WO2010018620A1 - Plasma display device - Google Patents

Plasma display device Download PDF

Info

Publication number
WO2010018620A1
WO2010018620A1 PCT/JP2008/064456 JP2008064456W WO2010018620A1 WO 2010018620 A1 WO2010018620 A1 WO 2010018620A1 JP 2008064456 W JP2008064456 W JP 2008064456W WO 2010018620 A1 WO2010018620 A1 WO 2010018620A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
voltage
drive
sustain
electrodes
Prior art date
Application number
PCT/JP2008/064456
Other languages
French (fr)
Japanese (ja)
Inventor
外与志 河田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2008/064456 priority Critical patent/WO2010018620A1/en
Publication of WO2010018620A1 publication Critical patent/WO2010018620A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0216Interleaved control phases for different scan lines in the same sub-field, e.g. initialization, addressing and sustaining in plasma displays that are not simultaneous for all scan lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0218Addressing of scan or signal lines with collection of electrodes in groups for n-dimensional addressing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/292Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for reset discharge, priming discharge or erase discharge occurring in a phase other than addressing
    • G09G3/2927Details of initialising
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • G09G3/2942Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge with special waveforms to increase luminous efficiency
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • G09G3/2948Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge by increasing the total sustaining time with respect to other times in the frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/298Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels
    • G09G3/299Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels using alternate lighting of surface-type panels

Definitions

  • the present invention relates to a flat display device such as a display device (plasma display device: PDP device) including a plasma display panel (PDP), and more particularly to a driving method and a driving circuit (driver) for gradation display.
  • a display device plasma display device: PDP device
  • PDP plasma display panel
  • driver driving circuit
  • the gradation display method (driving method) in the conventional mainstream PDP apparatus is based on a subfield method, an ADS (address display separation) method, or the like.
  • a reset driving period and address driving are performed in a field (also referred to as a frame) associated with a PDP screen (display area) and display time, and a plurality of subfields (also referred to as subframes) constituting the field.
  • the period has a sustain (sustain) driving period separated in time.
  • An arbitrary gradation display is performed by controlling the number of pulses (sustain voltage pulses) applied to the electrodes (display electrodes) in the sustain drive period.
  • the conventional technology of the PDP device performs control in a time-series manner with drive timings that are clearly divided into drive periods such as reset, address, and sustain. Therefore, although there is a feature that the control is relatively easy, on the other hand, it is necessary to secure each time for a series of time series driving, and there is a disadvantage that the time of each subfield becomes long.
  • the driving period is clearly divided as described above, and is supplied from each driving power source.
  • the period during which the current flows is also clearly divided.
  • the fluctuation component of the current value becomes large.
  • the current fluctuation component (ripple current) of the power supply is large, it is necessary to provide a control circuit such as a stabilization circuit that covers the maximum value (peak current) of the fluctuation component and a circuit material of a wiring system with a large capacity. Complicated, expensive and disadvantageous in cost.
  • the increase in the peak current component increases the emission of noise signals from the drive circuit system, which can easily cause malfunctions in circuit control, and the influence of the radiation of electromagnetic field energy on the surrounding environment is large. There is a problem that it is easy to become.
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-171285.
  • Patent Document 1 the sustain discharge drive after address drive is continuously performed for each scan line by independent control for each scan line, and the sustain discharge drive and address drive between different scan lines are simultaneously performed in parallel.
  • the drive method has improved the time utilization efficiency to the ultimate by eliminating the need for an independent sustain discharge period as in the prior art.
  • a cost problem remains to be realized due to the necessity of a high breakdown voltage drive element in which a scan voltage and a sustain discharge voltage are added for each scan electrode line.
  • the present invention has been made in view of the above problems, and its main object is related to a PDP device, and proposes a new method capable of solving the above-described problems, and provides gradation display performance and panel drive characteristics. It is to provide a technology that can realize improvement and the like.
  • a typical embodiment of the present invention is a PDP device including a PDP and a PDP drive circuit device (circuit unit) for driving and controlling the PDP, and has the following configuration. It is characterized by having.
  • the present invention provides a new driving method capable of improving various display performances by improving the driving circuit and driving method of the PDP device, and a PDP device to which the driving method is applied.
  • the PDP apparatus of this embodiment has the following configuration, for example.
  • the PDP device includes a plurality of first electrodes (Y electrodes) and second electrodes (X electrodes) extending in a first direction, and a plurality of third electrodes (address electrodes) extending in a second direction intersecting the first direction.
  • Each of the plurality of first electrodes and the second electrode is composed of a pair of first and second electrodes adjacent to each other, and each of the plurality of display lines and each of the plurality of third electrodes
  • a PDP having a display cell in an intersecting region, a first drive circuit that drives the plurality of first electrodes, a second drive circuit that drives the plurality of second electrodes, and the plurality of second electrodes as a circuit unit.
  • a third drive circuit that drives the three electrodes; and a control circuit that controls the first, second, and third drive circuits.
  • this PDP device together with an operation (address) for applying a third voltage to the third electrode to be selected at every predetermined timing (T) in order to select the display cell and start discharging,
  • an operation (address) for applying a third voltage to the third electrode to be selected at every predetermined timing (T) in order to select the display cell and start discharging
  • a sustain driving operation is performed in which a second voltage is applied to a pair of the first electrode and the second electrode adjacent to each other in one or more display lines that have been subjected to the address driving operation among non-selected display lines.
  • the control circuit controls each of the drive circuits so that the address drive operation and the sustain drive operation are executed in parallel.
  • the first and second electrodes are used for both maintenance and scanning.
  • the scanning operation in the address driving operation is performed by interlaced scanning in units of a predetermined number of display lines (g) with respect to an array of a plurality of display lines on the screen of the panel.
  • the control circuit may be configured so that the number (SN) of applying the pulse of the second voltage in the sustain driving operation can be different between all adjacent display lines in the plurality of display lines.
  • the drive circuit is controlled.
  • the simultaneous and parallel driving for example, scans (addresses), for example, the first electrode of the first line at a first timing, and then at a second timing, the predetermined number of times from the first line.
  • the second electrode of the second line jumped in units is scanned (addressed) and simultaneously the first electrode of the first line is maintained and driven.
  • the third timing the first electrode of the third line jumped from the second line by a predetermined number (g) is scanned (addressed) and at the same time, the second electrode of the first and second lines is scanned. And so on.
  • a simple and low-cost drive circuit configuration enables address drive and sustain drive to be performed at the same time, thereby ensuring a sufficient address drive period and sustain drive period.
  • the gradation display performance is improved, enabling a brighter, more vivid and smooth display.
  • FIG. 3 is a diagram showing a field configuration in a first basic configuration of the driving method according to the first embodiment. It is a figure which shows about 1st subfield (SF1) among the subfield structures in the 1st basic composition of the drive system of Embodiment 1. FIG. It is a figure shown about 2nd subfield (SF2) among the subfield structures in the 1st basic composition of the drive system of Embodiment 1. FIG. It is a figure shown about the 5th subfield (SF5) among the subfield structures in the 1st basic composition of the drive system of Embodiment 1. FIG. FIG. FIG.
  • FIG. 10 is a diagram showing a field configuration in a second basic configuration of the driving method according to the first embodiment. It is a figure which shows about 1st subfield (SF1) among the subfield structures in the 2nd basic composition of the drive system of Embodiment 1.
  • FIG. It is a figure shown about 2nd subfield (SF2) among the subfield structures in the 2nd basic composition of the drive system of Embodiment 1.
  • FIG. It is a figure shown about the 5th subfield (SF5) among the subfield structures in the 2nd basic composition of the drive system of Embodiment 1.
  • FIG. 1 is a diagram illustrating a configuration of a PDP device according to a first embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a PDP device according to a first embodiment.
  • FIG. 3 is a diagram illustrating a circuit configuration example of a Y electrode and an X electrode driver IC in the PDP device according to the first embodiment.
  • 6 is a diagram illustrating an example of a first drive waveform in Embodiment 1.
  • FIG. 6 is a diagram illustrating an example of a second drive waveform in the first embodiment.
  • FIG. It is a figure shown about the field structure in the drive system of Embodiment 2 of this invention. It is a figure shown about the 1st subfield (SF1) among the subfield structures in the drive system of Embodiment 2. It is a figure shown about the 2nd subfield (SF2) among the subfield structures in the drive system of Embodiment 2.
  • SF1 1st subfield
  • SF2 2nd subfield
  • FIG. 6 is a diagram illustrating a circuit configuration example of a Y electrode and an X electrode driver IC in the PDP device according to the second embodiment.
  • FIG. 6 is a diagram illustrating a circuit configuration example of a Y electrode and an X electrode driver IC in the PDP device according to the second embodiment.
  • FIG. 10 is a diagram illustrating a connection configuration example of a driver IC and a control logic circuit in the PDP device according to the second embodiment. It is a figure which shows the case of SF1 as an example of the drive waveform in Embodiment 2.
  • FIG. It is a figure which shows the case of SF2 as an example of the drive waveform in Embodiment 2.
  • FIG. It is a figure which shows the case of 1SUS of SF1 as a drive waveform control timing in Embodiment 2.
  • FIG. It is a figure which shows the case of 2SUS of SF1 as a control timing of the drive waveform in Embodiment 2.
  • FIG. It is a figure which shows the case of 1024SUS of SF1 as a drive waveform control timing in Embodiment 2.
  • FIG. It is a figure shown about the field structure in the drive system of Embodiment 3 of this invention. It is a figure shown about the 1st subfield (SF1) among the subfield structures in the drive system of Embodiment 3. It is a figure shown about the 2nd subfield (SF2) among the subfield structures in the drive system of Embodiment 3. It is a figure shown about the 6th subfield (SF6) among the subfield structures in the drive system of Embodiment 3. It is a figure shown about the 12th subfield (SF12) among the subfield structures in the drive system of Embodiment 3.
  • SF1 the 1st subfield
  • SF2 the 2nd subfield
  • SF6 6th subfield
  • SF12 the subfield structures in the drive system of Embodiment 3.
  • FIG. 10 is a diagram illustrating a wiring and connection configuration of a Y electrode and an X electrode driver IC with respect to a PDP in the PDP device of the third embodiment. It is a figure which shows the case of SF1 as an example of the drive waveform in Embodiment 3. FIG. It is a figure which shows the case of 1SUS of SF1 as a drive waveform control timing in Embodiment 3.
  • FIG. 10 is a diagram illustrating a circuit configuration example of a Y electrode and an X electrode driver IC in the PDP device according to the fourth embodiment.
  • FIG. 10 is a diagram illustrating a connection configuration example between a driver IC and a control logic circuit in a PDP device according to a fourth embodiment.
  • FIG. 16 is a diagram illustrating a case of SF1 of 1 SUS as a drive waveform control timing in the fourth embodiment.
  • FIG. 16 is a diagram showing a case of 2SUS of SF1 as a drive waveform control timing in the fourth embodiment.
  • FIG. 16 is a diagram illustrating a case of SF1 496SUS as a drive waveform control timing in the fourth embodiment.
  • FIG. 1 shows an example of a basic structure of a PDP 10 provided in the PDP apparatus of the present embodiment. Only a portion corresponding to a collection of cells of each color R (red), G (green), and B (blue) associated with a pixel is schematically shown.
  • This PDP 10 is a three-electrode type, a surface discharge / AC drive type, for example, a stripe-shaped partition wall structure.
  • the areas Cr, Cg, and Cb are associated with cells (light emitting areas) of each color.
  • the x direction first direction: horizontal direction in the screen (display line direction)
  • y direction second direction: vertical direction in the screen (display column direction)
  • z direction hird direction: direction perpendicular to the screen (thickness) direction
  • the present PDP 10 is configured by combining two structures (11, 12) mainly including two glass substrates 1, 5 on the front side and the back side.
  • the first structure 11 and the second structure 12 are overlapped and their outer peripheral portions are sealed, and the region between the structures is evacuated and filled with discharge gas, thereby forming a discharge space 30 inside.
  • This PDP 10 is configured.
  • the display electrode includes an X electrode (first electrode) (represented by X) and a Y electrode (second electrode) (represented by Y) that are used for both sustain drive and scan drive. Both X and Y electrodes can be used for scanning driving.
  • the display electrode (X, Y) is composed of, for example, a transparent electrode 2a and a bus electrode 2b.
  • the transparent electrode 2a forms a cell discharge gap by a pair.
  • the bus electrode 2b is linear and connected to the drive circuit side.
  • a line (display line) is formed by adjacent pairs of X and Y.
  • the display electrodes (X, Y) are covered with the dielectric layer 3 and the protective layer 4.
  • a plurality of address electrodes (represented by A) for address driving are formed on the glass substrate 5 in parallel with the y direction intersecting the x direction.
  • the address electrode A is covered with, for example, a dielectric layer 7, and striped partition walls (ribs) 8 extending in the y direction, for example, are formed on the dielectric layer 7.
  • the barrier rib 8 partitions the discharge space 30 corresponding to the cell (discharge region).
  • phosphors 9 (9 r, 9 g, 9 b) for light emission of R, G, and B are exposed for each display column so as to be exposed to the discharge space 30. It is formed separately.
  • a lattice-shaped partition wall 8 structure including a partition wall portion extending in the x direction is also possible.
  • ALIS method is also possible.
  • a display line is constituted by a pair of all adjacent display electrodes (X, Y), and an image displayed on the screen includes a field for driving odd lines and an even line. Displayed by interlaced driving with the driving field.
  • FIGS. 2 to 3 schematically show a basic configuration (principal configuration) in driving of the entire field (represented by F) and subfield (represented by SF) in the PDP apparatus and drive system of the first embodiment. ing.
  • FIG. 2 in order to explain the principle operation of the present system, the configuration of lines (represented by L), groups (represented by G), regions (represented by B), and driving in the fields (F) and SF. An outline of timing is shown.
  • FIG. 3 shows the drive timing of each SF. # Indicates an identification number.
  • FIG. 2 shows a case where the line (L) group constituting the display area (screen) of the PDP 10 has 20 lines L1 to L20 to be driven.
  • the gradation display driving method is a case where the number of sustain driving numbers (SN) regarding the sustain driving is five (SN: 1, 2, 4, 8, 16).
  • the number of SFs constituting one field (F) is five (SF: SF1 to SF5).
  • the gradation expression is based on a power of 2.
  • the number of sustain drives is the number of times of application of pulses (sustain voltage pulses) in the sustain drive in SF and line units (SUS number), and is associated with time, brightness, etc. due to sustain discharge light emission.
  • SN sustain drive numbers
  • 32 gradation display by the power of 2 is possible.
  • a five-divided configuration in which 20 lines of a screen are divided into five groups (also referred to as divided groups, drive groups, etc.) consisting of a plurality of lines dispersed by interleaving G: G1 to G5 To drive.
  • the number of divided groups and interlaced scanning units are 5, and the number of lines constituting one group is 4.
  • the group G is a unit of division related to the sustain drive, and a predetermined SN is associated with each group G.
  • the groups G1 to G5 divided in accordance with the five types of sustain drive numbers SN are assigned to the lines L1 to L20 from the top of the screen for each line from the top.
  • the first line L1 belongs to the first group G1
  • the second line L2 belongs to the second group
  • the fifth line L5 belongs to the fifth group G5.
  • L6 is assigned as the first group, and so on.
  • the first group G1 is composed of four lines L1, L6, L11, and L16 dispersed by 5-line jumping.
  • the scanning operation is performed by interlaced scanning in units of a predetermined number of lines with respect to the arrangement of a plurality of lines on the screen. Control is performed so that the number of sustain drives SN in the sustain drive operation can be made different between all adjacent lines.
  • the region B is composed of a set of five types of lines belonging to G: G1 to G5 in adjacent lines.
  • the first region B1 is composed of five adjacent lines L1 to L5.
  • SF1 to SF5 with a time of 1SF: 3.333 ms are equally allocated to a drive time of 1F: 16.667 ms, and driving for each SF is performed.
  • the vertical line indicates the reset drive timing
  • the circle indicates the scan drive timing (address drive timing)
  • the horizontal line indicates the sustain drive timing and period. Reset is performed at the beginning of the SF for all lines. Scanning (addressing) is performed in order of group G and in line order for each group G. The sustain drive is performed in a period of SN of the group G unit immediately after scanning (address).
  • FIG. 3A shows the configuration of SF1 (first SF of 1F)
  • FIG. 3B shows the configuration of SF2 (next SF)
  • SF3 to SF4 are hereinafter omitted
  • FIG. The structure of SF5 (the last SF of 1F) is shown. More specifically, each SF is composed of three types of driving, namely, reset driving (indicated by R), address driving (indicated by A), and sustain driving (indicated by S).
  • Each drive timing (unit of time) (represented by T) is time-controlled by T0 to T21, for example.
  • the period (T1 to T21) is referred to as an address / sustain drive period (represented by Tas).
  • Tas is, for example, 3.233 ms.
  • the selection operation (scanning) for the line by the display electrode (X, Y) pair and the selection operation (address) for the address electrode A are performed at the same timing for the cell to be selected. That is, the application of a pulse (scanning voltage pulse) to the X electrode or the Y electrode and the application of a pulse (address pulse) to the address electrode A are performed at the same timing.
  • a sustain discharge operation is performed on the line selected by the display electrode (X, Y) pair for the cell selected by the address drive A. That is, the application of alternately inverted pulses (sustain voltage pulses) to the X electrode and Y electrode of the line is repeated for SN.
  • the address driving A for the next group G2 (L2, L7, L12, L17) is started from the timing T5.
  • address driving A to all the lines of G2 is completed at T5 to T8.
  • G3 (L3, L8, L13, L18) is driven at T9 to T12
  • G4 (L4, L9, L14, L19) is driven at T13 to T16
  • G5 (L5, L10, L19, T20 to T20).
  • L15, L20) are driven.
  • address drive A for all lines is completed.
  • One of the features is the address drive A based on the interlaced scanning. Apart from that, a further feature is that the sustain drive S is continued in parallel with the timing immediately after the address drive A for the line for which the address drive A has been completed at a certain timing (simultaneously with the operation of other lines). ) To do.
  • the number of times (SN) of the sustain drive S is controlled to be different for each group G. In SF1, according to the order (G1 to G5) of the group in which the address drive A is started, for SN, for example, G1: 16 times, G2: 8 times, G3: 4 times, G4: 2 times, G5: 1 times, etc. In this way, the method is set by a power of 2.
  • L6 is address-driven A at T2, and at the same time, the sustain drive S is simultaneously performed in parallel with L1 that has already been address-driven A at T1.
  • address drive A is performed on L11 at T3, and at the same time, sustain drive S is simultaneously performed on L1 and L6 that have already been addressed at T1 and T2.
  • the address drive A is performed at the timing T of the interlaced scanning, and each sustain drive S is performed at the subsequent timing corresponding to the predetermined SN.
  • Such an operation (address drive A + sustain drive S) is repeated until the necessary timing (T21).
  • the driving of SF2 shown in FIG. 3B is started, and each driving is performed by the reset driving period Tr and the address / sustain driving period Tas basically in the same manner as SF1 (FIG. 3A).
  • the order of the group that performs address driving A with Tas is different from the order in SF1.
  • the address drive A is started in the order of G2, G3, G4, G5, and G1 (a form in which the start group is shifted backward by one and after the final group (G5) returns to the first (G1)). That is, at T1 of SF2, address drive A is started from L2 of G2.
  • the number of sustain drives (SN) for each group is set as G2: 16 times, G3: 8 times, G4: 4 times, G5: 2 times, and G1: 1 times. That is, the number (SN) of sustain driving S for each line of SF2 is different from that of SF1. Specifically, the driving contents are shifted by one line between SF1 and SF2.
  • driving is performed by changing the order of the groups in which the address driving A is started between different SFs and assigning different SNs to the respective groups. For example, driving is performed in order from G3 in SF3, G4 in SF4, and G5 in SF5.
  • driving of SF5 shown in FIG. 3C is finished, the driving of one field is finished.
  • the above five types of sustain drive numbers (SN: 16, 8, 4, 2, 1) are evenly distributed to all the groups G1 to G5 (FIG. 2).
  • SN is 16, 1, 2, 4, 8 in order from SF1 to SF5.
  • 32 (2 to the 5th power) gradation display drive which is the number (31) plus 1 (black display portion) obtained by adding these SNs, is enabled for all lines. That is, by selecting ON / OFF of the sustain drive S at each timing T of each line L (cell) of each SF of the field, gradation display in 32 stages is possible.
  • the sustain drive number SN of each drive group is set as a continuous numerical value from a small power value of 2 by zero and a natural number N
  • the natural number N is 2 with respect to the maximum number of gradations (K).
  • sustain drive number SN of each drive group is set to include values other than the above (other than consecutive numbers from small to large powers of 2 by zero and natural number N), This is not always the minimum number of groups required.
  • each timing (drive time unit) is set to T21. It is also possible to appropriately increase the number of sustain drives (SN) by further increasing the number of timings (T). In that sense, the degree of freedom with respect to the settable number of gradation display driving numbers is great.
  • FIGS. 4 to 5 the second basic configuration relating to the field and the SF based on the basic configuration of the driving method described above is similarly shown.
  • FIG. 4 shows the configuration of the field
  • FIG. 5 shows the configuration of each SF.
  • the second basic configuration for the case of 22 lines, which is two more than the number of lines (20) in the basic configuration described above, five types of sustain drive numbers (SN) are similarly assigned, and five groups G1. Through G5 and 1F are driven by the configuration of 5SF (SF1 to SF5), 32 gradation display is realized.
  • areas B1 to B4 (L1 to L20) are the same as the first basic configuration (FIG. 2).
  • the groups G1 and G2 are allocated to the remaining two lines L21 and L22, thereby newly generating a region B5 different from the other regions.
  • each driving is performed as included in the groups G1 and G2 of the region B5 in each SF.
  • L21 is included in G1
  • L22 is included in G2.
  • the region B5 (the region remaining when all lines are divided by the number of groups) is handled as being included in the groups G1 and G2 as in the other regions B1 to B4.
  • the number of sustain drives (SN: 16, 8, 4, 2, 1) is equally distributed to the area B5, thereby enabling 32 gradation display driving as with the lines of other areas.
  • FIGS. 6 to 7 show the configuration of the PDP apparatus that realizes the above-described gradation driving method in the first embodiment.
  • FIG. 6 shows a configuration of main parts including a basic PDP and a PDP drive circuit device in the PDP device.
  • FIG. 7 shows a configuration example of the driver IC of the display electrode (X, Y).
  • an address electrode drive circuit for applying an address voltage waveform (address pulse) for each address electrode A is provided as an address driver IC (Da) 130 for each of a plurality of circuits (for each of a plurality of electrodes). ) Integrated and connected.
  • IC address driver
  • X electrode drive circuit, Y electrode drive circuit for applying a scan voltage waveform (scan pulse) and a sustain voltage waveform (sustain pulse) for each electrode. These are integrated for each of a plurality of circuits (each of a plurality of electrodes) and connected as a Y electrode driver IC (Dy) 110 and an X electrode driver IC (Dx) 120.
  • Dy110 includes a sustain drive circuit unit for individually sustaining and driving each Y electrode, and a scan drive circuit unit for individually scanning and driving.
  • the Dx 120 includes a sustain drive circuit unit for individually maintaining and driving each X electrode, and a scan drive circuit unit for individually scanning and driving.
  • the Da 130 includes a circuit unit for individually address driving each address electrode.
  • the address drive is performed by applying the address pulse to the address electrode A by Da 130 and the scan pulse to the Y electrode by Dy 110 or applying the scan pulse to the X electrode by Dx 120 at the same timing.
  • the sustain drive is realized by performing the application of the sustain pulse to the Y electrode by Dy 110 and the application of the sustain pulse to the X electrode by Dx 120 at alternate timings.
  • the electrodes of the PDP 10 (normal configuration) have n X electrodes (X1 to Xn), Y electrodes (Y1 to Yn), and m address electrodes (A1 to Am).
  • a line (Li) is constituted by a pair of the X electrode (Xi) and the Y electrode (Yi). Between the lines is a non-display portion.
  • the Y electrode group and the Dy 110 are connected and connected between the terminals by the connecting portion 51.
  • the X electrode group and the Dx 120 are connected and connected between the terminals by the connecting portion 52.
  • the connection parts 51 and 52 are modules by a flexible substrate, for example.
  • Dy110 and Dx120 drive voltage supply for supplying each voltage for scanning drive and sustain drive (scan voltage, sustain voltage) to the high-potential side and low-potential side power terminals (PH, PL). Circuits (Cyp141, Cxp142) are connected. The circuit (Cyp141, Cxp142) is connected to reset voltage waveform generation circuits (Cyr151, Cxr152) for applying a common reset driving voltage waveform to each line.
  • a Y electrode side drive voltage supply circuit (Cyp) 141 is connected to the outside of Dy110.
  • a Y electrode side reset voltage waveform generation circuit (Cyr) 151 is connected to Cyp 141 (PL side).
  • An X electrode side drive voltage supply circuit (Cxp) 142 is connected to the outside of Dx120.
  • An X electrode side reset voltage waveform generation circuit (Cxr) 152 is connected to Cxp 142 (PL side).
  • the circuit units (110, 120, 130, 141, 142, etc.) are connected to the control circuit 101, etc.
  • the control circuit 101 generates and outputs a drive control signal for controlling each of the circuit units based on an interface signal (data signal, clock signal, synchronization signal, etc.) input from the outside. This control is, for example, on / off switching control of the switch element.
  • a scan voltage and a sustain voltage are supplied to each driver IC (Dy110, Dx120) by controlling the switch elements (SWX1 to SWX4, SWY1 to SWY4, etc.) built in each drive voltage supply circuit (Cyp141, Cxp142). Is done.
  • an operation of selectively applying a voltage waveform to each electrode of the PDP 10 is performed.
  • Cyp 141 a circuit portion including SWY1 connected to the ground (GND) and SWY3 connected to the sustain voltage power supply (Vs) as a PH side circuit, and a scanning voltage power supply ( ⁇ Vd) as a PL side circuit. And a circuit portion including SWY2 connected to GND and SWY4 connected to GND.
  • Cxp142 a circuit part including SWX1 connected to GND and SWX3 connected to the sustain voltage power supply (Vs) as a circuit on the PH side, and a scanning voltage power supply ( ⁇ Vd) as a circuit on the PL side are connected.
  • Each switch element (such as SWX1) is configured by a MOS transistor or the like. At the time of drive control, the switch element is controlled to be on (conducting) / off (cut off) for a predetermined period, whereby a potential having a predetermined pulse width is supplied.
  • FIG. 7 shows the configuration of each driver IC (Dy110, Dx120) for the Y electrode and the X electrode. Dy110 and Dx120 have the same configuration.
  • an output circuit (output stage buffer circuit (OB)) 202 is provided for each output (OUT1 to OUThg) associated with the electrodes (X, Y) of the PDP 10.
  • each output circuit 202 two types of switch elements, a high-side switch element (HSW) and a low-side switch element (LSW), are provided, and the power supply terminal sides of the plurality of HSWs are connected in common to provide a high-potential-side power supply terminal (PH ), And the power supply terminal sides of the plurality of LSWs are connected in common and are drawn out as low potential side power supply terminals (PL).
  • HSW high-side switch element
  • LSW low-side switch element
  • each output circuit 202 switch element
  • a shift register In front of each output circuit 202 (switch element), a shift register, a latch circuit, a gate circuit (G) 63, and the like are arranged as logic circuits for controlling them, and between the gate circuit (G) 63 and the HSW. Is provided with a level shift circuit (LS) 64.
  • LS level shift circuit
  • shift register / latch circuits that are independent for scan drive control and sustain drive control. That is, a scan drive shift register / latch circuit (SCAN-SL) 61 and a sustain drive shift register / latch circuit (SUS-SL) 62 are provided, and are connected to the gate circuit (G) 63, respectively. As a result, the scanning drive and sustain drive operations can be performed independently for X and Y, respectively.
  • Reference numeral 201 denotes a logic circuit (shift register / latch circuit) unit including SCAN-SL61 and SUS-SL62.
  • the SCAN-SL61 has C1: scan drive shift register / latch control signal as input, D1in: scan drive shift register data input, and scan drive shift register data output (D1out) as output.
  • the SUS-SL 62 has C2: sustain drive shift register / latch control signal as input, D2in: sustain drive shift register data input, and sustain drive shift register data output (D2out) as output.
  • CG a gate control signal is provided as a control input of the gate circuit (G) 63.
  • FIG. 8 shows an example of a basic drive waveform (first drive waveform) in the PDP device and the drive method of the first embodiment. From the top, the waveform applied to the address electrodes A (A1 to Am) and the waveform applied to each line L (X electrode-Y electrode) are shown. Note that a hatched rectangle in the waveform of the address electrode A represents an ON or OFF pulse for each address electrode.
  • FIG. 8 shows an enlarged view of the vicinity of the first drive timing in the case of driving by skipping scanning sequentially from the upper line of the screen.
  • the Y electrode side reset voltage waveform generation circuit (Cyr) 151 is operated, and then rises in a ramp shape via the LSW of Dy110 and peaks. A positive reset voltage waveform reaching a voltage (Y lamp voltage) Vry is applied to all Y electrodes. Thereafter, at the next timing (second half), by operating the X electrode side reset voltage waveform generation circuit (Cxr) 152, the voltage rises in a ramp shape via the LSW of Dx120 and reaches the peak voltage (X lamp voltage) Vrx. The positive polarity reset voltage waveform leading to is applied to all X electrodes.
  • the address / sustain drive period Tas starts, and address / sustain drive is sequentially performed on the electrodes of each line at each timing (T).
  • the enclosure of A corresponds to the address drive A and S described above (FIGS. 3 and 5), and the enclosure of S corresponds to the sustain drive S described above.
  • address drive A is performed on line L1 at timing T1.
  • a scanning voltage (-Vd) is applied to the Y electrode of L1.
  • the LSW connected to the Y electrode Y1 of Dy110 is turned on, and at the same time, SWY2 of the drive voltage supply circuit (Cyp141) is turned on to supply the scanning voltage ( ⁇ Vd) to the low potential side power supply terminal (PL).
  • SWY1 is turned on to connect the GND potential to the high potential side power supply terminal (PH).
  • a scanning voltage pulse ( ⁇ Vd level) is applied to the selected Y electrode Y1.
  • the address voltage pulse (Va level) is applied to the selected address electrode A by the Da 130.
  • wall charges are formed for the selected cells on the line L1, and the address driving A of T1 is completed.
  • a sustain voltage pulse (Vs level) is applied to the Y electrode Y1 by Dy110.
  • HSW connected to the Y electrode Y1 of Dy110 is turned on, and at the same time, SWY3 of the drive voltage supply circuit (Cyp141) is turned on to supply the sustain voltage (Vs) to the high potential side power supply terminal (PH). Further, the SWY4 is turned on to connect the GND potential to the low potential side power supply terminal (PL).
  • a sustain voltage pulse (Vs level) is applied to the Y electrode Y1.
  • a sustain voltage pulse (Vs level) is applied to the X electrode X1 inverted from the Y electrode Y1 of T2 by Dx120.
  • Dx120 similarly to the operation on the Dy110 side, it is possible by controlling the switch element in the output stage in Dx120 connected to the X electrode X1 and the switch element in the drive voltage supply circuit (Cxp142). .
  • the operation (sustain drive S) with respect to L1 (Y1, X1) is similarly performed for the number of sustain drives (SN) at each subsequent timing T.
  • the sustain voltage pulse (Vs level) is alternately applied to the line (X, Y), and the wall charges are successively inverted, so that the sustain light emission state is continued.
  • Vs level the sustain voltage pulse
  • an address discharge occurs between the address electrode and the Y electrode Y1 at T1
  • a first sustain discharge occurs between Y1 and X1 at T2, and at T3, between the same electrodes.
  • a second sustain discharge occurs.
  • SN 16
  • eight sustain voltage pulses (Vs level) are applied to the Y electrode and the X electrode respectively using 16 timings (T), and luminance for 16 units is obtained.
  • the address voltage and pulse are represented by Va
  • the scanning voltage and pulse are represented by ⁇ Vd
  • the sustain voltage and pulse are represented by Vs.
  • next address drive A is performed on the line (L1 + g) jumped by the predetermined jump unit number (g) from the line (L1) driven at the previous T1.
  • g is 5 in the case of FIG. 2, L1 + g is L6, L1 + 2g is L11, and L1 + 3g is L16.
  • the sustain voltage pulse (Vs) is applied to, for example, the Y electrode Y1 of the line L1 on which the address drive A (scanning drive) is performed at the previous timing T1. Therefore, the driver IC Dy110 that performs this operation and the drive voltage supply circuit (Cyp141) therefor are already used. Therefore, the operation on the Y electrode side cannot apply the scan voltage ( ⁇ Vd) for the address drive A (scan drive) at T2 to the Y electrode.
  • an operation of applying a scanning voltage (-Vd) from the circuit on the opposite X electrode side is performed. That is, in the first T1, one of the Y electrode sides in the display electrode (X, Y) pair, for example, is address driven A (scanning drive), but in the next T2, the other X electrode side in the display electrode (X, Y) pair Are driven by address driving A (scanning driving). Similarly, at the subsequent timings, the electrodes to be driven are alternated between X and Y.
  • the LSW connected to the X electrode X1 + g of Dx120 is turned on, and at the same time, SWX2 of Cxp142 is turned on to supply the voltage -Vd to the terminal PL, and SWX1 is turned on to connect the GND potential to PH. .
  • the voltage ⁇ Vd is applied to the selected X1 + g electrode.
  • wall charges are formed in the selected cells on the line L1 + g, and the address driving A is finished.
  • the line L1 + g is shifted to the sustain light emission state by the sustain drive S.
  • Vs is applied also to X1 + g in parallel with the application of Vs to X1 of the line L1 that has undergone address driving A. Therefore, each HSW connected to X1 and X1 + g of Dx120 is turned on, at the same time, SWX3 of Cxp142 is turned on to supply voltage Vs to terminal PH, and SWX4 is turned on to connect GND potential to terminal PL. To do. Thereby, the pulse Vs is applied to X1 and X1 + g.
  • address drive A is simultaneously performed for L1 + 2g, which is the third line of interlaced scanning. Therefore, the pulse ⁇ Vd is applied to the Y electrode Y1 + 2g opposite to the X electrode. This operation is the same as the driving of L1 described above.
  • address drive A is performed for the L1 + 3g line, which is the fourth line of interlaced scanning. Therefore, the pulse ⁇ Vd is applied to the X electrode X1 + 3g opposite to the Y electrode.
  • the pulse Vs is similarly applied to Y1, Y1 + g, Y1 + 2g.
  • the address / sustain drive operation to the lines (L1 to L1 + 3g) of the predetermined group (G1) can be performed simultaneously and in parallel. Such driving is the same for other groups of lines thereafter. As a result, a normal display operation is performed for all lines on the screen of the PDP 10.
  • the push-pull output type simple used for the main drive circuit on the display electrode (Y, X) side by the circuit configuration of the PDP device and the address / sustain drive control system as described above.
  • the driver circuit (Dy110, Dx120) can be configured by a driver IC of various types.
  • the withstand voltage of the output circuit (202) of the drive circuit can be realized if there is a withstand voltage that guarantees the higher voltage level of the scan voltage
  • a small and low-cost driver IC can be used, and the entire drive circuit can be reduced in size and cost.
  • FIG. 9 shows a second example (second drive waveform) of basic drive waveforms in the first embodiment.
  • address drive A is performed by interlaced scanning of group lines every time the timing T is switched.
  • the drive width (pulse width) of one voltage waveform (sustain voltage pulse Vs) of sustain drive S is expanded to 2 timings (2T), which is twice that of the first drive waveform. It is assumed that switching control is performed every 2T.
  • the alternate application of the scanning voltage ⁇ Vd and the sustain voltage Vs to the display electrode pair (Y electrode and X electrode) is switched every 1T, but in the second drive waveform, 2T It will be switched every time.
  • an electrode to be scanned is selected in accordance with the sustain drive S method. That is, in the address drive A at timings T1 and T2, the pulse -Vd is applied to Y1 and Y1 + g on the Y electrode side with respect to L1 and L1 + g which are the first and second lines of scanning, and timings T3 and T4 In the address drive A, a pulse ⁇ Vd is applied to X1 + 2g and X1 + 3g on the X electrode side with respect to L1 + 2g and L1 + 3g which are the third and fourth lines of scanning.
  • the sustain voltage pulse Vs is continuously applied to Y1 and Y1 + g that have been address driven A on the Y electrode side.
  • one sustain voltage pulse Vs having a pulse width of 2T is applied at a timing of 2T including T3 and T4.
  • the pulse Vs is similarly applied continuously to X1, X1 + g, X1 + 2g, and X1 + 3g on the X electrode side.
  • This example is an example in which the sustain voltage pulse Vs is switched every 2T.
  • the present invention is not limited to this, and it is of course possible to further increase the pulse width by further increasing the number of timings as a continuous application unit of the pulse Vs.
  • the inversion drive operation is ensured and the stabilization is achieved. Therefore, the operation margin can be improved, erroneous display due to a discharge error or the like can be prevented, and the display quality can be improved.
  • the first driving waveform and the second driving waveform described above may be configured to operate using only one or both may be selectively used.
  • Embodiment 2 shows a more specific embodiment based on the configuration of the first embodiment.
  • 11 divisional drive groups G G1 to G11
  • 1080 lines constituting the screen of the PDP 10
  • 11 types of sustain drive numbers SN corresponding to 11 groups and 1 field of 11SF (SF1 To SF11) is applied.
  • 2048 gradation display including black display
  • FIG. 10 is a list showing an example of field SF, configuration of drive group G, and allocation of sustain drive number SN to each drive group G for each SF in the second embodiment.
  • the number of drive groups (G) related to sustain drive is 11 (G1 to G11), and 11 types of sustain drive numbers (SN: 1, 2, 4, 8,..., 1024) are assigned to these.
  • the gradation expression is based on a power of 2. By driving eleven SFs: SF1 to SF11 in one field, these 11 types of sustain drive numbers SN are equally allocated to each group G to realize 2047 gradation display (excluding black display).
  • the number of groups 11 selected here is set so that the sustain drive number SN of each group is set to only a power of 2 by zero and a natural number.
  • the natural number N is equal to the minimum N (2047 ⁇ 2 to the eleventh power) when the Nth power of 2 is larger, and is the minimum necessary number of groups.
  • 11A to 11D schematically show the application timings of reset driving, address driving, and sustain driving for each SF in the field (the expression is the same as in FIG. 2).
  • (A) shows SF1,
  • (b) shows SF2,
  • (c) shows SF6, and
  • (d) shows a configuration example of SF11.
  • Each SF is, for example, 1.515 ms.
  • the numbers enclosed in the frames indicate the number of sustain drives SN set for the group.
  • R1 is the reset drive timing of SF1.
  • Address driving of each group is performed by interlaced scanning in units of 11 lines, and immediately after each address driving, sustain driving (horizontal line) with the sustain driving number SN set for each group is performed.
  • R2 is the reset driving timing of the next SF2.
  • FIG. 12 shows a configuration example of a PDP apparatus that implements the second embodiment.
  • the arrangement of the display electrode pairs on the screen is an inverted repetition of (X, Y) as the structure of the PDP 10. That is, in order from the top, L1 (X1, Y1), L2 (Y2, X2), L3 (X3, Y3), L4 (Y4, X4),...
  • Dy110 and Dx120 are circuit configurations corresponding to the PDP10 structure. With this configuration, as will be described later, useless capacity charging / discharging power between display lines is reduced.
  • FIG. 13 shows an arrangement connection configuration of Y and X electrode driver ICs (Dy110, Dx120) with respect to the PDP 10.
  • FIG. 14 shows a circuit configuration of one driver IC 301 (Dy110, Dx120).
  • FIG. 15 shows a connection circuit configuration between the driver IC 301 and an external control logic circuit.
  • the output of the first driver IC (# 1) 301 on the Dy110 side is connected to the Y electrodes (Y1 to Y72) in a straight line at the connection portion 51, and the X electrodes (X1 to X72) are connected.
  • the output of the first driver IC (# 1) 301 on the Dx120 side is straight-wired at the connection portion 52.
  • the driver IC 301 has a 72-bit output (OUT1 to OUT72), and in a portion corresponding to the 201 (61, 62), a scan drive shift register (SCAN-SR) 71 corresponding to the SCAN-SL61 and a scan drive A latch (SCAN-LAT) 72 and a sustain drive shift register (SUS-SR) 81 and a sustain drive latch (SUS-LAT) 82 corresponding to the SUS-SL62 are provided.
  • SCAN-SR scan drive shift register
  • SUS-SR sustain drive shift register
  • SUS-LAT sustain drive latch
  • SCAN-SR71 has scan-CLK (clock) and scan-Din (data) as input, and scan-Dout (data) as output.
  • a scan-LAT (latch) is provided as an input to the SCAN-LAT72.
  • SUS-SR81 has sus-CLK (clock) and sus-Din (data) as inputs, and sus-Dout (data) as outputs. It has sus-LAT (latch) as an input of SUS-LAT82.
  • the control input of the gate circuit (G) 63 includes scan-STB (scan drive strobe) and sus-STB (sustain drive strobe).
  • FIG. 15 shows a connection circuit configuration of 15 driver ICs 301 (IC # 1 to # 15) and a control logic circuit (included in the control circuit 101).
  • clock signals CLK scan-CLK, sus-CLK
  • data signals Din scan-Din
  • the latch signal LAT scan-LAT, sus-LAT
  • the gate is built in the output stage buffer circuit (output circuit 202)
  • Strobe signals STB scan-STB, sus-STB
  • the clock signal CLK, latch signal LAT, and strobe signal STB output from the photocoupler 501 are connected in parallel to all 15 driver ICs 301, respectively.
  • the data signal Din is connected only to the first driver IC # 1 as serial transfer data to the scan drive and sustain drive shift registers (71, 81).
  • the second and subsequent driver ICs are sequentially connected so that Dout from IC # 1 is input as Din to IC # 2.
  • the data is continuously transferred to the shift registers (71, 81) in all the driver ICs.
  • the number and the like are controlled (details will be described later).
  • FIG. 16 and FIG. 17 the details of the drive waveform for each line for the two SF examples of SF1 and SF2 are shown (expression is the same as in FIG. 8).
  • the circled numbers indicate the scanning order in the group, and the numbers surrounded by a frame indicate the SN in the line. Va, -Vd, Vs, etc. are the same as described above.
  • each SF is 1.515 ms.
  • This SF is further divided into a reset driving period Tr of about 0.1 ms and an address / sustain driving period Tas of about 1.415 ms.
  • Each timing T (T1 to T1123) of Tas is about 1.26 ⁇ s.
  • SF1 first, driving is started from the reset driving period Tr, and reset voltage waveforms (Vwy, Vwx) that rise alternately in a rising ramp shape are applied to all Y electrodes and X electrodes in common. The As a result, the wall charges accumulated in all the cells are reset to the initial state.
  • an address / sustain drive period Tas is started, and in SF1, which is the first SF, address drive is started from the group G1 as described above. Therefore, at the first timing T1, Y of the line L1 to be scanned is A scanning voltage ⁇ Vd is applied to the electrode Y1.
  • the scan moves to the line L12 that has been skipped in units of 11 lines, but the scan voltage is applied to the X electrode (X12) different from the Y electrode (Y1) to which the scan voltage ⁇ Vd was applied immediately before (T1). -Vd is applied.
  • the sustain voltage Vs is applied to the Y electrode (Y1) corresponding to the line (L1) to which the scanning voltage ⁇ Vd has been previously applied and the address drive has been completed.
  • the scanning shifts to the line L23 which is skipped in units of 11 lines, and the scanning voltage is applied to the Y electrode (Y23) different from the X electrode (X12) to which the scanning voltage ⁇ Vd is applied immediately before (T2). -Vd is applied.
  • the sustain voltage Vs is applied to the X electrodes (X1, X12) corresponding to the lines (L1, L12) that have been previously applied with the scanning voltage -Vd and address driven.
  • the interlace scanning is similarly performed at each subsequent timing T, and one display electrode to which the scan voltage ⁇ Vd is applied and a plurality of display electrodes to which the sustain voltage Vs is applied are the Y electrode and the X electrode.
  • the drive proceeds while maintaining the relationship of being alternately reversed.
  • the scan voltage ⁇ Vd is applied to the Y electrode Y1079 of the last line L1079 of the drive group G1, and the address drive of G1 is completed.
  • the scanning order is as follows: first scanning (T1): L1 (Y1), second scanning (T2): L12 (X12), third scanning (T3): L23 (Y23),. ..., 98th scan (T98): L1068 (X1068), 99th scan (T99): L1079 (Y1079).
  • the sustain drive number SN applied to each group is 1024, which is the largest in the group G1 where address drive is first started. In order to apply this, it is necessary to secure time (timing T) until the sustain drive of 1024 units is completed for the line L1079 where address drive (scan) is performed last in the group G1. .
  • T1 to T1123 are provided as the number of timings required for Tas of all SFs in the field including this SF1.
  • it is not limited to the number of timings described here, and it is needless to say that the number of timings can be appropriately increased according to other driving needs.
  • the sustain drive number SN for the group G2 after T100 is 512 as described above.
  • the driving is performed in the same manner from the group G3 onward, and the sustain drive number SN is selected to be 256, 128,.
  • the line on which address driving is performed at the end of SF1 is for L1078 of group G11, and the timing of address driving at this time is T1080 which is a value equal to 1080 which is the total number of lines.
  • L1079 and L1080 are treated as belonging to group G1, and L1080 is regarded as belonging to group G2.
  • normal driving can be performed as well as the lines in the other regions B without missing.
  • the same type of electrodes in Y and X for example, T101, X1, X2
  • the display is not performed between the electrodes (non-display portion) between the adjacent lines (for example, between X1 and X2 in FIG. 12)
  • the charge / discharge power to the capacity component is wasted. Therefore, in this configuration, in order to avoid this, the above-described PDP device configuration in FIG. 12 is applied, and the electrodes adjacent to each other as the electrode arrangement configuration in the PDP 10 are the same type of electrodes.
  • the driving waveform of SF2 is composed of Tr and Tas as in the previous SF1 (FIG. 16), and their time relationships are set similarly.
  • SF2 is different from SF1 in that the order of the group G from which address driving is started is changed.
  • address driving is started from a group G2 different from the group G1. Therefore, the scanning voltage ⁇ Vd is applied from the Y electrode Y2 of the line L2 at the timing T1.
  • Others are the same as SF1.
  • SUS indicates the sustain voltage pulse Vs in the sustain drive of the display line by the sustain drive number SN, for example, SUS1 indicates the first pulse immediately after the address drive (application of the scan voltage pulse ⁇ Vd), and SUS2 indicates the second pulse. .
  • the shift register / latch circuit (61, 62) for scan driving and sustain driving and the control circuit incorporated in the output stage buffer circuit 202 are used.
  • a gate circuit 63 is provided, and as described above (FIG. 15), such a driver IC 301 is used and connected.
  • As these control signals a clock signal CLK, a data signal Din, a latch signal LAT, a strobe signal STB, and the like are input, respectively.
  • Yscan-CLK is a clock signal (scan-CLK) for scanning driving on the Dy110 side.
  • the clock signals CLK (Yscan-CLK, Ysus-CLK, Xscan-CLK, Xsus-CLK) for each of the scan drive and sustain drive shift register / latch circuits (61, 62) 11 clocks (clk) are input. This is because the number of the clocks (clk) is selected to be equal to 11 which is the number of sustain drive groups.
  • the latch signal LAT (Yscan-LAT, Ysus-LAT, Xscan-LAT, Xsus-LAT) is input during the timing T, and the data transferred at 11 clk is sent to the latch circuit (72, 82) every time the timing T is switched. It is captured.
  • the strobe signal STB is input to the Y electrode side (Yscan-STB) so as to become active at odd-numbered timings T1, T3,..., And the even-numbered signal is supplied to the X electrode side (Xscan-STB). It is input so as to become active at timings T2, T4,.
  • the scanning voltage pulse ⁇ Vd can be alternately applied to the Y electrode and the X electrode corresponding to the group G11 in accordance with the respective timings.
  • the sustain drive shift register / latch circuit (62 (81, 82)) is substantially the same as that for the scan drive, but the data signal Din is at the first clk at the timing T1.
  • the strobe signal STB is alternately input to the Y electrode and the X electrode after the timing T2.
  • one sustain voltage Vs can be alternately applied to the Y electrode or the X electrode corresponding to the group G11.
  • the control timing of 2SUS (SUS1, SUS2) is as follows.
  • the data signal Din is input to both the shift registers (71, 81) in synchronization with the second clk among 11 clks at each timing T.
  • the scanning voltage pulse -Vd can be alternately applied to the Y and X electrodes corresponding to the group G10.
  • control timing of 1024SUS (SUS1 to SUS1024) is as follows.
  • the data signal Din is input to both the shift registers (71, 81) in synchronization with the last eleventh clk of 11clk at each timing T.
  • the PDP device according to Embodiment 3 (Configuration B) of the present invention its drive circuit, drive system, and the like will be described with reference to FIGS.
  • the number of lines on the screen is 1080, which is the same as in the first embodiment.
  • the number of divided groups G is set to 12, which is one more, and correspondingly, 1F includes 12 SFs.
  • the configuration consisting of (SF1 to SF12) is applied. This is an example in which 1865 gradation display (including black display) is realized in consideration of stabilization of operation.
  • 12 types of sustain drive numbers (SN: 1, 2, 4,..., 256, 406, 451, 496) are assigned to 12 of the group G number. These 12 types of sustain drive numbers SN are equally allocated to each group G by driving the 12 SF1 to SF12. This realizes 1864 gradation display (excluding black display).
  • the 1080 lines are divided into 12 groups, unlike the second embodiment, the lines are divided into 90 regions B (B1 to B90) without excess or deficiency. Therefore, the driving method of the first basic configuration (FIGS. 2 and 3) is applied.
  • a value (406, 451, 496) other than the power of a natural number for 2 is used as part of SN (the reason will be described later).
  • the group number 12 in this case is the minimum N (1086 ⁇ 2 to the 11th power) when the natural power N is larger than the Nth power of 2 in comparison with the above-mentioned maximum number of gradations (K). Does not match and is a value larger by one.
  • ⁇ 3-1 Drive system> 22A to 22D show application timings of reset drive (R), address drive (A), and sustain drive (S) for each SF (the expression is the same as described above).
  • R reset drive
  • A address drive
  • S sustain drive
  • FIG. 22A in the first SF1 (1.389 ms), after the common reset driving (R1), address / sustain driving is started, and address driving is performed in the order of groups G1, G2,..., G11, G12. Is done. Each address drive is performed by interlaced scanning in units of 12 lines.
  • the sustain drive by the SN set for each group G is performed.
  • the sustain drive number SN (SUS number) for each group G is set so that more SNs are applied from the group G where address drive starts earlier.
  • FIG. 23 shows the arrangement and connection configuration of the Y and X electrode driver ICs (Dy110, Dx120).
  • the circuit configuration of the driver IC 302 the configuration shown in FIG. 14 and the like can be similarly applied (the number of outputs is different).
  • the connection circuit configuration between the twelve driver ICs 302 and the control logic circuit the configuration shown in FIG. 15 can be similarly applied (the number of ICs is different).
  • FIG. 24 shows details of the drive waveform for each line for the example of SF1.
  • the scanning order is G1 (L1, L13, ..., L1069), G2 (L2, L14, ..., L1070), ..., G12 (L12, L24, ..., L1080).
  • G2 L2, L14,..., L1070
  • G1 L1, L13,..., L1069.
  • the driving time of each SF is 1.389 ms, which further includes a reset driving period (Tr) of about 0.1 ms and an address / maintenance of about 1.289 ms. It is divided into a driving period (Tas). Tas has T1 to T1082. T is about 1.19 ⁇ s.
  • the number of timings T in one address / sustain driving period Tas is limited to the minimum necessary so that the time width of one timing T can be secured as much as possible. For this reason, 1082 timings (T1 to T1082) obtained by adding only the driving time (2T) for one SUS to all scanning times (1080T) for the number of display lines (1080) are set as the basic timing numbers. Yes.
  • the scanning voltage ⁇ Vd is applied to the Y electrode Y1 of the L1 of G1.
  • the scanning shifts to the line L13 that is skipped in units of 12 lines.
  • the scanning voltage ⁇ is applied to the Y electrode Y13 that is the same as the Y electrode (Y1) side to which the scanning voltage ⁇ Vd is applied immediately before. Vd is applied.
  • the scanning shifts to the line L25 which is skipped in units of 12 lines, but this time, the scanning is performed to the X electrode X25 which is different from the Y electrode (Y13) side to which the scanning voltage ⁇ Vd was applied immediately before. A voltage ⁇ Vd is applied.
  • the sustain voltage Vs is applied to the Y electrodes (Y1, Y13) corresponding to the address-driven lines previously applied with the scan voltage -Vd.
  • the scanning shifts to the line L37 jumped by the unit of 12 lines, but this time, the scanning voltage is applied to the same X electrode X37 as the X electrode (X25) side to which the scanning voltage ⁇ Vd was applied immediately before. -Vd is applied.
  • the sustain voltage Vs As for the application of the sustain voltage Vs at T4, since the sustain voltage is not applied to the Y electrode Y25 in the immediately preceding T3, although the address drive is completed, the sustain voltage is not applied to Y25, and similarly to T3, The sustain voltage Vs is applied to the Y electrodes (Y1, Y13).
  • interlaced scanning is similarly performed at each subsequent timing, and one electrode (Y or X) to which the scanning voltage ⁇ Vd is applied and a plurality of electrodes (Y or X) to which the sustain voltage Vs is applied.
  • the Y and X electrodes are controlled so that the drive proceeds while maintaining the relationship of being alternately reversed every two timings (2T).
  • the time width (pulse width) of the sustain voltage pulse Vs (SUS) applied to the Y and X electrodes is widened to 2T. This has the effect of stabilizing the drive.
  • the sustain drive number SN (maximum settable number) that can be set for each group G is 992T from the next timing T91 to the last timing T1082 at the end of address drive in G1.
  • 2T corresponds to one unit of the sustain drive number SN (one sustain voltage pulse Vs (SUS) having a width of 2T), and in 992T, the sustain drive number SN is 496 (496SUS).
  • SN (SUS) (maximum settable number) can be set to 451 for G2, 406 for G3, and 361 for G4.
  • address driving is completed in the order from the slowest group, that is, G12, G11,..., G4, G3, G2, and G1.
  • the values 1, 2,..., 256, 512, 1024, and 2048, which are power values, are associated with each other.
  • the maximum number that can be set is selected for SN after G3, that is, 406 for G3, 451 for G2, and 496 for G1. It is.
  • the sustain drive number SN for each group G of each SF finally determined as described above is as shown in FIG.
  • a maximum of 1864 SUS gradation driving is possible.
  • the above setting is a case where the number of timings of one Tas is 1082, which can of course be arbitrarily increased according to the necessity of the number of gradations.
  • the sustain drive numbers SN of G3, G2, and G1 are not changed as described above, but for at least two groups or all three groups. It is also possible to select the same SN.
  • phase of the sustain voltage pulse Vs applied between the electrodes of the adjacent lines is the same, which is the same as in the second embodiment.
  • the difference from the SF1 is that the order of the group G in which the address driving is started is changed.
  • the driving waveform starts from G2 different from G1. Therefore, the scanning voltage ⁇ Vd is applied from the Y electrode Y2 of L2 at T1. About others, it is the same as that of SF1. The same applies to the subsequent SFs.
  • 12clk is input at every timing T as the clock signal CLK of all the shift registers (71, 81). 12clk is chosen to be equal to 12 in the group G number.
  • the corresponding strobe signal STB is output continuously every two timings (2T) to the Y electrode side and the X electrode side in both scanning drive and sustain drive so that H and L are alternately repeated every 2T.
  • 992 data synchronized with the 12th clk of T1 to T992 (corresponding to G1) is used for the data signal Din for the sustain drive on both the Y and X electrodes. input. Others are the same as described above.
  • FIG. 26 to FIG. 30 and the like show a PDP device and the like according to Embodiment 4 (Configuration C) of the present invention.
  • application specifications, group, SF, SN assignment, reset for each SF, address, sustain drive timing, and the like are the same as those in the third embodiment.
  • the same configurations as those of the second embodiment can be applied to the configurations of the PDP device and the driver IC.
  • the number of output bits of the driver IC is 72 bits (FIG. 14, driver IC 301), which is the same as in the second embodiment.
  • the number of ICs required for each of the Y and X electrodes of the PDP 10 is 15 (similar to FIG. 13).
  • FIG. 26 shows a circuit configuration of the driver IC 303 (Dy110, Dx120) according to the fourth embodiment.
  • FIG. 27 shows the connection between the driver IC 303 and the control logic circuit and the signal input configuration.
  • both the scan drive and sustain drive shift registers (71, 81) have different numbers of input / outputs of the data signal Din. It is set to 12 which is the same as the number G of sustain driving groups (scan-Din1 to Din12, etc.).
  • the shift register (71, 81) is constituted by one serial transfer type, so that the number of input / output of the data signal Din is one.
  • the number of clocks (clk) applied during one timing T and the position of the data signal Din inputted in synchronization with the number of clocks (clk) (FIG. 18 etc.) By controlling the number of clocks (clk) applied during one timing T and the position of the data signal Din inputted in synchronization with the number of clocks (clk) (FIG. 18 etc.), the number of groups G for sustain drive and various controls corresponding to this It is carried out.
  • the driver IC 303 is provided in advance with the same number of shift register / latch circuits (the plurality of circuits 63 of 61 and 62) as the number of sustain drive groups G (12). Keep it. Thus, the configuration is changed so that each of the circuits (63) can be controlled independently.
  • the control data of each group G is stored in a dedicated shift register / latch circuit (63).
  • the output of each latch circuit of the dedicated shift register / latch circuit (63) is connected to the Y or X electrode corresponding to each group G via the output stage buffer circuit 202.
  • OG1 to OG6 are output groups.
  • the first output group OG1 corresponds to OUT1 to OUT12.
  • both the scan drive and sustain drive shift registers (71, 81) input 12-bit data.
  • a signal Din (scan-Din1 to Din12 etc.) is sequentially connected between the input and output in parallel.
  • the photocoupler 501 for potential level conversion for the signal Din is required for the number of parallel inputs.
  • FIG. The structure is as follows. That is, for both scanning drive and sustain drive, the signal Din is received serially (DATA-CLK, DATA-in, DATA-LAT), and a dedicated shift register / latch circuit (91 for converting this from serial to parallel) , 92). With this configuration, the number of photocouplers 501 related to the signal Din is reduced to three.
  • ⁇ 4-2 Control timing>
  • the drive timing control timing of the fourth embodiment will be described with reference to FIGS.
  • the drive waveform of the fourth embodiment is the same as that of the third embodiment. Since the control timing is basically the same as that of the third embodiment, only the differences will be described.
  • the shift registers (71, 81) are divided into 12 groups G. Therefore, data Din1 to Din12 corresponding to each group G is input at each timing T as one clock (CLK) input per timing T.
  • CLK clock
  • Other latch signals LAT, strobe signals STB, and the like are the same as in the third embodiment.
  • the control timing of 1SUS in SF1 is the control of the waveform output of 1SUS to the group G12. Therefore, data is input only to Din12 of the shift register / latch circuit (61, 62) for the scan drive and sustain drive of the Y and X electrodes.
  • the control timing written in FIG. 28 is not the signal of the input part from the control logic part in FIG. 27 but the signal seen at the input terminal part of IC # 1.
  • the control timing of FIG. 29 and 2SUS is the control of the 2SUS waveform output to G11, it corresponds to Din11 of the shift register and latch circuit (61, 62) for the scan drive and sustain drive of the Y and X electrodes. Only data is input. For scan driving, 1 data (Din (H)) is input to T0, and for sustain driving, 4 data (Din (H)) T1 to T4 are input. The time of data H is 4CLK width (for 4T). As a result, the scanning drive and the sustain drive are interchanged between the Y and X electrodes every 2T as in the third embodiment, and the drive for outputting a total of 2SUS by 1SUS is performed.
  • the number of clock signals input to each driver IC for each timing may be one, and the operation is performed at a low frequency.
  • the frequency characteristics required for the logic circuit of each driver IC may be lower than that of the driver IC, so that the cost of the driver IC can be reduced, and the operation is less susceptible to adverse effects such as malfunction caused by high frequency noise.
  • the present invention can be used for a PDP device or the like.

Abstract

In order to assure a sufficient address drive period and a sustain drive period, a plasma display device performs control for simultaneous parallel execution of an address drive operation of one display line in each of subfields (SF1 to SF5) constituting one field (1F) and a sustain drive operation in at least one of display lines where the address drive operation has been already performed. That is, the address drive operation is performed by a skip scan in a unit of a predetermined display lines and the sustain drive operation is controlled so that the sustain drive period lengths are different between adjacent display lines.

Description

プラズマディスプレイ装置Plasma display device
 本発明は、プラズマディスプレイパネル(PDP)を備える表示装置(プラズマディスプレイ装置:PDP装置)などのフラットディスプレイ装置に関し、特に、階調表示のための駆動方法及び駆動回路(ドライバ)等に関する。 The present invention relates to a flat display device such as a display device (plasma display device: PDP device) including a plasma display panel (PDP), and more particularly to a driving method and a driving circuit (driver) for gradation display.
 PDP装置など、フラットディスプレイパネルを利用したフラットディスプレイ装置は,従来のブラウン管に置き換わり、小型から大型まで広い範囲に渡り実用化が進められ、普及が進んでいる。特に大型分野では、PDPがその原理構成上の特性を活かすことにより、普及の主流として商品化が図られている。そして、今後の更なる広範囲な普及を促すためには、装置自身の低価格化と共に、表示性能の更なる向上や、その他機能面での一段の向上などが望まれている。更に、現在、EMI等を含めて様々な環境負荷への影響を低減する要求が強くなっており、今後の一般家庭などへの広範囲な普及のためには、更なるそれらの低減が必要とされている。 Flat display devices using flat display panels, such as PDP devices, have been replaced by conventional cathode ray tubes and are being put into practical use over a wide range from small to large, and are becoming popular. Particularly in large fields, PDPs have been commercialized as the mainstream of popularization by utilizing the characteristics of the principle configuration. In order to promote further widespread use in the future, it is desired to further reduce the price of the device itself, further improve display performance, and further improve other functions. Furthermore, there is an increasing demand for reducing the impact on various environmental loads, including EMI, etc., and further reduction of these is required for widespread use in general households in the future. ing.
 従来主流のPDP装置における階調表示方式(駆動方式)は、サブフィールド方式、及びADS(アドレス表示分離)方式などによるものである。この方式では、PDPの画面(表示領域)及び表示時間に対応付けられるフィールド(フレームともいう)、及びそれを構成する一連の複数のサブフィールド(サブフレームともいう)において、リセット駆動期間及びアドレス駆動期間とは時間的に分離されたサステイン(維持)駆動期間を有する。そして維持駆動期間における電極(表示電極)に印加されるパルス(維持電圧パルス)の数を制御することにより、任意の階調表示が行われる。1フィールド(フィールド期間)は、表示のちらつき等を防止するため、例えば60Hz以上で繰り返す必要があり、その関係上、1フィールドに許される時間が例えば16.7ms(ミリ秒)以内といったように限られている。
特開2007-171285号公報
The gradation display method (driving method) in the conventional mainstream PDP apparatus is based on a subfield method, an ADS (address display separation) method, or the like. In this method, a reset driving period and address driving are performed in a field (also referred to as a frame) associated with a PDP screen (display area) and display time, and a plurality of subfields (also referred to as subframes) constituting the field. The period has a sustain (sustain) driving period separated in time. An arbitrary gradation display is performed by controlling the number of pulses (sustain voltage pulses) applied to the electrodes (display electrodes) in the sustain drive period. One field (field period) needs to be repeated at, for example, 60 Hz or more in order to prevent display flickering. For this reason, the time allowed for one field is limited to, for example, within 16.7 ms (milliseconds). It has been.
JP 2007-171285 A
 前記PDP装置の従来技術(サブフィールド方式及びADS方式による階調表示方式)は、リセット、アドレス、及びサステインといった各駆動期間に明確に分かれた駆動タイミングにより時系列的に制御を行うものである。そのため、比較的制御が容易であるという特長があるものの、一方では、一連の時系列駆動のためのそれぞれの時間を確保する必要があり、各サブフィールドの時間が長くなってしまう欠点がある。 The conventional technology of the PDP device (gradation display method based on the subfield method and ADS method) performs control in a time-series manner with drive timings that are clearly divided into drive periods such as reset, address, and sustain. Therefore, although there is a feature that the control is relatively easy, on the other hand, it is necessary to secure each time for a series of time series driving, and there is a disadvantage that the time of each subfield becomes long.
 また前述のような時間的制約(1フィールドの時間:16.7ms以内)があるため、サブフィールド(サブフィールド期間)の時間が長くなってしまうと、フィールドを構成するサブフィールドの数が少なくなり、このため、十分な階調数が得られないという課題がある。 In addition, since there is a time restriction as described above (time of one field: within 16.7 ms), if the time of the subfield (subfield period) becomes long, the number of subfields constituting the field decreases. For this reason, there is a problem that a sufficient number of gradations cannot be obtained.
 更に、階調数確保のためにフィールドのサブフィールド数を優先させて確保しようとすると、リセット、アドレス、及びサステインといった各駆動期間のそれぞれの駆動に割り当てられる時間が十分でなくなる。その結果、動作マージンや駆動の安定性が悪くなって、誤表示等の問題が発生し易いという課題が生じることになる。 Furthermore, if an attempt is made to prioritize and secure the number of subfields in order to secure the number of gradations, the time allocated to each drive in each drive period such as reset, address, and sustain becomes insufficient. As a result, the operation margin and the driving stability are deteriorated, and a problem that a problem such as erroneous display easily occurs.
 また、別の角度から観て、ADS方式においては、各駆動に必要な駆動電源に要求される性能においては、上述のように駆動期間が明確に分かれることになり、各駆動電源から供給される電流の流れる期間も明確に分かれることになる。その結果、電流値の変動成分が大きくなってしまうという欠点が生じる。上記電源の電流変動成分(リップル電流)が大きいと、その変動成分の最大値(ピーク電流)をカバーする安定化回路等の制御回路や容量の大きい配線系の回路素材を備える必要があるので、複雑、高価になり、コスト的に不利である。更には、ピーク電流成分が大きくなることにより、駆動回路系からのノイズ信号の放射が大きくなり、回路制御の誤動作が発生し易くなることや、電磁界エネルギーの放射による周囲環境への影響が大きくなり易い、という課題がある。 Also, from another angle, in the ADS system, in the performance required for the driving power source required for each driving, the driving period is clearly divided as described above, and is supplied from each driving power source. The period during which the current flows is also clearly divided. As a result, there is a disadvantage that the fluctuation component of the current value becomes large. If the current fluctuation component (ripple current) of the power supply is large, it is necessary to provide a control circuit such as a stabilization circuit that covers the maximum value (peak current) of the fluctuation component and a circuit material of a wiring system with a large capacity. Complicated, expensive and disadvantageous in cost. Furthermore, the increase in the peak current component increases the emission of noise signals from the drive circuit system, which can easily cause malfunctions in circuit control, and the influence of the radiation of electromagnetic field energy on the surrounding environment is large. There is a problem that it is easy to become.
 そこで、以上のような課題を解決することを目指して、先に我々出願人は、特許文献1(特開2007-171285号公報)に示されるような新しい駆動方法を提案している。 Therefore, with the aim of solving the above problems, the present applicant has previously proposed a new driving method as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2007-171285).
 特許文献1では、走査ライン毎の独立制御により各走査ライン毎にアドレス駆動の後の維持放電駆動を継続させて行わせる動作と、異なる走査ライン間での維持放電駆動とアドレス駆動を同時に並行させて行わせる動作により、従来のような独立した維持放電期間を不要として時間利用効率を究極まで高めた駆動方法である。しかしながら、その駆動回路の構成においては、走査電極ライン毎に走査電圧と維持放電電圧を加えた高耐圧の駆動素子が必要になる等により実現に向けてはコスト的な課題が残っている。 In Patent Document 1, the sustain discharge drive after address drive is continuously performed for each scan line by independent control for each scan line, and the sustain discharge drive and address drive between different scan lines are simultaneously performed in parallel. By the operation to be performed in this manner, the drive method has improved the time utilization efficiency to the ultimate by eliminating the need for an independent sustain discharge period as in the prior art. However, in the configuration of the drive circuit, a cost problem remains to be realized due to the necessity of a high breakdown voltage drive element in which a scan voltage and a sustain discharge voltage are added for each scan electrode line.
 本発明は以上のような問題に鑑みてなされたものであり、その主な目的は、PDP装置に係わり、上記のような課題を解決できる新しい方式を提案し、階調表示性能及びパネル駆動特性の向上等を実現できる技術を提供することである。 The present invention has been made in view of the above problems, and its main object is related to a PDP device, and proposes a new method capable of solving the above-described problems, and provides gradation display performance and panel drive characteristics. It is to provide a technology that can realize improvement and the like.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。前記目的を達成するために、本発明の代表的な実施の形態は、PDP、及びPDPを駆動及び制御するPDP駆動回路装置(回路部)などを備えるPDP装置であって、以下に示す構成を有することを特徴とする。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows. In order to achieve the above object, a typical embodiment of the present invention is a PDP device including a PDP and a PDP drive circuit device (circuit unit) for driving and controlling the PDP, and has the following configuration. It is characterized by having.
 本発明では、PDP装置の駆動回路及び駆動方法の改善により、各種の表示性能を向上させることが可能な新しい駆動方式及びこれを適用したPDP装置を提供する。 The present invention provides a new driving method capable of improving various display performances by improving the driving circuit and driving method of the PDP device, and a PDP device to which the driving method is applied.
 本形態のPDP装置は、例えば以下の構成である。本PDP装置は、第1方向に延びる複数の第1電極(Y電極)及び第2電極(X電極)と、前記第1方向に交差する第2方向に延びる複数の第3電極(アドレス電極)とを含み、前記複数の第1電極及び第2電極において隣接する第1電極と第2電極の対によりそれぞれ表示ラインが構成され、これら複数の表示ラインと前記複数の第3電極とのそれぞれの交差領域に表示セルが構成されるPDPと、回路部として、前記複数の第1電極を駆動する第1駆動回路と、前記複数の第2電極を駆動する第2駆動回路と、前記複数の第3電極を駆動する第3駆動回路と、前記第1、第2、第3駆動回路を制御する制御回路と、を備える。 The PDP apparatus of this embodiment has the following configuration, for example. The PDP device includes a plurality of first electrodes (Y electrodes) and second electrodes (X electrodes) extending in a first direction, and a plurality of third electrodes (address electrodes) extending in a second direction intersecting the first direction. Each of the plurality of first electrodes and the second electrode is composed of a pair of first and second electrodes adjacent to each other, and each of the plurality of display lines and each of the plurality of third electrodes A PDP having a display cell in an intersecting region, a first drive circuit that drives the plurality of first electrodes, a second drive circuit that drives the plurality of second electrodes, and the plurality of second electrodes as a circuit unit. A third drive circuit that drives the three electrodes; and a control circuit that controls the first, second, and third drive circuits.
 そして、本PDP装置は、前記表示セルを選択し放電を開始するために、所定時間単位のタイミング(T)毎に、選択する前記第3電極に第3電圧を印加する動作(アドレス)と共に、選択する前記表示ラインの第1電極または第2電極に第1電圧を印加する走査の動作を行うアドレス駆動動作を実行しながら、前記表示セルの放電を維持するために、前記アドレス駆動動作中に非選択の表示ラインのうちの前記アドレス駆動動作済みの1つ以上の表示ラインの隣接する前記第1電極と第2電極の対に第2電圧を印加する維持駆動動作を実行する。これにより、前記アドレス駆動動作と前記維持駆動動作とを同時並行に実行するように、前記制御回路が各前記駆動回路を制御する。第1及び第2電極は、維持及び走査の兼用である。 And this PDP device, together with an operation (address) for applying a third voltage to the third electrode to be selected at every predetermined timing (T) in order to select the display cell and start discharging, In order to maintain the discharge of the display cell while performing the address driving operation for performing the scanning operation of applying the first voltage to the first electrode or the second electrode of the display line to be selected, A sustain driving operation is performed in which a second voltage is applied to a pair of the first electrode and the second electrode adjacent to each other in one or more display lines that have been subjected to the address driving operation among non-selected display lines. Thereby, the control circuit controls each of the drive circuits so that the address drive operation and the sustain drive operation are executed in parallel. The first and second electrodes are used for both maintenance and scanning.
 そして、本PDP装置は、前記アドレス駆動動作における前記走査の動作は、前記パネルの画面上の複数の表示ラインによる配列に対して、所定の表示ライン数(g)を単位とした飛び越し走査により行われ、前記複数の表示ラインにおける隣接するすべての表示ライン間では、前記維持駆動動作における前記第2電圧のパルスを印加する回数(SN)を異ならせることが可能なように、前記制御回路が各前記駆動回路を制御する。 In the PDP apparatus, the scanning operation in the address driving operation is performed by interlaced scanning in units of a predetermined number of display lines (g) with respect to an array of a plurality of display lines on the screen of the panel. The control circuit may be configured so that the number (SN) of applying the pulse of the second voltage in the sustain driving operation can be different between all adjacent display lines in the plurality of display lines. The drive circuit is controlled.
 上記同時並行の駆動は、詳細には例えば、第1のタイミングで、第1のラインの例えば第1電極を走査(アドレス)し、次に第2のタイミングで、上記第1のラインから所定数(g)単位で飛び越した第2のラインの第2電極を走査(アドレス)すると同時に上記第1のラインの第1電極を維持駆動する。次に第3のタイミングで、上記第2のラインから所定数(g)単位で飛び越した第3のラインの第1電極を走査(アドレス)すると同時に上記第1及び第2のラインの第2電極を維持駆動する、といったものである。 More specifically, the simultaneous and parallel driving, for example, scans (addresses), for example, the first electrode of the first line at a first timing, and then at a second timing, the predetermined number of times from the first line. (G) The second electrode of the second line jumped in units is scanned (addressed) and simultaneously the first electrode of the first line is maintained and driven. Next, at the third timing, the first electrode of the third line jumped from the second line by a predetermined number (g) is scanned (addressed) and at the same time, the second electrode of the first and second lines is scanned. And so on.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。本発明の代表的な実施の形態によれば、PDP装置に係わり、前述のような課題を解決できる新しい方式を提供し、階調表示性能及びパネル駆動特性の向上等を実現できる。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows. According to a typical embodiment of the present invention, it is possible to provide a new system that can solve the above-described problems related to a PDP apparatus, and can realize improvement in gradation display performance and panel drive characteristics.
 特に、PDP装置として、簡単で低コストな駆動回路の構成により、アドレス駆動と維持駆動を同時並行のタイミングで行うことを可能とし、これにより、十分なアドレス駆動期間及び維持駆動期間を確保すると共に、階調表示性能を向上させて、高輝度でより鮮やかで滑らかな表示を可能とする。 In particular, as a PDP device, a simple and low-cost drive circuit configuration enables address drive and sustain drive to be performed at the same time, thereby ensuring a sufficient address drive period and sustain drive period. The gradation display performance is improved, enabling a brighter, more vivid and smooth display.
本発明の実施の形態1のPDP装置に備えるPDPの基本構造の一例を示す図である。It is a figure which shows an example of the basic structure of PDP with which the PDP apparatus of Embodiment 1 of this invention is provided. 実施の形態1の駆動方式の第1の基本構成におけるフィールド構成について示す図である。FIG. 3 is a diagram showing a field configuration in a first basic configuration of the driving method according to the first embodiment. 実施の形態1の駆動方式の第1の基本構成におけるサブフィールド構成のうち第1サブフィールド(SF1)について示す図である。It is a figure which shows about 1st subfield (SF1) among the subfield structures in the 1st basic composition of the drive system of Embodiment 1. FIG. 実施の形態1の駆動方式の第1の基本構成におけるサブフィールド構成のうち第2サブフィールド(SF2)について示す図である。It is a figure shown about 2nd subfield (SF2) among the subfield structures in the 1st basic composition of the drive system of Embodiment 1. FIG. 実施の形態1の駆動方式の第1の基本構成におけるサブフィールド構成のうち第5サブフィールド(SF5)について示す図である。It is a figure shown about the 5th subfield (SF5) among the subfield structures in the 1st basic composition of the drive system of Embodiment 1. FIG. 実施の形態1の駆動方式の第2の基本構成におけるフィールド構成について示す図である。FIG. 10 is a diagram showing a field configuration in a second basic configuration of the driving method according to the first embodiment. 実施の形態1の駆動方式の第2の基本構成におけるサブフィールド構成のうち第1サブフィールド(SF1)について示す図である。It is a figure which shows about 1st subfield (SF1) among the subfield structures in the 2nd basic composition of the drive system of Embodiment 1. FIG. 実施の形態1の駆動方式の第2の基本構成におけるサブフィールド構成のうち第2サブフィールド(SF2)について示す図である。It is a figure shown about 2nd subfield (SF2) among the subfield structures in the 2nd basic composition of the drive system of Embodiment 1. FIG. 実施の形態1の駆動方式の第2の基本構成におけるサブフィールド構成のうち第5サブフィールド(SF5)について示す図である。It is a figure shown about the 5th subfield (SF5) among the subfield structures in the 2nd basic composition of the drive system of Embodiment 1. FIG. 実施の形態1のPDP装置の構成を示す図である。1 is a diagram illustrating a configuration of a PDP device according to a first embodiment. 実施の形態1のPDP装置におけるY電極及びX電極ドライバICの回路構成例を示す図である。FIG. 3 is a diagram illustrating a circuit configuration example of a Y electrode and an X electrode driver IC in the PDP device according to the first embodiment. 実施の形態1における第1の駆動波形の例を示す図である。6 is a diagram illustrating an example of a first drive waveform in Embodiment 1. FIG. 実施の形態1における第2の駆動波形の例を示す図である。6 is a diagram illustrating an example of a second drive waveform in the first embodiment. FIG. 本発明の実施の形態2の駆動方式におけるフィールド構成について示す図である。It is a figure shown about the field structure in the drive system of Embodiment 2 of this invention. 実施の形態2の駆動方式におけるサブフィールド構成のうち第1サブフィールド(SF1)について示す図である。It is a figure shown about the 1st subfield (SF1) among the subfield structures in the drive system of Embodiment 2. 実施の形態2の駆動方式におけるサブフィールド構成のうち第2サブフィールド(SF2)について示す図である。It is a figure shown about the 2nd subfield (SF2) among the subfield structures in the drive system of Embodiment 2. FIG. 実施の形態2の駆動方式におけるサブフィールド構成のうち第6サブフィールド(SF6)について示す図である。It is a figure shown about the 6th subfield (SF6) among the subfield structures in the drive system of Embodiment 2. FIG. 実施の形態2の駆動方式におけるサブフィールド構成のうち第11サブフィールド(SF11)について示す図である。It is a figure shown about the 11th subfield (SF11) among the subfield structures in the drive system of Embodiment 2. 実施の形態2のPDP装置の構成を示す図である。It is a figure which shows the structure of the PDP apparatus of Embodiment 2. FIG. 実施の形態2のPDP装置におけるPDPに対するY電極及びX電極ドライバICの配線及び接続構成を示す図である。It is a figure which shows the wiring of Y electrode and X electrode driver IC with respect to PDP in the PDP apparatus of Embodiment 2, and a connection structure. 実施の形態2のPDP装置におけるY電極及びX電極ドライバICの回路構成例を示す図である。FIG. 6 is a diagram illustrating a circuit configuration example of a Y electrode and an X electrode driver IC in the PDP device according to the second embodiment. 実施の形態2のPDP装置におけるドライバICと制御ロジック回路との接続構成例を示す図である。FIG. 10 is a diagram illustrating a connection configuration example of a driver IC and a control logic circuit in the PDP device according to the second embodiment. 実施の形態2における駆動波形の例としてSF1の場合を示す図である。It is a figure which shows the case of SF1 as an example of the drive waveform in Embodiment 2. FIG. 実施の形態2における駆動波形の例としてSF2の場合を示す図である。It is a figure which shows the case of SF2 as an example of the drive waveform in Embodiment 2. FIG. 実施の形態2における駆動波形の制御タイミングとしてSF1の1SUSの場合を示す図である。It is a figure which shows the case of 1SUS of SF1 as a drive waveform control timing in Embodiment 2. FIG. 実施の形態2における駆動波形の制御タイミングとしてSF1の2SUSの場合を示す図である。It is a figure which shows the case of 2SUS of SF1 as a control timing of the drive waveform in Embodiment 2. FIG. 実施の形態2における駆動波形の制御タイミングとしてSF1の1024SUSの場合を示す図である。It is a figure which shows the case of 1024SUS of SF1 as a drive waveform control timing in Embodiment 2. FIG. 本発明の実施の形態3の駆動方式におけるフィールド構成について示す図である。It is a figure shown about the field structure in the drive system of Embodiment 3 of this invention. 実施の形態3の駆動方式におけるサブフィールド構成のうち第1サブフィールド(SF1)について示す図である。It is a figure shown about the 1st subfield (SF1) among the subfield structures in the drive system of Embodiment 3. 実施の形態3の駆動方式におけるサブフィールド構成のうち第2サブフィールド(SF2)について示す図である。It is a figure shown about the 2nd subfield (SF2) among the subfield structures in the drive system of Embodiment 3. 実施の形態3の駆動方式におけるサブフィールド構成のうち第6サブフィールド(SF6)について示す図である。It is a figure shown about the 6th subfield (SF6) among the subfield structures in the drive system of Embodiment 3. 実施の形態3の駆動方式におけるサブフィールド構成のうち第12サブフィールド(SF12)について示す図である。It is a figure shown about the 12th subfield (SF12) among the subfield structures in the drive system of Embodiment 3. 実施の形態3のPDP装置におけるPDPに対するY電極及びX電極ドライバICの配線及び接続構成を示す図である。FIG. 10 is a diagram illustrating a wiring and connection configuration of a Y electrode and an X electrode driver IC with respect to a PDP in the PDP device of the third embodiment. 実施の形態3における駆動波形の例としてSF1の場合を示す図である。It is a figure which shows the case of SF1 as an example of the drive waveform in Embodiment 3. FIG. 実施の形態3における駆動波形の制御タイミングとしてSF1の1SUSの場合を示す図である。It is a figure which shows the case of 1SUS of SF1 as a drive waveform control timing in Embodiment 3. FIG. 実施の形態4のPDP装置におけるY電極及びX電極ドライバICの回路構成例を示す図である。FIG. 10 is a diagram illustrating a circuit configuration example of a Y electrode and an X electrode driver IC in the PDP device according to the fourth embodiment. 実施の形態4のPDP装置におけるドライバICと制御ロジック回路との接続構成例を示す図である。FIG. 10 is a diagram illustrating a connection configuration example between a driver IC and a control logic circuit in a PDP device according to a fourth embodiment. 実施の形態4における駆動波形の制御タイミングとしてSF1の1SUSの場合を示す図である。FIG. 16 is a diagram illustrating a case of SF1 of 1 SUS as a drive waveform control timing in the fourth embodiment. 実施の形態4における駆動波形の制御タイミングとしてSF1の2SUSの場合を示す図である。FIG. 16 is a diagram showing a case of 2SUS of SF1 as a drive waveform control timing in the fourth embodiment. 実施の形態4における駆動波形の制御タイミングとしてSF1の496SUSの場合を示す図である。FIG. 16 is a diagram illustrating a case of SF1 496SUS as a drive waveform control timing in the fourth embodiment.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
 (実施の形態1)
 図1~図9等を用いて、本発明の実施の形態1のPDP装置及びその駆動回路、駆動方式などについて説明する。実施の形態1では基本的で原理的な構成を示す。
(Embodiment 1)
The PDP apparatus according to the first embodiment of the present invention, its drive circuit, drive system, and the like will be described with reference to FIGS. The first embodiment shows a basic and fundamental configuration.
 <1-1:PDP>
 図1において、本実施の形態のPDP装置に備えるPDP10の基本構造の一例を示している。画素に対応付けられるR(赤),G(緑),B(青)の各色のセルの集まりに対応する一部分のみを模式的に示している。本PDP10は、三電極型、面放電・交流駆動型であり、例えばストライプ状の隔壁構造の場合である。領域Cr,Cg,Cbは、各色のセル(発光領域)に対応付けられる。なお説明のため、図示するように、x方向(第1方向:画面内の水平方向(表示ライン方向))、y方向(第2方向:画面内の垂直方向(表示列方向))、z方向(第3方向:画面に対する垂直(厚さ)方向)を有する。
<1-1: PDP>
FIG. 1 shows an example of a basic structure of a PDP 10 provided in the PDP apparatus of the present embodiment. Only a portion corresponding to a collection of cells of each color R (red), G (green), and B (blue) associated with a pixel is schematically shown. This PDP 10 is a three-electrode type, a surface discharge / AC drive type, for example, a stripe-shaped partition wall structure. The areas Cr, Cg, and Cb are associated with cells (light emitting areas) of each color. For the sake of explanation, as shown in the figure, the x direction (first direction: horizontal direction in the screen (display line direction)), y direction (second direction: vertical direction in the screen (display column direction)), z direction (Third direction: direction perpendicular to the screen (thickness) direction).
 本PDP10は、主に前面側と背面側の2つのガラス基板1,5等による2つの構造体(11,12)を組み合わせて構成される。第1構造体11と第2構造体12を重ね合わせてそれらの外周部が封着され、当該構造体間の領域が真空排気され放電ガスが封入されることにより、内部に放電空間30が構成された本PDP10が構成される。 The present PDP 10 is configured by combining two structures (11, 12) mainly including two glass substrates 1, 5 on the front side and the back side. The first structure 11 and the second structure 12 are overlapped and their outer peripheral portions are sealed, and the region between the structures is evacuated and filled with discharge gas, thereby forming a discharge space 30 inside. This PDP 10 is configured.
 第1構造体(前面基板構造体)11において、ガラス基板1上には、x方向に並行して、表示放電(維持放電)に用いられる表示電極(X電極,Y電極)の対が複数形成されている。表示電極として、維持駆動及び走査駆動に兼用される、X電極(第1電極)(Xで表す)及びY電極(第2電極)(Yで表す)を有する。X,Y電極が共に走査駆動に使用可能である。表示電極(X,Y)は、例えば、透明電極2aとバス電極2bとにより構成される。透明電極2aは、対によりセルの放電ギャップを形成する。バス電極2bは、直線状で駆動回路側と接続される。隣接するXとYの対によりライン(表示ライン)が構成される。表示電極(X,Y)は、誘電体層3及び保護層4などにより覆われる。 In the first structure (front substrate structure) 11, a plurality of pairs of display electrodes (X electrodes, Y electrodes) used for display discharge (sustain discharge) are formed on the glass substrate 1 in parallel with the x direction. Has been. The display electrode includes an X electrode (first electrode) (represented by X) and a Y electrode (second electrode) (represented by Y) that are used for both sustain drive and scan drive. Both X and Y electrodes can be used for scanning driving. The display electrode (X, Y) is composed of, for example, a transparent electrode 2a and a bus electrode 2b. The transparent electrode 2a forms a cell discharge gap by a pair. The bus electrode 2b is linear and connected to the drive circuit side. A line (display line) is formed by adjacent pairs of X and Y. The display electrodes (X, Y) are covered with the dielectric layer 3 and the protective layer 4.
 第2構造体(背面基板構造体)12において、ガラス基板5上には、x方向と交差するy方向に並行して、アドレス駆動用のアドレス電極(Aで表す)が複数形成されている。アドレス電極Aは、例えば誘電体層7に覆われ、誘電体層7上には、例えばy方向に伸びるストライプ状の隔壁(リブ)8が形成されている。隔壁8は、放電空間30をセル(放電領域)に対応して区画する。誘電体層7上、隔壁8間の領域には、放電空間30に露出するように、R,G,Bの各色の発光用の蛍光体9(9r,9g,9b)が、表示列ごとに区別して形成される。 In the second structure (rear substrate structure) 12, a plurality of address electrodes (represented by A) for address driving are formed on the glass substrate 5 in parallel with the y direction intersecting the x direction. The address electrode A is covered with, for example, a dielectric layer 7, and striped partition walls (ribs) 8 extending in the y direction, for example, are formed on the dielectric layer 7. The barrier rib 8 partitions the discharge space 30 corresponding to the cell (discharge region). In the region between the barrier ribs 8 on the dielectric layer 7, phosphors 9 (9 r, 9 g, 9 b) for light emission of R, G, and B are exposed for each display column so as to be exposed to the discharge space 30. It is formed separately.
 本PDP10の構造に限らず、駆動方式などに応じて詳細な構造が各種可能である。例えば、2電極型・交流駆動型のPDPなどに対しても勿論適用可能である。例えば、x方向に伸びる隔壁部を加えた格子状の隔壁8構造なども可能である。例えば、所謂ALIS方式も可能であり、この場合、隣接するすべての表示電極(X,Y)の対により表示ラインが構成され、画面に表示する画像は、奇数ラインを駆動するフィールドと偶数ラインを駆動するフィールドとのインタレース駆動などにより表示される。 , Not only the structure of the PDP 10 but also various detailed structures are possible depending on the driving method. For example, it is of course applicable to a two-electrode type / AC drive type PDP. For example, a lattice-shaped partition wall 8 structure including a partition wall portion extending in the x direction is also possible. For example, a so-called ALIS method is also possible. In this case, a display line is constituted by a pair of all adjacent display electrodes (X, Y), and an image displayed on the screen includes a field for driving odd lines and an even line. Displayed by interlaced driving with the driving field.
 <1-2:駆動方式(1)>
 図2~図3において、実施の形態1のPDP装置及び駆動方式における、フィールド(Fで表す)全体及びサブフィールド(SFで表す)の駆動における基本構成(原理的な構成)を模式的に示している。図2では、本方式の原理的な動作の説明のために、フィールド(F)及びSFにおける、ライン(Lで表す)、グループ(Gで表す)、領域(Bで表す)の構成、及び駆動タイミングの概略などを示している。図3では、各SFの駆動タイミングなどを示している。なお#は識別の番号を示す。
<1-2: Drive system (1)>
FIGS. 2 to 3 schematically show a basic configuration (principal configuration) in driving of the entire field (represented by F) and subfield (represented by SF) in the PDP apparatus and drive system of the first embodiment. ing. In FIG. 2, in order to explain the principle operation of the present system, the configuration of lines (represented by L), groups (represented by G), regions (represented by B), and driving in the fields (F) and SF. An outline of timing is shown. FIG. 3 shows the drive timing of each SF. # Indicates an identification number.
 図2において、PDP10の表示領域(画面)を構成するライン(L)群において、L1~L20までの20ラインを有し駆動対象とする場合を示している。この場合の階調表示駆動の方式として、維持駆動に関する維持駆動数(SNとする)の種類を5種類(SN:1,2,4,8,16)とした場合であり、これに対応して、1フィールド(F)を構成するSFの数を5個(SF:SF1~SF5)とした場合である。階調表現は、2のベキ乗による場合である。 FIG. 2 shows a case where the line (L) group constituting the display area (screen) of the PDP 10 has 20 lines L1 to L20 to be driven. In this case, the gradation display driving method is a case where the number of sustain driving numbers (SN) regarding the sustain driving is five (SN: 1, 2, 4, 8, 16). In this case, the number of SFs constituting one field (F) is five (SF: SF1 to SF5). The gradation expression is based on a power of 2.
 維持駆動数(SN)は、SF及びライン単位での維持駆動におけるパルス(維持電圧パルス)の印加の回数(SUS数)であり、維持放電発光による時間や輝度などに対応付けられる。 The number of sustain drives (SN) is the number of times of application of pulses (sustain voltage pulses) in the sustain drive in SF and line units (SUS number), and is associated with time, brightness, etc. due to sustain discharge light emission.
 維持駆動数(SN)が5種類なので、2の5乗による32階調表示が可能である。また、5種類のSNを実現するため、画面の20ラインを、飛び越しによる分散した複数のラインから成る5つのグループ(分割グループ、駆動グループなどとも称する)G:G1~G5に分割した5分割構成により駆動を行う。分割グループ数及び飛び越し走査単位が5であり、1グループを構成するライン数が4である。グループGは、維持駆動に関する分割の単位であり、グループG毎に所定のSNが対応付けられる。 Since there are five types of sustain drive numbers (SN), 32 gradation display by the power of 2 is possible. Further, in order to realize five types of SNs, a five-divided configuration in which 20 lines of a screen are divided into five groups (also referred to as divided groups, drive groups, etc.) consisting of a plurality of lines dispersed by interleaving G: G1 to G5 To drive. The number of divided groups and interlaced scanning units are 5, and the number of lines constituting one group is 4. The group G is a unit of division related to the sustain drive, and a predetermined SN is associated with each group G.
 画面の上部からのラインL1~L20の並びに対し、5種類の維持駆動数SNに対応させて分割したグループG1~G5を、上部からライン毎に割り当てる。例えば、第1のラインL1は第1のグループG1、第2のラインL2は第2のグループ、……、第5のラインL5は第5のグループG5に属し、巡回して、第6のラインL6は第1のグループ、……といったように割り当てられる。例えば第1のグループG1は、L1,L6,L11,L16という、5ライン単位での飛び越しによる分散した4個のラインから成る。 The groups G1 to G5 divided in accordance with the five types of sustain drive numbers SN are assigned to the lines L1 to L20 from the top of the screen for each line from the top. For example, the first line L1 belongs to the first group G1, the second line L2 belongs to the second group,..., The fifth line L5 belongs to the fifth group G5. L6 is assigned as the first group, and so on. For example, the first group G1 is composed of four lines L1, L6, L11, and L16 dispersed by 5-line jumping.
 走査の動作は、画面上の複数のラインによる配列に対して、所定のライン数単位での飛び越し走査により行われる。隣接するすべてのライン間では、維持駆動動作における維持駆動数SNを異ならせることが可能なように制御される。 The scanning operation is performed by interlaced scanning in units of a predetermined number of lines with respect to the arrangement of a plurality of lines on the screen. Control is performed so that the number of sustain drives SN in the sustain drive operation can be made different between all adjacent lines.
 画面の全20ラインに対して、隣接ラインから成る領域(B)としては、5グループに分割されたことによる4つの領域B:B1~B4が存在する。領域Bは、隣接ラインにおいて各G:G1~G5にそれぞれ属する5種類のラインの集まりから成る。例えば、第1の領域B1は、L1~L5という隣接5ラインから成る。 For all 20 lines on the screen, there are four areas B: B1 to B4 that are divided into 5 groups as areas (B) consisting of adjacent lines. The region B is composed of a set of five types of lines belonging to G: G1 to G5 in adjacent lines. For example, the first region B1 is composed of five adjacent lines L1 to L5.
 このようなグループGの構成において、1F:16.667msの駆動時間に対して、1SF:3.333msの時間によるSF1~SF5が均等に割り当てられ、SF毎の駆動が行われる。 In such a configuration of group G, SF1 to SF5 with a time of 1SF: 3.333 ms are equally allocated to a drive time of 1F: 16.667 ms, and driving for each SF is performed.
 図2のSFにおいて、縦線はリセット駆動タイミングを、○印は走査駆動タイミング(アドレス駆動タイミング)を、横線は維持駆動タイミング及び期間を示している。リセットは全ライン共通でSFの最初に行われる。走査(アドレス)はグループG順かつグループGごとのライン順次で行われる。維持駆動は走査(アドレス)の直後からグループG単位のSNによる期間で行われる。 2, the vertical line indicates the reset drive timing, the circle indicates the scan drive timing (address drive timing), and the horizontal line indicates the sustain drive timing and period. Reset is performed at the beginning of the SF for all lines. Scanning (addressing) is performed in order of group G and in line order for each group G. The sustain drive is performed in a period of SN of the group G unit immediately after scanning (address).
 図3(a)ではSF1(1Fの最初のSF)の構成を示し、図3(b)ではSF2(次のSF)の構成を示し、以降SF3~SF4を省略し、図3(c)ではSF5(1Fの最後のSF)の構成を示す。各SFは、詳しくは、順に、リセット駆動(Rで示す)、アドレス駆動(Aで示す)、サステイン駆動(Sで示す)、といった3種類の駆動から構成されている。それぞれの駆動タイミング(時間単位)(Tで表す)として例えばT0~T21により時間制御される。 FIG. 3A shows the configuration of SF1 (first SF of 1F), FIG. 3B shows the configuration of SF2 (next SF), and SF3 to SF4 are hereinafter omitted, and FIG. The structure of SF5 (the last SF of 1F) is shown. More specifically, each SF is composed of three types of driving, namely, reset driving (indicated by R), address driving (indicated by A), and sustain driving (indicated by S). Each drive timing (unit of time) (represented by T) is time-controlled by T0 to T21, for example.
 図3(a)で、最初に駆動されるSF1において、先頭のタイミングT0では全ライン(L1~L20)に対してリセット駆動Rが行われる。これにより、全セルの状態が一斉に初期状態に設定される。これは引き続くSF2~SF5に対しても同様であり、同じくT0でリセット駆動Rが行れる。当該期間(T0)をリセット駆動期間(Trで表す)と称する。Trは例えば0.1msである。 In FIG. 3A, in the first driven SF1, reset driving R is performed for all lines (L1 to L20) at the leading timing T0. Thereby, the state of all the cells is set to the initial state all at once. The same applies to the subsequent SF2 to SF5, and the reset drive R is performed at T0. This period (T0) is referred to as a reset driving period (represented by Tr). Tr is, for example, 0.1 ms.
 リセット駆動R(Tr)の後は、各ラインに対して、順次、アドレス駆動A(走査駆動を含む)と維持駆動Sの動作を並行して行う期間に入る。当該期間(T1~T21)を、アドレス・維持駆動期間(Tasで表す)と称する。Tasは例えば3.233msである。 After the reset drive R (Tr), a period in which the operations of the address drive A (including the scan drive) and the sustain drive S are sequentially performed for each line is entered. The period (T1 to T21) is referred to as an address / sustain drive period (represented by Tas). Tas is, for example, 3.233 ms.
 アドレス駆動Aでは、選択するセルに対し、表示電極(X,Y)対によるラインに対する選択動作(走査)と、アドレス電極Aに対する選択動作(アドレス)とをタイミングを合わせて行う。即ち、X電極またはY電極に対するパルス(走査電圧パルス)の印加と、アドレス電極Aに対するパルス(アドレスパルス)の印加とをタイミングを合わせて行う。維持駆動Sでは、アドレス駆動Aにより選択されたセルに対し、表示電極(X,Y)対によるラインに対する維持放電動作を行う。即ち、当該ラインのX電極及びY電極に対する交互に反転するパルス(維持電圧パルス)の印加をSN分繰り返し行う。 In the address driving A, the selection operation (scanning) for the line by the display electrode (X, Y) pair and the selection operation (address) for the address electrode A are performed at the same timing for the cell to be selected. That is, the application of a pulse (scanning voltage pulse) to the X electrode or the Y electrode and the application of a pulse (address pulse) to the address electrode A are performed at the same timing. In the sustain drive S, a sustain discharge operation is performed on the line selected by the display electrode (X, Y) pair for the cell selected by the address drive A. That is, the application of alternately inverted pulses (sustain voltage pulses) to the X electrode and Y electrode of the line is repeated for SN.
 SF1の期間Tasにおいては、上記5種類のグループG1~G5におけるG1からG5の順序でG1から駆動を開始する。最初のG1では、ラインL1,L6,L11,L16に対して連続的にアドレス駆動Aを行う。そのため、まずタイミングT1(Tas内の第1のタイミング)においてL1に対してアドレス駆動Aを行う。その後、次のT2では、L1から5ライン単位で飛び越したライン(5ライン後)であるL6に対してアドレス駆動Aを行う。以降同様に、T3ではL11、T4ではL16に対してアドレス駆動Aを行う。これにより、G1の全ラインに対するアドレス駆動Aを完了する。このように、分割グループ数である5に等しい値に、飛び越し走査単位の数を合わせる。これにより、各グループのラインに対し抜け無く順次に駆動を可能にしている。 In the period Tas of SF1, driving is started from G1 in the order of G1 to G5 in the above five types of groups G1 to G5. In the first G1, address drive A is continuously performed for the lines L1, L6, L11, and L16. Therefore, address drive A is first performed on L1 at timing T1 (first timing in Tas). Thereafter, at the next T2, address drive A is performed for L6, which is a line (after 5 lines) jumped from L1 in units of 5 lines. Similarly, address drive A is performed for L11 at T3 and L16 at T4. This completes the address drive A for all the lines of G1. Thus, the number of interlaced scanning units is adjusted to a value equal to 5 which is the number of divided groups. Thereby, it is possible to sequentially drive the lines of each group without missing.
 グループG1の駆動の次には、タイミングT5から、次のグループG2(L2,L7,L12,L17)に対してのアドレス駆動Aを開始する。先のL1の隣(下)に位置するL2から、同様に5ライン毎に飛び越し走査を行うことにより、T5~T8でG2の全ラインへのアドレス駆動Aを完了する。 Next to the driving of the group G1, the address driving A for the next group G2 (L2, L7, L12, L17) is started from the timing T5. By performing interlace scanning every 5 lines in the same manner from L2 adjacent to (below) the previous L1, address driving A to all the lines of G2 is completed at T5 to T8.
 以降同様に、T9~T12でG3(L3,L8,L13,L18)を駆動し、T13~T16でG4(L4,L9,L14,L19)を駆動し、T17~T20でG5(L5,L10,L15,L20)を駆動する。最後のT20のL20で、全ラインに対するアドレス駆動Aを完了する。 Similarly, G3 (L3, L8, L13, L18) is driven at T9 to T12, G4 (L4, L9, L14, L19) is driven at T13 to T16, and G5 (L5, L10, L19, T20 to T20). L15, L20) are driven. At L20 of the last T20, address drive A for all lines is completed.
 本特徴の1つは上記飛び越し走査によるアドレス駆動Aである。それとは別に、更なる特徴は、あるタイミングで先にアドレス駆動Aが終わったラインに対して、そのアドレス駆動Aの直後のタイミングから続けて維持駆動Sを並行(他のラインの動作と同時並行)して行うことである。しかも、グループG毎に、その維持駆動Sの回数(SN)を異ならせることが可能なように制御されている。SF1では、アドレス駆動Aを開始するグループの順番(G1~G5)に従い、SNについて、例えば、G1:16回、G2:8回、G3:4回、G4:2回、G5:1回、といったように2のベキ乗による方式で設定している。 One of the features is the address drive A based on the interlaced scanning. Apart from that, a further feature is that the sustain drive S is continued in parallel with the timing immediately after the address drive A for the line for which the address drive A has been completed at a certain timing (simultaneously with the operation of other lines). ) To do. In addition, the number of times (SN) of the sustain drive S is controlled to be different for each group G. In SF1, according to the order (G1 to G5) of the group in which the address drive A is started, for SN, for example, G1: 16 times, G2: 8 times, G3: 4 times, G4: 2 times, G5: 1 times, etc. In this way, the method is set by a power of 2.
 補足すると、特徴的な動作として、T2でL6をアドレス駆動Aすると同時に、先にT1でアドレス駆動A済みのL1に対して同時並行して維持駆動Sする。同様に、T3でL11をアドレス駆動Aすると同時に、先にT1,T2でアドレス駆動A済みのL1,L6に対して同時並行して維持駆動Sする。また、1つのラインLでみると、飛び越し走査のタイミングTでアドレス駆動Aされ、その後に続く所定SN分のタイミングで各維持駆動Sが行われる。このような動作(アドレス駆動A+維持駆動S)が、必要なタイミング分(T21)まで繰り返される。 Supplementally, as a characteristic operation, L6 is address-driven A at T2, and at the same time, the sustain drive S is simultaneously performed in parallel with L1 that has already been address-driven A at T1. Similarly, address drive A is performed on L11 at T3, and at the same time, sustain drive S is simultaneously performed on L1 and L6 that have already been addressed at T1 and T2. Further, when viewed from one line L, the address drive A is performed at the timing T of the interlaced scanning, and each sustain drive S is performed at the subsequent timing corresponding to the predetermined SN. Such an operation (address drive A + sustain drive S) is repeated until the necessary timing (T21).
 SF1の最後(Tas内の最後)のタイミングT21では、アドレス駆動Aの最後のラインL20に対する維持駆動Sのみが行われ、以上によって期間Tas及びSF1の全動作が終了する。 At the timing T21 at the end of SF1 (the last in Tas), only the sustain drive S for the last line L20 of the address drive A is performed, and all the operations in the periods Tas and SF1 are completed as described above.
 次に、図3(b)で示すSF2の駆動に移り、SF1(図3(a))と基本的に同様に、リセット駆動期間Tr及びアドレス・維持駆動期間Tasにより各駆動が行われる。特徴の1つとして、SF2では、Tasでアドレス駆動Aを行うグループの順番を、SF1での順番とは異ならせる。例えば、SF2では、G2,G3,G4,G5,G1の順でアドレス駆動Aを開始する(開始グループを1つ後ろへずらし最終グループ(G5)の後は最初(G1)へ戻る形)。即ち、SF2のT1では、G2のL2からアドレス駆動Aを開始する。これに合わせて、各グループに対する維持駆動数(SN)を、G2:16回、G3:8回、G4:4回、G5:2回、G1:1回、と設定している。即ち、SF2の各ラインに対する維持駆動Sの回数(SN)を、SF1の場合とは異ならせている。具体的には、SF1とSF2で駆動内容が1ラインずれた形となっている。 Next, the driving of SF2 shown in FIG. 3B is started, and each driving is performed by the reset driving period Tr and the address / sustain driving period Tas basically in the same manner as SF1 (FIG. 3A). As one of the characteristics, in SF2, the order of the group that performs address driving A with Tas is different from the order in SF1. For example, in SF2, the address drive A is started in the order of G2, G3, G4, G5, and G1 (a form in which the start group is shifted backward by one and after the final group (G5) returns to the first (G1)). That is, at T1 of SF2, address drive A is started from L2 of G2. In accordance with this, the number of sustain drives (SN) for each group is set as G2: 16 times, G3: 8 times, G4: 4 times, G5: 2 times, and G1: 1 times. That is, the number (SN) of sustain driving S for each line of SF2 is different from that of SF1. Specifically, the driving contents are shifted by one line between SF1 and SF2.
 以降、SF3,SF4,SF5でも同様に、異なるSF間でアドレス駆動Aを開始するグループの順番を異ならせ、各グループに対して異なるSNを割り当てるようにして、駆動が行われる。例えば、SF3ではG3から、SF4ではG4から、SF5ではG5から順に駆動される。図3(c)で示すSF5の駆動の終了により、1フィールドの駆動が終了する。 Thereafter, similarly in SF3, SF4, and SF5, driving is performed by changing the order of the groups in which the address driving A is started between different SFs and assigning different SNs to the respective groups. For example, driving is performed in order from G3 in SF3, G4 in SF4, and G5 in SF5. When the driving of SF5 shown in FIG. 3C is finished, the driving of one field is finished.
 以上により、1フィールドの終了時点においては、全グループG1~G5に対して、上記5種類の維持駆動数(SN:16,8,4,2,1)が均等に配分される(図2)。例えば、G1のL1では、SF1~SF5で、SNが、順に、16,1,2,4,8となる。これにより、全ラインに対して、それらSNを加算した数(31)プラス1(黒表示分)である32(2の5乗)の階調表示駆動を可能にしている。即ち、フィールドの各SFの各ラインL(セル)の各タイミングTで維持駆動Sのオン・オフが選択されることにより、32段階の階調表示が可能である。 As described above, at the end of one field, the above five types of sustain drive numbers (SN: 16, 8, 4, 2, 1) are evenly distributed to all the groups G1 to G5 (FIG. 2). . For example, in L1 of G1, SN is 16, 1, 2, 4, 8 in order from SF1 to SF5. As a result, 32 (2 to the 5th power) gradation display drive, which is the number (31) plus 1 (black display portion) obtained by adding these SNs, is enabled for all lines. That is, by selecting ON / OFF of the sustain drive S at each timing T of each line L (cell) of each SF of the field, gradation display in 32 stages is possible.
 このように、各駆動グループの維持駆動数SNが、零と自然数Nによる2のベキ乗値の小から大への連続した数値で設定されている場合、このときのグループ数の決め方は、以下のようである。即ち、一定の駆動期間(フィールド)内における、維持駆動Sのパルスの回数の加算により決まる最大階調数(K)との関係において、当該最大階調数(K)に対し、自然数Nによる2のN乗の方が大きくなるとき(K<2のN乗)の最小のNに等しい値を選ぶことにより、必要最小限となるグループ数を決めることができる。上記本例では、SNの加算による最大階調数が31であり、2の5乗が32であり、必要最小限のグループ数はN=5となる。 As described above, when the sustain drive number SN of each drive group is set as a continuous numerical value from a small power value of 2 by zero and a natural number N, how to determine the number of groups at this time is as follows. It seems to be. That is, in relation to the maximum number of gradations (K) determined by the addition of the number of pulses of the sustain drive S within a certain driving period (field), the natural number N is 2 with respect to the maximum number of gradations (K). By selecting a value equal to the minimum N when K is larger than the Nth power (K <2 to the Nth power), the necessary minimum number of groups can be determined. In the present example, the maximum number of gradations due to the addition of SN is 31, the fifth power of 2 is 32, and the necessary minimum number of groups is N = 5.
 なお、各駆動グループの維持駆動数SNが、上記以外(零と自然数Nによる2のベキ乗値の小から大への連続した数値以外)の数値も含んで設定されている場合には、このときの必要最小限のグループ数はこの限りではない。 If the sustain drive number SN of each drive group is set to include values other than the above (other than consecutive numbers from small to large powers of 2 by zero and natural number N), This is not always the minimum number of groups required.
 また、本例では、各SF:SF1~SF5において、それぞれのタイミング(駆動時間単位)をT21までとした。このタイミング(T)の数をさらに増やすことにより維持駆動数(SN)を適宜増やすことも可能である。その意味で、設定可能な階調表示駆動数に対する自由度は大きい。 Further, in this example, in each SF: SF1 to SF5, each timing (drive time unit) is set to T21. It is also possible to appropriately increase the number of sustain drives (SN) by further increasing the number of timings (T). In that sense, the degree of freedom with respect to the settable number of gradation display driving numbers is great.
 <1-3:駆動方式(2)>
 次に、図4~図5では、上述した駆動方式の基本構成に基づいた、フィールド及びSFに関する第2の基本構成について同様に示している。図4はフィールドの構成、図5は各SFの構成である。第2の基本構成では、上述した基本構成でのライン数(20)よりも2本多い22本の場合に対して、同様に5種類の維持駆動数(SN)を割り当てて、5つのグループG1~G5、及び1Fが5SF(SF1~SF5)の構成による駆動により、32階調表示を実現する。
<1-3: Drive system (2)>
Next, in FIGS. 4 to 5, the second basic configuration relating to the field and the SF based on the basic configuration of the driving method described above is similarly shown. FIG. 4 shows the configuration of the field, and FIG. 5 shows the configuration of each SF. In the second basic configuration, for the case of 22 lines, which is two more than the number of lines (20) in the basic configuration described above, five types of sustain drive numbers (SN) are similarly assigned, and five groups G1. Through G5 and 1F are driven by the configuration of 5SF (SF1 to SF5), 32 gradation display is realized.
 図4に示すように、全ラインL1~L22の並びに対し、グループG1~G5を上部から順に割り当てると、領域B1~B4(L1~L20)までは先の第1の基本構成(図2)と同じになるが、残りのL21,L22の2ラインに対しては、例えばグループG1,G2のみが割り当てられ、これにより他の領域とは異なる領域B5が新たに生じる。 As shown in FIG. 4, when groups G1 to G5 are assigned in order from the top to the arrangement of all lines L1 to L22, areas B1 to B4 (L1 to L20) are the same as the first basic configuration (FIG. 2). Although the same, for example, only the groups G1 and G2 are allocated to the remaining two lines L21 and L22, thereby newly generating a region B5 different from the other regions.
 この場合、この新たな領域B5に対する駆動の仕方が課題になるが、その詳細を図5で示している。ライン数が22であるため、期間Tasのタイミング(T)数は、最低でも22プラス1の23が必要になる。 In this case, how to drive the new area B5 becomes an issue, and the details are shown in FIG. Since the number of lines is 22, the number of timings (T) in the period Tas needs to be 22 plus 1 at least 23.
 そして、図5の通り、ラインL21,L22に対する駆動としては、各SFであくまでも領域B5のグループG1,G2に含まれるものとして各駆動が行われる。L21はG1に、L22はG2に含まれる。例えば図5(a)に示すSF1では、G1のL21ではSN=16、G2のL22ではSN=8が割り当てられる。図5(b)に示すSF2では、G1のL21ではSN=1、G2のL22ではSN=16が割り当てられる。同様に、図5(c)に示すSF5では、G1のL21ではSN=8、G2のL22ではSN=4が割り当てられる。このように、領域B5(全ラインをグループ数で分割したときに余る領域)については、他の領域B1~B4と同様にグループG1,G2に含まれているものとして扱う。領域B5に対しても維持駆動数(SN:16,8,4,2,1)が均等に配分され、これにより他の領域のラインと同様に32階調表示の駆動を可能にしている。 Then, as shown in FIG. 5, as driving for the lines L21 and L22, each driving is performed as included in the groups G1 and G2 of the region B5 in each SF. L21 is included in G1, and L22 is included in G2. For example, in SF1 shown in FIG. 5A, SN = 16 is assigned to L21 of G1, and SN = 8 is assigned to L22 of G2. In SF2 shown in FIG. 5B, SN = 1 is assigned in L21 of G1, and SN = 16 is assigned in L22 of G2. Similarly, in SF5 shown in FIG. 5C, SN = 8 is assigned to L21 of G1, and SN = 4 is assigned to L22 of G2. As described above, the region B5 (the region remaining when all lines are divided by the number of groups) is handled as being included in the groups G1 and G2 as in the other regions B1 to B4. The number of sustain drives (SN: 16, 8, 4, 2, 1) is equally distributed to the area B5, thereby enabling 32 gradation display driving as with the lines of other areas.
 <1-4:PDP装置>
 次に、図6~図7において、実施の形態1における、上述した階調駆動方式を実現するPDP装置の構成を示している。図6では、本PDP装置における基本的なPDP及びPDP駆動回路装置などを含む主要部の構成を示している。図7では、表示電極(X,Y)のドライバICの構成例を示している。
<1-4: PDP device>
Next, FIGS. 6 to 7 show the configuration of the PDP apparatus that realizes the above-described gradation driving method in the first embodiment. FIG. 6 shows a configuration of main parts including a basic PDP and a PDP drive circuit device in the PDP device. FIG. 7 shows a configuration example of the driver IC of the display electrode (X, Y).
 図6において、アドレス電極A側には、アドレス電極A毎にアドレス電圧波形(アドレスパルス)を印加するためのアドレス電極駆動回路が、アドレスドライバIC(Da)130として、複数回路毎(複数電極毎)に集積化されて接続されている。表示電極(Y電極、X電極)に対しては、電極毎に走査電圧波形(スキャンパルス)や維持電圧波形(サステインパルス)を印加するための回路(X電極駆動回路、Y電極駆動回路)が、複数回路毎(複数電極毎)に集積化されて、Y電極ドライバIC(Dy)110及びX電極ドライバIC(Dx)120として接続されている。 In FIG. 6, on the address electrode A side, an address electrode drive circuit for applying an address voltage waveform (address pulse) for each address electrode A is provided as an address driver IC (Da) 130 for each of a plurality of circuits (for each of a plurality of electrodes). ) Integrated and connected. For the display electrodes (Y electrode, X electrode), there are circuits (X electrode drive circuit, Y electrode drive circuit) for applying a scan voltage waveform (scan pulse) and a sustain voltage waveform (sustain pulse) for each electrode. These are integrated for each of a plurality of circuits (each of a plurality of electrodes) and connected as a Y electrode driver IC (Dy) 110 and an X electrode driver IC (Dx) 120.
 Dy110は、各Y電極に対し、個別に維持駆動するための維持駆動回路部と、個別に走査駆動するための走査駆動回路部とを含む。Dx120は、各X電極に対し、個別に維持駆動するための維持駆動回路部と、個別に走査駆動するための走査駆動回路部とを含む。Da130は、各アドレス電極に対し、個別にアドレス駆動するための回路部を備える。 Dy110 includes a sustain drive circuit unit for individually sustaining and driving each Y electrode, and a scan drive circuit unit for individually scanning and driving. The Dx 120 includes a sustain drive circuit unit for individually maintaining and driving each X electrode, and a scan drive circuit unit for individually scanning and driving. The Da 130 includes a circuit unit for individually address driving each address electrode.
 アドレス駆動は、Da130によるアドレス電極Aへのアドレスパルスの印加と、Dy110によるY電極へのスキャンパルスの印加、またはDx120によるX電極へのスキャンパルスの印加とが、タイミングを合わせて行われることで実現される。維持駆動は、Dy110によるY電極へのサステインパルスの印加と、Dx120によるX電極へのサステインパルスの印加とが、交互のタイミングで行われることで実現される。 The address drive is performed by applying the address pulse to the address electrode A by Da 130 and the scan pulse to the Y electrode by Dy 110 or applying the scan pulse to the X electrode by Dx 120 at the same timing. Realized. The sustain drive is realized by performing the application of the sustain pulse to the Y electrode by Dy 110 and the application of the sustain pulse to the X electrode by Dx 120 at alternate timings.
 PDP10(ノーマル構成)の電極として、n本のX電極(X1~Xn)及びY電極(Y1~Yn)、m本のアドレス電極(A1~Am)を有する。X電極(Xi)とY電極(Yi)の対によりライン(Li)が構成される。ライン間は非表示部である。 The electrodes of the PDP 10 (normal configuration) have n X electrodes (X1 to Xn), Y electrodes (Y1 to Yn), and m address electrodes (A1 to Am). A line (Li) is constituted by a pair of the X electrode (Xi) and the Y electrode (Yi). Between the lines is a non-display portion.
 Y電極群とDy110は、接続部51により端子間が配線及び接続されている。X電極群とDx120は、接続部52により端子間が配線及び接続されている。接続部51,52は例えばフレキシブル基板によるモジュールである。 The Y electrode group and the Dy 110 are connected and connected between the terminals by the connecting portion 51. The X electrode group and the Dx 120 are connected and connected between the terminals by the connecting portion 52. The connection parts 51 and 52 are modules by a flexible substrate, for example.
 Dy110及びDx120において、それぞれの高電位側及び低電位側の電源端子(PH,PL)には、走査駆動用及び維持駆動用の各電圧(走査電圧、維持電圧)を供給するための駆動電圧供給回路(Cyp141,Cxp142)が接続されている。また、この回路(Cyp141,Cxp142)には、各ラインに対し共通のリセット駆動用の電圧波形を印加するためのリセット電圧波形発生回路(Cyr151,Cxr152)が接続されている。 In Dy110 and Dx120, drive voltage supply for supplying each voltage for scanning drive and sustain drive (scan voltage, sustain voltage) to the high-potential side and low-potential side power terminals (PH, PL). Circuits (Cyp141, Cxp142) are connected. The circuit (Cyp141, Cxp142) is connected to reset voltage waveform generation circuits (Cyr151, Cxr152) for applying a common reset driving voltage waveform to each line.
 Dy110の外部には、Y電極側駆動電圧供給回路(Cyp)141が接続されている。Cyp141(PL側)には、Y電極側リセット電圧波形発生回路(Cyr)151が接続されている。Dx120の外部には、X電極側駆動電圧供給回路(Cxp)142が接続されている。Cxp142(PL側)には、X電極側リセット電圧波形発生回路(Cxr)152が接続されている。 A Y electrode side drive voltage supply circuit (Cyp) 141 is connected to the outside of Dy110. A Y electrode side reset voltage waveform generation circuit (Cyr) 151 is connected to Cyp 141 (PL side). An X electrode side drive voltage supply circuit (Cxp) 142 is connected to the outside of Dx120. An X electrode side reset voltage waveform generation circuit (Cxr) 152 is connected to Cxp 142 (PL side).
 上記各回路部(110,120,130,141,142等)は、制御回路101などに接続されている。制御回路101は、外部から入力されるインタフェース信号等(データ信号、クロック信号、同期信号など)に基づき、上記各回路部を制御するための駆動制御信号などを生成し出力する。この制御は、例えばスイッチ素子のオン・オフの切り替え制御等である。各駆動電圧供給回路(Cyp141,Cxp142)に内蔵されているスイッチ素子(SWX1~SWX4,SWY1~SWY4等)の制御により、各ドライバIC(Dy110,Dx120)に対して、走査電圧や維持電圧が供給される。そして、各ドライバICの出力の制御と合わせて、PDP10の各電極に電圧波形を選択的に印加する動作が行われる。 The circuit units (110, 120, 130, 141, 142, etc.) are connected to the control circuit 101, etc. The control circuit 101 generates and outputs a drive control signal for controlling each of the circuit units based on an interface signal (data signal, clock signal, synchronization signal, etc.) input from the outside. This control is, for example, on / off switching control of the switch element. A scan voltage and a sustain voltage are supplied to each driver IC (Dy110, Dx120) by controlling the switch elements (SWX1 to SWX4, SWY1 to SWY4, etc.) built in each drive voltage supply circuit (Cyp141, Cxp142). Is done. Then, in conjunction with the output control of each driver IC, an operation of selectively applying a voltage waveform to each electrode of the PDP 10 is performed.
 Cyp141において、PH側の回路として、グランド(GND)に接続されるSWY1、及び維持電圧電源(Vs)に接続されるSWY3を含む回路部と、PL側の回路として、走査電圧電源(-Vd)に接続されるSWY2、及びGNDに接続されるSWY4を含む回路部とを有する。Cxp142において、PH側の回路として、GNDに接続されるSWX1、及び維持電圧電源(Vs)に接続されるSWX3を含む回路部と、PL側の回路として、走査電圧電源(-Vd)に接続されるSWX2、及びGNDに接続されるSWX4を含む回路部とを有する。各スイッチ素子(SWX1等)は、MOSトランジスタ等により構成される。駆動制御時、スイッチ素子が所定期間オン(導通)/オフ(遮断)に制御されることにより、所定パルス幅の電位が供給される。 In Cyp 141, a circuit portion including SWY1 connected to the ground (GND) and SWY3 connected to the sustain voltage power supply (Vs) as a PH side circuit, and a scanning voltage power supply (−Vd) as a PL side circuit. And a circuit portion including SWY2 connected to GND and SWY4 connected to GND. In Cxp142, a circuit part including SWX1 connected to GND and SWX3 connected to the sustain voltage power supply (Vs) as a circuit on the PH side, and a scanning voltage power supply (−Vd) as a circuit on the PL side are connected. And a circuit portion including SWX4 connected to GND. Each switch element (such as SWX1) is configured by a MOS transistor or the like. At the time of drive control, the switch element is controlled to be on (conducting) / off (cut off) for a predetermined period, whereby a potential having a predetermined pulse width is supplied.
 図6の構成例では、スイッチ素子(SWY1等)のみならずリセット電圧波形発生回路(Cyr151,Cxr152)についても、X,Yの駆動電圧供給回路(Cyp141,Cxp142)に内蔵されている。これに限らず、波形構成の工夫などにより、X,Yの片側のみに当該リセット用の回路を内蔵させる構成として簡単化を図ることもできる。 In the configuration example of FIG. 6, not only the switch elements (SWY1 and the like) but also the reset voltage waveform generation circuits (Cyr151 and Cxr152) are built in the X and Y drive voltage supply circuits (Cyp141 and Cxp142). However, the present invention is not limited to this, and it is possible to simplify the configuration by incorporating the reset circuit on only one side of X and Y by devising the waveform configuration.
 <1-5:ドライバIC>
 図7において、Y電極及びX電極の各ドライバIC(Dy110,Dx120)の構成を示している。Dy110とDx120で同様の構成である。PDP10の電極(X,Y)に対応付けられる出力(OUT1~OUThg)毎に、出力回路(出力段バッファ回路(OB))202を有する。出力回路202毎に、ハイサイドスイッチ素子(HSW)とローサイドスイッチ素子(LSW)の2種類のスイッチ素子が設けられ、複数のHSWの電源端子側は共通に接続されて高電位側電源端子(PH)として外部へ引き出されており、複数のLSWの電源端子側は共通に接続されて低電位側電源端子(PL)として外部へ引き出されている。
<1-5: Driver IC>
FIG. 7 shows the configuration of each driver IC (Dy110, Dx120) for the Y electrode and the X electrode. Dy110 and Dx120 have the same configuration. For each output (OUT1 to OUThg) associated with the electrodes (X, Y) of the PDP 10, an output circuit (output stage buffer circuit (OB)) 202 is provided. For each output circuit 202, two types of switch elements, a high-side switch element (HSW) and a low-side switch element (LSW), are provided, and the power supply terminal sides of the plurality of HSWs are connected in common to provide a high-potential-side power supply terminal (PH ), And the power supply terminal sides of the plurality of LSWs are connected in common and are drawn out as low potential side power supply terminals (PL).
 各出力回路202(スイッチ素子)の前段には、これらを制御するロジック回路として、シフトレジスタ、ラッチ回路、及びゲート回路(G)63などが配置され、ゲート回路(G)63とHSWとの間にはレベルシフト回路(LS)64が設けられている。 In front of each output circuit 202 (switch element), a shift register, a latch circuit, a gate circuit (G) 63, and the like are arranged as logic circuits for controlling them, and between the gate circuit (G) 63 and the HSW. Is provided with a level shift circuit (LS) 64.
 上記シフトレジスタ、ラッチ回路としては、走査駆動制御用と維持駆動制御用とでそれぞれ独立させたシフトレジスタ・ラッチ回路を設ける。即ち、走査駆動用シフトレジスタ・ラッチ回路(SCAN-SL)61と、維持駆動用シフトレジスタ・ラッチ回路(SUS-SL)62とを設け、それぞれゲート回路(G)63に接続されている。これにより、X,Yでそれぞれ独立させた走査駆動と維持駆動の各動作を可能としている。201は、SCAN-SL61とSUS-SL62とを含むロジック回路(シフトレジスタ・ラッチ回路)部である。 As the shift register and latch circuit, there are provided shift register / latch circuits that are independent for scan drive control and sustain drive control. That is, a scan drive shift register / latch circuit (SCAN-SL) 61 and a sustain drive shift register / latch circuit (SUS-SL) 62 are provided, and are connected to the gate circuit (G) 63, respectively. As a result, the scanning drive and sustain drive operations can be performed independently for X and Y, respectively. Reference numeral 201 denotes a logic circuit (shift register / latch circuit) unit including SCAN-SL61 and SUS-SL62.
 SCAN-SL61では、入力として、C1:走査駆動用シフトレジスタ・ラッチ制御信号、D1in:走査駆動用シフトレジスタデータ入力を有し、出力として、走査駆動用シフトレジスタデータ出力(D1out)を有する。SUS-SL62では、入力として、C2:維持駆動用シフトレジスタ・ラッチ制御信号、D2in:維持駆動用シフトレジスタデータ入力を有し、出力として、維持駆動用シフトレジスタデータ出力(D2out)を有する。また、ゲート回路(G)63の制御入力として、CG:ゲート制御信号を有する。 The SCAN-SL61 has C1: scan drive shift register / latch control signal as input, D1in: scan drive shift register data input, and scan drive shift register data output (D1out) as output. The SUS-SL 62 has C2: sustain drive shift register / latch control signal as input, D2in: sustain drive shift register data input, and sustain drive shift register data output (D2out) as output. Further, CG: a gate control signal is provided as a control input of the gate circuit (G) 63.
 <1-6:駆動波形(1)>
 図8は、実施の形態1のPDP装置及び駆動方式における基本的な駆動波形の一例(第1の駆動波形)を示している。上から、アドレス電極A(A1~Am)に対する印加波形、各ラインL(X電極-Y電極)に対する印加波形を示す。なおアドレス電極Aの波形における斜線付きの矩形は、アドレス電極毎のオンまたはオフのパルスを表している。図8では、画面上部のラインから順次跳び越し走査により駆動する場合の最初の駆動タイミング付近を拡大してその様子を示している。
<1-6: Drive waveform (1)>
FIG. 8 shows an example of a basic drive waveform (first drive waveform) in the PDP device and the drive method of the first embodiment. From the top, the waveform applied to the address electrodes A (A1 to Am) and the waveform applied to each line L (X electrode-Y electrode) are shown. Note that a hatched rectangle in the waveform of the address electrode A represents an ON or OFF pulse for each address electrode. FIG. 8 shows an enlarged view of the vicinity of the first drive timing in the case of driving by skipping scanning sequentially from the upper line of the screen.
 最初のリセット駆動期間Tr(T0)においては、まず(前半)、Y電極側リセット電圧波形発生回路(Cyr)151を動作させることにより、Dy110のLSWを経由して、ランプ状に上昇してピーク電圧(Yランプ電圧)Vryに至る正極性リセット電圧波形を、全Y電極に印加する。その後、次のタイミング(後半)では、X電極側リセット電圧波形発生回路(Cxr)152を動作させることにより、Dx120のLSWを経由して、ランプ状に上昇してピーク電圧(Xランプ電圧)Vrxに至る正極性リセット電圧波形を、全X電極に印加する。 In the first reset driving period Tr (T0), first (first half), the Y electrode side reset voltage waveform generation circuit (Cyr) 151 is operated, and then rises in a ramp shape via the LSW of Dy110 and peaks. A positive reset voltage waveform reaching a voltage (Y lamp voltage) Vry is applied to all Y electrodes. Thereafter, at the next timing (second half), by operating the X electrode side reset voltage waveform generation circuit (Cxr) 152, the voltage rises in a ramp shape via the LSW of Dx120 and reaches the peak voltage (X lamp voltage) Vrx. The positive polarity reset voltage waveform leading to is applied to all X electrodes.
 次に、アドレス・維持駆動期間Tasに入り、各タイミング(T)で各ラインの電極に対して順次、アドレス・維持駆動を行う。なおAの囲みは前述(図3,図5)のアドレス駆動A、及びSの囲みは前述の維持駆動Sに相当する。 Next, the address / sustain drive period Tas starts, and address / sustain drive is sequentially performed on the electrodes of each line at each timing (T). The enclosure of A corresponds to the address drive A and S described above (FIGS. 3 and 5), and the enclosure of S corresponds to the sustain drive S described above.
 最初に、タイミングT1でラインL1に対してアドレス駆動Aを行う。ここではL1のY電極に対して走査電圧(-Vd)を印加する。このため、Dy110のY電極Y1に接続されたLSWをオンにすると同時に、駆動電圧供給回路(Cyp141)のSWY2をオンにして、低電位側電源端子(PL)に走査電圧(-Vd)を供給し、さらに、SWY1をオンにして高電位側電源端子(PH)にGND電位を接続する。これにより、選択されるY電極Y1に対し走査電圧パルス(-Vdレベル)を印加する。この走査電圧パルス(-Vd)の印加と同時に、選択されるアドレス電極Aに対して、Da130によりアドレス電圧パルス(Vaレベル)を印加する。これにより、ラインL1上の選択されるセルに対し壁電荷を形成し、T1のアドレス駆動Aを終了する。 First, address drive A is performed on line L1 at timing T1. Here, a scanning voltage (-Vd) is applied to the Y electrode of L1. For this reason, the LSW connected to the Y electrode Y1 of Dy110 is turned on, and at the same time, SWY2 of the drive voltage supply circuit (Cyp141) is turned on to supply the scanning voltage (−Vd) to the low potential side power supply terminal (PL). Further, SWY1 is turned on to connect the GND potential to the high potential side power supply terminal (PH). Thereby, a scanning voltage pulse (−Vd level) is applied to the selected Y electrode Y1. Simultaneously with the application of the scanning voltage pulse (−Vd), the address voltage pulse (Va level) is applied to the selected address electrode A by the Da 130. As a result, wall charges are formed for the selected cells on the line L1, and the address driving A of T1 is completed.
 次に、上記アドレス駆動Aにより形成された壁電荷を次々と反転させるための、維持駆動Sによる維持発光状態に移行させる。このため、タイミングT2で、同じくY電極Y1に対して、Dy110により維持電圧パルス(Vsレベル)を印加する。この動作では、Dy110のY電極Y1に接続されているHSWをオンにすると同時に、駆動電圧供給回路(Cyp141)のSWY3をオンにして高電位側電源端子(PH)に維持電圧(Vs)を供給し、さらに、SWY4をオンにして低電位側電源端子(PL)にGND電位を接続する。これにより、Y電極Y1に対し維持電圧パルス(Vsレベル)を印加する。 Next, a transition is made to the sustain light emission state by the sustain drive S in order to invert the wall charges formed by the address drive A one after another. Therefore, at timing T2, a sustain voltage pulse (Vs level) is applied to the Y electrode Y1 by Dy110. In this operation, HSW connected to the Y electrode Y1 of Dy110 is turned on, and at the same time, SWY3 of the drive voltage supply circuit (Cyp141) is turned on to supply the sustain voltage (Vs) to the high potential side power supply terminal (PH). Further, the SWY4 is turned on to connect the GND potential to the low potential side power supply terminal (PL). Thus, a sustain voltage pulse (Vs level) is applied to the Y electrode Y1.
 その後、次のタイミングT3で、続く維持駆動Sとして、T2のY電極Y1に対し反転したX電極X1に対してDx120により維持電圧パルス(Vsレベル)を印加する。このDx120の動作では、Dy110側の動作と同様に、X電極X1に接続されているDx120内の出力段のスイッチ素子及び駆動電圧供給回路(Cxp142)内のスイッチ素子を制御することにより可能である。上記L1(Y1,X1)に対する動作(維持駆動S)は、その後に続くタイミングT毎に、維持駆動数(SN)分、同様に行われる。これにより、当該ライン(X,Y)に対し維持電圧パルス(Vsレベル)が交互に印加され、壁電荷が次々と反転されることにより維持発光状態が継続される。例えばL1における選択セルにおいて、T1ではアドレス電極-Y電極Y1間でのアドレス放電が発生し、T2では、Y1-X1間での1回目の維持放電が発生し、T3では、同電極間での2回目の維持放電が発生する。当該ラインL1では、SN=16により、16タイミング(T)を用いて、Y電極及びX電極にそれぞれ8回の維持電圧パルス(Vsレベル)が印加され、16単位分の輝度が得られる。 Thereafter, at the next timing T3, as the subsequent sustain drive S, a sustain voltage pulse (Vs level) is applied to the X electrode X1 inverted from the Y electrode Y1 of T2 by Dx120. In the operation of Dx120, similarly to the operation on the Dy110 side, it is possible by controlling the switch element in the output stage in Dx120 connected to the X electrode X1 and the switch element in the drive voltage supply circuit (Cxp142). . The operation (sustain drive S) with respect to L1 (Y1, X1) is similarly performed for the number of sustain drives (SN) at each subsequent timing T. As a result, the sustain voltage pulse (Vs level) is alternately applied to the line (X, Y), and the wall charges are successively inverted, so that the sustain light emission state is continued. For example, in the selected cell in L1, an address discharge occurs between the address electrode and the Y electrode Y1 at T1, a first sustain discharge occurs between Y1 and X1 at T2, and at T3, between the same electrodes. A second sustain discharge occurs. In the line L1, since SN = 16, eight sustain voltage pulses (Vs level) are applied to the Y electrode and the X electrode respectively using 16 timings (T), and luminance for 16 units is obtained.
 以降、アドレス電圧及びパルス:Va、走査電圧及びパルス:-Vd、維持電圧及びパルス:Vsで表す。 Hereinafter, the address voltage and pulse are represented by Va, the scanning voltage and pulse are represented by −Vd, and the sustain voltage and pulse are represented by Vs.
 タイミングT1でY1に対してアドレス駆動Aを行った後、前述した通り(図2,図4)、次のタイミングT2では、本特徴である飛び越し走査を行う。そのため、先のT1で駆動済みのライン(L1)から所定の飛び越し単位数(g)で飛び越したライン(L1+g)に対して、次のアドレス駆動Aを行う。gは、例えば図2の場合であれば5であり、L1+gはL6、L1+2gはL11、L1+3gはL16である。 After address drive A is performed on Y1 at timing T1, as described above (FIGS. 2 and 4), at the next timing T2, interlaced scanning, which is this feature, is performed. Therefore, the next address drive A is performed on the line (L1 + g) jumped by the predetermined jump unit number (g) from the line (L1) driven at the previous T1. For example, g is 5 in the case of FIG. 2, L1 + g is L6, L1 + 2g is L11, and L1 + 3g is L16.
 この時(T2)、先のタイミングT1でアドレス駆動A(走査駆動)が行われているラインL1の例えばY電極Y1に対して、維持電圧パルス(Vs)が印加される。そのため、この動作を行っているドライバICであるDy110及びそれ用の駆動電圧供給回路(Cyp141)は既に使用されていることになる。よって、当該Y電極側の回路からは、T2でのアドレス駆動A(走査駆動)のための走査電圧(-Vd)をY電極へ印加する動作はできない。 At this time (T2), the sustain voltage pulse (Vs) is applied to, for example, the Y electrode Y1 of the line L1 on which the address drive A (scanning drive) is performed at the previous timing T1. Therefore, the driver IC Dy110 that performs this operation and the drive voltage supply circuit (Cyp141) therefor are already used. Therefore, the operation on the Y electrode side cannot apply the scan voltage (−Vd) for the address drive A (scan drive) at T2 to the Y electrode.
 そこで、特徴として、このタイミングT2においては、反対側のX電極側の回路から走査電圧(-Vd)を印加する動作を行うようにする。即ち、最初のT1では表示電極(X,Y)対における一方の例えばY電極側をアドレス駆動A(走査駆動)したが、次のT2では表示電極(X,Y)対における他方のX電極側をアドレス駆動A(走査駆動)する。それ以降のタイミングでも同様に、駆動対象の電極をX,Yで交互にする。 Therefore, as a feature, at this timing T2, an operation of applying a scanning voltage (-Vd) from the circuit on the opposite X electrode side is performed. That is, in the first T1, one of the Y electrode sides in the display electrode (X, Y) pair, for example, is address driven A (scanning drive), but in the next T2, the other X electrode side in the display electrode (X, Y) pair Are driven by address driving A (scanning driving). Similarly, at the subsequent timings, the electrodes to be driven are alternated between X and Y.
 T2で、Dx120のX電極X1+gに接続されたLSWをオンにすると同時に、Cxp142のSWX2をオンにして端子PLに電圧-Vdを供給し、さらに、SWX1をオンにしてPHにGND電位を接続する。これにより、選択されるX1+g電極に対し電圧-Vdを印加する。この時、選択されるアドレス電極Aに対して電圧Vaを印加することにより、ラインL1+g上の選択セルに壁電荷が形成され、アドレス駆動Aを終了する。 At T2, the LSW connected to the X electrode X1 + g of Dx120 is turned on, and at the same time, SWX2 of Cxp142 is turned on to supply the voltage -Vd to the terminal PL, and SWX1 is turned on to connect the GND potential to PH. . As a result, the voltage −Vd is applied to the selected X1 + g electrode. At this time, by applying the voltage Va to the selected address electrode A, wall charges are formed in the selected cells on the line L1 + g, and the address driving A is finished.
 ラインL1+gに関し、引き続き同様に、維持駆動Sによる維持発光状態に移行させる。T3では、アドレス駆動A済みのラインL1のX1へのVsの印加に同時並行させて、X1+gに対してもVsを印加する。そのため、Dx120のX1とX1+gに接続されている各HSWをオンにすると同時に、Cxp142のSWX3をオンにして端子PHに電圧Vsを供給し、さらに、SWX4をオンにして端子PLにGND電位を接続する。これにより、X1とX1+gに対しパルスVsが印加される。 In the same manner, the line L1 + g is shifted to the sustain light emission state by the sustain drive S. At T3, Vs is applied also to X1 + g in parallel with the application of Vs to X1 of the line L1 that has undergone address driving A. Therefore, each HSW connected to X1 and X1 + g of Dx120 is turned on, at the same time, SWX3 of Cxp142 is turned on to supply voltage Vs to terminal PH, and SWX4 is turned on to connect GND potential to terminal PL. To do. Thereby, the pulse Vs is applied to X1 and X1 + g.
 そして、このタイミングT3では、同時に、飛び越し走査の3番目のラインであるL1+2gに対してアドレス駆動Aが行われる。そのため、X電極とは反対側のY電極Y1+2gに対し、パルス-Vdが印加される。この動作は前述のL1の駆動と同様である。 At this timing T3, address drive A is simultaneously performed for L1 + 2g, which is the third line of interlaced scanning. Therefore, the pulse −Vd is applied to the Y electrode Y1 + 2g opposite to the X electrode. This operation is the same as the driving of L1 described above.
 次のタイミングT4では、飛び越し走査の4番目のラインであるL1+3gラインに対してアドレス駆動Aが行われる。そのため、Y電極とは反対側のX電極X1+3gにパルス-Vdが印加される。それと同時に、走査済みのL1,L1+g,L1+2gに対して維持駆動Sが行われるので、同様に、Y1,Y1+g,Y1+2gに対してパルスVsが印加される。 At the next timing T4, address drive A is performed for the L1 + 3g line, which is the fourth line of interlaced scanning. Therefore, the pulse −Vd is applied to the X electrode X1 + 3g opposite to the Y electrode. At the same time, since the sustain drive S is performed on the scanned L1, L1 + g, L1 + 2g, the pulse Vs is similarly applied to Y1, Y1 + g, Y1 + 2g.
 上記のように、所定のグループ(G1)のライン(L1~L1+3g)へのアドレス・維持駆動の動作を連続的に同時並行で行うことができる。このような駆動は、以降の他のグループのラインに対しても同様である。これによりPDP10の画面の全ラインに対し正常な表示動作が行われる。 As described above, the address / sustain drive operation to the lines (L1 to L1 + 3g) of the predetermined group (G1) can be performed simultaneously and in parallel. Such driving is the same for other groups of lines thereafter. As a result, a normal display operation is performed for all lines on the screen of the PDP 10.
 上述したような本PDP装置の回路構成とアドレス・維持駆動の制御方式とにより、表示電極(Y,X)側の主要な駆動回路に対して汎用的に使用されているプッシュプル出力型の簡単な方式のドライバICにより当該駆動回路(Dy110,Dx120)を構成することができる。それと共に、この駆動回路の出力回路(202)の耐圧としては、走査電圧|Vd|または維持電圧|Vs|のうちの高い方の電圧レベルを保証する耐圧があれば実現可能である。これにより、小型で低コストなドライバICの使用が可能となり、駆動回路全体の小型化、低コスト化が可能である。 The push-pull output type simple used for the main drive circuit on the display electrode (Y, X) side by the circuit configuration of the PDP device and the address / sustain drive control system as described above. The driver circuit (Dy110, Dx120) can be configured by a driver IC of various types. At the same time, the withstand voltage of the output circuit (202) of the drive circuit can be realized if there is a withstand voltage that guarantees the higher voltage level of the scan voltage | Vd | or the sustain voltage | Vs |. As a result, a small and low-cost driver IC can be used, and the entire drive circuit can be reduced in size and cost.
 <1-7:駆動波形(2)>
 図9は、実施の形態1における基本的な駆動波形の第2の例(第2の駆動波形)を示している。第2の駆動波形において、前述(図8)の第1の駆動波形と同様に、タイミングTの切り替え毎にグループのラインの飛び越し走査によるアドレス駆動Aを行う。相違点としては、維持駆動Sの1つの電圧波形(維持電圧パルスVs)による駆動幅(パルス幅)を、第1の駆動波形の場合に対し2倍である2タイミング(2T)単位に拡げたものとし、この2T毎に切り替え制御を行うものである。表示電極対(Y電極とX電極)に対する走査電圧-Vdと維持電圧Vsの交互の印加の切り替えは、第1の駆動波形では、1T毎の切り替えとしたが、第2の駆動波形では、2T毎の切り替えとなる。
<1-7: Drive waveform (2)>
FIG. 9 shows a second example (second drive waveform) of basic drive waveforms in the first embodiment. In the second drive waveform, as in the first drive waveform described above (FIG. 8), address drive A is performed by interlaced scanning of group lines every time the timing T is switched. The difference is that the drive width (pulse width) of one voltage waveform (sustain voltage pulse Vs) of sustain drive S is expanded to 2 timings (2T), which is twice that of the first drive waveform. It is assumed that switching control is performed every 2T. In the first drive waveform, the alternate application of the scanning voltage −Vd and the sustain voltage Vs to the display electrode pair (Y electrode and X electrode) is switched every 1T, but in the second drive waveform, 2T It will be switched every time.
 また上記維持駆動Sの方式に合わせて走査駆動の対象の電極が選択される。即ち、タイミングT1,T2のアドレス駆動Aでは、走査の1番目と2番目のラインであるL1とL1+gに対して、Y電極側のY1とY1+gに対しパルス-Vdを印加し、タイミングT3,T4のアドレス駆動Aでは、走査の3番目と4番目のラインであるL1+2gとL1+3gに対して、X電極側のX1+2gとX1+3gに対しパルス-Vdを印加する。 Also, an electrode to be scanned is selected in accordance with the sustain drive S method. That is, in the address drive A at timings T1 and T2, the pulse -Vd is applied to Y1 and Y1 + g on the Y electrode side with respect to L1 and L1 + g which are the first and second lines of scanning, and timings T3 and T4 In the address drive A, a pulse −Vd is applied to X1 + 2g and X1 + 3g on the X electrode side with respect to L1 + 2g and L1 + 3g which are the third and fourth lines of scanning.
 タイミングT3,T4では、上記アドレス駆動Aの動作に並行して、Y電極側のアドレス駆動A済みのY1とY1+gに対し、維持電圧パルスVsを連続して印加する。言い換えれば、T3,T4を合わせた2T分のタイミングにおいて、2T分のパルス幅を持つ1つの維持電圧パルスVsを印加する。同様に、続くタイミングT5,T6では、反転して、X電極側のX1,X1+g,X1+2g,X1+3gに対し、同様にパルスVsを連続して印加する。 At timings T3 and T4, in parallel with the operation of the address drive A, the sustain voltage pulse Vs is continuously applied to Y1 and Y1 + g that have been address driven A on the Y electrode side. In other words, one sustain voltage pulse Vs having a pulse width of 2T is applied at a timing of 2T including T3 and T4. Similarly, at subsequent timings T5 and T6, the pulse Vs is similarly applied continuously to X1, X1 + g, X1 + 2g, and X1 + 3g on the X electrode side.
 本例は2T毎に維持電圧パルスVsを切り替える例であるが、これに限らず、パルスVsの連続的な印加単位となるタイミング数を更に増やしてパルス幅を拡げることも勿論可能である。 This example is an example in which the sustain voltage pulse Vs is switched every 2T. However, the present invention is not limited to this, and it is of course possible to further increase the pulse width by further increasing the number of timings as a continuous application unit of the pulse Vs.
 上記のように維持電圧パルスの幅を拡げることにより、アドレス駆動Aで形成される壁電荷にバラツキ等の不安定要因が仮にあった場合でも、その反転駆動の動作を確実にして安定化が図られ、動作マージンを向上させ、放電ミス等による誤表示を防止することができ、表示品質を向上させる効果がある。 By extending the width of the sustain voltage pulse as described above, even if there is an unstable factor such as variation in the wall charge formed by the address drive A, the inversion drive operation is ensured and the stabilization is achieved. Therefore, the operation margin can be improved, erroneous display due to a discharge error or the like can be prevented, and the display quality can be improved.
 なお、実施の形態1において、上述した第1の駆動波形、第2の駆動波形については、一方のみを用いて動作する形態としてもよいし、両方を選択的に使用可能な形態としてもよい。 In the first embodiment, the first driving waveform and the second driving waveform described above may be configured to operate using only one or both may be selectively used.
 (実施の形態2)
 次に、図10~図20等を用いて、本発明の実施の形態2(構成A)のPDP装置及びその駆動回路、駆動方式などについて説明する。実施の形態2では、上記実施の形態1の構成に基づいた、より具体的な実施の形態を示す。実施の形態2では、PDP10の画面を構成する1080ラインに対して11分割の駆動グループG(G1~G11)、グループ数11に対応した11種類の維持駆動数SN、及び1フィールドが11SF(SF1~SF11)から成る構成を適用する。これにより2048階調表示(黒表示を含む)を実現する。
(Embodiment 2)
Next, the PDP apparatus according to Embodiment 2 (Configuration A) of the present invention, its drive circuit, drive system, and the like will be described with reference to FIGS. The second embodiment shows a more specific embodiment based on the configuration of the first embodiment. In the second embodiment, 11 divisional drive groups G (G1 to G11) with respect to 1080 lines constituting the screen of the PDP 10, 11 types of sustain drive numbers SN corresponding to 11 groups, and 1 field of 11SF (SF1 To SF11) is applied. Thereby, 2048 gradation display (including black display) is realized.
 <2-1:駆動方式>
 図10において、実施の形態2における、フィールドのSF、駆動グループGの構成、SF毎の各駆動グループGに対する維持駆動数SNの割り当ての例を一覧表で示している。網掛け部分(SN=1024)は、各SFで最初にアドレス駆動が開始される位置の駆動グループを示す。先頭走査ライン番号(L#)は、各SFでの先頭の走査ラインを示す。例えばSF1では、G1のL1が先頭の走査ラインであり、G1ではSN=1024である。
<2-1: Drive system>
FIG. 10 is a list showing an example of field SF, configuration of drive group G, and allocation of sustain drive number SN to each drive group G for each SF in the second embodiment. A shaded portion (SN = 1024) indicates a drive group at a position where address drive is first started in each SF. The head scanning line number (L #) indicates the head scanning line in each SF. For example, in SF1, L1 of G1 is the first scanning line, and SN = 1024 in G1.
 維持駆動に関する駆動グループ(G)数は11(G1~G11)であり、これらに対して11種類の維持駆動数(SN:1,2,4,8,……,1024)が割り当てられる。階調表現は2のベキ乗による場合である。1フィールドの11個のSF:SF1~SF11の駆動により、これら11種類の維持駆動数SNを各グループGに対して均等に割り当てるようにして、2047階調表示(黒表示除く)を実現する。 The number of drive groups (G) related to sustain drive is 11 (G1 to G11), and 11 types of sustain drive numbers (SN: 1, 2, 4, 8,..., 1024) are assigned to these. The gradation expression is based on a power of 2. By driving eleven SFs: SF1 to SF11 in one field, these 11 types of sustain drive numbers SN are equally allocated to each group G to realize 2047 gradation display (excluding black display).
 ここで選定されているグループ数11は、各グループの維持駆動数SNが、零と自然数による2のベキ乗のみで設定されているため、前述した最大階調数(K)との比較において、自然数Nによる2のN乗の方が大きくなるときの最小のN(2047<2の11乗)に一致しており、必要最小限のグループ数である。 In the comparison with the maximum number of gradations (K) described above, the number of groups 11 selected here is set so that the sustain drive number SN of each group is set to only a power of 2 by zero and a natural number. The natural number N is equal to the minimum N (2047 <2 to the eleventh power) when the Nth power of 2 is larger, and is the minimum necessary number of groups.
 この場合、全1080ラインを11グループで分けると、それぞれ隣接11ラインから成る98個の領域(B1~B98)と、2ラインのみ(L1079,L1080)から成る99番目の1個の領域(B99)とに分けられる。よって、前述の第2の基本構成(図4、図5)の駆動方法を適用する。 In this case, when all 1080 lines are divided into 11 groups, 98 areas (B1 to B98) each consisting of 11 adjacent lines and a 99th one area (B99) consisting only of two lines (L1079, L1080). And divided. Therefore, the driving method of the second basic configuration (FIGS. 4 and 5) is applied.
 図11(a)~(d)において、フィールドの各SFのリセット駆動、アドレス駆動、維持駆動の各印加タイミングを模式的に示している(表現は前記図2と同様である)。(a)はSF1、(b)はSF2、(c)はSF6、(d)はSF11の構成例を示す。各SFは例えば1.515msである。枠で囲んだ数字は当該グループに設定された維持駆動数SNを示す。 11A to 11D schematically show the application timings of reset driving, address driving, and sustain driving for each SF in the field (the expression is the same as in FIG. 2). (A) shows SF1, (b) shows SF2, (c) shows SF6, and (d) shows a configuration example of SF11. Each SF is, for example, 1.515 ms. The numbers enclosed in the frames indicate the number of sustain drives SN set for the group.
 まず、図11(a)、最初のSF1では、共通のリセット駆動(縦線、R1)の後、アドレス・維持駆動(○印と横線)が開始され、グループ番号順であるG1,G2,……,G11の順序によりアドレス駆動(○印)が行われる。R1はSF1のリセット駆動のタイミングである。各グループのアドレス駆動は、11ライン単位の飛び越し走査により行われ、各アドレス駆動の直後から、グループ毎に設定された維持駆動数SNによる維持駆動(横線)がそれぞれ行われる。各グループに対するSNは、アドレス駆動が早く開始されるグループの方から多くのSNが適用されるように設定されている。即ち、G1,G2,……,G11の順序に対しては、SN=1024,512,……,1の値がそれぞれ適用される。R2は次のSF2のリセット駆動のタイミングである。 First, in FIG. 11A, in the first SF1, after common reset driving (vertical line, R1), address / sustain driving (circle and horizontal line) is started, and G1, G2,. ..., address driving (marked with a circle) is performed in the order of G11. R1 is the reset drive timing of SF1. Address driving of each group is performed by interlaced scanning in units of 11 lines, and immediately after each address driving, sustain driving (horizontal line) with the sustain driving number SN set for each group is performed. The SN for each group is set so that more SNs are applied from the group in which address driving is started earlier. That is, the values of SN = 1024, 512,..., 1 are applied to the order of G1, G2,. R2 is the reset driving timing of the next SF2.
 図11(b)、次のSF2では、同様に共通のリセット駆動(R2)が行われた後、同様にアドレス・維持駆動が開始されるが、SF1とは異なるグループの順序、即ち、G2,G3,……,G11,G1の順序でアドレス駆動が行われ、これらに対してSF1での並びと同様にSN=1024,512,……,1の値が設定された維持駆動がそれぞれ行われる。 In FIG. 11B, in the next SF2, the common reset driving (R2) is similarly performed, and then the address / sustain driving is similarly started. However, the order of groups different from SF1, that is, G2, Address driving is performed in the order of G3,..., G11, G1, and sustain driving for which SN = 1024, 512,..., 1 is set is performed similarly to the arrangement in SF1. .
 以降のSF3,……,SF6(図11(c)),……,SF11(図11(d))についても上記同様である。これらにより、1フィールドの終了時点においては、11のグループのすべてに対して均等にSN:1024,512,……,1が割り当てられる。よって、それらのSNを総合(加算)することにより、全ラインに対し最大2047の維持駆動が可能である。 The same applies to the subsequent SF3,..., SF6 (FIG. 11 (c)),..., SF11 (FIG. 11 (d)). As a result, at the end of one field, SN: 1024, 512,..., 1 are evenly assigned to all 11 groups. Therefore, by maintaining (adding) those SNs, a maximum of 2047 can be maintained and driven for all lines.
 <2-2:PDP装置>
 図12において、実施の形態2を実現するPDP装置の構成例を示している。本PDP装置では、前述の図6の構成と異なる部分としては、PDP10の構造として、画面の表示電極対の配列が(X,Y)の反転繰り返しである。即ち、上部から順に、L1(X1,Y1),L2(Y2,X2),L3(X3,Y3),L4(Y4,X4),……といった配列である。表示ライン数は前述した1080である(L1080(Xn=X1080,Yn=Y1080))。Dy110,Dx120は、このPDP10構造に対応した回路構成である。本構成により、後述するように表示ライン間の無駄な容量充放電電力を削減している。
<2-2: PDP device>
FIG. 12 shows a configuration example of a PDP apparatus that implements the second embodiment. In the present PDP apparatus, as a part different from the configuration of FIG. 6 described above, the arrangement of the display electrode pairs on the screen is an inverted repetition of (X, Y) as the structure of the PDP 10. That is, in order from the top, L1 (X1, Y1), L2 (Y2, X2), L3 (X3, Y3), L4 (Y4, X4),... The number of display lines is 1080 as described above (L1080 (Xn = X1080, Yn = Y1080)). Dy110 and Dx120 are circuit configurations corresponding to the PDP10 structure. With this configuration, as will be described later, useless capacity charging / discharging power between display lines is reduced.
 <2-3:ドライバIC>
 図13では、PDP10に対するY,X電極ドライバIC(Dy110,Dx120)の配置接続構成を示している。図14では、その1つのドライバIC301(Dy110,Dx120)の回路構成を示している。また図15では、ドライバIC301と外部の制御ロジック回路との接続回路構成を示している。
<2-3: Driver IC>
FIG. 13 shows an arrangement connection configuration of Y and X electrode driver ICs (Dy110, Dx120) with respect to the PDP 10. FIG. 14 shows a circuit configuration of one driver IC 301 (Dy110, Dx120). FIG. 15 shows a connection circuit configuration between the driver IC 301 and an external control logic circuit.
 図13において、本構成では、72ビット出力を有するドライバIC301を複数用いて、Y及びX電極に対してそれぞれ当該ドライバIC301を15個ずつ使用する場合(72×15=1080)を示している。例えばPDP10のラインL1~L72において、Y電極(Y1~Y72)に対しDy110側の第1のドライバIC(#1)301の出力が接続部51でストレートに配線接続され、X電極(X1~X72)に対しDx120側の第1のドライバIC(#1)301の出力が接続部52でストレートに配線接続される。 13, the present configuration shows a case where a plurality of driver ICs 301 having 72-bit outputs are used and 15 each of the driver ICs 301 are used for the Y and X electrodes (72 × 15 = 1080). For example, in the lines L1 to L72 of the PDP 10, the output of the first driver IC (# 1) 301 on the Dy110 side is connected to the Y electrodes (Y1 to Y72) in a straight line at the connection portion 51, and the X electrodes (X1 to X72) are connected. ), The output of the first driver IC (# 1) 301 on the Dx120 side is straight-wired at the connection portion 52.
 図14において、前記図7に基づいた、1つのドライバIC301の回路構成を示している。ドライバIC301は、72ビット出力(OUT1~OUT72)を有し、前記201(61,62)相当部分において、前記SCAN-SL61に相当する、走査駆動用シフトレジスタ(SCAN-SR)71と走査駆動用ラッチ(SCAN-LAT)72、並びに、SUS-SL62に相当する、維持駆動用シフトレジスタ(SUS-SR)81と維持駆動用ラッチ(SUS-LAT)82、を備える。 14 shows a circuit configuration of one driver IC 301 based on FIG. The driver IC 301 has a 72-bit output (OUT1 to OUT72), and in a portion corresponding to the 201 (61, 62), a scan drive shift register (SCAN-SR) 71 corresponding to the SCAN-SL61 and a scan drive A latch (SCAN-LAT) 72 and a sustain drive shift register (SUS-SR) 81 and a sustain drive latch (SUS-LAT) 82 corresponding to the SUS-SL62 are provided.
 SCAN-SR71の入力としてscan-CLK(クロック),scan-Din(データ)を有し、出力としてscan-Dout(データ)を有する。SCAN-LAT72の入力としてscan-LAT(ラッチ)を有する。SUS-SR81の入力としてsus-CLK(クロック),sus-Din(データ)を有し、出力としてsus-Dout(データ)を有する。SUS-LAT82の入力としてsus-LAT(ラッチ)を有する。また、ゲート回路(G)63の制御入力として、scan-STB(走査駆動用ストローブ),sus-STB(維持駆動用ストローブ)を有する。 SCAN-SR71 has scan-CLK (clock) and scan-Din (data) as input, and scan-Dout (data) as output. A scan-LAT (latch) is provided as an input to the SCAN-LAT72. SUS-SR81 has sus-CLK (clock) and sus-Din (data) as inputs, and sus-Dout (data) as outputs. It has sus-LAT (latch) as an input of SUS-LAT82. Further, the control input of the gate circuit (G) 63 includes scan-STB (scan drive strobe) and sus-STB (sustain drive strobe).
 図15において、15個のドライバIC301(IC#1~#15)と制御ロジック回路(制御回路101に含まれている)との接続回路構成を示している。制御ロジック回路からの信号として、ドライバIC301の走査駆動用及び維持駆動用のそれぞれのシフトレジスタ(71,81)へのクロック信号CLK(scan-CLK,sus-CLK)、データ信号Din(scan-Din,sus-Din)、それぞれのラッチ回路(72,82)へのラッチ信号LAT(scan-LAT,sus-LAT)が入力され、また、出力段バッファ回路(出力回路202)に内蔵されているゲート回路部(63)へのストローブ信号STB(scan-STB,sus-STB)がそれぞれ入力される。 FIG. 15 shows a connection circuit configuration of 15 driver ICs 301 (IC # 1 to # 15) and a control logic circuit (included in the control circuit 101). As signals from the control logic circuit, clock signals CLK (scan-CLK, sus-CLK) and data signals Din (scan-Din) to the shift registers (71, 81) for scan driving and sustain driving of the driver IC 301 are used. , Sus-Din), the latch signal LAT (scan-LAT, sus-LAT) to the respective latch circuits (72, 82) is inputted, and the gate is built in the output stage buffer circuit (output circuit 202) Strobe signals STB (scan-STB, sus-STB) are input to the circuit unit (63), respectively.
 これらの信号は、ドライバIC301自体に高電圧が印加されて電位的にフローティング状態において使用される。よって、電位レベル変換用のホトカプラ501に入力され、その出力が各ドライバIC301(IC#1~#15)に接続されるようになっている。 These signals are used in a potential floating state when a high voltage is applied to the driver IC 301 itself. Therefore, it is input to the photocoupler 501 for potential level conversion, and the output is connected to each driver IC 301 (IC # 1 to # 15).
 ホトカプラ501から出たクロック信号CLK、ラッチ信号LAT,ストローブ信号STBについては、15個の全ドライバIC301に対してそれぞれ並列に接続される。 The clock signal CLK, latch signal LAT, and strobe signal STB output from the photocoupler 501 are connected in parallel to all 15 driver ICs 301, respectively.
 データ信号Dinについては、走査駆動用及び維持駆動用シフトレジスタ(71,81)へのシリアル転送データとして1番目のドライバIC#1にのみ接続されている。2番目以降のドライバICへは、IC#1からのDoutがIC#2へのDinとして入力されるように順次接続される。これにより、全ドライバIC内のシフトレジスタ(71,81)に連続的に転送されるようになっている。 The data signal Din is connected only to the first driver IC # 1 as serial transfer data to the scan drive and sustain drive shift registers (71, 81). The second and subsequent driver ICs are sequentially connected so that Dout from IC # 1 is input as Din to IC # 2. As a result, the data is continuously transferred to the shift registers (71, 81) in all the driver ICs.
 データ信号Dinは、データであるH(ハイ)及びL(ロー)の与え方により、すべての走査電圧-Vd及び維持電圧Vsについて、その印加対象となるラインの選択の仕方や、印加タイミング、印加数などが制御される(詳細については後述)。 For the data signal Din, the method of selecting the line to be applied, the application timing, and the application for all the scanning voltages −Vd and the sustain voltage Vs depending on how to supply the data H (high) and L (low). The number and the like are controlled (details will be described later).
 <2-4:駆動波形>
 次に、図16,図17において、SF1、SF2の2つのSFの例に対するライン毎の駆動波形の詳細について示している(表現は前記図8と同様である)。なお丸囲み数字は、グループにおける走査の順番を示し、枠で囲む数字は当該ラインでのSNを示す。Va,-Vd,Vs等も前述同様である。
<2-4: Drive waveform>
Next, in FIG. 16 and FIG. 17, the details of the drive waveform for each line for the two SF examples of SF1 and SF2 are shown (expression is the same as in FIG. 8). The circled numbers indicate the scanning order in the group, and the numbers surrounded by a frame indicate the SN in the line. Va, -Vd, Vs, etc. are the same as described above.
 1フィールド(16.667ms)が11SFから成ることより、各SFの駆動時間が1.515msになる。このSFはさらに、0.1ms程度のリセット駆動期間Trと、1.415ms程度のアドレス・維持駆動期間Tasに分けられる。Tasの各タイミングT(T1~T1123)は1.26μs程度である。 Since one field (16.667 ms) is composed of 11 SF, the driving time of each SF is 1.515 ms. This SF is further divided into a reset driving period Tr of about 0.1 ms and an address / sustain driving period Tas of about 1.415 ms. Each timing T (T1 to T1123) of Tas is about 1.26 μs.
 図16、SF1で、最初に、リセット駆動期間Trから駆動が開始され、全Y電極及びX電極に対し共通に、交互に立上りランプ状に上昇するリセット電圧波形(Vwy,Vwx)がそれぞれ印加される。これにより、全セルに蓄積されている壁電荷がリセットされて初期状態にされる。 In FIG. 16, SF1, first, driving is started from the reset driving period Tr, and reset voltage waveforms (Vwy, Vwx) that rise alternately in a rising ramp shape are applied to all Y electrodes and X electrodes in common. The As a result, the wall charges accumulated in all the cells are reset to the initial state.
 次に、アドレス・維持駆動期間Tasが開始され、最初のSFであるSF1においては、前述した通り、グループG1からアドレス駆動が開始されるので、最初のタイミングT1では、走査対象のラインL1のY電極Y1に対して走査電圧-Vdが印加される。 Next, an address / sustain drive period Tas is started, and in SF1, which is the first SF, address drive is started from the group G1 as described above. Therefore, at the first timing T1, Y of the line L1 to be scanned is A scanning voltage −Vd is applied to the electrode Y1.
 次のタイミングT2では、11ライン単位で飛び越したラインL12に走査が移るが、直前(T1)に走査電圧-Vdが印加されたY電極(Y1)とは異なるX電極(X12)に対し走査電圧-Vdが印加される。それと同時に、先に走査電圧-Vdが印加されアドレス駆動が終了しているライン(L1)に対応するY電極(Y1)に対して維持電圧Vsが印加される。 At the next timing T2, the scan moves to the line L12 that has been skipped in units of 11 lines, but the scan voltage is applied to the X electrode (X12) different from the Y electrode (Y1) to which the scan voltage −Vd was applied immediately before (T1). -Vd is applied. At the same time, the sustain voltage Vs is applied to the Y electrode (Y1) corresponding to the line (L1) to which the scanning voltage −Vd has been previously applied and the address drive has been completed.
 次のタイミングT3では、同様に11ライン単位で飛び越したラインL23に走査が移り、直前(T2)に走査電圧-Vdが印加されたX電極(X12)とは異なるY電極(Y23)に走査電圧-Vdが印加される。それと同時に、先に走査電圧-Vdが印加されアドレス駆動済みのライン(L1,L12)に対応するX電極(X1,X12)に対して維持電圧Vsが印加される。 At the next timing T3, similarly, the scanning shifts to the line L23 which is skipped in units of 11 lines, and the scanning voltage is applied to the Y electrode (Y23) different from the X electrode (X12) to which the scanning voltage −Vd is applied immediately before (T2). -Vd is applied. At the same time, the sustain voltage Vs is applied to the X electrodes (X1, X12) corresponding to the lines (L1, L12) that have been previously applied with the scanning voltage -Vd and address driven.
 以降、引き続くタイミングT毎に同様に飛び越し走査が行われ、走査電圧-Vdが印加される1本の表示電極と、維持電圧Vsが印加される複数本の表示電極とが、Y電極とX電極で交互に逆転される関係を保ちながら駆動が進む。そして、タイミングT99において駆動グループG1の最後のラインL1079のY電極Y1079に対して走査電圧-Vdが印加されて、G1のアドレス駆動が終了する。 Thereafter, the interlace scanning is similarly performed at each subsequent timing T, and one display electrode to which the scan voltage −Vd is applied and a plurality of display electrodes to which the sustain voltage Vs is applied are the Y electrode and the X electrode. The drive proceeds while maintaining the relationship of being alternately reversed. Then, at timing T99, the scan voltage −Vd is applied to the Y electrode Y1079 of the last line L1079 of the drive group G1, and the address drive of G1 is completed.
 まとめると、走査の順序(丸囲み数字)は、第1走査(T1):L1(Y1)、第2走査(T2):L12(X12)、第3走査(T3):L23(Y23)、……、第98走査(T98):L1068(X1068)、第99走査(T99):L1079(Y1079)である。 In summary, the scanning order (circled numbers) is as follows: first scanning (T1): L1 (Y1), second scanning (T2): L12 (X12), third scanning (T3): L23 (Y23),. ..., 98th scan (T98): L1068 (X1068), 99th scan (T99): L1079 (Y1079).
 その次のタイミングT100では、次の駆動グループG2に対するアドレス駆動が開始され、その最初の走査ラインはL2となる。このように駆動グループが切り替わる場合においても、前述同様に直前タイミングの電圧印加の種類と電極の関係が逆転される。即ち、直前(T99)のY電極側(Y1079)とは異なるX電極側(X2)に対し走査電圧-Vdが印加され、それと同時に、アドレス駆動済みのY電極側(Y1,Y12,Y23,……,Y1079)に維持電圧Vsが印加される。以降同様にこの関係が踏襲されて駆動が進む。 At the next timing T100, address drive for the next drive group G2 is started, and the first scan line becomes L2. Even when the drive groups are switched in this way, the relationship between the type of voltage application at the previous timing and the electrodes is reversed as described above. That is, the scanning voltage −Vd is applied to the X electrode side (X2) different from the Y electrode side (Y1079) immediately before (T99), and at the same time, the Y electrode side (Y1, Y12, Y23,. ..., Y1079) is applied with the sustain voltage Vs. Thereafter, this relationship is followed and the driving proceeds.
 ここで、前述した通り、各グループに印加される維持駆動数SNは、最初にアドレス駆動が開始されるグループG1が最多の1024になる。これを適用するためには、グループG1内で最後にアドレス駆動(走査)が行われるラインL1079に対して1024単位の維持駆動が完了するまでの時間(タイミングT)を確保することが必要になる。ラインL1079への走査タイミングはT99、1つ目の維持電圧パルスVsの印加タイミングはT100になる。これにより、これ以降SN=1024の維持電圧パルスVsを印加するためのタイミング数(1024)が単純加算される。よって、G1についてTasのすべてのアドレス・維持駆動が完了するまでに必要なタイミング(時間)として、T1からT1123までの1123T分が必要になる(99+1024=1123)。 Here, as described above, the sustain drive number SN applied to each group is 1024, which is the largest in the group G1 where address drive is first started. In order to apply this, it is necessary to secure time (timing T) until the sustain drive of 1024 units is completed for the line L1079 where address drive (scan) is performed last in the group G1. . The scanning timing to the line L1079 is T99, and the application timing of the first sustain voltage pulse Vs is T100. Thereby, the number of timings (1024) for applying the sustain voltage pulse Vs of SN = 1024 thereafter is simply added. Therefore, 1123T from T1 to T1123 is required as the timing (time) required for completing all Tas address and sustain driving for G1 (99 + 1024 = 1123).
 従って、このSF1も含めてフィールドの全SFのTasで必要なタイミング数として、本例ではT1~T1123を設けている。ただし、ここで述べたタイミング数に限定されるものではなく、その他の駆動の必要性に応じて適宜当該タイミング数を増やすことが可能であることは勿論である。 Therefore, in this example, T1 to T1123 are provided as the number of timings required for Tas of all SFs in the field including this SF1. However, it is not limited to the number of timings described here, and it is needless to say that the number of timings can be appropriately increased according to other driving needs.
 T100以降におけるグループG2に対する維持駆動数SNは、前述した通り512であり、グループG2の取り得る最大維持駆動数SNを同様に計算すると925(=1123-99×2)となり、この925よりも小さいので、上記タイミングT1123内において維持駆動が完了可能である。 The sustain drive number SN for the group G2 after T100 is 512 as described above. When the maximum sustain drive number SN that can be taken by the group G2 is calculated in the same manner, it becomes 925 (= 1123−99 × 2), which is smaller than 925. Therefore, the sustain drive can be completed within the timing T1123.
 グループG3以降も同様に駆動が行われ、それぞれ維持駆動数SNが前述の256,128,……,2,1になるように選択されている。 The driving is performed in the same manner from the group G3 onward, and the sustain drive number SN is selected to be 256, 128,.
 SF1の最後にアドレス駆動が行われるラインは、グループG11のL1078に対してであり、この時のアドレス駆動のタイミングは、全ライン数である1080に等しい値であるT1080となる。 The line on which address driving is performed at the end of SF1 is for L1078 of group G11, and the timing of address driving at this time is T1080 which is a value equal to 1080 which is the total number of lines.
 前記99番目の領域(B99)に属するライン(L1079とL1080)に対しては、L1079についてはグループG1に、L1080はグループG2に属するものとして扱う。これにより、抜け無く他の領域Bのラインと同等に正常な駆動が可能である。 For the lines (L1079 and L1080) belonging to the 99th area (B99), L1079 is treated as belonging to group G1, and L1080 is regarded as belonging to group G2. As a result, normal driving can be performed as well as the lines in the other regions B without missing.
 上述した駆動波形において、隣接する2つのラインの電極間に印加される維持電圧パルスVsの位相に注目して見てみると、Y,Xにおける同じ種類の電極間(例えばT101、X1,X2)においては同一位相であるが、異なる種類の電極間では異なる位相になっていることがわかる。上記隣接ライン間の電極間(非表示部)では表示を行わないので(例えば図12、X1-X2間)、維持電圧パルスVsの位相を逆転させる必要は無く、むしろ逆転させることにより、電極間の容量成分への充放電電力が無駄に消費されることになる。よって、本構成においては、これを避けるように、前述した図12のPDP装置構成を適用して、PDP10内の電極配置構成としてライン間で隣接する電極を同一種類の電極にしている。 Looking at the phase of the sustain voltage pulse Vs applied between the electrodes of two adjacent lines in the drive waveform described above, the same type of electrodes in Y and X (for example, T101, X1, X2) It can be seen that the phase is the same, but different types of electrodes have different phases. Since the display is not performed between the electrodes (non-display portion) between the adjacent lines (for example, between X1 and X2 in FIG. 12), it is not necessary to reverse the phase of the sustain voltage pulse Vs. The charge / discharge power to the capacity component is wasted. Therefore, in this configuration, in order to avoid this, the above-described PDP device configuration in FIG. 12 is applied, and the electrodes adjacent to each other as the electrode arrangement configuration in the PDP 10 are the same type of electrodes.
 図17、SF2の駆動波形において、先のSF1(図16)と同様に、TrとTasから成り、これらの時間関係は同様に設定されている。前述した通り、SF2がSF1と異なるのは、アドレス駆動の開始されるグループGの順番が変わることであり、最初にグループG1とは異なるグループG2からアドレス駆動が開始される。よって、タイミングT1でラインL2のY電極Y2から走査電圧-Vdが印加される。その他についてはSF1と同様である。 In FIG. 17, the driving waveform of SF2 is composed of Tr and Tas as in the previous SF1 (FIG. 16), and their time relationships are set similarly. As described above, SF2 is different from SF1 in that the order of the group G from which address driving is started is changed. First, address driving is started from a group G2 different from the group G1. Therefore, the scanning voltage −Vd is applied from the Y electrode Y2 of the line L2 at the timing T1. Others are the same as SF1.
 <2-5:制御タイミング>
 次に、図18~図20において、上述した駆動波形に関する制御タイミングについて示しており、Y,X電極ドライバIC(Dy110,Dx120)を制御するための信号の詳細について説明する。図18では、SF1のG11で維持電圧パルスVsを1回印加する場合である1SUS(SN=1,SF1,G11)の制御タイミングを示し、同様に、図19では、2SUS(SN=2,SF1,G10)、図20では、1024SUS(SN=1024,SF1,G1)の制御タイミングを示す。SUSは、維持駆動数SNによる表示ラインの維持駆動における維持電圧パルスVsを示し、例えばSUS1はアドレス駆動(走査電圧パルス-Vdの印加)直後の1番目のパルス、SUS2は2番目のパルスを示す。
<2-5: Control timing>
Next, in FIG. 18 to FIG. 20, the control timing related to the drive waveform described above is shown, and details of signals for controlling the Y and X electrode driver ICs (Dy110, Dx120) will be described. FIG. 18 shows the control timing of 1SUS (SN = 1, SF1, G11) when the sustain voltage pulse Vs is applied once at G11 of SF1, and similarly, 2SUS (SN = 2, SF1) is shown in FIG. , G10) and FIG. 20 show the control timing of 1024SUS (SN = 1024, SF1, G1). SUS indicates the sustain voltage pulse Vs in the sustain drive of the display line by the sustain drive number SN, for example, SUS1 indicates the first pulse immediately after the address drive (application of the scan voltage pulse −Vd), and SUS2 indicates the second pulse. .
 前述の通り(図14)、本ドライバIC301の回路構成においては、走査駆動用と維持駆動用のシフトレジスタ・ラッチ回路(61,62)、及びその出力段バッファ回路202に内蔵される制御用のゲート回路63を備え、前述の通り(図15)、このようなドライバIC301が使用、接続される。これらの制御用の信号として、クロック信号CLK、データ信号Din、ラッチ信号LAT、ストローブ信号STB等がそれぞれ入力される。図18の下側では、これらの制御用の信号の例を示している。例えば、Yscan-CLKは、Dy110側における走査駆動用のクロック信号(scan-CLK)である。 As described above (FIG. 14), in the circuit configuration of the driver IC 301, the shift register / latch circuit (61, 62) for scan driving and sustain driving and the control circuit incorporated in the output stage buffer circuit 202 are used. A gate circuit 63 is provided, and as described above (FIG. 15), such a driver IC 301 is used and connected. As these control signals, a clock signal CLK, a data signal Din, a latch signal LAT, a strobe signal STB, and the like are input, respectively. In the lower part of FIG. 18, examples of these control signals are shown. For example, Yscan-CLK is a clock signal (scan-CLK) for scanning driving on the Dy110 side.
 図18で、走査駆動用と維持駆動用のシフトレジスタ・ラッチ回路(61,62)共に、クロック信号CLK(Yscan-CLK,Ysus-CLK,Xscan-CLK,Xsus-CLK)としては、タイミングT毎に11クロック(clk)が入力されている。これは、当該クロック(clk)の数を、維持駆動のグループ数である11と等しい値に選んであることによる。 In FIG. 18, the clock signals CLK (Yscan-CLK, Ysus-CLK, Xscan-CLK, Xsus-CLK) for each of the scan drive and sustain drive shift register / latch circuits (61, 62) 11 clocks (clk) are input. This is because the number of the clocks (clk) is selected to be equal to 11 which is the number of sustain drive groups.
 ラッチ信号LAT(Yscan-LAT,Ysus-LAT,Xscan-LAT,Xsus-LAT)は、タイミングT間に入力され、11clkで転送されたデータがタイミングTの切り替わり毎にラッチ回路(72,82)に取り込まれる。 The latch signal LAT (Yscan-LAT, Ysus-LAT, Xscan-LAT, Xsus-LAT) is input during the timing T, and the data transferred at 11 clk is sent to the latch circuit (72, 82) every time the timing T is switched. It is captured.
 まず、走査駆動用のシフトレジスタ・ラッチ回路(61(71,72))について、データ信号Din(Yscan-Din)としては、タイミングT0の1番目のclkに同期させた1データ(Din(H))のみを入力して、当該1データを11clk分転送する。これにより、ラインL11→L22→L33→……といったように、前述したグループG11に対応した飛び越し走査による走査電圧-Vdの印加が可能である。 First, for the shift register / latch circuit (61 (71, 72) for scanning drive), as the data signal Din (Yscan-Din), one data (Din (H)) synchronized with the first clk at the timing T0. ) Only, and transfer the 1 data for 11 clk. As a result, it is possible to apply the scanning voltage −Vd by interlaced scanning corresponding to the group G11 as described above, such as the lines L11 → L22 → L33 →.
 ここで、ストローブ信号STBは、Y電極側(Yscan-STB)には奇数番目のタイミングT1,T3,……でアクティブになるように入力され、X電極側(Xscan-STB)には偶数番目のタイミングT2,T4,……でアクティブになるように入力される。これにより、グループG11に対応したY電極及びX電極に対してそれぞれのタイミングに対応して交互に走査電圧パルス-Vdを印加可能である。 Here, the strobe signal STB is input to the Y electrode side (Yscan-STB) so as to become active at odd-numbered timings T1, T3,..., And the even-numbered signal is supplied to the X electrode side (Xscan-STB). It is input so as to become active at timings T2, T4,. Thereby, the scanning voltage pulse −Vd can be alternately applied to the Y electrode and the X electrode corresponding to the group G11 in accordance with the respective timings.
 次に、維持駆動用のシフトレジスタ・ラッチ回路(62(81,82))についても、上記走査駆動用の場合とほぼ同様であるが、データ信号Dinについては、タイミングT1の1番目のclkに同期させた1データ(Din(H))のみの入力により、ストローブ信号STBは、タイミングT2以降にY電極及びX電極に対して交互に入力される。これにより、グループG11に対応したY電極またはX電極に対して1つの維持電圧Vsが交互に印加可能である。 Next, the sustain drive shift register / latch circuit (62 (81, 82)) is substantially the same as that for the scan drive, but the data signal Din is at the first clk at the timing T1. By inputting only one synchronized data (Din (H)), the strobe signal STB is alternately input to the Y electrode and the X electrode after the timing T2. Thereby, one sustain voltage Vs can be alternately applied to the Y electrode or the X electrode corresponding to the group G11.
 次に、図19で、2SUS(SUS1,SUS2)の制御タイミングについては以下である。この場合、グループG10に対する制御になるため、両シフトレジスタ(71,81)共に、各タイミングTの11clkのうち、2番目のclkに同期して、データ信号Dinを入力する。 Next, in FIG. 19, the control timing of 2SUS (SUS1, SUS2) is as follows. In this case, since control is performed for the group G10, the data signal Din is input to both the shift registers (71, 81) in synchronization with the second clk among 11 clks at each timing T.
 走査駆動側については、T0において1データ(Din(H))のみ入力することにより、グループG10に対応するY,X電極に対して交互に走査電圧パルス-Vdを印加可能である。 On the scanning drive side, by inputting only one data (Din (H)) at T0, the scanning voltage pulse -Vd can be alternately applied to the Y and X electrodes corresponding to the group G10.
 維持駆動側については、T1とT2での2データ(Din(H))を入力することにより、グループG10に対応するY,X電極に対して維持電圧パルスVsを1つずつ、計2SUS分(SUS1,SUS2)が印加可能である。 On the sustain drive side, by inputting two data (Din (H)) at T1 and T2, one sustain voltage pulse Vs is applied to the Y and X electrodes corresponding to the group G10, for a total of 2SUS ( SUS1, SUS2) can be applied.
 最後に、図20で、1024SUS(SUS1~SUS1024)の制御タイミングについては以下である。この場合、グループG1に対する制御になるため、両シフトレジスタ(71,81)共に、各タイミングTの11clkのうち、最後の11番目のclkに同期して、データ信号Dinを入力する。 Finally, in FIG. 20, the control timing of 1024SUS (SUS1 to SUS1024) is as follows. In this case, since control is performed for the group G1, the data signal Din is input to both the shift registers (71, 81) in synchronization with the last eleventh clk of 11clk at each timing T.
 走査駆動側については、同様に、T0において1データ(Din(H))のみ入力することにより、G1に対応するY,X電極に対して交互に走査電圧パルス-Vdを印加可能である。 Similarly, on the scanning drive side, by inputting only one data (Din (H)) at T0, it is possible to alternately apply the scanning voltage pulse -Vd to the Y and X electrodes corresponding to G1.
 維持駆動側については、T1~T1024での1024データ(Din(H)の数が1024)を入力することにより、G1に対応するY,X電極に対して維持電圧パルスVsを交互に512ずつ、計1024SUS分(SUS1~SUS1024)を印加可能である。 On the sustain drive side, by inputting 1024 data (number of Din (H) is 1024) from T1 to T1024, 512 sustain voltage pulses Vs are alternately applied to the Y and X electrodes corresponding to G1, respectively. A total of 1024 SUS (SUS1 to SUS1024) can be applied.
 以上、印加するSUS数(SN)に関する3つの例における制御の仕方について述べたが、それ以外のSUS数の制御についても同様である。 The control method in the three examples regarding the SUS number (SN) to be applied has been described above, but the same applies to the control of other SUS numbers.
 (実施の形態3)
 次に、図21~図25等を用いて、本発明の実施の形態3(構成B)のPDP装置及びその駆動回路、駆動方式などについて説明する。実施の形態3では、図21の通り、画面のライン数は、実施の形態1と同じ1080であるが、分割グループG数を1つ多い12とし、これに対応して1Fが12個のSF(SF1~SF12)から成る構成を適用する。この場合について、動作の安定化をも考慮しつつ、1865階調表示(黒表示含む)を実現する例である。実施の形態3では、グループG数の12に対して、12種類の維持駆動数(SN:1,2,4,……,256,406,451,496)を割り当てる。12個のSF1~SF12の駆動により、これら12種類の維持駆動数SNを各グループGに対して均等に割り当てる。これにより1864階調表示(黒表示除く)を実現する。この場合、1080ラインを12グループで分けると、実施の形態2とは異なり、過不足無く90個の領域B(B1~B90)に分けられる。よって、前述の第1の基本構成(図2、図3)の駆動方法を適用する。また、実施の形態1、2とは異なり、SNの一部に、2に対する自然数のベキ乗の数以外の値(406,451,496)を使用している(この理由については後述する)。
(Embodiment 3)
Next, the PDP device according to Embodiment 3 (Configuration B) of the present invention, its drive circuit, drive system, and the like will be described with reference to FIGS. In the third embodiment, as shown in FIG. 21, the number of lines on the screen is 1080, which is the same as in the first embodiment. However, the number of divided groups G is set to 12, which is one more, and correspondingly, 1F includes 12 SFs. The configuration consisting of (SF1 to SF12) is applied. This is an example in which 1865 gradation display (including black display) is realized in consideration of stabilization of operation. In the third embodiment, 12 types of sustain drive numbers (SN: 1, 2, 4,..., 256, 406, 451, 496) are assigned to 12 of the group G number. These 12 types of sustain drive numbers SN are equally allocated to each group G by driving the 12 SF1 to SF12. This realizes 1864 gradation display (excluding black display). In this case, if the 1080 lines are divided into 12 groups, unlike the second embodiment, the lines are divided into 90 regions B (B1 to B90) without excess or deficiency. Therefore, the driving method of the first basic configuration (FIGS. 2 and 3) is applied. Also, unlike Embodiments 1 and 2, a value (406, 451, 496) other than the power of a natural number for 2 is used as part of SN (the reason will be described later).
 よって、この場合のグループ数12は、前述の最大階調数(K)との比較において、自然数Nによる2のN乗の方が大きくなるときの最小のN(1086<2の11乗)とは一致せず、1だけ大きい値となっている。 Therefore, the group number 12 in this case is the minimum N (1086 <2 to the 11th power) when the natural power N is larger than the Nth power of 2 in comparison with the above-mentioned maximum number of gradations (K). Does not match and is a value larger by one.
 <3-1:駆動方式>
 図22(a)~(d)において、SF毎のリセット駆動(R)、アドレス駆動(A)、維持駆動(S)の各印加タイミングを示している(表現は前述同様)。図22(a)、最初のSF1(1.389ms)では、共通のリセット駆動(R1)の後、アドレス・維持駆動が開始され、グループG1,G2,……,G11,G12の順序によりアドレス駆動が行われる。各アドレス駆動は、12ライン単位の飛び越し走査により行われ、そのアドレス駆動の直後から、グループG毎に設定されたSNによる維持駆動がそれぞれ行われる。各グループGに対する維持駆動数SN(SUS数)は、アドレス駆動が早く開始されるグループGの方から多くのSNが適用されるように設定されている。SF1の場合のG1,G2,……,G6,……,G10,G11,G12の順序に対しては、SN:496,451,406,……,64,……,4,2,1の値がそれぞれ適用される。次のSF2以降の詳細については、図示の通りであり、また基本的な内容については実施の形態1の説明に準ずる。
<3-1: Drive system>
22A to 22D show application timings of reset drive (R), address drive (A), and sustain drive (S) for each SF (the expression is the same as described above). In FIG. 22A, in the first SF1 (1.389 ms), after the common reset driving (R1), address / sustain driving is started, and address driving is performed in the order of groups G1, G2,..., G11, G12. Is done. Each address drive is performed by interlaced scanning in units of 12 lines. Immediately after the address drive, the sustain drive by the SN set for each group G is performed. The sustain drive number SN (SUS number) for each group G is set so that more SNs are applied from the group G where address drive starts earlier. For the order of G1, G2,..., G6,..., G10, G11, G12 in the case of SF1, SN: 496, 451, 406,. Each value is applied. The details after the next SF2 are as shown in the figure, and the basic contents are the same as those in the first embodiment.
 <3-2:PDP装置>
 実施の形態3を実現するPDP装置としては、実施の形態2の構成(図12)を同様に適用できる。
<3-2: PDP device>
As a PDP device realizing the third embodiment, the configuration of the second embodiment (FIG. 12) can be similarly applied.
 <3-3:ドライバIC>
 図23において、Y,X電極ドライバIC(Dy110,Dx120)の配置接続構成を示している。ここでは、90ビット出力を有するドライバIC302を用いて、Y,X電極に対して12個づつ当該ドライバIC302(#1~#12)を使用する場合を示している(90×12=1080)。このドライバIC302の回路構成としては、前記図14等の構成を同様に適用できる(出力数は異なる)。また、12個のドライバIC302と制御ロジック回路との接続回路構成としては、前記図15のような構成を同様に適用できる(IC数は異なる)。
<3-3: Driver IC>
FIG. 23 shows the arrangement and connection configuration of the Y and X electrode driver ICs (Dy110, Dx120). Here, a case is shown in which a driver IC 302 having a 90-bit output is used and 12 of the driver ICs 302 (# 1 to # 12) are used for the Y and X electrodes (90 × 12 = 1080). As the circuit configuration of the driver IC 302, the configuration shown in FIG. 14 and the like can be similarly applied (the number of outputs is different). Further, as the connection circuit configuration between the twelve driver ICs 302 and the control logic circuit, the configuration shown in FIG. 15 can be similarly applied (the number of ICs is different).
 <3-4:駆動波形>
 図24において、SF1の例に対するライン毎の駆動波形の詳細について示している。SF1では、走査順はG1(L1,L13,……,L1069),G2(L2,L14,……,L1070),……,G12(L12,L24,……,L1080)である。また例えばSF2では、G2(L2,L14,……,L1070),……,G1(L1,L13,……,L1069)である。
<3-4: Drive waveform>
FIG. 24 shows details of the drive waveform for each line for the example of SF1. In SF1, the scanning order is G1 (L1, L13, ..., L1069), G2 (L2, L14, ..., L1070), ..., G12 (L12, L24, ..., L1080). For example, in SF2, G2 (L2, L14,..., L1070),..., G1 (L1, L13,..., L1069).
 1フィールド(16.667ms)が12SFから成ることにより、各SFの駆動時間が1.389msであり、これはさらに0.1ms程度のリセット駆動期間(Tr)と、1.289ms程度のアドレス・維持駆動期間(Tas)とに分けられる。TasはT1~T1082を有する。Tは1.19μs程度である。 Since one field (16.667 ms) is composed of 12 SFs, the driving time of each SF is 1.389 ms, which further includes a reset driving period (Tr) of about 0.1 ms and an address / maintenance of about 1.289 ms. It is divided into a driving period (Tas). Tas has T1 to T1082. T is about 1.19 μs.
 SF1で、最初に前述同様の内容のTrから駆動が開始される。次に、Tasが開始されるが、実施の形態2では、駆動の安定性をより重視するために、前述した図9の第2の駆動波形(2Tで1つの維持電圧パルスVs)を適用する。 At SF1, driving is first started from Tr having the same contents as described above. Next, Tas is started. In the second embodiment, the above-described second driving waveform of FIG. 9 (one sustain voltage pulse Vs at 2T) is applied in order to give more importance to driving stability. .
 更に、駆動の安定性を重視する観点により、1タイミングTの時間幅をなるべく広く確保できるように、1つのアドレス・維持駆動期間Tas内のタイミングT数を、必要最小限に限定する。このため、表示ライン数(1080)分のすべての走査の時間(1080T)に、1SUS分の駆動時間(2T)のみを加算した、1082タイミング(T1~T1082)を、基本タイミング数として設定している。 Furthermore, from the viewpoint of emphasizing driving stability, the number of timings T in one address / sustain driving period Tas is limited to the minimum necessary so that the time width of one timing T can be secured as much as possible. For this reason, 1082 timings (T1 to T1082) obtained by adding only the driving time (2T) for one SUS to all scanning times (1080T) for the number of display lines (1080) are set as the basic timing numbers. Yes.
 SF1のTasでは、最初のT1では、G1のL1のY電極Y1に対して走査電圧-Vdが印加される。次のT2では、12ライン単位で飛び越したラインL13に走査が移るが、実施の形態3では、直前に走査電圧-Vdが印加されたY電極(Y1)側と同じY電極Y13に走査電圧-Vdが印加されるようにする。 In SF1 Tas, at the first T1, the scanning voltage −Vd is applied to the Y electrode Y1 of the L1 of G1. In the next T2, the scanning shifts to the line L13 that is skipped in units of 12 lines. In the third embodiment, the scanning voltage − is applied to the Y electrode Y13 that is the same as the Y electrode (Y1) side to which the scanning voltage −Vd is applied immediately before. Vd is applied.
 そして、次のT3では、同様に12ライン単位で飛び越したラインL25に走査が移るが、今度は、直前に走査電圧-Vdが印加されたY電極(Y13)側とは異なるX電極X25に走査電圧-Vdが印加される。それと同時に、先に走査電圧-Vdが印加されアドレス駆動済みのラインに対応するY電極(Y1,Y13)に対して維持電圧Vsが印加されるようにする。 Then, at the next T3, similarly, the scanning shifts to the line L25 which is skipped in units of 12 lines, but this time, the scanning is performed to the X electrode X25 which is different from the Y electrode (Y13) side to which the scanning voltage −Vd was applied immediately before. A voltage −Vd is applied. At the same time, the sustain voltage Vs is applied to the Y electrodes (Y1, Y13) corresponding to the address-driven lines previously applied with the scan voltage -Vd.
 更に、次のT4では、同様に12ライン単位で飛び越したラインL37に走査が移るが、今度は、直前に走査電圧-Vdが印加されたX電極(X25)側と同じX電極X37に走査電圧-Vdが印加される。このT4における維持電圧Vsの印加は、直前のT3においてY電極Y25に維持電圧が印加されていないので、アドレス駆動済みではあるがY25には維持電圧の印加は行われずに、T3と同様に、Y電極(Y1,Y13)に対して維持電圧Vsが印加されるようにする。 Further, at the next T4, similarly, the scanning shifts to the line L37 jumped by the unit of 12 lines, but this time, the scanning voltage is applied to the same X electrode X37 as the X electrode (X25) side to which the scanning voltage −Vd was applied immediately before. -Vd is applied. As for the application of the sustain voltage Vs at T4, since the sustain voltage is not applied to the Y electrode Y25 in the immediately preceding T3, although the address drive is completed, the sustain voltage is not applied to Y25, and similarly to T3, The sustain voltage Vs is applied to the Y electrodes (Y1, Y13).
 以降、引き続くタイミング毎に同様に飛び越し走査が行われると共に、走査電圧-Vdが印加される1本の電極(YまたはX)と、維持電圧Vsが印加される複数本の電極(YまたはX)とが、Y,X電極で、2回のタイミング(2T)毎に交互に逆転される関係を保ちながら駆動が進むように制御される。 Thereafter, interlaced scanning is similarly performed at each subsequent timing, and one electrode (Y or X) to which the scanning voltage −Vd is applied and a plurality of electrodes (Y or X) to which the sustain voltage Vs is applied. The Y and X electrodes are controlled so that the drive proceeds while maintaining the relationship of being alternately reversed every two timings (2T).
 以上の動作により、図示の通り、Y,Xの各電極に印加される維持電圧パルスVs(SUS)の時間幅(パルス幅)を2T分に広める。これにより駆動の安定化が図られる効果がある。 By the above operation, as shown in the figure, the time width (pulse width) of the sustain voltage pulse Vs (SUS) applied to the Y and X electrodes is widened to 2T. This has the effect of stabilizing the drive.
 ここで、各グループGでのアドレス駆動が完了するタイミングをみると、各グループGのライン数が90であることにより、G1ではT90、同様に、G2ではT180、G3ではT270、G4ではT360、といった各タイミングになる。このことに加え、前述した1SFのTasのタイミング数が最大1082に限定されていることにより、各グループGに設定できる維持駆動数SNが自ずと決まることになり、詳細は以下の通りである。 Here, when the timing for completing the address drive in each group G is viewed, the number of lines in each group G is 90. Therefore, T1 in G1, T180 in G2, T270 in G3, T360 in G4, It becomes each timing. In addition to this, since the number of 1SF Tas timings described above is limited to a maximum of 1082, the sustain drive number SN that can be set for each group G is naturally determined, and the details are as follows.
 各グループGに設定できる維持駆動数SN(最大設定可能数)は、G1では、アドレス駆動が終了した次のタイミングT91から最後のタイミングT1082までの992Tとなる。実施の形態3では2T分が維持駆動数SNの1単位(幅2Tの1つの維持電圧パルスVs(SUS))になるので、この992Tは、維持駆動数SNが496(496SUS)となる。同様の計算により、SN(SUS)(最大設定可能数)は、G2では451、G3では406、G4では361がそれぞれ設定可能であることがわかる。 The sustain drive number SN (maximum settable number) that can be set for each group G is 992T from the next timing T91 to the last timing T1082 at the end of address drive in G1. In the third embodiment, 2T corresponds to one unit of the sustain drive number SN (one sustain voltage pulse Vs (SUS) having a width of 2T), and in 992T, the sustain drive number SN is 496 (496SUS). Similar calculation shows that SN (SUS) (maximum settable number) can be set to 451 for G2, 406 for G3, and 361 for G4.
 しかし、各グループGの実際のSN(SUS)の設定に際しては、最小の1SUSから最大SUS数まで、1SUS単位で連続的な設定が可能なようにしておく必要がある。そのため、当該設定に関しては、1SUS単位で連続的な設定が可能な、2に対する零と自然数のベキ乗の値をも取り入れて、総合的に選定する必要がある。 However, when setting the actual SN (SUS) of each group G, it is necessary to be able to perform continuous setting in units of 1 SUS from the minimum 1 SUS to the maximum SUS number. For this reason, it is necessary to comprehensively select the setting by taking in powers of zero and natural numbers to 2 that can be set continuously in units of 1 SUS.
 具体的には、まずアドレス駆動が完了するのが最も遅いグループから早くなる順に、即ちG12,G11,……,G4,G3,G2,G1の並びに対して、SNとして2に対する零と自然数のベキ乗の値である、1,2,……,256,512,1024,2048の値をそれぞれ対応付ける。そして、前述の通り、512以上の値が選択不可であることにより、SNとしてG3以降に対しては上記最大設定可能数が選ばれ、即ちG3では406、G2では451、G1では496がそれぞれ選ばれる。上記により最終的に確定された、各SFの各グループGに対する維持駆動数SNが、図21の通りである。これにより、最大1864SUSの階調駆動が可能になる。但し、上記設定は、1つのTasのタイミング数を1082とした場合であり、これは階調数の必要性に応じて任意に増やすことが勿論可能である。 Specifically, first, address driving is completed in the order from the slowest group, that is, G12, G11,..., G4, G3, G2, and G1. The values 1, 2,..., 256, 512, 1024, and 2048, which are power values, are associated with each other. As described above, when the value of 512 or more cannot be selected, the maximum number that can be set is selected for SN after G3, that is, 406 for G3, 451 for G2, and 496 for G1. It is. The sustain drive number SN for each group G of each SF finally determined as described above is as shown in FIG. As a result, a maximum of 1864 SUS gradation driving is possible. However, the above setting is a case where the number of timings of one Tas is 1082, which can of course be arbitrarily increased according to the necessity of the number of gradations.
 また、別の階調制御の必要性等から、上記G3,G2,G1のそれぞれの維持駆動数SNを前述のように違わせるのではなく、少なくとも2つのグループについてかまたは3つの全てのグループについて同一のSNを選定することも可能である。 Further, due to the necessity of different gradation control, etc., the sustain drive numbers SN of G3, G2, and G1 are not changed as described above, but for at least two groups or all three groups. It is also possible to select the same SN.
 以上において、隣接ラインの電極間に印加される維持電圧パルスVsの位相が同位相になるようにしており、これは実施の形態2と同様である。 In the above, the phase of the sustain voltage pulse Vs applied between the electrodes of the adjacent lines is the same, which is the same as in the second embodiment.
 次のSF2の駆動波形については、上記SF1と異なるのは、アドレス駆動が開始されるグループGの順番が変わることであり、最初にG1とは異なるG2から開始される。よって、T1でL2のY電極Y2から走査電圧-Vdが印加される。その他については、SF1と同様である。以降の各SFについても前述同様である。 Regarding the driving waveform of the next SF2, the difference from the SF1 is that the order of the group G in which the address driving is started is changed. First, the driving waveform starts from G2 different from G1. Therefore, the scanning voltage −Vd is applied from the Y electrode Y2 of L2 at T1. About others, it is the same as that of SF1. The same applies to the subsequent SFs.
 <3-5:制御タイミング>
 図25において、Y,X電極ドライバIC(Dy110,Dx120)を制御するための信号の詳細について説明する。基本的には、実施の形態2と同じであり、相違点に絞って説明する。
<3-5: Control timing>
In FIG. 25, details of signals for controlling the Y and X electrode driver ICs (Dy110, Dx120) will be described. Basically, it is the same as that of the second embodiment, and only the differences will be described.
 SF1における1SUS(G12,SN=1)の制御タイミングにおいて、すべてのシフトレジスタ(71,81)のクロック信号CLKは、タイミングT毎に12clkが入力されている。12clkは、グループG数の12に等しい値に選んである。対応するストローブ信号STBは、走査駆動、維持駆動共に、Y電極側及びX電極側に対してそれぞれ2タイミング(2T)毎に連続して出力させるため、2T毎にHとLを交互に繰り返すように設定される。 At the control timing of 1SUS (G12, SN = 1) in SF1, 12clk is input at every timing T as the clock signal CLK of all the shift registers (71, 81). 12clk is chosen to be equal to 12 in the group G number. The corresponding strobe signal STB is output continuously every two timings (2T) to the Y electrode side and the X electrode side in both scanning drive and sustain drive so that H and L are alternately repeated every 2T. Set to
 また、維持駆動用のデータ信号Dinについては、それぞれ2Tに渡り連続出力させるため、T1,T2の1番目(G12対応)のclkに同期させた2データ(Din(H))を入力する。 Also, for the sustain drive data signal Din, two data (Din (H)) synchronized with the first clk of T1 and T2 (corresponding to G12) are input in order to continuously output over 2T.
 SF1における2SUSの制御タイミングについては、2SUSの制御のため、Y,X電極側共に、維持駆動用のデータ信号Dinについて、T1~T4の2番目(G11対応)のclkに同期させた4データを入力する。その他は前述同様である。 With respect to the control timing of 2SUS in SF1, 4 data synchronized with the second clk of T1 to T4 (corresponding to G11) for the data signal Din for sustain driving on both the Y and X electrodes side for the control of 2SUS. input. Others are the same as described above.
 SF1における496SUSの制御タイミングについては、496SUSの制御のため、Y,X電極側とも、維持駆動用のデータ信号Dinについて、T1~T992の12番目(G1対応)のclkに同期させた992データを入力する。その他は前述同様である。 Regarding the control timing of 496SUS in SF1, for the control of 496SUS, 992 data synchronized with the 12th clk of T1 to T992 (corresponding to G1) is used for the data signal Din for the sustain drive on both the Y and X electrodes. input. Others are the same as described above.
 以上、印加するSUS数の3つの例の制御の仕方について述べたが、それ以外のSUS数の制御についても同様である。 Although the method of controlling the three examples of the SUS number to be applied has been described above, the same applies to the control of the other SUS numbers.
 (実施の形態4)
 次に、図26~図30等において、本発明の実施の形態4(構成C)のPDP装置などについて示している。実施の形態4では、適用仕様、グループ、SF、SNの割り当て、SF毎のリセット、アドレス、維持駆動のタイミング等については、実施の形態3と同様である。また、実施の形態4では、PDP装置及びドライバICの構成については、実施の形態2と同様のものを適用できる。実施の形態4では、ドライバICの出力ビット数を、実施の形態2と同じ72ビット(図14、ドライバIC301)としている。これにより、PDP10のY,X電極のそれぞれに必要なIC数は15個(図13同様)となっている。
(Embodiment 4)
Next, FIG. 26 to FIG. 30 and the like show a PDP device and the like according to Embodiment 4 (Configuration C) of the present invention. In the fourth embodiment, application specifications, group, SF, SN assignment, reset for each SF, address, sustain drive timing, and the like are the same as those in the third embodiment. In the fourth embodiment, the same configurations as those of the second embodiment can be applied to the configurations of the PDP device and the driver IC. In the fourth embodiment, the number of output bits of the driver IC is 72 bits (FIG. 14, driver IC 301), which is the same as in the second embodiment. As a result, the number of ICs required for each of the Y and X electrodes of the PDP 10 is 15 (similar to FIG. 13).
 <4-1:ドライバIC>
 図26は、実施の形態4のドライバIC303(Dy110,Dx120)の回路構成を示している。また、図27は、ドライバIC303と制御ロジック回路との接続及び信号入力の構成を示している。
<4-1: Driver IC>
FIG. 26 shows a circuit configuration of the driver IC 303 (Dy110, Dx120) according to the fourth embodiment. FIG. 27 shows the connection between the driver IC 303 and the control logic circuit and the signal input configuration.
 実施の形態4の特徴として、実施の形態1との相違点としては、図26の通り、走査駆動用、維持駆動用のシフトレジスタ(71,81)共に、データ信号Dinの入出力数を、維持駆動のグループG数と同じ12としている(scan-Din1~Din12等)。 As a feature of the fourth embodiment, the difference from the first embodiment is that, as shown in FIG. 26, both the scan drive and sustain drive shift registers (71, 81) have different numbers of input / outputs of the data signal Din. It is set to 12 which is the same as the number G of sustain driving groups (scan-Din1 to Din12, etc.).
 実施の形態2及び3においては、前述の通り(図14等)、シフトレジスタ(71,81)が1つのシリアル転送型のものにより構成されていることにより、データ信号Dinの入出力数は1つである。1タイミングT中に印加するクロック(clk)の数とこれに同期させて入力するデータ信号Dinの位置の制御(図18等)により、維持駆動のグループG数とこれに対応させた各種の制御を行っている。 In the second and third embodiments, as described above (FIG. 14 and the like), the shift register (71, 81) is constituted by one serial transfer type, so that the number of input / output of the data signal Din is one. One. By controlling the number of clocks (clk) applied during one timing T and the position of the data signal Din inputted in synchronization with the number of clocks (clk) (FIG. 18 etc.), the number of groups G for sustain drive and various controls corresponding to this It is carried out.
 これに対して、実施の形態4では、ドライバIC303において、予め、維持駆動のグループG数(12)と同じ数分のシフトレジスタ・ラッチ回路(61,62のうちの複数の回路63)を設けておく。これにより、当該回路(63)の各々で独立させた制御が可能なように、構成を変更したものである。各グループGの制御データを、それぞれ専用のシフトレジスタ・ラッチ回路(63)に格納する。それら専用のシフトレジスタ・ラッチ回路(63)の各ラッチ回路の出力は、出力段バッファ回路202を経由して、それぞれのグループGに対応するYまたはX電極に接続されている。出力回路202において、OG1~OG6は、それぞれ出力群である。例えば第1の出力群OG1は、OUT1~OUT12に対応する。 On the other hand, in the fourth embodiment, the driver IC 303 is provided in advance with the same number of shift register / latch circuits (the plurality of circuits 63 of 61 and 62) as the number of sustain drive groups G (12). Keep it. Thus, the configuration is changed so that each of the circuits (63) can be controlled independently. The control data of each group G is stored in a dedicated shift register / latch circuit (63). The output of each latch circuit of the dedicated shift register / latch circuit (63) is connected to the Y or X electrode corresponding to each group G via the output stage buffer circuit 202. In the output circuit 202, OG1 to OG6 are output groups. For example, the first output group OG1 corresponds to OUT1 to OUT12.
 上記のようなドライバIC303の使用により、図27の通り、IC間(制御ロジック回路IC-ドライバIC303)では、走査駆動用、維持駆動用のシフトレジスタ(71,81)共に、12ビットのデータ入力信号Din(scan-Din1~Din12等)がパラレルに入出力間で順次接続される。 By using the driver IC 303 as described above, as shown in FIG. 27, between the ICs (control logic circuit IC-driver IC 303), both the scan drive and sustain drive shift registers (71, 81) input 12-bit data. A signal Din (scan-Din1 to Din12 etc.) is sequentially connected between the input and output in parallel.
 ここで、外部の制御ロジック回路からの入力部については、信号Dinに対しての電位レベル変換用のホトカプラ501がパラレル入力数分必要となるので、これを削減するための工夫として、図27のような構成としている。即ち、走査駆動用、維持駆動用共に、信号Dinについてはシリアル型で受け(DATA-CLK,DATA-in,DATA-LAT)、これをシリアル→パラレルに変換する専用のシフトレジスタ・ラッチ回路(91,92)を設ける。この構成により、信号Dinに係わるホトカプラ501の数を3個にまで低減している。 Here, for the input part from the external control logic circuit, the photocoupler 501 for potential level conversion for the signal Din is required for the number of parallel inputs. As a device for reducing this, FIG. The structure is as follows. That is, for both scanning drive and sustain drive, the signal Din is received serially (DATA-CLK, DATA-in, DATA-LAT), and a dedicated shift register / latch circuit (91 for converting this from serial to parallel) , 92). With this configuration, the number of photocouplers 501 related to the signal Din is reduced to three.
 <4-2:制御タイミング>
 図28~図30を用いて、実施の形態4の駆動波形の制御タイミングについて説明する。実施の形態4の駆動波形については、実施の形態3と同様である。制御タイミングについて、基本的には実施の形態3と同様であるので、相違点に絞って説明する。
<4-2: Control timing>
The drive timing control timing of the fourth embodiment will be described with reference to FIGS. The drive waveform of the fourth embodiment is the same as that of the third embodiment. Since the control timing is basically the same as that of the third embodiment, only the differences will be described.
 前述の通り(図26)、シフトレジスタ(71,81)は、グループG数である12に分けて設けられている。よって、1タイミングTに付き1クロック(CLK)の入力として、タイミングT毎に各グループGに対応したデータDin1~Din12がそれぞれ入力される。その他のラッチ信号LAT、ストローブ信号STB等については実施の形態3と同様である。 As described above (FIG. 26), the shift registers (71, 81) are divided into 12 groups G. Therefore, data Din1 to Din12 corresponding to each group G is input at each timing T as one clock (CLK) input per timing T. Other latch signals LAT, strobe signals STB, and the like are the same as in the third embodiment.
 図28、SF1における1SUSの制御タイミングについては、グループG12に対しての1SUSの波形出力の制御である。そのため、Y,X電極の走査駆動及び維持駆動のシフトレジスタ・ラッチ回路(61,62)のDin12に対してのみデータが入力される。 FIG. 28, the control timing of 1SUS in SF1 is the control of the waveform output of 1SUS to the group G12. Therefore, data is input only to Din12 of the shift register / latch circuit (61, 62) for the scan drive and sustain drive of the Y and X electrodes.
 この図28に書かれている制御タイミングは、図27における制御ロジック部からの入力部の信号ではなく、IC#1の入力端子部で見た信号である。 The control timing written in FIG. 28 is not the signal of the input part from the control logic part in FIG. 27 but the signal seen at the input terminal part of IC # 1.
 走査駆動用については、T0に1データ(Din(H))が入力され、維持駆動用については、T1とT2の2データ(Din(H))が入力される。これにより、実施の形態3と同様の2T毎にY,X電極間で走査駆動と維持駆動が入れ替わり、しかも1SUSのみが出力される駆動、が行われる。 For scan drive, 1 data (Din (H)) is input to T0, and for sustain drive, 2 data (Din (H)) of T1 and T2 are input. As a result, the scan drive and the sustain drive are interchanged between the Y and X electrodes every 2T as in the third embodiment, and only 1SUS is output.
 図29、2SUSの制御タイミングについては、G11に対しての2SUSの波形出力の制御であるため、Y,X電極の走査駆動及び維持駆動のシフトレジスタ・ラッチ回路(61,62)のDin11に対してのみデータが入力される。走査駆動用については、T0に1データ(Din(H))が入力され、維持駆動用については、T1~T4の4データ(Din(H))が入力される。データHの時間が4CLK幅(4T分)である。これにより、実施の形態3と同様の2T毎にY,X電極間で走査駆動と維持駆動が入れ替わり、しかも1SUSずつの計2SUSが出力される駆動、が行われる。 Since the control timing of FIG. 29 and 2SUS is the control of the 2SUS waveform output to G11, it corresponds to Din11 of the shift register and latch circuit (61, 62) for the scan drive and sustain drive of the Y and X electrodes. Only data is input. For scan driving, 1 data (Din (H)) is input to T0, and for sustain driving, 4 data (Din (H)) T1 to T4 are input. The time of data H is 4CLK width (for 4T). As a result, the scanning drive and the sustain drive are interchanged between the Y and X electrodes every 2T as in the third embodiment, and the drive for outputting a total of 2SUS by 1SUS is performed.
 図30、496SUSの制御タイミングについては、G1に対しての496SUSの波形出力の制御であるため、Y,X電極の走査駆動及び維持駆動のシフトレジスタ・ラッチ回路(61,62)のDin1に対してのみデータが入力される。走査駆動用については、T0に1データ(Din(H))が入力され、維持駆動用については、T1~T992の992データ(Din(H))が入力される。これにより、実施の形態3と同様の2T毎にY,X電極間で走査駆動と維持駆動が入れ替わり、しかも248SUSずつの計496SUSが出力される駆動、が行われる。 Since the control timing of FIGS. 30 and 496 SUS is the control of the 496 SUS waveform output for G 1, it corresponds to Din 1 of the shift register and latch circuit (61, 62) for the scan drive and sustain drive of the Y and X electrodes. Only data is input. For scan driving, 1 data (Din (H)) is input to T0, and for sustain driving, 992 data (Din (H)) from T1 to T992 is input. As a result, the scan drive and the sustain drive are interchanged between the Y and X electrodes every 2T as in the third embodiment, and a drive for outputting a total of 496 SUS in units of 248 SUS is performed.
 以上、印加するSUS数の3つの例の制御の仕方について述べたが、それ以外のSUS数の制御についても同様である。 Although the method of controlling the three examples of the SUS number to be applied has been described above, the same applies to the control of the other SUS numbers.
 以上述べた実施の形態4の回路構成によれば、各ドライバICに対して1タイミング毎に入力するクロック信号数は1つでよく低周波数での動作であり、前述の実施の形態2~3に比べて各ドライバICのロジック回路に要求される周波数特性が低くてよいので、ドライバICのコスト低減が可能であり、また、高周波ノイズ等に起因する誤動作等の悪影響を受け難く動作安定化が可能となる利点がある。 According to the circuit configuration of the fourth embodiment described above, the number of clock signals input to each driver IC for each timing may be one, and the operation is performed at a low frequency. The frequency characteristics required for the logic circuit of each driver IC may be lower than that of the driver IC, so that the cost of the driver IC can be reduced, and the operation is less susceptible to adverse effects such as malfunction caused by high frequency noise. There are advantages that are possible.
 以上説明したように、各実施の形態によれば、新しい駆動方式による階調表示性能及びパネル駆動特性の向上等が実現されている。 As described above, according to each embodiment, improvement in gradation display performance and panel drive characteristics by a new drive method is realized.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 本発明は、PDP装置などに利用可能である。 The present invention can be used for a PDP device or the like.

Claims (17)

  1.  第1方向に延びる複数の第1電極及び第2電極と、前記第1方向に交差する第2方向に延びる複数の第3電極とを含み、前記複数の第1電極及び第2電極において隣接する第1電極と第2電極の対によりそれぞれ表示ラインが構成され、これら複数の表示ラインと前記複数の第3電極とのそれぞれの交差領域に表示セルが構成されるプラズマディスプレイパネルと、
     前記複数の第1電極を駆動する第1駆動回路と、
     前記複数の第2電極を駆動する第2駆動回路と、
     前記複数の第3電極を駆動する第3駆動回路と、
     前記第1、第2、第3駆動回路を制御する制御回路と、を備え、
     前記制御回路は、
     前記表示セルを選択し放電を開始するために、所定時間単位のタイミング毎に、選択する前記第3電極に第3電圧を印加する動作と共に、選択する前記表示ラインの第1電極または第2電極に第1電圧を印加する走査の動作を行うアドレス駆動動作を実行しながら、
     前記表示セルの放電を維持するために、前記アドレス駆動動作中に非選択の表示ラインのうちの前記アドレス駆動動作済みの1つ以上の表示ラインの隣接する前記第1電極と第2電極の対に第2電圧を印加する維持駆動動作を実行することにより、
     前記アドレス駆動動作と前記維持駆動動作とを同時並行に実行するように、各前記駆動回路を制御し、
     前記アドレス駆動動作における前記走査の動作は、前記パネルの画面上の複数の表示ラインによる配列に対して、所定の表示ライン数を単位とした飛び越し走査により行われ、
     前記複数の表示ラインにおける隣接するすべての表示ライン間では、前記維持駆動動作における前記第2電圧のパルスを印加する回数を異ならせることが可能なように、各前記駆動回路を制御すること、を特徴とするプラズマディスプレイ装置。
    A plurality of first electrodes and second electrodes extending in a first direction; and a plurality of third electrodes extending in a second direction intersecting the first direction, wherein the plurality of first electrodes and second electrodes are adjacent to each other. A display line is configured by a pair of the first electrode and the second electrode, respectively, and a plasma display panel in which a display cell is configured in each intersection region of the plurality of display lines and the plurality of third electrodes;
    A first drive circuit for driving the plurality of first electrodes;
    A second drive circuit for driving the plurality of second electrodes;
    A third drive circuit for driving the plurality of third electrodes;
    A control circuit for controlling the first, second and third drive circuits,
    The control circuit includes:
    In order to select the display cell and start discharging, the first electrode or the second electrode of the display line to be selected, together with the operation of applying a third voltage to the third electrode to be selected at every predetermined time unit While performing an address driving operation for performing a scanning operation of applying a first voltage to
    In order to maintain the discharge of the display cell, a pair of the first electrode and the second electrode adjacent to one or more display lines that have undergone the address driving operation among display lines that are not selected during the address driving operation. By executing the sustain driving operation of applying the second voltage to
    Controlling each of the driving circuits so as to execute the address driving operation and the sustain driving operation simultaneously in parallel;
    The scanning operation in the address driving operation is performed by interlaced scanning in units of a predetermined number of display lines with respect to an arrangement of a plurality of display lines on the screen of the panel.
    Controlling each of the drive circuits so that the number of times of applying the pulse of the second voltage in the sustain drive operation can be different between all adjacent display lines in the plurality of display lines. A characteristic plasma display device.
  2.  請求項1記載のプラズマディスプレイ装置において、
     前記画面の複数の表示ラインが、前記維持駆動動作での第2電圧のパルスの印加の回数を複数の種類に異ならせることができるように、離れた表示ラインの集まりから成るグループによる複数のグループに分けられ、
     前記アドレス駆動動作での前記飛び越し走査の単位の表示ライン数は、前記複数のグループの数と等しいこと、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    A plurality of groups of groups of distant display lines so that the plurality of display lines of the screen can vary the number of times of application of the second voltage pulse in the sustain driving operation to a plurality of types. Divided into
    The number of display lines in the interlaced scanning unit in the address driving operation is equal to the number of the plurality of groups.
  3.  請求項2記載のプラズマディスプレイ装置において、
     前記複数のグループの数は、一定の駆動期間内における前記維持駆動動作のパルスの回数の加算により決まる最大階調数との関係において、当該最大階調数に対し自然数Nによる2のN乗の方が大きくなるときのNに等しいこと、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 2, wherein
    The number of the plurality of groups is 2 N to the natural number N with respect to the maximum number of gradations in relation to the maximum number of gradations determined by adding the number of pulses of the sustain driving operation within a fixed drive period. A plasma display device characterized by being equal to N when the direction becomes larger.
  4.  請求項1記載のプラズマディスプレイ装置において、
     前記アドレス駆動動作のために順次選択される表示ラインが、前記タイミング毎に前記飛び越し走査により切り替えられ、当該切り替え毎に、前記走査の動作で前記第1電圧が印加される電極が前記第1電極と第2電極に対して交互に切り替えられ、
     前記アドレス駆動動作中に非選択の表示ラインのうちの前記アドレス駆動動作済みの複数の表示ラインに対して、前記タイミングの切り替え毎に、前記維持駆動動作で前記第2電圧が印加される電極が前記第2電極と第1電極に対して交互に切り替えられるように制御されること、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    Display lines that are sequentially selected for the address driving operation are switched by the interlaced scanning at each timing, and an electrode to which the first voltage is applied by the scanning operation at each switching is the first electrode. And alternately for the second electrode,
    An electrode to which the second voltage is applied in the sustain driving operation for each of the plurality of display lines that have undergone the address driving operation among the non-selected display lines during the address driving operation is switched at each timing switching. The plasma display device is controlled so as to be alternately switched with respect to the second electrode and the first electrode.
  5.  請求項1記載のプラズマディスプレイ装置において、
     前記アドレス駆動動作のために順次選択される表示ラインが、前記タイミング毎に切り替えられ、前記所定時間単位のタイミングの所定回数の連続分を単位として、当該連続分のタイミング毎に、前記走査の動作で前記第1電圧が印加される電極が前記第1電極と第2電極に対して交互に切り替えられ、
     前記アドレス駆動動作中に非選択の複数の表示ラインに対して、前記連続分のタイミング毎に、前記維持駆動動作で前記第2電圧が印加される電極が前記第2電極と第1電極に対して交互に切り替えられ、
     前記連続分のタイミングの間は、前記維持駆動動作で前記第2電圧が前記第2電極または第1電極のいずれかに対して連続的に印加されるように制御されること、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    The display lines that are sequentially selected for the address driving operation are switched at each timing, and the scanning operation is performed at each timing for the continuous time, with a predetermined number of times of the predetermined time unit as a unit. The electrodes to which the first voltage is applied are alternately switched with respect to the first electrode and the second electrode,
    For the plurality of non-selected display lines during the address driving operation, an electrode to which the second voltage is applied in the sustain driving operation is applied to the second electrode and the first electrode at every successive timing. Can be switched alternately,
    The second voltage is controlled to be continuously applied to either the second electrode or the first electrode in the sustain driving operation during the continuous timing. Plasma display device.
  6.  請求項1記載のプラズマディスプレイ装置において、
     前記第1駆動回路は、前記第1電圧として負極性電圧(-Vd)を前記複数の第1電極に選択的に印加し、また前記第2電圧として正極性電圧(Vs)を前記複数の第1電極に選択的に印加し、
     前記第2駆動回路は、前記第1電圧として負極性電圧(-Vd)を前記複数の第2電極に選択的に印加し、また前記第2電圧として正極性電圧(Vs)を前記複数の第2電極に選択的に印加し、
     前記第3駆動回路は、前記第3電圧として正極性電圧(Va)を前記複数の第3電極に選択的に印加すること、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    The first driving circuit selectively applies a negative voltage (−Vd) as the first voltage to the plurality of first electrodes, and a positive voltage (Vs) as the second voltage. Selectively applied to one electrode,
    The second drive circuit selectively applies a negative voltage (−Vd) as the first voltage to the plurality of second electrodes, and a positive voltage (Vs) as the second voltage. Selectively applied to two electrodes,
    The plasma display apparatus, wherein the third driving circuit selectively applies a positive voltage (Va) as the third voltage to the plurality of third electrodes.
  7.  請求項1記載のプラズマディスプレイ装置において、
     前記第1及び第2駆動回路のそれぞれにおいて、
     前記第1または第2電極の対応する電極と高電位側電源端子との間に接続されるハイサイドスイッチ素子と、前記第1または第2電極の対応する電極と低電位側電源端子との間に接続されるローサイドスイッチ素子と、を含んで構成される複数の回路を備え、
     前記高電位側電源端子及び低電位側電源端子のそれぞれに対し、前記第1及び第2電圧に対応する所定の駆動電圧を供給するための駆動電圧供給回路が接続されること、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    In each of the first and second drive circuits,
    A high-side switch element connected between a corresponding electrode of the first or second electrode and a high-potential side power supply terminal, and between a corresponding electrode of the first or second electrode and a low-potential side power supply terminal A plurality of circuits including a low-side switch element connected to
    A drive voltage supply circuit for supplying a predetermined drive voltage corresponding to the first and second voltages is connected to each of the high potential side power supply terminal and the low potential side power supply terminal. Plasma display device.
  8.  請求項7記載のプラズマディスプレイ装置において、
     前記第1及び第2駆動回路における前記複数の回路は、所定の出力数毎にIC化された、複数のICから構成されること、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 7, wherein
    The plurality of circuits in the first and second drive circuits are composed of a plurality of ICs that are integrated into ICs for each predetermined number of outputs.
  9.  請求項8記載のプラズマディスプレイ装置において、
     前記第1及び第2駆動回路における前記複数のIC内において、前記第1または第2電極の対応する電極に前記第1電圧を印加するための走査駆動制御用の第1のシフトレジスタと、前記第1または第2電極の対応する電極に前記第2電圧を印加するための維持駆動制御用の第2のシフトレジスタと、を含むこと、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 8, wherein
    A first shift register for scanning drive control for applying the first voltage to a corresponding electrode of the first or second electrode in the plurality of ICs in the first and second drive circuits; And a second shift register for sustain drive control for applying the second voltage to the corresponding electrode of the first or second electrode.
  10.  請求項9記載のプラズマディスプレイ装置において、
     前記第1及び第2駆動回路における前記複数のICにおいて、
     前記第1または第2電極の対応する電極に前記第1電圧及び第2電圧を印加する回数を、前記第1及び第2のシフトレジスタの各々のクロックに同期させて入力するデータ数により制御すること、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 9, wherein
    In the plurality of ICs in the first and second drive circuits,
    The number of times the first voltage and the second voltage are applied to the corresponding electrode of the first or second electrode is controlled by the number of data input in synchronization with the clocks of the first and second shift registers. A plasma display device.
  11.  請求項10記載のプラズマディスプレイ装置において、
     前記制御回路側からのデータ信号をシリアルで入力しパラレルに変換する回路を有し、前記パラレルに変換されたデータ信号を、前記複数のICの前記第1及び第2のシフトレジスタを構成する複数の回路部でパラレルに入力して処理すること、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 10, wherein
    A circuit that serially inputs a data signal from the control circuit side and converts the data signal into parallel; a plurality of the data signals converted into parallel form the first and second shift registers of the plurality of ICs; A plasma display device, wherein the circuit unit inputs and processes in parallel.
  12.  第1方向に延びる複数の第1電極及び第2電極と、前記第1方向に交差する第2方向に延びる複数の第3電極とを含み、前記複数の第1電極及び第2電極において隣接する前記第1電極と第2電極の対によりそれぞれ表示ラインが構成され、これら複数の表示ラインと前記複数の第3電極とのそれぞれの交差領域に表示セルが構成されるプラズマディスプレイパネルと、
     前記複数の第1電極を駆動する第1駆動回路と、
     前記複数の第2電極を駆動する第2駆動回路と、
     前記複数の第3電極を駆動する第3駆動回路と、
     前記第1、第2、第3ドライバ回路を制御する制御回路と、を備え、
     前記制御回路は、
     前記表示セルを選択し放電を開始するために、所定時間単位のタイミング毎に、選択する前記第3電極に第3電圧を印加する動作と共に、選択する前記表示ラインの第1電極または第2電極に第1電圧を印加する走査の動作を行うアドレス駆動動作を実行しながら、
     前記表示セルの放電を維持するために、前記アドレス駆動動作中に非選択の表示ラインのうちの前記アドレス駆動済みの1つ以上の表示ラインの隣接する前記第1電極と第2電極の対に第2電圧を印加する維持駆動動作を実行することにより、
     前記アドレス駆動動作と前記維持駆動動作とを同時並行に実行するように、各前記駆動回路を制御し、
     前記アドレス駆動動作のために順次選択される表示ラインが、前記タイミング毎に切り替えられ、前記所定時間単位のタイミングの所定回数の連続分を単位として、当該連続分のタイミング毎に、前記走査の動作で前記第1電圧が印加される電極が前記第1電極と第2電極に対して交互に切り替えられ、
     前記アドレス駆動動作中に非選択の複数の表示ラインに対して、前記連続分のタイミング毎に、前記維持駆動動作で前記第2電圧が印加される電極が前記第2電極と第1電極に対して交互に切り替えられ、
     前記連続分のタイミングの間は、前記維持駆動動作で前記第2電圧が前記第2電極または第1電極のいずれかに対して連続的に印加されるように制御されること、を特徴とするプラズマディスプレイ装置。
    A plurality of first electrodes and second electrodes extending in a first direction; and a plurality of third electrodes extending in a second direction intersecting the first direction, wherein the plurality of first electrodes and second electrodes are adjacent to each other. A display line is configured by the pair of the first electrode and the second electrode, respectively, and a plasma display panel in which a display cell is configured in each intersection region of the plurality of display lines and the plurality of third electrodes;
    A first drive circuit for driving the plurality of first electrodes;
    A second drive circuit for driving the plurality of second electrodes;
    A third drive circuit for driving the plurality of third electrodes;
    A control circuit for controlling the first, second and third driver circuits,
    The control circuit includes:
    In order to select the display cell and start discharging, the first electrode or the second electrode of the display line to be selected, together with the operation of applying a third voltage to the third electrode to be selected at every predetermined time unit While performing an address driving operation for performing a scanning operation of applying a first voltage to
    In order to maintain the discharge of the display cell, a pair of the first electrode and the second electrode adjacent to each other in the one or more display lines that have been address driven among the non-selected display lines during the address driving operation. By performing the sustain drive operation to apply the second voltage,
    Controlling each of the driving circuits so as to execute the address driving operation and the sustain driving operation simultaneously in parallel;
    The display lines that are sequentially selected for the address driving operation are switched at each timing, and the scanning operation is performed at each timing for the continuous time, with a predetermined number of times of the predetermined time unit as a unit. The electrodes to which the first voltage is applied are alternately switched with respect to the first electrode and the second electrode,
    For the plurality of non-selected display lines during the address driving operation, an electrode to which the second voltage is applied in the sustain driving operation is applied to the second electrode and the first electrode at every successive timing. Can be switched alternately,
    The second voltage is controlled to be continuously applied to either the second electrode or the first electrode in the sustain driving operation during the continuous timing. Plasma display device.
  13.  請求項12記載のプラズマディスプレイ装置において、
     前記第1駆動回路は、前記第1電圧として負極性電圧(-Vd)を前記複数の第1電極に選択的に印加し、また前記第2電圧として正極性電圧(Vs)を前記複数の第1電極に選択的に印加し、
     前記第2駆動回路は、前記第1電圧として負極性電圧(-Vd)を前記複数の第2電極に選択的に印加し、また前記第2電圧として正極性電圧(Vs)を前記複数の第2電極に選択的に印加し、
     前記第3駆動回路は、前記第3電圧として正極性電圧(Va)を前記複数の第3電極に選択的に印加すること、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 12, wherein
    The first driving circuit selectively applies a negative voltage (−Vd) as the first voltage to the plurality of first electrodes, and a positive voltage (Vs) as the second voltage. Selectively applied to one electrode,
    The second drive circuit selectively applies a negative voltage (−Vd) as the first voltage to the plurality of second electrodes, and a positive voltage (Vs) as the second voltage. Selectively applied to two electrodes,
    The plasma display apparatus, wherein the third driving circuit selectively applies a positive voltage (Va) as the third voltage to the plurality of third electrodes.
  14.  請求項12記載のプラズマディスプレイ装置において、
     前記第1及び第2駆動回路のそれぞれにおいて、
     前記第1または第2電極の対応する電極と高電位側電源端子との間に接続されるハイサイドスイッチ素子と、前記第1または第2電極の対応する電極と低電位側電源端子との間に接続されるローサイドスイッチ素子と、を含んで構成される複数の回路を備え、
     前記高電位側電源端子及び低電位側電源端子のそれぞれに対し、前記第1及び第2電圧に対応する所定の駆動電圧を供給するための駆動電圧供給回路が接続されること、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 12, wherein
    In each of the first and second drive circuits,
    A high-side switch element connected between a corresponding electrode of the first or second electrode and a high-potential side power supply terminal, and between a corresponding electrode of the first or second electrode and a low-potential side power supply terminal A plurality of circuits including a low-side switch element connected to
    A drive voltage supply circuit for supplying a predetermined drive voltage corresponding to the first and second voltages is connected to each of the high potential side power supply terminal and the low potential side power supply terminal. Plasma display device.
  15.  請求項14記載のプラズマディスプレイ装置において、
     前記第1及び第2駆動回路における前記複数の回路は、所定の出力数毎にIC化された、複数のICから構成されること、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 14, wherein
    The plurality of circuits in the first and second drive circuits are composed of a plurality of ICs that are integrated into ICs for each predetermined number of outputs.
  16.  請求項15記載のプラズマディスプレイ装置において、
     前記第1及び第2駆動回路における前記複数のIC内において、前記第1または第2電極の対応する電極に前記第1電圧を印加するための走査駆動制御用の第1のシフトレジスタと、前記第1または第2電極の対応する電極に前記第2電圧を印加するための維持駆動制御用の第2のシフトレジスタと、を含むこと、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 15, wherein
    A first shift register for scanning drive control for applying the first voltage to a corresponding electrode of the first or second electrode in the plurality of ICs in the first and second drive circuits; And a second shift register for sustain drive control for applying the second voltage to the corresponding electrode of the first or second electrode.
  17.  請求項16記載のプラズマディスプレイ装置において、
     前記第1及び第2駆動回路における前記複数のICにおいて、
     前記第1または第2電極の対応する電極に前記第1電圧及び第2電圧を印加する回数を、前記第1及び第2のシフトレジスタの各々のクロックに同期させて入力するデータ数により制御すること、を特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 16, wherein
    In the plurality of ICs in the first and second drive circuits,
    The number of times the first voltage and the second voltage are applied to the corresponding electrode of the first or second electrode is controlled by the number of data input in synchronization with the clocks of the first and second shift registers. A plasma display device.
PCT/JP2008/064456 2008-08-12 2008-08-12 Plasma display device WO2010018620A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/064456 WO2010018620A1 (en) 2008-08-12 2008-08-12 Plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/064456 WO2010018620A1 (en) 2008-08-12 2008-08-12 Plasma display device

Publications (1)

Publication Number Publication Date
WO2010018620A1 true WO2010018620A1 (en) 2010-02-18

Family

ID=41668774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064456 WO2010018620A1 (en) 2008-08-12 2008-08-12 Plasma display device

Country Status (1)

Country Link
WO (1) WO2010018620A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149132A (en) * 1996-11-18 1998-06-02 Mitsubishi Electric Corp Driving method for plasma display panel
JPH1145070A (en) * 1997-07-25 1999-02-16 Mitsubishi Electric Corp Plasma display panel and driving method thereof
JP2001306029A (en) * 2000-04-25 2001-11-02 Fujitsu Hitachi Plasma Display Ltd Method for driving ac-type pdp
JP2007171285A (en) * 2005-12-19 2007-07-05 Fujitsu Hitachi Plasma Display Ltd Plasma display device, drive circuit for plasma display panel, and drive method for the plasma display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149132A (en) * 1996-11-18 1998-06-02 Mitsubishi Electric Corp Driving method for plasma display panel
JPH1145070A (en) * 1997-07-25 1999-02-16 Mitsubishi Electric Corp Plasma display panel and driving method thereof
JP2001306029A (en) * 2000-04-25 2001-11-02 Fujitsu Hitachi Plasma Display Ltd Method for driving ac-type pdp
JP2007171285A (en) * 2005-12-19 2007-07-05 Fujitsu Hitachi Plasma Display Ltd Plasma display device, drive circuit for plasma display panel, and drive method for the plasma display panel

Similar Documents

Publication Publication Date Title
JPH09160525A (en) Plasma display panel, its driving method, and plasma display device
JP2001255848A (en) Method and device for driving ac type pdp
EP2071548A1 (en) Plasma display device
JP4158875B2 (en) Driving method and driving apparatus for AC type PDP
US6791514B2 (en) Plasma display and method of driving the same
WO2009096186A1 (en) Plasma display device
KR100828862B1 (en) Drive circuit for plasma display panel, and drive method for the plasma display panel
KR100342280B1 (en) Display and its driving method
JP4374006B2 (en) Plasma display panel driving method and plasma display apparatus
JP4188898B2 (en) Display panel driving method and apparatus
JP5131241B2 (en) Driving method of plasma display panel
JP2006267912A (en) Driving method of plasma display panel and plasma display device
JP2705948B2 (en) Matrix type panel display
WO2010018620A1 (en) Plasma display device
US20110037792A1 (en) Method for driving plasma display panel and plasma display device
JPWO2007023526A1 (en) Plasma display device
JPH1091088A (en) Matrix display device
WO2011004595A1 (en) Plasma display panel driving method and plasma display device
JP2005250219A (en) Method for driving plasma display panel
JP2005300956A (en) Driving method of plasma display panel
US6380691B2 (en) 4-electrodes type plasma display panel, drive method and apparatus therefor
JP4603801B2 (en) Plasma display device
KR100349917B1 (en) Method for driving a plasma display panel
KR100445029B1 (en) Method of driving plasma display panel for displaying image signal of P.A.L format
EP2056278A1 (en) Plasma display and driving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08792389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP