WO2010018292A1 - Protección de elementos de material compuesto. - Google Patents

Protección de elementos de material compuesto. Download PDF

Info

Publication number
WO2010018292A1
WO2010018292A1 PCT/ES2009/070330 ES2009070330W WO2010018292A1 WO 2010018292 A1 WO2010018292 A1 WO 2010018292A1 ES 2009070330 W ES2009070330 W ES 2009070330W WO 2010018292 A1 WO2010018292 A1 WO 2010018292A1
Authority
WO
WIPO (PCT)
Prior art keywords
edges
resin
composite material
angles
protection
Prior art date
Application number
PCT/ES2009/070330
Other languages
English (en)
French (fr)
Inventor
José Ignacio LÓPEZ-REINA TORRIJOS
Luis Manuel DESCALZO FERNÁNDEZ
Original Assignee
Airbus España S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus España S.L. filed Critical Airbus España S.L.
Priority to BRPI0917211-4A priority Critical patent/BRPI0917211B1/pt
Priority to ES09784136.5T priority patent/ES2486016T3/es
Priority to CA2732616A priority patent/CA2732616C/en
Priority to EP09784136.5A priority patent/EP2319763B1/en
Priority to CN2009801386730A priority patent/CN102171102A/zh
Publication of WO2010018292A1 publication Critical patent/WO2010018292A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/02Lightning protectors; Static dischargers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2707/00Use of elements other than metals for preformed parts, e.g. for inserts
    • B29K2707/04Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24777Edge feature

Definitions

  • the present invention relates to elements made of composite material, in particular aircraft elements, protected against electric shock, as well as to a method of manufacturing such elements.
  • the present invention is oriented to the solution of the inconveniences that have just been raised.
  • the present invention relates to elements, particularly aircraft, made of composite material and protected against electric shocks to which they are potentially exposed, for example from the impact of lightning.
  • the invention is especially relevant in those structures, in particular of aircraft, which, due to their function of containing flammable liquids, gases or solids, must be adequately protected against sources of ignition that could pose a risk of explosion.
  • the present invention is particularly applied to the aeronautical context, in which the realization of composite materials is very common at present, in addition, in certain cases fulfilling said components the function of fuel tanks, such as for example case of wings and horizontal stabilizers (harnesses).
  • the invention develops elements made of composite material protected against electric shock, said elements comprising a non-conductive insulating resin layer disposed at the edges or edges that require protection, such that said resin layer is produced in the process itself of manufacturing the composite material element, at one time and without the need for subsequent operations for the specific protection of the edges or edges.
  • the invention does not present in its application important technical limitations, since what is sought is to obtain protection at the edges or edges of the elements of composite material at the same time and in the same manufacturing process of said element.
  • the invention becomes particularly relevant in what refers to the ability to apply the resin in especially complex geometries, because an additional and specific process is not required for the application of the insulating barrier, since in the process of manufacturing the element itself The application of the non-conductive resin is already integrated.
  • the invention develops a process for the manufacture of elements such as those described above, particularly aircraft elements, made of composite material and potentially exposed to electric shocks.
  • This process includes the following stages: - A - a) Design of the element or component: the Geometry of said element or component is defined without considering the thickness of the protection in the edges or edges that are difficult to apply.
  • Figure 1 shows a schematic plan view of the element made of composite material protected against electric shocks at its edges (localized accumulation of resin), according to the present invention.
  • Figure 2 shows a schematic elevation view of the element made of composite material protected against electric shocks according to the present invention, in its concrete application of aircraft stringers.
  • Figure 3 shows a view of an element of composite material with resin overlays manufactured in such a way that resin has accumulated, before the edge restraint stage, according to the manufacturing method of the present invention.
  • Figure 4 shows a detailed view of the edge of a composite material element manufactured by the manufacturing method of the present invention, before the edge restraint stage.
  • the invention develops an element made of composite material and protected against electric shocks at its points of complex geometry, such as edges, edges, edges and angles, said element being made of carbon fiber composite material, and being An element primarily for aircraft.
  • the edges and edges of aircraft elements potentially exposed to electric shocks should be protected with a dielectric material (electrical insulator) in order to avoid electric arcs or incandescent particles that damage the material in an unpredictable way, damaging its mechanical properties, or that they constitute sources of ignition in the case of being present in flammable atmospheres (as is the case of fuel tanks made of carbon fiber).
  • the invention although applicable in a broader context, has been developed in an aeronautical environment.
  • the probability of a commercial aircraft suffering a lightning strike (electric shock) is high: it is estimated that an aircraft suffers on average almost two lightning strikes per year. Therefore, it is necessary to take appropriate measures to ensure first The safety of passengers and secondly, that this lightning impact has the least possible effect on the operation of the aircraft.
  • the solution developed by the invention meets the requirement of electrically isolating the edges or edges, by means of a solution robust and of great integrity, from the electrical point of view, as well as simple to apply, thanks to its integration in the manufacturing process.
  • the composite element 1 for example this carbon fiber composite material with epoxy resin, is obtained by applying a temperature and pressure cycle from a mold 2 designed in such a way that, once the element geometry is known 1 in question, the mold 2 is designed such that it comprises holes 6 intended to accommodate resin from the manufacturing process of the element 1, resin that will form the dielectric protection of the edges or edges of the element 1.
  • the mold 2 comprises holes 6 in free edges designed in which dielectric (insulating) protection of the element 1 is required, thus allowing the accumulation of resin in said gaps 6 during the manufacturing process of said element 1.
  • the resin accumulates forming a layer 3 that is arranged around the free edge of element 1, thus giving this surface edge a dielectric protection (electrical insulation) that prevents possible discharges and expulsion of hot particles in case of lightning strike or severe equivalent electric shock in the mentioned element 1.
  • the resin layer 3 must have a thickness between 4 and 5 mm, so as to ensure a significant dielectric or insulation capacity at the edges or edges of the element 1. All resins for application to composite materials that are used for Manufacturing aerostructures are currently insulating, although their insulating capacity (capacity to withstand potential differences) is greater in the latest generation resins. A Table with results of experimental measurements that belong to very frequent resins in the manufacture of pieces of composite material for aeronautical structures is shown below. Thus, according to the values obtained shown in said Table, it can be affirmed that all the resins tested in the Table are insulating from an electrical point of view for the application of edge or edge protection, for example in aircraft fuel tanks . However, the greater the insulation capacity of the resin, the smaller the thickness required in the resin layer 3 to withstand potential differences in the element 1.
  • Figure 2 shows in diagram the particular application of the invention for stringers 4 of composite material of aircraft comprising coatings 5 of composite material, in particular of carbon fiber.
  • the invention develops a process for the manufacture of elements 1 as described above, particularly aircraft elements, made of composite material and potentially exposed to electric shocks.
  • This process includes the following stages: a) Design of element 1: the geometry of said element 1 is defined without considering the thickness of the protection in the edges or edges that are difficult to apply. b) Identification of the edges or edges of element 1 in which protection is required based on the isolation of said edges or edges. Normally, for the invention, those edges or edges are considered in which the application of common dielectric protections, such as sealants, glass fibers, etc. It is complex, difficult to access or requires expensive manual labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Protección de elementos (1) de material compuesto protegidos en sus puntos de geometría compleja, tales como bordes, aristas, cantos y ángulos, frente a descargas eléctricas a las que están potencialmente expuestos, obteniéndose dichos elementos (1) aplicando un ciclo de temperatura y presión a un material compuesto dispuesto sobre un molde (2) diseñado de tal forma que, una vez conocida la geometría del elemento (1), el molde (2) comprende huecos (6) libres destinados a la acumulación de resina del proceso de fabricación de dicho elemento (1), resina que conformará la protección dieléctrica de los bordes, aristas, cantos o ángulos del elemento (1) al acumularse formando capas (3) que quedan dispuestas alrededor de los bordes libres del elemento (1), confiriéndole de este modo a estas superficies de bordes, aristas, cantos o ángulos una protección dieléctrica de aislamiento eléctrico que evita posibles descargas y expulsión de partículas calientes en caso de descarga eléctrica sobre el citado elemento (1). La invención se refiere también a un proceso de fabricación de un elemento (1) de material compuesto tal.

Description

PROTECCIÓN DE ELEMENTOS DE MATERIAL COMPUESTO
CAMPO DE LA INVENCIÓN
La presente invención se refiere a elementos realizados en material compuesto, en particular elementos de aeronave, protegidos frente a descargas eléctricas, así como a un método de fabricación de elementos tales.
ANTECEDENTES DE LA INVENCIÓN
En Ia actualidad, se emplean cada vez más en Ia industria tecnologías basadas en Ia utilización de materiales compuestos para Ia realización de componentes. Así, es de especial relevancia el incremento en Ia proporción de materiales compuestos que se aplican en el ámbito aeronáutico, constituyéndose las denominadas aero-estructuras. Sin embargo, esta evolución hacia materiales que son poco conductores con respecto a los tradicionales componentes en materiales metálicos, requiere de una exhaustiva protección de los mismos frente a agentes externos como son las descargas eléctricas, principalmente, para el caso de elementos que componen estructuras de aeronaves, para las descargas producidas por el impacto de un rayo. Esta protección resulta de suma importancia cuando el componente o elemento en cuestión contiene vapores de combustible o atmósferas potencial mente inflamables, como es el caso de los depósitos de combustible o de las alas en una aeronave, al cumplir estos últimos componentes además Ia función de depósitos de combustible. En estos casos, todas las zonas interiores deben estar protegidas para evitar descargas de partículas incandescentes o arcos eléctricos que pudieran suponer focos de ignición.
A pesar de los avances actuales en Ia protección frente a rayos y otros agentes externos que suponen una descarga eléctrica, en especial en el campo de las aeronaves, existen grandes dificultades en Ia aplicación a nivel de fabricación de los elementos de protección teóricos propuestos. Este problema se pone especialmente de manifiesto en el ámbito de Ia protección de bordes y aristas de geometrías complejas de aeronave, en las cuales se requiere un material dieléctrico (aislante eléctrico) a Io largo de todo el canto del borde o arista, con el fin de evitar arcos y descargas. No obstante, resulta de gran complejidad, desde un punto de vista práctico, Ia aplicación de productos aislantes en estos bordes o aristas que ejerzan Ia función, tanto de barrera física como de barrera eléctrica, de forma robusta e íntegra y a Io largo de toda Ia vida útil del componente en cuestión.
Son conocidos en Ia técnica medios para Ia protección de los bordes o aristas de componentes realizados en material compuesto. Sin embargo, estos medios son costosos, al tener que realizarse mayoritariamente de forma manual, al tiempo que dicha aplicación manual es muy difícil. Así, son conocidos actualmente elementos sellantes que se colocan en los bordes o aristas de los componentes de material compuesto, que plantean el problema de durabilidad con el paso del tiempo, pues pierden su integridad. También es conocida Ia aplicación de películas o capas de materiales aislantes en los bordes o aristas de los componentes compuestos (esta aplicación se produce posteriormente a Ia fabricación del componente realizado en material compuesto), estando comúnmente constituidas estas películas o capas por fibra de vidrio u otra capa de material dieléctrico. Esta solución plantea el inconveniente de que requiere un proceso laborioso y costoso adicional, y no se adapta correctamente a superficies de difícil geometría, por ejemplo a aquellas que tienen curvaturas.
La presente invención está orientada a Ia solución de los inconvenientes que acaban de plantearse.
SUMARIO DE LA INVENCIÓN
Así, según un primer aspecto, Ia presente invención se refiere a elementos, particularmente de aeronave, realizados en material compuesto y protegidos frente a descargas eléctricas a las que están potencialmente expuestos, por ejemplo provenientes del impacto de un rayo. La invención es especialmente relevante en aquellas estructuras, en particular de aeronave, que, debido a su función de contener líquidos, gases o sólidos inflamables, deben estar convenientemente protegidas frente a focos de ignición que pudiesen suponer riesgo de explosión. Como se ha descrito anteriormente, Ia presente invención se aplica particularmente al contexto aeronáutico, en el cual Ia realización de materiales compuestos es muy común en Ia actualidad cumpliendo además en determinados casos los citados componentes Ia función de depósitos de combustible, como es por ejemplo el caso de las alas y los estabilizadores horizontales (empenajes).
Así, Ia invención desarrolla elementos realizados en material compuesto protegidos contra descargas eléctricas, comprendiendo dichos elementos una capa de resina aislante no conductora dispuesta en los bordes o aristas que requieran protección, de tal forma que Ia citada capa de resina se produce en el propio proceso de fabricación del elemento de material compuesto, de una sola vez y sin necesidad de operaciones posteriores para Ia protección específica de los bordes o aristas. De este modo, Ia invención no presenta en su aplicación limitaciones técnicas importantes, dado que Io que se persigue es obtener Ia protección en las aristas o bordes de los elementos de material compuesto al mismo tiempo y en el mismo proceso de fabricación del citado elemento.
La invención cobra particular relevancia el Io que se refiere a Ia capacidad para aplicar Ia resina en geometrías especialmente complejas, debido a que no se requiere un proceso adicional y especifico para Ia aplicación de Ia barrera aislante, pues en el propio proceso de fabricación del elemento se encuentra ya integrada Ia aplicación de Ia resina no conductora.
Según un segundo aspecto, Ia invención desarrolla un proceso para Ia fabricación de elementos como los descritos anteriormente, particularmente elementos de aeronave, realizados en material compuesto y potencialmente expuestos a descargas eléctricas. Este proceso comprende las siguientes etapas: - A - a) Diseño del elemento o componente: se define Ia Geometría de dicho elemento o componente sin considerar el espesor de Ia protección en los cantos o bordes que sean de difícil aplicación. b) Identificación de los bordes o aristas del elemento o componente en los que se requiere protección basada en el aislamiento de dichos bordes o aristas. Normalmente, para Ia invención, se consideran aquellos bordes o aristas en los que Ia aplicación de protecciones dieléctricas comunes, tales como sellantes, fibras de vidrio, etc. es compleja, de difícil acceso o requiere un trabajo manual costoso. c) Definición y diseño del molde en el que se fabrica el elemento o componente de aeronave, considerando las distancias para definir los huecos en las aristas o bordes identificados y que requieren de protección dieléctrica. En estos huecos dispuestos en las aristas o bordes quedará dispuesta, durante el propio proceso de fabricación del elemento o componente en material compuesto, una capa de resina aislante no conductora. d) Refrentado de los bordes o aristas para uniformizar las creces de resina al espesor requerido, de tal forma que quede garantizada Ia capacidad dieléctrica necesaria en dichos bordes o aristas.
Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue de una realización ilustrativa de su objeto en relación con las figuras que se acompañan.
DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra una vista en planta esquemática del elemento realizado en material compuesto protegido frente a descargas eléctricas en sus aristas (acumulación localizada de resina), según Ia presente invención. La Figura 2 muestra una vista en alzado esquemática del elemento realizado en material compuesto protegido frente a descargas eléctricas según Ia presente invención, en su aplicación concreta de larguerillos de aeronave.
La Figura 3 muestra una vista de un elemento de material compuesto con creces de resina fabricado de tal forma que se ha acumulado resina, antes de Ia etapa de refrentado de aristas, según el método de fabricación de Ia presente invención.
La Figura 4 muestra una vista en detalle de Ia arista de un elemento de material compuesto fabricado mediante el método de fabricación de Ia presente invención, antes de Ia etapa de refrentado de aristas.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Según un primer aspecto, Ia invención desarrolla un elemento fabricado en material compuesto y protegido frente a descargas eléctricas en sus puntos de geometría compleja, como bordes, aristas, cantos y ángulos, estando dicho elemento fabricado en material compuesto de fibra de carbono, y siendo un elemento principalmente para aeronave. Frecuentemente, los cantos y bordes de elementos de aeronave potencialmente expuestos a descargas eléctricas deben protegerse con un material dieléctrico (aislante eléctrico) con el fin de evitar arcos eléctricos o partículas incandescentes que dañan el material de forma impredecible, perjudicando sus propiedades mecánicas, o que constituyen focos de ignición en el caso de presentarse en atmósferas inflamables (como es el caso de tanques de combustibles realizados en fibra de carbono).
La invención, aunque aplicable en un contexto más amplio, se ha desarrollado en un entorno aeronáutico. La probabilidad de una aeronave comercial de sufrir un impacto de rayo (descarga eléctrica) es elevada: se calcula que una aeronave sufre de media casi dos impactos de rayo al año. Por Io tanto, es necesario tomar medidas adecuadas que aseguren en primer lugar Ia seguridad de los pasajeros y en segundo lugar, que ese impacto de rayo tenga el menor efecto posible en Ia operación de Ia aeronave.
Así, ante Ia dificultad de cubrir todas las aristas o bordes interiores que potencialmente pudiesen provocar descargas eléctricas en una aeronave debido al impacto de un rayo, Ia solución desarrollada por Ia invención cumple con el requerimiento de aislar eléctricamente los bordes o aristas, mediante una solución robusta y de gran integridad, desde el punto de vista eléctrico, así como sencilla de aplicar, gracias a su integración en el proceso de fabricación.
En el proceso de fabricación de materiales compuestos (fibra más resina co-curadas en un proceso de temperatura y vacío) se obtienen creces de material sobrante producido por el flujo de resina hacia los extremos de Ia pieza o elemento. La idea que desarrolla Ia presente invención es Ia de aprovechar dicho material sobrante de gran capacidad aislante (con constante dieléctrica muy elevada) para cumplir con el requisito de protección de aristas frente a descargas eléctricas.
Así, usando Ia resina epoxy integrante del material compuesto que inherentemente se concentra en los bordes de las piezas o elementos producidos de forma controlada (a través de las dimensiones adecuadas del molde de Ia pieza o elemento y de Ia cantidad precisa de resina) es posible Ia obtención de una sola vez y sin necesidad de operaciones posteriores de un sistema para Ia protección especifica de los bordes o aristas frente a descargas eléctricas.
Así, el elemento 1 de material compuesto, siendo por ejemplo este material compuesto fibra de carbono con resina epoxy, se obtiene aplicando un ciclo de temperatura y presión a partir de un molde 2 diseñado de tal forma que, una vez conocida Ia geometría del elemento 1 en cuestión, el molde 2 es diseñado tal que comprende huecos 6 destinados a alojar resina del proceso de fabricación del elemento 1 , resina que conformará Ia protección dieléctrica de los bordes o aristas del elemento 1. Así, el molde 2 comprende huecos 6 en bordes libres diseñados en los que se requiere protección dieléctrica (aislante) del elemento 1 , permitiéndose así Ia acumulación de resina en dichos huecos 6 durante el proceso de fabricación del citado elemento 1. La resina se acumula formando una capa 3 que queda dispuesta alrededor del borde libre del elemento 1 , confiriéndole de este modo a esta superficie en arista una protección dieléctrica (aislamiento eléctrico) que evita posibles descargas y expulsión de partículas calientes en caso de impacto de rayo o descarga eléctrica equivalente severa en el citado elemento 1.
La capa 3 de resina habrá de tener un espesor comprendido entre 4 y 5 mm, de tal forma que asegure una capacidad dieléctrica o de aislamiento importante en los bordes o aristas del elemento 1. Todas las resinas de aplicación a materiales compuestos que se usan para fabricar aeroestructuras en Ia actualidad son aislantes, si bien su capacidad de aislamiento (capacidad para soportar diferencias de potencial) es mayor en las resinas de última generación. Se muestra a continuación una Tabla con resultados de medidas experimentales que pertenecen a resinas muy frecuentes en Ia fabricación de piezas de material compuesto para estructuras aeronáuticas. Así, a tenor de los valores obtenidos mostrados en dicha Tabla, se puede afirmar que todas las resinas ensayadas de Ia Tabla son aislantes desde un punto de vista eléctrico para Ia aplicación de protección de bordes o aristas, por ejemplo en tanques de combustible de aeronaves. No obstante, cuanto mayor es Ia capacidad de aislamiento de Ia resina, menor es el espesor requerido en Ia capa 3 de resina para soportar diferencias de potencial en el elemento 1.
Figure imgf000009_0001
Figure imgf000010_0001
La Figura 2 muestra en esquema Ia aplicación particular de Ia invención para larguerillos 4 de material compuesto de aeronave que comprenden revestimientos 5 de material compuesto, en particular de fibra de carbono.
Según un segundo aspecto, Ia invención desarrolla un proceso para Ia fabricación de elementos 1 como los descritos anteriormente, particularmente elementos de aeronave, realizados en material compuesto y potencialmente expuestos a descargas eléctricas. Este proceso comprende las siguientes etapas: a) Diseño del elemento 1 : se define Ia geometría de dicho elemento 1 sin considerar el espesor de Ia protección en los cantos o bordes que sean de difícil aplicación. b) Identificación de los bordes o aristas del elemento 1 en los que se requiere protección basada en el aislamiento de dichos bordes o aristas. Normalmente, para Ia invención, se consideran aquellos bordes o aristas en los que Ia aplicación de protecciones dieléctricas comunes, tales como sellantes, fibras de vidrio, etc. es compleja, de difícil acceso o requiere un trabajo manual costoso. c) Definición y diseño del molde 2 en el que se fabrica el elemento 1 de aeronave, considerando las distancias para definir los huecos en las aristas o bordes identificados y que requieren de protección dieléctrica. En estos huecos dispuestos en las aristas o bordes quedará dispuesta, durante el propio proceso de fabricación del elemento o componente en material compuesto, una capa 3 de resina aislante no conductora. d) Refrentado de los bordes o aristas para uniformizar las creces de resina al espesor requerido, de tal forma que quede garantizada Ia capacidad dieléctrica necesaria en dichos bordes o aristas.
En Ia realización preferente que acabamos de describir pueden introducirse aquellas modificaciones comprendidas dentro del alcance definido por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1. Elemento (1 ) de material compuesto protegido en sus puntos de geometría compleja, tales como bordes, aristas, cantos y ángulos, frente a descargas eléctricas a las que está potencialmente expuesto, caracterizado porque dicho elemento (1 ) se obtiene aplicando un ciclo de temperatura y presión a un material compuesto dispuesto sobre un molde (2) diseñado de tal forma que, una vez conocida Ia geometría del citado elemento (1 ), el molde (2) comprende huecos (6) libres destinados a Ia acumulación de resina del proceso de fabricación del elemento (1 ), resina que conformará Ia protección dieléctrica de los bordes, aristas, cantos o ángulos del elemento (1 ) al acumularse formando capas (3) que quedan dispuestas alrededor de los bordes libres del elemento (1 ), confiriéndole de este modo a estas superficies de bordes, aristas, cantos o ángulos una protección dieléctrica de aislamiento eléctrico que evita posibles descargas y expulsión de partículas calientes en caso de descarga eléctrica sobre el citado elemento (1 ).
2. Elemento (1 ) de material compuesto según Ia reivindicación 1 caracterizado porque cuanto mayor es Ia capacidad de aislamiento de Ia resina, menor es el espesor requerido en las capas (3) de resina para soportar diferencias de potencial en el elemento (1 ).
3. Elemento (1 ) de material compuesto según cualquiera de las reivindicaciones anteriores caracterizado porque las capas (3) de resina tienen un espesor comprendido entre 4 y 5 mm, de tal forma que aseguren una capacidad dieléctrica o de aislamiento suficiente en los bordes, aristas, cantos y ángulos del citado elemento (1 ).
4. Elemento (1 ) de material compuesto según cualquiera de las reivindicaciones anteriores caracterizado porque el material compuesto es fibra de carbono con resina epoxy.
5. Elemento (1 ) de material compuesto según cualquiera de las reivindicaciones anteriores caracterizado porque el elemento (1 ) tiene Ia función de contener líquidos, gases o sólidos inflamables.
6. Elemento (1 ) de material compuesto según cualquiera de las reivindicaciones anteriores caracterizado porque el elemento (1 ) es un elemento de aeronave.
7. Aeronave que comprende un elemento (1 ) de material compuesto según cualquiera de las reivindicaciones anteriores.
8. Proceso de fabricación de un elemento (1 ) de material compuesto según Ia reivindicación 1 caracterizado porque el proceso comprende las siguientes etapas: a) diseño del elemento (1 ) mediante definición de su geometría; b) identificación de los bordes, aristas, cantos o ángulos del elemento (1 ) en los que se requiere protección basada en el aislamiento de dichas superficies; c) definición y diseño del molde (2) en el que se fabrica el elemento (1 ), considerando las distancias para definir los huecos (6) en los bordes, aristas, cantos o ángulos que requieren de protección dieléctrica, quedando dispuesta en estos huecos (6), durante el propio proceso de fabricación del elemento (1 ), capas (3) de resina aislante no conductora; d) refrentado de los bordes, aristas, cantos o ángulos del elemento (1 ) para uniformizar las creces de resina de las capas (3) al espesor requerido, de tal forma que quede garantizada Ia capacidad dieléctrica necesaria en dichas superficies.
PCT/ES2009/070330 2008-07-31 2009-07-31 Protección de elementos de material compuesto. WO2010018292A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0917211-4A BRPI0917211B1 (pt) 2008-07-31 2009-07-31 Proteção de elemento de material composto
ES09784136.5T ES2486016T3 (es) 2008-07-31 2009-07-31 Protección de elementos de material compuesto
CA2732616A CA2732616C (en) 2008-07-31 2009-07-31 Protection of elements in composite material
EP09784136.5A EP2319763B1 (en) 2008-07-31 2009-07-31 Protection for elements made from composite material
CN2009801386730A CN102171102A (zh) 2008-07-31 2009-07-31 对于由复合材料制成的元件的保护

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200802282 2008-07-31
ESP200802282 2008-07-31

Publications (1)

Publication Number Publication Date
WO2010018292A1 true WO2010018292A1 (es) 2010-02-18

Family

ID=41505047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070330 WO2010018292A1 (es) 2008-07-31 2009-07-31 Protección de elementos de material compuesto.

Country Status (7)

Country Link
US (1) US8834766B2 (es)
EP (1) EP2319763B1 (es)
CN (1) CN102171102A (es)
BR (1) BRPI0917211B1 (es)
CA (1) CA2732616C (es)
ES (1) ES2486016T3 (es)
WO (1) WO2010018292A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2383668B1 (es) * 2009-11-26 2013-05-03 Airbus Operations, S.L. Union de elementos de estructuras aeronauticas con otros elementos termoplasticos
US20160229552A1 (en) * 2015-02-05 2016-08-11 The Boeing Company Intermetallic and composite metallic gap filler
CN105253324B (zh) * 2015-10-22 2017-08-25 广州飞机维修工程有限公司 一种用于飞机复合材料修理的移动净化间

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989984A (en) * 1975-07-11 1976-11-02 Mcdonnell Douglas Corporation Aircraft lightning protection means
US5225265A (en) * 1991-12-06 1993-07-06 Basf Aktiengesellschaft Environmentally durable lightning strike protection materials for composite structures
US5292475A (en) * 1992-03-06 1994-03-08 Northrop Corporation Tooling and process for variability reduction of composite structures
US5885911A (en) * 1995-01-19 1999-03-23 Martin Marietta Corporation Electromagnetic attenuating laminate and method for its formation
US20070176323A1 (en) * 2006-01-31 2007-08-02 The Boeing Company Tools for manufacturing composite parts and methods for using such tools

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305903A (en) * 1980-02-25 1981-12-15 Norris Industries, Inc. Composite fiber reinforced member and method
US5374780A (en) * 1992-09-02 1994-12-20 Maclean Fogg Company Composite insulator structure and method of construction
US20050023727A1 (en) * 2003-04-29 2005-02-03 Sampson James K. Autoclave molding system for carbon composite materials
CN2633558Y (zh) * 2003-08-11 2004-08-18 上海百盛橡胶制品有限公司 亚光抗静电胶板
GB0715303D0 (en) * 2007-08-08 2007-09-19 Airbus Uk Ltd Composite laminate structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989984A (en) * 1975-07-11 1976-11-02 Mcdonnell Douglas Corporation Aircraft lightning protection means
US5225265A (en) * 1991-12-06 1993-07-06 Basf Aktiengesellschaft Environmentally durable lightning strike protection materials for composite structures
US5292475A (en) * 1992-03-06 1994-03-08 Northrop Corporation Tooling and process for variability reduction of composite structures
US5885911A (en) * 1995-01-19 1999-03-23 Martin Marietta Corporation Electromagnetic attenuating laminate and method for its formation
US20070176323A1 (en) * 2006-01-31 2007-08-02 The Boeing Company Tools for manufacturing composite parts and methods for using such tools

Also Published As

Publication number Publication date
EP2319763A1 (en) 2011-05-11
CA2732616A1 (en) 2010-02-18
BRPI0917211A2 (pt) 2015-11-10
EP2319763B1 (en) 2014-05-07
CN102171102A (zh) 2011-08-31
BRPI0917211B1 (pt) 2019-07-09
US20100025535A1 (en) 2010-02-04
CA2732616C (en) 2016-07-05
US8834766B2 (en) 2014-09-16
ES2486016T3 (es) 2014-08-14

Similar Documents

Publication Publication Date Title
EP3156670B1 (en) Sealing system for fasteners
ES2743781T3 (es) Método para mitigar el brillo de borde y la estructura compuesta resultante
JP2019055778A (ja) 留め具システムを被覆する方法及び装置
JP5611097B2 (ja) 耐雷防爆用ファスナ
US20160322454A1 (en) Method for manufacturing oled devices
US20060078705A1 (en) Carbon nanotube fiber-reinforced composite structures for EM and lightning strike protection
WO2010018292A1 (es) Protección de elementos de material compuesto.
BR112015006133A2 (pt) material estrutural para estrutura, tanque de combustível, asa principal, e aeronave
WO2007039650A1 (es) Método de protección de depósitos de combustible fabricados con materiales compuestos contra descargas eléctricas
US9849965B2 (en) Manufacturing method of reinforced structure
KR20150103640A (ko) 에어포일 요소의 리딩 에지용 보호 매트
US20150283653A1 (en) Method for repairing an electrical heating element of a wind turbine rotor blade
CN111933672A (zh) 一种显示面板和显示装置
US11260423B2 (en) Composite materials cured with thermoplastic thin film coating
CZ20023743A3 (cs) Skleněné stavební dílce s vodivým povrchem, jejich používání a z těchto zhotovené přístroje, zařízení a potrubí
US9789971B2 (en) Pre-cured EME edge seal
CN103569365A (zh) 具有无焊接导线连接的飞行器电气垫
JPH04192502A (ja) 避雷器
US20130152821A1 (en) Antistatic coating, structure made of composite material using same, and production method therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138673.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09784136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2732616

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009784136

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0917211

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110131