JP2867009B2 - Powder processing equipment - Google Patents

Powder processing equipment

Info

Publication number
JP2867009B2
JP2867009B2 JP30431694A JP30431694A JP2867009B2 JP 2867009 B2 JP2867009 B2 JP 2867009B2 JP 30431694 A JP30431694 A JP 30431694A JP 30431694 A JP30431694 A JP 30431694A JP 2867009 B2 JP2867009 B2 JP 2867009B2
Authority
JP
Japan
Prior art keywords
processing apparatus
powder processing
slit
cylindrical housing
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30431694A
Other languages
Japanese (ja)
Other versions
JPH08131860A (en
Inventor
三郎 八嶋
学 阿部
勝己 上田
貫太郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Iron Works Ltd
Original Assignee
Kurimoto Iron Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Iron Works Ltd filed Critical Kurimoto Iron Works Ltd
Priority to JP30431694A priority Critical patent/JP2867009B2/en
Priority to KR1019950041116A priority patent/KR960016970A/en
Priority to US08/555,838 priority patent/US5769338A/en
Priority to EP95117951A priority patent/EP0711605A3/en
Publication of JPH08131860A publication Critical patent/JPH08131860A/en
Application granted granted Critical
Publication of JP2867009B2 publication Critical patent/JP2867009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、粉体処理装置に係り、
超微粉砕、粉体の複合化、粉体の改質、粉体の混合、粉
体の形状制御等を行うことによって、粉体に各種の機能
を賦与し、新素材を精製するために使用する粉体処理装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder processing apparatus,
Used to refine powder by giving various functions to powder by performing ultra-fine grinding, compounding powder, modifying powder, mixing powder, controlling powder shape, etc. To a powder processing apparatus.

【0002】[0002]

【従来の技術】従来の粉体処理技術においては、乾式及
び湿式の粉砕媒体を使用する粉体処理装置によっても、
超微粉の製造と粉体の複合化、改質、混合、形状制御等
の操作は、エネルギー消費量が過多であり、生産量が少
なく、製造コストが高くて、工業的規模の生産には適し
ておらず、僅かに実験室規模で生産されるのみであっ
た。この問題を解決するために、特開平5−25350
9号において開示された流通式媒体撹拌超微粉砕機等に
おいては、撹拌羽根の先端と円筒ハウジングの内壁との
間隔、及び最下段の撹拌羽根18、20の下端縁部とス
リット部材16との間隔を、粉砕媒体の直径の2/3な
いし0となるようにした。この場合、攪拌羽根の先端と
円筒ハウジングの内壁との間隔を粉砕媒体の直径で割っ
た値、すなわち後述する無次元クリアランス数は0.6
7ないし0である。また、最下段の撹拌羽根の下端縁部
とスリット部材との間隔を粉砕媒体の直径で割った値、
すなわち後述する無次元クリアランス数も0.67ない
し0である。しかし、この流通式媒体撹拌超微粉砕機お
いては、長時間の使用において粉砕媒体の摩耗および割
れが生じ、長時間連続運転ができず、仮に摩耗片および
破片が処理物中に混入すると、処理物の品質を悪化させ
るという問題が生じる。
2. Description of the Related Art In the conventional powder processing technology, a powder processing apparatus using dry and wet grinding media is also required.
Production of ultrafine powder and operations such as compounding, reforming, mixing, and shape control of the powder require excessive energy consumption, low production volume, high production cost, and are suitable for industrial-scale production. And was produced only slightly on a laboratory scale. In order to solve this problem, Japanese Patent Application Laid-Open No.
In the flow-type medium stirring ultra-fine pulverizer disclosed in No. 9 and the like, the distance between the tip of the stirring blade and the inner wall of the cylindrical housing, and the lower edge of the lowermost stirring blades 18 and 20 and the slit member 16 The spacing was between 2/3 and 0 of the diameter of the grinding media. In this case, the value obtained by dividing the distance between the tip of the stirring blade and the inner wall of the cylindrical housing by the diameter of the grinding medium, that is, the dimensionless clearance number described later is 0.6.
7 to 0. Further, a value obtained by dividing the distance between the lower edge of the lowermost stirring blade and the slit member by the diameter of the grinding medium,
That is, the dimensionless clearance number described later is also 0.67 to 0. However, in this flow-type medium stirring ultra-fine pulverizer, abrasion and cracking of the pulverization medium occur during long-term use, and continuous operation cannot be performed for a long time. There is a problem that the quality of the processed material is deteriorated.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来の粉体
処理装置の上述した問題点に鑑みてなされたものであっ
て、粉砕媒体の摩耗及び割れが少なく、長時間連続運転
が可能であり、またスリット部材や粉砕媒体の摩耗片や
破片が処理物中に混入することがなく、効率的にかつ均
一に粉砕処理が可能な粉体処理装置を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the conventional powder processing apparatus, and has little wear and cracks in the pulverizing medium and can be operated continuously for a long time. It is another object of the present invention to provide a powder processing apparatus capable of efficiently and uniformly performing a pulverization process without causing abrasion fragments and debris of a slit member and a pulverization medium to be mixed into a processed material.

【0004】[0004]

【発明の構成】本願の第1発明は、軸線を垂直にして配
置された円筒ハウジングと、粉砕媒体が通過しない大き
さのスリットを設け該円筒ハウジングの底部に配置され
たスリット部材と、該円筒ハウジングの軸線上に配置さ
れた回転軸と、該回転軸に取り付けられた撹拌羽根とを
有する粉体処理装置において、上記撹拌羽根の先端と円
筒ハウジングの内壁との間隔をwh 、粉砕媒体の直径を
Db とするとき、 2≦wh /Db ≦16 とすることを特徴とする粉体処理装置である。第1発明
の実施態様は、上記撹拌羽根が、複数段設けられている
ことを特徴とする。他の実施態様は、上記撹拌羽根が、
垂直な羽根と粉砕媒体を掻き上げる方向に傾斜した傾斜
羽根とを垂直方向に交互に配置してなることを特徴とす
る。本願の第2発明は、軸線を垂直にして配置された円
筒ハウジングと、粉砕媒体が通過しない大きさのスリッ
トを設け該円筒ハウジングの底部に配置されたスリット
部材と、該円筒ハウジングの軸線上に配置された回転軸
と、該回転軸に複数段をなして取り付けられた撹拌羽根
とを有する粉体処理装置において、最下段の上記撹拌羽
根の下端縁部と上記スリット部材の上面との間隔を
b 、粉砕媒体の直径をDb とするとき、 1.5≦wb /Db ≦8 とすることを特徴とする粉体処理装置である。
According to a first aspect of the present invention, there is provided a cylindrical housing having a vertical axis, a slit member provided with a slit having a size through which a pulverizing medium does not pass, and a slit member disposed at the bottom of the cylindrical housing; In a powder processing apparatus having a rotating shaft disposed on the axis of the housing and a stirring blade attached to the rotating shaft, the distance between the tip of the stirring blade and the inner wall of the cylindrical housing is set to w h , A powder processing apparatus characterized in that when the diameter is Db, 2 ≦ w h / Db ≦ 16. An embodiment of the first invention is characterized in that the stirring blade is provided in a plurality of stages. In another embodiment, the stirring blade is
It is characterized in that vertical blades and inclined blades inclined in a direction in which the grinding medium is scraped up are alternately arranged in the vertical direction. A second invention of the present application is directed to a cylindrical housing arranged vertically with an axis thereof, a slit member provided with a slit having a size through which a pulverizing medium does not pass, and a slit member arranged at the bottom of the cylindrical housing. In the powder processing apparatus having the rotating shaft disposed and the stirring blades attached to the rotating shaft in a plurality of stages, the gap between the lower edge of the lowermost stage of the stirring blade and the upper surface of the slit member is reduced. when w b, the diameter of the grinding media and Db, a powder treating apparatus characterized by a 1.5 ≦ w b / Db ≦ 8 .

【0005】第1発明の実施態様は、上記撹拌羽根が、
複数段設けられていることを特徴とする。他の実施態様
は、上記スリット部材が、スリットを平面円板に設け、
該スリットの放射方向の幅が上記粉砕媒体が通過しない
寸法であり、円周方向の幅が上記放射方向の幅より大き
いことを特徴とする。他の実施態様は、上記撹拌羽根
が、垂直な羽根と粉砕媒体を掻き上げる方向に傾斜した
傾斜羽根とを垂直方向に交互に配置してなることを特徴
とする。
[0005] An embodiment of the first invention is characterized in that the stirring blade is
It is characterized in that a plurality of stages are provided. In another embodiment, the slit member is provided with a slit in a flat disk,
The width of the slit in the radial direction is a dimension through which the grinding medium does not pass, and the width in the circumferential direction is larger than the width in the radial direction. Another embodiment is characterized in that the stirring blades are arranged such that vertical blades and inclined blades inclined in a direction in which the grinding medium is scraped up are alternately arranged in the vertical direction.

【0006】[0006]

【発明の効果】本発明の粉体処理装置によれば、粉砕媒
体の摩耗及び割れが少なく、長時間連続運転が可能であ
り、またスリット部材や粉砕媒体の摩耗片や破片が処理
物中に混入することがなく、効率的にかつ均一に粉砕処
理が可能である効果を有する。
According to the powder processing apparatus of the present invention, the abrasion and cracking of the pulverizing medium are small, continuous operation is possible for a long time, and the abraded pieces and debris of the slit member and the pulverizing medium are contained in the processed material. There is an effect that the pulverization can be performed efficiently and uniformly without being mixed.

【0007】[0007]

【実施例】以下、本発明の実施例の粉体処理装置を図に
基づいて説明する。 〔装置の構成〕粉体処理装置1は、図1に示すように、
軸線を垂直にして配置された円筒ハウジング2の軸線位
置に回転軸4が設けられる。円筒ハウジング2の側壁は
二重構造であって、冷却用液体6または加熱用液体が入
口管8から供給され、壁間を循環し、出口管10から排
出される。円筒ハウジング2の上部は、処理原料Mを供
給するための供給口12を有する蓋部材14によって蓋
されている。円筒ハウジング2の底部には、粉砕媒体2
1が通過しない大きさのスリットを設けたスリット部材
16が取り付けられている。円筒ハウジング2内の回転
軸4には、複数の垂直撹拌羽根18、傾斜撹拌羽根20
が各々5段ずつ取り付けられている。垂直撹拌羽根18
は、円筒ハウジング2の軸線と平行すなわち垂直に取り
付けられ、傾斜撹拌羽根20は該軸線に対し傾斜して取
付けられている。上から第1段および第3段等の奇数段
目の撹拌羽根は、等間隔に放射方向に複数本例えば5本
の垂直撹拌羽根18が取付けられ、また第2段および第
4段等の偶数段目の撹拌羽根は、等間隔に放射方向に複
数本例えば5本の傾斜撹拌羽根20が取付けられてい
る。傾斜撹拌羽根20の傾斜方向は、回転軸4の駆動回
転によって傾斜撹拌羽根20が処理原料Mを掻き上げる
方向である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A powder processing apparatus according to an embodiment of the present invention will be described below with reference to the drawings. [Structure of Apparatus] As shown in FIG.
The rotating shaft 4 is provided at the axis position of the cylindrical housing 2 arranged with the axis vertical. The side wall of the cylindrical housing 2 has a double structure, and the cooling liquid 6 or the heating liquid is supplied from the inlet pipe 8, circulates between the walls, and is discharged from the outlet pipe 10. The upper part of the cylindrical housing 2 is covered by a cover member 14 having a supply port 12 for supplying the processing raw material M. At the bottom of the cylindrical housing 2, a grinding medium 2
A slit member 16 provided with a slit having a size that does not allow passage of the slit 1 is attached. The rotating shaft 4 in the cylindrical housing 2 has a plurality of vertical stirring blades 18, inclined stirring blades 20.
Are mounted on each of the five stages. Vertical stirring blade 18
Are mounted parallel or perpendicular to the axis of the cylindrical housing 2, and the inclined stirring blades 20 are mounted obliquely with respect to the axis. A plurality of, for example, five vertical stirring blades 18 are radially mounted at equal intervals on the odd-numbered stirring blades such as the first and third stages from the top, and the even-numbered stirring blades such as the second and fourth stages are arranged at equal intervals. A plurality of, for example, five inclined stirring blades 20 are attached at equal intervals in the radial direction to the stirring blades at the stage. The inclination direction of the inclined stirring blade 20 is a direction in which the inclined stirring blade 20 lifts up the processing raw material M by the drive rotation of the rotating shaft 4.

【0008】複数の垂直撹拌羽根18、傾斜撹拌羽根2
0は、互いに入替えられて、すなわち、上から第1段お
よび第3段等の奇数段目の撹拌羽根が、等間隔に放射方
向に複数本例えば5本の傾斜撹拌羽根20が取付けら
れ、また第2段および第4段等の偶数段目の撹拌羽根
は、等間隔に放射方向に複数本例えば5本の垂直撹拌羽
根18が取付けられるように構成してもよい。撹拌羽根
18、20の先端と円筒ハウジング2の内壁との間隔
は、粉砕媒体21がここに詰まることを防ぐため、室温
において粉砕媒体21の直径の2倍ないし16倍とす
る。最下段の撹拌羽根18または20の下端縁部とその
下端縁部がスリット部材16の上面に対し室温において
粉砕媒体21の直径の1.5倍ないし8倍の間隔を置く
ように定められる。すなわち、撹拌羽根18または20
の先端と円筒ハウジング2の内壁との間隔wh mm、及び
最下段の撹拌羽根18、20の下端縁部とスリット部材
16の上面との間隔をwb mm、粉砕媒体の直径をDbmm
とするとき、wh /Db 及びwb /Db を無次元クリア
ランス数と定義すると、無次元クリアランス数wh /D
b は2ないし16、wb /Db は1.5ないし8とす
る。 後述する〔成果1〕によっても明らかなように、
無次元クリアランス数w/Db をこの範囲よりも小さく
すると、粉体処理装置1を長時間作動させた時、撹拌羽
根18、20の先端と円筒ハウジング2の内壁との間、
及び最下段の撹拌羽根18、20の下端縁部とスリット
部材16との間に粉砕媒体21を噛み込む頻度が高くな
り、逆に、無次元クリアランス数wh /Db 及びwb
Dbをこの範囲よりも小さくすると粉砕効率が著しく低
下する問題がある。
A plurality of vertical stirring blades 18 and inclined stirring blades 2
0 are interchanged with each other, that is, odd-numbered stirring blades such as the first and third stages from the top are mounted with a plurality of, for example, five inclined stirring blades 20 at equal intervals in the radial direction. The stirring blades of the even-numbered stages such as the second stage and the fourth stage may be configured such that a plurality of, for example, five vertical stirring blades 18 are attached at equal intervals in the radial direction. The distance between the tips of the stirring blades 18 and 20 and the inner wall of the cylindrical housing 2 is set to 2 to 16 times the diameter of the pulverizing medium 21 at room temperature in order to prevent the pulverizing medium 21 from being clogged here. The lower edge of the lowermost stirring blade 18 or 20 and the lower edge thereof are determined so as to be spaced from the upper surface of the slit member 16 by 1.5 to 8 times the diameter of the pulverizing medium 21 at room temperature. That is, the stirring blade 18 or 20
Interval w h mm, and the distance between the upper surface of the lower end edge portions and the slit member 16 of the lowermost stirring blades 18, 20 w b mm of the tip and the inner wall of the cylindrical housing 2, DBMM the diameter of the grinding media
Where w h / Db and w b / Db are defined as the dimensionless clearance number, the dimensionless clearance number w h / D
b is 2 to 16, w b / Db is 8 to 1.5 to. As is clear from [Result 1] described later,
When the dimensionless clearance number w / Db is smaller than this range, when the powder processing apparatus 1 is operated for a long time, the distance between the tip of the stirring blades 18 and 20 and the inner wall of the cylindrical housing 2 is reduced.
Also, the frequency of biting the grinding medium 21 between the lower end edges of the lowermost stirring blades 18 and 20 and the slit member 16 increases, and conversely, the dimensionless clearance numbers w h / Db and w b /
If Db is smaller than this range, there is a problem that the pulverizing efficiency is significantly reduced.

【0009】スリット部材16の下方には、砕成物シュ
ート24が取付けられている。粉砕処理産物すなわち砕
成物32はこの砕成物シュート24を通じて装置外に排
出される。スリット部材16は、図2に示すように、厚
さ8mmのステンレススチール製円板に螺旋状スリット5
0を設けてなる。スリット50は、スリット部材16の
中心寄りの始点52から、円周寄りの終点54まで、回
転軸4の回転方向と同一方向へ進む螺旋状をなす。スリ
ット50の断面は、図3に示す形状であり、上側スリッ
ト幅Wt(mm)、下側スリット幅Wl (mm)の値を下表
に示す。スリット部材16を補強するため、その裏面に
十字状のステンレススチール製補強材60を溶接する。
スリット50の始点52及び終点54は、補強材60上
にあることが強度の点で好ましい。スリット部材16
は、裏面からウオータジェットでスリット加工し、その
後に補強材60を溶接する。ウオータジェットは、圧力
が数百ないし数千kgf/cm2 の細い水噴流(ウオータージ
ェット)を所定角度で加工表面に向けて噴射し、その衝
撃によって加工物を開孔及び切断する工作機械である。
A crushed material chute 24 is mounted below the slit member 16. The crushed product, that is, the crushed material 32 is discharged out of the apparatus through the crushed material chute 24. As shown in FIG. 2, the slit member 16 is formed on a stainless steel disk having a thickness of 8 mm.
0 is provided. The slit 50 has a spiral shape that advances in the same direction as the rotation direction of the rotating shaft 4 from a starting point 52 near the center of the slit member 16 to an end point 54 near the circumference. The cross section of the slit 50 has the shape shown in FIG. 3, and the values of the upper slit width Wt (mm) and the lower slit width Wl (mm) are shown in the table below. In order to reinforce the slit member 16, a cross-shaped stainless steel reinforcing member 60 is welded to the back surface thereof.
The starting point 52 and the ending point 54 of the slit 50 are preferably on the reinforcing member 60 in terms of strength. Slit member 16
Is formed by slitting with a water jet from the back surface, and then the reinforcing member 60 is welded. A water jet is a machine tool that jets a thin water jet (water jet) having a pressure of several hundred to several thousand kgf / cm 2 toward a processing surface at a predetermined angle, and opens and cuts a workpiece by an impact. .

【0010】粉体処理装置1を包含しこれを有効に作動
させる粉体処理システム100は、図4に示すように、
処理原料Mを収容する処理原料容器105の底部にロー
タリバルブ102を取付け、そこから排出される処理原
料Mを計量機能を有するフィーダ103で貯留し、定量
供給するように構成される。フィーダ103は、上述し
た粉体処理装置1に連結される。粉体処理装置1の砕成
物シュート24は、第1空気搬送部104を介して乾式
強制渦流式空気分級機106に接続される。乾式強制渦
流式空気分級機106の微粉排出口108は、第2空気
搬送部110を介してバグフイルター112に連結され
る。バグフイルター112においては、空気搬送された
砕成物32中の微粉が採取され、清浄空気がブロア11
3によって大気に放出される。乾式強制渦流式空気分級
機106の粗粉排出口120は、第3空気搬送部122
を介して処理原料容器105に連結される。粉体処理装
置1の構成データは次のとうりである。 (1)円筒ハウジング2の寸法 内径: 200mm 内側深さ: 770mm (2)スリット50の寸法 上側スリット幅Wt: 0.5mm 下側スリット幅Wl : 1.0mm (3)撹拌羽根18、20の寸法 垂直方向の幅(高さ):垂直撹拌羽根18・・・42mm 傾斜撹拌羽根20・・・37mm 隣接段の撹拌羽根の中心間隔: 65mm (4)撹拌羽根18、20の回転速度 70〜700rpm (5)粉砕媒体 アルミナ小径ボール、直径1mm、2mm、3mm、10mmの
アルミナ小径ボール アルミナ小径ボールの真比重: 3.60 〔作動〕上述した粉体処理装置1は、水道水を冷却用液
体6として入口管8から供給して円筒ハウジング2の壁
間を循環させ、出口管10から排出させることによっ
て、円筒ハウジング2内の温度制御を行う。一方、粉砕
媒体21を供給口12から供給した後、処理原料Mを同
じく供給口12から供給し、回転軸4を連続的に回転さ
せる。処理原料Mと粉砕媒体21は、円筒ハウジング2
内で撹拌されながら、処理原料Mは粉砕媒体21によっ
て粉砕され、砕成物32だけがスリット部材16のスリ
ット50を通過して砕成物シュート24を通じて装置外
に排出される。必要により、円筒ハウジング2内の温度
を制御するため冷却用液体6の代わりに加熱用液体を使
用する。より効果的に温度制御を行うために、円筒ハウ
ジング2内に冷却ガスまたは加熱ガスを圧入又は吸引す
ることもある。 〔成果1〕上述した粉体処理装置1の一般的特性を調べ
るため、500回の試験を行った。処理原料Mと処理産
物すなわち砕成物の粒度分布測定は、粒度が粗い場合は
乾式フルイを使用し、粒度が細かい場合はレーザ回折式
粒度分布測定装置すなわち株式会社日機装製のマイクロ
トラックSRAまたはSPAを使用した。処理原料M
は、8号けい砂と石灰石の2種類である。処理原料Mの
供給速度は、8号けい砂と石灰石ともに6kg/hであ
る。
A powder processing system 100 including a powder processing apparatus 1 and effectively operating the same, as shown in FIG.
A rotary valve 102 is attached to the bottom of a processing raw material container 105 that stores the processing raw material M, and the processing raw material M discharged therefrom is stored in a feeder 103 having a measuring function, and is supplied in a fixed amount. The feeder 103 is connected to the powder processing device 1 described above. The crushed material chute 24 of the powder processing apparatus 1 is connected to a dry forced vortex air classifier 106 via a first air transport unit 104. The fine powder discharge port 108 of the dry forced vortex air classifier 106 is connected to a bag filter 112 via a second air conveying unit 110. In the bag filter 112, fine powder in the pulverized product 32 conveyed by air is collected, and clean air is
3 to the atmosphere. The coarse powder discharge port 120 of the dry forced vortex air classifier 106 is connected to a third air conveying section 122.
To the processing raw material container 105. The configuration data of the powder processing apparatus 1 is as follows. (1) Dimension of cylindrical housing 2 Inner diameter: 200 mm Inner depth: 770 mm (2) Dimension of slit 50 Upper slit width Wt: 0.5 mm Lower slit width Wl: 1.0 mm (3) Dimensions of stirring blades 18 and 20 Vertical width (height): Vertical stirring blade 18 ··· 42 mm Inclined stirring blade 20 ··· 37 mm Center spacing of stirring blades in adjacent stages: 65 mm (4) Rotation speed of stirring blades 18 and 20 70 to 700 rpm ( 5) Pulverizing medium Small diameter alumina balls, small diameter balls of 1 mm, 2 mm, 3 mm, 10 mm True specific gravity of small alumina balls: 3.60 [Operation] The powder processing apparatus 1 described above uses tap water as the cooling liquid 6. The temperature inside the cylindrical housing 2 is controlled by supplying from the inlet pipe 8 and circulating between the walls of the cylindrical housing 2 and discharging from the outlet pipe 10. On the other hand, after supplying the pulverizing medium 21 from the supply port 12, the processing raw material M is also supplied from the supply port 12, and the rotating shaft 4 is continuously rotated. The processing raw material M and the grinding medium 21 are
While being stirred inside, the processing raw material M is pulverized by the pulverizing medium 21, and only the crushed material 32 passes through the slit 50 of the slit member 16 and is discharged out of the apparatus through the crushed material chute 24. If necessary, a heating liquid is used instead of the cooling liquid 6 to control the temperature inside the cylindrical housing 2. In order to perform temperature control more effectively, a cooling gas or a heating gas may be injected or sucked into the cylindrical housing 2 in some cases. [Outcome 1] 500 tests were performed to examine the general characteristics of the powder processing apparatus 1 described above. The particle size distribution of the processing raw material M and the processed product, that is, the crushed product, is measured by using a dry sieve when the particle size is coarse, and by using a laser diffraction type particle size distribution measuring device when the particle size is fine, that is, Microtrack SRA or SPA manufactured by Nikkiso Co., Ltd. It was used. Processing raw material M
Are two types of silica sand and limestone. The feed rate of the processing raw material M is 6 kg / h for both No. 8 silica sand and limestone.

【0011】横軸に上述した撹拌羽根18、20の先端
と円筒ハウジング2の内壁との間の無次元クリアランス
数wh /Db を取り、縦軸に砕成物32の平均粒子径X
50及び比粉砕エネルギーE(kWh/kg)を取って、
これら上記三者の関係を図5に示す。ここで、比粉砕エ
ネルギーE(kWh/kg)は、処理原料M1kgを所
定の平均粒子径X50に粉砕するために必要な粉体処理装
置の1時間当たりに消費する動力(kWh/kg)と定
義される。図5から明らかなように、wh /Db =10
付近までは、砕成物の平均径X50=1.95μmであ
る。wh /Db がこれ以上に大きくなると、砕成物の平
均径X50も次第に粗くなる。この傾向は比粉砕エネルギ
ーEについても見られるところで、wh /Db =10付
近まではE=0.95kWh/kgの値を保つ。すなわ
ち、粉砕処理のことのみを考えれば、wh /Db =16
以下が好ましい。また、それほど平均径X50の値の小さ
な製品を必要としない場合には、言うまでもなく比粉砕
エネルギーEの値が低い状態で運転を行っても十分に目
的を達する。また、横軸に無次元クリアランス数wh
Db を取り、縦軸に撹拌羽根回転完全度ε(無次元)を
取って、両者の関係を図6に示す。ここで、撹拌羽根回
転完全度εは、攪拌羽根の先端と円筒ハウジングの内面
との間に粉砕媒体が噛み込み、攪拌羽根がまったく回転
しない場合を0とし、噛み込みがなく円滑に回転する場
合を1.0とする。図6から明らかなように、なお、無
次元クリアランス数wh /Db がおおよそ0.8〜2の
範囲では、粉砕媒体が撹拌羽根先端と円筒ハウジング内
壁との間に噛み込まれて回転が不完全になる場合があ
る。wh /Db が約4以上になると回転も完全になる。
すなわち、粉体処理装置1の作動のみを考慮すれば、w
h /Db =2以上である。無次元クリアランス数wh
Db =40.3では、撹拌羽根の長さが零である。
The horizontal axis represents the dimensionless clearance number w h / Db between the tips of the stirring blades 18 and 20 and the inner wall of the cylindrical housing 2, and the vertical axis represents the average particle diameter X of the crushed material 32.
Taking 50 and the specific grinding energy E (kWh / kg),
FIG. 5 shows the relationship between the three. Here, specific grinding energy E (kWh / kg) is the power (kWh / kg) to be consumed per hour of powder processing apparatus required for grinding process material M1kg a predetermined average particle size X 50 Defined. As is apparent from FIG. 5, w h / Db = 10
Up to the vicinity, the average diameter X 50 of the crushed product is 1.95 μm. If w h / Db becomes larger than this, the average diameter X 50 of the crushed material gradually becomes coarse. This trend where is also seen for specific grinding energy E, to near w h / Db = 10 keeps the value of E = 0.95kWh / kg. That is, considering only that the grinding treatment, w h / Db = 16
The following is preferred. When it is not require much smaller product value of the mean diameter X 50 is of course the value of specific grinding energy E reaches a sufficiently purpose be carried out operating at a low state. In addition, the dimensionless clearance number on the horizontal axis w h /
FIG. 6 shows Db, and the vertical axis represents the completeness of rotation of the stirring blades ε (dimensionless). Here, the stirring blade rotation perfection ε is set to 0 when the grinding medium is caught between the tip of the stirring blade and the inner surface of the cylindrical housing and the stirring blade does not rotate at all, and when the stirring blade rotates smoothly without biting. Is set to 1.0. As apparent from FIG. 6, In the range of dimensionless clearance number w h / Db is approximately 0.8 to 2, the rotation crowded with biting between the milling media stirring blade tip and the cylindrical inside wall of the housing not May be complete. rotation and w h / Db is about 4 or more also is complete.
That is, if only the operation of the powder processing apparatus 1 is considered, w
h / Db = 2 or more. Dimensionless clearance number of w h /
When Db = 40.3, the length of the stirring blade is zero.

【0012】一方、最下段の攪拌羽根の下端縁部とスリ
ット部材16上面との無次元クリアランス数wb /Db
については、攪拌羽根の下端縁部とスリット部16上面
との間の粉砕媒体が、攪拌羽根の回転とともに遠心効果
によって外周方向すなわち円筒ハウジング2の内壁側へ
移動し、従って粉砕媒体は、噛み込まれようとしても円
筒ハウジング2の内壁側へ逃げることができるため、粉
砕媒体が噛み込まれ難い。従って、無次元クリアランス
数wb /Db =1.5以上になると円滑に回転するよう
になり、粉砕媒体もスリット部材上を活発に移動し、ス
リット部材の粉砕物による目詰まりを防止する。しか
し、無次元クリアランス数wb /Db が8以上になる
と、スリット部材16上面の摩擦抵抗及び攪拌羽根の回
転力が粉砕媒体に伝達され難くなり、スリット部材の上
面に接している粉砕媒体が殆ど移動しなくなり、スリッ
トが目詰まりし、作動不能となる。 〔成果2〕8号けい砂を6kg/hで供給・粉砕した時
の砕成物の粒度は次のとおりであった。 平均径X50 = 1.61μm 最大径X100 =10.55μm 〔成果3〕8号けい砂を超微粉砕後、乾式強制渦流式空
気分級機で分級し超微粉を生産した例として、8号けい
砂の砕成物を図4に示す乾式強制渦流式空気分級機10
6によって分級した微粉製品の粒度は次のとおりであっ
た。
On the other hand, the dimensionless clearance number w b / Db between the lower edge of the lowermost stirring blade and the upper surface of the slit member 16.
With regard to the above, the crushing medium between the lower edge of the stirring blade and the upper surface of the slit portion 16 moves to the outer circumferential direction, that is, the inner wall side of the cylindrical housing 2 due to the centrifugal effect with the rotation of the stirring blade. Even if it is rare, it can escape to the inner wall side of the cylindrical housing 2, so that the pulverizing medium is hardly caught. Therefore, now rotate smoothly becomes dimensionless clearance number w b / Db = 1.5 or higher, the grinding media also actively move on the slit member, preventing clogging due pulverized slit member. However, when the dimensionless clearance number w b / Db is 8 or more, the rotational force of the frictional resistance and the stirring blade of the slit member 16 top surface is hardly transmitted to the grinding media, grinding media in contact with the upper surface of the slit member is almost It will not move, the slit will be clogged, and it will not work. [Outcome 2] The particle size of the crushed product when No. 8 silica sand was supplied and pulverized at 6 kg / h was as follows. Average diameter X 50 = 1.61 μm Maximum diameter X 100 = 10.55 μm [Result 3] As an example of ultra-fine powder produced by ultra-fine pulverization of silica sand and classification by a dry forced vortex type air classifier, ultra-fine powder is produced. A dry forced vortex type air classifier 10 shown in FIG.
The particle size of the fine powder product classified according to No. 6 was as follows.

【0013】平均径X50 = 0.64μm 最大径X100 = 2.63μm この時の処理原料供給量は6kg/hで、微粉製品の生
産量は1.4kg/hであった。 〔成果4〕JSM−T100(JEOL製)およびS−
2500(日立製作所製)の走査式電子顕微鏡による微
粉砕前後の粒子の電子顕微鏡写真を図7に示す。微粉砕
前の粒子は角ばった形状であるが、本発明の粉体処理装
置により粉砕処理すると、図8に示すように、砕成物は
一般に角のない丸みを帯びた形状になり、このような粒
子形状を希望する粉体の生産に最適である。 〔成果5〕本発明の装置は、粉体の複合化にも有効に適
用できる。 (1) 石灰石と二酸化チタンの複合化例 石灰石を母粒子に、二酸化チタンを子粒子にした場合の
複合化は、 母粒子…石灰石(粒度2μm以下)、配合率80% 子粒子…二酸化チタン(株式会社テイカの製品、製品
名JA−1、平均径X50=0.2〜0.3μm)、配合
率20% 複合化の状態…図9に複合化した粒子の走査式電子顕
微鏡の写真を示す。同図から母粒子の石灰石表面に子粒
子の二酸化チタンが均質に付着し、複合化していること
が分る。 (2) 8号けい砂と二酸化チタンの複合化例 8号けい砂を母粒子に、二酸化チタンを子粒子にした場
合の複合化例は、 母粒子…8号けい砂(平均粒子径X50=83μm)、
配合率80% 子粒子…二酸化チタン(株式会社テイカの製品、製品
名JA−1、平均粒子径X50=0.2〜0.3μm)、
配合率20% 複合化の状態…母粒子の8号けい砂表面に子粒子の二
酸化チタンが図9の場合と同様に均質に付着し、複合化
していた。 〔成果6〕本発明の装置は、粉体の改質のためにも有効
に適用できる。カオリン粉を2kg/hで1パス(1回
通し)および2パス(2回通し)処理した時の処理産物
を、理学電気株式会社製のX線回折装置CN4037A
1[2kW用]による回折の結果を図10に示す。図1
0において、横軸は回折角度2θ〔°〕を示し、縦軸は
X線強度〔CPS〕を示す。図10に示すように、原料
のX線回折線には鋭いピークがあり、整った結晶構造で
あることを示している。一方、処理産物のX線回折線の
ピーク値が低くなり、非晶質(アモルファス)化が進行
している。この傾向は1パス(1回通し)より2パス
(2回通し)の処理産物の方が顕著で、パス回数が増加
するほど非晶質(アモルファス)化が進行している。
Average diameter X 50 = 0.64 μm Maximum diameter X 100 = 2.63 μm At this time, the supply amount of the processing raw material was 6 kg / h, and the production amount of the fine powder product was 1.4 kg / h. [Outcome 4] JSM-T100 (made by JEOL) and S-
FIG. 7 shows electron micrographs of particles before and after pulverization with a scanning electron microscope 2500 (manufactured by Hitachi, Ltd.). The particles before the fine pulverization have a rounded shape. However, when the particles are pulverized by the powder processing apparatus of the present invention, as shown in FIG. 8, the pulverized product generally has a rounded shape without corners. It is most suitable for the production of powders that require a fine particle shape. [Outcome 5] The apparatus of the present invention can be effectively applied to compounding of powder. (1) Example of compounding of limestone and titanium dioxide When limestone is used as the base particles and titanium dioxide is used as the child particles, the compounding is as follows: mother particles: limestone (particle size: 2 μm or less), blending ratio: 80% child particles: titanium dioxide ( A product of Teika Co., Ltd., product name JA-1, average diameter X 50 = 0.2-0.3 μm), compounding ratio 20%, state of compounding: FIG. 9 shows a photograph of a scanning electron microscope of the compounded particles. Show. From the figure, it can be seen that the titanium dioxide of the child particles is uniformly attached to the surface of the limestone of the parent particles, and is composited. (2) Example of compounding of No. 8 silica sand and titanium dioxide A compounding example of using No. 8 silica sand as a base particle and titanium dioxide as a child particle is as follows: Base particles: No. 8 silica sand (average particle diameter X50 = 83 μm),
Blending 80% subparticles ... titanium dioxide (product of Ltd. Taker, product name EN-1, the average particle diameter X 50 = 0.2 to 0.3 [mu] m),
Compounding ratio: 20% Composite state: The titanium dioxide of the child particles uniformly adhered to the surface of the # 8 silica sand of the base particles as in the case of FIG. [Outcome 6] The apparatus of the present invention can be effectively applied to powder modification. The processed product obtained by processing the kaolin powder at 1 kg (1 pass) and 2 passes (2 passes) at 2 kg / h was converted to an X-ray diffractometer CN4037A manufactured by Rigaku Corporation.
FIG. 10 shows the result of diffraction by 1 [for 2 kW]. FIG.
At 0, the horizontal axis indicates the diffraction angle 2θ [°], and the vertical axis indicates the X-ray intensity [CPS]. As shown in FIG. 10, the X-ray diffraction line of the raw material has a sharp peak, indicating that it has a well-defined crystal structure. On the other hand, the peak value of the X-ray diffraction line of the processed product becomes lower, and the product becomes amorphous. This tendency is more remarkable in the processed product in two passes (two passes) than in one pass (one pass), and the more the number of passes increases, the more amorphization (amorphization) progresses.

【0014】カオリンの場合非晶質(アモルファス)化
が進行すると溶解性が高くなる、耐候性が良くなるなど
品質が向上する。この現象は非晶質(アモルファス)化
だけに依存するのではなく、処理中生じるメカノケミカ
ル効果も寄与していると考えられる。いずれにしても、
カオリン粉を本発明の粉体処理装置で処理することによ
って、品質が向上するなどの改質することができ、その
改質進行度合をX線回折結果で判断している。粉体処理
装置による粉体の改質例はカオリン粉だけに止まらず、
各種粉体を同様に処理し、パス回数は異なるが非晶質
(アモルファス)化が進行する、粉体の反応性が良くな
る、吸着性が向上するなど同様の効果を得ている。
[0014] In the case of kaolin, as the amorphous state progresses, the solubility is improved and the weather resistance is improved, and the quality is improved. It is considered that this phenomenon depends not only on the amorphousization but also on the mechanochemical effect generated during the processing. In any case,
By processing the kaolin powder with the powder processing apparatus of the present invention, it is possible to modify the quality, for example, to improve the quality. The degree of the progress of the modification is determined based on the result of X-ray diffraction. Examples of powder modification by powder processing equipment are not limited to kaolin powder,
Various powders are treated in the same manner, and the same effect is obtained, although the number of passes is different, the amorphousization proceeds, the reactivity of the powder is improved, and the adsorptivity is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の粉体処理装置の断面図であ
る。
FIG. 1 is a sectional view of a powder processing apparatus according to an embodiment of the present invention.

【図2】本発明の実施例のスリット部材の平面図であ
る。
FIG. 2 is a plan view of a slit member according to the embodiment of the present invention.

【図3】本発明の実施例のスリット部材の部分断面図で
ある。
FIG. 3 is a partial sectional view of a slit member according to the embodiment of the present invention.

【図4】本発明の実施例の粉体処理装置を包含する粉体
処理システムの構成図である。
FIG. 4 is a configuration diagram of a powder processing system including a powder processing apparatus according to an embodiment of the present invention.

【図5】本発明の粉体処理装置による粉砕の成果を示す
グラフ図である。
FIG. 5 is a graph showing the result of pulverization by the powder processing apparatus of the present invention.

【図6】本発明の粉体処理装置における攪拌羽根回転完
全度を示すグラフ図である。
FIG. 6 is a graph showing the completeness of rotation of a stirring blade in the powder processing apparatus of the present invention.

【図7】処理原料の8号けい砂の粒子形状を示す200
倍の電子顕微鏡写真である。
FIG. 7 shows the particle shape of No. 8 silica sand as a processing raw material.
It is an electron micrograph of the magnification.

【図8】本発明の粉体処理装置によって粉砕した8号け
い砂の粒子形状を示す20000倍の電子顕微鏡写真で
ある。
FIG. 8 is a 20,000 × electron micrograph showing the particle shape of No. 8 silica sand pulverized by the powder processing apparatus of the present invention.

【図9】石灰石を母粒子、二酸化チタンを子粒子として
本発明の粉体処理装置によって複合化した砕成物の構造
を示す10000倍の電子顕微鏡写真である。
FIG. 9 is an electron micrograph (× 10000) showing the structure of a crushed product composited with limestone as base particles and titanium dioxide as child particles by the powder processing apparatus of the present invention.

【図10】カオリン粉を本発明の粉体処理装置によって
改質処理した砕成物のX線回折結果を示すグラフ図であ
る。
FIG. 10 is a graph showing an X-ray diffraction result of a crushed product obtained by modifying kaolin powder by the powder processing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

M 処理原料 1 粉体処理装置 2 円筒ハウジング 4 回転軸 6 冷却用液体 8 入口管 10 出口管 12 供給口 14 蓋部材 16 スリット部材 18 垂直撹拌羽根 20 傾斜撹拌羽根 21 粉砕媒体 24 砕成物シュート 32 砕成物 50 螺旋状スリット 52 始点 54 終点 60 ステンレススチール製補強材 100 粉体処理システム 106 乾式強制渦流式空気分級機 M Processing raw material 1 Powder processing device 2 Cylindrical housing 4 Rotating shaft 6 Cooling liquid 8 Inlet pipe 10 Outlet pipe 12 Supply port 14 Lid member 16 Slit member 18 Vertical stirring blade 20 Inclined stirring blade 21 Grinding medium 24 Crushed material chute 32 Granulated material 50 Spiral slit 52 Start 54 End 60 Stainless steel reinforcement 100 Powder treatment system 106 Dry forced vortex air classifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 学 東京都港区新橋3丁目4番5号 新橋フ ロンティアビル5階 株式会社 ファイ マテック内 (72)発明者 上田 勝己 東京都港区新橋3丁目4番5号 新橋フ ロンティアビル5階 株式会社 ファイ マテック内 (72)発明者 金子 貫太郎 大阪府大阪市西区北堀江1丁目12番19号 株式会社 栗本鉄工所内 (56)参考文献 特開 昭60−122054(JP,A) (58)調査した分野(Int.Cl.6,DB名) B02C 17/00 - 17/24──────────────────────────────────────────────────続 き Continuing on the front page (72) The inventor, Manabu Abe 3-4-5, Shimbashi, Minato-ku, Tokyo 5th floor of Shinbashi Frontier Building Pai Matek Co., Ltd. (72) Katsumi Ueda 3-chome, Shimbashi, Minato-ku, Tokyo No. 4-5 Shinbashi Frontier Building 5th floor Pai Matec Co., Ltd. (72) Inventor Kantaro Kantaro 1-12-19 Kitahorie, Nishi-ku, Osaka-shi, Osaka Kurimoto Iron Works Co., Ltd. (56) References 122054 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) B02C 17/00-17/24

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軸線を垂直にして配置された円筒ハウジ
ングと、粉砕媒体が通過しない大きさのスリットを設け
該円筒ハウジングの底部に配置されたスリット部材と、
該円筒ハウジングの軸線上に配置された回転軸と、該回
転軸に取り付けられた撹拌羽根とを有する粉体処理装置
において、 上記撹拌羽根の先端と円筒ハウジングの内壁との間隔を
h 、粉砕媒体の直径をDb とするとき、 2≦wh /Db ≦16 とすることを特徴とする粉体処理装置。
1. A cylindrical housing arranged with its axis vertical, a slit member provided with a slit having a size through which a pulverizing medium does not pass, and arranged at the bottom of the cylindrical housing,
In a powder processing apparatus having a rotating shaft arranged on the axis of the cylindrical housing and a stirring blade attached to the rotating shaft, the distance between the tip of the stirring blade and the inner wall of the cylindrical housing is set to w h , A powder processing apparatus, wherein when the diameter of the medium is Db, 2 ≦ w h / Db ≦ 16.
【請求項2】 上記撹拌羽根が、複数段設けられている
ことを特徴とする請求項1記載の粉体処理装置。
2. The powder processing apparatus according to claim 1, wherein the stirring blade is provided in a plurality of stages.
【請求項3】 上記撹拌羽根が、垂直な羽根と粉砕媒体
を掻き上げる方向に傾斜した傾斜羽根とを垂直方向に交
互に配置してなることを特徴とする請求項2記載の粉体
処理装置。
3. The powder processing apparatus according to claim 2, wherein the stirring blades are arranged such that vertical blades and inclined blades inclined in a direction in which the grinding medium is scraped up are alternately arranged in the vertical direction. .
【請求項4】 軸線を垂直にして配置された円筒ハウジ
ングと、粉砕媒体が通過しない大きさのスリットを設け
該円筒ハウジングの底部に配置されたスリット部材と、
該円筒ハウジングの軸線上に配置された回転軸と、該回
転軸に複数段をなして取り付けられた撹拌羽根とを有す
る粉体処理装置において、 最下段の上記撹拌羽根の下端縁部と上記スリット部材の
上面との間隔をwb 、粉砕媒体の直径をDb とすると
き、 1.5≦wb /Db ≦8 とすることを特徴とする粉体処理装置。
4. A cylindrical housing arranged with its axis vertical, a slit member provided with a slit having a size through which a grinding medium does not pass, and arranged at the bottom of the cylindrical housing,
In a powder processing apparatus having a rotating shaft disposed on the axis of the cylindrical housing and stirring blades attached to the rotating shaft in a plurality of stages, a lower end edge of the lowermost stirring blade and the slit when the distance between the upper surface of the member to w b, the diameter of the grinding media and Db, powder processing apparatus characterized by a 1.5 ≦ w b / Db ≦ 8 .
【請求項5】 上記撹拌羽根が、複数段設けられている
ことを特徴とする請求項4記載の粉体処理装置。
5. The powder processing apparatus according to claim 4, wherein a plurality of the stirring blades are provided.
【請求項6】 上記スリット部材が、スリットを平面円
板に設け、該スリットの放射方向の幅が上記粉砕媒体が
通過しない寸法であり、円周方向の幅が上記放射方向の
幅より大きいことを特徴とする請求項4記載の粉体処理
装置。
6. The slit member is provided with a slit in a flat disk, the width of the slit in the radial direction is a size that the grinding medium does not pass, and the width in the circumferential direction is larger than the width in the radial direction. The powder processing apparatus according to claim 4, wherein:
【請求項7】 上記撹拌羽根が、垂直な羽根と粉砕媒体
を掻き上げる方向に傾斜した傾斜羽根とを垂直方向に交
互に配置してなることを特徴とする請求項5記載の粉体
処理装置。
7. A powder processing apparatus according to claim 5, wherein said stirring blades are arranged such that vertical blades and inclined blades inclined in a direction in which a grinding medium is lifted are alternately arranged in a vertical direction. .
JP30431694A 1994-11-14 1994-11-14 Powder processing equipment Expired - Fee Related JP2867009B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30431694A JP2867009B2 (en) 1994-11-14 1994-11-14 Powder processing equipment
KR1019950041116A KR960016970A (en) 1994-11-14 1995-11-13 Powder processing apparatus and manufacturing method of slit member used in the apparatus
US08/555,838 US5769338A (en) 1994-11-14 1995-11-13 Pulverulent body processing apparatus and method of manufacturing a slit member to be used for the same
EP95117951A EP0711605A3 (en) 1994-11-14 1995-11-14 Pulverulent body processing apparatus and method of manufacturing a slit member to be used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30431694A JP2867009B2 (en) 1994-11-14 1994-11-14 Powder processing equipment

Publications (2)

Publication Number Publication Date
JPH08131860A JPH08131860A (en) 1996-05-28
JP2867009B2 true JP2867009B2 (en) 1999-03-08

Family

ID=17931565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30431694A Expired - Fee Related JP2867009B2 (en) 1994-11-14 1994-11-14 Powder processing equipment

Country Status (1)

Country Link
JP (1) JP2867009B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012013279A1 (en) 2012-07-05 2014-01-09 Roland Nied Method for operating a stirred ball mill and agitator ball mill therefor

Also Published As

Publication number Publication date
JPH08131860A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
JP5451006B2 (en) Medium stirring powder processing equipment
JP2889340B2 (en) High-speed dry mill
JP5230655B2 (en) Method of processing nepheline syenite powder to produce ultrafine particle size products
CN101282790B (en) Method for increasing efficiency of grinding of ores, minerals and concentrates
JPH05253509A (en) Flowing type medium agitating ultra-fine crusher
JPH0152062B2 (en)
JP3295113B2 (en) Continuous wet grinding machine
US5542615A (en) Pulverizing appratus
CN214320361U (en) Superfine powder grinding preparation device
CN112604777A (en) Superfine powder grinding preparation device and method
US5769338A (en) Pulverulent body processing apparatus and method of manufacturing a slit member to be used for the same
JP2867009B2 (en) Powder processing equipment
JP3447502B2 (en) Grinding method and equipment
CN107838032A (en) A kind of colloid mill funnel
CN113953029B (en) Dry stirring mill and operation method thereof
JPH08131859A (en) Powder treating and production of slit member for this purpose
CN211838326U (en) Calcium oxide evenly stirs rubbing crusher
CN109999964A (en) Dry mix abrasive roller and dry mix grinding system
JP2023511383A (en) Stirred Ball Mill, Stirred Ball Mill Agitation Mechanism, and Method for Pulverizing Ground Material
JP2003062475A (en) Crushing method for solid material, manufacturing method of oxidized crushed material and apparatus therefor
CN107837941A (en) A kind of colloid mill funnel mechanism with clasfficiator
JPH0549045U (en) Dry fine pulverization and classification equipment
CN215963897U (en) Improved Raymond mill device
CN218250681U (en) High-speed stirring mill and grinding machine without grinding media
Szegvari et al. Fine grinding of high-value-added industrial minerals by attrition milling

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees