui Mining Co Ltd Dry media stirring type pulverizer
JP2005199124A (en) 2004-01-13 2005-07-28 Mitsui Mining Co Ltd Medium agitation type crusher
JP2005270780A (en) 2004-03-24 2005-10-06 Mitsui Mining Co Ltd Dry type media stirring type crushing machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1188913B (en) * 1961-01-25 1965-03-11 Draiswerke Ges Mit Beschraenkt Agitator mill
IT1208868B (en) * 1987-04-15 1989-07-10 Antonio Pelizza VERTICAL MICROBALL MILL PERFECTLY PERFECTLY FOR THE DISPERSION OF PIGMENTS IN A FLUID VEHICLE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102452A (en) 1982-11-30 1984-06-13 大久保 敏之 Shaft type mill
JPS63107737U (en) * 1986-12-29 1988-07-12
JPH04193360A (en) * 1990-11-27 1992-07-13 Hosokawa Micron Corp Dry medium mill
JP2003265975A (en) 2002-03-18 2003-09-24 Mitsui Mining Co Ltd Dry media stirring type pulverizer
JP2005199124A (en) 2004-01-13 2005-07-28 Mitsui Mining Co Ltd Medium agitation type crusher
JP2005270780A (en) 2004-03-24 2005-10-06 Mitsui Mining Co Ltd Dry type media stirring type crushing machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2351616A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3819575A3 (en) * 2014-11-19 2021-09-08 MinEx CRC Ltd Drying apparatus
CN112297269A (en) * 2020-10-09 2021-02-02 辛集市旭远新材料科技有限公司 Preparation process of environment-friendly lightweight engineering plastic
CN112297269B (en) * 2020-10-09 2022-05-13 青岛汇天隆工程塑料有限公司 Preparation process of environment-friendly lightweight engineering plastic
CN112691629A (en) * 2020-10-16 2021-04-23 卫红红 High-temperature catalytic reaction kettle for coating processing

Also Published As

Publication number Publication date
JP2010046646A (en) 2010-03-04
KR20110065460A (en) 2011-06-15
JP5451006B2 (en) 2014-03-26
CN102131586A (en) 2011-07-20
KR101431045B1 (en) 2014-08-21
EP2351616A4 (en) 2013-03-06
EP2351616A1 (en) 2011-08-03
KR20130111643A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
WO2010024038A1 (en) Medium-agitating powder processing device
JP4989059B2 (en) Crusher
JP5261002B2 (en) Media mixing mill
JPS6243731B2 (en)
JP5627923B2 (en) Wet grinding method for heavy calcium carbonate
WO2014080642A1 (en) Media-stirring pulverizer of internal classifier type
JP2009028707A (en) Medium-type powder treating device
JP4886993B2 (en) Media stirring type wet disperser
JP2007136299A (en) Cement clinker grinding facility
JP5159102B2 (en) Vertical media stirring mill
JP6172577B2 (en) Vertical crusher
JP4010833B2 (en) Dry media agitating crusher
JP2017074546A (en) Circulation type dry crushing apparatus
JP2005270780A (en) Dry type media stirring type crushing machine
WO2017217093A1 (en) Media-circulating crusher
JP2005246316A (en) Medium agitation type wet pulverizer
JP4938595B2 (en) Media stirring type wet disperser
JP6071758B2 (en) Media stirring mill
JP2012179535A (en) Wet medium agitation mill
JP6409172B2 (en) Media agitation classifier built-in type crusher
JP2019063775A (en) Lateral dry type crusher
JP2867009B2 (en) Powder processing equipment
JP2005288272A (en) Centrifugal crusher
JP2008149257A (en) Crushing and classifying apparatus
KR20240149305A (en) Grinding and drying equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132408.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009809693

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117005546

Country of ref document: KR

Kind code of ref document: A