WO2010018937A2 - Coating formulation affording antireflection effects on transparent substrate and method for manufacturing transparent substrate with antireflection function using said coating formulation - Google Patents

Coating formulation affording antireflection effects on transparent substrate and method for manufacturing transparent substrate with antireflection function using said coating formulation Download PDF

Info

Publication number
WO2010018937A2
WO2010018937A2 PCT/KR2009/004150 KR2009004150W WO2010018937A2 WO 2010018937 A2 WO2010018937 A2 WO 2010018937A2 KR 2009004150 W KR2009004150 W KR 2009004150W WO 2010018937 A2 WO2010018937 A2 WO 2010018937A2
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
transparent substrate
silica
nanoparticles
substrate
Prior art date
Application number
PCT/KR2009/004150
Other languages
French (fr)
Korean (ko)
Other versions
WO2010018937A3 (en
Inventor
이규왕
김영민
Original Assignee
주식회사 룩스온
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090065282A external-priority patent/KR101091851B1/en
Application filed by 주식회사 룩스온 filed Critical 주식회사 룩스온
Priority to US13/056,597 priority Critical patent/US20110177241A1/en
Priority to CN2009801286889A priority patent/CN102105540A/en
Publication of WO2010018937A2 publication Critical patent/WO2010018937A2/en
Publication of WO2010018937A3 publication Critical patent/WO2010018937A3/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass

Definitions

  • the present invention relates to a coating composition for imparting an antireflection effect to a transparent substrate and a method for producing a transparent substrate having an antireflection function using the composition.
  • AR antireflection
  • Antireflection technology by surface treatment of a transparent substrate can be largely divided into a technique of etching the surface in a fine pattern and AR coating technology to give a porous coating on the surface.
  • the fine pattern etching method is a method of forming a fine concavo-convex pattern on the surface of the substrate by performing a non-uniform etching of the substrate using a wet or plasma method.
  • U.S. Patent 5856018 discloses a four-layer coating technique of SiO2 / TiO2 / SiO2 / TiO2 applied on a polymethyl methacrylate as a substrate.
  • Korean Patent Application No. 10-1994-0036298 discloses a reflection reducing coating in which a high refractive index layer, a low refractive index layer and an uneven low refractive index layer are sequentially stacked.
  • the conventional antireflective coating consists of at least two to four layers of multi-layer coatings such as TiO2 / SiO2, SiO2 / TiO2 / SiO2, TiO2 / SiO2 / TiO2 / SiO2.
  • the TiO2 layer has a stacking thickness of 15 nm to 30 nm, which is applied as a very thin layer, and is very sensitive to moisture, resulting in many defect rates.
  • the material has a low refractive index close to 0% in the visible region.
  • pores should be made using the following equation derived from the relationship between density and refractive index.
  • the refractive index is 1.52 (n value) and the porosity (P value) is 60%, the refractive index is approximated to 1.23 (n p value). If the pore size is similar to the wavelength of light, the coating layer becomes opaque due to light scattering, so the pore size should be several hundred nanometers or less smaller than the wavelength of light.
  • porous monolayer coating method a mixture of silica sol and a polymer binder is coated on a substrate, and then the polymer component is removed by extraction or calcination to form pores or the substrate is coated with two polymer mixtures.
  • a known method of extracting pores There is a known method of extracting pores.
  • a high temperature firing process or a complicated process of extracting the solvent and a toxic solvent should be used.
  • the present invention is to provide a coating composition that is applied as a single layer coating layer inexpensively giving an antireflection effect to the transparent substrate.
  • the present invention is to provide a method for producing a transparent substrate having an antireflection function that can be easily applied to a large area transparent substrate and is economically performed.
  • a coating composition is provided that imparts a protective effect.
  • the step of cleaning the transparent substrate surface Water, the metalloid nanoparticles dispersed in the water on the surface of the transparent substrate and the coating composition consisting of a hydroxide ion providing agent or a fluorine ion providing agent added in a molar ratio of 0.005 to 2: 1 relative to the metalloid nanoparticles Coating a coating; And there is provided a method for producing a transparent substrate having an antireflection function consisting of a step of drying. If necessary, washing and drying may be repeated after drying.
  • the metalloid oxide nanoparticles are preferably metalloid oxide nanoparticles selected from the group consisting of silica, alumina, titania, magnesia, ceria, zinc oxide, indium oxide, tin oxide and mixtures thereof, and the transparent substrate. May also comprise transparent plastics but are generally metalloid oxides or transparent substrates coated with them, preferably silica, alumina, titania, magnesia, ceria, zinc oxide, indium oxide, tin oxide and mixtures thereof Metallurgical metal, glass or a transparent substrate coated with the metalloid oxide or glass selected from the group consisting of, most preferably, glass.
  • the coating composition is optionally applied to the glass substrate within 30 days, or optionally within 24 hours after the hydroxide or fluorine ion donor is added.
  • concentration of the hydroxide ion providing agent or the fluorine ion providing agent is relatively high, the gelation or dissolution of the nano silica particles may occur within 24 hours depending on the PH, which may make it difficult to use.
  • the coating composition may further include an organic solvent having a low surface tension such as methanol or ethanol and / or a surfactant as a surface tension reducing agent.
  • the organic solvent is 10% to 90% by weight, preferably 20 to 40% by weight of the total coating composition.
  • the metalloid oxide nanoparticles are preferably 1 to 10% by weight based on the total weight of the coating composition, and the metalloid oxide nanoparticles have a particle diameter of 1 to 800nm, preferably 5 to 100nm. Quasi-metal oxide nanoparticles of 5 nm or less are difficult to manufacture, and semi-metal oxide nanoparticles having a size of 100 nm or more may exhibit a decrease in transmittance due to scattering.
  • the hydroxide ion donor may be an inorganic hydroxide or an organic hydroxide, various kinds of hydroxides may be used, and preferably ammonium hydroxide (NH 4 OH).
  • the molar ratio is preferably from 0.05 to 2.0, most preferably having from 0.1 to 0.5 mole ratio Do.
  • the fluorine ion providing agent Preferably, hydrofluoric acid, silicic hexafluoride (H 2 SiF 6 ) Or salts thereof, and most preferably KF or ammonium fluoride (NH). 4 F).
  • silica nanoparticles [F to obtain an appropriate bonding force between the particles - , HF 2 - ] / [SiO 2 ] Molar ratio is preferably 0.005 to 1.0, most preferably 0.01 to 0.5.
  • the pH of the solution should preferably be maintained at least 8.5.
  • the coating composition is coated on the substrate by a method such as spray coating, spin coating, dip coating, slot die coating or the like.
  • the coating composition may be coated on a substrate, if necessary, in multiple layers. At this time, the further the layer away from the substrate, the larger the porosity of the nanoparticles constituting the layer.
  • the surface hardness of the antireflection film by applying a perfluoroalkyl (alkoxy) silane or a perfluoropolyether or derivatives thereof substituted with functional groups of alcohol, silane, acetic acid, amine, halogen on the antireflection substrate In addition to the increase in the high permeability can be maintained for a long time.
  • the mechanism of bonding between nanoparticles or between nanoparticles and a substrate is described below using silica nanoparticles and a glass substrate as an example. This mechanism is so presumed and the invention is not necessarily limited thereto.
  • the hydroxyl ion donor used in the present invention is presumed to be partially dissolved by the following reaction with the surface of the nano silica particles and the base glass.
  • the coating composition containing the hydroxide ion-providing agent of the present invention is coated on a glass substrate and dried, it is assumed that the following reaction occurs, and a hard bond is formed between the silica nanoparticles or between the silica nanoparticles and the glass substrate surface.
  • the fluorine ion donor used in the present invention is presumed to be partially dissolved by the following reaction with the surface of the nano silica particles and the base glass.
  • the coating composition containing the fluorine ion-providing agent of the present invention is coated on a glass substrate and dried, it is assumed that the following reaction occurs, and a solid bond is formed between the silica nanoparticles or between the silica nanoparticles and the glass substrate surface.
  • the coating composition of the present invention can produce a nanoporous anti-reflective film having a high transmittance even with a simplified process compared to the prior art, and has a high adhesive strength between the membrane and the substrate and high durability by increasing the bonding between the particles and particles and the particles and the substrate.
  • An antireflection film can be obtained.
  • Example 1 is a graph showing the transmittance of a substrate when an antireflection film is formed according to Example 20 of the present invention and when no antireflection treatment is performed (Comparative Example 2).
  • Example 2 is a graph showing the transmittance of the substrate when the antireflection film according to Example 21 of the present invention is formed on the ITO glass substrate and when it is not (Comparative Example 3).
  • a silica dispersion having a concentration of 4.5 wt% 55 mL of distilled water was added to 45 mL of a 10 wt% solution of colloidal silica (Ace Hitec, Silifog) having an average particle size of 6 nm, and then treated with an ultrasonic disperser for about 30 minutes to prepare a silica dispersion having a concentration of 4.5 wt%. 0.14 g of NH 4 F was added to the dispersion, and a molar ratio of [NH 4 F] / [SiO 2 ] was set at 0.05 to about 30 minutes using an ultrasonic disperser to prepare a coating composition. The coating composition was prepared in order to observe the gelation, pH and size of the silica particles. After the preparation, the pH of the solution and the size of the silica particles were continuously measured for 15 days. Measured using.
  • the soda-lime glass After washing the soda-lime glass well with detergent, it was immersed in 1M KOH solution for 5 hours and then washed with distilled water to blow air to dry to avoid water marks. 12 hours after the preparation of the coating composition, the soda-lime glass was coated at a speed of 800 rpm at 20 ° C. and 20% relative humidity by spin coating to prepare a silica coating film, and then dried at 120 ° C. for 3 hours. It was.
  • the transmittance and reflectance of the produced sample were measured by Shimadzu UV-3100PC spectrophotometer.
  • the hardness of the anti-reflection film was measured by a pencil hardness tester using the standard method of ASTM D3360-00, and the adhesion of the anti-reflection film was performed by the scotch tape test according to the standard method of ASTM D3359. Measured physical properties are summarized in Table 1.
  • Example 1 The same method as in Example 1 was carried out except that the silica dispersion without NH 4 F was used as the coating composition. Measured physical properties are summarized in Table 1.
  • NH 4 F in Examples 2 to 4 was carried out as in Example 1 except that 0.27g, 0.55g and 1.11g were used, respectively. However, the coating composition was not performed when the gelation or the particle size of the nano silica particles were reduced within 12 hours after preparation. Measured physical properties are summarized in Table 1.
  • Examples 5 to 8 are the same as in Example 1 except that 0.08g (equivalent to 0.007 molar ratio), 0.18g, 0.35g and 0.72g (equivalent to 0.066 molar ratio) of H 2 SiF 6 is used instead of NH 4 F, respectively.
  • 0.08g Equivalent to 0.007 molar ratio
  • 0.18g, 0.35g and 0.72g Equivalent to 0.066 molar ratio
  • the coating composition was not performed when the gelation or the particle size of the nano silica particles were reduced within 12 hours after preparation. Measured physical properties are summarized in Table 1.
  • Example 9 to 10 were carried out as in Example 1 except for using 0.21 g, 0.42 g, 0.84 g and 1.68 g KOH instead of NH 4 F, respectively.
  • the coating composition was not performed when the gelation or the particle size of the nano silica particles were reduced within 12 hours after preparation. Measured physical properties are summarized in Table 1.
  • Examples 13 and 14 were respectively coated in the thin film samples prepared in Examples 3 and 4 by diluting Solvay's perfluoropolyether solution to 0.3 wt% in Galden ZV-130 solvent to spin coating to a thickness of about 2-5 nm. After coating using the method was carried out by drying for 1 hour at 120 ° C. The surface hardness of the membrane was measured by a pencil hardness tester using the standard method of ASTM D3360-00, and the hardness values were summarized in Table 2, and it was confirmed that the H value was increased by one step without loss of transmittance.
  • distilled water 55 mL of distilled water was added to 45 mL of a 10 wt% solution of colloidal silica (Ace Hitec, Silifog) having an average particle size of 6 nm, and then treated with an ultrasonic disperser for about 30 minutes to prepare a silica dispersion having a concentration of 4.5 wt%.
  • 0.3 g of NH 4 F was added to the dispersion and treated with an ultrasonic disperser for about 30 minutes to prepare a coating composition.
  • the coating composition prepared above was applied at a speed of 800 rpm at 20 ° C. and 20% relative humidity by spin coating to prepare a silica coating film, and then dried at 120 ° C. for 3 hours.
  • the transmittance and reflectance of the produced sample were measured by Shimadzu UV-3100PC spectrophotometer.
  • the hardness of the anti-reflection film was measured by a pencil hardness tester using the standard method of ASTM D3360-00, and the adhesion of the anti-reflection film was performed by the scotch tape test according to the standard method of ASTM D3359. Measured physical properties are summarized in Table 3.
  • the average particle size of the silica particles was performed in the same manner as in Example 15 except that the average particle sizes of the silica particles were 15, 20, and 40 nm (Ace Hitech, Silifog) and 120 nm (Evonik, Aerodisp), respectively.
  • the characteristics of this antireflection film are summarized in Table 3.
  • Example 1 After washing the soda-lime glass well with detergent, it was immersed in 1M KOH solution for 5 hours and then washed with distilled water to blow air to dry to avoid water marks. There was no antireflection film treatment. The rest was performed in the same manner as in Example 1, and its transmittance is represented by an A curve in FIG. 1 around the visible light region.
  • Example 2 Except for forming a coating film on the back surface of the soda-lime glass prepared in the same manner as in Example 1 to form an anti-reflection film on both sides was carried out in the same manner as in Example 1 and its transmittance is centered in the visible region It is shown by the B curve at 1. In Comparative Example 2, in which the antireflection film was not formed, the transmittance percentage showed a maximum improvement of 10%.
  • the glass specimen coated with indium tin oxide (ITO) was ultrasonically cleaned with ethanol and secondary distilled water for 20 minutes, and then treated with oxygen plasma (at which the partial pressure of oxygen was 0.2 Torr and the RF output was 100 W for 3 minutes). Of contaminants was removed. It was carried out as in Example 1 except that the glass substrate coated with the oxygen plasma treated indium tin oxide (ITO) coated instead of the soda-lime glass was not treated with the anti-reflective coating. Its transmittance is shown by the curve C in FIG. 2 around the visible light region.
  • the glass specimen coated with indium tin oxide (ITO) was ultrasonically cleaned for 20 minutes with ethanol and secondary distilled water, and then treated with oxygen plasma to remove contaminants on the surface (wetness of ITO surface).
  • the method of Example 1 was performed except that the partial pressure of oxygen was 0.2 Torr and the RF output was 100 W for 3 minutes).
  • the pencil hardness of the antireflection film was 3H.
  • the transmittance of the sample coated with the silica anti-reflection film on one surface of the ITO side was increased by about 5% compared to the ITO glass substrate without the anti-reflection film, and its transmittance is represented by the D curve of FIG. 2 around the visible light region. The resistance change of the ITO thin film could not be observed.
  • Example 1 Composition of Coating Solution and Properties of Solution and Anti-reflection Film Furtherance Properties number catalyst Concentration (wt%) Solution stability Transmittance Pencil hardness Comparative Example 1 No addition - No change for 15 days 94% HB
  • Example 1 NH 4 F 0.14 No change for 15 days 94.2% 2H
  • Example 2 0.27 No change for 15 days 94.4% 3H
  • Example 3 0.55 Gelation within 24 hours 92.5% 4H
  • Example 4 1.11 Gel within 3 hours - -
  • Example 5 H 2 SiF 6 0.08 No change for 15 days 93.5% 2H
  • Example 6 0.18 No change for 15 days 94% 2H
  • Example 7 0.35 Gel within 8 hours - -
  • Example 8 0.72 Gel within 3 hours - -
  • Example 9 KOH 0.21 No change for 15 days 93% 2H
  • Example 10 0.42 No change for 15 days 93% 2H
  • Example 11 0.84 No change for 15 days - -
  • Example 12 1.68 Silica dissolved - -
  • AR technology using the present invention can be usefully used for optical devices such as telescopes, glasses, optical communication components, optoelectronic devices, solar devices and display parts.

Abstract

The present invention provides a method for preparing a glass substrate with antireflection functionality by applying a coating formulation that affords antireflection effects to a substrate comprising water, metalloid oxide nanoparticles that are dispersed in said water, and a hydroxide ion agent or fluoride ion agent that is introduced into said metalloid oxide nanoparticles at a mole ratio of 0.005-2:1. The coating formulation of the present invention enables manufacture of a porous nano antireflection film with high transmission following a more streamlined process than the prior art, obtaining an antireflection film with a high adhesive force between the film and substrate, and high durability by increasing particle-particle bonding and the bond strength between particles and substrate.

Description

투명성 기재에 반사방지 효과를 부여하는 코팅조성물 및 그 코팅조성물을 사용하여 반사방지 기능을 갖는 투명성 기재의 제조방법Method for producing a transparent substrate having an antireflection function by using a coating composition that gives an antireflection effect to the transparent substrate and the coating composition
본 발명은 투명성 기재에 반사방지 효과를 부여하는 코팅조성물 및 그 조성물을 사용하여 반사방지 기능을 갖는 투명성 기재의 제조방법에 관한 것이다.The present invention relates to a coating composition for imparting an antireflection effect to a transparent substrate and a method for producing a transparent substrate having an antireflection function using the composition.
외부 환경이 밝은 곳에서 TV를 보면 반사되는 이미지로 인해 화면이 제대로 보이지 않는 것을 흔히 경험한다. 안경과 디스플레이에 사용되는 유리나 광학수지는 100%의 광투과율을 보이지 않고 상당량의 반사율을 가지고 있기 때문이다. 따라서 광학 투명성 기재의 이미지 해상도를 유지하기 위하여 투명성 기재의 표면처리에 의하여 반사율을 저감시키고 광투과율을 높이는 반사방지(AR; antireflection)기술이 널리 채용되고 있다. 이러한 AR 기술은 망원경과 같은 광학기기, 안경, 광통신 부품, 광전소자, 태양광 소자 그리고 디스플레이 부품 등에 유용하게 사용될 수 있다. When watching TV in a bright outside environment, it's common to see a blurred image due to reflected images. This is because glass and optical resins used for glasses and displays do not show 100% light transmittance and have a considerable amount of reflectance. Therefore, in order to maintain the image resolution of the optical transparent substrate, antireflection (AR) technology is widely employed to reduce reflectance and increase light transmittance by surface treatment of the transparent substrate. Such AR technology can be usefully used for optical devices such as telescopes, glasses, optical communication parts, optoelectronic devices, solar devices, and display parts.
투명성 기재의 표면처리에 의한 반사방지 기술에는 크게 표면을 미세 패턴으로 에칭하는 기술과 표면에 다공성 피복을 하는 AR 코팅기술로 나눌 수 있다. Antireflection technology by surface treatment of a transparent substrate can be largely divided into a technique of etching the surface in a fine pattern and AR coating technology to give a porous coating on the surface.
상기 미세 패턴 에칭법은 습식이나 플라스마 방식을 이용하여 기질에 대한 불균일한 에칭을 시행하여 기질의 표면에 미세한 요철 패턴을 형성하는 방법이다.The fine pattern etching method is a method of forming a fine concavo-convex pattern on the surface of the substrate by performing a non-uniform etching of the substrate using a wet or plasma method.
AR 코팅기술은 1940년 게프켄(Geffken)이 3층의 AR코팅 특허를 출원한 이후 4층의 AR코팅 기술이 오랫동안 사용되고 있다. 미국특허 5856018호에는 기재인 폴리메틸메타크릴레이트 위에 적용되는 SiO2/TiO2/SiO2/TiO2의 4층 피복기술이 개시되어 있다. 한극특허출원 10-1994-0036298호에는 고굴절층, 저굴절층과 요철 저굴절층이 순서대로 겹쳐진 반사저감 코팅이 개시되어 있다. 이와 같이 기존의 반사저감 코팅은 TiO2/SiO2, SiO2/TiO2/SiO2, TiO2/SiO2/TiO2/SiO2와 같이 최소 2층에서 4층의 다층코팅으로 이루어져 있어 코팅 공정이 복잡하고 대면적에 적용되기가 쉽지 않다. 특히 TiO2 층은 쌓는 두께가 15nm~30nm로 매우 얇은 층으로 적용되고 수분에 매우 민감하여 불량률이 많이 발생한다.AR coating technology has been used for four years since Geffken applied for three layers of AR coatings in 1940. U.S. Patent 5856018 discloses a four-layer coating technique of SiO2 / TiO2 / SiO2 / TiO2 applied on a polymethyl methacrylate as a substrate. Korean Patent Application No. 10-1994-0036298 discloses a reflection reducing coating in which a high refractive index layer, a low refractive index layer and an uneven low refractive index layer are sequentially stacked. As such, the conventional antireflective coating consists of at least two to four layers of multi-layer coatings such as TiO2 / SiO2, SiO2 / TiO2 / SiO2, TiO2 / SiO2 / TiO2 / SiO2. Uneasy. In particular, the TiO2 layer has a stacking thickness of 15 nm to 30 nm, which is applied as a very thin layer, and is very sensitive to moisture, resulting in many defect rates.
따라서, 상기 미세 패턴 에칭법이나 상기 다층 코팅 법은 공정이 복잡하고 품질을 콘트롤하는 것이 용이하지 않아 제조비용의 증가를 초래하므로 공정이 단순하여 경제성이 있는 단층 코팅법이 연구되고 있다. Therefore, since the fine pattern etching method or the multilayer coating method is complicated and it is not easy to control the quality, the manufacturing cost is increased.
프리즈넬 방정식에 의하여, 하기 조건을 얻을 수 있다.By the Frisnel equation, the following conditions can be obtained.
Figure PCTKR2009004150-appb-I000001
Figure PCTKR2009004150-appb-I000001
Figure PCTKR2009004150-appb-I000002
Figure PCTKR2009004150-appb-I000002
Figure PCTKR2009004150-appb-I000003
Figure PCTKR2009004150-appb-I000003
유리와 같이 기질의 굴절률이 nt=1.52 일 경우 AR코팅이 n1=1.23이고 파장의 1/4인 두께를 가지면 가시광선 영역에서 반사율이 0%에 근사한 값을 가지지만 굴절률이 이렇게 낮은 물질을 찾지 못하였으므로 굴절률이 1.52인 물질을 1.23인 물질을 전환시키기 위해서는 밀도와 굴절률의 관계에서 유도된 다음식을 이용하여 기공을 만들어야 하고If the refractive index of the substrate is n t = 1.52, such as glass, and AR coating has n 1 = 1.23 and a thickness of 1/4 of the wavelength, the material has a low refractive index close to 0% in the visible region. In order to convert a material with a refractive index of 1.52 to a material with a refractive index of 1.23, pores should be made using the following equation derived from the relationship between density and refractive index.
Figure PCTKR2009004150-appb-I000004
Figure PCTKR2009004150-appb-I000004
굴절률이 1.52(n값)인 물질에 대해서 기공율(P값) 60%를 주면 굴절률이 1.23(np값)에 근사하게 된다. 여기서 기공의 크기가 빛의 파장과 비슷하면 빛의 산란에 의하여 코팅층이 불투명해지므로 기공의 크기가 빛의 파장보다 많이 작은 수 백 나노미터 이하이어야 한다.If the refractive index is 1.52 (n value) and the porosity (P value) is 60%, the refractive index is approximated to 1.23 (n p value). If the pore size is similar to the wavelength of light, the coating layer becomes opaque due to light scattering, so the pore size should be several hundred nanometers or less smaller than the wavelength of light.
기공성 단층코팅법에는 실리카졸과 고분자 바인더 혼합물을 기질에 코팅한 뒤 추출 또는 하소에 의하여 고분자 성분을 제거하여 기공을 형성하거나 2개의 고분자 혼합물로 기질에 코팅을 한 뒤 한 성분의 고분자를 용매로 추출하여 기공을 형성하는 방법이 알려져 있다. 그러나 고온의 소성과정이 필요하거나 용매를 추출하는 과정이 복잡하고 유독성 용매를 사용해야하므로 환경성 측면에서도 문제가 있을 수 있다.In the porous monolayer coating method, a mixture of silica sol and a polymer binder is coated on a substrate, and then the polymer component is removed by extraction or calcination to form pores or the substrate is coated with two polymer mixtures. There is a known method of extracting pores. However, there may be a problem in terms of environment, because a high temperature firing process or a complicated process of extracting the solvent and a toxic solvent should be used.
본 발명은 단층코팅층으로 적용되어 투명성 기재에 저렴하게 반사방지 효과를 부여하는 코팅조성물을 제공하기 위한 것이다. The present invention is to provide a coating composition that is applied as a single layer coating layer inexpensively giving an antireflection effect to the transparent substrate.
또한, 본 발명은 대면적의 투명성 기재에 쉽게 적용될 수 있고 경제적으로 수행가능한 반사방지 기능을 갖는 투명성 기재의 제조방법을 제공하기 위한 것이다.In addition, the present invention is to provide a method for producing a transparent substrate having an antireflection function that can be easily applied to a large area transparent substrate and is economically performed.
본 발명에 의하여, 물, 상기 물에 분산되는 준금속 산화물 나노입자 및 상기 준금속 산화물 나노입자에 대하여 0.005 ~ 2:1의 몰비로 투입되는 수산화이온 제공제 또는 불소이온 제공제로 이루어지는 투명성 기재에 반사방지 효과를 부여하는 코팅조성물이 제공된다. According to the present invention, a reflection on a transparent substrate made of water, a metal hydroxide nanoparticle dispersed in the water, and a hydroxide ion providing agent or a fluorine ion providing agent introduced at a molar ratio of 0.005 to 2: 1 relative to the metalloid nanoparticles. A coating composition is provided that imparts a protective effect.
또한, 본 발명에 의하여, 투명성 기재 표면을 세척하는 단계; 상기 세척된 투명성 기재 표면에 물, 상기 물에 분산되는 준금속 산화물 나노입자 및 상기 준금속 산화물 나노입자에 대하여 0.005 ~ 2:1의 몰비로 투입되는 수산화이온 제공제 또는 불소이온 제공제로 이루어지는 코팅조성물을 코팅하는 단계; 및 건조하는 단계로 이루어지는 반사방지 기능을 갖는 투명성 기재의 제조방법이 제공된다. 필요에 따라, 건조 후에 세척과 건조가 반복될 수 있다.In addition, according to the present invention, the step of cleaning the transparent substrate surface; Water, the metalloid nanoparticles dispersed in the water on the surface of the transparent substrate and the coating composition consisting of a hydroxide ion providing agent or a fluorine ion providing agent added in a molar ratio of 0.005 to 2: 1 relative to the metalloid nanoparticles Coating a coating; And there is provided a method for producing a transparent substrate having an antireflection function consisting of a step of drying. If necessary, washing and drying may be repeated after drying.
상기 준금속 산화물 나노입자는, 바람직하게는, 실리카, 알루미나, 티타니아, 마그네시아, 쎄리아, 산화아연, 산화인듐, 산화주석과 이들의 혼합물로 이루어지는 군에서 선택되는 준금속 산화물 나노입자이고 상기 투명성 기재는, 투명성 플라스틱도 포함할 수 있으나 일반적으로는 준금속 산화물 또는 이들로 코팅된 투명성 기재, 바람직하게는, 실리카, 알루미나, 티타니아, 마그네시아, 쎄리아, 산화아연, 산화인듐, 산화주석과 이들의 혼합물로 이루어지는 군에서 선택되는 준금속 산화물, 유리 또는 상기 준금속 산화물 또는 유리로 코팅된 투명성 기재이고, 가장 바람직하게는, 유리이다.The metalloid oxide nanoparticles are preferably metalloid oxide nanoparticles selected from the group consisting of silica, alumina, titania, magnesia, ceria, zinc oxide, indium oxide, tin oxide and mixtures thereof, and the transparent substrate. May also comprise transparent plastics but are generally metalloid oxides or transparent substrates coated with them, preferably silica, alumina, titania, magnesia, ceria, zinc oxide, indium oxide, tin oxide and mixtures thereof Metallurgical metal, glass or a transparent substrate coated with the metalloid oxide or glass selected from the group consisting of, most preferably, glass.
상기 코팅조성물은, 경우에 따라서 수산화이온 제공제 또는 불소이온 제공제가 투입된 후 30일 이내, 또는 경우에 따라서 24시간 이내에 유리 기재에 적용된다. 수산화이온 제공제 또는 불소이온 제공제의 농도가 상대적으로 높은 경우는 PH에 따라 24시간 이내에 겔화나 나노 실리카 입자의 용해가 일어나 사용이 곤란한 경우가 발생할 수 있다.The coating composition is optionally applied to the glass substrate within 30 days, or optionally within 24 hours after the hydroxide or fluorine ion donor is added. When the concentration of the hydroxide ion providing agent or the fluorine ion providing agent is relatively high, the gelation or dissolution of the nano silica particles may occur within 24 hours depending on the PH, which may make it difficult to use.
상기 코팅조성물은, 필요에 따라, 표면장력 저감제로 메탄올 또는 에탄올과 같은 표면장력이 낮은 유기용매 및/또는 계면 활성제를 더 포함할 수 있다. 상기 유기용매는 전체 코팅조성물의 10 중량% ~ 90 중량%, 바람직하게는 20 ~ 40 중량%이다.The coating composition may further include an organic solvent having a low surface tension such as methanol or ethanol and / or a surfactant as a surface tension reducing agent. The organic solvent is 10% to 90% by weight, preferably 20 to 40% by weight of the total coating composition.
상기 준금속 산화물 나노입자는, 바람직하게는, 상기 코팅조성물 총 중량에 대하여 1 ~ 10중량%이고, 상기 준금속 산화물 나노입자는 입경이 1 ~ 800nm, 바람직하게는, 5 ~ 100nm다. 5nm 이하의 준금속 산화물 나노입자는 제조가 어렵고 100nm 이상의 크기를 갖는 준금속 산화물 나노입자는 산란에 의한 투과율의 감소가 나타날 수 있다.The metalloid oxide nanoparticles are preferably 1 to 10% by weight based on the total weight of the coating composition, and the metalloid oxide nanoparticles have a particle diameter of 1 to 800nm, preferably 5 to 100nm. Quasi-metal oxide nanoparticles of 5 nm or less are difficult to manufacture, and semi-metal oxide nanoparticles having a size of 100 nm or more may exhibit a decrease in transmittance due to scattering.
상기 수산화이온 제공제는 무기 수산화물 또는 유기 수산화물로 다양한 종류의 수산화물이 사용될 수 있으며, 바람직하게는, 수산화 암모니움(NH4OH)이다. 이때 실리카 나노입자의 경우 용액의 안정성과 각 입자 간의 적절한 접합력을 얻기 위한 [OH-]/[SiO2]의 몰 비는 바람직하게는 0.05 내지 2.0이며, 0.1 내지 0.5의 몰 비를 갖는 것이 가장 바람직하다. The hydroxide ion donor may be an inorganic hydroxide or an organic hydroxide, various kinds of hydroxides may be used, and preferably ammonium hydroxide (NH 4 OH). At this time, for obtaining a stable and adequate bonding force between the particles in the case of the silica nanoparticle solution [OH -] / [SiO 2 ] , the molar ratio is preferably from 0.05 to 2.0, most preferably having from 0.1 to 0.5 mole ratio Do.
상기 불소이온 제공제는, 바람직하게는, 불산, 육불화규산(H2SiF6) 이나 이들의 염이고, 가장 바람직하게는, KF 또는 불화 암모니움(NH4F)이다. 이때, 실리카 나노입자의 경우 입자 간의 적절한 접합력을 얻기 위한 [F-,HF2 -]/[SiO2]의 몰 비는 바람직하게는 0.005 내지 1.0이며, 가장 바람직하게는 0.01 내지 0.5이다. 용액의 pH는 바람직하게는 8.5 이상을 유지하여야 한다. The fluorine ion providing agent, Preferably, hydrofluoric acid, silicic hexafluoride (H2SiF6) Or salts thereof, and most preferably KF or ammonium fluoride (NH).4F). At this time, in the case of silica nanoparticles [F to obtain an appropriate bonding force between the particles-, HF2                     -] / [SiO2] Molar ratio is preferably 0.005 to 1.0, most preferably 0.01 to 0.5. The pH of the solution should preferably be maintained at least 8.5.
상기 코팅조성물은 기재에 스프레이 코팅, 스핀코팅, 딥코팅, 슬롯다이 코팅 등의 방법으로 피복된다. 상기 코팅조성물은 기재에, 필요에 따라 다층으로 코팅될 수도 있다. 이 때, 기재로부터 먼 층일수록 해당 층을 구성하는 나노입자의 공극률이 크도록 할 수 있다. 또한, 필요에 따라, 상기 반사방지 기재 위에 알코올, 실란, 아세트산, 아민, 할로겐의 작용기들로 치환된 퍼플루오르알킬(알콕시)실란 이나 퍼플루오르폴리에테르 또는 이들의 유도체들을 도포하여 반사방지막의 표면경도의 증가와 아울러 높은 투과도를 장기간 유지하게 할 수 있다. The coating composition is coated on the substrate by a method such as spray coating, spin coating, dip coating, slot die coating or the like. The coating composition may be coated on a substrate, if necessary, in multiple layers. At this time, the further the layer away from the substrate, the larger the porosity of the nanoparticles constituting the layer. In addition, if necessary, the surface hardness of the antireflection film by applying a perfluoroalkyl (alkoxy) silane or a perfluoropolyether or derivatives thereof substituted with functional groups of alcohol, silane, acetic acid, amine, halogen on the antireflection substrate In addition to the increase in the high permeability can be maintained for a long time.
나노입자 간 또는 나노입자와 기재 간의 결합의 메카니즘을 실리카 나노입자와 유리 기재를 예를 들어 설명하면 다음과 같다. 이러한 메카니즘은 그렇게 추정하는 것이고 본 발명이 반드시 이에 의하여 제한되지는 않는다. 본 발명에서 사용하는 수산이온 제공제는 나노 실리카 입자와 기재 유리의 표면과 다음과 같은 반응으로 일부 용해되는 것으로 추정한다. The mechanism of bonding between nanoparticles or between nanoparticles and a substrate is described below using silica nanoparticles and a glass substrate as an example. This mechanism is so presumed and the invention is not necessarily limited thereto. The hydroxyl ion donor used in the present invention is presumed to be partially dissolved by the following reaction with the surface of the nano silica particles and the base glass.
1) SiO2 + OH- +2H2O ---->Si(OH)5 - 1) SiO 2 + OH - + 2H 2 O ----> Si (OH) 5 -
본 발명의 수산이온 제공제 함유 코팅조성물을 유리 기재에 코팅하여 건조시키면 다음과 같은 반응이 일어나는 것으로 추정하며 실리카 나노 입자간 또는 실리카 나노 입자와 유리 기재 표면 간에 단단한 결합이 형성된다.When the coating composition containing the hydroxide ion-providing agent of the present invention is coated on a glass substrate and dried, it is assumed that the following reaction occurs, and a hard bond is formed between the silica nanoparticles or between the silica nanoparticles and the glass substrate surface.
2) 나노입자-Si-OH + HO-Si-나노입자 -> 나노입자-Si-O-Si-나노입자 + H2O2) Nanoparticles-Si-OH + HO-Si-nanoparticles-> Nanoparticles-Si-O-Si-nanoparticles + H 2 O
3) 나노입자-Si-OH + HO-Si-유리표면 -> 나노입자-Si-O-Si-유리표면 + H2O3) Nanoparticles-Si-OH + HO-Si-Glass Surface-> Nanoparticles-Si-O-Si-Glass Surface + H 2 O
본 발명에서 사용하는 불소이온 제공제는 나노 실리카 입자와 기재 유리의 표면과 다음과 같은 반응으로 일부 용해되는 것으로 추정한다. The fluorine ion donor used in the present invention is presumed to be partially dissolved by the following reaction with the surface of the nano silica particles and the base glass.
4) SiO2 + 6F_ + 6H+ -----> H2SiF6 + 2H2O4) SiO 2 + 6F _ + 6H + -----> H 2 SiF 6 + 2H 2 O
본 발명의 불소이온 제공제 함유 코팅조성물을 유리 기재에 코팅하여 건조시키면 다음과 같은 반응이 일어나는 것으로 추정하며 실리카 나노 입자간 또는 실리카 나노 입자와 유리 기재 표면 간에 단단한 결합이 형성된다.When the coating composition containing the fluorine ion-providing agent of the present invention is coated on a glass substrate and dried, it is assumed that the following reaction occurs, and a solid bond is formed between the silica nanoparticles or between the silica nanoparticles and the glass substrate surface.
5) 나노입자-Si-F +HO-Si-나노입자 ----> 나노입자-Si-O-Si-나노입자 +HF5) Nanoparticles-Si-F + HO-Si-nanoparticles ----> Nanoparticles-Si-O-Si-nanoparticles + HF
6) 나노입자-Si-F +HO-Si-유리표면 ----> 나노입자-Si-O-Si-유리표면 +HF 6) Nanoparticles-Si-F + HO-Si-Glass Surface ----> Nanoparticles-Si-O-Si-Glass Surface + HF
본 발명의 코팅조성물은 종래에 비해 간소화된 공정으로도 높은 투과율의 나노 다공성 반사방지막을 제조할 수 있으며, 입자-입자 간의 결합 및 입자-기재 간의 결합력을 높여 막과 기재 간 접착력이 크고 내구성이 큰 반사방지막을 얻을 수 있다.The coating composition of the present invention can produce a nanoporous anti-reflective film having a high transmittance even with a simplified process compared to the prior art, and has a high adhesive strength between the membrane and the substrate and high durability by increasing the bonding between the particles and particles and the particles and the substrate. An antireflection film can be obtained.
도 1 은 본 발명의 실시예 20 에 따른 반사방지막이 형성된 경우와 반사방지 처리가 전혀 되지 않은 경우(비교예 2) 기재의 투과율이 도시된 그래프이다.1 is a graph showing the transmittance of a substrate when an antireflection film is formed according to Example 20 of the present invention and when no antireflection treatment is performed (Comparative Example 2).
도 2는 ITO 유리 기재상에 본 발명의 실시예 21에 따른 반사방지막이 형성된 경우와 그렇지 않은 경우(비교예 3) 기재의 투과율이 도시된 그래프이다.2 is a graph showing the transmittance of the substrate when the antireflection film according to Example 21 of the present invention is formed on the ITO glass substrate and when it is not (Comparative Example 3).
<실시예 1><Example 1>
평균 입도가 6 nm 크기의 콜로이달 실리카 ( 에이스 하이텍, Silifog) 10중량% 용액 45mL에 증류수 55mL를 가한 후 초음파 분산기로 약 30분간 처리하여 4.5 중량% 농도의 실리카 분산액을 제조하였다. 상기 분산액에 NH4F를 0.14g을 가하여 [NH4F]/ [SiO2]의 몰 비를 0.05로 하여 초음파 분산기로 약 30분간 처리하여 코팅조성물을 제조하였다. 코팅조성물은 겔화, pH 및 실리카 입자의 크기를 관찰하기 위하여 일부를 제조 후에 계속해서 15일간 시간 단위로 용액의 pH 및 실리카 입자의 크기를 각각 pH 미터기 (Hanna HI221)와 맬버른(Malvern)사의 입도 분석기를 사용하여 측정하였다. 55 mL of distilled water was added to 45 mL of a 10 wt% solution of colloidal silica (Ace Hitec, Silifog) having an average particle size of 6 nm, and then treated with an ultrasonic disperser for about 30 minutes to prepare a silica dispersion having a concentration of 4.5 wt%. 0.14 g of NH 4 F was added to the dispersion, and a molar ratio of [NH 4 F] / [SiO 2 ] was set at 0.05 to about 30 minutes using an ultrasonic disperser to prepare a coating composition. The coating composition was prepared in order to observe the gelation, pH and size of the silica particles. After the preparation, the pH of the solution and the size of the silica particles were continuously measured for 15 days. Measured using.
소다라임 유리를 세제로 잘 세척한 후 1M의 KOH 용액에 5시간동안 침지한 후 증류수로 세척하여 공기를 불어 물 자국이 생기지 않도록 건조하였다. 상기 제조한 코팅조성물을 제조 후 12시간 지난 후에 상기 소다라임 유리에 스핀코팅방법으로 20oC, 상대습도 20% 에서 800 rpm의 속도로 도포하여 실리카 코팅막을 제조한 후 120oC에서 3시간 건조하였다. After washing the soda-lime glass well with detergent, it was immersed in 1M KOH solution for 5 hours and then washed with distilled water to blow air to dry to avoid water marks. 12 hours after the preparation of the coating composition, the soda-lime glass was coated at a speed of 800 rpm at 20 ° C. and 20% relative humidity by spin coating to prepare a silica coating film, and then dried at 120 ° C. for 3 hours. It was.
제작된 샘플의 투과도 및 반사도는 시마즈사의 UV-3100PC 분광 광도계로 측정하였다. 반사방지막의 경도는 ASTM D3360-00의 표준방법을 사용하여 연필 경도계로 측정하였으며 반사방지막의 접착력은 ASTM D3359의 표준방법에 따라 스카치테이프 테스트를 수행하였다. 측정된 물성을 표1에 정리하였다.The transmittance and reflectance of the produced sample were measured by Shimadzu UV-3100PC spectrophotometer. The hardness of the anti-reflection film was measured by a pencil hardness tester using the standard method of ASTM D3360-00, and the adhesion of the anti-reflection film was performed by the scotch tape test according to the standard method of ASTM D3359. Measured physical properties are summarized in Table 1.
<비교예 1>Comparative Example 1
NH4F를 가하지 않은 실리카 분산액을 그대로 코팅조성물로 사용하는 것을 제외하고는 실시예1과 동일한 방법으로 실시하였다. 측정된 물성을 표1에 정리하였다.The same method as in Example 1 was carried out except that the silica dispersion without NH 4 F was used as the coating composition. Measured physical properties are summarized in Table 1.
<실시예 2~4><Examples 2-4>
실시예 2 내지 4에서 NH4F를 각각 0.27g, 0.55g과 1.11g을 사용하는 것을 제외하고는 실시예 1과 같이 수행하였다. 다만, 코팅조성물이 제조 후 12시간 내에 겔화나 나노 실리카 입자의 입도크기가 감소하는 경우에는 코팅을 수행하지 않았다. 측정된 물성을 표1에 정리하였다.NH 4 F in Examples 2 to 4 was carried out as in Example 1 except that 0.27g, 0.55g and 1.11g were used, respectively. However, the coating composition was not performed when the gelation or the particle size of the nano silica particles were reduced within 12 hours after preparation. Measured physical properties are summarized in Table 1.
<실시예 5~8><Examples 5-8>
실시예 5 내지 8을 NH4F 대신에 H2SiF6를 각각 0.08g(0.007몰비 상당), 0.18g, 0.35g와 0.72g(0.066몰비 상당)을 사용하는 것을 제외하고는 실시예 1과 같이 수행하였다. 다만, 코팅조성물이 제조 후 12시간 내에 겔화나 나노 실리카 입자의 입도크기가 감소하는 경우에는 코팅을 수행하지 않았다. 측정된 물성을 표1에 정리하였다.Examples 5 to 8 are the same as in Example 1 except that 0.08g (equivalent to 0.007 molar ratio), 0.18g, 0.35g and 0.72g (equivalent to 0.066 molar ratio) of H 2 SiF 6 is used instead of NH 4 F, respectively. Was performed. However, the coating composition was not performed when the gelation or the particle size of the nano silica particles were reduced within 12 hours after preparation. Measured physical properties are summarized in Table 1.
<실시예 9~12><Examples 9-12>
실시예 9 내지 10을 NH4F 대신에 KOH를 각각 0.21g, 0.42g, 0.84g과 1.68g을 사용하는 것을 제외하고는 실시예 1과 같이 수행하였다. 다만, 코팅조성물이 제조 후 12시간 내에 겔화나 나노 실리카 입자의 입도크기가 감소하는 경우에는 코팅을 수행하지 않았다. 측정된 물성을 표1에 정리하였다.Examples 9 to 10 were carried out as in Example 1 except for using 0.21 g, 0.42 g, 0.84 g and 1.68 g KOH instead of NH 4 F, respectively. However, the coating composition was not performed when the gelation or the particle size of the nano silica particles were reduced within 12 hours after preparation. Measured physical properties are summarized in Table 1.
<실시예 13과 14><Examples 13 and 14>
실시예 13과 14를 각각 실시예 3과 실시예 4에 제조된 박막 샘플에 솔베이사의 퍼플루오르폴리에테르 용액을 Galden ZV-130 솔벤트에 0.3 중량%로 희석하여 약 2~5 nm의 두께로 스핀코팅 방법을 이용하여 도포한 후 120oC에서 1시간 건조하여 수행하였다. 막의 표면 경도를 ASTM D3360-00의 표준방법을 사용하여 연필 경도계로 측정하여 경도 값을 표2에 정리하였으며 투과율 손실 없이 H값이 한 단계 상승함을 확인하였다. Examples 13 and 14 were respectively coated in the thin film samples prepared in Examples 3 and 4 by diluting Solvay's perfluoropolyether solution to 0.3 wt% in Galden ZV-130 solvent to spin coating to a thickness of about 2-5 nm. After coating using the method was carried out by drying for 1 hour at 120 ° C. The surface hardness of the membrane was measured by a pencil hardness tester using the standard method of ASTM D3360-00, and the hardness values were summarized in Table 2, and it was confirmed that the H value was increased by one step without loss of transmittance.
<실시예 15><Example 15>
평균 입도가 6 nm 크기의 콜로이달 실리카 ( 에이스 하이텍, Silifog) 10중량% 용액 45mL에 증류수 55mL를 가한 후 초음파 분산기로 약 30분간 처리하여 4.5 중량% 농도의 실리카 분산액을 제조하였다. 상기 분산액에 NH4F를 0.3g을 가하여 초음파 분산기로 약 30분간 처리하여 코팅조성물을 제조하였다. 55 mL of distilled water was added to 45 mL of a 10 wt% solution of colloidal silica (Ace Hitec, Silifog) having an average particle size of 6 nm, and then treated with an ultrasonic disperser for about 30 minutes to prepare a silica dispersion having a concentration of 4.5 wt%. 0.3 g of NH 4 F was added to the dispersion and treated with an ultrasonic disperser for about 30 minutes to prepare a coating composition.
소다라임 유리를 세제로 잘 세척한 후 1M의 KOH 용액에 4-6시간동안 침지한 후 증류수로 세척하여 공기를 불어 물 자국이 생기지 않도록 건조하였다. 여기에 상기 제조한 코팅조성물을 스핀코팅 방법으로 20oC, 상대습도 20% 에서 800 rpm의 속도로 도포하여 실리카 코팅막을 제조한 후 120oC에서 3시간 건조하였다. After washing the soda-lime glass well with detergent, it was immersed in 1M KOH solution for 4-6 hours and washed with distilled water to blow air to dry to avoid water marks. Here, the coating composition prepared above was applied at a speed of 800 rpm at 20 ° C. and 20% relative humidity by spin coating to prepare a silica coating film, and then dried at 120 ° C. for 3 hours.
제작된 샘플의 투과도 및 반사도는 시마즈사의 UV-3100PC 분광 광도계로 측정하였다. 반사방지막의 경도는 ASTM D3360-00의 표준방법을 사용하여 연필 경도계로 측정하였으며 반사방지막의 접착력은 ASTM D3359의 표준방법에 따라 스카치테이프 테스트를 수행하였다. 측정된 물성을 표 3에 정리하였다.The transmittance and reflectance of the produced sample were measured by Shimadzu UV-3100PC spectrophotometer. The hardness of the anti-reflection film was measured by a pencil hardness tester using the standard method of ASTM D3360-00, and the adhesion of the anti-reflection film was performed by the scotch tape test according to the standard method of ASTM D3359. Measured physical properties are summarized in Table 3.
<실시예 16~19><Examples 16-19>
실리카 입자의 평균입도 6nm 대신에 각각 실리카 입자의 평균입도 15, 20, 40nm(이상 에이스 하이텍, Silifog) 및 120nm (Evonik, Aerodisp)을 사용하는 것을 제외하고는 실시예 15와 같이 실시하였다. 이 반사방지막의 특성을 표 3에 정리하였다. The average particle size of the silica particles was performed in the same manner as in Example 15 except that the average particle sizes of the silica particles were 15, 20, and 40 nm (Ace Hitech, Silifog) and 120 nm (Evonik, Aerodisp), respectively. The characteristics of this antireflection film are summarized in Table 3.
<비교예 2> Comparative Example 2
소다라임 유리를 세제로 잘 세척한 후 1M의 KOH 용액에 5시간동안 침지한 후 증류수로 세척하여 공기를 불어 물 자국이 생기지 않도록 건조하였다. 반사방지막 처리는 하지 않았다. 나머지는 실시예1과 같이 수행하였으며 이의 투과도를 가시광 영역 중심으로 도1에 A곡선으로 나타내었다.After washing the soda-lime glass well with detergent, it was immersed in 1M KOH solution for 5 hours and then washed with distilled water to blow air to dry to avoid water marks. There was no antireflection film treatment. The rest was performed in the same manner as in Example 1, and its transmittance is represented by an A curve in FIG. 1 around the visible light region.
<실시예 20>Example 20
실시예1과 같이 실리카 코팅막을 제조한 소다라임 유리를 다시 이면에 같은 방법으로 코팅막을 형성하여 양면에 반사방지막을 형성한 것을 제외하고는 실시예 1과 같이 수행하였으며 이의 투과도를 가시광 영역 중심으로 도1에 B곡선으로 나타내었다. 반사방지막을 형성하지 않은 비교예2에 대하여 투과율 퍼센테이지에서 최대 10%의 향상을 보였다.Except for forming a coating film on the back surface of the soda-lime glass prepared in the same manner as in Example 1 to form an anti-reflection film on both sides was carried out in the same manner as in Example 1 and its transmittance is centered in the visible region It is shown by the B curve at 1. In Comparative Example 2, in which the antireflection film was not formed, the transmittance percentage showed a maximum improvement of 10%.
<비교예 3>Comparative Example 3
산화 인듐주석막(ITO)이 코팅된 유리시편을 에탄올과 이차 증류수로 각각 20분씩 초음파 세정을 한 후 산소 플라즈마(이때 산소의 분압은 0.2 Torr, RF 출력은 100W로 3분간 처리)로 처리하여 표면의 오염물질을 제거하였다. 소다라임 유리 대신에 상기 산소 플라스마 처리된 산화 인듐주석막(ITO)이 코팅된 유리시편을 사용하고 반사방지막 처리를 하지 않는것을 제외하고는 실시예1과 같이 수행하였다. 이의 투과도를 가시광 영역 중심으로 도2에 C곡선으로 나타내었다.The glass specimen coated with indium tin oxide (ITO) was ultrasonically cleaned with ethanol and secondary distilled water for 20 minutes, and then treated with oxygen plasma (at which the partial pressure of oxygen was 0.2 Torr and the RF output was 100 W for 3 minutes). Of contaminants was removed. It was carried out as in Example 1 except that the glass substrate coated with the oxygen plasma treated indium tin oxide (ITO) coated instead of the soda-lime glass was not treated with the anti-reflective coating. Its transmittance is shown by the curve C in FIG. 2 around the visible light region.
<실시예 21> Example 21
소다라임 유리 대신에 산화 인듐주석막(ITO)이 코팅된 유리시편을 에탄올과 이차 증류수로 각각 20분씩 초음파 세정을 한 후 산소 플라즈마로 처리하여 표면의 오염물질을 제거하는 것을(ITO 표면의 젖음성을 증가시킴, 이때 산소의 분압은 0.2 Torr, RF 출력은 100W로 3분간 처리) 제외하고는 실시예 1의 방법을 수행하였다. 반사방지막의 연필경도는 3H를 나타내었다. ITO측 일면에 실리카 반사방지막이 코팅된 샘플의 투과도는 반사방지막이 코팅되지 아니한 ITO 유리 기판에 비하여 약 5% 투과율 정도 증가하였으며 이의 투과도를 가시광 영역 중심으로 도 2의 D곡선으로 나타내었다. ITO 박막의 저항 변화는 관찰할 수 없었다. Instead of soda-lime glass, the glass specimen coated with indium tin oxide (ITO) was ultrasonically cleaned for 20 minutes with ethanol and secondary distilled water, and then treated with oxygen plasma to remove contaminants on the surface (wetness of ITO surface). In this case, the method of Example 1 was performed except that the partial pressure of oxygen was 0.2 Torr and the RF output was 100 W for 3 minutes). The pencil hardness of the antireflection film was 3H. The transmittance of the sample coated with the silica anti-reflection film on one surface of the ITO side was increased by about 5% compared to the ITO glass substrate without the anti-reflection film, and its transmittance is represented by the D curve of FIG. 2 around the visible light region. The resistance change of the ITO thin film could not be observed.
표 1 코팅용액의 조성과 용액 및 반사방지막의 물성
조성 물성
번호 촉매 농도(wt%) 용액 안정성 투과도 연필경도
비교예 1 무첨가 -- 15일간 변화없음 94% HB
실시예 1 NH4F 0.14 15일간 변화없음 94.2% 2H
실시예 2 0.27 15일간 변화없음 94.4% 3H
실시예 3 0.55 24시간이내겔화 92.5% 4H
실시예 4 1.11 3시간 이내 겔화 -- --
실시예 5 H2SiF6 0.08 15일간 변화없음 93.5% 2H
실시예 6 0.18 15일간 변화없음 94% 2H
실시예 7 0.35 8시간 이내 겔화 -- --
실시예 8 0.72 3시간 이내 겔화 -- --
실시예 9 KOH 0.21 15일간 변화없음 93% 2H
실시예 10 0.42 15일간 변화없음 93% 2H
실시예 11 0.84 15일간 변화없음 -- --
실시예 12 1.68 실리카가 용해됨 -- --
Table 1 Composition of Coating Solution and Properties of Solution and Anti-reflection Film
Furtherance Properties
number catalyst Concentration (wt%) Solution stability Transmittance Pencil hardness
Comparative Example 1 No addition - No change for 15 days 94% HB
Example 1 NH 4 F 0.14 No change for 15 days 94.2% 2H
Example 2 0.27 No change for 15 days 94.4% 3H
Example 3 0.55 Gelation within 24 hours 92.5% 4H
Example 4 1.11 Gel within 3 hours - -
Example 5 H 2 SiF 6 0.08 No change for 15 days 93.5% 2H
Example 6 0.18 No change for 15 days 94% 2H
Example 7 0.35 Gel within 8 hours - -
Example 8 0.72 Gel within 3 hours - -
Example 9 KOH 0.21 No change for 15 days 93% 2H
Example 10 0.42 No change for 15 days 93% 2H
Example 11 0.84 No change for 15 days - -
Example 12 1.68 Silica dissolved - -
표 2 퍼플루오르폴리에테르 추가 코팅
번호 투과도 연필경도
실시예 13 94.3% 4H
실시예 14 92.6% 5H
TABLE 2 Perfluoropolyether additional coating
number Transmittance Pencil hardness
Example 13 94.3% 4H
Example 14 92.6% 5H
표 3 입자크기에 따른 반사방지막의 특성
번호 크기 (nm) 경도 투과도(%)
실시예 15 6 3H 94.5
실시예 16 15 3H 94.2
실시예 17 20 2H 94.1
실시예 18 40 2H 93.0
실시예 19 120 HB 92.2
TABLE 3 Characteristics of Anti-reflection Film According to Particle Size
number Size (nm) Hardness Permeability (%)
Example 15 6 3H 94.5
Example 16 15 3H 94.2
Example 17 20 2H 94.1
Example 18 40 2H 93.0
Example 19 120 HB 92.2
본 발명을 이용한 AR 기술은 망원경과 같은 광학기기, 안경, 광통신 부품, 광전소자, 태양광 소자 그리고 디스플레이 부품 등에 유용하게 사용될 수 있다. AR technology using the present invention can be usefully used for optical devices such as telescopes, glasses, optical communication components, optoelectronic devices, solar devices and display parts.

Claims (15)

  1. 물, 상기 물에 분산되는 준금속 산화물 나노입자 및 상기 준금속 산화물 나노입자에 대하여 0.005 ~ 2:1의 몰비로 투입되는 수산화이온 제공제 또는 불소이온 제공제로 이루어지는 투명성 기재에 반사방지 효과를 부여하는 코팅조성물It provides an antireflection effect to a transparent substrate made of water, a metal hydroxide nanoparticle dispersed in the water and a hydroxide ion providing agent or a fluorine ion providing agent in a molar ratio of 0.005 to 2: 1 relative to the metalloid nanoparticles. Coating Composition
  2. 제 1 항에 있어서, 상기 준금속 산화물 나노입자는 실리카, 알루미나, 티타니아, 마그네시아, 쎄리아, 산화아연, 산화인듐, 산화주석과 이들의 혼합물로 이루어지는 군에서 선택되는 준금속 산화물의 나노입자이고 상기 투명성 기재는 실리카, 알루미나, 티타니아, 마그네시아, 쎄리아, 산화아연, 산화인듐, 산화주석과 이들의 혼합물로 이루어지는 군에서 선택되는 준금속 산화물, 유리 또는 이들로 코팅된 기재인 투명성 기재에 반사방지 효과를 부여하는 코팅조성물The method of claim 1, wherein the metalloid oxide nanoparticles are nanoparticles of metalloids selected from the group consisting of silica, alumina, titania, magnesia, ceria, zinc oxide, indium oxide, tin oxide and mixtures thereof. The transparent substrate is an antireflective effect on a transparent substrate which is a metalloid, glass or a substrate coated with silica, alumina, titania, magnesia, ceria, zinc oxide, indium oxide, tin oxide and mixtures thereof. Coating composition
  3. 제 2 항에 있어서, 상기 준금속 산화물 나노입자는 실리카 나노입자이고 상기 투명성 기재는 유리인 투명성 기재에 반사방지 효과를 부여하는 코팅조성물The coating composition of claim 2, wherein the semimetal oxide nanoparticles are silica nanoparticles and the transparent substrate is glass.
  4. 제 1 항에 있어서, 상기 코팅조성물은 표면장력 저감제로 메탄올 또는 에탄올을 전체 코팅조성물의 10 중량% ~ 90 중량%를 더 포함하는 코팅조성물The coating composition of claim 1, wherein the coating composition further comprises 10 wt% to 90 wt% of methanol or ethanol as a surface tension reducing agent.
  5. 제 1 항에 있어서, 상기 코팅조성물은 상기 수산화이온 제공제 또는 상기 불소이온 제공제가 투입된 후 30일 이내에 유리 기재에 적용되는 코팅조성물The coating composition of claim 1, wherein the coating composition is applied to a glass substrate within 30 days after the hydroxide ion providing agent or the fluorine ion providing agent is added.
  6. 제 1 항에 있어서, 상기 코팅조성물에서 상기 나노 실리카는 상기 코팅조성물 총 중량에 대하여 1 ~ 10중량%이고, 상기 나노 실리카는 입경이 5 ~ 100m 인 투명성 기재에 반사방지 효과를 부여하는 코팅조성물According to claim 1, wherein the nano silica in the coating composition is 1 to 10% by weight based on the total weight of the coating composition, the nano silica is a coating composition to impart an antireflection effect to a transparent substrate having a particle diameter of 5 ~ 100m
  7. 제 5 항에 있어서, 상기 코팅조성물에서 상기 수산화이온 제공제는 수산화 암모니움(NH4OH)이고 [OH-]/[SiO2]의 몰 비는 0.05 내지 2인 투명성 기재에 반사방지 효과를 부여하는 코팅조성물6. The method of claim 5, provided ion the hydroxide in the coating composition of claim hydroxide ammonium (NH 4 OH) and [OH -] / [SiO 2 ] , the molar ratio is given the anti-reflection effect in the range of 0.05 to 2 transparent substrate of the Coating composition
  8. 제 5 항에 있어서, 상기 코팅조성물에서 상기 불소이온 제공제는 불산, 육불화규산(H2SiF6) 또는 이들의 염이고 [F-,HF2 -]/[SiO2]의 몰 비는 0.005 내지 1.0인 투명성 기재에 반사방지 효과를 부여하는 코팅조성물The method of claim 5, wherein the fluorine ion providing agent in the coating composition is hydrofluoric acid, hexafluorosilicate (H2SiF6) Or salts thereof [F-, HF2                 -] / [SiO2], The coating composition imparting the antireflection effect to the transparent substrate of 0.005 to 1.0
  9. 투명성 기재 표면을 세척하는 단계; 상기 세척된 투명성 기재 표면에 물, 상기 물에 분산되는 준금속 산화물 나노입자 및 상기 준금속 산화물 나노입자에 대하여 0.005 ~ 2:1의 몰비로 투입되는 수산화이온 제공제 또는 불소이온 제공제로 이루어지는 이루어지는 코팅조성물을 코팅하는 단계; 및 건조하는 단계로 이루어지는 반사방지 기능을 갖는 투명성 기재의 제조방법Cleaning the transparent substrate surface; A coating comprising a hydroxide ion providing agent or a fluorine ion providing agent introduced at a molar ratio of 0.005 to 2: 1 to water, the metalloid oxide nanoparticles dispersed in the water, and the metalloid nanoparticles dispersed on the surface of the transparent substrate. Coating the composition; And Method for producing a transparent substrate having an antireflection function consisting of a step of drying
  10. 제 9 항에 있어서, 상기 준금속 산화물 나노입자는 실리카, 알루미나, 티타니아, 마그네시아, 쎄리아, 산화아연, 산화인듐, 산화주석과 이들의 혼합물로 이루어지는 군에서 선택되는 준금속 산화물 나노입자이고 상기 투명성 기재는 실리카, 알루미나, 티타니아, 마그네시아, 쎄리아, 산화아연, 산화인듐, 산화주석과 이들의 혼합물로 이루어지는 군에서 선택되는 준금속 산화물, 유리 또는 이들로 코팅된 기재인 반사방지 기능을 갖는 투명성 기재의 제조방법10. The method according to claim 9, wherein the metalloid oxide nanoparticles are metalloid oxide nanoparticles selected from the group consisting of silica, alumina, titania, magnesia, ceria, zinc oxide, indium oxide, tin oxide and mixtures thereof. The substrate is a transparent substrate having an antireflection function, which is a metalloid, glass or a substrate coated with silica, alumina, titania, magnesia, ceria, zinc oxide, indium oxide, tin oxide and mixtures thereof. Manufacturing Method
  11. 제 9 항에 있어서, 상기 준금속 산화물 나노입자는 실리카 나노입자이고 상기 투명성 기재는 유리인 반사방지 기능을 갖는 투명성 기재의 제조방법10. The method of claim 9, wherein the metalloid oxide nanoparticles are silica nanoparticles and the transparent substrate is glass.
  12. 제 9 항에 있어서, 퍼플루오르알킬(알콕시)실란, 퍼플루오르폴리에테르 또는 이들의 유도체를 도포하는 단계를 더 포함하는 반사방지 기능을 갖는 투명성 기재의 제조방법 10. The method of claim 9, further comprising applying perfluoroalkyl (alkoxy) silane, perfluoropolyether or derivatives thereof.
  13. 제 10 항에 있어서, 상기 코팅조성물은 상기 수산화이온 제공제 또는 상기 불소이온 제공제가 투입된 후 30일 이내에 유리 기재에 적용되는 반사방지 기능을 갖는 투명성 기재의 제조방법 The method of claim 10, wherein the coating composition has an antireflection function applied to a glass substrate within 30 days after the hydroxide ion providing agent or the fluorine ion providing agent is added.
  14. 제 11 항에 있어서, 상기 코팅조성물에서 상기 나노 실리카는 상기 코팅조성물 총 중량에 대하여 1 ~ 10중량% 이고, 상기 나노 실리카는 입경이 5 ~ 100 nm 이고 상기 수산화이온 제공제는 수산화 암모니움(NH4OH)이고 [OH-]/[SiO2]의 몰 비는 0.5 내지 1.2인 반사방지 기능을 갖는 투명성 기재의 제조방법The method according to claim 11, wherein the nano silica in the coating composition is 1 to 10% by weight based on the total weight of the coating composition, the nano silica has a particle diameter of 5 to 100 nm and the hydroxide ion providing agent is ammonium hydroxide (NH 4 OH), and - the method of / [SiO 2] molar ratio of transparent substrates having an antireflection function in the 0.5 to 1.2 [OH]
  15. 제 12 항에 있어서, 상기 코팅조성물에서 상기 나노 실리카는 상기 코팅조성물 총 중량에 대하여 1 ~ 10중량% 이고, 상기 나노 실리카는 입경이 5 ~ 100 nm 이고 상기 불소이온 제공제는 불산, 육불화규산(H2SiF6) 또는 이들의 염이고 [F-,HF2 -]/[SiO2]의 몰 비는 0.005 내지 1.0인 반사방지 기능을 갖는 투명성 기재의 제조방법 The method of claim 12, wherein the nano-silica in the coating composition is 1 to 10% by weight based on the total weight of the coating composition, the nano-silica has a particle diameter of 5 to 100 nm and the fluorine ion providing agent is hydrofluoric acid, hexafluorosilicate ( H2SiF6) Or salts thereof [F-, HF2                 -] / [SiO2] Molar ratio is 0.005 to 1.0 method of manufacturing a transparent substrate having an antireflection function
PCT/KR2009/004150 2008-08-11 2009-07-27 Coating formulation affording antireflection effects on transparent substrate and method for manufacturing transparent substrate with antireflection function using said coating formulation WO2010018937A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/056,597 US20110177241A1 (en) 2008-08-11 2009-07-27 Coating formulation affording antireflection effects on transparent substrate and method for manufacturing transparent substrate with antireflection function using said coating formulation
CN2009801286889A CN102105540A (en) 2008-08-11 2009-07-27 Coating formulation affording antireflection effects on transparent substrate and method for manufacturing transparent substrate with antireflection function using said coating formulation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20080078441 2008-08-11
KR10-2008-0078441 2008-08-11
KR10-2009-0065282 2009-07-17
KR1020090065282A KR101091851B1 (en) 2008-08-11 2009-07-17 A coating composition endowing transparent substrate with anti-reflection effect and a preparing method for transparent substrate with anti-reflection effect using the composition

Publications (2)

Publication Number Publication Date
WO2010018937A2 true WO2010018937A2 (en) 2010-02-18
WO2010018937A3 WO2010018937A3 (en) 2010-05-14

Family

ID=41669434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004150 WO2010018937A2 (en) 2008-08-11 2009-07-27 Coating formulation affording antireflection effects on transparent substrate and method for manufacturing transparent substrate with antireflection function using said coating formulation

Country Status (1)

Country Link
WO (1) WO2010018937A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112954A (en) * 2021-10-18 2022-03-01 中国工程物理研究院激光聚变研究中心 Method for calculating process time length of organic pollutants cleaned by low-pressure oxygen plasma
CN114112954B (en) * 2021-10-18 2024-04-19 中国工程物理研究院激光聚变研究中心 Process duration calculation method for cleaning organic pollutants by low-pressure oxygen plasma

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086074A (en) * 1976-01-22 1978-04-25 Corning Glass Works Antireflective layers on phase separated glass
US6291535B1 (en) * 1998-12-09 2001-09-18 Nissan Chemical Industries, Ltd. Silica-magnesium fluoride hydrate composite sols and process for their preparation
US20020119325A1 (en) * 1999-09-13 2002-08-29 Park Sung-Soon Composition and method for a coating providing anti-reflective and anti-static properties
US20030170459A1 (en) * 2002-03-05 2003-09-11 Zuel Company, Inc. Anti-reflective glass surface with improved cleanability
US6808869B1 (en) * 1996-12-24 2004-10-26 Fuji Photo Film Co., Ltd. Bottom anti-reflective coating material composition and method for forming resist pattern using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086074A (en) * 1976-01-22 1978-04-25 Corning Glass Works Antireflective layers on phase separated glass
US6808869B1 (en) * 1996-12-24 2004-10-26 Fuji Photo Film Co., Ltd. Bottom anti-reflective coating material composition and method for forming resist pattern using the same
US6291535B1 (en) * 1998-12-09 2001-09-18 Nissan Chemical Industries, Ltd. Silica-magnesium fluoride hydrate composite sols and process for their preparation
US20020119325A1 (en) * 1999-09-13 2002-08-29 Park Sung-Soon Composition and method for a coating providing anti-reflective and anti-static properties
US20030170459A1 (en) * 2002-03-05 2003-09-11 Zuel Company, Inc. Anti-reflective glass surface with improved cleanability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BISWAS, P. K. ET AL.: 'Porous anti-reflective silica coatings with a high spectral coverage by sol-gel spin coating technique.' JOURNAL OF MATERIALS SCIENCE LETTERS vol. 22, no. 3, February 2003, ISSN 0261-8028 pages 181 - 183 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112954A (en) * 2021-10-18 2022-03-01 中国工程物理研究院激光聚变研究中心 Method for calculating process time length of organic pollutants cleaned by low-pressure oxygen plasma
CN114112954B (en) * 2021-10-18 2024-04-19 中国工程物理研究院激光聚变研究中心 Process duration calculation method for cleaning organic pollutants by low-pressure oxygen plasma

Also Published As

Publication number Publication date
WO2010018937A3 (en) 2010-05-14

Similar Documents

Publication Publication Date Title
KR101091851B1 (en) A coating composition endowing transparent substrate with anti-reflection effect and a preparing method for transparent substrate with anti-reflection effect using the composition
US5858526A (en) Composite material with a high refractive index, process for producing said composite material and optically active material incorporating said composite material
JP5437662B2 (en) Antireflection film and method for forming the same
JP3186768B2 (en) Hydrophobic and abrasion resistant antireflective material and method of depositing an antireflective, hydrophobic and abrasion resistant coating on a substrate
JP5057199B2 (en) Method for producing hollow SiO2 fine particle dispersion, coating composition, and substrate with antireflection coating
US20090004462A1 (en) Inorganic-Organic Hybrid Nanocomposite Antiglare and Antireflection Coatings
US20100165467A1 (en) Anti-reflective coated glas plate
JP6586897B2 (en) Base material with antiglare film, coating liquid for film formation and method for producing the same
JP4893539B2 (en) Article having antiglare layer and method for producing the same
WO2010018852A1 (en) Coating compositions and articles with formed coating films
US8480989B2 (en) Hollow fine particles, production process thereof, coating composition and article having coating film formed
CA2383439A1 (en) Composition and method for a coating providing anti-reflective and anti-static properties
US20200399170A1 (en) Coated glass sheet and method for producing same
EP2128090B1 (en) Hollow microparticle, method for production thereof, coating composition, and article having coating film formed thereon
US20140178657A1 (en) Antireflection coatings
TW201606356A (en) Anti-glare-layer substrate and article
US20130094093A1 (en) Optical film, optical element, manufacturing method thereof, and photographic optical system
JP2017167271A (en) Optical member and manufacturing method for optical member
JP2002331615A (en) Antireflection laminate
WO2010018937A2 (en) Coating formulation affording antireflection effects on transparent substrate and method for manufacturing transparent substrate with antireflection function using said coating formulation
JP2014214063A (en) Silica-based porous film, article having silica-based porous film, and method for producing the same article
WO2020241751A1 (en) Transparent substrate with antifouling layer
JP6164120B2 (en) Base material and article with antireflection film
JP6137807B2 (en) Optical element having antireflection film, optical system and optical apparatus
JP2001152137A (en) Non-fogging film-formed base and its preparation process

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128688.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806799

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13056597

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC, EPO FORM 1205A DATED 26.05.11.

122 Ep: pct application non-entry in european phase

Ref document number: 09806799

Country of ref document: EP

Kind code of ref document: A2