WO2010021039A1 - Image processing device, image processing method, and image processing program - Google Patents

Image processing device, image processing method, and image processing program Download PDF

Info

Publication number
WO2010021039A1
WO2010021039A1 PCT/JP2008/064866 JP2008064866W WO2010021039A1 WO 2010021039 A1 WO2010021039 A1 WO 2010021039A1 JP 2008064866 W JP2008064866 W JP 2008064866W WO 2010021039 A1 WO2010021039 A1 WO 2010021039A1
Authority
WO
WIPO (PCT)
Prior art keywords
image quality
image
picture
determination unit
unit
Prior art date
Application number
PCT/JP2008/064866
Other languages
French (fr)
Japanese (ja)
Inventor
淑貴 田中
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2008/064866 priority Critical patent/WO2010021039A1/en
Priority to JP2010525526A priority patent/JPWO2010021039A1/en
Publication of WO2010021039A1 publication Critical patent/WO2010021039A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/14Coding unit complexity, e.g. amount of activity or edge presence estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/86Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness

Definitions

  • the present invention relates to a technical field in which image quality is determined and image processing is performed based on the image quality.
  • Patent Document 1 proposes a technique for controlling the degree of enhancement in sharpness correction according to the data rate (bit rate) of digitally compressed video data.
  • An object of the present invention is to provide an image processing apparatus, an image processing method, and an image processing program capable of appropriately controlling image quality adjustment intensity by determining image quality for each frame.
  • the image processing apparatus includes: an image quality determination unit that determines an image quality for each frame of the input image; and an image quality adjustment strength based on the image quality determined by the image quality determination unit.
  • Image quality adjusting means for controlling the image quality.
  • an image processing method includes: an image quality determination step for determining image quality for each frame of an input image; and an image quality adjustment strength based on the image quality determined by the image quality determination step.
  • An image quality adjustment process for controlling the image quality.
  • an image processing program executed by a computer is determined by the image quality determination unit that determines image quality for each frame of the input image, and the image quality determination unit. Based on the image quality, it functions as image quality adjustment means for controlling the image quality adjustment intensity.
  • FIG. 1 is a schematic configuration diagram of a system to which an image processing apparatus according to an embodiment is applied. It is a schematic block diagram of an adaptive image sharpening process part. It is a figure for demonstrating the block size in a macroblock. It is a figure for demonstrating the image processing method in another example. It is a flowchart which shows the whole process in a present Example. It is a flowchart which shows the process for I pictures. It is a flowchart which shows the bit rate determination status confirmation process at the time of I picture. It is a flowchart which shows the process for P pictures. It is a flowchart which shows the process performed when the number of intra blocks is not more than predetermined in the process for P pictures. It is a flowchart which shows the bit rate determination status confirmation process at the time of a P picture.
  • an image processing apparatus determines, for an input image, an image quality determination unit that determines image quality for each frame, and an image quality adjustment strength based on the image quality determined by the image quality determination unit.
  • Image quality adjusting means for controlling.
  • the above-described image processing apparatus is suitably applied to, for example, a 1 seg (1 seg) receiver for terrestrial digital broadcasting.
  • the image quality determination unit determines the image quality for each frame, and the image quality adjustment unit controls the image quality adjustment intensity based on the determined image quality.
  • the image quality adjustment unit controls the image quality adjustment intensity based on the determined image quality.
  • the image quality determination unit changes the image quality determination method according to a picture type.
  • the image quality determination means changes the image quality determination method according to which picture type the compressed image data is.
  • picture types include an I (Intra) picture, a P (Predictive) picture, and a B (Bidirectionally predictive) picture. By doing so, it becomes possible to accurately grasp the degradation state of the image.
  • the image quality determination unit determines the image quality based on a bit amount when the picture type is an I picture, and the picture type is other than the I picture. If it is, the image quality is determined based on the bit amount and the number of intra blocks. In this case, the image quality determination means determines that the image quality is lower when the bit amount is small than when it is large when the bit amount is small, and when it is other than the I picture, When the bit amount is small, it can be determined that the image quality is lower than when it is large, and when the number of intra blocks is large, it can be determined that the image quality is lower than when it is small.
  • the image quality determination unit further determines the image quality based on the number of blocks whose size in a macroblock is less than a predetermined size when the image is other than the I picture. Do. In this case, the image quality determination means can determine that the image quality is degraded when the number of blocks whose macroblock size is less than the predetermined size is large compared to when the number of blocks is small.
  • the image quality determination unit further determines the image quality based on an edge situation for both the case of the I picture and the case other than the I picture. Thereby, the image quality can be determined in consideration of the complexity of the image appropriately.
  • the image quality adjusting means adaptively controls the image quality adjustment intensity for each area in the image.
  • the image quality adjustment unit does not control the image quality adjustment intensity based on the image quality determined by the image quality determination unit for a specific area in the image. As a result, it is possible to reduce the processing burden caused by the control of the image quality adjustment strength.
  • the image quality adjustment unit controls the image quality adjustment intensity based on the image quality determined by the image quality determination unit when a scene change occurs. This can also reduce the processing burden.
  • the image quality adjustment means controls a sharpening level as the image quality adjustment intensity.
  • the image quality adjusting means reduces the sharpening level according to the image quality deterioration level when the image quality determining means determines that the image quality has deteriorated.
  • the deterioration factor can be appropriately made inconspicuous, and the image quality can be improved optimally.
  • the image quality adjustment means controls a noise removal level as the image quality adjustment intensity.
  • the image quality adjustment unit increases the noise removal level according to the degradation level of the image quality.
  • an image quality determination step for determining image quality for each frame of an input image, and an image quality adjustment step for controlling image quality adjustment strength based on the image quality determined by the image quality determination step. And comprising.
  • an image processing method includes: an image quality determination step for determining image quality for each frame of an input image; and an image quality adjustment based on the image quality determined by the image quality determination step. And an image quality adjustment step for controlling the intensity.
  • the above-described image processing method and image processing program can also appropriately grasp the degradation state of the image, and therefore, by controlling the image quality adjustment intensity based on the determined image quality, the coding degradation is emphasized. Thus, it is possible to appropriately suppress the deterioration of the image quality.
  • the image processing program can be suitably handled in a state where it is recorded on a recording medium.
  • FIG. 1 is a schematic configuration diagram of a system to which an image processing apparatus according to the present embodiment is applied.
  • the system mainly includes a pre-processing unit 1 and a post-processing unit 2, and is applied to, for example, a 1 seg (1seg) receiver for terrestrial digital broadcasting.
  • the present invention is applied to a mobile phone or a navigation device for a vehicle.
  • the image data compression format used for one-segment broadcasting is H.264.
  • H.264 encoding system and in the following, H.264 encoding is used.
  • a case of handling data of the H.264 encoding method will be described as an example.
  • the pre-processing unit 1 mainly includes a tuner unit 11 and a demodulation unit 12.
  • the tuner unit 11 receives the modulated radio wave via the antenna 11a and supplies this to the demodulation unit 12 as a signal S11.
  • the demodulation unit 12 demodulates the signal S11 supplied from the tuner unit 11, and supplies the demodulated signal S12 to the post-processing unit 2.
  • the demodulation unit 12 performs conversion processing into MPEG-TS (for example, MPEG2-TS).
  • the post-processing unit 2 mainly includes a Demux unit 21, a video decoder 22, a frame buffer memory 23, an adaptive image sharpening processing unit 24, and a signal processing unit 25.
  • the Demux unit 21 obtains a signal S12 (corresponding to MPEG-TS) from the demodulator 12 of the pre-processing unit 1, and performs processing for separating the signal S12 for each ES data such as audio, video, and data broadcasting. More specifically, the Demux unit 21 performs MPEG2-TS header analysis, PES header analysis, ES data extraction, and the like. Then, the Demux unit 21 supplies the video decoder 22 with a signal S21 corresponding to video in the separated data.
  • the video decoder 22 acquires the signal S21 from the Demux unit 21 and performs a process of decoding the encoded information and converting it into image data. Specifically, the video decoder 22 supplies the image data obtained by decoding to the frame buffer memory 23 as a signal S22a. Further, the video decoder 22 supplies information corresponding to the bit amount for each frame (for example, the number of bytes of the NAL unit in the case of the decoder in the H.264 encoding method) to the adaptive image sharpening processing unit 24 as a signal S22b. H. obtained in the middle of decoding. Information (hereinafter referred to as “syntax element”) such as a macroblock type, a picture type, and a vector in the H.264 encoding method is supplied to the adaptive image sharpening processing unit 24 as a signal S22c.
  • syntax element such as a macroblock type, a picture type, and a vector in the H.264 encoding method is supplied to the adaptive image sharpening processing unit 24 as
  • the frame buffer memory 23 acquires the signal S22a corresponding to the image data from the video decoder 22 and temporarily stores it.
  • the data stored in this way is used as a reference frame or the like.
  • the adaptive image sharpening processing unit 24 acquires the signal S23 corresponding to the image data from the frame buffer memory 23, and the signal S22b corresponding to the bit amount for each frame and the signal S22c corresponding to the syntax element from the video decoder 22. get. Then, the adaptive image sharpening processing unit 24 determines the quality of the image quality for each frame based on these acquired signals, and controls the image quality adjustment intensity for the image based on the determination result.
  • the emphasis level hereinafter simply referred to as “sharpening level” is controlled.
  • the adaptive image sharpening processing unit 24 determines that the image quality is relatively low, the adaptive image sharpening processing unit 24 performs the sharpening process by setting the sharpening level low, and determines that the image quality is relatively high. Performs a sharpening process with a high sharpening level.
  • the adaptive image sharpening processing unit 24 determines that the image quality is relatively low, the adaptive image sharpening processing unit 24 performs a sharpening process with a high noise removal level, and determines that the image quality is relatively high. Set the noise removal level low and perform sharpening.
  • the adaptive image sharpening processing unit 24 supplies the image data after the sharpening processing as described above to the signal processing unit 25 as a signal S24.
  • the adaptive image sharpening processing unit 24 corresponds to the image processing apparatus according to the present invention, and functions as an image quality determination unit and an image quality adjustment unit. Details of processing performed by the adaptive image sharpening processing unit 24 will be described later.
  • the signal processing unit 25 acquires the signal S24 from the adaptive image sharpening processing unit 24, converts it into data suitable for the output destination such as a video composite signal, and outputs this as the signal S25.
  • H. A specific example of syntax elements (encoding information) in the H.264 encoding method will be described.
  • Examples of the syntax element include a picture type, a macroblock type, “mv (motion vector)”, “pmv (motion vector prediction value)”, “total_coeff”, “nC”, and the like.
  • the picture type is H.264. In the H.264 encoding method, it corresponds to either an I picture or a P picture, and “total_coeff” is a value indicating the number of residual components (difference values) in a 4 ⁇ 4 size pixel block, and “nC” is The value increases when the peripheral block gives a large amount of the residual component. In this case, a complex image tends to exist in the peripheral block.
  • total_coeff and “nC” can be determined from “coeff_token” or “CBP (Code_Block_Pattern)”.
  • CBP is an H.264 standard. Is a value existing in the macroblock layer in the H.264 encoding system, and when the difference value exists in the 8 ⁇ 8 block in the corresponding macroblock, the bit is set, and the lower 4 bits indicate the block of “luma”, The upper 2 bits indicate the status of a block having “chroma” (“CBP” is, for example, a total of 6 bits).
  • FIG. 2 is a schematic configuration diagram of the adaptive image sharpening processing unit 24.
  • the adaptive image sharpening processing unit 24 includes an image quality determination unit 24x and an image quality sharpening processing unit 24f.
  • the image quality determination unit 24x evaluates the image quality for each frame, and determines the enhancement level (sharpening level) in the sharpening based on the evaluation.
  • the image quality sharpening processing unit 24f performs a process of sharpening the image according to the sharpening level determined by the image quality determination unit 24x.
  • the image quality determination unit 24x functions as the image quality determination unit in the present invention
  • the image quality sharpening processing unit 24f functions as the image quality adjustment unit in the present invention.
  • the image quality determination unit 24x includes a bit amount determination unit 24a, an edge detection unit 24b, an edge condition determination unit 24c, a syntax element acquisition unit 24d, and a sharpening level determination unit 24e.
  • the bit amount determination unit 24a acquires the signal S22b corresponding to the bit amount per frame (in other words, the bit rate) from the video decoder 22, and makes a rough determination on the sharpening level based on the bit amount. Then, the bit amount determination unit 24a supplies the determination result to the sharpening level determination unit 24e.
  • the edge detection unit 24b acquires the signal S23 corresponding to the image data from the frame buffer memory 23, and performs edge detection by using a general filter used for edge extraction such as “sobel filter” on the signal S23 ( Specifically, edge detection is performed when the threshold value is exceeded. Further, the edge detection unit 24b holds information on the location where the edge is detected, and counts how many pieces of this information are present.
  • the edge status determination unit 24c acquires edge detection information from the edge detection unit 24b, calculates the ratio of edge regions and the like based on the edge detection information, and determines the complexity of the image. Then, the edge state determination unit 24c performs a rough determination on the sharpening level from the edge image based on the complexity of the image, and supplies the determination result to the sharpening level determination unit 24e.
  • the syntax element acquisition unit 24d acquires the signal S22c corresponding to the syntax element from the video decoder 22, and extracts information below the macroblock layer necessary for the sharpening level determination in the sharpening level determination unit 24e. Specifically, the syntax element acquisition unit 24d extracts the picture type, macroblock type, “mv”, “pmv”, “total_coeff”, “nC”, and the like as described above. Is supplied to the sharpening level determination unit 24e. By using such a syntax element, for example, even if the bit amount per frame is substantially the same, it is possible to appropriately determine whether the image quality is good or bad.
  • the sharpening level determination unit 24e determines the sharpening level by comprehensively considering the information supplied from the bit amount determination unit 24a, the edge state determination unit 24c, and the syntax element acquisition unit 24d, The determined sharpening level is supplied to the image quality sharpening processing unit 24f. Specifically, the sharpening level determination unit 24e sets the sharpening level high when it is determined that the image quality is relatively high, and sharpens when it is determined that the image quality is relatively low. Set the level low.
  • the image quality sharpening processing unit 24f acquires the signal S23 corresponding to the image data from the frame buffer memory 23, and sharpens the image according to the sharpening level acquired from the sharpening level determination unit 24e for the image data. Perform processing. Specifically, the image quality sharpening processing unit 24f performs processing with a high sharpening strength when the sharpening level is high, and performs processing with a low sharpening strength when the sharpening level is low. For example, the image quality sharpening processing unit 24f performs sharpening using an edge enhancement filter such as a Laplacian filter. In this case, the sharpening process is performed by changing the operator coefficient of the filter or the like according to the sharpening level determined by the sharpening level determination unit 24e.
  • an edge enhancement filter such as a Laplacian filter
  • the block size in the macro block which is one of the syntax elements will be specifically described.
  • H. In the H.264 encoding method, a mechanism called variable block size is used, and seven types of block sizes are prepared for a macro block of 16 ⁇ 16 pixels.
  • the macro block type indicates which block size it is. Specifically, as shown in FIG. 3, seven types of block sizes of 16 ⁇ 16, 16 ⁇ 8, 8 ⁇ 16, 8 ⁇ 8, 8 ⁇ 4, 4 ⁇ 8, and 4 ⁇ 4 are used.
  • the image quality determination unit 24x mainly considers the three viewpoints of bit amount information for each frame, syntax elements, and edge conditions after edge detection, Determine the image quality. Specifically, the image quality determination unit 24x changes the image quality determination method according to the picture type. Specifically, when the picture type is an I picture, the image quality determination unit 24x mainly determines the image quality based on the bit amount and the edge status (such as the number of pixels having an edge). On the other hand, when the picture type is other than I picture, specifically, when the picture type is P picture, the image quality determination unit 24x determines not only the bit amount but also the number of intra blocks and the size of the macro block. The image quality is determined based on the number of blocks that are less than the size.
  • an intra block does not have a vector (motion vector) and corresponds only to a difference value (residual component) or a block that creates an image by prediction from surrounding blocks, and is a macro that is one of the syntax elements described above. It can be grasped from the block type. In addition, the size of the macroblock can be grasped from the macroblock type.
  • the reason for determining the image quality as described above is as follows. First, confirmation of syntax elements in the case of a P picture will be described.
  • the image quality is inevitably lowered than the average image quality due to the limitation of the bit rate when the image is encoded. In this case, it can be said that the quality of image quality cannot be determined appropriately only by observing only the bit amount per frame. This is because the I-picture has less inter-frame prediction than the P-picture, so that the data rate required for producing the same image quality tends to be larger. Also, in the P picture, even if the bit amount per frame is small, the image quality may not be lowered depending on the movement of the image.
  • the image quality is determined by comprehensively determining the macroblock type information, the “total_coeff” and “nC” information indicating the residual component, and the like.
  • the confirmation of the edge state is basically performed in order to see the complexity of the image, and is used for determining the image quality of the I picture.
  • the edge condition is confirmed as a reference for the standard.
  • an image can be generated with a motion vector. Therefore, it can be said that it is necessary to consider the proportion of intra blocks in proportion to the confirmation of the edge situation.
  • the image quality of a P picture is determined from the elements of both the number of intra blocks and the number of quasi-intra blocks and the bit amount per frame.
  • the image quality determination method it is possible to appropriately grasp the degradation state of the image. Therefore, by performing the sharpening process based on the determined image quality, it is possible to appropriately prevent the deterioration of the image quality from being promoted by emphasizing the deterioration of the encoding and the like, while making the deterioration factor inconspicuous.
  • the image quality can be optimally improved. In particular, in low-bit-rate images such as one-segment broadcasting, when scene changes occur frequently, images with severe deterioration (such as coding degradation noise) may appear. By applying this embodiment, it can be said that encoding degradation noise and the like can be effectively suppressed.
  • the area that adaptively changes the sharpening level can be limited within the screen.
  • the fixed sharpening level is used for a specific area where characters such as telop are displayed, and for other areas, the sharpening level can be changed according to the image quality by the method according to the present embodiment. it can.
  • FIG. 4 is a diagram for explaining an image processing method in another example. Specifically, FIG. 4 shows an example of an image, and broken line areas T1 and T2 show areas including telops. It can be said that the image quality of such a fixed image area such as a telop hardly changes even if the bit amount per frame changes. This is because the image of the previous frame can be referred to as it is for the telop portion, so that it can be said that the telop portion is hardly affected by the change in image quality even if the required bit amount of the telop portion is small. Therefore, in another example, the sharpening level is not changed according to the image quality for a specific area including a telop or the like. That is, the sharpening level is fixed. On the other hand, since there is a possibility that image degradation has occurred in the image area other than the telop, the sharpening level is changed in accordance with the image quality by the procedure described above.
  • the sharpening level can be changed according to the object in the image.
  • the sharpening level can be set low for the face portion in the image, and the sharpening level can be set high for the collar portion or the like in the image.
  • the area can be determined by using the edge density (determined by the edge condition determining unit 24c), and the object in the image is It can be recognized by image analysis.
  • the image quality determination unit 24x determines the image quality by comprehensively considering the information on the bit amount for each frame, the syntax element, the edge condition after edge detection, and the like.
  • the sharpening level is determined.
  • any one of the four steps of “no sharpening”, “sharpening level 1”, “sharpening level 2”, and “sharpening level 3” Take the case of setting as an example. It is assumed that the sharpening strength increases in the order of “not sharpening” ⁇ “sharpening level 1” ⁇ “sharpening level 2” ⁇ “sharpening level 3”.
  • FIG. 5 is a flowchart showing the overall processing in this embodiment. This process is repeatedly executed by the image quality determination unit 24x.
  • step S101 the image quality determination unit 24x determines whether the processing target is an area other than the telop. This determination is performed in order to change the handling of the sharpening level by dividing the telop area and the non-telop area on the screen. Specifically, the image quality determination unit 24x determines whether the area is other than the telop by performing image analysis or the like. If it is not a telop (step S101; Yes), the process proceeds to step S102. In this case, the sharpening level is changed according to the image quality in the processing after step S102. On the other hand, when it is not an area other than the telop (step S101; No), the process proceeds to step S106. In this case, for the reason described above, the sharpening level is fixed to a predetermined level (step S106). That is, the sharpening level is not changed according to the image quality. Then, the process ends.
  • step S102 the image quality determination unit 24x acquires picture type information. Specifically, the image quality determination unit 24 x receives the H.264 from the video decoder 22. The picture type (included in the syntax element) in the H.264 encoding method is acquired. Then, the process proceeds to step S103. In step S103, the image quality determination unit 24x determines whether the picture type is an I picture or a P picture. If it is an I picture, the process proceeds to step S104, and the image quality determination unit 24x determines a sharpening level by executing an I picture process described later. Thereafter, the process ends. On the other hand, if it is a P picture, the process proceeds to step S105, and the image quality determination unit 24x determines a sharpening level by executing a P picture process described later. Thereafter, the process ends.
  • the adaptive image sharpening processing unit 24 in the adaptive image sharpening processing unit 24 uses a general edge enhancement filter such as a Laplacian filter to filter according to the determined sharpening level.
  • the sharpening process is performed by changing the operator coefficient.
  • FIG. 6 is a flowchart showing the I picture processing performed in step S104 of FIG. In this processing, first, the image quality is roughly determined based on the bit amount, and then the sharpness level is determined by finely determining the image quality based on the edge state (the number of pixels having edges). The I picture processing is also executed by the image quality determination unit 24x.
  • step S201 the image quality determination unit 24x performs processing for classifying frames based on the bit rate per frame, specifically, processing for classifying frames based on the number of bytes of Nal units (hereinafter referred to as “bit rate determination for I picture”). This is referred to as “situation confirmation processing”. Then, the process proceeds to step S202.
  • step S301 the image quality determination unit 24x acquires the number of bytes of Nal unit from the video decoder 22. Then, the process proceeds to step S302.
  • step S302 the image quality determination unit 24x performs determination based on the number of bytes of the Nal unit. Specifically, the image quality determination unit 24x classifies the frames to be processed into four stages (X1 ⁇ X2 ⁇ X3 ⁇ X4) by using four byte numbers X1, X2, X3, and X4. .
  • step S303 When the number of bytes of the Nal unit is less than X1 bytes, the process proceeds to step S303, and the image quality determination unit 24x determines that the frame is an ultra-low bit rate allocation frame. Then, the process ends.
  • step S304 if the number of bytes of the Nal unit is greater than or equal to X1 bytes and less than X2 bytes, the process proceeds to step S304, and the image quality determination unit 24x determines that the frame is a low bit rate allocation frame. Then, the process ends.
  • step S305 if the number of bytes of the Nal unit is greater than or equal to X2 bytes and less than X3 bytes, the process proceeds to step S305, and the image quality determination unit 24x determines that the frame is a medium bit rate allocation frame. Then, the process ends.
  • step S306 if the number of bytes of the Nal unit is greater than or equal to X3 bytes and less than X4 bytes, the process proceeds to step S306, and the image quality determination unit 24x determines that the frame is a high bit rate allocation frame. Then, the process ends.
  • step S202 the image quality determination unit 24x determines the bit rate determination status. Specifically, the image quality determination unit 24x performs determination based on the results classified by the processing illustrated in FIG.
  • the processing for determining the sharpening level is performed according to the bit rate determination status (specifically, according to the frames classified by the number of bytes of the Nal unit). Is called.
  • the sharpening level is determined according to the number of bytes of the Nal unit. That is, basically, the sharpening level is set higher in the order of ultra-low bit rate allocation frame ⁇ low bit rate allocation frame ⁇ medium bit rate allocation frame ⁇ high bit rate allocation frame.
  • the sharpening level is adjusted in consideration of not only the number of bytes of the Nal unit but also the edge state. That is, in this embodiment, the sharpening level is determined taking into account both the number of bytes of Nal unit and the edge state. For example, even if the number of bytes of the Nal unit is large to some extent, when the number of pixels having edges is large, the sharpening level is set to be relatively low.
  • step S203 the image quality determination unit 24x determines not to perform sharpening. In this case, it is considered that the image quality is considerably lowered because the bit amount is considerably small. Then, the process ends.
  • step S204 the image quality determination unit 24x performs processing for confirming the edge state. Specifically, the image quality determination unit 24x (specifically, the edge detection unit 24b in the image quality determination unit 24x) counts pixels having edges in one frame. That is, the information of the location where the edge is detected is held and the number of pieces of this information is counted. Then, the process proceeds to step S205.
  • step S205 the image quality determination unit 24x determines whether or not the number of pixels having the counted edges is equal to or less than a predetermined value ⁇ 1.
  • the sharpening level 2 is set (step S209).
  • the sharpening level 1 is set (step S206). That is, the sharpening level is lowered by one as compared with the case where the number of pixels having edges is equal to or less than the predetermined value ⁇ 1. This is because when the number of pixels having an edge is larger than the predetermined value ⁇ 1, the image is more complex and the image quality may be lower than when the number is less than the predetermined value ⁇ 1.
  • step S207 the image quality determination unit 24x performs processing for confirming the edge state. Specifically, the image quality determination unit 24x (specifically, the edge detection unit 24b in the image quality determination unit 24x) counts pixels having edges in one frame. Then, the process proceeds to step S208.
  • step S208 the image quality determination unit 24x determines whether or not the number of pixels having the counted edges is equal to or less than a predetermined value ⁇ 2.
  • the sharpening level 3 is set (step S210).
  • the sharpening level 2 is set (step S209). That is, the sharpening level is lowered by one as compared with the case where the number of pixels having edges is equal to or less than the predetermined value ⁇ 2.
  • the predetermined value ⁇ 2 used in the determination in step S208 may be larger than the predetermined value ⁇ 1 used in the determination in step S205, or the same value may be used.
  • step S210 the image quality determination unit 24x sets the sharpening level 3. That is, the maximum sharpening level is set. In this case, since the bit amount is large, there is a high possibility that the image quality exceeds the standard. Then, the process ends.
  • FIG. 8 is a flowchart showing the P picture processing performed in step S105 of FIG.
  • the image quality is determined based on the number of intra blocks, the size of the macro block, and the like, and the sharpening level is determined.
  • the P picture processing is also executed by the image quality determination unit 24x.
  • step S401 the image quality determination unit 24x performs a process of confirming the intra block status. Specifically, the image quality determination unit 24x obtains macroblock type information (included in the syntax element) from the video decoder 22, thereby counting the number of blocks of the intra block. Then, the process proceeds to step S402.
  • macroblock type information included in the syntax element
  • step S402 the image quality determination unit 24x determines whether or not the number of intra blocks is greater than or equal to a predetermined value. If the number of intra blocks is greater than or equal to the predetermined number (step S402; Yes), the process proceeds to step S403. In this case, since there is a possibility that the image quality has deteriorated due to a scene change or the like, processing for determining the image quality is further performed in step S403 and subsequent steps. On the other hand, if the number of intra blocks is not greater than or equal to the predetermined number (step S402; No), the process shown in FIG. 9 described later is executed.
  • step S403 the image quality determination unit 24x performs processing for confirming the edge state in the intra block. Specifically, the image quality determination unit 24x performs edge detection for a region that is an intra block (intra block region), and counts pixels having edges. Then, the process proceeds to step S404.
  • step S404 the image quality determination unit 24x determines whether the ratio of pixels having edges in the intra block is equal to or greater than a predetermined value in the intra block area.
  • the process proceeds to step S405.
  • the ratio of pixels having edges is not equal to or greater than the predetermined value of the intra block area (step S404; No)
  • the process shown in FIG. 9 described later is executed.
  • step S405 the image quality determination unit 24x performs a process of confirming the number of blocks whose macroblock size is less than a predetermined size. Specifically, the image quality determination unit 24x obtains the number of blocks whose macroblock size is less than a predetermined size by obtaining macroblock type information (included in the syntax element) from the video decoder 22. For example, the predetermined size used in the determination can be set to various sizes such as “16 ⁇ 16” and “8 ⁇ 8”. Then, the process proceeds to step S406. In step S406, the image quality determination unit 24x determines whether the number of blocks whose macroblock size is less than a predetermined size is greater than or equal to a predetermined value.
  • step S407 the image quality determination unit 24x determines not to perform sharpening. In this case, since there are many edges in the intra block area, it can be said that the image is complicated, and it can be said that there are many macro block sizes, so there is a possibility that the object has moved or deformed. Conceivable. Therefore, since it is highly likely that the amount of bits per frame is not sufficient, sharpening is not performed. Then, the process ends.
  • step S406 when the number of blocks whose macroblock size is less than the predetermined size is not equal to or larger than the predetermined number (step S406; No), the process proceeds to step S408.
  • step S408 the image quality determination unit 24x sets the sharpening level 1. In this case, it can be said that there are few macroblocks having a small size compared to the situation in which the process proceeds to step S407 described above, so the sharpening level is increased by one and set to the sharpening level 1. Then, the process ends.
  • step S402 when the number of intra blocks is not greater than or equal to a predetermined value (step S402; No), and when the ratio of pixels having edges is not greater than or equal to a predetermined value of the intra block area (step S404; No).
  • a process to be executed will be described.
  • the image quality is determined based on the bit amount and the edge status, and the sharpening level is determined. This process is also executed by the image quality determination unit 24x.
  • step S501 the image quality determination unit 24x performs processing for classifying frames based on the bit rate per frame, specifically, processing for classifying frames based on the number of bytes of Nal units (hereinafter referred to as “bit rate determination for P picture”). This is referred to as “situation confirmation processing”. Then, the process proceeds to step S502.
  • step S ⁇ b> 601 the image quality determination unit 24 x acquires the number of bytes of Nal unit from the video decoder 22. Then, the process proceeds to step S602.
  • step S602 the image quality determination unit 24x performs determination based on the number of bytes of the Nal unit. Specifically, the image quality determination unit 24x classifies the frame to be processed into four stages (Y1 ⁇ Y2 ⁇ Y3 ⁇ Y4) by using four byte numbers Y1, Y2, Y3, and Y4. .
  • the threshold used for the number of bytes of the Nal unit in the bit rate determination status confirmation process shown in FIG. 10 is the bit rate determination status for the I picture shown in FIG. It is set to a small value compared to the threshold used in the confirmation process. Specifically, “Y1 ⁇ X1”, “Y2 ⁇ X2”, “Y3 ⁇ X3”, “Y4 ⁇ X4” are set.
  • step S603 If the number of bytes in the Nal unit is less than Y1 bytes, the process proceeds to step S603, and the image quality determination unit 24x determines that the frame is an ultra-low bit rate allocation frame. Then, the process ends. On the other hand, if the number of bytes of the Nal unit is greater than or equal to Y1 bytes and less than Y2 bytes, the process proceeds to step S604, and the image quality determination unit 24x determines that the frame is a low bit rate allocation frame. Then, the process ends.
  • step S605 the process proceeds to step S605
  • the image quality determination unit 24x determines that the frame is a medium bit rate allocation frame. Then, the process ends.
  • step S606 the image quality determination unit 24x determines that the frame is a high bit rate allocation frame. Then, the process ends.
  • step S502 the image quality determination unit 24x determines the bit rate determination status. Specifically, the image quality determination unit 24x performs determination based on the results classified by the processing illustrated in FIG.
  • processing for determining the sharpening level is performed according to the bit rate determination status (specifically, according to the frames classified by the number of bytes of the Nal unit). Is called.
  • the sharpening level is determined according to the number of bytes of the Nal unit. That is, basically, the sharpening level is set higher in the order of ultra-low bit rate allocation frame ⁇ low bit rate allocation frame ⁇ medium bit rate allocation frame ⁇ high bit rate allocation frame.
  • the sharpening level is adjusted in consideration of not only the number of bytes of the Nal unit but also the edge state. That is, in this embodiment, the sharpening level is determined taking into account both the number of bytes of Nal unit and the edge state. For example, even if the number of bytes of the Nal unit is large to some extent, when the number of pixels having edges is large, the sharpening level is set to be relatively low.
  • step S503 the image quality determination unit 24x determines not to perform sharpening. In this case, it is considered that the image quality is considerably lowered because the bit amount is considerably small. Then, the process ends.
  • step S504 the image quality determination unit 24x performs processing for confirming the edge state. Specifically, the image quality determination unit 24x (specifically, the edge detection unit 24b in the image quality determination unit 24x) counts pixels having edges in one frame. That is, the information of the location where the edge is detected is held and the number of pieces of this information is counted. Then, the process proceeds to step S505.
  • step S505 the image quality determination unit 24x determines whether or not the number of pixels having the counted edges is equal to or less than a predetermined value ⁇ 1.
  • the sharpening level 2 is set (step S509).
  • the sharpening level 1 is set (step S506). That is, the sharpening level is lowered by one as compared with the case where the number of pixels having edges is equal to or less than the predetermined value ⁇ 1.
  • the predetermined value ⁇ 1 used in the determination in step S505 can be the same value as the predetermined value ⁇ 1 used in the determination in step S205 of FIG.
  • step S507 the image quality determination unit 24x performs processing for confirming the edge state. Specifically, the image quality determination unit 24x (specifically, the edge detection unit 24b in the image quality determination unit 24x) counts pixels having edges in one frame. Then, the process proceeds to step S508.
  • step S508 the image quality determination unit 24x determines whether or not the number of pixels having the counted edges is equal to or less than a predetermined value ⁇ 2.
  • the sharpening level 3 is set (step S510).
  • the sharpening level 2 is set (step S509). That is, the sharpening level is lowered by one as compared with the case where the number of pixels having edges is equal to or less than the predetermined value ⁇ 2.
  • the predetermined value ⁇ 2 used in the determination in step S508 may be larger than the predetermined value ⁇ 1 used in the determination in step S505, or the same value may be used.
  • the same value as the predetermined value ⁇ 2 used in the determination in step S208 of FIG. 6 can be used as the predetermined value ⁇ 2.
  • step S510 the image quality determination unit 24x sets the sharpening level 3. That is, the maximum sharpening level is set. In this case, since the bit amount is large, there is a high possibility that the image quality exceeds the standard. Then, the process ends.
  • the processing described above it is possible to appropriately grasp the degradation state of the image. Therefore, by performing the sharpening process based on the determined image quality, it is possible to appropriately prevent the deterioration of the image quality from being promoted by emphasizing the deterioration of the encoding and the like, while making the deterioration factor inconspicuous.
  • the image quality can be optimally improved.
  • the sharpening level is divided into four stages (in other words, an example in which the frame is classified into four according to the number of bytes of the Nal unit) is shown.
  • the present invention is not limited to this. It can be divided into various stages.
  • the present invention is not limited to executing the sharpening process corresponding to the determined sharpening level for each frame. That is, the image quality is determined for each frame and the sharpening level is determined, but the sharpening process may not be performed for each frame. For example, the sharpening process may be executed only when a scene change or the like occurs. Furthermore, the determination of image quality is not limited to being performed for each frame. For example, the sharpness level may be determined by determining the image quality only when a scene change or the like occurs.
  • the noise removal level can be controlled as the image quality adjustment strength. That is, it is possible to control the noise removal level or the like according to the determined image quality.
  • the present invention can be used for a digital broadcast receiver or an Internet broadcast receiver using an image encoding method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Picture Signal Circuits (AREA)

Abstract

An image processing device is conveniently applied to for example, one segment receiver of terrestrial digital broadcasting. Specifically, image quality judgment means judges an image quality for each frame and image quality adjustment means controls image quality adjustment strength according to the judged image quality. Accordingly, because a degradation state of the image can be properly grasped, by controlling the image quality adjustment strength according to the judged image quality, promotion of image quality degradation caused by accentuation of coding degradation or the like can be properly suppressed. Therefore, image quality can be optimally improved while making a degradation factor inconspicuous.

Description

画像処理装置、画像処理方法、及び画像処理プログラムImage processing apparatus, image processing method, and image processing program
 本発明は、画像の画質を判定し、これに基づいて画像処理を行う技術分野に関する。 The present invention relates to a technical field in which image quality is determined and image processing is performed based on the image quality.
 この種の技術が、例えば特許文献1に提案されている。具体的には、特許文献1には、デジタル圧縮された映像データについて、そのデータレート(ビットレート)に応じて鮮鋭度補正における強調度を制御する技術が提案されている。 This type of technology is proposed in Patent Document 1, for example. Specifically, Patent Document 1 proposes a technique for controlling the degree of enhancement in sharpness correction according to the data rate (bit rate) of digitally compressed video data.
特開2004-180043号公報JP 2004-180043 A
 しかしながら、上記した特許文献1に記載された技術では、シーケンスヘッダに記載されているビットレートの情報を利用するため、同一シーケンスのコンテンツでは固定したビットレートの情報を用いていた(言い換えると、鮮鋭度補正において同じ強調度を用いていた)。そのため、他の画質に関わる情報を加味しても、フレーム毎の画質を正しく判定できない場合があった。また、例えば地デジなどのデジタル放送では、動きの大きいシーンやシーンチェンジが頻繁に起きる画像において単位フレーム当たりのビットレートが少なくなる傾向にあるが、この場合に鮮鋭度補正において同じ強調度を用いると、画質劣化を助長させてしまう場合があった。一方、符号化画像においては、同じビットレートでも、エッジが多く含まれる画像の方が画質の劣化を招くといった傾向があり、また、同様に物体変形を伴った場合なども画質の劣化を招くといった傾向があるため、上記のようにビットレートのみに基づいて鮮鋭度補正の強調度を制御することは適切でないものと考えられる。 However, since the technique described in Patent Document 1 uses the bit rate information described in the sequence header, fixed bit rate information is used in the content of the same sequence (in other words, sharpness). The same emphasis was used in degree correction). For this reason, there is a case where the image quality for each frame cannot be correctly determined even when information relating to other image quality is taken into consideration. Also, in digital broadcasting such as terrestrial digital broadcasting, the bit rate per unit frame tends to decrease in scenes with large movements and images where scene changes frequently occur. In this case, the same enhancement is used in sharpness correction. In some cases, image quality deterioration is promoted. On the other hand, in an encoded image, even if the bit rate is the same, there is a tendency that an image containing more edges tends to deteriorate the image quality. Similarly, when an object is deformed, the image quality is also deteriorated. Due to the tendency, it is considered inappropriate to control the enhancement degree of sharpness correction based only on the bit rate as described above.
 本発明が解決しようとする課題としては、上記のものが一例として挙げられる。本発明は、フレーム毎に画質を判定することで、画質調整強度を適切に制御することが可能な画像処理装置、画像処理方法、及び画像処理プログラムを提供することを目的とする。 The above is one example of problems to be solved by the present invention. An object of the present invention is to provide an image processing apparatus, an image processing method, and an image processing program capable of appropriately controlling image quality adjustment intensity by determining image quality for each frame.
 請求項1に記載の発明は、画像処理装置は、入力された画像に対して、フレーム毎に画質を判定する画質判定手段と、前記画質判定手段によって判定された画質に基づいて、画質調整強度を制御する画質調整手段と、を備える。 According to the first aspect of the present invention, the image processing apparatus includes: an image quality determination unit that determines an image quality for each frame of the input image; and an image quality adjustment strength based on the image quality determined by the image quality determination unit. Image quality adjusting means for controlling the image quality.
 請求項15に記載の発明は、画像処理方法は、入力された画像に対して、フレーム毎に画質を判定する画質判定工程と、前記画質判定工程によって判定された画質に基づいて、画質調整強度を制御する画質調整工程と、を備える。 According to a fifteenth aspect of the present invention, an image processing method includes: an image quality determination step for determining image quality for each frame of an input image; and an image quality adjustment strength based on the image quality determined by the image quality determination step. An image quality adjustment process for controlling the image quality.
 請求項16に記載の発明は、コンピュータによって実行される画像処理プログラムは、前記コンピュータを、入力された画像に対して、フレーム毎に画質を判定する画質判定手段、前記画質判定手段によって判定された画質に基づいて、画質調整強度を制御する画質調整手段、として機能させる。 According to the sixteenth aspect of the present invention, an image processing program executed by a computer is determined by the image quality determination unit that determines image quality for each frame of the input image, and the image quality determination unit. Based on the image quality, it functions as image quality adjustment means for controlling the image quality adjustment intensity.
本実施例に係る画像処理装置が適用されたシステムの概略構成図である。1 is a schematic configuration diagram of a system to which an image processing apparatus according to an embodiment is applied. 適応画像鮮鋭化処理部の概略構成図である。It is a schematic block diagram of an adaptive image sharpening process part. マクロブロックにおけるブロックサイズを説明するための図である。It is a figure for demonstrating the block size in a macroblock. 他の例における画像処理方法を説明するための図である。It is a figure for demonstrating the image processing method in another example. 本実施例における全体処理を示すフローチャートである。It is a flowchart which shows the whole process in a present Example. Iピクチャ用処理を示すフローチャートである。It is a flowchart which shows the process for I pictures. Iピクチャ時のビットレート判定状況確認処理を示すフローチャートである。It is a flowchart which shows the bit rate determination status confirmation process at the time of I picture. Pピクチャ用処理を示すフローチャートである。It is a flowchart which shows the process for P pictures. Pピクチャ用処理において、イントラブロックの数が所定以上でない場合などに実行される処理を示すフローチャートである。It is a flowchart which shows the process performed when the number of intra blocks is not more than predetermined in the process for P pictures. Pピクチャ時のビットレート判定状況確認処理を示すフローチャートである。It is a flowchart which shows the bit rate determination status confirmation process at the time of a P picture.
符号の説明Explanation of symbols
 11 チューナ部
 12 復調部
 22 ビデオデコーダ
 24 適応画像鮮鋭化処理部
 24a ビット量判定部
 24b エッジ検出部
 24c エッジ状況判定部
 24d シンタックス要素取得部
 24e 鮮鋭化レベル判定部
 24f 画質鮮鋭化処理部
 24x 画質判定部
 25 信号処理部
DESCRIPTION OF SYMBOLS 11 Tuner part 12 Demodulator part 22 Video decoder 24 Adaptive image sharpening process part 24a Bit amount determination part 24b Edge detection part 24c Edge condition determination part 24d Syntax element acquisition part 24e Sharpening level determination part 24f Image quality sharpening process part 24x Image quality Determination unit 25 Signal processing unit
 本発明の1つの観点では、画像処理装置は、入力された画像に対して、フレーム毎に画質を判定する画質判定手段と、前記画質判定手段によって判定された画質に基づいて、画質調整強度を制御する画質調整手段と、を備える。 In one aspect of the present invention, an image processing apparatus determines, for an input image, an image quality determination unit that determines image quality for each frame, and an image quality adjustment strength based on the image quality determined by the image quality determination unit. Image quality adjusting means for controlling.
 上記の画像処理装置は、例えば地上波デジタル放送のワンセグ(1seg)受信機などに好適に適用される。具体的には、画質判定手段は、フレーム毎に画質を判定し、画質調整手段は、判定された画質に基づいて画質調整強度を制御する。これにより、画像の劣化状況などを適切に把握することができるため、判定された画質に基づいて画質調整強度を制御することにより、符号化劣化などを強調することで画質劣化が助長されてしまうことを適切に抑制することができる。したがって、劣化要因を目立たなくしつつ、最適に画質改善を行うことが可能となる。 The above-described image processing apparatus is suitably applied to, for example, a 1 seg (1 seg) receiver for terrestrial digital broadcasting. Specifically, the image quality determination unit determines the image quality for each frame, and the image quality adjustment unit controls the image quality adjustment intensity based on the determined image quality. As a result, it is possible to appropriately grasp the deterioration state of the image and the like, and by controlling the image quality adjustment intensity based on the determined image quality, the deterioration of the image quality is promoted by enhancing the coding deterioration and the like. This can be suppressed appropriately. Therefore, it is possible to optimally improve the image quality while making the deterioration factor inconspicuous.
 上記の画像処理装置の一態様では、前記画質判定手段は、ピクチャタイプに応じて前記画質の判定方法を変える。具体的には、画質判定手段は、圧縮画像データがどのピクチャタイプであるかに応じて、画質の判定方法を変える。例えば、ピクチャタイプとしては、I(Intra)ピクチャ、P(Predictive)ピクチャ、B(Bidirectionally predictive)ピクチャなどがある。こうすることにより、画像の劣化状況などを正確に把握することが可能となる。 In one aspect of the image processing apparatus, the image quality determination unit changes the image quality determination method according to a picture type. Specifically, the image quality determination means changes the image quality determination method according to which picture type the compressed image data is. For example, picture types include an I (Intra) picture, a P (Predictive) picture, and a B (Bidirectionally predictive) picture. By doing so, it becomes possible to accurately grasp the degradation state of the image.
 上記の画像処理装置の他の一態様では、前記画質判定手段は、前記ピクチャタイプがIピクチャである場合には、ビット量に基づいて前記画質の判定を行い、前記ピクチャタイプが前記Iピクチャ以外である場合には、ビット量及びイントラブロックの数に基づいて前記画質の判定を行う。この場合、前記画質判定手段は、前記Iピクチャである場合には、前記ビット量が少ない場合には多い場合よりも画質が低下していると判定し、前記Iピクチャ以外である場合には、前記ビット量が少ない場合には多い場合よりも画質が低下していると判定すると共に、前記イントラブロックの数が多い場合には少ない場合よりも画質が低下していると判定することができる。 In another aspect of the image processing apparatus, the image quality determination unit determines the image quality based on a bit amount when the picture type is an I picture, and the picture type is other than the I picture. If it is, the image quality is determined based on the bit amount and the number of intra blocks. In this case, the image quality determination means determines that the image quality is lower when the bit amount is small than when it is large when the bit amount is small, and when it is other than the I picture, When the bit amount is small, it can be determined that the image quality is lower than when it is large, and when the number of intra blocks is large, it can be determined that the image quality is lower than when it is small.
 上記の画像処理装置の他の一態様では、前記画質判定手段は、前記Iピクチャ以外である場合には、更に、マクロブロックにおけるサイズが所定サイズ未満であるブロック数に基づいて前記画質の判定を行う。この場合、前記画質判定手段は、前記マクロブロックのサイズが前記所定サイズ未満であるブロック数が多い場合には少ない場合よりも画質が低下していると判定することができる。 In another aspect of the above-described image processing apparatus, the image quality determination unit further determines the image quality based on the number of blocks whose size in a macroblock is less than a predetermined size when the image is other than the I picture. Do. In this case, the image quality determination means can determine that the image quality is degraded when the number of blocks whose macroblock size is less than the predetermined size is large compared to when the number of blocks is small.
 上記の画像処理装置の他の一態様では、前記画質判定手段は、前記Iピクチャである場合及び前記Iピクチャ以外である場合の両方について、更に、エッジ状況に基づいて前記画質の判定を行う。これにより、画像の複雑度を適切に考慮して、画質を判定することができる。 In another aspect of the above-described image processing apparatus, the image quality determination unit further determines the image quality based on an edge situation for both the case of the I picture and the case other than the I picture. Thereby, the image quality can be determined in consideration of the complexity of the image appropriately.
 上記の画像処理装置において好適には、前記画質調整手段は、画像におけるエリア毎に、適応的に前記画質調整強度を制御する。好ましくは、前記画質調整手段は、画像において特定のエリアについては、前記画質判定手段によって判定された画質に基づいた前記画質調整強度の制御を行わない。これにより、画質調整強度の制御に起因する処理の負担を軽減することができる。 Preferably, in the above-described image processing apparatus, the image quality adjusting means adaptively controls the image quality adjustment intensity for each area in the image. Preferably, the image quality adjustment unit does not control the image quality adjustment intensity based on the image quality determined by the image quality determination unit for a specific area in the image. As a result, it is possible to reduce the processing burden caused by the control of the image quality adjustment strength.
 また、上記の画像処理装置において好適には、前記画質調整手段は、シーンチェンジが起こった際に、前記画質判定手段によって判定された画質に基づいた前記画質調整強度の制御を行う。これによっても、処理の負担を軽減することができる。 Preferably, in the above-described image processing apparatus, the image quality adjustment unit controls the image quality adjustment intensity based on the image quality determined by the image quality determination unit when a scene change occurs. This can also reduce the processing burden.
 好適な例では、前記画質調整手段は、前記画質調整強度として鮮鋭化のレベルを制御する。この場合、前記画質調整手段は、前記画質判定手段によって画質が低下していると判定された場合には、前記画質の低下レベルに応じて前記鮮鋭化のレベルを小さくする。これにより、劣化要因を適切に目立たなくさせることができ、画質改善を最適に行うことが可能となる。 In a preferred example, the image quality adjustment means controls a sharpening level as the image quality adjustment intensity. In this case, the image quality adjusting means reduces the sharpening level according to the image quality deterioration level when the image quality determining means determines that the image quality has deteriorated. As a result, the deterioration factor can be appropriately made inconspicuous, and the image quality can be improved optimally.
 また好適には、前記画質調整手段は、前記画質調整強度としてノイズ除去のレベルを制御する。この場合、前記画質調整手段は、前記画質判定手段によって画質が低下していると判定された場合には、前記画質の低下レベルに応じて前記ノイズ除去のレベルを大きくする。これにより、劣化要因を適切に目立たなくさせることができ、画質改善を最適に行うことが可能となる。 Also preferably, the image quality adjustment means controls a noise removal level as the image quality adjustment intensity. In this case, when the image quality determination unit determines that the image quality is degraded, the image quality adjustment unit increases the noise removal level according to the degradation level of the image quality. As a result, the deterioration factor can be appropriately made inconspicuous, and the image quality can be improved optimally.
 本発明の他の観点では、入力された画像に対して、フレーム毎に画質を判定する画質判定工程と、前記画質判定工程によって判定された画質に基づいて、画質調整強度を制御する画質調整工程と、を備える。 In another aspect of the present invention, an image quality determination step for determining image quality for each frame of an input image, and an image quality adjustment step for controlling image quality adjustment strength based on the image quality determined by the image quality determination step. And comprising.
 また、本発明の他の観点では、画像処理方法は、入力された画像に対して、フレーム毎に画質を判定する画質判定工程と、前記画質判定工程によって判定された画質に基づいて、画質調整強度を制御する画質調整工程と、を備える。 In another aspect of the present invention, an image processing method includes: an image quality determination step for determining image quality for each frame of an input image; and an image quality adjustment based on the image quality determined by the image quality determination step. And an image quality adjustment step for controlling the intensity.
 上記した画像処理方法及び画像処理プログラムによっても、画像の劣化状況などを適切に把握することができるため、判定された画質に基づいて画質調整強度を制御することにより、符号化劣化などを強調することで画質劣化が助長されてしまうことを適切に抑制することができる。なお、画像処理プログラムは、記録媒体に記録した状態で好適に取り扱うことができる。 The above-described image processing method and image processing program can also appropriately grasp the degradation state of the image, and therefore, by controlling the image quality adjustment intensity based on the determined image quality, the coding degradation is emphasized. Thus, it is possible to appropriately suppress the deterioration of the image quality. Note that the image processing program can be suitably handled in a state where it is recorded on a recording medium.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [装置構成]
 図1は、本実施例に係る画像処理装置が適用されたシステムの概略構成図を示す。当該システムは、主に、前段処理部1及び後段処理部2を有し、例えば地上波デジタル放送のワンセグ(1seg)受信機に適用される。一例としては、携帯電話や車両用のナビゲーション装置などに適用される。なお、ワンセグ放送で使用される画像データ圧縮フォーマットはH.264符号化方式であり、以下では、H.264符号化方式のデータを扱う場合を例に挙げて説明する。
[Device configuration]
FIG. 1 is a schematic configuration diagram of a system to which an image processing apparatus according to the present embodiment is applied. The system mainly includes a pre-processing unit 1 and a post-processing unit 2, and is applied to, for example, a 1 seg (1seg) receiver for terrestrial digital broadcasting. As an example, the present invention is applied to a mobile phone or a navigation device for a vehicle. The image data compression format used for one-segment broadcasting is H.264. H.264 encoding system, and in the following, H.264 encoding is used. A case of handling data of the H.264 encoding method will be described as an example.
 前段処理部1は、主に、チューナ部11と復調部12とを備える。チューナ部11は、アンテナ11aを介して、変調された電波を受信し、これを信号S11として復調部12に供給する。復調部12は、チューナ部11から供給された信号S11を復調し、復調後の信号S12を後段処理部2に供給する。具体的には、復調部12は、MPEG-TS(例えばMPEG2-TS)への変換処理を行う。 The pre-processing unit 1 mainly includes a tuner unit 11 and a demodulation unit 12. The tuner unit 11 receives the modulated radio wave via the antenna 11a and supplies this to the demodulation unit 12 as a signal S11. The demodulation unit 12 demodulates the signal S11 supplied from the tuner unit 11, and supplies the demodulated signal S12 to the post-processing unit 2. Specifically, the demodulation unit 12 performs conversion processing into MPEG-TS (for example, MPEG2-TS).
 後段処理部2は、主に、Demux部21と、ビデオデコーダ22と、フレームバッファメモリ23と、適応画像鮮鋭化処理部24と、信号処理部25と、を備える。Demux部21は、前段処理部1の復調部12から信号S12(MPEG-TSに相当する)を取得し、これをオーディオとビデオ、データ放送などのESデータ毎に分離する処理を行う。より具体的には、Demux部21は、MPEG2-TSヘッダ解析や、PESヘッダ解析や、ESデータ抽出などを行う。そして、Demux部21は、分離されたデータの中でビデオに相当する信号S21をビデオデコーダ22に供給する。 The post-processing unit 2 mainly includes a Demux unit 21, a video decoder 22, a frame buffer memory 23, an adaptive image sharpening processing unit 24, and a signal processing unit 25. The Demux unit 21 obtains a signal S12 (corresponding to MPEG-TS) from the demodulator 12 of the pre-processing unit 1, and performs processing for separating the signal S12 for each ES data such as audio, video, and data broadcasting. More specifically, the Demux unit 21 performs MPEG2-TS header analysis, PES header analysis, ES data extraction, and the like. Then, the Demux unit 21 supplies the video decoder 22 with a signal S21 corresponding to video in the separated data.
 ビデオデコーダ22は、Demux部21から信号S21を取得して、符号化された情報を復号化して画像データに変換する処理を行う。具体的には、ビデオデコーダ22は、復号化して得られた画像データを信号S22aとしてフレームバッファメモリ23に供給する。更に、ビデオデコーダ22は、フレームごとのビット量に対応する情報(例えばH.264符号化方式におけるデコーダではNALユニットのバイト数など)を信号S22bとして適応画像鮮鋭化処理部24に供給すると共に、復号化の途中で得られる、H.264符号化方式におけるマクロブロックタイプやピクチャタイプやベクトルなどの情報(以下、「シンタックス要素」と呼ぶ。)を信号S22cとして適応画像鮮鋭化処理部24に供給する。 The video decoder 22 acquires the signal S21 from the Demux unit 21 and performs a process of decoding the encoded information and converting it into image data. Specifically, the video decoder 22 supplies the image data obtained by decoding to the frame buffer memory 23 as a signal S22a. Further, the video decoder 22 supplies information corresponding to the bit amount for each frame (for example, the number of bytes of the NAL unit in the case of the decoder in the H.264 encoding method) to the adaptive image sharpening processing unit 24 as a signal S22b. H. obtained in the middle of decoding. Information (hereinafter referred to as “syntax element”) such as a macroblock type, a picture type, and a vector in the H.264 encoding method is supplied to the adaptive image sharpening processing unit 24 as a signal S22c.
 フレームバッファメモリ23は、ビデオデコーダ22から画像データに相当する信号S22aを取得し、これを一時的に蓄える。このように蓄えられたデータは、参照フレームなどとして利用される。 The frame buffer memory 23 acquires the signal S22a corresponding to the image data from the video decoder 22 and temporarily stores it. The data stored in this way is used as a reference frame or the like.
 適応画像鮮鋭化処理部24は、フレームバッファメモリ23から画像データに相当する信号S23を取得すると共に、ビデオデコーダ22からフレームごとのビット量に相当する信号S22b及びシンタックス要素に相当する信号S22cを取得する。そして、適応画像鮮鋭化処理部24は、これらの取得した信号に基づいてフレーム毎に画質の良否を判定し、この判定結果に基づいて画像に対する画質調整強度の制御を行う、具体的には鮮鋭化する際の強調レベル(以下、単に「鮮鋭化レベル」と呼ぶ。)を制御する。この場合、適応画像鮮鋭化処理部24は、比較的低画質であると判定した場合には鮮鋭化レベルを低く設定して鮮鋭化の処理を行い、比較的高画質であると判定した場合には鮮鋭化レベルを高く設定して鮮鋭化の処理を行う。または、適応画像鮮鋭化処理部24は、比較的低画質であると判定した場合にはノイズ除去レベルを高く設定して鮮鋭化の処理を行い、比較的高画質であると判定した場合にはノイズ除去のレベルを低く設定して鮮鋭化の処理を行う。そして、適応画像鮮鋭化処理部24は、このように鮮鋭化の処理を行った後の画像データを、信号S24として信号処理部25に供給する。このように、適応画像鮮鋭化処理部24は、本発明における画像処理装置に相当し、画質判定手段及び画質調整手段として機能する。なお、適応画像鮮鋭化処理部24が行う処理の詳細は後述する。 The adaptive image sharpening processing unit 24 acquires the signal S23 corresponding to the image data from the frame buffer memory 23, and the signal S22b corresponding to the bit amount for each frame and the signal S22c corresponding to the syntax element from the video decoder 22. get. Then, the adaptive image sharpening processing unit 24 determines the quality of the image quality for each frame based on these acquired signals, and controls the image quality adjustment intensity for the image based on the determination result. The emphasis level (hereinafter simply referred to as “sharpening level”) is controlled. In this case, if the adaptive image sharpening processing unit 24 determines that the image quality is relatively low, the adaptive image sharpening processing unit 24 performs the sharpening process by setting the sharpening level low, and determines that the image quality is relatively high. Performs a sharpening process with a high sharpening level. Alternatively, if the adaptive image sharpening processing unit 24 determines that the image quality is relatively low, the adaptive image sharpening processing unit 24 performs a sharpening process with a high noise removal level, and determines that the image quality is relatively high. Set the noise removal level low and perform sharpening. Then, the adaptive image sharpening processing unit 24 supplies the image data after the sharpening processing as described above to the signal processing unit 25 as a signal S24. As described above, the adaptive image sharpening processing unit 24 corresponds to the image processing apparatus according to the present invention, and functions as an image quality determination unit and an image quality adjustment unit. Details of processing performed by the adaptive image sharpening processing unit 24 will be described later.
 信号処理部25は、適応画像鮮鋭化処理部24から信号S24を取得し、ビデオのコンポジット信号等のように出力先に適したデータに変換して、これを信号S25として出力する。 The signal processing unit 25 acquires the signal S24 from the adaptive image sharpening processing unit 24, converts it into data suitable for the output destination such as a video composite signal, and outputs this as the signal S25.
 ここで、上記したH.264符号化方式におけるシンタックス要素(符号化情報)の具体例について説明する。シンタックス要素としては、例えば、ピクチャタイプや、マクロブロックタイプや、「mv(動きベクトル)」や、「pmv(動きベクトル予測値)」や、「total_coeff」や、「nC」などが挙げられる。ピクチャタイプは、H.264符号化方式においてはIピクチャ及びPピクチャのいずれかに相当し、「total_coeff」は、4×4サイズの画素ブロック内においてresiual成分(差分値)の数を示す値であり、「nC」は、周辺のブロックがresiual成分を多く与えていた場合に大きくなる値であり、この場合には周辺ブロックでは複雑な画像が存在している傾向にある。なお、「total_coeff」及び「nC」については、「coeff_token」若しくは「CBP(Code_Block_Pattern)」から判断することも可能である。また、「CBP」は、H.264符号化方式におけるマクロブロックレイヤーに存在する値であり、該当マクロブロック中の8×8ブロックに差分値が存在する場合はビットが立っており、下位4ビットが「luma」のブロックを示し、上位2ビットが「chroma」のブロックの状況を示している(「CBP」は、例えば計6ビット)。 Here, H. A specific example of syntax elements (encoding information) in the H.264 encoding method will be described. Examples of the syntax element include a picture type, a macroblock type, “mv (motion vector)”, “pmv (motion vector prediction value)”, “total_coeff”, “nC”, and the like. The picture type is H.264. In the H.264 encoding method, it corresponds to either an I picture or a P picture, and “total_coeff” is a value indicating the number of residual components (difference values) in a 4 × 4 size pixel block, and “nC” is The value increases when the peripheral block gives a large amount of the residual component. In this case, a complex image tends to exist in the peripheral block. Note that “total_coeff” and “nC” can be determined from “coeff_token” or “CBP (Code_Block_Pattern)”. “CBP” is an H.264 standard. Is a value existing in the macroblock layer in the H.264 encoding system, and when the difference value exists in the 8 × 8 block in the corresponding macroblock, the bit is set, and the lower 4 bits indicate the block of “luma”, The upper 2 bits indicate the status of a block having “chroma” (“CBP” is, for example, a total of 6 bits).
 次に、図2を参照して、適応画像鮮鋭化処理部24について詳細に説明する。図2は、適応画像鮮鋭化処理部24の概略構成図を示す。図示のように、適応画像鮮鋭化処理部24は、画質判定部24x及び画質鮮鋭化処理部24fを備える。基本的には、画質判定部24xは、フレーム毎に画質の評価を行い、これに基づいて鮮鋭化における強調レベル(鮮鋭化レベル)を決定する。そして、画質鮮鋭化処理部24fは、画質判定部24xで決定された鮮鋭化レベルに応じて画像を鮮鋭化する処理を行う。このように、適応画像鮮鋭化処理部24においては、画質判定部24xが本発明における画質判定手段として機能し、画質鮮鋭化処理部24fが本発明における画質調整手段として機能する。 Next, the adaptive image sharpening processing unit 24 will be described in detail with reference to FIG. FIG. 2 is a schematic configuration diagram of the adaptive image sharpening processing unit 24. As illustrated, the adaptive image sharpening processing unit 24 includes an image quality determination unit 24x and an image quality sharpening processing unit 24f. Basically, the image quality determination unit 24x evaluates the image quality for each frame, and determines the enhancement level (sharpening level) in the sharpening based on the evaluation. Then, the image quality sharpening processing unit 24f performs a process of sharpening the image according to the sharpening level determined by the image quality determination unit 24x. Thus, in the adaptive image sharpening processing unit 24, the image quality determination unit 24x functions as the image quality determination unit in the present invention, and the image quality sharpening processing unit 24f functions as the image quality adjustment unit in the present invention.
 具体的には、画質判定部24xは、ビット量判定部24aと、エッジ検出部24bと、エッジ状況判定部24cと、シンタックス要素取得部24dと、鮮鋭化レベル判定部24eと、を有する。ビット量判定部24aは、ビデオデコーダ22からフレーム当たりのビット量(言い換えるとビットレート)に相当する信号S22bを取得し、当該ビット量に基づいて、鮮鋭化レベルについての大まかな判定を行う。そして、ビット量判定部24aは、この判定結果を鮮鋭化レベル判定部24eに供給する。 Specifically, the image quality determination unit 24x includes a bit amount determination unit 24a, an edge detection unit 24b, an edge condition determination unit 24c, a syntax element acquisition unit 24d, and a sharpening level determination unit 24e. The bit amount determination unit 24a acquires the signal S22b corresponding to the bit amount per frame (in other words, the bit rate) from the video decoder 22, and makes a rough determination on the sharpening level based on the bit amount. Then, the bit amount determination unit 24a supplies the determination result to the sharpening level determination unit 24e.
 エッジ検出部24bは、フレームバッファメモリ23から画像データに相当する信号S23を取得し、これに対して「sobel filter」などのエッジ抽出で用いられる一般的なフィルタを用いることでエッジ検出を行う(具体的には、閾値以上の場合にエッジ検出する)。また、エッジ検出部24bは、エッジ検出された個所の情報を保持しており、この情報がいくつあるかをカウントする。エッジ状況判定部24cは、エッジ検出部24bからエッジ検出情報を取得し、これを基にエッジ領域の割合などを算出し、画像の複雑度を判定する。そして、エッジ状況判定部24cは、このような画像の複雑度に基づいて、エッジ画像から鮮鋭化レベルについての大まかな判定を行い、この判定結果を鮮鋭化レベル判定部24eに供給する。 The edge detection unit 24b acquires the signal S23 corresponding to the image data from the frame buffer memory 23, and performs edge detection by using a general filter used for edge extraction such as “sobel filter” on the signal S23 ( Specifically, edge detection is performed when the threshold value is exceeded. Further, the edge detection unit 24b holds information on the location where the edge is detected, and counts how many pieces of this information are present. The edge status determination unit 24c acquires edge detection information from the edge detection unit 24b, calculates the ratio of edge regions and the like based on the edge detection information, and determines the complexity of the image. Then, the edge state determination unit 24c performs a rough determination on the sharpening level from the edge image based on the complexity of the image, and supplies the determination result to the sharpening level determination unit 24e.
 シンタックス要素取得部24dは、ビデオデコーダ22からシンタックス要素に相当する信号S22cを取得し、鮮鋭化レベル判定部24eにおける鮮鋭化レベルの判定に必要なマクロブロックレイヤー以下の情報を取り出す。具体的には、シンタックス要素取得部24dは、前述したようなピクチャタイプや、マクロブロックタイプや、「mv」や、「pmv」や、「total_coeff」や、「nC」などを取り出して、これらを鮮鋭化レベル判定部24eに供給する。このようなシンタックス要素を用いることによって、例えばフレーム当たりのビット量が概ね同一であっても、画質の良否を適切に判定することが可能となる。 The syntax element acquisition unit 24d acquires the signal S22c corresponding to the syntax element from the video decoder 22, and extracts information below the macroblock layer necessary for the sharpening level determination in the sharpening level determination unit 24e. Specifically, the syntax element acquisition unit 24d extracts the picture type, macroblock type, “mv”, “pmv”, “total_coeff”, “nC”, and the like as described above. Is supplied to the sharpening level determination unit 24e. By using such a syntax element, for example, even if the bit amount per frame is substantially the same, it is possible to appropriately determine whether the image quality is good or bad.
 鮮鋭化レベル判定部24eは、上記したビット量判定部24a、エッジ状況判定部24c、及びシンタックス要素取得部24dから供給される情報を総合的に考慮することで鮮鋭化レベルを決定して、決定された鋭化レベルを画質鮮鋭化処理部24fに供給する。具体的には、鮮鋭化レベル判定部24eは、比較的高画質である場合と判断される場合には鮮鋭化レベルを高く設定し、比較的低画質であると判定される場合には鮮鋭化レベルを低く設定する。 The sharpening level determination unit 24e determines the sharpening level by comprehensively considering the information supplied from the bit amount determination unit 24a, the edge state determination unit 24c, and the syntax element acquisition unit 24d, The determined sharpening level is supplied to the image quality sharpening processing unit 24f. Specifically, the sharpening level determination unit 24e sets the sharpening level high when it is determined that the image quality is relatively high, and sharpens when it is determined that the image quality is relatively low. Set the level low.
 画質鮮鋭化処理部24fは、フレームバッファメモリ23から画像データに相当する信号S23を取得し、当該画像データに対して、鮮鋭化レベル判定部24eから取得された鮮鋭化レベルに応じて画像を鮮鋭化する処理を行う。具体的には、画質鮮鋭化処理部24fは、鮮鋭化レベルが高い場合には鮮鋭強度を高くして処理を行い、鮮鋭化レベルが低い場合には鮮鋭強度を低くして処理を行う。例えば、画質鮮鋭化処理部24fは、ラプラシアンフィルタなどのエッジ強調フィルタなどを用いて鮮鋭化を行う。この場合、鮮鋭化レベル判定部24eで決定された鮮鋭化レベルに応じてフィルタのオペレータ係数などを変えることにより、鮮鋭化の処理を行う。 The image quality sharpening processing unit 24f acquires the signal S23 corresponding to the image data from the frame buffer memory 23, and sharpens the image according to the sharpening level acquired from the sharpening level determination unit 24e for the image data. Perform processing. Specifically, the image quality sharpening processing unit 24f performs processing with a high sharpening strength when the sharpening level is high, and performs processing with a low sharpening strength when the sharpening level is low. For example, the image quality sharpening processing unit 24f performs sharpening using an edge enhancement filter such as a Laplacian filter. In this case, the sharpening process is performed by changing the operator coefficient of the filter or the like according to the sharpening level determined by the sharpening level determination unit 24e.
 ここで、図3を参照して、シンタックス要素の1つであるマクロブロックにおけるブロックサイズについて、具体的に説明する。H.264符号化方式では、可変ブロックサイズという仕組みが用いられ、16x16画素のマクロブロックに7種類のブロックサイズが用意される。マクロブロックタイプは、どのブロックサイズなのかを示している。具体的には、図3に示すように、16x16、16x8、8x16、8x8、8×4、4×8、4×4の7種類のブロックサイズが用いられる。 Here, with reference to FIG. 3, the block size in the macro block which is one of the syntax elements will be specifically described. H. In the H.264 encoding method, a mechanism called variable block size is used, and seven types of block sizes are prepared for a macro block of 16 × 16 pixels. The macro block type indicates which block size it is. Specifically, as shown in FIG. 3, seven types of block sizes of 16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8, and 4 × 4 are used.
 [画質判定方法]
 次に、本実施例に係る画質判定方法(言い換えると、鮮鋭化レベルを判定する方法)について説明する。
[Image quality judgment method]
Next, an image quality determination method according to the present embodiment (in other words, a method for determining a sharpening level) will be described.
 本実施例では、前述したように、画質判定部24xにおいて、主に、フレーム毎のビット量の情報、シンタックス要素、及びエッジ検出後におけるエッジ状況の3つの観点を総合的に考慮して、画質の判定を行う。具体的には、画質判定部24xは、ピクチャタイプに応じて画質の判定方法を変える。詳しくは、画質判定部24xは、ピクチャタイプがIピクチャである場合には、主に、ビット量及びエッジ状況(エッジを持つ画素数など)に基づいて画質を判定する。これに対し、ピクチャタイプがIピクチャ以外である場合、具体的にはPピクチャである場合には、画質判定部24xは、ビット量だけでなく、イントラブロックの数や、マクロブロックのサイズが所定サイズ未満であるブロック数などにも基づいて画質を判定する。なお、イントラブロックは、ベクトル(動きベクトル)を持たず、差分値(resiual成分)のみか、周辺のブロックから予測して画像を作り出すブロックに該当し、上記したシンタックス要素の1つであるマクロブロックタイプから把握することができる。また、マクロブロックのサイズも、マクロブロックタイプから把握することができる。 In the present embodiment, as described above, the image quality determination unit 24x mainly considers the three viewpoints of bit amount information for each frame, syntax elements, and edge conditions after edge detection, Determine the image quality. Specifically, the image quality determination unit 24x changes the image quality determination method according to the picture type. Specifically, when the picture type is an I picture, the image quality determination unit 24x mainly determines the image quality based on the bit amount and the edge status (such as the number of pixels having an edge). On the other hand, when the picture type is other than I picture, specifically, when the picture type is P picture, the image quality determination unit 24x determines not only the bit amount but also the number of intra blocks and the size of the macro block. The image quality is determined based on the number of blocks that are less than the size. Note that an intra block does not have a vector (motion vector) and corresponds only to a difference value (residual component) or a block that creates an image by prediction from surrounding blocks, and is a macro that is one of the syntax elements described above. It can be grasped from the block type. In addition, the size of the macroblock can be grasped from the macroblock type.
 上記のような画質の判定を行う理由は、以下の通りである。まず、Pピクチャである場合におけるシンタックス要素の確認について説明する。ワンセグ放送のような低ビットレートの画像の場合、画像を符号化する際にビットレートの制限のため、やむを得ず平均的な画質よりも落とすケースがある。この場合、フレーム当たりのビット量のみを観測するだけでは、画質の良否を適切に判定することができないと言える。なぜならば、Iピクチャの方がPピクチャよりもフレーム間予測がないために同じ画質の映像を作る際に必要なデータレートは大きくなる傾向にあるからである。また、Pピクチャにおいては、たとえフレーム当たりのビット量が少なくても、画像の動きによっては、画質が落ちない場合があるからである。例えばパンシーンのように動きベクトル情報だけで画像が作れる場合は少ないビット量で十分な場合がある。逆に、「total_coeff」が多く(または「nC」が大きい値を持つブロックが多く)、マクロブロックタイプも小さなサイズ(例えば8x8など)ならば、変形物体が存在する可能性が高く、本来多くのビット量が必要な可能性が高いと言える。以上より、本実施例では、Pピクチャについては、マクロブロックタイプの情報やresiual成分を示す「total_coeff」及び「nC」の情報などを総合的に判断して、画質の判定を行う。 The reason for determining the image quality as described above is as follows. First, confirmation of syntax elements in the case of a P picture will be described. In the case of an image with a low bit rate such as one-segment broadcasting, there is a case where the image quality is inevitably lowered than the average image quality due to the limitation of the bit rate when the image is encoded. In this case, it can be said that the quality of image quality cannot be determined appropriately only by observing only the bit amount per frame. This is because the I-picture has less inter-frame prediction than the P-picture, so that the data rate required for producing the same image quality tends to be larger. Also, in the P picture, even if the bit amount per frame is small, the image quality may not be lowered depending on the movement of the image. For example, when an image can be created using only motion vector information such as a pan scene, a small bit amount may be sufficient. Conversely, if there are many “total_coeff” (or many blocks with a large value of “nC”) and the macroblock type is also a small size (for example, 8 × 8), there is a high possibility that a deformed object exists, It can be said that there is a high possibility that a bit amount is necessary. As described above, in the present embodiment, for the P picture, the image quality is determined by comprehensively determining the macroblock type information, the “total_coeff” and “nC” information indicating the residual component, and the like.
 一方、画質の劣化が起こりそうな場合には、イントラブロックが多く存在するPピクチャの出現傾向がみられる。なぜならば、シーンチェンジの場合、フレーム当たりのビット量が十分であれば、Iピクチャを用いて、全てイントラブロックで構成したほうが画質の劣化が少ないからである。しかしながら、シーンチェンジが多く続くシーンなどでは、フレーム当たりのビット量が不足してくる状況になる。その場合には、前フレームと相関性が本来高くないが、偶然相関性が同じようなブロックについては、ベクトルを用いて画像を生成しようとする。全く相関性がないブロックについては、イントラブロックを使用する。ベクトルを用いて作ったブロックについても、相関性が高くないので、画質が低下していることが多い。以上より、本実施例では、ピクチャタイプとマクロブロックタイプの両方の状況に基づいて、画質の判定を行う。 On the other hand, when picture quality is likely to deteriorate, there is a tendency of appearance of P pictures with many intra blocks. This is because, in the case of a scene change, if the amount of bits per frame is sufficient, the image quality is less deteriorated when all of the I-pictures are composed of intra blocks. However, in a scene where scene changes continue frequently, the amount of bits per frame becomes insufficient. In that case, although the correlation with the previous frame is not originally high, an image is generated using a vector for a block that has the same correlation by chance. For blocks that have no correlation at all, intra blocks are used. Even for blocks made using vectors, the correlation is not high, so the image quality often decreases. As described above, in this embodiment, the image quality is determined based on the situation of both the picture type and the macroblock type.
 次に、エッジ状況の確認について説明する。エッジ状況の確認は、基本的には、画像の複雑度を見るために行い、Iピクチャの画質の判定に使用する。ここで、Iピクチャにおいては、フレーム当たりのビット量がある程度低い場合でも、画像が平坦な場合には、さほど画質の低下が起きていないと考えられるが、画像が複雑である場合は画質の低下が起きていると考えられるので、その基準の参考としてエッジ状況を確認する。これに対して、Pピクチャの場合は、動きベクトルで画像を生成することができるので、エッジ状況の確認をする際には、イントラブロックの多さ比例で考える必要があると言える。Pピクチャにおいては、人物などの変形物体が大きく動くとベクトルで予測しづらくなるので、resiual成分を必要とし、比較的多くのビット量を必要とする。低ビットレートのストリームでは、十分にビット量を与えられない可能性があるので、画質の劣化を招く。「total_coeff」が多くマクロブロックタイプも小さなサイズ(例えば8x8など)ならば、変形物体が存在する可能性が高く、本来多くのビット量が必要な可能性が高い。したがって、このようなブロックもイントラブロックに準じた扱い(以下、「準イントラブロック」とも呼ぶ。)にすべきであると言える。以上より、本実施例では、Pピクチャについては、イントラブロックの多さや、準イントラブロックの多さとフレーム当たりのビット量の両方の要素から画質の判定を行う。 Next, the confirmation of edge status will be described. The confirmation of the edge state is basically performed in order to see the complexity of the image, and is used for determining the image quality of the I picture. Here, in the case of an I picture, even if the bit amount per frame is low to some extent, if the image is flat, it is considered that the image quality does not deteriorate so much, but if the image is complicated, the image quality decreases. Therefore, the edge condition is confirmed as a reference for the standard. On the other hand, in the case of a P picture, an image can be generated with a motion vector. Therefore, it can be said that it is necessary to consider the proportion of intra blocks in proportion to the confirmation of the edge situation. In a P picture, if a deformed object such as a person moves greatly, it is difficult to predict with a vector, so a residual component is required and a relatively large amount of bits is required. In a low bit rate stream, there is a possibility that a sufficient amount of bits may not be given, resulting in degradation of image quality. If “total_coeff” is large and the macroblock type is also a small size (for example, 8 × 8), there is a high possibility that a deformed object exists, and a large amount of bits is inherently necessary. Therefore, it can be said that such a block should also be handled according to the intra block (hereinafter also referred to as “quasi-intra block”). As described above, in the present embodiment, the image quality of a P picture is determined from the elements of both the number of intra blocks and the number of quasi-intra blocks and the bit amount per frame.
 以上のような本実施例に係る画質判定方法によれば、画像の劣化状況を適切に把握することができる。したがって、判定された画質に基づいて鮮鋭化の処理を行うことにより、符号化劣化などを強調することで画質劣化が助長されてしまうことを適切に抑制することができ、劣化要因を目立たなくしつつ、最適に画質改善を行うことが可能となる。特に、ワンセグ放送のような低ビットレートの画像ではシーンチェンジなどが頻発した際に劣化(符号化劣化ノイズなど)が激しい画像が出現する場合があるが、このようなワンセグ放送の画像に対して本実施例を適用することで、符号化劣化ノイズなどを効果的に抑制することができると言える。 According to the image quality determination method according to the present embodiment as described above, it is possible to appropriately grasp the degradation state of the image. Therefore, by performing the sharpening process based on the determined image quality, it is possible to appropriately prevent the deterioration of the image quality from being promoted by emphasizing the deterioration of the encoding and the like, while making the deterioration factor inconspicuous. The image quality can be optimally improved. In particular, in low-bit-rate images such as one-segment broadcasting, when scene changes occur frequently, images with severe deterioration (such as coding degradation noise) may appear. By applying this embodiment, it can be said that encoding degradation noise and the like can be effectively suppressed.
 なお、全画面について、上記のように判定された画質に応じて鮮鋭化レベルを変えることに限定はされない。他の例では、適応的に鮮鋭化レベルを変えるエリアを画面内で限定することができる。例えば、テロップなどの文字が表示されている特定のエリアは、固定の鮮鋭化レベルを用いることとし、その他のエリアについては、本実施例に係る方法によって画質に応じて鮮鋭化レベルを変えることができる。 In addition, it is not limited to changing the sharpening level according to the image quality determined as described above for the entire screen. In another example, the area that adaptively changes the sharpening level can be limited within the screen. For example, the fixed sharpening level is used for a specific area where characters such as telop are displayed, and for other areas, the sharpening level can be changed according to the image quality by the method according to the present embodiment. it can.
 図4は、このような他の例における画像処理方法を説明するための図である。具体的には、図4は、画像の一例を示しており、破線領域T1、T2がテロップを含むエリアを示している。このようなテロップなどの固定的な画像エリアは、1フレーム当たりのビット量が変わっても、ほとんど画質が変化しないと言える。なぜならば、テロップ部分については前のフレームの画像をそのまま参照することができるため、当該テロップ部分の必要ビット量が少なくても、画質の変化の影響を受けにくいと言えるからである。よって、他の例では、テロップなどを含む特定のエリアについては、画質に応じた鮮鋭化レベルの変更を行わない。つまり、鮮鋭化レベルを固定する。一方、テロップ以外の画像エリアについては画像劣化を起こしている可能性があるので、前述したような手順にて、画質に応じた鮮鋭化レベルの変更を行う。 FIG. 4 is a diagram for explaining an image processing method in another example. Specifically, FIG. 4 shows an example of an image, and broken line areas T1 and T2 show areas including telops. It can be said that the image quality of such a fixed image area such as a telop hardly changes even if the bit amount per frame changes. This is because the image of the previous frame can be referred to as it is for the telop portion, so that it can be said that the telop portion is hardly affected by the change in image quality even if the required bit amount of the telop portion is small. Therefore, in another example, the sharpening level is not changed according to the image quality for a specific area including a telop or the like. That is, the sharpening level is fixed. On the other hand, since there is a possibility that image degradation has occurred in the image area other than the telop, the sharpening level is changed in accordance with the image quality by the procedure described above.
 更に他の例では、画像中のエリアを複数に分け、それぞれのエリア毎に画像状況によって適応的に鮮鋭化レベルを変えることも可能である。具体的には、画像中の物体などに応じて鮮鋭化レベルを変えることができる。一例としては、画像における顔の部分は鮮鋭化レベルを低くし、画像における襟の部分などは鮮鋭化レベルを高く設定することができる。なお、このようにして鮮鋭化レベルを変える場合、例えば、エッジの密度(エッジ状況判定部24cによって判定される)などを用いてエリアについての判定を行うことができ、また、画像中の物体は画像解析することで認識することができる。 In still another example, it is possible to divide the area in the image into a plurality of areas and adaptively change the sharpening level for each area depending on the image condition. Specifically, the sharpening level can be changed according to the object in the image. As an example, the sharpening level can be set low for the face portion in the image, and the sharpening level can be set high for the collar portion or the like in the image. When the sharpening level is changed in this way, for example, the area can be determined by using the edge density (determined by the edge condition determining unit 24c), and the object in the image is It can be recognized by image analysis.
 [実施例に係る処理]
 次に、図5乃至図10を参照して、本実施例において適応画像鮮鋭化処理部24(より具体的には画質判定部24x)が行う処理について説明する。当該処理においては、画質判定部24xが、前述したように、フレーム毎のビット量の情報、シンタックス要素、及びエッジ検出後におけるエッジ状況などを総合的に考慮して画質の判定を行う、具体的には鮮鋭化レベルを決定する。ここでは、4段階の鮮鋭化レベルに設定する場合、詳しくは「鮮鋭化を行わない」、「鮮鋭化レベル1」、「鮮鋭化レベル2」、「鮮鋭化レベル3」の4段階のいずれかに設定する場合を例に挙げる。なお、「鮮鋭化を行わない」→「鮮鋭化レベル1」→「鮮鋭化レベル2」→「鮮鋭化レベル3」の順に、鮮鋭強度が高くなるものとする。
[Processing according to embodiment]
Next, processing performed by the adaptive image sharpening processing unit 24 (more specifically, the image quality determination unit 24x) in the present embodiment will be described with reference to FIGS. In this processing, as described above, the image quality determination unit 24x determines the image quality by comprehensively considering the information on the bit amount for each frame, the syntax element, the edge condition after edge detection, and the like. The sharpening level is determined. Here, in the case of setting the sharpening level in four steps, in detail, any one of the four steps of “no sharpening”, “sharpening level 1”, “sharpening level 2”, and “sharpening level 3” Take the case of setting as an example. It is assumed that the sharpening strength increases in the order of “not sharpening” → “sharpening level 1” → “sharpening level 2” → “sharpening level 3”.
 図5は、本実施例における全体処理を示すフローチャートである。当該処理は、画質判定部24xにより、繰り返し実行される。 FIG. 5 is a flowchart showing the overall processing in this embodiment. This process is repeatedly executed by the image quality determination unit 24x.
 まず、ステップS101では、画質判定部24xは、処理の対象がテロップ以外のエリアであるか否かを判定する。このような判定を行うのは、画面においてテロップのエリアとテロップ以外のエリアとで分けて、鮮鋭化レベルの扱いを変えるためである。具体的には、画質判定部24xは、画像解析などすることによって、テロップ以外のエリアであるか否かの判定を行う。テロップ以外である場合(ステップS101;Yes)、処理はステップS102に進む。この場合には、ステップS102以降の処理で、画質に応じた鮮鋭化レベルの変更を行う。これに対して、テロップ以外のエリアでない場合(ステップS101;No)、処理はステップS106に進む。この場合には、前述したような理由から、予め決められた鮮鋭化レベルに固定する(ステップS106)。つまり、画質に応じた鮮鋭化レベルの変更を行わない。そして、処理は終了する。 First, in step S101, the image quality determination unit 24x determines whether the processing target is an area other than the telop. This determination is performed in order to change the handling of the sharpening level by dividing the telop area and the non-telop area on the screen. Specifically, the image quality determination unit 24x determines whether the area is other than the telop by performing image analysis or the like. If it is not a telop (step S101; Yes), the process proceeds to step S102. In this case, the sharpening level is changed according to the image quality in the processing after step S102. On the other hand, when it is not an area other than the telop (step S101; No), the process proceeds to step S106. In this case, for the reason described above, the sharpening level is fixed to a predetermined level (step S106). That is, the sharpening level is not changed according to the image quality. Then, the process ends.
 ステップS102では、画質判定部24xは、ピクチャタイプの情報を取得する。具体的には、画質判定部24xは、ビデオデコーダ22からH.264符号化方式におけるピクチャタイプ(シンタックス要素に含まれる)を取得する。そして、処理はステップS103に進む。ステップS103では、画質判定部24xは、ピクチャタイプがIピクチャであるか又はPピクチャであるかを判定する。Iピクチャである場合には処理はステップS104に進み、画質判定部24xは、後述するIピクチャ用処理を実行することで鮮鋭化レベルを決定する。この後、処理は終了する。これに対して、Pピクチャである場合には処理はステップS105に進み、画質判定部24xは、後述するPピクチャ用処理を実行することで鮮鋭化レベルを決定する。この後、処理は終了する。 In step S102, the image quality determination unit 24x acquires picture type information. Specifically, the image quality determination unit 24 x receives the H.264 from the video decoder 22. The picture type (included in the syntax element) in the H.264 encoding method is acquired. Then, the process proceeds to step S103. In step S103, the image quality determination unit 24x determines whether the picture type is an I picture or a P picture. If it is an I picture, the process proceeds to step S104, and the image quality determination unit 24x determines a sharpening level by executing an I picture process described later. Thereafter, the process ends. On the other hand, if it is a P picture, the process proceeds to step S105, and the image quality determination unit 24x determines a sharpening level by executing a P picture process described later. Thereafter, the process ends.
 このような処理の後に、適応画像鮮鋭化処理部24内の適応画像鮮鋭化処理部24が、ラプラシアンフィルタなどの一般的なエッジ強調フィルタなどを用いて、決定された鮮鋭化レベルに応じてフィルタのオペレータ係数などを変えることにより、鮮鋭化の処理を行う。 After such processing, the adaptive image sharpening processing unit 24 in the adaptive image sharpening processing unit 24 uses a general edge enhancement filter such as a Laplacian filter to filter according to the determined sharpening level. The sharpening process is performed by changing the operator coefficient.
 図6は、図5のステップS104で行われるIピクチャ用処理を示すフローチャートである。この処理では、まずビット量に基づいて大まかに画質の判定を行い、この後に、エッジ状況(エッジを持つ画素数)に基づいて細かく画質を判定することで、鮮鋭化レベルを決定する。なお、Iピクチャ用処理も、画質判定部24xにより実行される。 FIG. 6 is a flowchart showing the I picture processing performed in step S104 of FIG. In this processing, first, the image quality is roughly determined based on the bit amount, and then the sharpness level is determined by finely determining the image quality based on the edge state (the number of pixels having edges). The I picture processing is also executed by the image quality determination unit 24x.
 ステップS201では、画質判定部24xは、フレーム当たりのビットレートに基づいてフレームを分類する処理、詳しくはNalユニットのバイト数に基づいてフレームを分類する処理(以下、「Iピクチャ時のビットレート判定状況確認処理」と呼ぶ。)を実行する。そして、処理はステップS202に進む。 In step S201, the image quality determination unit 24x performs processing for classifying frames based on the bit rate per frame, specifically, processing for classifying frames based on the number of bytes of Nal units (hereinafter referred to as “bit rate determination for I picture”). This is referred to as “situation confirmation processing”. Then, the process proceeds to step S202.
 ここで、図7を参照して、図6のステップS201で行われるIピクチャ時のビットレート判定状況確認処理について説明する。まず、ステップS301では、画質判定部24xは、ビデオデコーダ22からNalユニットのバイト数を取得する。そして、処理はステップS302に進む。ステップS302では、画質判定部24xは、Nalユニットのバイト数に基づいて判定を行う。具体的には、画質判定部24xは、X1、X2、X3、X4の4つのバイト数を用いることで、処理対象となっているフレームを4段階に分類する(X1<X2<X3<X4)。 Here, with reference to FIG. 7, the bit rate determination status confirmation processing at the time of I picture performed in step S201 of FIG. 6 will be described. First, in step S301, the image quality determination unit 24x acquires the number of bytes of Nal unit from the video decoder 22. Then, the process proceeds to step S302. In step S302, the image quality determination unit 24x performs determination based on the number of bytes of the Nal unit. Specifically, the image quality determination unit 24x classifies the frames to be processed into four stages (X1 <X2 <X3 <X4) by using four byte numbers X1, X2, X3, and X4. .
 Nalユニットのバイト数がX1バイト未満である場合、処理はステップS303に進み、画質判定部24xは、超低ビットレート割り当てフレームとの判定を行う。そして、処理は終了する。一方、Nalユニットのバイト数がX1バイト以上且つX2バイト未満である場合、処理はステップS304に進み、画質判定部24xは、低ビットレート割り当てフレームとの判定を行う。そして、処理は終了する。一方、Nalユニットのバイト数がX2バイト以上且つX3バイト未満である場合、処理はステップS305に進み、画質判定部24xは、中ビットレート割り当てフレームとの判定を行う。そして、処理は終了する。一方、Nalユニットのバイト数がX3バイト以上且つX4バイト未満である場合、処理はステップS306に進み、画質判定部24xは、高ビットレート割り当てフレームとの判定を行う。そして、処理は終了する。 When the number of bytes of the Nal unit is less than X1 bytes, the process proceeds to step S303, and the image quality determination unit 24x determines that the frame is an ultra-low bit rate allocation frame. Then, the process ends. On the other hand, if the number of bytes of the Nal unit is greater than or equal to X1 bytes and less than X2 bytes, the process proceeds to step S304, and the image quality determination unit 24x determines that the frame is a low bit rate allocation frame. Then, the process ends. On the other hand, if the number of bytes of the Nal unit is greater than or equal to X2 bytes and less than X3 bytes, the process proceeds to step S305, and the image quality determination unit 24x determines that the frame is a medium bit rate allocation frame. Then, the process ends. On the other hand, if the number of bytes of the Nal unit is greater than or equal to X3 bytes and less than X4 bytes, the process proceeds to step S306, and the image quality determination unit 24x determines that the frame is a high bit rate allocation frame. Then, the process ends.
 図6に戻って、ステップS202以降の処理について説明を行う。ステップS202では、画質判定部24xは、ビットレート判定状況についての判定を行う。具体的には、画質判定部24xは、図7に示す処理で分類された結果に基づいて判定を行う。 Referring back to FIG. 6, the processing after step S202 will be described. In step S202, the image quality determination unit 24x determines the bit rate determination status. Specifically, the image quality determination unit 24x performs determination based on the results classified by the processing illustrated in FIG.
 なお、以降のステップS203~S210の処理では、ビットレート判定状況に応じて(具体的には、Nalユニットのバイト数にて分類されたフレームに応じて)、鮮鋭化レベルを決定する処理が行われる。この場合、基本的には、Nalユニットのバイト数に応じて鮮鋭化レベルが決定される。つまり、基本的には、超低ビットレート割り当てフレーム→低ビットレート割り当てフレーム→中ビットレート割り当てフレーム→高ビットレート割り当てフレームの順に、鮮鋭化レベルが高く設定される。また、この場合、Nalユニットのバイト数だけでなく、エッジ状況も考慮に入れて、鮮鋭化レベルの調整が行われる。即ち、本実施例では、Nalユニットのバイト数及びエッジ状況の両方を考慮に入れて、鮮鋭化レベルを決定する。例えば、Nalユニットのバイト数がある程度大きくても、エッジを持つ画素数が多い場合には、鮮鋭化レベルが比較的低めに設定される。 In the processing of subsequent steps S203 to S210, the processing for determining the sharpening level is performed according to the bit rate determination status (specifically, according to the frames classified by the number of bytes of the Nal unit). Is called. In this case, basically, the sharpening level is determined according to the number of bytes of the Nal unit. That is, basically, the sharpening level is set higher in the order of ultra-low bit rate allocation frame → low bit rate allocation frame → medium bit rate allocation frame → high bit rate allocation frame. In this case, the sharpening level is adjusted in consideration of not only the number of bytes of the Nal unit but also the edge state. That is, in this embodiment, the sharpening level is determined taking into account both the number of bytes of Nal unit and the edge state. For example, even if the number of bytes of the Nal unit is large to some extent, when the number of pixels having edges is large, the sharpening level is set to be relatively low.
 まず、超低ビットレート割り当てフレームである場合には、処理はステップS203に進む。ステップS203では、画質判定部24xは、鮮鋭化を行わないと決定する。この場合には、ビット量がかなり少ないため、画質がかなり低下しているものと考えられるからである。そして、処理は終了する。 First, if it is an ultra-low bit rate allocation frame, the process proceeds to step S203. In step S203, the image quality determination unit 24x determines not to perform sharpening. In this case, it is considered that the image quality is considerably lowered because the bit amount is considerably small. Then, the process ends.
 一方、低ビットレート割り当てフレームである場合には、処理はステップS204に進む。ステップS204では、画質判定部24xは、エッジ状況を確認する処理を行う。具体的には、画質判定部24x(詳しくは、画質判定部24x内のエッジ検出部24b)は、1フレーム中のエッジを持つ画素をカウントする。つまり、エッジ検出された個所の情報を保持して、この情報がいくつあるかをカウントする。そして、処理はステップS205に進む。 On the other hand, if it is a low bit rate allocation frame, the process proceeds to step S204. In step S204, the image quality determination unit 24x performs processing for confirming the edge state. Specifically, the image quality determination unit 24x (specifically, the edge detection unit 24b in the image quality determination unit 24x) counts pixels having edges in one frame. That is, the information of the location where the edge is detected is held and the number of pieces of this information is counted. Then, the process proceeds to step S205.
 ステップS205では、画質判定部24xは、カウントされたエッジを持つ画素数が所定値α1以下であるか否かを判定する。エッジを持つ画素数が所定値α1以下である場合(ステップS205;Yes)、鮮鋭化レベル2に設定する(ステップS209)。これに対して、エッジを持つ画素数が所定値α1より大きい場合(ステップS205;No)、鮮鋭化レベル1に設定する(ステップS206)。つまり、エッジを持つ画素数が所定値α1以下である場合よりも、鮮鋭化レベルを1つ下げる。こうしているのは、エッジを持つ画素数が所定値α1より大きい場合には、所定値α1以下である場合よりも、画像が複雑であり、画質が低下している可能性があるからである。以上のステップS206、S209の処理後、処理は終了する。 In step S205, the image quality determination unit 24x determines whether or not the number of pixels having the counted edges is equal to or less than a predetermined value α1. When the number of pixels having an edge is equal to or less than the predetermined value α1 (step S205; Yes), the sharpening level 2 is set (step S209). On the other hand, when the number of pixels having edges is larger than the predetermined value α1 (step S205; No), the sharpening level 1 is set (step S206). That is, the sharpening level is lowered by one as compared with the case where the number of pixels having edges is equal to or less than the predetermined value α1. This is because when the number of pixels having an edge is larger than the predetermined value α1, the image is more complex and the image quality may be lower than when the number is less than the predetermined value α1. After the processes in steps S206 and S209, the process ends.
 一方、中ビットレート割り当てフレームである場合には、処理はステップS207に進む。ステップS207では、画質判定部24xは、エッジ状況を確認する処理を行う。具体的には、画質判定部24x(詳しくは、画質判定部24x内のエッジ検出部24b)は、1フレーム中のエッジを持つ画素をカウントする。そして、処理はステップS208に進む。 On the other hand, if it is a medium bit rate allocation frame, the process proceeds to step S207. In step S207, the image quality determination unit 24x performs processing for confirming the edge state. Specifically, the image quality determination unit 24x (specifically, the edge detection unit 24b in the image quality determination unit 24x) counts pixels having edges in one frame. Then, the process proceeds to step S208.
 ステップS208では、画質判定部24xは、カウントされたエッジを持つ画素数が所定値α2以下であるか否かを判定する。エッジを持つ画素数が所定値α2以下である場合(ステップS208;Yes)、鮮鋭化レベル3に設定する(ステップS210)。これに対して、エッジを持つ画素数が所定値α2より大きい場合(ステップS208;No)、鮮鋭化レベル2に設定する(ステップS209)。つまり、エッジを持つ画素数が所定値α2以下である場合よりも、鮮鋭化レベルを1つ下げる。こうしているのは、エッジを持つ画素数が所定値α2より大きい場合には、所定値α2以下である場合よりも、画像が複雑であり、画質が低下している可能性があるからである。以上のステップS209、S210の処理後、処理は終了する。なお、ステップS208の判定で用いる所定値α2は、ステップS205の判定で用いた所定値α1よりも大きな値を用いても良いし、同じ値を用いても良い。 In step S208, the image quality determination unit 24x determines whether or not the number of pixels having the counted edges is equal to or less than a predetermined value α2. When the number of pixels having an edge is equal to or less than the predetermined value α2 (step S208; Yes), the sharpening level 3 is set (step S210). On the other hand, when the number of pixels having edges is larger than the predetermined value α2 (step S208; No), the sharpening level 2 is set (step S209). That is, the sharpening level is lowered by one as compared with the case where the number of pixels having edges is equal to or less than the predetermined value α2. This is because when the number of pixels having an edge is larger than the predetermined value α2, the image is more complicated and the image quality may be lower than when the number is less than the predetermined value α2. After the processes in steps S209 and S210, the process ends. Note that the predetermined value α2 used in the determination in step S208 may be larger than the predetermined value α1 used in the determination in step S205, or the same value may be used.
 一方、高ビットレート割り当てフレームである場合には、処理はステップS210に進む。ステップS210では、画質判定部24xは、鮮鋭化レベル3に設定する。つまり、最大の鮮鋭化レベルに設定する。この場合には、ビット量が多いため、画質が基準を超えている可能性が高いからである。そして、処理は終了する。 On the other hand, if it is a high bit rate allocation frame, the process proceeds to step S210. In step S210, the image quality determination unit 24x sets the sharpening level 3. That is, the maximum sharpening level is set. In this case, since the bit amount is large, there is a high possibility that the image quality exceeds the standard. Then, the process ends.
 次に、図8は、図5のステップS105で行われるPピクチャ用処理を示すフローチャートである。この処理では、ビット量の他に、イントラブロックの数や、マクロブロックのサイズなどに基づいて画質を判定して、鮮鋭化レベルを決定する。なお、Pピクチャ用処理も、画質判定部24xにより実行される。 Next, FIG. 8 is a flowchart showing the P picture processing performed in step S105 of FIG. In this process, in addition to the bit amount, the image quality is determined based on the number of intra blocks, the size of the macro block, and the like, and the sharpening level is determined. The P picture processing is also executed by the image quality determination unit 24x.
 まず、ステップS401では、画質判定部24xは、イントラブロック状況を確認する処理を行う。具体的には、画質判定部24xは、ビデオデコーダ22からマクロブロックタイプの情報(シンタックス要素に含まれる)を取得することで、イントラブロックのブロック数をカウントする。そして、処理はステップS402に進む。 First, in step S401, the image quality determination unit 24x performs a process of confirming the intra block status. Specifically, the image quality determination unit 24x obtains macroblock type information (included in the syntax element) from the video decoder 22, thereby counting the number of blocks of the intra block. Then, the process proceeds to step S402.
 ステップS402では、画質判定部24xは、イントラブロックの数が所定以上であるか否かを判定する。イントラブロックの数が所定以上である場合(ステップS402;Yes)、処理はステップS403に進む。この場合には、シーンチェンジなどが起こったことにより画質が劣化している可能性が考えられるため、ステップS403以降で、さらに画質を判定するための処理を行う。一方、イントラブロックの数が所定以上でない場合(ステップS402;No)、後述する図9に示す処理を実行する。 In step S402, the image quality determination unit 24x determines whether or not the number of intra blocks is greater than or equal to a predetermined value. If the number of intra blocks is greater than or equal to the predetermined number (step S402; Yes), the process proceeds to step S403. In this case, since there is a possibility that the image quality has deteriorated due to a scene change or the like, processing for determining the image quality is further performed in step S403 and subsequent steps. On the other hand, if the number of intra blocks is not greater than or equal to the predetermined number (step S402; No), the process shown in FIG. 9 described later is executed.
 ステップS403では、画質判定部24xは、イントラブロックでのエッジ状況を確認する処理を行う。具体的には、画質判定部24xは、イントラブロックである領域(イントラブロック領域)についてエッジ検出を行い、エッジを持つ画素をカウントする。そして、処理はステップS404に進む。 In step S403, the image quality determination unit 24x performs processing for confirming the edge state in the intra block. Specifically, the image quality determination unit 24x performs edge detection for a region that is an intra block (intra block region), and counts pixels having edges. Then, the process proceeds to step S404.
 ステップS404では、画質判定部24xは、イントラブロックでのエッジを持つ画素の割合がイントラブロック領域の所定値以上であるか否かを判定する。エッジを持つ画素の割合がイントラブロック領域の所定値以上である場合(ステップS404;Yes)、処理はステップS405に進む。この場合には、イントラブロック領域にエッジが多いため、画質が劣化している可能性が高いと考えられる。一方、エッジを持つ画素の割合がイントラブロック領域の所定値以上でない場合(ステップS404;No)、後述する図9に示す処理を実行する。 In step S404, the image quality determination unit 24x determines whether the ratio of pixels having edges in the intra block is equal to or greater than a predetermined value in the intra block area. When the ratio of pixels having an edge is equal to or greater than a predetermined value of the intra block area (step S404; Yes), the process proceeds to step S405. In this case, since there are many edges in the intra block region, it is highly possible that the image quality is degraded. On the other hand, when the ratio of pixels having edges is not equal to or greater than the predetermined value of the intra block area (step S404; No), the process shown in FIG. 9 described later is executed.
 ステップS405では、画質判定部24xは、マクロブロックのサイズが所定サイズ未満であるブロック数を確認する処理を行う。具体的には、画質判定部24xは、ビデオデコーダ22からマクロブロックタイプの情報(シンタックス要素に含まれる)を取得することで、マクロブロックのサイズが所定サイズ未満であるブロックの数を求める。例えば、当該判定で用いられる所定サイズは、「16x16」や「8x8」など種々のサイズに設定することができる。そして、処理はステップS406に進む。ステップS406では、画質判定部24xは、マクロブロックのサイズが所定サイズ未満であるブロック数が所定以上であるか否かを判定する。 In step S405, the image quality determination unit 24x performs a process of confirming the number of blocks whose macroblock size is less than a predetermined size. Specifically, the image quality determination unit 24x obtains the number of blocks whose macroblock size is less than a predetermined size by obtaining macroblock type information (included in the syntax element) from the video decoder 22. For example, the predetermined size used in the determination can be set to various sizes such as “16 × 16” and “8 × 8”. Then, the process proceeds to step S406. In step S406, the image quality determination unit 24x determines whether the number of blocks whose macroblock size is less than a predetermined size is greater than or equal to a predetermined value.
 マクロブロックのサイズが所定サイズ未満であるブロック数が所定以上である場合(ステップS406;Yes)、処理はステップS407に進む。ステップS407では、画質判定部24xは、鮮鋭化を行わないと決定する。この場合は、イントラブロック領域にエッジが多く存在するので複雑な画像であると言えると共に、マクロブロックのサイズが小さいものが多いと言えるため、物体の移動や変形が起きている可能性があると考えられる。よって、フレーム当たりのビット量が十分でない可能性が高いと考えられるので、鮮鋭化を行わない。そして、処理は終了する。 If the number of blocks whose macroblock size is less than the predetermined size is greater than or equal to the predetermined number (step S406; Yes), the process proceeds to step S407. In step S407, the image quality determination unit 24x determines not to perform sharpening. In this case, since there are many edges in the intra block area, it can be said that the image is complicated, and it can be said that there are many macro block sizes, so there is a possibility that the object has moved or deformed. Conceivable. Therefore, since it is highly likely that the amount of bits per frame is not sufficient, sharpening is not performed. Then, the process ends.
 一方、マクロブロックのサイズが所定サイズ未満であるブロック数が所定以上でない場合(ステップS406;No)、処理はステップS408に進む。ステップS408では、画質判定部24xは、鮮鋭化レベル1に設定する。この場合には、上記のステップS407に進んだ状況と比較して、マクロブロックのサイズが小さいものが少ないと言えるため、鮮鋭化レベルを1つ上げて、鮮鋭化レベル1に設定する。そして、処理は終了する。 On the other hand, when the number of blocks whose macroblock size is less than the predetermined size is not equal to or larger than the predetermined number (step S406; No), the process proceeds to step S408. In step S408, the image quality determination unit 24x sets the sharpening level 1. In this case, it can be said that there are few macroblocks having a small size compared to the situation in which the process proceeds to step S407 described above, so the sharpening level is increased by one and set to the sharpening level 1. Then, the process ends.
 次に、図9を参照して、イントラブロックの数が所定以上でない場合(ステップS402;No)、及びエッジを持つ画素の割合がイントラブロック領域の所定値以上でない場合(ステップS404;No)に実行される処理について説明する。当該処理では、基本的には前述した図6に示した処理(Iピクチャ用処理)と同様に、ビット量とエッジ状況とに基づいて画質を判定して、鮮鋭化レベルが決定される。なお、この処理も、画質判定部24xにより実行される。 Next, referring to FIG. 9, when the number of intra blocks is not greater than or equal to a predetermined value (step S402; No), and when the ratio of pixels having edges is not greater than or equal to a predetermined value of the intra block area (step S404; No). A process to be executed will be described. In this process, basically, as in the process (I picture process) shown in FIG. 6 described above, the image quality is determined based on the bit amount and the edge status, and the sharpening level is determined. This process is also executed by the image quality determination unit 24x.
 ステップS501では、画質判定部24xは、フレーム当たりのビットレートに基づいてフレームを分類する処理、詳しくはNalユニットのバイト数に基づいてフレームを分類する処理(以下、「Pピクチャ時のビットレート判定状況確認処理」と呼ぶ。)を実行する。そして、処理はステップS502に進む。 In step S501, the image quality determination unit 24x performs processing for classifying frames based on the bit rate per frame, specifically, processing for classifying frames based on the number of bytes of Nal units (hereinafter referred to as “bit rate determination for P picture”). This is referred to as “situation confirmation processing”. Then, the process proceeds to step S502.
 ここで、図10を参照して、図9のステップS501で行われるPピクチャ時のビットレート判定状況確認処理について説明する。まず、ステップS601では、画質判定部24xは、ビデオデコーダ22からNalユニットのバイト数を取得する。そして、処理はステップS602に進む。ステップS602では、画質判定部24xは、Nalユニットのバイト数に基づいて判定を行う。具体的には、画質判定部24xは、Y1、Y2、Y3、Y4の4つのバイト数を用いることで、処理対象となっているフレームを4段階に分類する(Y1<Y2<Y3<Y4)。 Here, with reference to FIG. 10, a description will be given of the bit rate determination status confirmation processing for a P picture performed in step S501 of FIG. First, in step S <b> 601, the image quality determination unit 24 x acquires the number of bytes of Nal unit from the video decoder 22. Then, the process proceeds to step S602. In step S602, the image quality determination unit 24x performs determination based on the number of bytes of the Nal unit. Specifically, the image quality determination unit 24x classifies the frame to be processed into four stages (Y1 <Y2 <Y3 <Y4) by using four byte numbers Y1, Y2, Y3, and Y4. .
 なお、Pピクチャは動きベクトルを持つことができるので、図10に示すビットレート判定状況確認処理においてNalユニットのバイト数に対して用いる閾値は、図7に示したIピクチャ時のビットレート判定状況確認処理で用いた閾値と比較して、小さな値に設定される。具体的には、「Y1<X1」、「Y2<X2」、「Y3<X3」、「Y4<X4」といった具合に設定される。 Since the P picture can have a motion vector, the threshold used for the number of bytes of the Nal unit in the bit rate determination status confirmation process shown in FIG. 10 is the bit rate determination status for the I picture shown in FIG. It is set to a small value compared to the threshold used in the confirmation process. Specifically, “Y1 <X1”, “Y2 <X2”, “Y3 <X3”, “Y4 <X4” are set.
 Nalユニットのバイト数がY1バイト未満である場合、処理はステップS603に進み、画質判定部24xは、超低ビットレート割り当てフレームとの判定を行う。そして、処理は終了する。一方、Nalユニットのバイト数がY1バイト以上且つY2バイト未満である場合、処理はステップS604に進み、画質判定部24xは、低ビットレート割り当てフレームとの判定を行う。そして、処理は終了する。一方、Nalユニットのバイト数がY2バイト以上且つY3バイト未満である場合、処理はステップS605に進み、画質判定部24xは、中ビットレート割り当てフレームとの判定を行う。そして、処理は終了する。一方、Nalユニットのバイト数がY3バイト以上且つY4バイト未満である場合、処理はステップS606に進み、画質判定部24xは、高ビットレート割り当てフレームとの判定を行う。そして、処理は終了する。 If the number of bytes in the Nal unit is less than Y1 bytes, the process proceeds to step S603, and the image quality determination unit 24x determines that the frame is an ultra-low bit rate allocation frame. Then, the process ends. On the other hand, if the number of bytes of the Nal unit is greater than or equal to Y1 bytes and less than Y2 bytes, the process proceeds to step S604, and the image quality determination unit 24x determines that the frame is a low bit rate allocation frame. Then, the process ends. On the other hand, if the number of bytes of the Nal unit is Y2 bytes or more and less than Y3 bytes, the process proceeds to step S605, and the image quality determination unit 24x determines that the frame is a medium bit rate allocation frame. Then, the process ends. On the other hand, if the number of bytes in the Nal unit is Y3 bytes or more and less than Y4 bytes, the process proceeds to step S606, and the image quality determination unit 24x determines that the frame is a high bit rate allocation frame. Then, the process ends.
 図9に戻って、ステップS502以降の処理について説明を行う。ステップS502では、画質判定部24xは、ビットレート判定状況についての判定を行う。具体的には、画質判定部24xは、図10に示す処理で分類された結果に基づいて判定を行う。 Referring back to FIG. 9, the processing after step S502 will be described. In step S502, the image quality determination unit 24x determines the bit rate determination status. Specifically, the image quality determination unit 24x performs determination based on the results classified by the processing illustrated in FIG.
 なお、以降のステップS503~S510の処理では、ビットレート判定状況に応じて(具体的には、Nalユニットのバイト数にて分類されたフレームに応じて)、鮮鋭化レベルを決定する処理が行われる。この場合、基本的には、Nalユニットのバイト数に応じて鮮鋭化レベルが決定される。つまり、基本的には、超低ビットレート割り当てフレーム→低ビットレート割り当てフレーム→中ビットレート割り当てフレーム→高ビットレート割り当てフレームの順に、鮮鋭化レベルが高く設定される。また、この場合、Nalユニットのバイト数だけでなく、エッジ状況も考慮に入れて、鮮鋭化レベルの調整が行われる。即ち、本実施例では、Nalユニットのバイト数及びエッジ状況の両方を考慮に入れて、鮮鋭化レベルを決定する。例えば、Nalユニットのバイト数がある程度大きくても、エッジを持つ画素数が多い場合には、鮮鋭化レベルが比較的低めに設定される。 In the processing of subsequent steps S503 to S510, processing for determining the sharpening level is performed according to the bit rate determination status (specifically, according to the frames classified by the number of bytes of the Nal unit). Is called. In this case, basically, the sharpening level is determined according to the number of bytes of the Nal unit. That is, basically, the sharpening level is set higher in the order of ultra-low bit rate allocation frame → low bit rate allocation frame → medium bit rate allocation frame → high bit rate allocation frame. In this case, the sharpening level is adjusted in consideration of not only the number of bytes of the Nal unit but also the edge state. That is, in this embodiment, the sharpening level is determined taking into account both the number of bytes of Nal unit and the edge state. For example, even if the number of bytes of the Nal unit is large to some extent, when the number of pixels having edges is large, the sharpening level is set to be relatively low.
 まず、超低ビットレート割り当てフレームである場合には、処理はステップS503に進む。ステップS503では、画質判定部24xは、鮮鋭化を行わないと決定する。この場合には、ビット量がかなり少ないため、画質がかなり低下しているものと考えられるからである。そして、処理は終了する。 First, if it is an ultra-low bit rate allocation frame, the process proceeds to step S503. In step S503, the image quality determination unit 24x determines not to perform sharpening. In this case, it is considered that the image quality is considerably lowered because the bit amount is considerably small. Then, the process ends.
 一方、低ビットレート割り当てフレームである場合には、処理はステップS504に進む。ステップS504では、画質判定部24xは、エッジ状況を確認する処理を行う。具体的には、画質判定部24x(詳しくは、画質判定部24x内のエッジ検出部24b)は、1フレーム中のエッジを持つ画素をカウントする。つまり、エッジ検出された個所の情報を保持して、この情報がいくつあるかをカウントする。そして、処理はステップS505に進む。 On the other hand, if it is a low bit rate allocation frame, the process proceeds to step S504. In step S504, the image quality determination unit 24x performs processing for confirming the edge state. Specifically, the image quality determination unit 24x (specifically, the edge detection unit 24b in the image quality determination unit 24x) counts pixels having edges in one frame. That is, the information of the location where the edge is detected is held and the number of pieces of this information is counted. Then, the process proceeds to step S505.
 ステップS505では、画質判定部24xは、カウントされたエッジを持つ画素数が所定値β1以下であるか否かを判定する。エッジを持つ画素数が所定値β1以下である場合(ステップS505;Yes)、鮮鋭化レベル2に設定する(ステップS509)。これに対して、エッジを持つ画素数が所定値β1より大きい場合(ステップS505;No)、鮮鋭化レベル1に設定する(ステップS506)。つまり、エッジを持つ画素数が所定値β1以下である場合よりも、鮮鋭化レベルを1つ下げる。こうしているのは、エッジを持つ画素数が所定値β1より大きい場合には、所定値β1以下である場合よりも、画像が複雑であり、画質が低下している可能性があるからである。以上のステップS506、S509の処理後、処理は終了する。なお、ステップS505の判定で用いる所定値β1は、例えば、図6のステップS205の判定で用いた所定値α1と同一の値を用いることができる。 In step S505, the image quality determination unit 24x determines whether or not the number of pixels having the counted edges is equal to or less than a predetermined value β1. When the number of pixels having an edge is equal to or less than the predetermined value β1 (step S505; Yes), the sharpening level 2 is set (step S509). On the other hand, when the number of pixels having an edge is larger than the predetermined value β1 (step S505; No), the sharpening level 1 is set (step S506). That is, the sharpening level is lowered by one as compared with the case where the number of pixels having edges is equal to or less than the predetermined value β1. This is because when the number of pixels having an edge is larger than the predetermined value β1, the image is more complex and the image quality may be lower than when the number is less than the predetermined value β1. After the processes in steps S506 and S509 described above, the process ends. For example, the predetermined value β1 used in the determination in step S505 can be the same value as the predetermined value α1 used in the determination in step S205 of FIG.
 一方、中ビットレート割り当てフレームである場合には、処理はステップS507に進む。ステップS507では、画質判定部24xは、エッジ状況を確認する処理を行う。具体的には、画質判定部24x(詳しくは、画質判定部24x内のエッジ検出部24b)は、1フレーム中のエッジを持つ画素をカウントする。そして、処理はステップS508に進む。 On the other hand, if it is a medium bit rate allocation frame, the process proceeds to step S507. In step S507, the image quality determination unit 24x performs processing for confirming the edge state. Specifically, the image quality determination unit 24x (specifically, the edge detection unit 24b in the image quality determination unit 24x) counts pixels having edges in one frame. Then, the process proceeds to step S508.
 ステップS508では、画質判定部24xは、カウントされたエッジを持つ画素数が所定値β2以下であるか否かを判定する。エッジを持つ画素数が所定値β2以下である場合(ステップS508;Yes)、鮮鋭化レベル3に設定する(ステップS510)。これに対して、エッジを持つ画素数が所定値β2より大きい場合(ステップS508;No)、鮮鋭化レベル2に設定する(ステップS509)。つまり、エッジを持つ画素数が所定値β2以下である場合よりも、鮮鋭化レベルを1つ下げる。こうしているのは、エッジを持つ画素数が所定値β2より大きい場合には、所定値β2以下である場合よりも、画像が複雑であり、画質が低下している可能性があるからである。以上のステップS509、S510の処理後、処理は終了する。なお、ステップS508の判定で用いる所定値β2は、ステップS505の判定で用いた所定値β1よりも大きな値を用いても良いし、同じ値を用いても良い。また、所定値β2は、例えば、図6のステップS208の判定で用いた所定値α2と同一の値を用いることができる。 In step S508, the image quality determination unit 24x determines whether or not the number of pixels having the counted edges is equal to or less than a predetermined value β2. When the number of pixels having an edge is equal to or less than the predetermined value β2 (step S508; Yes), the sharpening level 3 is set (step S510). On the other hand, when the number of pixels having an edge is larger than the predetermined value β2 (step S508; No), the sharpening level 2 is set (step S509). That is, the sharpening level is lowered by one as compared with the case where the number of pixels having edges is equal to or less than the predetermined value β2. This is because when the number of pixels having edges is larger than the predetermined value β2, the image is more complex and the image quality may be lower than when the number is less than the predetermined value β2. After the processes in steps S509 and S510, the process ends. Note that the predetermined value β2 used in the determination in step S508 may be larger than the predetermined value β1 used in the determination in step S505, or the same value may be used. For example, the same value as the predetermined value α2 used in the determination in step S208 of FIG. 6 can be used as the predetermined value β2.
 一方、高ビットレート割り当てフレームである場合には、処理はステップS510に進む。ステップS510では、画質判定部24xは、鮮鋭化レベル3に設定する。つまり、最大の鮮鋭化レベルに設定する。この場合には、ビット量が多いため、画質が基準を超えている可能性が高いからである。そして、処理は終了する。 On the other hand, if it is a high bit rate allocation frame, the process proceeds to step S510. In step S510, the image quality determination unit 24x sets the sharpening level 3. That is, the maximum sharpening level is set. In this case, since the bit amount is large, there is a high possibility that the image quality exceeds the standard. Then, the process ends.
 以上説明した処理によれば、画像の劣化状況を適切に把握することができる。したがって、判定された画質に基づいて鮮鋭化の処理を行うことにより、符号化劣化などを強調することで画質劣化が助長されてしまうことを適切に抑制することができ、劣化要因を目立たなくしつつ、最適に画質改善を行うことが可能となる。 According to the processing described above, it is possible to appropriately grasp the degradation state of the image. Therefore, by performing the sharpening process based on the determined image quality, it is possible to appropriately prevent the deterioration of the image quality from being promoted by emphasizing the deterioration of the encoding and the like, while making the deterioration factor inconspicuous. The image quality can be optimally improved.
 なお、上記では鮮鋭化レベルを4段階に分ける例(言い換えるとNalユニットのバイト数に応じて、フレームを4つに分類する例)を示したが、これに限定はされず、鮮鋭化レベルを種々の段階に分けることができる。 In the above, an example in which the sharpening level is divided into four stages (in other words, an example in which the frame is classified into four according to the number of bytes of the Nal unit) is shown. However, the present invention is not limited to this. It can be divided into various stages.
 [変形例]
 なお、上記では、ピクチャタイプとしてIピクチャとPピクチャとを用いて、Iピクチャであるか又はPピクチャであるかに応じて画質の判定方法を変える例を示したが、これに限定はされない。つまり、Iピクチャ以外のピクチャタイプとして、Pピクチャを用いることに限定はされない。他の例では、ピクチャタイプとして、Iピクチャ及びPピクチャの他にBピクチャが存在する場合には、Iピクチャ、Pピクチャ、及びBピクチャのいずれであるかに応じて、画質の判定方法を変えることができる。なお、Bピクチャについては、Pピクチャに対して用いた画質の判定方法と同様の方法を用いて、画質の判定を行うことができる。
[Modification]
In the above, an example in which an I picture and a P picture are used as the picture type and the image quality determination method is changed depending on whether the picture is an I picture or a P picture has been described. However, the present invention is not limited to this. That is, it is not limited to using P pictures as picture types other than I pictures. In another example, when there is a B picture in addition to an I picture and a P picture as a picture type, the image quality determination method is changed according to whether the picture is an I picture, a P picture, or a B picture. be able to. For the B picture, the image quality can be determined using a method similar to the image quality determination method used for the P picture.
 また、決定された鮮鋭化レベルに応じた鮮鋭化の処理を、フレーム毎に実行することに限定はされない。つまり、フレーム毎に画質の判定が行われて鮮鋭化レベルが決定されるが、鮮鋭化の処理はフレーム毎に実行しなくても良い。例えば、シーンチェンジなどが起こった際にのみ、鮮鋭化の処理を実行することとしても良い。更に、画質の判定もフレーム毎に行うことに限定はされず、例えばシーンチェンジなどが起こった際にのみ、画質の判定を行って鮮鋭化レベルを決定することとしても良い。 Further, the present invention is not limited to executing the sharpening process corresponding to the determined sharpening level for each frame. That is, the image quality is determined for each frame and the sharpening level is determined, but the sharpening process may not be performed for each frame. For example, the sharpening process may be executed only when a scene change or the like occurs. Furthermore, the determination of image quality is not limited to being performed for each frame. For example, the sharpness level may be determined by determining the image quality only when a scene change or the like occurs.
 更に、上記では、画質調整強度として鮮鋭化レベルを制御する例を示したが、これに限定はされない。他の例では、画質調整強度としてノイズ除去のレベルを制御することができる。つまり、判定された画質に応じて、ノイズ除去のレベルなどを制御することも可能である。 Furthermore, in the above, the example in which the sharpening level is controlled as the image quality adjustment strength is shown, but the present invention is not limited to this. In another example, the noise removal level can be controlled as the image quality adjustment strength. That is, it is possible to control the noise removal level or the like according to the determined image quality.
 本発明は、画像符号化方式を用いたデジタル放送受信機やインターネット放送受信機などに利用することができる。 The present invention can be used for a digital broadcast receiver or an Internet broadcast receiver using an image encoding method.

Claims (17)

  1.  入力された画像に対して、フレーム毎に画質を判定する画質判定手段と、
     前記画質判定手段によって判定された画質に基づいて、画質調整強度を制御する画質調整手段と、を備えることを特徴とする画像処理装置。
    Image quality determination means for determining image quality for each frame of the input image;
    An image processing apparatus comprising: an image quality adjustment unit that controls an image quality adjustment intensity based on the image quality determined by the image quality determination unit.
  2.  前記画質判定手段は、ピクチャタイプに応じて前記画質の判定方法を変えることを特徴とする請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the image quality determination unit changes the image quality determination method according to a picture type.
  3.  前記画質判定手段は、
     前記ピクチャタイプがIピクチャである場合には、ビット量に基づいて前記画質の判定を行い、
     前記ピクチャタイプが前記Iピクチャ以外である場合には、ビット量及びイントラブロックの数に基づいて前記画質の判定を行うことを特徴とする請求項2に記載の画像処理装置。
    The image quality judging means is
    When the picture type is an I picture, the image quality is determined based on the bit amount,
    3. The image processing apparatus according to claim 2, wherein when the picture type is other than the I picture, the image quality is determined based on a bit amount and the number of intra blocks.
  4.  前記画質判定手段は、
     前記Iピクチャである場合には、前記ビット量が少ない場合には多い場合よりも画質が低下していると判定し、
     前記Iピクチャ以外である場合には、前記ビット量が少ない場合には多い場合よりも画質が低下していると判定すると共に、前記イントラブロックの数が多い場合には少ない場合よりも画質が低下していると判定することを特徴とする請求項3に記載の画像処理装置。
    The image quality judging means is
    In the case of the I picture, when the amount of bits is small, it is determined that the image quality is lower than when it is large,
    If it is other than the I picture, it is determined that the image quality is lower than when it is large when the bit amount is small, and the image quality is lower than when it is small when the number of intra blocks is large. The image processing apparatus according to claim 3, wherein the image processing apparatus determines that the image processing is performed.
  5.  前記画質判定手段は、前記Iピクチャ以外である場合には、更に、マクロブロックにおけるサイズが所定サイズ未満であるブロック数に基づいて前記画質の判定を行うことを特徴とする請求項3又は4に記載の画像処理装置。 5. The image quality determination unit according to claim 3, wherein the image quality determination unit further determines the image quality based on the number of blocks whose size in a macroblock is less than a predetermined size when the image is other than the I picture. The image processing apparatus described.
  6.  前記画質判定手段は、前記マクロブロックのサイズが前記所定サイズ未満であるブロック数が多い場合には少ない場合よりも画質が低下していると判定することを特徴とする請求項5に記載の画像処理装置。 6. The image according to claim 5, wherein the image quality determination means determines that the image quality is lower when the number of blocks whose macroblock size is less than the predetermined size is larger than when the number of blocks is small. Processing equipment.
  7.  前記画質判定手段は、前記Iピクチャである場合及び前記Iピクチャ以外である場合の両方について、更に、エッジ状況に基づいて前記画質の判定を行うことを特徴とする請求項3乃至6のいずれか一項に記載の画像処理装置。 7. The image quality determination unit according to claim 3, wherein the image quality determination unit further determines the image quality based on an edge situation for both the case of the I picture and the case other than the I picture. The image processing apparatus according to one item.
  8.  前記画質調整手段は、画像におけるエリア毎に、適応的に前記画質調整強度を制御することを特徴とする請求項1乃至7のいずれか一項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 7, wherein the image quality adjustment unit adaptively controls the image quality adjustment intensity for each area in the image.
  9.  前記画質調整手段は、画像において特定のエリアについては、前記画質判定手段によって判定された画質に基づいた前記画質調整強度の制御を行わないことを特徴とする請求項8に記載の画像処理装置。 9. The image processing apparatus according to claim 8, wherein the image quality adjustment unit does not control the image quality adjustment intensity based on the image quality determined by the image quality determination unit for a specific area in the image.
  10.  前記画質調整手段は、シーンチェンジが起こった際に、前記画質判定手段によって判定された画質に基づいた前記画質調整強度の制御を行うことを特徴とする請求項1乃至9のいずれか一項に記載の画像処理装置。 10. The image quality adjustment unit according to claim 1, wherein when a scene change occurs, the image quality adjustment unit controls the image quality adjustment intensity based on the image quality determined by the image quality determination unit. The image processing apparatus described.
  11.  前記画質調整手段は、前記画質調整強度として鮮鋭化のレベルを制御することを特徴とする請求項1乃至10のいずれか一項に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the image quality adjusting unit controls a sharpening level as the image quality adjustment intensity.
  12.  前記画質調整手段は、前記画質判定手段によって画質が低下していると判定された場合には、前記画質の低下レベルに応じて前記鮮鋭化のレベルを小さくすることを特徴とする請求項11に記載の画像処理装置。 12. The image quality adjusting unit, when it is determined by the image quality determining unit that the image quality is degraded, the sharpening level is reduced according to the image quality degradation level. The image processing apparatus described.
  13.  前記画質調整手段は、前記画質調整強度としてノイズ除去のレベルを制御することを特徴とする請求項1乃至12のいずれか一項に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the image quality adjustment unit controls a noise removal level as the image quality adjustment intensity.
  14.  前記画質調整手段は、前記画質判定手段によって画質が低下していると判定された場合には、前記画質の低下レベルに応じて前記ノイズ除去のレベルを大きくすることを特徴とする請求項13に記載の画像処理装置。 14. The image quality adjusting unit, according to claim 13, wherein when the image quality determining unit determines that the image quality is degraded, the image quality adjusting unit increases the noise removal level according to the image quality degradation level. The image processing apparatus described.
  15.  入力された画像に対して、フレーム毎に画質を判定する画質判定工程と、
     前記画質判定工程によって判定された画質に基づいて、画質調整強度を制御する画質調整工程と、を備えることを特徴とする画像処理方法。
    An image quality determination step for determining image quality for each frame of the input image;
    An image processing method comprising: an image quality adjustment step of controlling an image quality adjustment intensity based on the image quality determined by the image quality determination step.
  16.  コンピュータによって実行される画像処理プログラムであって、
     前記コンピュータを、
     入力された画像に対して、フレーム毎に画質を判定する画質判定手段、
     前記画質判定手段によって判定された画質に基づいて、画質調整強度を制御する画質調整手段、として機能させることを特徴とする画像処理プログラム。
    An image processing program executed by a computer,
    The computer,
    Image quality determination means for determining image quality for each frame of the input image;
    An image processing program that functions as image quality adjustment means for controlling image quality adjustment intensity based on the image quality determined by the image quality determination means.
  17.  請求項16に記載の画像処理プログラムを記録したことを特徴とする記録媒体。 A recording medium on which the image processing program according to claim 16 is recorded.
PCT/JP2008/064866 2008-08-21 2008-08-21 Image processing device, image processing method, and image processing program WO2010021039A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/064866 WO2010021039A1 (en) 2008-08-21 2008-08-21 Image processing device, image processing method, and image processing program
JP2010525526A JPWO2010021039A1 (en) 2008-08-21 2008-08-21 Image processing apparatus, image processing method, and image processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/064866 WO2010021039A1 (en) 2008-08-21 2008-08-21 Image processing device, image processing method, and image processing program

Publications (1)

Publication Number Publication Date
WO2010021039A1 true WO2010021039A1 (en) 2010-02-25

Family

ID=41706935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064866 WO2010021039A1 (en) 2008-08-21 2008-08-21 Image processing device, image processing method, and image processing program

Country Status (2)

Country Link
JP (1) JPWO2010021039A1 (en)
WO (1) WO2010021039A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409219A (en) * 2021-06-28 2021-09-17 展讯通信(上海)有限公司 Method and device for improving HDR image quality

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564015A (en) * 1991-08-29 1993-03-12 Toshiba Corp Picture encoder and picture decoder
JPH07236140A (en) * 1994-02-22 1995-09-05 Kokusai Denshin Denwa Co Ltd <Kdd> Noise reducing device for encoding moving image
JPH08168035A (en) * 1994-12-15 1996-06-25 Sony Corp Monitor device
JPH11113000A (en) * 1997-10-03 1999-04-23 Matsushita Electric Ind Co Ltd Signal processing method and signal reproducing device
JP2000316105A (en) * 1999-05-06 2000-11-14 Matsushita Electric Ind Co Ltd Television receiver
JP2000350144A (en) * 1999-06-04 2000-12-15 Sony Corp Video reproducing device and video signal setting method
JP2004007337A (en) * 2002-04-25 2004-01-08 Sony Corp Image processing apparatus and its method
JP2004180248A (en) * 2001-11-29 2004-06-24 Matsushita Electric Ind Co Ltd Coding distortion removal method, dynamic image encoding method, dynamic image decoding method, and apparatus and program for achieving the same
JP2006311166A (en) * 2005-04-28 2006-11-09 Hitachi Ltd Video processor and video display apparatus
JP2007104133A (en) * 2005-09-30 2007-04-19 Fujitsu Ltd Image coding apparatus
JP2008011324A (en) * 2006-06-30 2008-01-17 Matsushita Electric Ind Co Ltd Network camera

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041867A (en) * 1990-04-19 1992-01-07 Nippon Sheet Glass Co Ltd Picture quality evaluating method
JPH1056646A (en) * 1996-08-07 1998-02-24 Mitsubishi Electric Corp Video signal decoder
JP2003219187A (en) * 2002-01-23 2003-07-31 Canon Inc Image processing method and image processor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564015A (en) * 1991-08-29 1993-03-12 Toshiba Corp Picture encoder and picture decoder
JPH07236140A (en) * 1994-02-22 1995-09-05 Kokusai Denshin Denwa Co Ltd <Kdd> Noise reducing device for encoding moving image
JPH08168035A (en) * 1994-12-15 1996-06-25 Sony Corp Monitor device
JPH11113000A (en) * 1997-10-03 1999-04-23 Matsushita Electric Ind Co Ltd Signal processing method and signal reproducing device
JP2000316105A (en) * 1999-05-06 2000-11-14 Matsushita Electric Ind Co Ltd Television receiver
JP2000350144A (en) * 1999-06-04 2000-12-15 Sony Corp Video reproducing device and video signal setting method
JP2004180248A (en) * 2001-11-29 2004-06-24 Matsushita Electric Ind Co Ltd Coding distortion removal method, dynamic image encoding method, dynamic image decoding method, and apparatus and program for achieving the same
JP2004007337A (en) * 2002-04-25 2004-01-08 Sony Corp Image processing apparatus and its method
JP2006311166A (en) * 2005-04-28 2006-11-09 Hitachi Ltd Video processor and video display apparatus
JP2007104133A (en) * 2005-09-30 2007-04-19 Fujitsu Ltd Image coding apparatus
JP2008011324A (en) * 2006-06-30 2008-01-17 Matsushita Electric Ind Co Ltd Network camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409219A (en) * 2021-06-28 2021-09-17 展讯通信(上海)有限公司 Method and device for improving HDR image quality
CN113409219B (en) * 2021-06-28 2022-11-25 展讯通信(上海)有限公司 Method and device for improving HDR image quality

Also Published As

Publication number Publication date
JPWO2010021039A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
US10652546B2 (en) Image processing device and image processing method
US7620261B2 (en) Edge adaptive filtering system for reducing artifacts and method
US20160381371A1 (en) Image Processing Apparatus and Method
EP2311007B1 (en) Method and apparatus for banding artifact detection
KR101776809B1 (en) Adaptive video decoding circuitry and techniques
US8681877B2 (en) Decoding apparatus, decoding control apparatus, decoding method, and program
JP5137687B2 (en) Decoding device, decoding method, and program
US20020122603A1 (en) Method and system for sharpness enhancement for coded video
TW201332365A (en) Image processing device and image processing method
EP2321796B1 (en) Method and apparatus for detecting dark noise artifacts
EP1352515B1 (en) Apparatus and method for providing a usefulness metric based on coding information for video enhancement
US20100214478A1 (en) Image signal processing apparatus, method of controlling the same, and television signal receiving apparatus
JP2007334457A (en) Image processor and image processing method
JP4380498B2 (en) Block distortion reduction device
US20100214486A1 (en) Image Signal Processing Apparatus, Method of Controlling the Same, and Television Signal Receiving Apparatus
WO2010021039A1 (en) Image processing device, image processing method, and image processing program
JP2006060358A (en) Digital broadcast receiver
JP2007158770A (en) Video decoding device, and video decoding program
JP2012004890A (en) Video signal output device, and video signal output method
KR101558580B1 (en) Method and apparatus for image processing
JP2007235931A (en) Image decoding method and image decoder
JP2005260989A (en) Image processing apparatus and image processing method
JP4643723B2 (en) Image coding distortion reducing device, display device, and image coding reducing method
JP2011066682A (en) Electronic equipment, and method and program for detecting scene change
JP2007538451A (en) Algorithms to reduce artifacts in decoded video

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010525526

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08792587

Country of ref document: EP

Kind code of ref document: A1