WO2010018922A9 - Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 - Google Patents

Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 Download PDF

Info

Publication number
WO2010018922A9
WO2010018922A9 PCT/KR2009/003037 KR2009003037W WO2010018922A9 WO 2010018922 A9 WO2010018922 A9 WO 2010018922A9 KR 2009003037 W KR2009003037 W KR 2009003037W WO 2010018922 A9 WO2010018922 A9 WO 2010018922A9
Authority
WO
WIPO (PCT)
Prior art keywords
fdma
symbol
precoding
data
unit
Prior art date
Application number
PCT/KR2009/003037
Other languages
English (en)
French (fr)
Other versions
WO2010018922A3 (ko
WO2010018922A2 (ko
Inventor
고현수
한승희
정재훈
임빈철
이문일
Original Assignee
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자주식회사 filed Critical 엘지전자주식회사
Priority to US13/058,488 priority Critical patent/US8400958B2/en
Publication of WO2010018922A2 publication Critical patent/WO2010018922A2/ko
Publication of WO2010018922A3 publication Critical patent/WO2010018922A3/ko
Publication of WO2010018922A9 publication Critical patent/WO2010018922A9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/208Frequency-division multiple access [FDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only

Definitions

  • the present invention relates to wireless communications, and more particularly, to an apparatus and method for transmitting data capable of providing transmit diversity in an SC-FDMA system.
  • the wireless channel has various problems such as path loss, shadowing, fading, noise, limited bandwidth, power limitation of the terminal, and interference between different users. Suffers. This limitation makes the wireless channel look like a narrow pipe that hinders the fast flow of data and makes it difficult to design an efficient bandwidth for wireless communication that provides high speed data transmission.
  • Other challenges in the design of wireless systems include resource allocation, mobility issues related to rapidly changing physical channels, portability, and the design of providing security and privacy. It includes.
  • a transmission channel undergoes deep fading the receiver is difficult to determine the transmitted signal unless another version or replica of the transmitted signal is transmitted separately.
  • the resources corresponding to these different versions or copies are called diversity and are one of the most important factors contributing to reliable transmission over the radio channel. By using such diversity, data transmission capacity or data transmission reliability can be maximized.
  • a system that implements diversity using multiple transmission antennas and multiple reception antennas is called a multiple input multiple output (MIMO) system.
  • MIMO system multiple input multiple output
  • PVS Precoding Vector Switching
  • SM Spatial Multiplexing
  • GCDD Generalized Cyclic Delay Diversity
  • S-VAP Selective Virtual Antenna Permutation
  • Orthogonal Frequency Division Multiplexing (OFDM) system that can attenuate the effect of inter-symbol interference with low complexity.
  • OFDM converts serially input data into N parallel data and transmits the data on N orthogonal subcarriers. Subcarriers maintain orthogonality in the frequency dimension.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • PAPR Peak-to-Average Power Ratio
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • SC-FDMA combines Frequency Division Multiple Access (FDMA) with Single Carrier-Frequency Division Equalization (SC-FDE).
  • SC-FDMA has similar characteristics to OFDMA in that it modulates and demodulates data in time and frequency domain using Discrete Fourier Transform (DFT), but the PAPR of the transmission signal is low, which is advantageous in reducing transmission power. .
  • DFT Discrete Fourier Transform
  • SC-FDMA systems allow for small amounts of signal variation, resulting in broader coverage than other systems when using the same power amplifier.
  • clustered DFT-S-OFDM allocates (or maps) an M ( ⁇ N) symbol string to a contiguous subcarrier among the N-DFT spread N symbol strings, and the remaining NM symbol strings are M symbol strings. It allocates (or maps) to successive subcarriers spaced apart from the assigned (or mapped) subcarriers.
  • clustered DFT-S-OFDM there is an advantage that frequency selective scheduling can be performed.
  • the wireless communication system should be able to provide transmit diversity that lowers the PAPR by using the SC-FDMA scheme or the clustered DFT-S-OFDM scheme. What is needed is a data transmission apparatus and method that can provide transmission diversity that lowers PAPR.
  • An object of the present invention is to provide a transmission diversity in an SC-FDMA system, but to provide a data transmission method and apparatus for maintaining single-carrier characteristics considered important in an SC-FDMA system.
  • a data transmission apparatus is provided.
  • the data transmission apparatus is a data processor for generating data symbols by coding and modulating information bits, changing a weighting matrix at every change cycle, precoding the changed weighting matrix on the data symbols, and SC A SC-FDMA processor for performing SC-FDMA modulation for generation of a Single Carrier-Frequency Division Multiple Access (FDMA) symbol, and an RF unit for transmitting the SC-FDMA symbol.
  • FDMA Single Carrier-Frequency Division Multiple Access
  • a data transmission apparatus includes a data processing unit for generating data symbols by performing coding and modulation on information bits, and a DFT unit, slot, or SC-FDMA symbol for performing a DFT on the data symbols to generate a frequency domain symbol.
  • a precoding controller for changing the weight matrix for each change period and providing the changed weight matrix to a precoding unit; a precoding unit for precoding the frequency domain symbol by using the changed weight matrix;
  • a subcarrier mapper for mapping a coded frequency domain symbol to a subcarrier, an IFFT unit for generating an SC-FDMA symbol by performing IFFT on an output of the subcarrier mapper, and an RF unit for transmitting the SC-FDMA symbol.
  • the data transmission method may include generating data symbols by performing coding and modulation on information bits, performing precoding on the data symbols by using a weight matrix changed according to a change period, and precoding data. Performing a process for generating a transmission symbol for the symbol; And transmitting the transmission symbol.
  • PVS scheme By applying the PVS scheme to the SC-FDMA system, not only can transmission diversity be provided, but also PAPR can be reduced and single-carrier characteristics can be maintained.
  • FIG. 1 is a block diagram illustrating a wireless communication system.
  • FIG. 2 shows an example of a radio frame.
  • FIG. 3 shows an example of a subframe.
  • FIG. 4 is a block diagram illustrating a data transmission device and a data reception device according to an embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating an example of an SC-FDMA processing unit of a transmitter according to the present invention.
  • FIG. 6 is a flowchart illustrating a data transmission method in an SC-FDMA system according to the present invention.
  • FIG. 1 is a block diagram illustrating a wireless communication system.
  • Wireless communication systems are widely deployed to provide various communication services such as voice and packet data.
  • a wireless communication system includes a user equipment (UE) 10 and a base station 20 (BS).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
  • the base station 20 generally refers to a fixed station that communicates with the terminal 10, and in other terms, such as a Node-B, a Base Transceiver System, or an Access Point. Can be called.
  • One or more cells may exist in one base station 20.
  • downlink means communication from the base station 20 to the terminal
  • uplink means communication from the terminal 10 to the base station 20
  • the transmitter may be part of the base station 20 and the receiver may be part of the terminal 10.
  • the transmitter may be part of the terminal 10 and the receiver may be part of the base station 20.
  • the wireless communication system may be a multiple antenna system.
  • the multiple antenna system may be a multiple-input multiple-output (MIMO) system.
  • the multi-antenna system may be a multiple-input single-output (MISO) system or a single-input single-output (SISO) system or a single-input multiple-output (SIMO) system.
  • MISO multiple-input single-output
  • SISO single-input single-output
  • SIMO single-input multiple-output
  • the MIMO system uses multiple transmit antennas and multiple receive antennas.
  • the MISO system uses multiple transmit antennas and one receive antenna.
  • the SISO system uses one transmit antenna and one receive antenna.
  • the SIMO system uses one transmit antenna and multiple receive antennas.
  • Multiple antenna transmit / receive schemes used for the operation of multiple antenna systems include precoding vector switching (PVS), frequency switched transmit diversity (FST), space frequency block code (SFBC), and space time block code (STBC). Cyclic Delay Diversity (CDD), time switched transmit diversity (TSTD), and the like may be used. In Rank 2 or higher, spatial multiplexing (SM), Generalized Cyclic Delay Diversity (GCDD), Selective Virtual Antenna Permutation (S-VAP), and the like may be used.
  • PVS is a type of transmission diversity technique, and is a method of obtaining a random beamforming gain by switching a precoding vector at a predetermined time, slot, or symbol unit.
  • downlink may use Orthogonal Frequency Division Multiple Access (OFDMA)
  • uplink may use Single Carrier-Frequency Division Multiple Access (SC-FDMA) or clustered DFT S-OFDM.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the general SC-FDMA technique means assigning (or mapping) a DFT spread symbol sequence to a contiguous subcarrier or an equally spaced subcarrier, where clustered DFT-S-OFDM is used for M ( ⁇ N).
  • the symbol strings are allocated (or mapped) to successive subcarriers, and the remaining NM symbol strings are allocated (or mapped) to successive subcarriers spaced apart from the subcarriers to which the M symbol strings are allocated (or mapped).
  • clustered DFT-S-OFDM there is an advantage that frequency selective scheduling can be performed.
  • FIG. 2 shows an example of a radio frame.
  • a radio frame may consist of 10 subframes, and one subframe may include two slots.
  • One slot may include a plurality of SC-FDMA symbols (or OFDM symbols) in the time domain and at least one subcarrier in the frequency domain.
  • the slot may be referred to as a unit for allocating radio resources in the time domain and the frequency domain.
  • the number of SC-FDMA symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP normal CP
  • the number of SC-FDMA symbols included in one slot may be seven.
  • SC-FDMA symbol is configured by an extended CP, since the length of one SC-FDMA symbol is increased, the number of SC-FDMA symbols included in one slot is smaller than that of the normal CP.
  • the number of SC-FDMA symbols included in one slot may be six.
  • the extended CP may be used to further reduce the intersymbol interference when the channel state is unstable, such as when the terminal moves at a high speed, and may be used in relation to a multimedia broadcast multicast service (MBMS). It can also be used to support Multicast Broadcast Single Frequency Network.
  • MBMS multimedia broadcast multicast service
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of SC-FDMA symbols included in the slot may be variously changed.
  • FIG. 3 shows an example of a subframe. This is the case where the SC-FDMA symbol is composed of a normal CP.
  • a subframe includes two slots. Since the SC-FDMA symbol is composed of a normal CP, one slot includes seven SC-FDMA symbols in the time domain. Thus, one subframe includes a total of 14 SC-FDMA symbols. On the other hand, it includes a plurality of resource blocks (RB) in the frequency domain. A unit consisting of one SC-FDMA symbol and one subcarrier is called a resource element. When one resource block includes 12 subcarriers, one resource block includes 12 ⁇ 7 resource elements. One SC-FDMA symbol in each slot is allocated for transmission of a demodulation reference signal (DMRS) used for demodulation of data.
  • DMRS demodulation reference signal
  • SC-FDMA symbols Since the remaining SC-FDMA symbols are allocated for data transmission, a total of 12 SC-FDMA symbols are allocated for data transmission in one subframe.
  • a sounding reference signal (SRS) for uplink channel estimation is transmitted on one SC-FDMA symbol, a total of 11 SC-FDMA symbols are stored in one subframe. Is allocated for transmission.
  • the sounding reference signal may be transmitted on the last SC-FDMA symbol of the second slot.
  • the structure of the subframe is merely an example, and the number of slots included in the subframe, the number of SC-FDMA symbols included in the slot, and the position of the SC-FDMA symbol to which the demodulation reference signal is transmitted may vary.
  • FIG. 4 is a block diagram illustrating a data transmission device and a data reception device according to an embodiment of the present invention.
  • the data transmission apparatus 100 may include a data processing unit 110, an SC-FDMA processing unit 120, an RF unit 130, and a transmission antenna ( Tx Antennas 140-1 and 140-2.
  • the data processor 110 generates a codeword by channel coding the information bits, and generates a modulation symbol by constellation mapping of the codewords. do.
  • the information bits contain information of the user plane to send to the receiver 200.
  • the information bits may include information on the control plane related to the transmission of information of the user plane or the radio resource allocation.
  • the SC-FDMA processor 120 performs precoding on data symbols using different weighting matrices for every SC-FDMA symbol, every slot, or every subframe by PVS, and modulates the data symbols by SC-FDMA modulation. Generates an SC-FDMA symbol.
  • the SC-FDMA modulation includes a series of processes such as performing DFT, subcarrier mapping, and IFFT for generating an SC-FDMA symbol.
  • the information of the control plane may be modulated separately from the information of the user plane and input to the SC-FDMA modulator 120.
  • the RF unit 140 converts the input SC-FDMA symbol into an analog signal. The converted analog signal is propagated to the wireless channel through the transmission antennas 140-1 and 140-2.
  • the data receiver 200 includes an RF unit 210, an SC-FDMA processing unit 220, a data processing unit 230, and a reception antenna 240. Include.
  • the RF unit 210 converts the signal received from the reception antenna 240 into a digitized signal.
  • the SC-FDMA processor 220 of the receiver 200 performs an operation corresponding to the SC-FDMA processor 120 of the transmitter 100 in the digitized signal and outputs a data symbol.
  • the data processor 230 recovers the information bits from the data symbols.
  • FIG. 5 is a block diagram illustrating an example of an SC-FDMA processing unit of a transmitter according to the present invention.
  • the SC-FDMA processor 120 includes a DFT unit 121, a precoding control unit 122, a precoding unit 123, and a subcarrier mapper. 124) and an IFFT unit (IFFT Unit 125).
  • the DFT unit 121 performs a Discrete Fourier Transform (DFT) on the data symbol and outputs a frequency domain symbol.
  • the data symbol input to the DFT unit 121 may be control information and / or user data.
  • the size of the DFT may be fixed by the size of the allocated resource block or may vary depending on the system.
  • the precoding controller 122 controls a weight matrix or a weight vector to be used by the precoding unit 123.
  • the precoding control unit 122 may change the weight matrix to be applied to the precoding unit 123 according to a specific change period.
  • the information about the change period and the changed weight matrix may be predetermined information that the base station and the terminal know each other, or may be information included in system information and periodically transmitted to the terminal.
  • the change cycle may be fixed or variable depending on the system.
  • the precoding controller 122 may provide the precoding unit 123 with a weighted matrix that is changed every slot by using the change cycle as a slot. If the change period is a slot, the weighting matrix applied to all SC-FDMA symbols in one slot is the same. As another example, the precoding controller 122 may provide the precoding unit 123 with a weighted matrix that is changed for every SC-FDMA symbol by using the change cycle as every SC-FDMA symbol. Even if the weight matrix is changed for every SC-FDMA symbol, the changed pattern may be repeated in units of slots or subframes. For example, if the sequence of weight matrices applied to every SC-FDMA symbol is W 1 , W 3 , W 4 , W 2 , W 6 , W 5 , W 7 , this order is for all slots. The cycle is repeated.
  • the precoding control unit 122 may change (control) the weight matrix provided to the precoding unit 123 in units of every slot or every SC-FDMA symbol. Since different weighting matrices are used for every slot or every SC-FDMA symbol, spatial diversity gain can be obtained.
  • the weighting matrix that varies with each change period may be obtained from a set of weighting matrices in the form of a pre-defined codebook. For example, if the set of weighting matrices is ⁇ W 1 , W 2 , W 3 , W 4 , W 5 ⁇ , then ⁇ W 1 , W 3 , W 4 ⁇ is a subset, and each slot The weight matrix to be applied may be changed in the subset. For example, when the change period is a slot, if the weight matrix W 1 is provided to the precoding unit 123 in the first slot, the weight matrix W 3 is provided to the precoding unit 123 in the second slot. (W 1 ⁇ W 3 ).
  • the codebook used in the MIMO transmission of Rank 1 using two transmission antennas is shown in Table 1.
  • a weight vector 0 or 1 or a weight vector 2 and 3 may be defined as a subset, and the weight vector may be changed in each subset.
  • the codebook used for MIMO transmission of Rank 1 using four transmission antennas is shown in Table 2.
  • the precoding control unit 122 may include a memory in which predefined codebooks such as Table 1 or Table 2 are stored (not shown).
  • the precoding unit 123 performs precoding by multiplying the frequency domain symbol by the weight matrix provided from the precoding control unit 122.
  • the weight matrix may be referred to as a precoding matrix.
  • the weight matrix may be known to both the transmitter and the receiver, or may be known by information fed back by the receiver.
  • the precoding unit 123 may satisfy the single-carrier characteristic by applying the same weight matrix to all frequency bands of the allocated resource.
  • the precoding unit 123 may apply precoding to a reference signal common to each of the transmission antennas 140-1 and 140-2.
  • the reference signal to which precoding is applied is called a precoded reference signal.
  • the receiver 200 can immediately know the weight matrix that has experienced the wireless channel without additional signaling, so that data demodulation of each slot can be quickly performed.
  • the precoding unit 123 may apply precoding to a reference signal that is multiplexed to each transmission antenna 140-1 and 140-2 in various forms.
  • the reference signal may be multiplexed and transmitted in the form of frequency division multiplex, time division multiplex, or code division multiplex to each of the transmission antennas 140-1 and 140-2. .
  • the receiver 200 estimates a channel for each transmission antenna 140-1 and 140-2 and combines a weight matrix to demodulate data in every slot. Can be done.
  • the subcarrier mapper 124 allocates the precoded frequency domain symbols to each subcarrier according to various signal structure schemes. Here, the subcarriers are allocated separately for each transmission antenna (140-1, 140-2).
  • the IFFT unit 125 performs an IFFT on the output of the subcarrier mapper 124 and outputs an SC-FDMA symbol that is a time domain symbol.
  • SC-FDMA a scheme of combining DFT and IFFT and modulating it is called SC-FDMA, which is advantageous in lowering the peak-to-average power ratio (PAPR) compared to OFDM using only IFFT. This is because it has the characteristics of a single carrier.
  • FIG. 6 is a flowchart illustrating a data transmission method in a wireless system according to the present invention.
  • a DFT is performed on an input data symbol (S100).
  • the weight vector is changed according to the change cycle (S110).
  • the change period may be a slot or a transmission symbol.
  • the transmission symbol may be any one of an SC-FDMA symbol and a Clustered DFT-s-OFDM symbol.
  • Precoding is performed on the frequency domain symbol obtained as a result of performing the DFT using the changed weight vector (S120).
  • the precoding may be performed by multiplying the frequency domain symbol by a weight vector.
  • the precoded frequency domain symbol is called a precoded symbol.
  • the precoded symbols are mapped to respective subcarriers of the allocated frequency band (S130).
  • the changed weight vector is equally applied to the allocated frequency band.
  • the precoded symbols are allocated (or mapped) to consecutive subcarriers or subcarriers having equal intervals.
  • M ( ⁇ N) symbol strings of the precoded N symbol strings are allocated (or mapped) to successive subcarriers, and the remaining NM symbol strings are allocated by the M symbol strings. (Or is mapped) to consecutive subcarriers spaced apart from the mapped subcarriers.
  • An IFFT is performed on the precoded symbols mapped to the subcarriers (S140).
  • the SC-FDMA symbol or the Clustered DFT-s-OFDM symbol generated as a result of the IFFT is transmitted (S150).

Abstract

SC-FDMA 시스템에서 전송 다이버시티를 제공하는 데이터 전송장치를 제공한다. 상기 데이터 전송장치는 정보비트에 대해 코딩 및 변조를 수행하여 데이터 심벌을 생성하는 데이터 처리부, 변경주기마다 가중치 행렬을 변경하고, 상기 변경되는 가중치 행렬을 상기 데이터 심벌에 대해 프리코딩을 수행하며, SC-FDMA(Single Carrier-Frequency Division Multiple Access) 심벌의 생성을 위한 SC-FDMA 변조를 수행하는 SC-FDMA 처리부, 및 상기 SC-FDMA 심벌을 전송하는 RF부를 포함한다. SC-FDMA 시스템에 PVS 기법을 적용함으로써 전송 다이버시티가 제공될 수 있을 뿐만 아니라, PAPR이 줄어들고 단일-반송파 특성이 유지될 수 있다.

Description

SC-FDMA 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
본 발명은 무선통신에 관한 것으로서, 보다 상세하게는 SC-FDMA 시스템에서 전송 다이버시티를 제공할 수 있는 데이터를 전송하는 장치 및 방법에 관한 것이다.
최근들어 무선 데이터 서비스에 대한 폭발적인 수요의 증가가 있어왔다. 그리고 무선 음성 서비스에서 무선 데이터 서비스로의 진화는 무선 용량(wireless capacity)의 점진적인 증가를 요구하고 있다. 이러한 요구는 무선 서비스 사업자들과 무선장비 제조업자들로 하여금 무선 시스템의 데이터 전송률의 향상을 모색하도록 하며, 막대한 연구에 대한 동기를 부여한다.
무선채널(wireless channel)은 경로손실(path loss), 쉐도우잉(shadowing), 페이딩(fading), 잡음(noise), 한정된 대역폭(limited bandwidth), 단말의 전력한계, 다른 사용자간의 간섭과 같은 여러가지 문제를 겪는다. 이러한 한계는 무선 채널을 데이터의 빠른 흐름을 저해하는 좁은 파이프와 유사한 형태를 갖게 하며, 고속 데이터 전송을 제공하는 무선통신의 효율적인 대역폭의 설계를 어렵게 한다. 무선 시스템의 설계에 있어서 또 다른 난점들(challenges)은 자원할당, 급변하는 물리채널과 관련한 이동성 문제들(mobility issues), 휴대가능성(portability), 및 안전성(security)과 프라이버시(privacy) 제공의 설계를 포함한다.
전송채널이 큰 페이딩(deep fading)을 겪을 때, 수신기는 전송되는 신호의 다른 버젼(version)이나 복사본(replica)이 별도로 전송되지 않는 경우 상기 전송되는 신호를 결정하기 어렵다. 이러한 별도의 다른 버젼이나 복사본에 해당하는 자원은 다이버시티(diversity)라 불리며, 무선채널에 걸쳐 신뢰성있는 전송에 기여하는 가장 중요한 요소 중 하나이다. 이러한 다이버시티를 이용하면 데이터 전송 용량 또는 데이터 전송 신뢰도를 극대화할 수 있는데, 다중 송신안테나 및 다중 수신 안테나로써 다이버시티를 구현하는 시스템을 다중입출력(Multiple Input Multiple Output; MIMO) 시스템이라 한다. MIMO 시스템을 다중안테나(Multiple antenna) 시스템이라고도 한다.
MIMO 시스템에서 다이버시티를 구현하기 위한 기법에는 PVS(Precoding Vectore Switching), SFBC(Space Frequency Block Code), STBC(Space Time Block Code), CDD(Cyclic Delay Diversity), FSTD(frequency switched transmit diversity), TSTD(time switched transmit diversity), PVS(Precoding Vector Switching), 공간 다중화(Spatial Multiplexing; SM), GCDD(Generalized Cyclic Delay Diversity), S-VAP(Selective Virtual Antenna Permutation) 등이 있다. PVS는 전송 다이버시티 기법의 일종으로서, 일정 시간, 슬롯 또는 심벌단위로 프리코딩 벡터(weight)를 스위칭하여, 랜덤한 빔포밍 이득을 얻는 방법이다.
한편, 3세대 이후의 시스템에서 고려되는 있는 시스템 중 하나가 낮은 복잡도로 심벌간 간섭(inter-symbol interference) 효과를 감쇄시킬 수 있는 직교 주파수 분할 다중(Orthogonal Frequency Division Multiplexing; OFDM) 시스템이다. OFDM은 직렬로 입력되는 데이터를 N개의 병렬 데이터로 변환하여, N개의 직교 부반송파(subcarrier)에 실어 전송한다. 부반송파는 주파수 차원에서 직교성을 유지한다. 직교 주파수 분할 다중 접속(Orthogonal Frequency Division Multiple Access; OFDMA)은 OFDM을 변조 방식으로 사용하는 시스템에 있어서 이용가능한 부반송파의 일부를 각 사용자에게 독립적으로 제공하여 다중 접속을 실현하는 다중 접속 방법을 말한다.
그런데, OFDM/OFDMA 시스템의 주된 문제점 중 하나는 PAPR(Peak-to-Average Power Ratio)이 매우 클 수 있다는 것이다. PAPR 문제는 전송 신호의 최대 진폭(peak amplitude)이 평균 진폭보다 매우 크게 나타나는 것으로, OFDM 심벌이 서로 다른 부반송파 상에서 N개의 정현파 신호(sinusoidal signal)의 중첩이라는 사실에 기인한다. PAPR은 특히 배터리의 용량과 관련되어 전력 소모에 민감한 단말에서 문제가 된다. 전력 소모를 줄이기 위해서는 PAPR을 낮추는 것이 필요하다.
PAPR을 낮추기 위해 제안되고 있는 시스템 중 하나가 단일 반송파 주파수 분할 다중 접속(Single Carrier-Frequency Division Multiple Access; SC-FDMA)이다. SC-FDMA는 SC-FDE(Single Carrier-Frequency Division Equalization) 방식에 FDMA(Frequency Division Multiple Access)를 접목한 형태이다. SC-FDMA는 이산 푸리에 변환(Discrete Fourier Transform; DFT)을 이용하여 데이터를 시간 영역 및 주파수 영역에서 변조 및 복조한다는 점에서 OFDMA와 유사한 특성을 갖지만, 전송 신호의 PAPR이 낮아 전송 전력 절감에 유리하다. 특히 배터리 사용과 관련하여 전송 전력에 민감한 단말에서 기지국으로 통신하는 상향링크에 유리하다고 할 수 있다. 단말이 기지국으로 데이터를 전송할 때, 중요한 점은 전송하는 데이터의 대역폭은 크지 않은 대신 파워를 집중할 수 있는 넓은 커버리지(coverage)이다. SC-FDMA 시스템은 신호의 변화량이 작도록 만들어 주어, 동일한 전력 증폭기(power amplifier)를 사용했을 때 다른 시스템보다 더 넓은 커버리지를 가진다.
한편, SC-FDMA 기법과 달리, clustered DFT-S-OFDM은 DFT 확산된 N 심볼열 중 M(<N) 심볼열은 연속된 부반송파에 할당(또는 맵핑)하고, 나머지 N-M 심볼열은 M 심볼열이 할당(또는 맵핑)된 부반송파에서 일정 간격 떨어진 연속된 부반송파에 할당(또는 맵핑)한다. clustered DFT-S-OFDM을 사용할 경우, 주파수 선택적 스케줄링(frequency selective scheduling)을 할 수 있는 장점이 있다.
그런데, 이러한 SC-FDMA 방식을 적용함에 있어서 주의해야할 것은 단일-반송파 특성(single-carrier property)를 만족시켜야 한다는 점이다. 무선통신 시스템은 SC-FDMA 방식 또는 clustered DFT-S-OFDM 방식을 이용함으로써 PAPR을 낮추는 전송 다이버시티(transmit diversity)를 제공할 수 있어야 한다. PAPR을 낮추는 전송 다이버시티를 제공할 수 있는 데이터 전송장치 및 방법이 요구된다.
본 발명의 기술적 과제는 SC-FDMA 시스템에 전송 다이버시티를 제공하되, SC-FDMA 시스템에서 중요하게 여겨지는 단일-반송파 특성을 유지하도록 하는 데이터 전송방법 및 장치를 제공함에 있다.
본 발명의 일 양태에 따르면, 데이터 전송장치를 제공한다. 상기 데이터 전송장치는 정보비트에 대해 코딩 및 변조를 수행하여 데이터 심벌을 생성하는 데이터 처리부, 변경주기마다 가중치 행렬을 변경하고, 상기 변경되는 가중치 행렬을 상기 데이터 심벌에 대해 프리코딩을 수행하며, SC-FDMA(Single Carrier-Frequency Division Multiple Access) 심벌의 생성을 위한 SC-FDMA 변조를 수행하는 SC-FDMA 처리부, 및 상기 SC-FDMA 심벌을 전송하는 RF부를 포함한다.
본 발명의 다른 양태에 따르면, 데이터 전송장치를 제공한다. 상기 데이터 전송장치는 정보비트에 대해 코딩 및 변조를 수행하여 데이터 심벌을 생성하는 데이터 처리부, 상기 데이터 심벌에 대해 DFT를 수행하여 주파수 영역 심벌을 생성하는 DFT부, 슬롯 또는 SC-FDMA 심벌로 정해지는 변경주기마다 가중치 행렬을 변경하고, 상기 변경되는 가중치 행렬을 프리코딩부에 제공하는 프리코딩 제어부, 상기 변경되는 가중치 행렬을 이용하여 상기 주파수 영역 심벌에 대해 프리코딩을 수행하는 프리코딩부, 상기 프리코딩된 주파수 영역 심벌을 부반송파에 맵핑하는 부반송파 맵퍼, 상기 부반송파 맵퍼의 출력에 대하여 IFFT를 수행하여 SC-FDMA 심벌을 생성하는 IFFT부, 및 상기 SC-FDMA 심벌을 전송하는 RF부를 포함한다.
본 발명의 또 다른 양태에 따르면, 무선통신 시스템에서 데이터의 전송방법을 제공한다. 상기 데이터 전송방법은 정보비트에 대해 코딩 및 변조를 수행하여 데이터 심벌을 생성하는 단계, 변경주기에 따라 변경되는 가중치 행렬을 이용하여 상기 데이터 심벌에 대해 프리코딩을 수행하는 단계, 상기 프리코딩된 데이터 심벌에 대해 전송심벌(transmission symbol)을 생성하기 위한 처리를 수행하는 단계; 및 상기 전송심벌을 전송하는 단계를 포함한다.
SC-FDMA 시스템에 PVS 기법을 적용함으로써 전송 다이버시티가 제공될 수 있을 뿐만 아니라, PAPR이 줄어들고 단일-반송파 특성이 유지될 수 있다.
도 1은 무선통신 시스템을 나타낸 블록도이다.
도 2는 무선 프레임의 일 예를 나타낸다.
도 3은 서브프레임의 일 예를 나타낸다.
도 4는 본 발명의 일 예에 따른 데이터 전송장치 및 데이터 수신장치를 도시한 블록도이다.
도 5는 본 발명에 따른 송신기의 SC-FDMA 처리부의 일 예를 나타내는 블록도이다.
도 6은 본 발명에 따른 SC-FDMA 시스템에서의 데이터 전송방법을 설명하는 순서도이다.
도 1은 무선통신 시스템을 나타낸 블록도이다. 무선통신 시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다.
도 1을 참조하면, 무선통신 시스템은 단말(10; User Equipment, UE) 및 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, 노드-B(Node-B), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다. 하나의 기지국(20)에는 하나 이상의 셀이 존재할 수 있다.
이하에서 하향링크(downlink; DL)는 기지국(20)에서 단말(10)로의 통신을 의미하며, 상향링크(uplink; UL)는 단말(10)에서 기지국(20)으로의 통신을 의미한다. 하향링크에서, 송신기는 기지국(20)의 일부일 수 있고 수신기는 단말(10)의 일부일 수 있다. 상향링크에서, 송신기는 단말(10)의 일부일 수 있고 수신기는 기지국(20)의 일부일 수 있다.
무선통신 시스템은 다중안테나(multiple antenna) 시스템일 수 있다. 다중안테나 시스템은 다중입출력(multiple-input multiple-output; MIMO) 시스템일 수 있다. 또는 다중안테나 시스템은 다중 입력 싱글 출력(multiple-input single-output; MISO) 시스템 또는 싱글 입력 싱글 출력(single-input single-output; SISO) 시스템 또는 싱글 입력 다중 출력(single-input multiple-output; SIMO) 시스템일 수도 있다. MIMO 시스템은 다수의 송신안테나와 다수의 수신 안테나를 사용한다. MISO 시스템은 다수의 송신안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 송신안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 송신안테나와 다수의 수신 안테나를 사용한다.
다중 안테나 시스템의 운영(operation)을 위해 사용되는 다중 안테나 송수신 기법(scheme)은 PVS(Precoding Vector Switching), FSTD(frequency switched transmit diversity), SFBC(Space Frequency Block Code), STBC(Space Time Block Code), CDD(Cyclic Delay Diversity), TSTD(time switched transmit diversity) 등이 사용될 수 있다. 랭크 2 이상에서는 공간 다중화(Spatial Multiplexing; SM), GCDD(Generalized Cyclic Delay Diversity), S-VAP(Selective Virtual Antenna Permutation) 등이 사용될 수 있다. PVS는 전송 다이버시티 기법의 일종으로서, 일정 시간, 슬롯 또는 심벌단위로 프리코딩 벡터(weight)를 스위칭하여, 랜덤한 빔포밍 이득을 얻는 방법이다.
하향링크와 상향링크 전송을 위한 다중 접속 방식은 서로 다를 수 있다. 예를 들어, 하향링크는 OFDMA(Orthogonal Frequency Division Multiple Access)를 사용하고, 상향링크는 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 또는 clustered DFT S-OFDM 를 사용할 수 있다. 일반적인 SC-FDMA 기법은 DFT 확산된 심볼열을 연속된 부반송파 또는 등간격을 갖는 부반송파에 할당(또는 맵핑)하는 것을 의미하는데, clustered DFT-S-OFDM은 DFT 확산된 N 심볼열 중 M(<N) 심볼열은 연속된 부반송파에 할당(또는 맵핑)하고, 나머지 N-M 심볼열은 M 심볼열이 할당(또는 맵핑)된 부반송파에서 일정 간격 떨어진 연속된 부반송파에 할당(또는 맵핑)한다. clustered DFT-S-OFDM을 사용할 경우, 주파수 선택적 스케줄링(frequency selective scheduling)을 할 수 있는 장점이 있다.
도 2는 무선 프레임의 일 예를 나타낸다.
도 2를 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)을 포함할 수 있다. 하나의 슬롯은 시간 영역에서 복수의 SC-FDMA 심벌(또는 OFDM 심벌)과 주파수 영역에서 적어도 하나의 부반송파를 포함할 수 있다. 슬롯은 시간 영역과 주파수 영역에서 무선 자원을 할당하기 위한 단위라 할 수 있다.
하나의 슬롯에 포함되는 SC-FDMA 심벌의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, SC-FDMA 심벌이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 SC-FDMA 심벌의 수는 7개일 수 있다. SC-FDMA 심벌이 확장된 CP에 의해 구성된 경우, 한 SC-FDMA 심벌의 길이가 늘어나므로, 한 슬롯에 포함되는 SC-FDMA 심벌의 수는 일반 CP인 경우보다 적다. 예를 들어, 하나의 슬롯에 포함되는 SC-FDMA 심벌의 수는 6개일 수 있다. 확장된 CP는 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심벌간 간섭을 더욱 줄이기 위해 사용될 수도 있고, 멀티미디어 브로드캐스트 멀티캐스트 서비스(Multimedia Broadcast Multicast Service; MBMS)에 관련된 MBSFN(Multicast Broadcast Single Frequency Network)을 지원하기 위해 사용될 수도 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수, 서브프레임에 포함되는 슬롯의 수 및 슬롯에 포함되는 SC-FDMA 심벌의 수는 다양하게 변경될 수 있다.
도 3은 서브프레임의 일 예를 나타낸다. 이는 SC-FDMA 심벌이 일반 CP로 구성된 경우이다.
도 3을 참조하면, 서브프레임은 2개의 슬롯을 포함한다. SC-FDMA 심벌이 일반 CP로 구성되므로, 하나의 슬롯은 시간 영역에서 7개의 SC-FDMA 심벌을 포함한다. 따라서, 하나의 서브프레임은 총 14개의 SC-FDMA 심벌을 포함한다. 한편, 주파수 영역에서 복수의 자원블록(resource block; RB)을 포함한다. 1개의 SC-FDMA 심벌과 1개의 부반송파로 이루어진 단위를 자원 요소라 한다. 하나의 자원블록이 12 부반송파를 포함한다고 할 때, 하나의 자원블록은 12×7 자원요소를 포함한다. 각 슬롯에서 하나의 SC-FDMA 심벌은 데이터의 복조에 사용되는 복조 기준신호(DeModulation Reference Signal; DMRS)의 전송을 위해 할당된다. 나머지 SC-FDMA 심벌은 데이터의 전송을 위해 할당되므로, 한 서브프레임내에서 총 12개의 SC-FDMA 심벌이 데이터 전송을 위해 할당된다. 만약, 복조 기준신호외에, 상향링크 채널 추정을 위한 사운딩 기준신호(Sounding Reference Signal; SRS)가 1개의 SC-FDMA 심벌상으로 전송된다면, 한 서브프레임내에서 총 11개의 SC-FDMA 심벌이 데이터 전송을 위해 할당된다. 사운딩 기준신호는 2번째 슬롯의 마지막 SC-FDMA 심벌상으로 전송될 수 있다.
서브프레임의 구조는 예시에 불과하고, 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 SC-FDMA 심벌의 수 및 복조 기준신호가 전송되는 SC-FDMA 심벌의 위치는 다양하게 변경될 수 있다.
이하, 본 발명의 실시 예에서는 두 개의 안테나를 포함하는 송신기를 예로 들어 설명하나, 이는 본 발명을 한정하는 것이 아니며 본 발명은 안테나 개수의 변경이 가능하다.
도 4는 본 발명의 일 예에 따른 데이터 전송장치 및 데이터 수신장치를 도시한 블록도이다.
도 4를 참조하면, 데이터 전송장치(100)는 데이터 처리부(Data Processing Unit, 110), SC-FDMA 처리부(SC-FDMA Processing Unit, 120), RF부(RF Unit, 130), 및 송신안테나(Tx Antenna, 140-1, 140-2)를 포함한다.
데이터 처리부(110)는 입력되는 정보비트(information bits)를 채널부호화(channel coding)하여 부호어(codeword)를 생성하고, 상기 부호어를 성상맵핑(constellation mapping)하여 변조심벌(modulation symbol)을 생성한다. 정보비트는 수신기(200)로 보낼 사용자 평면의 정보를 포함한다. 또한, 정보비트는 사용자 평면의 정보의 전송 또는 무선자원 할당과 관련된 제어평면의 정보를 포함할 수 있다.
SC-FDMA 처리부(120)는 데이터 심벌에 대하여, PVS 기법에 의해 매 SC-FDMA 심벌 또는 매 슬롯, 또는 매 서브프레임별로 다른 가중치 행렬를 이용하여 프리코딩을 수행하고, SC-FDMA 변조 방식으로 변조하여 SC-FDMA 심벌을 생성한다. 상기 SC-FDMA 변조는 SC-FDMA 심벌을 생성하기 위한 DFT 수행, 부반송파 맵핑 및 IFFT 수행과 같은 일련의 과정을 포함한다. 제어평면의 정보는 사용자 평면의 정보와 별도로 변조되어 SC-FDMA 변조부(120)로 입력될 수 있다. RF부(140)는 입력되는 SC-FDMA 심벌을 아날로그 신호로 변환한다. 변환된 아날로그 신호는 송신안테나(140-1, 140-2)를 통하여 무선 채널로 전파된다.
데이터 수신장치(200)는 RF부(RF Unit, 210), SC-FDMA 처리부(SC-FDMA Processing Unit, 220), 데이터 처리부(Data Processing Unit, 230), 및 수신안테나(Rx Antenna, 240)를 포함한다. RF부(210)는 수신안테나(240)에서 수신한 신호를 디지털화된 신호로 변환한다. 수신기(200)의 SC-FDMA 처리부(220)는 디지털화된 신호에서 송신기(100)의 SC-FDMA 처리부(120)에 대응하는 동작을 수행하여 데이터 심벌을 출력한다. 데이터 처리부(230)는 데이터 심벌로부터 정보비트를 복원한다.
도 5는 본 발명에 따른 송신기의 SC-FDMA 처리부의 일 예를 나타내는 블록도이다.
도 5를 참조하면, SC-FDMA 처리부(120)는 DFT부(DFT Unit, 121), 프리코딩 제어부(Precoding Control Unit, 122), 프리코딩부(Precoding Unit, 123), 부반송파 맵퍼(Subcarrier Mapper, 124) 및 IFFT부(IFFT Unit, 125)를 포함한다.
DFT부(121)는 데이터 심벌에 DFT(Discrete Fourier Transform)를 수행하여 주파수 영역 심벌을 출력한다. DFT부(121)에 입력되는 데이터 심벌은 제어정보 및/또는 사용자 데이터일 수 있다. DFT의 크기는 할당된 자원블록의 크기만큼 고정된 것일 수도 있고, 시스템에 따라 가변적일 수도 있다.
프리코딩 제어부(122)는 프리코딩부(123)에 의해 사용될 가중치 행렬(Weight Matrix) 또는 가중치 벡터(Weight Vector)를 제어한다. 보다 상세히 설명하면, 프리코딩 제어부(122)는 프리코딩부(123)에 적용될 가중치 행렬을 특정한 변경주기(switchig period)에 따라 변경할 수 있다. 이러한 변경주기 및 변경되는 가중치 행렬에 관한 정보는 기지국과 단말이 서로 알고 있는, 미리 정해진 정보(predetermined information)일 수도 있고, 시스템 정보에 포함되어 주기적으로 단말에 전송되는 정보일 수도 있다. 변경주기는 시스템에 따라 고정되거나, 가변적일 수 있다.
일 예로서, 프리코딩 제어부(122)는 변경주기를 매슬롯으로 하여, 매 슬롯마다 변경되는 가중치 행렬(switched weight matrix)을 프리코딩부(123)에 제공할 수 있다. 변경주기가 슬롯이 경우, 한 슬롯의 모든 SC-FDMA 심벌에 적용되는 가중치 행렬은 동일하다. 다른 예로서, 프리코딩 제어부(122)는 변경주기을 매 SC-FDMA심벌로 하여, 매 SC-FDMA심벌마다 변경되는 가중치 행렬(switched weight matrix)을 프리코딩부(123)에 제공할 수 있다. 매 SC-FDMA 심벌마다 가중치 행렬이 변경되더라도, 변경되는 패턴은 슬롯 또는 서브프레임 단위로 반복될 수 있다. 예를 들어, 매 SC-FDMA 심벌에 적용되는 가중치 행렬의 순서(sequence)가 W1, W3, W4, W2, W6, W5, W7인 경우, 이러한 순서가 모든 슬롯에 대해 순환반복된다.
이와 같이 프리코딩 제어부(122)는 매 슬롯 또는 매 SC-FDMA 심벌 단위로 프리코딩부(123)에 제공되는 가중치 행렬을 변경(제어)할 수 있다. 매 슬롯 또는 매 SC-FDMA 심벌마다 서로 다른 가중치 행렬이 사용되므로, 공간 다이버시티 이득(spatial diversity gain)을 얻을 수 있다.
변경주기마다 달라지는 가중치 행렬은 미리 정의된(pre-defined) 코드북(codebook) 형태의 가중치 행렬의 집합(set)에서 얻어질 수 있다. 예를 들어, 가중치 행렬의 집합이 {W1, W2, W3, W4, W5}라 할 때, {W1, W3, W4}를 부집합(subset)으로 하고, 각 슬롯에 적용될 가중치 행렬을 상기 부집합내에서 변경할 수 있다. 예를 들어, 변경주기가 슬롯인 경우에 있어서, 제1 슬롯에서 가중치 행렬 W1을 프리코딩부(123)에 제공하였다면, 제2 슬롯에서 가중치 행렬 W3을 프리코딩부(123)에 제공할 수 있다(W1≠W3).
미리 정의된 코드북의 일 예로서, 2개의 송신안테나를 이용한 Rank 1의 MIMO전송시 사용되는 코드북은 표 1과 같다.
표 1
codebook index weight vector
0
Figure PCTKR2009003037-appb-I000001
1
Figure PCTKR2009003037-appb-I000002
2
Figure PCTKR2009003037-appb-I000003
3
Figure PCTKR2009003037-appb-I000004
표 1의 미리 정의된 코드북에서 0,1번 가중치 벡터 또는 2,3번 가중치 벡터를 부집합으로 정하고, 각 부집합내에서 가중치 벡터가 변경될 수 있다.
미리 정의된 코드북의 다른 예로서, 4개의 송신안테나를 이용한 Rank 1의 MIMO전송시 사용되는 코드북은 표 2와 같다.
표 2
codebook index 0 1 2 3 4 5 6 7
weight vector
Figure PCTKR2009003037-appb-I000005
Figure PCTKR2009003037-appb-I000006
Figure PCTKR2009003037-appb-I000007
Figure PCTKR2009003037-appb-I000008
Figure PCTKR2009003037-appb-I000009
Figure PCTKR2009003037-appb-I000010
Figure PCTKR2009003037-appb-I000011
Figure PCTKR2009003037-appb-I000012
codebook index 8 9 10 11 12 13 14 15
weight vector
Figure PCTKR2009003037-appb-I000013
Figure PCTKR2009003037-appb-I000014
Figure PCTKR2009003037-appb-I000015
Figure PCTKR2009003037-appb-I000016
Figure PCTKR2009003037-appb-I000017
Figure PCTKR2009003037-appb-I000018
Figure PCTKR2009003037-appb-I000019
Figure PCTKR2009003037-appb-I000020
표 2의 미리 정의된 코드북에서 4개의 가중치 벡터(12,13,14,15번)를 포함하는 부집합을 구성할 수도 있고, 또는 (13,15번)/(12,14)번 이렇게 2개의 가중치 벡터를 부집합으로 구성할 수도 있다. 프리코딩 제어부(122)는 표 1 또는 표 2와 같은 미리 정의된 코드북이 저장된 메모리를 포함할 수 있다(도면에 미표시).
프리코딩부(123)는 프리코딩 제어부(122)로부터 제공되는 가중치 행렬을 상기 주파수 영역 심벌에 곱하는, 프리코딩을 수행한다. 여기서 가중치 행렬은 프리코딩 행렬(Precoding Matrix)이라 불릴 수도 있다. 가중치 행렬은 송신기와 수신기가 모두 알고 있는 것일 수도 있고, 수신기가 피드백해주는 정보에 의해 알려지는 것일 수도 있다. SC-FDMA 시스템에 있어서, 프리코딩부(123)는 할당된 자원의 모든 주파수 대역에 동일한 가중치 행렬을 적용함으로써, 단일-반송파 특성을 만족시킬 수 있다.
일 예로서, 프리코딩부(123)는 각 송신안테나(140-1, 140-2)에 공통되는 기준신호에 프리코딩을 적용할 수 있다. 프리코딩이 적용된 기준신호를 프리코딩된 기준신호(precoded reference signal)라 한다. 프리코딩된 기준신호를 이용하여 데이터를 전송하면, 수신기(200)는 별도의 시그널링없이 바로 무선 채널을 경험한 가중치 행렬을 알 수 있어 매 슬롯의 데이터 복조를 신속하게 할 수 있는 장점이 있다.
다른 예로서, 프리코딩부(123)는 각 송신안테나(140-1, 140-2)에 여러가지 형태로 다중화(multiplex)되어 전송되는 기준신호에 프리코딩을 적용할 수 있다. 기준신호는 각 송신안테나(140-1, 140-2)에 주파수 분할 다중화(Frequency Division Multiplex), 시간 분할 다중화(Time Division Multiplex) 또는 코드 분할 다중화(Code Division Multiplex)형태로 다중화되어 전송될 수 있다. 이와 같은 방법으로 프리코딩된 기준신호를 이용하면, 수신기(200)는 각 송신안테나(140-1, 140-2)별로 채널을 추정하고, 가중치 행렬을 결합(combining)하여 매 슬롯의 데이터 복조를 수행할 수 있다.
부반송파 맵퍼(124)는 프리코딩된 주파수 영역 심벌을 다양한 신호 구조 방식에 따라 각 부반송파(subcarrier)에 할당한다. 여기서 상기 부반송파는 각 송신안테나(140-1, 140-2)마다 분리되어 할당된다.
IFFT부(125)는 부반송파 맵퍼(124)의 출력에 대해 IFFT를 수행하여 시간 영역 심벌인 SC-FDMA 심벌을 출력한다. 이와 같이 DFT와 IFFT를 결합하여 변조하는 방식을 SC-FDMA라 하고, 이는 IFFT만을 사용하는 OFDM에 비해 PAPR(Peak-to-Average Power Ratio)을 낮추는 데 유리하다. 단일 반송파의 특성을 갖기 때문이다.
도 6은 본 발명에 따른 무선시스템에서의 데이터 전송방법을 설명하는 순서도이다.
도 6을 참조하면, 입력되는 데이터 심벌에 대하여 DFT를 수행한다(S100). 변경주기에 따라 가중치 벡터를 변경한다(S110). 상기 변경주기는 슬롯 또는 전송심벌일 수 있다. 여기서, 전송심벌이란 SC-FDMA 심벌 및 Clustered DFT-s-OFDM 심벌 중 어느 하나일 수 있다. 상기 DFT 수행의 결과로 얻어지는 주파수 영역 심벌에 대하여 상기 변경된 가중치 벡터를 이용하여 프리코딩을 수행한다(S120). 상기 프리코딩은 상기 주파수 영역 심벌에 가중치 벡터를 곱함으로써 수행될 수 있다. 프리코딩된 주파수 영역 심벌을 프리코딩된 심벌이라 한다.
상기 프리코딩된 심벌을 할당된 주파수 대역의 각 부반송파에 맵핑한다(S130). 여기서, 할당되는 주파수 대역에 대해 상기 변경된 가중치 벡터가 동일하게 적용된다. 상기 전송심벌이 SC-FDMA 심벌인 경우, 상기 프리코딩된 심벌은 연속된 부반송파 또는 등간격을 갖는 부반송파에 할당(또는 맵핑)된다. 상기 전송심벌이 Clustered DFT-s-OFDM 심벌인 경우, 프리코딩된 N 심볼열 중 M(<N) 심볼열은 연속된 부반송파에 할당(또는 맵핑)되고, 나머지 N-M 심볼열은 M 심볼열이 할당(또는 맵핑)된 부반송파에서 일정 간격 떨어진 연속된 부반송파에 할당(또는 맵핑)된다.
상기 부반송파에 맵핑된 상기 프리코딩된 심벌에 대해 IFFT를 수행한다(S140). IFFT 수행의 결과로 생성된 SC-FDMA 심벌 또는 Clustered DFT-s-OFDM 심벌 을 전송한다(S150).
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.

Claims (15)

  1. 정보비트에 대해 코딩 및 변조를 수행하여 데이터 심벌을 생성하는 데이터 처리부;
    변경주기마다 가중치 행렬을 변경하고, 상기 변경되는 가중치 행렬을 상기 데이터 심벌에 대해 프리코딩을 수행하며, SC-FDMA(Single Carrier-Frequency Division Multiple Access) 심벌의 생성을 위한 SC-FDMA 변조를 수행하는 SC-FDMA 처리부; 및
    상기 SC-FDMA 심벌을 전송하는 RF부를 포함하는 데이터 전송장치.
  2. 제 1 항에 있어서,
    상기 SC-FDMA 처리부는 상기 SC-FDMA 심벌의 생성을 위한 DFT(Discrete Fourier Transform) 과정, IFFT(Inverse Fast Fourier Transform) 과정을 수행하는, 데이터 전송장치.
  3. 제 1 항에 있어서,
    상기 SC-FDMA 처리부는 상기 변경주기를 복수의 SC-FDMA 심벌을 포함하는 슬롯(slot)단위로 정하여 상기 프리코딩을 수행하는, 데이터 전송장치.
  4. 제 1 항에 있어서,
    상기 SC-FDMA 처리부는 상기 변경주기를 SC-FDMA 심벌단위로 정하여 상기 프리코딩을 수행하는, 데이터 전송장치.
  5. 제 1 항에 있어서,
    상기 SC-FDMA 처리부는 미리 정의된 가중치 행렬의 집합의 범위내에서 상기 가중치 행렬을 상기 변경주기마다 변경하는, 데이터 전송장치.
  6. 제 5 항에 있어서,
    상기 가중치 행렬의 집합은 랭크(rank)가 1인 코드북의 집합인, 데이터 전송장치.
  7. 정보비트에 대해 코딩 및 변조를 수행하여 데이터 심벌을 생성하는 데이터 처리부;
    상기 데이터 심벌에 대해 DFT를 수행하여 주파수 영역 심벌을 생성하는 DFT부;
    슬롯 또는 SC-FDMA 심벌로 정해지는 변경주기마다 가중치 행렬을 변경하고, 상기 변경되는 가중치 행렬을 프리코딩부에 제공하는 프리코딩 제어부;
    상기 변경되는 가중치 행렬을 이용하여 상기 주파수 영역 심벌에 대해 프리코딩을 수행하는 프리코딩부;
    상기 프리코딩된 주파수 영역 심벌을 부반송파에 맵핑하는 부반송파 맵퍼;
    상기 부반송파 맵퍼의 출력에 대하여 IFFT를 수행하여 SC-FDMA 심벌을 생성하는 IFFT부; 및
    상기 SC-FDMA 심벌을 전송하는 RF부를 포함하는 데이터 전송장치.
  8. 무선통신 시스템에서의 데이터 전송방법에 있어서,
    정보비트에 대해 코딩 및 변조를 수행하여 데이터 심벌을 생성하는 단계;
    변경주기에 따라 변경되는 가중치 행렬을 이용하여 상기 데이터 심벌에 대해 프리코딩을 수행하는 단계;
    상기 프리코딩된 데이터 심벌에 대해 전송심벌(transmission symbol)을 생성하기 위한 처리를 수행하는 단계; 및
    상기 전송심벌을 전송하는 단계를 포함하는 데이터 전송방법.
  9. 제 8 항에 있어서,
    상기 전송심벌은 SC-FDMA 심벌인, 데이터 전송방법.
  10. 제 8 항에 있어서,
    상기 전송심벌은 주파수 선택적 스케줄링을 위한 Clustered-DFT-s-OFDM 심벌인, 데이터 전송방법.
  11. 제 8 항에 있어서,
    상기 무선통신 시스템은 SC-FDMA 시스템이고, 상기 SC-FDMA 시스템에서 사용되는 무선프레임은 복수의 서브프레임을 포함하고, 서브프레임은 복수의 슬롯을 포함하며, 상기 슬롯은 복수의 SC-FDMA 심벌을 포함하는, 데이터 전송방법.
  12. 제 11 항에 있어서,
    상기 변경주기는 상기 슬롯인, 데이터 전송방법.
  13. 제 11 항에 있어서,
    상기 변경주기는 SC-FDMA 심벌인, 데이터 전송방법.
  14. 제 8 항에 있어서,
    상기 가중치 행렬은 랜덤하게 선정되는, 데이터 전송방법.
  15. 제 8 항에 있어서,
    상기 가중치 행렬은 미리 정의된 가중치 행렬의 집합에서 선택되는, 데이터 전송방법.
PCT/KR2009/003037 2008-08-11 2009-06-05 Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 WO2010018922A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/058,488 US8400958B2 (en) 2008-08-11 2009-06-05 Apparatus and method for data transmission using transmission diversity in SC-FDMA system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US8797508P 2008-08-11 2008-08-11
US61/087,975 2008-08-11
US8835308P 2008-08-13 2008-08-13
US61/088,353 2008-08-13
KR10-2008-0134256 2008-12-26
KR1020080134256A KR101440628B1 (ko) 2008-08-11 2008-12-26 Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법

Publications (3)

Publication Number Publication Date
WO2010018922A2 WO2010018922A2 (ko) 2010-02-18
WO2010018922A3 WO2010018922A3 (ko) 2010-04-08
WO2010018922A9 true WO2010018922A9 (ko) 2010-08-05

Family

ID=41669422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003037 WO2010018922A2 (ko) 2008-08-11 2009-06-05 Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법

Country Status (3)

Country Link
US (1) US8400958B2 (ko)
KR (1) KR101440628B1 (ko)
WO (1) WO2010018922A2 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034392A2 (ko) * 2009-09-18 2011-03-24 한국전자통신연구원 클러스터드 디에프티 스프레드 오에프디엠 전송에 있어서 상향링크 복조용 레퍼런스 시그널의 생성 및 전송 방법
KR101785712B1 (ko) 2009-10-23 2017-10-17 한국전자통신연구원 무선랜 시스템에서 송신 출력 제어 방법 및 장치
CN102158809B (zh) * 2010-02-12 2015-03-25 中兴通讯股份有限公司 一种判断mbms业务连续的方法和用户设备
US8649462B2 (en) 2010-03-25 2014-02-11 Lg Electronics Inc. Method and apparatus for transmitting signal using repetition coding in a wireless communication system
US8532047B2 (en) * 2010-08-12 2013-09-10 Samsung Electronics Co., Ltd. Methods and apparatus for uplink control transmit diversity
JP5578617B2 (ja) 2010-10-18 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法および受信装置
US20120113898A1 (en) * 2010-11-09 2012-05-10 Qualcomm Incorporated Using precoding vector switching in uplink control channel
US20140334421A1 (en) * 2011-12-07 2014-11-13 Drexel University Joint bit loading and symbol rotation scheme for multi-carrier systems in siso and mimo links
CN103516486B (zh) * 2012-06-19 2018-08-07 中兴通讯股份有限公司 基于矢量选择调制的多天线传输方法、接收方法和装置
US20170302415A1 (en) * 2014-09-15 2017-10-19 Lg Electronics Inc. Method and device for mitigating inter-cell interference
US10454739B2 (en) * 2015-01-23 2019-10-22 Texas Instruments Incorporated Transmission scheme for SC-FDMA with two DFT-precoding stages
US10491354B2 (en) 2015-06-23 2019-11-26 Electronics And Telecommunications Research Institute Method and apparatus for transmitting data in direct device-to-device communication
CN107888535B (zh) * 2017-11-03 2019-10-11 西安电子科技大学 基于单载波频分多址系统的变换域分集方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888809B1 (en) * 2000-01-13 2005-05-03 Lucent Technologies Inc. Space-time processing for multiple-input, multiple-output, wireless systems
US6802035B2 (en) * 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
KR100698199B1 (ko) 2001-06-05 2007-03-22 엘지전자 주식회사 전송 안테나 다이버시티 방법
US7181167B2 (en) * 2001-11-21 2007-02-20 Texas Instruments Incorporated High data rate closed loop MIMO scheme combining transmit diversity and data multiplexing
KR100899735B1 (ko) 2002-07-03 2009-05-27 삼성전자주식회사 이동 통신 시스템에서 적응적 전송 안테나 다이버시티장치 및 방법
KR20050069802A (ko) 2003-12-31 2005-07-05 엘지전자 주식회사 복합 전송 다이버시티 시스템 및 방법
US20050265280A1 (en) 2004-05-25 2005-12-01 Samsung Electronics Co., Ltd. OFDM symbol transmission method and apparatus for providing sector diversity in a mobile communication system, and a system using the same
US7894548B2 (en) 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
US20070004465A1 (en) 2005-06-29 2007-01-04 Aris Papasakellariou Pilot Channel Design for Communication Systems
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US20070189151A1 (en) 2006-02-10 2007-08-16 Interdigital Technology Corporation Method and apparatus for performing uplink transmission in a multiple-input multiple-output single carrier frequency division multiple access system
CN101502020B (zh) 2006-08-07 2014-02-05 交互数字技术公司 用于执行多用户虚拟多输入多输出的方法、设备和系统
MX2009001761A (es) 2006-08-17 2009-05-12 Interdigital Tech Corp Metodo y aparato para proporcionar retroalimentacion de precodificacion eficiente en un sistema de comunicacion inalambrica mimo.
US20080056117A1 (en) 2006-09-01 2008-03-06 Tarik Muharemovic Specification of sub-channels for fdm based transmission including ofdma and sc-ofdma
KR101188544B1 (ko) 2006-09-15 2012-10-05 엘지전자 주식회사 단일 반송파 주파수 분할 다중 접속 시스템의 데이터 송신방법 및 파일럿 할당 방법
US7778151B2 (en) 2006-10-03 2010-08-17 Texas Instruments Incorporated Efficient scheduling request channel for wireless networks
KR101204394B1 (ko) 2006-10-16 2012-11-26 포항공과대학교 산학협력단 Uw 기반 sc 시스템에서 stbc 스킴을 지원하는송신기, 수신기 및 그 방법
US8885744B2 (en) 2006-11-10 2014-11-11 Qualcomm Incorporated Providing antenna diversity in a wireless communication system
KR100785806B1 (ko) 2006-11-21 2007-12-13 한국전자통신연구원 효율적인 채널 추정을 위한 sc-fdma 통신시스템에서의 자원 할당 방법 및 장치
CA2677065C (en) * 2007-02-13 2016-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for combined cyclic delay diversity and precoding of radio signals

Also Published As

Publication number Publication date
KR101440628B1 (ko) 2014-09-17
US20110134903A1 (en) 2011-06-09
KR20100019930A (ko) 2010-02-19
WO2010018922A3 (ko) 2010-04-08
US8400958B2 (en) 2013-03-19
WO2010018922A2 (ko) 2010-02-18

Similar Documents

Publication Publication Date Title
WO2010018922A2 (ko) Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
KR101467586B1 (ko) 무선통신 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
KR101569215B1 (ko) 공간 다중화 기법을 이용한 데이터 전송방법
WO2009157659A2 (ko) 다중안테나를 이용한 데이터 전송장치 및 방법
KR101507170B1 (ko) Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
KR101497154B1 (ko) Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
CA2786034C (en) Method and system for enabling resource block bundling in lte-a systems
WO2009096708A1 (en) Method of transmitting precoding information in multiple antenna system
KR101534349B1 (ko) Stbc 기법을 이용한 데이터 전송방법
WO2012002747A2 (en) Systems and methods for 8-tx codebook and feedback signaling in 3gpp wireless networks
WO2010013949A2 (ko) 다중안테나 시스템에서 데이터 전송방법
WO2010011078A2 (en) Method of transmitting data in multiple antenna system
KR20080074004A (ko) 피드백 정보를 이용한 상향링크의 가상 다중 안테나 전송방법 및 이를 지원하는 이동 단말
KR20100091876A (ko) 다중안테나 전송을 위한 단말 동작
CN102077672A (zh) 基站装置、用户装置以及通信控制方法
KR20110081946A (ko) 다중 안테나 시스템에서 다중 부호어의 전송방법
CN101764632B (zh) Lte-tdd室内分布系统中端口与天线映射方法及装置
WO2010098525A1 (ko) 다중안테나 시스템에서 데이터 전송 장치 및 방법
KR20100086431A (ko) 다중안테나를 사용하는 송신기에서 참조신호 전송방법
WO2010062023A1 (ko) 무선통신 시스템에서 데이터 전송방법
KR20090115026A (ko) 무선통신 시스템에서 다중셀 특정 메시지 획득방법
WO2010101433A2 (ko) 다중안테나 시스템에서 신호 전송방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806784

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13058488

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806784

Country of ref document: EP

Kind code of ref document: A2