WO2010024023A1 - 超音波診断装置及び超音波画像表示方法 - Google Patents
超音波診断装置及び超音波画像表示方法 Download PDFInfo
- Publication number
- WO2010024023A1 WO2010024023A1 PCT/JP2009/061276 JP2009061276W WO2010024023A1 WO 2010024023 A1 WO2010024023 A1 WO 2010024023A1 JP 2009061276 W JP2009061276 W JP 2009061276W WO 2010024023 A1 WO2010024023 A1 WO 2010024023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- elastic
- signal frame
- unit
- image
- frame data
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000002604 ultrasonography Methods 0.000 title claims abstract description 16
- 238000013500 data storage Methods 0.000 claims abstract description 30
- 238000004364 calculation method Methods 0.000 claims abstract description 29
- 239000000523 sample Substances 0.000 claims abstract description 25
- 238000010276 construction Methods 0.000 claims abstract description 23
- 238000003745 diagnosis Methods 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 16
- 238000006073 displacement reaction Methods 0.000 description 26
- 238000009877 rendering Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 239000011165 3D composite Substances 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/483—Diagnostic techniques involving the acquisition of a 3D volume of data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/485—Diagnostic techniques involving measuring strain or elastic properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8993—Three dimensional imaging systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52036—Details of receivers using analysis of echo signal for target characterisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52036—Details of receivers using analysis of echo signal for target characterisation
- G01S7/52042—Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
- A61B8/14—Echo-tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4245—Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
- A61B8/4254—Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/4461—Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
- A61B8/466—Displaying means of special interest adapted to display 3D data
Definitions
- the present invention relates to an ultrasonic diagnostic apparatus and an ultrasonic image display method for displaying an elastic image indicating the hardness or softness of a biological tissue of a subject using ultrasonic waves.
- the ultrasonic diagnostic apparatus transmits ultrasonic waves inside the subject using an ultrasonic probe, and constructs and displays, for example, a tomographic image based on a received signal received from a living tissue inside the subject.
- the reception signal received from the living tissue inside the subject is measured by the ultrasonic probe, and the displacement of each part of the living body is obtained from the RF signal frame data of two reception signals having different measurement times.
- An elastic image indicating the elastic modulus of the living tissue is constructed based on the displacement data (for example, Patent Document 1).
- the position sensor that measures the position and tilt of the ultrasound probe simultaneously with the transmission and reception of ultrasound, and generates volume data from position information acquired by the position sensor and a plurality of two-dimensional tomographic images, Displaying a three-dimensional tomographic image is performed (for example, Patent Document 2).
- Patent Document 1 is limited to constructing a two-dimensional elastic image, and does not specifically disclose constructing a three-dimensional elastic image. Therefore, in order to construct a three-dimensional elasticity image, a large amount of calculation and a memory capacity are required, which cannot be realized by extending the technology of the three-dimensional tomographic image construction disclosed in Patent Document 2.
- An object of the present invention is to construct and display a three-dimensional elastic image showing the hardness or softness of a living tissue of a subject.
- an ultrasonic probe that transmits and receives ultrasonic waves to and from a subject using a vibrator, a transmission unit that transmits ultrasonic waves via the ultrasonic probe, and the subject
- a reception unit that receives a reflected echo signal from the receiver, an RF signal frame data storage unit that stores RF signal frame data based on the reflected echo signal received by the reception unit, and at least stored in the RF signal frame data storage unit
- the RF signal frame data selection unit that selects the two RF signal frame data, the elasticity information calculation unit that calculates strain or elastic modulus based on the selected RF signal frame data, and the elasticity information calculation unit
- An elastic image forming unit that forms two-dimensional elastic image data based on strain or elastic modulus, and an elastic volume that generates elastic volume data from the plurality of the two-dimensional elastic image data
- Providing a data creation unit, an ultrasonic diagnostic apparatus characterized in that it comprises a three-dimensional elastic image constructing unit for constructing a 3-dimensional elastic image
- a three-dimensional elastic image showing the hardness or softness of the biological tissue of the subject can be constructed and displayed.
- FIG. 3 is a diagram showing a form for creating two-dimensional elasticity image data according to the first embodiment of the present invention.
- FIG. 3 is a diagram showing a form for creating two-dimensional elasticity image data according to the first embodiment of the present invention.
- FIG. 3 is a diagram showing a form for creating two-dimensional elasticity image data according to the first embodiment of the present invention.
- FIG. 10 is a diagram showing a form for creating two-dimensional elasticity image data according to a sixth embodiment of the present invention.
- the ultrasonic diagnostic apparatus includes an ultrasonic probe 2 that is used while being in contact with the subject 1, and a repetition of the subject 1 via the ultrasonic probe 2 at time intervals.
- Transmitter 3 for transmitting ultrasonic waves
- receiver 4 for receiving time-series reflected echo signals generated from subject 1
- ultrasonic transmission / reception control for controlling transmission and reception between transmitter 3 and receiver 4
- a phasing addition unit 6 for phasing and adding the reflected echo signals received by the reception unit 4.
- the ultrasonic probe 2 is formed by arranging a plurality of transducers, and has a function of transmitting / receiving ultrasonic waves to / from the subject 1 via the transducers.
- the ultrasonic probe 2 can transmit and receive ultrasonic waves by mechanically swinging the transducers in a direction orthogonal to the arrangement direction of a plurality of transducers having a rectangular or fan shape.
- the ultrasonic probe 2 has a position sensor that measures the tilt of the vibrator simultaneously with transmission / reception of the ultrasonic wave, and outputs the tilt of the vibrator as a frame number.
- the ultrasonic probe 2 may be one in which a plurality of transducers are two-dimensionally arranged and the ultrasonic transmission / reception direction can be electronically controlled.
- the ultrasonic probe 2 mechanically or electronically shakes and transmits / receives ultrasonic waves in a direction orthogonal to the arrangement direction of a plurality of rectangular or fan-shaped transducers that transmit / receive ultrasonic waves.
- the transmission unit 3 generates a transmission pulse for driving the transducer of the ultrasonic probe 2 to generate an ultrasonic wave.
- the transmission unit 3 has a function of setting a convergence point of transmitted ultrasonic waves to a certain depth.
- the receiving unit 4 amplifies the reflected echo signal received by the ultrasonic probe 2 with a predetermined gain to generate an RF signal, that is, a received signal.
- the ultrasonic transmission / reception control unit 5 is for controlling the transmission unit 3 and the reception unit 4.
- the phasing / adding unit 6 inputs the RF signal amplified by the receiving unit 4 and performs phase control, and forms an ultrasonic beam at one or a plurality of convergence points to generate RF signal frame data.
- the tomographic image construction unit 7 receives the RF signal frame data from the phasing addition unit 6 and performs signal processing such as gain correction, log compression, detection, contour enhancement, and filter processing to obtain tomographic image data. . Further, the monochrome scan converter 8 performs coordinate system conversion of the tomographic image data in order to display the tomographic image data synchronized with the ultrasonic scanning by the scanning method of the image display unit 13.
- the two-dimensional tomographic image storage unit 9 stores the tomographic image data output from the monochrome scan converter 8 together with the frame number.
- the transducer is mechanically shaken in a direction orthogonal to the arrangement direction of a plurality of transducers that form a rectangle or a sector, and ultrasonic waves are transmitted and received.
- the tomographic image data is acquired.
- FIG. 2 (a) is a diagram showing that the two-dimensional tomographic image data is regarded as one line in the frame direction and the tomographic image data is acquired three-dimensionally.
- FIG. 2 (b) is a diagram showing that the two-dimensional tomographic image data is acquired three-dimensionally.
- the frame number associates the position (tilt) of a plurality of transducers with tomographic image data.
- the first frame number in the scan in the A direction is “1”, and the last frame number is “n”.
- the tomographic image data with the frame number “1” is first stored in the two-dimensional tomographic image storage unit 9, and then the tomographic image data with the frame number “2” is stored in the two-dimensional tomographic image storage unit 9. Finally, the tomographic image data of the frame number “n” is stored in the two-dimensional tomographic image storage unit 9.
- the first frame number in the scan in the B direction is set to “n”
- the last frame number is set to “1”
- the tomographic image data is stored in the two-dimensional tomographic image storage unit 9.
- the monochrome volume data creation unit 10 reads the tomographic image data for n frames stored in the two-dimensional tomographic image storage unit 9, and creates the monochrome volume data by arranging them sequentially for each scan plane. In this way, monochrome volume data for rendering, which is a set of tomographic image data in the subject, is configured.
- the black and white 3D tomographic image construction unit 11 reads the black and white volume data from the black and white volume data creation unit 10 and projects the black and white volume data onto a plane to form a black and white 3D tomographic image. Specifically, the monochrome three-dimensional tomographic image construction unit 11 obtains image information of each point from the luminance value and opacity corresponding to each point (coordinate) of the monochrome volume data. Then, for example, a monochrome three-dimensional tomographic image is constructed using a volume rendering method that calculates the brightness value and opacity of the monochrome volume data in the line-of-sight direction in the depth direction and gives light and shade according to the following equation.
- ⁇ outi Output of i-th opacity
- ⁇ ini Input of i-th opacity
- ⁇ i Output of i-th opacity
- C outi Output of i-th brightness value
- C ini Input of i-th brightness value
- C i I-th luminance value
- a monochrome three-dimensional tomographic image is constructed using the volume rendering method.
- a surface rendering method that gives light and shade according to the inclination angle formed by the image of each point with respect to the surface corresponding to the viewpoint position, and the viewpoint You may use the voxel method which gives a light / dark according to the depth of the target object seen from the position.
- a black and white 3D tomographic image and a color 3D elastic image which will be described later, are combined, displayed in parallel, or switched, and a switching composition unit 12; a black and white 3D tomographic image, a color 3D elastic image, a black and white 3D
- An image display unit 13 that displays a combined image obtained by combining the tomographic image and the color three-dimensional elasticity image is provided.
- the ultrasonic diagnostic apparatus includes an RF signal frame data storage unit 20 that stores the RF signal frame data output from the phasing addition unit 6, and at least two RF signals stored in the RF signal frame data storage unit 20.
- the RF signal frame data selection unit 21 for selecting signal frame data From the RF signal frame data selection unit 21 for selecting signal frame data, the displacement calculation unit 22 for measuring the displacement of the living tissue of the subject 1 from the two RF signal frame data, and the displacement information measured by the displacement calculation unit 22
- An elastic information calculation unit 23 for obtaining elastic information such as strain or elastic modulus, an elastic image configuration unit 24 that constitutes two-dimensional elastic image data from the strain or elastic modulus calculated by the elastic information calculation unit 23, and an elastic image configuration unit 24 Is provided with an elastic scan converter 25 that performs coordinate system conversion for displaying the two-dimensional elastic image data output from the image display unit 13 using the scanning method.
- a two-dimensional elastic image storage unit 26 that further stores two-dimensional elastic image data output from the elastic scan converter 25, and an elastic volume data generation unit that generates elastic volume data from a plurality of two-dimensional elastic image data 27 and a three-dimensional elastic image constructing unit 28 for constructing a color three-dimensional elastic image from the elastic volume data.
- the ultrasonic diagnostic apparatus includes a control unit 31 that controls each component and an input unit 30 that performs various inputs to the control unit 31.
- the input unit 30 includes a keyboard, a trackball, and the like.
- the RF signal frame data storage unit 20 sequentially stores the RF signal frame data generated from the phasing addition unit 6 in time series.
- 3 and 4 are diagrams showing details of the RF signal frame data storage unit 20.
- the RF signal frame data storage unit 20 includes a storage medium 200 that stores RF signal frame data related to scanning in the A direction, and a storage medium 201 that stores RF signal frame data related to scanning in the B direction. ing.
- Fig. 3 (a) shows the relationship between the RF signal frame data and the frame number in the scan in the A direction
- Fig. 3 (c) associates the RF signal frame data in the A direction scan with the frame number
- 2 shows a storage form of the storage medium 200 of the RF signal frame data storage unit 20 to be stored
- Fig. 3 (b) shows the relationship between the RF signal frame data and the frame number in the scan in the B direction
- Fig. 3 (d) associates the RF signal frame data in the B direction scan with the frame number.
- 2 shows a form of another storage medium 201 of the RF signal frame data storage unit 20 to be stored.
- the storage medium 200 stores the RF signal frame data with “1” as the first frame number in the scan in the A direction and “n” as the last frame number. Specifically, the RF signal frame data with the frame number “1” in the scan in the A direction is first stored in the storage medium 200, and then the RF signal frame data with the frame number “2” is stored in the storage medium 200. . Finally, the RF signal frame data of frame number “n” is stored in the storage medium 200.
- the storage medium 201 stores the RF signal frame data with “n” as the first frame number in the scan in the B direction and “1” as the last frame number. Specifically, the RF signal frame data of frame number “n” in the scan in the B direction is first stored in the storage medium 201, and then the RF signal frame data of frame number “n ⁇ 1” is stored in the storage medium 201. Is done. Finally, the RF signal frame data with the frame number “1” is stored in the storage medium 201.
- the RF signal frame data storage unit 20 includes the two storage media 200 and 201.
- the RF signal frame data may be distributed and stored in one storage medium.
- the RF signal frame data selection unit 21 selects the RF signal frame data of the frame number “N” stored in the storage medium 200 of the RF signal frame data storage unit 20.
- N is an integer of 1 to n. Then, the RF signal frame data selection unit 21 has the same frame number “N” as the RF signal frame data read from the storage medium 200, and the RF signal frame data of the frame number “N” stored in the storage medium 201. Select.
- the displacement measuring unit 22 performs one-dimensional or two-dimensional correlation processing from the selected RF signal frame data of the frame number “N”, and the displacement or movement vector in the biological tissue corresponding to each point of the RF signal frame data. That is, a one-dimensional or two-dimensional displacement distribution regarding the direction and magnitude of the displacement is obtained.
- a block matching method is used to detect the movement vector.
- the block matching method divides an image into blocks consisting of, for example, M ⁇ M pixels, focuses on the block in the region of interest, searches the previous frame for the block that most closely matches the block of interest, and refers to this Then, predictive coding, that is, processing for determining the sample value by the difference is performed.
- the elasticity information calculation unit 23 is a strain of the living tissue corresponding to each point (coordinate) on the image from the measurement value output from the displacement measurement unit 22, for example, the movement vector and the pressure value output from the pressure measurement unit 26. And elastic modulus is calculated to generate elasticity information. At this time, the distortion is calculated by spatially differentiating the movement amount of the living tissue, for example, the displacement. Further, when the elastic modulus is calculated by the elastic information calculation unit 23, the pressure information acquired by the pressure measurement unit 29 connected to the pressure sensor (not shown) of the ultrasonic probe 2 is sent to the elastic information calculation unit 23. Output. The elastic modulus is calculated by dividing the change in pressure by the change in strain.
- the Young's modulus is a ratio of a simple tensile stress applied to the object and a strain generated in parallel with the tension.
- the elasticity image constructing unit 24 performs various image processing such as smoothing processing in the coordinate plane, contrast optimization processing, and smoothing processing in the time axis direction between frames for the calculated elasticity value (strain, elasticity modulus, etc.). To construct two-dimensional elasticity image data.
- the elastic scan converter 25 has a function of performing coordinate system conversion for displaying the two-dimensional elastic image data output from the elastic image construction unit 24 by the scanning method of the image display unit 13.
- the two-dimensional elastic image storage unit 26 stores the two-dimensional elastic image data together with the frame number “N”.
- the RF signal frame data selection unit 21 has the same frame numbers “1” to “n” stored in the storage medium 200 and the storage medium 201 of the RF signal frame data storage unit 20.
- Each of the RF signal frame data is selected, and as described above, a series of processing is performed in the displacement measurement unit 22, the elasticity information calculation unit 23, the elasticity image construction unit 24, and the elasticity scan converter 25.
- the two-dimensional elastic image storage unit 26 stores two-dimensional elastic image data of a series of frame numbers “1” to “n”.
- FIG. 5 shows a form of creating two-dimensional elastic image data of frame numbers “1” to “n”.
- 5 (a) and 5 (b) show a mode in which RF signal frame data of frame numbers “1” to “n” in the A direction and the B direction are read from the storage medium 200 and the storage medium 201.
- (d) shows a state in which the two-dimensional elastic image data of the frame numbers “1” to “n” is stored in the two-dimensional elastic image storage unit 26.
- the two-dimensional elasticity image data of frame numbers “1” to “n” is stored in the two-dimensional elasticity image storage unit 26.
- the elastic volume data creation unit 27 creates elastic volume data from a plurality of two-dimensional elastic image data.
- the two-dimensional elastic image data for n frames stored in the two-dimensional elastic image storage unit 26 is read out and arranged in order for each scan plane to generate elastic volume data.
- elastic volume data for rendering which is a set of two-dimensional elastic image data in the subject, is configured.
- the three-dimensional elasticity image constructing unit 28 obtains image information of each point from the elasticity value (one of strain, elastic modulus, etc.) corresponding to each point of the elastic volume data and opacity, and constructs a three-dimensional elasticity image. To do.
- a three-dimensional elasticity image is constructed using a volume rendering method that calculates the elasticity value of the elasticity volume data in the line-of-sight direction in the depth direction according to the following equation.
- the line-of-sight direction is the same as the line-of-sight direction in the volume rendering process or the like of the black and white three-dimensional tomographic image construction unit 11.
- the three-dimensional elastic image construction unit 28 assigns three primary colors of light, that is, a red (R) value, a green (G) value, and a blue (B) value, to image information constituting the three-dimensional elastic image.
- the three-dimensional elastic image forming unit 28 gives a red code to a portion where the strain is large compared to the surroundings or a portion where the elastic modulus is small, and applies a blue code to a portion where the distortion is small or the elastic modulus is large compared to the surroundings. Processing such as granting is performed.
- the switching composition unit 12 includes an image memory, an image processing unit, and an image selection unit.
- the image memory stores the black and white 3D tomographic image output from the black and white 3D tomographic image construction unit 11 and the color 3D elastic image output from the 3D elastic image construction unit 28 together with time information. is there.
- the image processing unit synthesizes the black and white 3D tomographic image data and the color 3D elastic image data secured in the image memory by changing the synthesis ratio.
- the image processing unit reads black and white 3D tomographic image data and color 3D elastic image data at the same viewpoint position from the image memory.
- the image processing unit synthesizes the black and white 3D tomographic image data and the color 3D elastic image data, but the black and white 3D tomographic image data and the color 3D elastic image data are image data after volume rendering processing or the like. In effect, each is added two-dimensionally.
- the red (R) value, the green (G) value, the blue (B) value of the color 3D elastic image data, and the monochrome 3D tomographic image data are added.
- ⁇ is a coefficient not less than 0 and not more than 1, and can be arbitrarily set by the input unit 30.
- the image selection unit selects an image to be displayed on the image display unit 10 from black and white 3D tomographic image data, color 3D elastic image data in the volume memory, and composite image data of the image processing unit.
- the image display unit 13 displays the composite image, the monochrome three-dimensional tomographic image, or the color three-dimensional elastic image combined by the switching combining unit 12 in parallel.
- a three-dimensional elastic image showing the hardness or softness of the biological tissue of the subject can be constructed and displayed.
- FIG. 1 (Second embodiment: Co-directional correlation) Next, a second embodiment will be described with reference to FIGS. 1 and 6 to 8.
- FIG. The difference from the first embodiment is that two-dimensional elastic image data is created using RF signal frame data in scanning in the same direction.
- FIG. 6 shows an example of a storage medium 200 and a storage medium 202 for storing RF signal frame data in the scan in the A direction. Since the storage forms of the storage media 200 to 203 are the same as those in the first embodiment, description thereof is omitted here.
- the RF signal frame data storage unit 20 includes a storage medium 200 and a storage medium 202 for storing RF signal frame data in the scan in the A direction, and an RF signal frame in the scan in the B direction.
- a storage medium 201 for storing data and a storage medium 203 are provided.
- the storage medium 202 stores RF signal frame data of frame numbers “1” to “n” in the next scan in the A direction stored in the storage medium 200.
- the storage medium 203 stores RF signal frame data of frame numbers “1” to “n” in the next B-direction scan stored in the storage medium 201.
- FIG. 8 shows a form in which two-dimensional elastic image data of frame numbers “1” to “n” is created.
- RF signal frame data of frame numbers “1” to “n” in the A direction are read from the storage medium 200 and the storage medium 202.
- the RF signal frame data selection unit 21 uses the same frame numbers “1” to “n” stored in the storage medium 200 and the storage medium 202 of the RF signal frame data storage unit 20. Each RF signal frame data is selected.
- the two-dimensional elasticity image data is configured through the displacement measurement unit 22, the elasticity information calculation unit 23, the elasticity image configuration unit 24, and the elasticity scan converter 25.
- the two-dimensional elastic image storage unit 26 stores two-dimensional elastic image data of a series of frame numbers “1” to “n” as shown in FIG. 8 (e).
- RF signal frame data of frame numbers “1” to “n” in the B direction is read from the storage medium 201 and the storage medium 203.
- the RF signal frame data selection unit 21 uses the same frame numbers “1” to “n” stored in the storage medium 201 and the storage medium 203 of the RF signal frame data storage unit 20. Each RF signal frame data is selected.
- the two-dimensional elasticity image data is configured through the displacement measurement unit 22, the elasticity information calculation unit 23, the elasticity image configuration unit 24, and the elasticity scan converter 25.
- the two-dimensional elastic image storage unit 26 stores two-dimensional elastic image data of a series of frame numbers “1” to “n” as shown in FIG. 8 (f).
- the elastic volume data creating unit 27 creates elastic volume data from a plurality of two-dimensional elastic image data.
- the two-dimensional elastic image data for n frames stored in the two-dimensional elastic image storage unit 26 is read out and arranged in order for each scan plane to generate elastic volume data.
- elastic volume data for rendering which is a set of two-dimensional elastic image data in the subject, is configured.
- the three-dimensional elasticity image construction unit 28 obtains image information of each point from the elasticity value (any one of strain, elastic modulus, etc.) corresponding to each point of the elastic volume data and opacity, and obtains the three-dimensional elasticity image. Configure. Note that the details of the three-dimensional elastic image construction unit 28 are the same as those in the first embodiment, and thus the description thereof is omitted here.
- a three-dimensional elastic image showing the hardness or softness of the biological tissue of the subject can be constructed and displayed.
- the RF signal frame data storage unit 20 includes a storage medium 200 for storing RF signal frame data in the scan in the A direction.
- the RF signal frame data with the frame number “1” in the scan in the A direction is first stored in the storage medium 200, and then the RF signal frame data with the frame number “2” is stored in the storage medium 200. Finally, the RF signal frame data of the frame number “n” is stored in the storage medium 200.
- new RF signal frame data in the next scan in the A direction is directly output from the phasing adder 6 to the RF signal frame data selector 21.
- the RF signal frame data selection unit 21 outputs the RF signal frame data of the same frame numbers “1” to “n” as the RF signal frame data of the frame numbers “1” to “n” newly output from the phasing addition unit 6. Are read from the storage medium 200, respectively. Then, the RF signal frame data read from the storage medium 200 to the RF signal frame data selection unit 21 is replaced with new RF signal frame data and stored in the storage medium 200.
- the two-dimensional elastic image storage unit 26 stores two-dimensional elastic image data of a series of frame numbers “1” to “n”.
- the elastic volume data creation unit 27 creates elastic volume data from a plurality of two-dimensional elastic images.
- the two-dimensional elastic image data for n frames stored in the two-dimensional elastic image storage unit 26 is read out and arranged in order for each scan plane to generate elastic volume data.
- elastic volume data for rendering which is a set of two-dimensional elastic image data in the subject, is configured.
- the three-dimensional elasticity image construction unit 28 obtains image information of each point from the elasticity value (any one of strain, elastic modulus, etc.) corresponding to each point of the elastic volume data and opacity, and obtains the three-dimensional elasticity image. Configure. Note that the details of the three-dimensional elastic image construction unit 28 are the same as those in the first embodiment, and thus the description thereof is omitted here.
- the capacity of the RF signal frame data storage unit can be reduced, and a three-dimensional elastic image showing the hardness or softness of the biological tissue of the subject can be constructed and displayed.
- the ultrasonic diagnostic apparatus includes an ultrasonic probe 2 that is used in contact with the subject 1, and the subject 1 is repeatedly passed through the ultrasonic probe 2 at time intervals.
- a transmitter 3 for transmitting ultrasonic waves
- a receiver 4 for receiving time-series reflected echo signals generated from the subject 1
- an ultrasonic transmission / reception controller 5 for switching between transmission and reception of the transmitter 3 and the receiver 4
- a phasing addition unit 6 for phasing and adding the reflected echo signals received by the reception unit 4.
- the detailed configuration is the same as that of the first embodiment.
- the tomographic image construction unit 7 receives the RF signal frame data from the phasing addition unit 6 and performs signal processing such as gain correction, log compression, detection, contour enhancement, and filter processing to obtain tomographic image data. .
- the tomographic volume data creating unit 40 creates tomographic volume data by arranging the tomographic image data in the scan direction in correspondence with the frame numbers “1” to “n”.
- the tomographic volume scan converter 42 performs coordinate system conversion of the tomographic image volume data in order to display the tomographic volume data synchronized with the ultrasonic scanning by the scanning method of the image display unit 13.
- the ultrasonic diagnostic apparatus includes an RF signal frame data storage unit 20 that stores the RF signal frame data output from the phasing addition unit 6, and at least two RF signals stored in the RF signal frame data storage unit 20.
- the RF signal frame data selection unit 21 for selecting signal frame data the displacement calculation unit 22 for measuring the displacement of the living tissue of the subject 1 from the two RF signal frame data, and the displacement information measured by the displacement calculation unit 22
- Elastic information calculation unit 23 for obtaining elastic information such as strain or elastic modulus
- elastic image construction unit 24 that constitutes two-dimensional elastic image data from the strain or elastic modulus calculated by elastic information calculation unit 23, and two-dimensional elastic image data
- an elastic volume data generating unit 41 that generates elastic volume data from the above
- an elastic volume scan converter 48 that performs coordinate system conversion of the elastic volume data.
- the detailed configuration other than the elastic volume data creation unit 41 and the elastic volume scan converter 48 is the same as that of the first embodiment.
- the elastic volume data creating unit 46 creates 3D elastic volume data by arranging 2D elastic image data in the scanning direction in correspondence with the frame numbers “1” to “n”.
- the elastic volume scan converter 48 performs coordinate system conversion of the elastic volume data in order to display the elastic volume data synchronized with the ultrasonic scanning by the scanning method of the image display unit 13.
- the switching composition unit 44 includes a volume memory and an image processing unit.
- the volume memory stores tomographic volume data output from the tomographic volume scan converter 42 and elastic volume data output from the elastic volume scan converter 48 together with time information.
- the image processing unit synthesizes tomographic volume data and elastic volume data secured in the volume memory for each coordinate. Further, the image processing unit performs volume rendering on the synthesized volume data. Specifically, the image processing unit obtains image information of each point from the opacity, luminance value, and elasticity value corresponding to each point of the composite volume data.
- the image processing unit assigns three primary colors of light, that is, a red (R) value, a green (G) value, and a blue (B) value, to the elastic volume data.
- the image processing unit for example, gives a red code to a place where the strain is large compared to the surrounding area or a place where the elastic modulus is small, and gives a blue code to a place where the strain is small or a place where the elastic modulus is large.
- the image display unit 13 displays the colored composite image. According to this embodiment, a three-dimensional elasticity image can be constructed and displayed.
- the three-dimensional elastic image construction unit 28 adjusts the opacity of the elastic volume data when obtaining the image information of each point from the elasticity value and opacity corresponding to each point of the elastic volume data. Specifically, in the present embodiment, the opacity is increased in a hard portion of elastic volume data having a smaller distortion or a larger elastic modulus (for example, 300 kPa or more) than the surroundings.
- the three-dimensional elasticity image constructing unit 28 constructs a three-dimensional elasticity image by using a volume rendering method that calculates the elasticity value of the elastic volume data in the line-of-sight direction in the depth direction, for example, according to the following formula.
- ⁇ is a value that varies according to strain or elastic modulus.
- ⁇ is a value that is inversely proportional to the strain and proportional to the elastic modulus.
- processing is performed in the same manner as in the first embodiment, and the switching composition unit 12 synthesizes the black and white 3D tomographic image data and the color 3D elastic image data secured in the image memory by changing the composition ratio,
- the composite image is displayed on the display unit 13.
- the image display unit 13 displays the synthesized image, the black and white three-dimensional tomographic image, or the color three-dimensional elasticity image synthesized by the switching synthesis unit 12.
- the tumor or the like can be displayed with emphasis.
- the storage medium 206 stores a predetermined range of RF signal frame data in the scan in the A direction.
- the storage medium 206 stores the RF signal frame data between “a” as the first frame number and “a + b” as the last frame number.
- “A” and “a + b” are integers of 1 to n.
- the storage medium 207 stores RF signal frame data in a predetermined range with “a + b” as the first frame number in the scan in the B direction and “a” as the last frame number.
- the RF signal frame data selection unit 21 selects the RF signal frame data of the same frame numbers “a” to “a + b” stored in the storage medium 206 and the storage medium 207 of the RF signal frame data storage unit 20, respectively, and As described above, a series of processing is performed in the displacement measurement unit 22, the elasticity information calculation unit 23, the elasticity image construction unit 24, and the elasticity scan converter 25. Since these processes are the same as those in the first embodiment, description thereof is omitted here.
- the 2D elastic image storage unit 26 stores 2D elastic image data of frame numbers “a” to “a + b”.
- FIG. 12 shows a form in which two-dimensional elastic image data of frame numbers “a” to “a + b” is created.
- 12 (a) and 12 (b) show a form in which RF signal frame data of frame numbers “a” to “a + b” in the A direction and the B direction are read from the storage medium 205 and the storage medium 206.
- (d) shows a state in which the two-dimensional elastic image data of the frame numbers “a” to “a + b” is stored in the two-dimensional elastic image storage unit 26.
- the two-dimensional elasticity image data of frame numbers “a” to “a + b” is stored in the two-dimensional elasticity image storage unit 26.
- the elastic volume data creation unit 27 creates elastic volume data from a plurality of two-dimensional elastic images.
- the two-dimensional elastic image data for b frames stored in the two-dimensional elastic image storage unit 26 is read out and arranged in order for each scan plane to generate elastic volume data.
- elastic volume data for rendering which is a set of two-dimensional elastic image data in the subject, is configured.
- the three-dimensional elastic image construction unit 28 obtains image information of each point from the elasticity value and opacity corresponding to each point of the elastic volume data. Then, the three-dimensional elastic image constructing unit 28 constructs a three-dimensional elastic image by using a volume rendering method that calculates the elastic value of the elastic volume data in the visual line direction in the depth direction.
- the image memory of the switching synthesizer 12 includes black and white 3D tomographic images with frame numbers “1” to “n” output from the black and white 3D tomographic image forming unit 11 and frame numbers output from the 3D elastic image forming unit 28.
- a color three-dimensional elastic image of “a” to “a + b” is stored together with time information.
- the image processing unit combines black and white 3D tomographic image data and color 3D elastic image data secured in the image memory by changing the combining ratio in the range of frame numbers “a” to “a + b”.
- the image display unit 13 displays the synthesized image synthesized by the switching synthesis unit 12.
- the frame numbers “a” to “a + b” can be arbitrarily set by the input unit 30.
- the amount of elastic calculation can be reduced by partially forming a color three-dimensional elastic image.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- General Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Acoustics & Sound (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
本発明を適用してなる超音波診断装置について、図1を用いて説明する。図1に示すように、超音波診断装置には、被検体1に当接させて用いる超音波探触子2と、超音波探触子2を介して被検体1に時間間隔をおいて繰り返し超音波を送信する送信部3と、被検体1から発生する時系列の反射エコー信号を受信する受信部4と、送信部3と受信部4の送信と受信を切り換える制御を行なう超音波送受信制御部5と、受信部4で受信された反射エコー信号を整相加算する整相加算部6とが備えられている。
2次元弾性画像記憶部26は、一連のフレームナンバー“1”~“n”の2次元弾性画像データを記憶する。図5は、フレームナンバー“1”~“n”の2次元弾性画像データを作成する形態を示すものである。図5(a)(b)は、A方向及びB方向におけるフレームナンバー“1”~“n”のRF信号フレームデータが記憶媒体200と記憶媒体201から読み出される形態を示すものであり、図5(d)は、フレームナンバー“1”~“n”の2次元弾性画像データが2次元弾性画像記憶部26に記憶された状態を示すものである。
切換合成部12は、画像メモリと、画像処理部と、画像選択部とを備えて構成されている。ここで、画像メモリは、白黒3次元断層画像構成部11から出力される白黒3次元断層画像と3次元弾性画像構成部28から出力されるカラー3次元弾性画像とを時間情報とともに格納するものである。
画像表示部13は、切換合成部12で合成された合成画像、白黒3次元断層画像又はカラー3次元弾性画像を並列に表示する。
次に第2の実施形態について図1、図6~図8を用いて説明する。第1の実施形態と異なる点は、同方向のスキャンにおけるRF信号フレームデータを用いて2次元弾性画像データを作成する点である。
次に第3の実施形態について図1、9を用いて説明する。第1の実施形態、第2の実施形態と異なる点は、RF信号フレームデータ記憶部20は1つの記憶媒体を有している点である。
次に第4の実施形態について図10を用いて説明する。第1の実施形態~第3の実施形態と異なる点は、断層ボリュームデータと弾性ボリュームデータから3次元合成画像を構成する点である。
本実施形態によれば、3次元弾性画像を構成し、表示することができる。
次に第5の実施形態について図1を用いて説明する。第1の実施形態~第4の実施形態と異なる点は、不透明度を調整する点である。
次に第6の実施形態について図1、図11、12を用いて説明する。第1の実施形態~第5の実施形態と異なる点は、部分的にカラー3次元弾性画像を構成する点である。
Claims (15)
- 超音波を送受信する振動子を有する超音波探触子と、
前記超音波探触子を介して被検体に超音波を送信する送信部と、
前記被検体からの反射エコー信号を受信する受信部と、
該受信部により受信された反射エコー信号に基づくRF信号フレームデータを記憶するRF信号フレームデータ記憶部と、
RF信号フレームデータ記憶部に記憶された少なくとも2つの前記RF信号フレームデータを選択するRF信号フレームデータ選択部と、
選択されたRF信号フレームデータに基づいて、歪み又は弾性率を演算する弾性情報演算部と、
前記弾性情報演算部により求めた歪み又は弾性率に基づいて2次元弾性画像データを構成する弾性画像構成部と、
複数の前記2次元弾性画像データから弾性ボリュームデータを作成する弾性ボリュームデータ作成部と、
前記弾性ボリュームデータ作成部によって作成された前記弾性ボリュームデータから3次元弾性画像を構成する3次元弾性画像構成部とを備えることを特徴とする超音波診断装置。 - 前記超音波探触子は、矩形又は扇形をなす複数の振動子の配列方向と直交する方向に振動子が傾くように構成されていることを特徴とする請求項1記載の超音波診断装置。
- 前記超音波探触子は、前記振動子の傾きを計測する位置センサを有し、前記振動子の傾きをフレームナンバーとして出力することを特徴とする請求項2記載の超音波診断装置。
- 前記RF信号フレームデータ記憶部は、一方向にスキャンされる一連のRF信号フレームデータを前記振動子の傾きに対応付けられたフレームナンバーとともに記憶する記憶媒体を備えることを特徴とする請求項1記載の超音波診断装置。
- 新たに一方向にスキャンが行なわれた場合、前記記憶媒体に記憶された前記RF信号フレームデータは新たにスキャンされたRF信号フレームデータに書き換えられることを特徴とする請求項4記載の超音波診断装置。
- 前記RF信号フレームデータ選択部は、同じ前記フレームナンバーのRF信号フレームデータを前記RF信号フレームデータ記憶部から出力して選択することを特徴とする請求項4記載の超音波診断装置。
- 前記RF信号フレームデータ選択部は、異なる方向のスキャンにおける2つのRF信号フレームデータを選択することを特徴とする請求項4記載の超音波診断装置。
- 前記RF信号フレームデータ選択部は、同方向のスキャンにおける2つのRF信号フレームデータを選択することを特徴とする請求項4記載の超音波診断装置。
- 前記RF信号フレームデータから断層画像を構成する断層画像構成部と、
複数の前記断層画像から断層ボリュームデータを作成する断層ボリュームデータ作成部と、前記断層ボリュームデータから3次元断層画像を構成する3次元断層画像構成部とを備えることを特徴とする請求項1記載の超音波診断装置。 - 前記3次元弾性画像構成部は、前記弾性ボリュームデータの各点に対応する不透明度と前記歪み又は前記弾性率に基づいて各点の画像情報を求め、3次元弾性画像を構成することを特徴とする請求項1記載の超音波診断装置。
- 新たに一方向にスキャンが行なわれた場合、新たに取得されたRF信号フレームデータは、前記RF信号フレームデータ選択部は、新たなRF信号フレームデータと同じフレームナンバーのRF信号フレームデータを記憶媒体から読み出すことを特徴とする請求項4記載の超音波診断装置。
- 前記弾性ボリュームデータと断層ボリュームデータを合成した合成ボリュームデータの各点に対応する不透明度、輝度値と弾性値から各点の画像情報を求める画像処理部を備えることを特徴とする請求項9記載の超音波診断装置。
- 前記3次元弾性画像構成部は、前記歪み又は前記弾性率に応じて前記3次元弾性画像の不透明度を調整することを特徴とする請求項1記載の超音波診断装置。
- 前記RF信号フレームデータ記憶部は、一方向にスキャンされる一連のRF信号フレームデータの内、所定範囲のRF信号フレームデータを前記振動子の傾きに対応付けられたフレームナンバーとともに記憶する記憶媒体を備え、
前記3次元弾性画像構成部は、所定範囲におけるRF信号フレームデータを用いて3次元弾性画像を構成することを特徴とする請求項1記載の超音波診断装置。 - 被検体に超音波を送受信するステップと、
該受信部により受信された反射エコー信号に基づく少なくとも2つの前記RF信号フレームデータを選択するステップと
選択されたRF信号フレームデータに基づいて、歪み又は弾性率を演算する弾性情報演算するステップと、
前記歪み又は弾性率に基づいて2次元弾性画像データを構成するステップと、
複数の前記2次元弾性画像データから弾性ボリュームデータを作成するステップと、
前記弾性ボリュームデータから3次元弾性画像を構成するステップを含む超音波画像表示方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/060,864 US9332958B2 (en) | 2008-08-25 | 2009-06-22 | Ultrasonic diagnostic apparatus and method of displaying ultrasonic image |
EP09809678.7A EP2319416A4 (en) | 2008-08-25 | 2009-06-22 | ULTRASONIC DIAGNOSTIC APPARATUS AND METHOD FOR DISPLAYING AN ULTRASONIC IMAGE |
JP2010526608A JP5470253B2 (ja) | 2008-08-25 | 2009-06-22 | 超音波診断装置 |
CN200980133128.2A CN102131466B (zh) | 2008-08-25 | 2009-06-22 | 超声波诊断装置及超声波图像显示方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-215368 | 2008-08-25 | ||
JP2008215368 | 2008-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010024023A1 true WO2010024023A1 (ja) | 2010-03-04 |
Family
ID=41721196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/061276 WO2010024023A1 (ja) | 2008-08-25 | 2009-06-22 | 超音波診断装置及び超音波画像表示方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9332958B2 (ja) |
EP (1) | EP2319416A4 (ja) |
JP (1) | JP5470253B2 (ja) |
CN (1) | CN102131466B (ja) |
WO (1) | WO2010024023A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012115283A (ja) * | 2010-11-29 | 2012-06-21 | Ge Medical Systems Global Technology Co Llc | 超音波診断装置及びその制御プログラム |
CN102958450A (zh) * | 2010-08-31 | 2013-03-06 | 株式会社日立医疗器械 | 三维弹性图像生成方法以及超声波诊断装置 |
CN103118600A (zh) * | 2010-09-21 | 2013-05-22 | 株式会社日立医疗器械 | 超声波诊断装置以及超声波图像的显示方法 |
CN103124523A (zh) * | 2010-09-29 | 2013-05-29 | 株式会社日立医疗器械 | 超声波诊断装置、超声波图像显示方法以及程序 |
EP2620102A4 (en) * | 2010-09-21 | 2016-12-07 | Hitachi Ltd | ULTRASONIC DIAGNOSIS DEVICE AND METHOD FOR DISPLAYING ULTRASONIC IMAGES |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5665040B2 (ja) * | 2009-09-10 | 2015-02-04 | 学校法人上智学院 | 変位計測方法及び装置、並びに、超音波診断装置 |
JP5606998B2 (ja) * | 2011-07-28 | 2014-10-15 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波診断装置及びその制御プログラム |
JP6176818B2 (ja) * | 2011-12-06 | 2017-08-09 | 東芝メディカルシステムズ株式会社 | 超音波診断装置及び座標変換プログラム |
US9211110B2 (en) * | 2013-03-15 | 2015-12-15 | The Regents Of The University Of Michigan | Lung ventillation measurements using ultrasound |
WO2015009960A1 (en) * | 2013-07-19 | 2015-01-22 | Verasonics, Inc. | Method and system for arbitrary waveform generation using a tri-state transmit pulser |
JP6724797B2 (ja) * | 2017-01-13 | 2020-07-15 | コニカミノルタ株式会社 | 超音波診断装置、および、その制御方法 |
CN110477949B (zh) * | 2019-08-26 | 2022-11-29 | 东软医疗系统股份有限公司 | 超声成像方法、装置及超声成像设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000060853A (ja) | 1998-08-20 | 2000-02-29 | Hitachi Medical Corp | 超音波診断装置 |
JP2006271523A (ja) | 2005-03-28 | 2006-10-12 | Toshiba Corp | 超音波診断装置 |
JP2006288495A (ja) * | 2005-04-06 | 2006-10-26 | Toshiba Corp | 画像処理装置 |
JP2008178500A (ja) * | 2007-01-24 | 2008-08-07 | Hitachi Medical Corp | 超音波診断装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2032204C (en) * | 1989-12-14 | 1995-03-14 | Takashi Mochizuki | Three-dimensional ultrasonic scanner |
JP3544722B2 (ja) * | 1994-12-16 | 2004-07-21 | 株式会社東芝 | 超音波診断装置 |
US7166075B2 (en) * | 2002-03-08 | 2007-01-23 | Wisconsin Alumni Research Foundation | Elastographic imaging of in vivo soft tissue |
US7601122B2 (en) * | 2003-04-22 | 2009-10-13 | Wisconsin Alumni Research Foundation | Ultrasonic elastography with angular compounding |
WO2005010711A2 (en) * | 2003-07-21 | 2005-02-03 | Johns Hopkins University | Robotic 5-dimensional ultrasound |
US20050054930A1 (en) * | 2003-09-09 | 2005-03-10 | The University Court Of The University Of Dundee | Sonoelastography using power Doppler |
JP2006136441A (ja) * | 2004-11-11 | 2006-06-01 | Toshiba Corp | 超音波照射装置及び超音波照射方法 |
JP5188959B2 (ja) * | 2006-04-07 | 2013-04-24 | 株式会社日立メディコ | 超音波探触子及び超音波診断装置 |
JP5371199B2 (ja) * | 2007-04-10 | 2013-12-18 | 株式会社日立メディコ | 超音波診断装置 |
-
2009
- 2009-06-22 WO PCT/JP2009/061276 patent/WO2010024023A1/ja active Application Filing
- 2009-06-22 EP EP09809678.7A patent/EP2319416A4/en not_active Withdrawn
- 2009-06-22 CN CN200980133128.2A patent/CN102131466B/zh active Active
- 2009-06-22 JP JP2010526608A patent/JP5470253B2/ja active Active
- 2009-06-22 US US13/060,864 patent/US9332958B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000060853A (ja) | 1998-08-20 | 2000-02-29 | Hitachi Medical Corp | 超音波診断装置 |
JP2006271523A (ja) | 2005-03-28 | 2006-10-12 | Toshiba Corp | 超音波診断装置 |
JP2006288495A (ja) * | 2005-04-06 | 2006-10-26 | Toshiba Corp | 画像処理装置 |
JP2008178500A (ja) * | 2007-01-24 | 2008-08-07 | Hitachi Medical Corp | 超音波診断装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2319416A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102958450A (zh) * | 2010-08-31 | 2013-03-06 | 株式会社日立医疗器械 | 三维弹性图像生成方法以及超声波诊断装置 |
US9402600B2 (en) | 2010-08-31 | 2016-08-02 | Hitachi Medical Corporation | 3-dimensional elastic image generation method and ultrasonic diagnostic apparatus |
EP2612600A4 (en) * | 2010-08-31 | 2016-11-23 | Hitachi Ltd | THREE DIMENSIONAL ELASTIC IMAGE PRODUCTION METHOD AND ULTRASONIC DIAGNOSTIC DEVICE |
CN103118600A (zh) * | 2010-09-21 | 2013-05-22 | 株式会社日立医疗器械 | 超声波诊断装置以及超声波图像的显示方法 |
EP2620102A4 (en) * | 2010-09-21 | 2016-12-07 | Hitachi Ltd | ULTRASONIC DIAGNOSIS DEVICE AND METHOD FOR DISPLAYING ULTRASONIC IMAGES |
CN103124523A (zh) * | 2010-09-29 | 2013-05-29 | 株式会社日立医疗器械 | 超声波诊断装置、超声波图像显示方法以及程序 |
CN103124523B (zh) * | 2010-09-29 | 2015-03-04 | 株式会社日立医疗器械 | 超声波诊断装置、超声波图像显示方法 |
US9153046B2 (en) | 2010-09-29 | 2015-10-06 | Hitachi Medical Corporation | Ultrasonic diagnostic apparatus, method, and program combining structural and elasticity images |
JP2012115283A (ja) * | 2010-11-29 | 2012-06-21 | Ge Medical Systems Global Technology Co Llc | 超音波診断装置及びその制御プログラム |
Also Published As
Publication number | Publication date |
---|---|
CN102131466A (zh) | 2011-07-20 |
US20110160590A1 (en) | 2011-06-30 |
JP5470253B2 (ja) | 2014-04-16 |
EP2319416A4 (en) | 2013-10-23 |
EP2319416A1 (en) | 2011-05-11 |
US9332958B2 (en) | 2016-05-10 |
JPWO2010024023A1 (ja) | 2012-01-26 |
CN102131466B (zh) | 2014-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5470253B2 (ja) | 超音波診断装置 | |
JP5438012B2 (ja) | 超音波診断装置 | |
JP5203605B2 (ja) | 超音波診断装置 | |
JP4657106B2 (ja) | 超音波診断装置 | |
JP5689073B2 (ja) | 超音波診断装置、及び3次元弾性比算出方法 | |
US9514564B2 (en) | Ultrasonic diagnostic apparatus and ultrasonic image display method | |
JP5770189B2 (ja) | 超音波診断装置 | |
WO2011030812A1 (ja) | 超音波診断装置及び弾性画像表示方法 | |
JP4903271B2 (ja) | 超音波撮像システム | |
JP5815541B2 (ja) | 超音波診断装置、超音波画像表示方法、および、プログラム | |
JP5945700B2 (ja) | 超音波診断装置及び超音波画像表示方法 | |
WO2011001776A1 (ja) | 超音波診断装置、せん断波の伝搬画像生成方法 | |
JP5753719B2 (ja) | 超音波診断装置 | |
JP5789599B2 (ja) | 超音波診断装置 | |
JP4601413B2 (ja) | 超音波診断装置 | |
JP4732086B2 (ja) | 超音波診断装置 | |
JP4754838B2 (ja) | 超音波診断装置 | |
JP4789243B2 (ja) | 超音波診断装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980133128.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09809678 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010526608 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009809678 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13060864 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |