WO2010018315A1 - Chambre d'oxy-combustion - Google Patents

Chambre d'oxy-combustion Download PDF

Info

Publication number
WO2010018315A1
WO2010018315A1 PCT/FR2009/000875 FR2009000875W WO2010018315A1 WO 2010018315 A1 WO2010018315 A1 WO 2010018315A1 FR 2009000875 W FR2009000875 W FR 2009000875W WO 2010018315 A1 WO2010018315 A1 WO 2010018315A1
Authority
WO
WIPO (PCT)
Prior art keywords
enclosure
injection
combustion chamber
chamber according
oxidant
Prior art date
Application number
PCT/FR2009/000875
Other languages
English (en)
Inventor
Jérôme Colin
Aii Hoteit
Willi Nastoli
André NICOLLE
Original Assignee
Ifp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ifp filed Critical Ifp
Priority to EP09784274A priority Critical patent/EP2310740A1/fr
Priority to US13/058,676 priority patent/US20110185954A1/en
Priority to CN200980131675.7A priority patent/CN102119298B/zh
Priority to JP2011522534A priority patent/JP5530441B2/ja
Publication of WO2010018315A1 publication Critical patent/WO2010018315A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/08Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/20Premixing fluegas with fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/03009Elongated tube-shaped combustion chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to the field of oxy-combustion, and more particularly to a combustion device whose geometry allows a natural recirculation of fumes and is adapted to the constraints of the oxy-combustion of a liquid or gaseous charge.
  • CO 2 greenhouse gas
  • Post-combustion capture ie the direct capture of CO 2 present in combustion fumes in air. This capture requires the addition of a dedicated CO 2 separation unit.
  • Pre-combustion capture that is to say the prior capture of CO 2 on the feed after a first step of conversion to synthesis gas. This conversion generates a gas rich in H 2 which, once released from its carbon compounds, does not release CO 2 during its combustion.
  • Oxy-combustion capture Oxygen is substituted for air for the combustion stages. Thus, at the output of the combustion equipment, high-CO 2 fumes are available which can then be sequestered directly without having to be treated in a CO 2 separation unit. On the other hand, a dedicated oxygen production unit is required.
  • this latter oxy-combustion technique which concerns the present invention. Indeed this technique has many advantages: a decrease in the amount of nitrogen oxide (NOx) formed (in the case of pure O 2 , and absence of nitrogen compounds in the feed), a decrease in amount of fumes generated at iso power, a decrease in heat losses (corresponding to the "useless” heating of nitrogen through the combustion cycle), the concentration of possible pollutants such as nitrogen oxide and the oxide of As sulfur (NOx and SOx) is higher, separation is easier, most components are compressible and the heat of condensation can be used to advantage in the overall process scheme.
  • NOx nitrogen oxide
  • SOx oxide of As sulfur
  • the patent application WO 2004/065848 relates to a device based on an oval geometry which, although promoting loop recirculation of fumes to dilute the reagents, does not allow a very good homogenization of the combustion.
  • the exchange is made with tubes passing through the chamber which can disturb the recirculation.
  • US Patent 7318317 discloses a turbine burner for loop recirculation of combustion gases to homogenize combustion. In this device the gases circulate only on a loop, which does not allow a homogeneous recirculation.
  • the present invention therefore aims to overcome one or more of the disadvantages of the prior art by providing a specific and original arrangement to overcome the constraints specific to oxy-combustion.
  • the combustion chamber therefore has a geometry allowing a natural recirculation of fumes adapted to the constraints of oxy-combustion.
  • the injection is done at different points to ensure the recirculation and dilution of the reagents, which allows to obtain a distributed combustion over the entire volume of the chamber without using dedicated burners.
  • the present invention provides a combustion chamber comprising an enclosure having at least one fuel injection means, at least one oxidant injection means and at least one combustion flue extraction means, wherein enclosure in the form of a tube of any section curved on itself and closed and the fuel injection means and oxidizer are disposed on the enclosure so as to be offset by an angle ⁇ , formed by each of the positions of injecting the oxidant and the fuel with the center of the enclosure, between 10 ° and 90 ° and in which the oxidant injection means is an oxidant oxidant injection means which is a gas with a concentration of oxygen greater than 90%.
  • the enclosure in the form of a tube curved on itself to form a closed circle.
  • the chamber in the form of a tube bent on itself so as to form an oval.
  • the section of the tube is circular, oval or polygonal.
  • the section of the tube is triangular.
  • the withdrawal means is disposed inside the circle formed by the enclosure so as to perform a grazing withdrawal.
  • the fuel injection means are formed by at least one injection nozzle disposed in the radial plane of the enclosure on the outside of the enclosure.
  • the fuel injection pipe forms an angle of inclination ⁇ formed by the longitudinal axis of the pipe and the straight line passing through the fuel injection point and tangent to the trajectory. the circulation of gases after the injection point, said angle ⁇ being between 5 ° and 80 °.
  • the fuel injection means are formed by at least two grazing tubes arranged in opposition to the enclosure, a first pipe allowing injection from above the enclosure and a second tubing for injection from below the enclosure.
  • the fuel injection pipes form an angle of inclination ⁇ ', defined with respect to the longitudinal axis of the pipe and the radial plane of the enclosure, between 5 ° and 80 °.
  • the oxidant injection means are formed by at least one injection nozzle disposed in the radial plane of the enclosure on the outside of the enclosure.
  • the oxidant injection pipe forms an angle of inclination ⁇ formed by the longitudinal axis of the pipe and the straight line passing through the fuel injection point and tangent to the trajectory. the flow of gas after the injection point, said angle ⁇ being between 5 ° and 80 °.
  • the oxidant injection means are formed by at least two grainy tubes, arranged in opposition to the chamber, a first tube allowing injection from above the chamber and a second tubing for injection from below the enclosure.
  • the oxidant injection pipes form an angle of inclination ⁇ ', defined with respect to the longitudinal axis of the pipe and the radial plane of the enclosure, between 5 ° and 80 th .
  • the withdrawal means forms an angle Y defined with respect to the longitudinal axis of the withdrawal means and the radius of the circle formed by the chamber, and directed in the direction of circulation of the fumes. .
  • the angle y is between 20 ° and 85 °.
  • the tube has a section whose size is between 100 mm and 2000 mm.
  • FIG. 1 is a schematic representation of a cross-section of a variant of the device according to the invention
  • FIG. 2 is a schematic representation of a profile view of a variant of the device according to the invention
  • FIG. 3 is a schematic representation of a longitudinal section of the variant of FIG. 2 of the device according to FIG. invention
  • Figure 4 is a schematic representation of a side view of a second variant according to the invention.
  • the combustion chamber comprises a housing (1) which has the shape of a tube bent on itself to form a closed circle or a closed oval.
  • a tube is understood to mean an element of elongated, hollow shape, of any cross section.
  • the section of the tube may be in particular circular (9), oval (FIGS. 2 and 3) or polygonal and preferably triangular (9 ! )
  • the enclosure may also be defined as a hollow volume generated by the displacement of any generating surface in the direction of a closed curve representing the location of its centroids.
  • the dimension d of the section of the tube (for example diameter or side) forming the enclosure is between 100 mm and 2000 mm.
  • the walls of the combustion chamber are formed of specific alloy such as Haynes 230 ⁇ , Kanthal APM ⁇ or MA956 ⁇ or alloy HR120 ⁇ or any other material of the same type. Externally, these walls may be covered with materials for cooling the reactor from the outside. In this way, the outlet temperature of the chamber is adjusted and the walls are protected from hot spots generated in the chamber. In the case where the chamber would not be cooled using a dedicated device, an internal refractoring of the chamber is also possible.
  • the materials used for refractoring are, for example, ceramics or refractory cements or any other material of the same type.
  • the combustion chamber comprises fuel injection means (2) and oxidant injection means.
  • the fuel injection means is a nozzle, and this nozzle is preferably provided with an internal ensuring the mixing of the fuel with an atomizing fluid.
  • the injector is a high-speed injector making it possible to reach speeds preferably greater than 100 m / s, for example a commercial RegeMAT® injector used by WS.
  • the present invention is of course not limited to these two types of fuels and also includes the use of solid fuels.
  • the injector may consist of a rod in which said fuel is transported by a fluid, such as for example steam.
  • the combustion chamber comprises oxidant oxidant injection means (3) which, in the context of the invention, is a gas with a very high concentration of oxygen, usually greater than 90%, or pure oxygen. .
  • oxidant injection means may be an injector, preferably tubular and refractory material.
  • the injection of oxidant can be assisted by any means, such as by recycled fumes, which has the advantage of accelerating the injection speed of the oxidant, limiting concentration heterogeneities due to oxygen injection. It can also be envisaged to assist the injection of oxidant with water vapor which reduces the formation of unburned solids, such as soot for example.
  • the injection of the oxidant is done with a strong impulse which allows to maintain a fast flow of fumes.
  • injection means are similar to tubings, that is to say circular, oval or polygonal shaped ducts, in the following description.
  • One of the characteristics of the device according to the invention is that the injection and the withdrawals are done so as to limit the appearance of hot spots.
  • fuel and oxidant are injected in a disjoint manner (without premixing) on the outer axis of the chamber and the angle of incidence of the tubing for injection is optimized so as to avoid any hot gas impact against the walls.
  • an injection nozzle is disposed on the outside of the circle formed by the chamber, that is to say in the radial plane (P) of the enclosure.
  • the angle ⁇ characterizes the inclination of the tubing and is preferably defined as the angle formed by the longitudinal axis (20) of the tubing and the straight line (21) passing through the injection point and tangent to the axis median circular (A) of the trajectory of the circulation (4) of the gases after the injection point.
  • the injection means are thus formed by a system of pairs of tubings (2 ', 2 ") grazing and in opposition with respect to the radial plane (P), as illustrated in FIGS. , 3 and 4. These pipes are arranged to allow an injection from above and below the chamber, considering the section of the tube.
  • the angle ⁇ 1 of these pipes is defined relative to the longitudinal axis tubing (20 ', 20 ") and the radial plane (P) of the enclosure (1).
  • angles ⁇ and ⁇ ' are constrained by the construction limits and by the angle of the spray (8).
  • the angle ⁇ corresponds to the inclination required to compensate for the drive and keep an injection centered in the enclosure, it is between 5 ° and 80 °, and preferably between 15 ° and 50 °.
  • the angle ⁇ 1 is between 5 ° and 80 °.
  • the number of tubes used is thus adjusted to increase flexibility on the flow rates without drastically changing the flow rates per nozzle.
  • the number of tubings is between 1 and 15, and preferably between 2 and 10. This device also improves the fuel distribution, which improves the quality of combustion and avoid the formation of hot spots.
  • the tubing (3) used is disposed on the outside of the circle formed by the chamber (1), that is to say in the radial plane of the chamber and inclined at an angle ⁇ to ensure a resulting circulation after mixing which is in the axis of the enclosure.
  • This angle characterizes the inclination of the tubing and is defined as the angle formed by the longitudinal axis (30) of the tubular and the line (31) passing through the injection point and tangent to the median circular axis ( A) the trajectory of the circulation (4) of the gases after the injection point. It is between 5 and 80 ° and preferably between 15 ° and 45 °.
  • an injection with 2 opposite tubes can be used. These pipes are arranged to allow injection from above and below the enclosure.
  • the tubes each form an angle ⁇ '(not shown) defined with respect to the longitudinal axis of the tubing and the radial plane of the enclosure (1). This angle must be minimal to maximize the induced drive, it is between 5 ° and 80 °
  • the angle ⁇ formed by each of the injection positions of the oxidant and the fuel with the center of the enclosure that is to say the angle formed by the straight lines (22, 32) passing through the points of injection of the oxidant and fuel and the center (C) of the enclosure, must be between 10 and 150 ° and preferably between 15 ° and 90 °.
  • the richness defined as the quotient of the ratio of fuel / fuel flow rates in operation and the ratio Combustible / Oxidant to stoichiometry is between 0.5 and 3.
  • the combustion chamber also comprises means (5) for withdrawing combustion fumes.
  • This withdrawal means is disposed at a location that does not disturb the circulation of the recirculation gases (4).
  • the withdrawal means (5) is thus disposed inside the circle formed by the enclosure (1), so as to perform a grazing withdrawal.
  • the longitudinal axis (51) of the withdrawal pipe forms an angle Y with the radius (r) of the circle formed at the exit point of the withdrawal means.
  • This extraction pipe is directed in the flue gas flow direction and the angle Y is advantageously between 20 ° and 85 °. In this way, the withdrawal is done in the extension of the circulation (4) fumes.
  • the withdrawal pipe has a diameter S of between 10 mm and 250 mm.
  • the oxidant is then injected with a strong impulse. This pulse helps maintain the rapid flow of fumes and additional mixing. The combustion continues throughout the course of the loop.
  • Some of these fumes are extracted in an area that does not disturb the flow of fumes.
  • the temperature and the composition of the fumes are substantially homogeneous throughout the enclosure. This temperature is included, in nominal operation, between 600 and 2000 ° C and preferably between 800 and 1500 0 C so as to limit the formation of NOx related to possible parasitic air inlet or to the nitrogen of the oxidizer.
  • the high rate of injection of Air / O 2 of between 20 m / s and 500 m / s, and preferably between 100 m / s and 250 m / s, maintains a strong entrainment of the gases present in the combustion chamber. This strong recirculation favors the mixing and dilution of the species present so as to set up a combustion distributed as evenly as possible in the volume of the chamber.
  • This provides a device that prevents the formation of hot spots and provides a combustion volume on the entire combustion chamber.
  • the temperature never exceeds 2000 ° C. and the hot zones are located in the center of the chamber. torus.
  • the joint effects of cooling the walls from the outside, the absence of direct impacts of hot gas and the homogeneity of the combustion make it possible to obtain wall temperatures of less than 1000 ° C.
  • This arrangement (geometry of the chamber, disjoint injections, central withdrawal) promotes the recirculation of combustion fumes and a homogeneous combustion over the entire volume of the chamber.
  • the concept imagined is also particularly adapted and interesting to small powers. Indeed, on this power range, the geometry of the chamber according to the invention makes it possible to ensure good recirculation on a small volume whereas the use of pure oxygen causes, on the usual geometries at low power, a generally too weak. This recirculation of gases is due to the centrifugal force that minimizes the ratio of the output gas flow to the recirculated gas flow rate.
  • preheating due to the recirculation of hot fumes can extend the flexibility of operations and cover for example a wide range of wealth.
  • the high surface area to volume ratio facilitates the possible cooling of the chamber and thus the control of the combustion quality via the control of the average temperature of the chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

La présente invention concerne une chambre de combustion comprenant une enceinte (1) ayant au moins un moyen (2) d'injection de combustible, au moins un moyen (3) d'injection de comburant et au moins un moyen (5) de soutirage des fumées de combustion, dans laquelle l'enceinte (1) a la forme d'un tube de section quelconque recourbé sur lui même et fermé et les moyens d'injections de combustible (2) et de comburant (3) sont disposés sur l'enceinte (1) de façon à être décalés d'un angle ?, formé par chacune des positions d'injection du comburant et du combustible avec le centre (C) de l'enceinte, compris entre 10° et 90° et dans laquelle le moyen d'injection du comburant est un moyen d'injection de comburant oxydant qui est un gaz avec une concentration en oxygène supérieure à 90%.

Description

CHAMBRE D1OXY-COM BUSTION
La présente invention concerne le domaine de l'oxy-combustion, et plus particulièrement un dispositif de combustion dont la géométrie permet une recirculation naturelle de fumées et est adaptée aux contraintes de l'oxy- combustion d'une charge liquide ou gazeuse.
L'activité économique actuelle ainsi que les besoins croissants en énergie génèrent, à travers l'utilisation de combustible fossile, des émissions croissantes de
CO2, gaz à effet de serre, dans l'atmosphère. Ces émissions de CO2 sont fortement suspectées d'être la source des modifications climatiques constatées et notamment du réchauffement planétaire.
Une solution pour réduire ces émissions consiste à capturer et séquestrer le CO2 émis. Néanmoins les surcoûts associés en terme d'investissement et les pénalités sur le rendement global des équipements sont pour le moment prohibitifs. A l'heure actuelle, aucune solution économiquement satisfaisante n'est disponible. Des recherches sont donc actuellement poursuivies pour améliorer les technologies existantes, notamment les technologies de captage.
Actuellement les principales technologies de captage du CO2 à l'étude sont :
Le captage en post combustion, c'est-à-dire la capture directe du CO2 présent dans des fumées de combustion à l'air. Ce captage nécessite l'ajout d'une unité de séparation de CO2 dédiée.
Le captage par précombustion, c'est-à-dire la capture préalable du CO2 sur la charge après une première étape de conversion en gaz de synthèse. Cette conversion génère un gaz riche en H2 qui, une fois libérée de ses composés carbonés, ne libère pas de CO2 lors de sa combustion. Le captage par oxy-combustion : de l'oxygène est substitué à l'air pour les étapes de combustion. Ainsi, on dispose, en sortie de l'équipement de combustion, de fumées à haute teneur en CO2 qui peuvent alors être séquestrées directement sans avoir à être traitées dans une unité de séparation de CO2. En revanche, une unité dédiée de production d'oxygène est requise.
C'est cette dernière technique d'oxy-combustion qui concerne la présente invention. En effet cette technique présente de nombreux avantages : une diminution de la quantité d'oxyde d'azote (NOx) formés (dans le cas d'O2 pur, et d'absence de composés azotés dans la charge), une diminution de la quantité de fumées générées à iso puissance, une diminution des pertes thermiques (correspondant au chauffage "inutile" de l'azote au travers du cycle de combustion), la concentration des éventuels polluants tels que l'oxyde d'azote et l'oxyde de souffre (NOx et SOx) étant plus élevée, la séparation est plus aisée, la plupart des composants sont condensables par compression et la chaleur de condensation peut être utilisée avantageusement dans le schéma de procédé global.
Il reste cependant de nombreux problèmes à résoudre pour l'oxy-combustion. En effet, la combustion sous oxygène (O2) occasionne des températures de flamme notablement plus élevées pouvant atteindre localement 25000C. De manière générale, sous O2, on observe avec les combustibles courants un surcroît de température compris entre 30% à 45% de la température obtenue à l'air (en °C) dans une configuration adiabatique. Cette contrainte nécessite donc des technologies spécifiques, de telles températures n'étant pas "gérables" dans des chambres compactes avec les concepts usuels quels que soient les alliages et réfractaires utilisés. Une des solutions privilégiées pour diminuer ces points chauds ("hot spots") consiste à opérer une recirculation poussée des gaz brûlés, de façon à diluer et homogénéiser le profil de température autour de sa valeur moyenne. Cette dilution par des gaz inertes et ce brassage (l'homme du métier parle de taux d'entraînement pour quantifier l'intensité de brassage) évite ainsi Ia formation de points chauds responsables de l'endommagement localisé des parois et/ou des internes des chambres de combustion. Les besoins en recirculation sont essentiellement requis pour des questions de formation de NOx et de rendement thermique. On notera que les besoins en recirculation sont moins contraignants pour la combustion sous air qu'en oxy- combustion.
En plus de pouvoir agir sur l'homogénéité de la combustion et des températures, il est nécessaire d'agir sur la température moyenne par un refroidissement de la chambre afin de se placer dans la fenêtre de température permettant, par exemple, de minimiser la formation de polluants tout en assurant une bonne combustion de la charge.
Certains brevets proposent des dispositifs essayant de résoudre ces problèmes posés par l'oxy-combustion.
On peut citer notamment la demande de brevet US 20050239005. Ce brevet décrit un brûleur spécifique qui met en évidence l'utilisation d'une recirculation. Il s'agit d'un brûleur bas NOx pouvant être utilisé dans une chambre de combustion usuelle telle que des fours atmosphériques disposant d'un large espacement entre les brûleurs et les internes (tubes, parois, etc.). Ce dispositif nécessite donc des brûleurs spécifiques. Les injections de combustible et de comburant se font en parallèle, ce qui perturbe la recirculation et ne permet pas d'assurer une combustion répartie sur l'ensemble du volume de la chambre.
La demande de brevet WO 2004/065848 concerne un dispositif reposant sur une géométrie ovale qui, bien que favorisant la recirculation en boucle des fumées pour diluer les réactifs, ne permet pas une très bonne homogénéisation de la combustion. L'échange est effectué avec des tubes traversant la chambre ce qui peut perturber la recirculation.
Le brevet US 7318317 décrit un brûleur de turbine permettant la recirculation en boucle des gaz de combustion pour homogénéiser la combustion. Dans ce dispositif les gaz circulent uniquement sur une boucle, ce qui ne permet pas une recirculation homogène.
La présente invention a donc pour objet de palier un ou plusieurs des inconvénients de l'art antérieur en proposant un arrangement spécifique et original permettant de surmonter les contraintes spécifiques à l'oxy-combustion. La chambre de combustion a donc une géométrie permettant une recirculation naturelle des fumées adaptée aux contraintes de l'oxy-combustion. De plus, l'injection se fait en différents points pour assurer la recirculation et la dilution des réactifs, ce qui permet d'obtenir une combustion répartie sur l'ensemble du volume de la chambre sans utiliser de brûleurs dédiés.
Pour cela, la présente invention propose une chambre de combustion comprenant une enceinte ayant au moins un moyen d'injection de combustible, au moins un moyen d'injection de comburant et au moins un moyen de soutirage des fumées de combustion, dans laquelle l'enceinte à la forme d'un tube de section quelconque recourbé sur lui même et fermé et les moyens d'injections de combustible et de comburant sont disposés sur l'enceinte de façon à être décalés d'un angle θ, formé par chacune des positions d'injection du comburant et du combustible avec le centre de l'enceinte, compris entre 10° et 90° et dans laquelle le moyen d'injection du comburant est un moyen d'injection de comburant oxydant qui est un gaz avec une concentration en oxygène supérieure à 90%.
Selon un mode de réalisation de l'invention, l'enceinte à la forme d'un tube recourbé sur lui même de façon à former un cercle fermé.
Dans un autre mode de réalisation de l'invention l'enceinte à la forme d'un tube recourbé sur lui-même de façon à former un ovale.
Selon un mode de réalisation de l'invention, la section du tube est circulaire, ovale ou polygonale.
Dans un mode de réalisation de l'invention, la section du tube est triangulaire.
Dans la chambre de combustion selon l'invention, le moyen de soutirage est disposé à l'intérieur du cercle formé par l'enceinte de façon à réaliser un soutirage rasant. Selon un mode de réalisation de l'invention, les moyens d'injection du combustible sont formés par au moins une tubulure d'injection disposée dans le plan radial de l'enceinte sur l'extérieur de l'enceinte.
Dans un mode de réalisation de l'invention, la tubulure d'injection du combustible forme un angle d'inclinaison α formé par l'axe longitudinal de la tubulure et la droite passant par le point d'injection du combustible et tangente à la trajectoire de la circulation des gaz après le point d'injection, ledit angle α étant compris entre 5° et 80°.
Selon un mode de réalisation de l'invention, les moyens d'injection du combustible sont formés par au moins deux tubulures rasantes, disposées en opposition sur l'enceinte, une première tubulure permettant l'injection par le dessus de l'enceinte et une deuxième tubulure permettant l'injection par le dessous de l'enceinte.
Dans un mode de réalisation de l'invention les tubulures d'injection du combustible forme un angle d'inclinaison α', défini par rapport à l'axe longitudinal de la tubulure et le plan radial de l'enceinte, compris entre 5° et 80°.
Selon un mode de réalisation de l'invention, les moyens d'injection du comburant sont formés par au moins une tubulure d'injection disposée dans le plan radial de l'enceinte sur l'extérieur de l'enceinte. Dans un mode de réalisation de l'invention, la tubulure d'injection du comburant forme un angle d'inclinaison β formé par l'axe longitudinal de la tubulure et la droite passant par le point d'injection du combustible et tangente à la trajectoire de Ia circulation des gaz après le point d'injection, ledit angle β étant compris entre 5° et 80°. Selon un mode de réalisation de l'invention, les moyens d'injection du comburant sont formés par au moins deux tubulures rasantes, disposées en opposition sur l'enceinte, une première tubulure permettant l'injection par le dessus de l'enceinte et une deuxième tubulure permettant l'injection par le dessous de l'enceinte.
Dans un mode de réalisation de l'invention, les tubulures d'injection du comburant forme un angle d'inclinaison β', défini par rapport à l'axe longitudinal de la tubulure et le plan radial de l'enceinte, compris entre 5° et 80e.
Dans la chambre de combustion selon l'invention, le moyen de soutirage forme un angle Y défini par rapport à l'axe longitudinal du moyen de soutirage et le rayon du cercle formé par l'enceinte, et dirigé dans le sens de circulation des fumées. Selon un mode de réalisation de l'invention, l'angle y est compris entre 20° et 85°.
Selon un mode de réalisation de l'invention, le tube a une section dont la taille est comprise entre 100 mm et 2000 mm.
D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront plus clairement à la lecture de la description faite, ci-après, en se référant aux figures annexées et données à titre d'exemple :
- la figure 1 est une représentation schématique d'une coupe transversale d'une variante du dispositif selon l'invention,
- la figure 2 est une représentation schématique d'une vue de profil d'une variante du dispositif selon l'invention, - la figure 3 est une représentation schématique d'une coupe longitudinale de la variante de la figure 2 du dispositif selon l'invention, et la figure 4 est une représentation schématique d'une vue de profil d'une deuxième variante selon l'invention.
Comme illustré sur la figure 1 , la chambre de combustion selon l'invention comprend une enceinte (1) qui a la forme d'un tube recourbé sur lui même de façon à former un cercle fermé ou un ovale fermé. On entend par tube un élément de forme allongée, creux, de section quelconque. La section du tube peut être notamment circulaire (9), ovale (figures 2 et 3) ou polygonale et de préférence triangulaire (9!)
(figure 4), mais également carrée ou rectangle. Lorsque la section du tube recourbé formant l'enceinte est circulaire (9), on parle alors de chambre torique.
L'enceinte peut également être définie comme un volume creux généré par le déplacement d'une surface génératrice quelconque dans la direction d'une courbe fermée représentant le lieu de ses barycentres.
La dimension d de Ia section du tube (par exemple diamètre ou côté) formant l'enceinte est comprise entre 100 mm et 2000 mm.
Les parois de la chambre de combustion sont formées en alliage spécifique tels que Haynes 230©, Kanthal APM© ou MA956© ou alliage HR120© ou tout autre matériau du même type. Extérieurement, ces parois peuvent être recouvertes de matériaux permettant de refroidir le réacteur par l'extérieur. De cette façon, on ajuste la température de sortie de la chambre et on protège les parois des points chauds générés dans la chambre. Dans le cas où la chambre ne serait pas refroidie à l'aide d'un dispositif dédié, une réfractorisation interne de la chambre est également envisageable. Les matériaux utilisés pour la réfractorisation sont par exemple des céramiques ou des ciments réfractaires ou tout autre matériau du même type. La chambre de combustion comporte des moyens d'injection du combustible (2) et des moyens d'injection du comburant.
Lorsque le combustible est liquide, le moyen d'injection du combustible est un gicleur, et avantageusement ce gicleur est muni d'un interne assurant le' mélange du combustible avec un fluide de pulvérisation.
Lorsque le combustible est gazeux, comme par exemple le gaz naturel, l'injecteur est un injecteur haute vitesse permettant d'atteindre des vitesses préférentiellement supérieures à lOOm/s, par exemple un injecteur commercial type RegeMAT© utilisé par WS.
La présente invention n'est bien entendu pas limitée à ces deux types de combustibles et englobe également l'utilisation de combustibles solides. Dans ce cas l'injecteur peut consister en une canne dans laquelle ledit combustible est transporté par un fluide, tel que par exemple la vapeur.
La chambre de combustion comporte des moyens d'injection de comburant (3) oxydant qui est, dans le cadre de l'invention, soit un gaz avec une très forte concentration en oxygène, habituellement supérieure à 90%, soit de l'oxygène pur.
Ces moyens d'injection de comburant peuvent être un injecteur, de préférence tubulaire et en matériau réfractaire.
L'injection de comburant peut être assistée par tous moyens, comme par des fumées recyclées, ce qui a pour avantage d'accélérer la vitesse d'injection du comburant, en limitant les hétérogénéités de concentration dues à l'injection d'oxygène. Il peut également être envisagé d'assister l'injection de comburant par de la vapeur d'eau qui permet de réduire la formation d'imbrûlés solides, comme les suies par exemple.
Typiquement, l'injection du comburant se fait avec une forte impulsion qui permet d'entretenir une circulation rapide des fumées.
Dans tous les cas les moyens d'injection sont assimilés à des tubulures, c'est-à- dire des conduits de forme circulaire, ovale, ou polygonale, dans la suite de la description.
Une des caractéristiques du dispositif selon l'invention est que l'injection et les soutirages se font de façon à limiter l'apparition de points chauds. A cette fin, combustible et comburant sont injectés de manière disjointe (sans prémélange donc) sur l'axe extérieur de l'enceinte et l'angle d'incidence des tubulures permettant l'injection est optimisé de façon à éviter tout impact de gaz chaud contre les parois.
Pour positionner les moyens d'injection, on considère également les contraintes d'implantation des tubulures. Pour l'injection du combustible selon une première variante illustrée sur la figure 1 , une tubulure d'injection est disposée sur l'extérieur du cercle formé par l'enceinte, c'est- à-dire dans le plan radial (P) de l'enceinte. L'angle α caractérise l'inclinaison de la tubulure et se définit préférentiellement comme l'angle formé par l'axe longitudinal (20) de la tubulure et la droite (21) passant par le point d'injection et tangente à l'axe circulaire médian (A) de la trajectoire de la circulation (4) des gaz après le point d'injection.
Cependant, la construction d'une chambre de combustion selon l'invention nécessite la soudure de plusieurs éléments et, dans certain cas, il n'est donc pas possible que les injections puissent être pratiquées exactement sur l'extérieur. Selon une deuxième variante de l'invention, les moyens d'injection sont donc formés par un système de paires de tubulures (2', 2") rasantes et en opposition par rapport au plan radial (P), comme illustré sur les figures 2, 3 et 4. Ces tubulures sont disposées de façon à permettre une injection par le dessus et le dessous de l'enceinte, en considérant la section du tube. L'angle α1 de ces tubulures est défini par rapport à l'axe longitudinal des tubulures (20', 20") et le plan radial (P) de l'enceinte (1 ).
Ces angles α et α' sont contraints par les limites de construction et par l'angle du spray (8). L'angle α correspond à l'inclinaison requise pour compenser l'entraînement et garder une injection centrée dans l'enceinte, il est compris entre 5° et 80°, et de préférence entre 15° et 50°. L'angle α1 est compris entre 5° et 80°. Les gicleurs ayant une très faible flexibilité sur les débits et le démarrage sous air demandant une grande amplitude d'injection, on spécifie au moins un point injection mais on peut en revendiquer plusieurs en série. On ajuste ainsi le nombre de tubulures utilisées pour gagner en flexibilité sur les débits sans modifier drastiquement les débits par gicleur. Le nombre de tubulure est compris entre 1 et 15, et de préférence entre 2 et 10. Ce dispositif améliore par ailleurs la distribution du combustible, ce qui permet d'améliorer la qualité de combustion et éviter la formation des points chauds.
Pour l'injection du comburant et notamment l'oxygène (ou l'air pour le démarrage) la tubulure (3) utilisée est disposée sur l'extérieur du cercle formé par l'enceinte (1), c'est-à-dire dans le plan radial de l'enceinte et inclinée suivant un angle β pour assurer une circulation résultante après mélange qui soit dans l'axe de l'enceinte. Cet angle caractérise l'inclinaison de la tubulure et se définit comme l'angle formé par l'axe longitudinal (30) de la tubulure et la droite (31) passant par le point d'injection et tangente à l'axe circulaire médian (A) de la trajectoire de la circulation (4) des gaz après le point d'injection. Il est compris entre 5e et 80°, et de préférence entre 15° et 45°. En cas de problème d'implantation de la même façon que pour l'injection de combustible, une injection à l'aide de 2 tubulures en opposition peut être utilisée. Ces tubulures sont disposées de façon à permettre une injection par le dessus et le dessous de l'enceinte. Dans ce cas, les tubulures forment chacune un angle β' (non illustré) défini par rapport à l'axe longitudinal de la tubulure et la plan radial de l'enceinte (1). Cet angle doit être minimal pour maximiser l'entraînement induit, il est compris entre 5° et 80°
L'angle θ formé par chacune des positions d'injection du comburant et du combustible avec le centre de l'enceinte, c'est-à-dire l'angle formé par les droites (22, 32) passant par les points d'injection du comburant et du combustible et le centre (C) de l'enceinte, doit être compris entre 10 et 150° et préférentiellement entre 15° et 90°.
Dans un mode préféré de l'invention, la richesse définie comme le quotient du rapport des débits de Combustible / Comburant en opération et du rapport Combustible / Comburant à la stoechiométrie est comprise entre 0.5 et 3.
La chambre de combustion comporte également un moyen (5) de soutirage des fumées de combustion. Ce moyen de soutirage est disposé à un endroit qui ne perturbe pas la circulation des gaz de recirculation (4). Le moyen (5) de soutirage est donc disposé à l'intérieur du cercle formé par l'enceinte (1), de façon à réaliser un soutirage rasant. Pour cela l'axe longitudinal (51) de la tubulure de soutirage forme un angle Y avec le rayon (r) du cercle formé au point de sortie du moyen de soutirage. Cette tubulure de soutirage est dirigée dans le sens de circulation des fumées et l'angle Y est avantageusement compris entre 20° et 85°. De cette façon, le soutirage se fait dans le prolongement de la circulation (4) des fumées. La tubulure de soutirage a un diamètre S compris entre 10 mm et 250 mm. Lors du fonctionnement de la chambre de combustion, un gros débit de fumées de combustion chaudes circule et recircule en permanence dans la boucle du tore. On parle dans ce cas de recycle interne par opposition aux techniques de recycle externe (également envisageables pour l'oxy-combustion). Ce gros débit de fumées est entretenu grâce à des vitesses d'injection élevées dans la chambre. En conséquence, les jets de comburant et de combustible subissent en rentrant dans la chambre un fort brassage et une forte dilution de la part des fumées. Ce brassage assure une mise en contact des réactifs dans des conditions aussi diluées et aussi homogènes que possible, ainsi qu'un étalement de la zone réactionnelle sur l'ensemble de la chambre. Ces fumées sont suffisamment chaudes pour assurer l'auto inflammation des réactifs. Le combustible est tout d'abord injecté et brassé au sein des fumées chaudes. Ces fumées contiennent un peu d'oxygène résiduel. De ce fait, le parcours du mélange, depuis le point d'injection du combustible jusqu'à l'injection de comburant (Air ou O2), permet au gaz de se mélanger, de se diluer et de réagir partiellement.
On injecte alors le comburant avec une forte impulsion. Cette impulsion permet d'entretenir la circulation rapide des fumées ainsi qu'un brassage supplémentaire. La combustion se poursuit durant tout le parcours de la boucle.
Une partie de ces fumées est extraite dans une zone qui ne perturbe pas l'écoulement des fumées.
La température et la composition des fumées sont sensiblement homogènes dans la totalité de l'enceinte. Cette température est comprise, en marche nominale, entre 600 et 2000° C et de préférence entre 800 et 1500 0C de façon à limiter la formation de NOx liée à d'éventuelles entrées d'air parasites ou à l'azote du comburant. La vitesse élevée d'injection d'Air/02 comprise entre 20 m/s et 500 m/s, et de préférence entre 100 m/s et 250 m/s entretient un fort entraînement des gaz présents dans la chambre de combustion. Cette forte recirculation favorise le brassage et la dilution des espèces présentes de façon à mettre en place une combustion répartie de manière la plus homogène possible dans le volume de la chambre.
Les conséquences de ce type de fonctionnement sont les suivantes :
• La combustion se déroule en deux étapes.
• Un fort brassage est obtenu au niveau des injections.
• L'importante vitesse de circulation des fumées chaudes étale Ia combustion sur l'ensemble du volume du tore et entretient la combustion.
On dispose ainsi d'un dispositif qui évite la formation de points chauds et assure une combustion en volume sur l'ensemble de la chambre de combustion.
De plus, la combustion étant répartie sur l'ensemble de l'enceinte et non pas concentrée sous forme d'une flamme au niveau des points d'injection, la température ne dépasse jamais 20000C et les zones chaudes sont localisées au centre du tore. Les effets conjoints du refroidissement des parois par l'extérieur, l'absence d'impacts directs de gaz chaud et l'homogénéité de la combustion permettent d'obtenir des températures de parois inférieures à 10000C.
Cet arrangement (géométrie de l'enceinte, injections disjointes, soutirage central) favorise la recirculation des fumées de combustion et une combustion homogène sur l'ensemble du volume de la chambre.
Le concept imaginé est par ailleurs particulièrement adapté et intéressant aux petites puissances. En effet sur cette gamme de puissance, la géométrie de la chambre selon l'invention permet d'assurer une bonne recirculation sur un faible volume alors que l'utilisation d'oxygène pur occasionne, sur les géométries usuelles aux faibles puissances, un entraînement généralement trop faible. Cette recirculation des gaz est attribuable à la force de centrifugation qui minimise le rapport débit des gaz sortie par rapport au débit de gaz recirculé.
Par ailleurs, le préchauffage dû à la recirculation des fumées chaudes permet d'étendre la flexibilité des opérations et couvrir par exemple une large gamme de richesse.
De plus, dans les petites géométries, le rapport surface sur volume élevé facilite le refroidissement éventuel de la chambre et donc le contrôle de la qualité de combustion via le contrôle de la température moyenne de la chambre.
La possibilité d'abaisser la température du foyer jusqu'à des températures relativement faibles (contrairement aux chambres de combustion sous air) sans stopper la combustion permet d'envisager conjointement, avec des richesses adaptées, d'autres applications comme l'oxydation partielle, la production d'hydrogène ou de composés oxygénés, comme le méthanol.
II doit être évident pour l'homme du métier que la présente invention ne doit pas être limitée aux détails donnés ci-dessus et permet des modes de réalisation sous de nombreuses autres formes spécifiques sans s'éloigner du domaine d'application de l'invention. Par conséquent, les présents modes de réalisation doivent être considérés à titre d'illustration, et peuvent être modifiés sans toutefois sortir de la portée définie par les revendications jointes.

Claims

REVENDICATIONS
1. Chambre de combustion comprenant une enceinte (1) ayant au moins un moyen (2) d'injection de combustible, au moins un moyen (3) d'injection de comburant et au moins un moyen (5) de soutirage des fumées de combustion, dans laquelle l'enceinte (1) a la forme d'un tube de section quelconque recourbé sur lui même et fermé, et les moyens d'injections de combustible (2) et de comburant (3) sont disposés sur l'enceinte (1) de façon à être décalés d'un angle θ, formé par chacune des positions d'injection du comburant et du combustible et le centre (C) de l'enceinte (1), compris entre 10° et 90°, et dans laquelle le moyen d'injection du comburant est un moyen d'injection de comburant oxydant qui est un gaz avec une concentration en oxygène supérieure à 90%.
2. Chambre de combustion selon la revendication 1 dans laquelle l'enceinte (1) a la forme d'un tube recourbé sur lui même de façon à former un cercle fermé. 3. Chambre de combustion selon la revendication 1 dans laquelle l'enceinte (1) a la forme d'un tube recourbé sur lui même de façon à former un ovale.
4. Chambre de combustion selon une des revendications 1 à 3 dans laquelle la section du tube est circulaire (9), ovale ou polygonale.
5. Chambre de combustion selon une des revendications 1 à 4 dans laquelle Ia section du tube est triangulaire (9').
6. Chambre de combustion selon une des revendications 1 à 5 dans laquelle le moyen (5) de soutirage est disposé à l'intérieur du cercle formé par l'enceinte (1) de façon à réaliser un soutirage rasant.
7. Chambre de combustion selon une des revendications 1 à 6 dans laquelle les moyens d'injection du combustible sont formés par au moins une tubulure (2) d'injection disposée dans le plan radial de l'enceinte (1) sur l'extérieur de l'enceinte (1 ).
8. Chambre de combustion selon la revendication 7 dans laquelle la tubulure d'injection du combustible forme un angle d'inclinaison α, formé par l'axe longitudinal (20) de la tubulure et la droite (21) passant par le point d'injection du combustible et tangente à l'axe circulaire médian (A) de la trajectoire de la circulation (4) des gaz après le point d'injection, ledit angle α étant compris entre 5° et 80°.
9. Chambre de combustion selon une des revendications 1 à 6 dans laquelle les moyens d'injection du combustible sont formés par au moins deux tubulures (2\ 2") rasantes, disposées en opposition sur l'enceinte (1), une première tubulure permettant l'injection par le dessus de l'enceinte (1 ) et une deuxième tubulure permettant l'injection par le dessous de l'enceinte (1 ).
10. Chambre de combustion selon la revendication 9 dans laquelle les tubulures d'injection du combustible forment un angle d'inclinaison α', défini par rapport à l'axe longitudinal (20', 20") de la tubulure et le plan radial de l'enceinte (1), compris entre 5° et 80°. il. Chambre de combustion selon une des revendications 1 à 10 dans laquelle les moyens d'injection du comburant sont formés par au moins une tubulure (3) d'injection disposée dans le plan radial de l'enceinte (1) sur l'extérieur de l'enceinte (1).
12. Chambre de combustion selon la revendication 11 dans laquelle la tubulure d'injection du comburant forme un angle d'inclinaison β formé par l'axe longitudinal (30) de la tubulure et la droite (21) passant par le point d'injection du combustible et tangente à l'axe circulaire médian (A) de la trajectoire de la circulation (4) des gaz après le point d'injection, ledit angle β étant compris entre 5° et 80°.
13. Chambre de combustion selon une des revendications 1 à 10 dans laquelle les moyens d'injection du comburant sont formés par au moins deux tubulures rasantes, disposées en opposition sur l'enceinte (1), une première tubulure permettant l'injection par le dessus de l'enceinte (1) et une deuxième tubulure permettant l'injection par le dessous de l'enceinte (1).
14. Chambre de combustion selon la revendication 13 dans laquelle les tubulures d'injection du comburant forme un angle d'inclinaison β\ défini par rapport à l'axe longitudinal (20', 20") de la tubulure et le plan radial de l'enceinte (1), compris entre 5° et 80°. 15. Chambre de combustion selon une des revendications 1 à 14 dans laquelle le moyen de soutirage forme un angle y défini par rapport à l'axe longitudinal du moyen de soutirage et le rayon (r) du cercle formé par l'enceinte, et dirigé dans le sens de circulation (4) des fumées.
16. Chambre de combustion selon la revendication 15 dans laquelle l'angle y est compris entre 20° et 85°.
17. Chambre de combustion selon une des revendications 1 à 1 dans laquelle le tube a une section dont la taille (d) est comprise entre 100 mm et 2000 mm.
PCT/FR2009/000875 2008-08-13 2009-07-16 Chambre d'oxy-combustion WO2010018315A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09784274A EP2310740A1 (fr) 2008-08-13 2009-07-16 Chambre d'oxy-combustion
US13/058,676 US20110185954A1 (en) 2008-08-13 2009-07-16 Oxycombustion chamber
CN200980131675.7A CN102119298B (zh) 2008-08-13 2009-07-16 氧燃烧室
JP2011522534A JP5530441B2 (ja) 2008-08-13 2009-07-16 酸素燃焼室

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR08/04606 2008-08-13
FR0804606A FR2935040B1 (fr) 2008-08-13 2008-08-13 Chambre d'oxy-combustion

Publications (1)

Publication Number Publication Date
WO2010018315A1 true WO2010018315A1 (fr) 2010-02-18

Family

ID=40447356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/000875 WO2010018315A1 (fr) 2008-08-13 2009-07-16 Chambre d'oxy-combustion

Country Status (6)

Country Link
US (1) US20110185954A1 (fr)
EP (1) EP2310740A1 (fr)
JP (1) JP5530441B2 (fr)
CN (1) CN102119298B (fr)
FR (1) FR2935040B1 (fr)
WO (1) WO2010018315A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210147234A1 (en) * 2018-07-30 2021-05-20 Outotec (Finland) Oy Process and plant for the combustion of sulfur to sulfur dioxide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1081405A (fr) * 1953-07-17 1954-12-20 Tubes à chauffage intérieur pour fours de chauffage
US4466360A (en) * 1982-12-14 1984-08-21 The United States Of America As Represented By The United States Department Of Energy Loop-bed combustion apparatus
GB2148481A (en) * 1983-10-21 1985-05-30 Air Prod & Chem Burners
US20040091830A1 (en) * 2002-04-19 2004-05-13 Ws Warmeprozesstechnik Gmbh Flameless oxidation burner
WO2004065848A1 (fr) * 2003-01-14 2004-08-05 Petro-Chem Development Co., Inc. Procede et appareil pour faciliter la combustion sans flamme, sans catalyseur ou oxydant haute temperature
EP1548365A2 (fr) * 2003-12-24 2005-06-29 C.R.F. Società Consortile per Azioni Appareil à combustion rotatif et générateur électrique avec un tel appareil
US20050239005A1 (en) * 2002-09-25 2005-10-27 Linde Ag Method and apparatus for heat treatment
US7318317B2 (en) 2003-01-31 2008-01-15 Alstom Technology Ltd. Combustion chamber for a gas turbine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2243909A (en) * 1938-04-09 1941-06-03 Comb Eng Co Inc Means for controlling superheat
JP2662978B2 (ja) * 1988-05-30 1997-10-15 株式会社スワーク 燃料燃焼装置
US5078064B1 (en) * 1990-12-07 1999-05-18 Gas Res Inst Apparatus and method of lowering no emissions using diffusion processes
SE503064C2 (sv) * 1993-09-24 1996-03-18 Gen Process Aa Ab Sätt att utvinna energi genom förgasning, samt därför avsedd reaktor
JPH07280207A (ja) * 1994-04-14 1995-10-27 Ngk Insulators Ltd ラジアントチューブ
JPH08296811A (ja) * 1995-04-24 1996-11-12 Tokinori Tsuda 排気循環燃焼装置
US6325616B1 (en) * 2000-04-03 2001-12-04 John D. Chato Pulsating combustion unit with interior having constant cross-section
US6722295B2 (en) * 2000-09-29 2004-04-20 Bert Zauderer Method for the combined reduction of nitrogen oxide and sulfur dioxide concentrations in the furnace region of boilers
JP2002317904A (ja) * 2001-04-23 2002-10-31 Nippon Steel Corp ラジアントチューブの炉内支持構造
JP2004316944A (ja) * 2003-04-11 2004-11-11 Japan Air Gases Ltd 燃焼加熱装置及び燃焼加熱方法
JP2007183072A (ja) * 2006-01-10 2007-07-19 Daido Steel Co Ltd 溶湯容器の加熱構造および加熱方法
SE531957C2 (sv) * 2006-06-09 2009-09-15 Aga Ab Förfarande för lansning av syrgas vid en industriugn med konventionell brännare
US20080096146A1 (en) * 2006-10-24 2008-04-24 Xianming Jimmy Li Low NOx staged fuel injection burner for creating plug flow
US7458208B1 (en) * 2007-03-21 2008-12-02 Dando Jr Clifford Benton Exhaust gas extractor system
CN100561047C (zh) * 2007-04-03 2009-11-18 北京科技大学 一种富氧燃烧辐射管加热器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1081405A (fr) * 1953-07-17 1954-12-20 Tubes à chauffage intérieur pour fours de chauffage
US4466360A (en) * 1982-12-14 1984-08-21 The United States Of America As Represented By The United States Department Of Energy Loop-bed combustion apparatus
GB2148481A (en) * 1983-10-21 1985-05-30 Air Prod & Chem Burners
US20040091830A1 (en) * 2002-04-19 2004-05-13 Ws Warmeprozesstechnik Gmbh Flameless oxidation burner
US20050239005A1 (en) * 2002-09-25 2005-10-27 Linde Ag Method and apparatus for heat treatment
WO2004065848A1 (fr) * 2003-01-14 2004-08-05 Petro-Chem Development Co., Inc. Procede et appareil pour faciliter la combustion sans flamme, sans catalyseur ou oxydant haute temperature
US7318317B2 (en) 2003-01-31 2008-01-15 Alstom Technology Ltd. Combustion chamber for a gas turbine
EP1548365A2 (fr) * 2003-12-24 2005-06-29 C.R.F. Società Consortile per Azioni Appareil à combustion rotatif et générateur électrique avec un tel appareil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210147234A1 (en) * 2018-07-30 2021-05-20 Outotec (Finland) Oy Process and plant for the combustion of sulfur to sulfur dioxide

Also Published As

Publication number Publication date
CN102119298A (zh) 2011-07-06
JP5530441B2 (ja) 2014-06-25
CN102119298B (zh) 2014-07-30
EP2310740A1 (fr) 2011-04-20
US20110185954A1 (en) 2011-08-04
FR2935040A1 (fr) 2010-02-19
JP2011530690A (ja) 2011-12-22
FR2935040B1 (fr) 2012-10-19

Similar Documents

Publication Publication Date Title
EP3241808B1 (fr) Procédé de combustion pour fusion de verre
FR2927327A1 (fr) Four verrier bas nox a haut transfert de chaleur
EP1402161A1 (fr) Generateur de puissance a faibles rejets de co2 et procede associe
FR2509434A1 (fr) Procede et dispositif pour la recirculation de gaz de carneau dans une chaudiere a combustible solide et chaudiere l'utilisant
EP1766289A1 (fr) Procede de combustion homogene et générateur thermique utilisant un tel procédé.
WO2009080937A2 (fr) Procede de reduction catalytique selective d'oxydes d'azote dans des fumees de combustion et installation pour sa mise en oeuvre
FR2788112A1 (fr) Appareil de type torchere et procede pour la combustion de gaz
FR2706985A1 (fr)
FR3011911A1 (fr) Bruleur de gaz pauvre
FR2889579A1 (fr) Procede de calcination d'un materiau a faible emission de nox
FR2595791A1 (fr) Bruleur a faible emission de gaz polluants
EP1618334A1 (fr) PROCEDE DE COMBUSTION ETAGEE D UN COMBUSTIBLE LIQUIDE ET D&a pos;UN OXYDANT DANS UN FOUR
FR2903762A1 (fr) Bruleur et procede pour la mise en oeuvre alternee d'une oxycombustion et d'une aerocombustion
WO2010018315A1 (fr) Chambre d'oxy-combustion
FR2895490A1 (fr) Procede d'oxycombustion etagee mettant en oeuvre des reactifs prechauffes
EP2407716B1 (fr) Brûleur pour le traitement d'un gaz acide combustible, four à réaction adapté et procédé
FR2825448A1 (fr) Generateur thermique permettant de limiter les emissions d'oxydes d'azote par recombustion des fumees et procede pour la mise en oeuvre d'un tel generateur
WO2000040901A1 (fr) Dispositif pour ameliorer le brulage des combustibles gazeux
EP2751485B1 (fr) Dispositif de stabilisation de la combustion diluée dans une enceinte de combustion a parois froides
FR2802616A1 (fr) Methode et dispositif d'auto-combustion de dechets organiques graisseux comportant un foyer a chauffe tangentielle
BE410860A (fr)
BE531249A (fr)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131675.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09784274

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009784274

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009784274

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011522534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13058676

Country of ref document: US