WO2010018245A1 - Method for detection and/or quantification of a nucleic acid substrate - Google Patents

Method for detection and/or quantification of a nucleic acid substrate Download PDF

Info

Publication number
WO2010018245A1
WO2010018245A1 PCT/ES2008/070161 ES2008070161W WO2010018245A1 WO 2010018245 A1 WO2010018245 A1 WO 2010018245A1 ES 2008070161 W ES2008070161 W ES 2008070161W WO 2010018245 A1 WO2010018245 A1 WO 2010018245A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
amplification
primer
fluorophore
labeled
Prior art date
Application number
PCT/ES2008/070161
Other languages
Spanish (es)
French (fr)
Inventor
Francisco Javier Calvo Macarro
Sonia Rodriguez Gil
Pedro Manuel Franco De Sarabia Rosado
Original Assignee
Biotools Biotechnological & Medical Laboratories, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotools Biotechnological & Medical Laboratories, S.A. filed Critical Biotools Biotechnological & Medical Laboratories, S.A.
Priority to PCT/ES2008/070161 priority Critical patent/WO2010018245A1/en
Publication of WO2010018245A1 publication Critical patent/WO2010018245A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification

Definitions

  • the present invention relates to a method of detection-quantification and analysis of nucleic acids with at least one primer labeled at its 5 'end with a fluorophore.
  • Said primer has, at the bases adjacent to the marker, at least three guanines or three cytosinases.
  • the method of the invention can present a stage of analysis of denaturation curves, so that it allows the identification of a specific nucleic acid sequence, thus indicating its application among others, in analysis, genotyping and detection of pathogens.
  • Hybridization with labeled oligonucleotides is a method commonly used for the detection, analysis and quantification of nucleic acid sequences.
  • Classic hybridization techniques include “Southern hybridization”, “dot blotting”, trials of gel delay (“gel-shift assays”) and liquid phase incubations.
  • PCR reaction Polymerase chain reaction
  • the PCR technique allows amplification Exponential nucleic acids using: a pair of complementary primers, to two opposite regions of the nucleic acid to be amplified; a mixture of dNTPs and an enzyme with 5'-3 'DNA polymerase activity. Thanks to the use of labeled oligonucleotides in the PCR reaction it is possible to carry out the marking of a specific nucleic acid sequence and its subsequent detection due to the emission of the signal generated by the marking.
  • the sample is subjected to a heat treatment ("melting" reaction).
  • the temperature where the fluorescence signal (Tm) decays or is lost by dissociation of the double stranded nucleic acid allows the identification of the amplified nucleic acid in the PCR reaction (Schütz et al, 1999, BioTechniques 27: 1218-1224). It is possible to determine the Tm of an amplicon by computer programs or experimentally with reference samples.
  • FRET probes are specific hybridization probes. This system consists of two linear ologinucleotides labeled with different fluorophores and a DNA polymerase without exonuclease activity. By hybridizing with the target nucleic acid sequence, the labeled oligonucleotides are faced and close, which triggers an energy resonance transfer (FRET) between one fluorophore and another. The resulting fluorescence signal is directly proportional to the amount of amplified specific nucleic acid. The system also allows to identify mutations in the target sequences because they generate different Tm. - TO -
  • hybridization probes are hairpin probes, so called because they have repeated sequences inverted at their ends allowing them to form a hairpin structure by complementing the inverted regions.
  • An example of this type is the Molecular Beacon probes whose foundation resides in an oligonucleotide with double marking a emitting fluorophore at one of its ends and a blocking fluorophore blocking at the other end.
  • the structure of the unhybridized oligonucleotide shields the fluorescence emitted by the fluorophore, but when the probe hybridizes with the nucleic acid target the oligonucleotide changes its conformation, allowing the fluorophore to be distanced from the shield.
  • the probe By subjecting the heteroduplex formed by the amplicon-probe to a heat treatment the probe is denatured and consequently the fluorescence decreases.
  • a simple mismatch in the formed heteroduplex implies a change in the melting temperature) which allows the genotyping of different sequences once amplified.
  • One factor to consider when designing these probes is that the proximity of certain nucleotide bases (the G effect) in the target sequence inhibits the emission of fluorescence signal (US Pat. No. 2005/0042666 Al).
  • the Taqman probe consists of a linear oligonucleotide with a fluorophore at its 5 'end and a shield at the 3' end. Fluorescence emission occurs after hybridization of the probe with the target sequence, when the fluorophore at the 5 'end is hydrolyzed by the 5'-3' exonuclease activity of the DNA polymerase used in the amplification.
  • LIONPROBES TM probes there are other types of hydrolysis probes LIONPROBES TM probes, protected in the patent with publication number WO2006136621, in these the probe itself acts as a probe and primer at the same time. Its originality lies in the use of a DNA polymerase with 3 '-5' exonuclease error corrective activity. As in the TAQMAN probes in the LIONPROBES TM probes, there is a linear oligo-nucleotide with a double marking at its ends. For the operation of the LIONPROBES TM probes, it is required that one or more bases of the 3 'end be unpaired with respect to the target sequence of the nucleic acid to be amplified.
  • the enzyme corrects the degenerate bases of the probe, so that the 3 'end mareaje is released.
  • the fluorophore shield is separated, the fluorescence signal can be collected and the 3 'end of the oligonucleotide is free for extension, thus acting as a primer.
  • a new method of detection-quantification and identification of nucleic acids is provided by an amplification with oligonucleotides labeled at least 5 'and with G or C bases adjacent to the label.
  • the present method may present a subsequent analysis of melting curves.
  • the present invention relates to a method for the detection and / or quantification of at least one target nucleic acid, in a sample, comprising: o Contacting on a support the substrate nucleic acid / s / s with at least:
  • the difference in fluorescence will be positive , increase, when the double stranded amplified nucleic acid fragments include the guanine sequence; and the fluorescence difference will be negative, a decrease, when the double stranded amplified nucleic acid fragments include the cytosine sequence.
  • the difference in fluorescence detected and / or measured is directly proportional to the amount of amplified substrate DNA.
  • the substrate nucleic acid, target in a sample may come from a previous amplification that occurs consecutively or sequentially on the same detection and / or quantification support and where the primers used in the previous amplification will be of greater base length nucleotide and / or higher content in G / C bases.
  • the substrate nucleic acid / n may have origin in animal or plant biological samples, cell cultures, food, water, soil or air samples.
  • the primers of the invention labeled are going to Tuar as a probe and primer of the amplification reaction. Its design must allow the corresponding 5 'end marking and the adjacent guanines or cytosines to be incorporated into the produced nucleic acid and that the mismatched bases as well as the 3' marking if they exist are corrected and cleaved.
  • the signal emission by the 5 'marking will depend on the amount of nucleic acid formed and the passage from double strand to single strand when denatured.
  • the primer sequence may or may not include mismatched bases at its 3 'end with respect to the target nucleic acid sequence. As for the mareaje of the primer this may be single or double.
  • the 5 'end of the primer or its proximities will always be marked, while the second marking is alternative but if it exists it will be located in the mismatched bases of the 3' end of the primer so that it is cleaved by an enzyme with 3 '-5' exonuclease activity (error corrector).
  • the term "simple marking” refers to a fluorescent molecule (fluorophore) that can be used to give a detectable or quantifiable signal.
  • the double marking consists of a fluorophore and a fluorescence blocker called a screener.
  • the fluorophore may be located at the 5 'end or as internal marking, in the vicinity of the 5' end.
  • the shield if present, is located at the mismatched bases of the 3 'end or at the 3' end of the probe complementary to the mismatched bases of the labeled primer.
  • the methodology of the invention refers to changes in efficiency in fluorescence emission during the accumulation or dissociation / binding of the two chains of the previously labeled nucleic acids. It has been observed that fluorescence emission by a fluorophore-labeled primer depends largely on the nucleotide sequence adjacent to the fluorophore.
  • (C) generate significant changes in the fluorescence signal emission: a) when the labeled nucleic acid meets at least three guanines adjacent to the fluorophore and is in a single chain, these nucleotides are capable of blocking the fluorescence emission , but they lose that property once the single chain nucleic acid hybridizes with its complementary chain.
  • This characteristic allows the increase in fluorescence in each amplification cycle to be monitored as the double stranded nucleic acid accumulates, b) when the labeled nucleic acid encounters at least three cytosines adjacent to the fluorophore and is in a single strand, these Nucleotides are not able to block fluorescence emission, but they lose that property once the single chain nucleic acid hybridizes with its complementary chain. This feature allows the fluorescence decrease to be monitored in each amplification cycle as the double stranded nucleic acid accumulates.
  • the characteristics of sections a) and b) can be exploited during the melting reaction in which the nucleic acid obtained is subjected to a heat treatment that produces its denaturation.
  • fluorescence of a large majority of commercial fluorophores can be inhibited or modified by the nucleotide sequence of the labeled primer.
  • fluorophores include fluorescein such as FAM, JOE, TET and VIC; fluorescein conjugates na-cyanine; bispyrromethane-boron-difluor derivatives (BODIPY); rhodamines such as ROX and HEX; Alexa Fluor 488 fluorophore; Oregon Green fluorophores; Erythrosins and eosins.
  • an enzyme with 3'-5'-exonuclease error-correcting activity is mentioned, in addition to an enzyme with 5'-3 'polymerase activity in primers with single or double-headed dizzying and mismatched bases at its 3 'ends and in the case of primers with simple dyeing and without mismatched bases, only the competition of an enzyme with 5' -3 'polymerization activity would be necessary.
  • thermostable enzymes on the market that couple the 3 '-5' exonuclease-corrective error activity to a polymerase activity (DNA polymerase proofreading, Pfu).
  • the basic components necessary for the application of the invention are the substrate nucleic acid, one or more labeled primers, a mixture of dNTPs necessary for the nucleic acid extension reaction, at least one enzyme with DNA polymerase activity, an enzyme with 3'-5 'exonuclease-corrective error activity or an enzyme that couples both activities, buffers suitable for the functioning of the enzyme or enzymes and primers with polarity opposite to the labeled primers.
  • the 3 'missing end of the primers can be labeled with blockers that react with the OH group such as phosphate or protect the bonds of the unpaired bases of the primers (bonds not phosphodiester) so that the enzyme exonuclease activity.
  • the primers can be labeled with different fluorophores thus allowing to distinguish the generated signal.
  • the amplification reaction is carried out coupled to a real-time device that allows monitoring the fluorescence emission in each amplification cycle and in this way the amplifications of the nucleic acids in each amplification cycle can be observed.
  • the equipment can also be programmed to make a Melting curve where the temperature increases or decreases every half second approximately depending on how it has been programmed, and which reflects the changes in fluorescence intensity. Once the melting temperature of the nucleic acid is reached, the fluorescence rapidly varies which allows the amplified DNA to be identified.
  • An application of the invention is the detection-quantification and identification of nucleic acids by using one or more primers labeled with the same fluorophore or with different fluorophores.
  • the strategies used would involve the alternative use of specifically designed primers.
  • a first strategy consists in the design of a primer labeled with a 5 'emitting fluorophore with at least three guanines (the fluorescence of the tide will decrease when the amplified nucleic acid is denatured) or three cytosines (the fluorescence of the tide will increase when the nucleic acid amplified is denatured) adjacent to the fluorophore and without mismatched bases at its 3 'end.
  • the second strategy consists of a primer labeled with a 5 'emitting fluorophore with at least three guanines (the fluorescence of the marking will decrease when the amplified nucleic acid is denatured) or three cytosines (the fluorescence of the marking will increase when the amplified nucleic acid is denatured ) adjacent to the fluorophore and with bases mismatched at its 3 'end or adjacent bases with respect to the substrate DNA with which it hybridizes, and that these bases are cleaved and corrected by an enzyme with 3'-5' nuclease activity. With opposite polarity. And a DNA polymerase enzyme or a mixture of enzymes that include the 3'-5 'exonuclease-corrective error activity.
  • a third strategy similar to the previous ones consists of a 5'-labeled primer with an emitting fluorophore together with a sequence of guanines and / or cytosines and with mismatched bases and a mating that acts as a shield (quencher), of the fluorescence of the emitting fluorophore at the 3 'end.
  • a primer with opposite polarity.
  • a DNA polymerase enzyme or a mixture of enzymes that include the 3 '-5' exonuclease-corrective error activity.
  • a fourth strategy that consists of a 5 'labeled primer with at least three guanines or cytosines adjacent to the fluorophore and with mismatched bases at its 3' end.
  • a probe labeled at its 3 'end with a fluorescence shielding agent from the previous primer mating and in its sequence exhibits perfect complementarity with the 3' end of the labeled primer which prevents its degradation by the 3 '-5' exonuclease activity -corrector of errors of at least one DNA polymerase required in this system and at the same time Lia fluorescence of primer primer.
  • a primer with opposite polarity a primer with opposite polarity.
  • the primer labeled with a fluorophore at the 5 'end and / or the oligonucleotide labeled with a quencher at the 3' end and of perfect complementarity may have modifications in the binding of their bases by non-phosphodiester bonds and / or inclusion of bases analogs and / or spacers.
  • the primer labeled with a emitting fluorophore at the 5 'end may have a tail of G or C bases at its 5' end that are not complementary to the substrate DNA sequence but that are incorporated into the DNA fragment amplified by the activity DNA polymerase.
  • sequence of guanines or cytosines adjacent to the fluorophore of the labeled primer may or may not be complementary to the substrate nucleic acid which facilitates its design.
  • the other aspect of the invention includes a step after the stage of amplification of denaturation curve analysis, "melting curves", of amplified nucleic acids, or of amplified nucleic acid, this analysis is carried out by measuring the change in the fluorescence signal from the emitting fluorophore incorporated in the different previously amplified DNA fragments, when they pass from double strands to single strands or vice versa.
  • an analysis can be performed simultaneously by selecting the corresponding primers where at least one of them for each target nucleic acid is labeled at the 5 'end with emitting fluorophores that emit at different wavelengths.
  • one of the primers is common for at least two target nucleic acids and is labeled with a 5'-end emitting fluorophore.
  • At least one of the primers for each target nucleic acid may be labeled at the 5 'end with the same fluorophore.
  • each of the primers labeled at the 5 'end with the same fluorophore has G or C sequences adjacent to the 5' end, the denaturation curves of the amplified DNA fragments where the G sequence has been incorporated will be negative and in the case of cytosines it will be positive
  • Another improvement of the invention is that the new design allows amplifying and identifying sequences within a conserved nucleic acid zone that has previously been amplified.
  • a second amplification will be carried out using as a substrate the amplicon obtained in the first amplification.
  • This second amplification is carried out by one or more primers with simple marking at its 5 'end, or internally, with the fluorophores already mentioned and with primers of opposite polarity. Primers with double marking may also be used; A fluorophore end 5 'and end 3' has mismatched bases marked with the shield.
  • the Tm of the primers marked and primers with opposite polarity of the second amplification must differ at least 10 0 C above or below the Tm of the primers of the first amplification.
  • genotypes or SNPs will be differentiated by differences in the Tm according to the length - G + C content or the guanine / cytosine sequence adjacent to the fluorophore, while in the second case, each genotype or SNP will correspond to a fluorophore, detecting Fluorescence changes with each particular fluorophore.
  • the labeled primer of the second amplification hybridizes perfectly in the area where the nucleic acid base change appears. If an enzyme with error corrective activity 3 '-5' is used, the mutation should be located in the vicinity of the 5 'end of the labeled primer to prevent its error correction activity.
  • fluorescence changes due to the passage of double strands to single strands or vice versa of the labeled DNA are more pronounced according to the number and position of guanine and cytosine residues near fluorophore.
  • guanine residues when the amplified nucleic acid is denatured, the intensity of the Adjacent fluorophore decreases, while if near the fluorophore there are cytosine residues when the amplified nucleic acid is denatured the fluorescence intensity increases. Factor that must be taken into account when designing.
  • kits developed with the present invention may be used for the detection, quantification and identification of nucleic acids. Its design will include primers labeled according to the present invention and an appropriate DNA polymerase or enzyme mixture. There may also be kits in which the invention is applied indirectly, with the participation of other techniques such as Taqman probes, Molecular Beacon, interfering agents (Sybr Green, Bebo, Boxto ...) and LIONPROBES TM probes. In these cases the kit will be used for the analysis and identification of nucleic acids.
  • kits developed include labeled primers, primers of opposite polarity to the probe, an enzyme DNA polymerases or mixture of enzymes that include or not 3 '-5' exonuclease-corrective error activity and the reagents necessary to perform amplification (buffer , dNTPs, magnesium ions, PCR adjuvants).
  • kits of the present invention have primers detect viral target nucleic acids, and preferably the viral target nucleic acid is a human oncogenic Papillomavirus.
  • FIGS.1A, 1B, 1C, 1D, 1E, 1F, 1G and IH show the hybridization of the oligonucleotides labeled with the substrate DNA.
  • the mismatches of the labeled oligo-nucleotides are indicated in italics with respect to the substrate DNA (lower part).
  • FIGS.2A, 2B, 2C, 2D, 2E, 2F, 2G and 2H correspond to the Melting curves converted to temperature peaks (FAM channel) of FIGS.1.
  • FIGS.3A, 3B and 3C show the amplification results, the melting curve and the temperature peaks in fluorescence graphs (FAM channel) in the case of using Plasmodium falciparum as substrate DNA and a probe labeled at its 5 'end with 6FAM followed by a sequence of guanines.
  • FIGS.3D, 3E and 3F show the amplification results, the melting curve and the temperature peaks in fluorescence graphs (FAM channel) in the case of using Plasmidium falciparum as substrate DNA and a probe marked at its end 5 'with 6FAM followed by a cytosine sequence.
  • FIGS.4A, 4B and 4C show the amplification results, the melting curve and the temperature peaks in fluorescence graphs (FAM channel) in the case of using different types of human papillomavirus and a probe as substrate DNA marked at its 5 'end with 6FAM and at its 3' end with TAMRA followed by a sequence of cytosines.
  • FIGS.4D, 4E and 4F show the amplification results, melting curve and temperature peaks in fluorescence graphs (FAM channel) in the case of using total human DNA and a probe labeled at its 5 'end as substrate DNA with 6FAM and at its 3 'end with TAMRA followed by a guanine sequence.
  • FIG.5A are the results of Real-time amplification of a conserved region of different substrate DNA in fluorescence graphs (FAM channel) versus a number of cycles in different cases.
  • FAM channel fluorescence graphs
  • dashed lines the negative that has amplified an unspecified product is represented.
  • FIG. 5B corresponds to the Melting curve with the temperature peaks (FAM channel) of FIG. 5A.
  • FIG.6A shows the real-time amplification in fluorescence graphs (FAM channel) with respect to the number of cycles of two DNAs that belong to two Plasmodium species that are P. falciparum (represented by a continuous line) and P. malariae (represented by a broken line).
  • FIG.6B is the graph of the Melting curve with the temperature peaks (FAM channel) of FIG.6A.
  • FIG. 7A is the fluorescence plot (JOE channel) versus number of amplification cycles of a conserved region of the Plasmodium genome with four types of species (P. falciparum, P. malariae, P. ovale and P. vivax) .
  • FIG.7B corresponds to the Melting curves converted to temperature peaks (FAM channel) of the second amplification that the first amplification of FIG.7A had used as a substrate.
  • the agarose gel analysis of the products obtained in the second amplification is shown on the right side of FIG. 7B.
  • FIG. 8A shows a fragment of the wild-type sequence of the rpo ⁇ gene of Mycobacterium tuberculosis (MTB).
  • FIG. 8B is the sequence of the rpo ⁇ gene of MTB with the mutation in codon 516 (depicted at the top).
  • FIG.8C are possible mutations in codon 526.
  • FIG.8D are mutations in codon 531. Bold specific MTB primers are shown in bold.
  • FIG. 9A shows the results of real-time amplification of a fragment of the rpo ⁇ gene specific to MTB in fluorescence plots (JOE channel) versus number of cycles.
  • the substrate DNAs used were a plasmid with MTB DNA without mutations in the rpo ⁇ gene
  • FIG. 9B are the temperature peaks (FAM channel) of the products obtained in the second amplification that have used as a substrate the products obtained in the first amplification of FIG. 9A.
  • the labeled oligonucleotides shown in Figures 1 they were synthesized by Applied Biosystems (double tide) and DNA-Technology A / S (single tide).
  • the probes are of varying sizes, different nucleotide sequence, single or double tides and different orientations.
  • the reporter in all probes is located at its 5 'ends and the fluorescent molecule is 6FAM (6-carboxyfluorescein).
  • the probe In the case where the probe is doubly labeled with a 5 'end and a 3' end quencher, its sequence has mismatches of bases at the 3 'end or adjacent bases when hybridizing with the substrate nucleic acid ( Nucleotides shown in italics in Figures 1) and consequently the 3'-5 'nuclease activity of the Pfu polymerase, used in all experiments, releases the quencher from the probe.
  • Substrate DNAs vary according to the probe used.
  • the probe of FIG. IA (Plasmprobe) uses a conserved region of the genome of Plasmodium falciparum (GenBank Access # M19172) as template DNA and relies on a primer (Plasmrev2) for the development of Real-Time amplification.
  • the substrate DNA of the probes of FIG. IB (531ML), FIG. IC (531ML3) and FIG. IF (rpoMLF2) is a species of Mycobacterium tuberculosis with a mutation in its genome located on codon 531 that confers resistance to the antibiotic rifampicin (GenBank Access # EF628318).
  • the primer with polarity opposite to the probes is in the case of 531ML and 531ML3, Trev and for the rpoMLF2 probe it is 531R.
  • FIG. ID and IE the template DNA is the same as in FIG. AI but the primer is different.
  • the primer of FIG. ID (FaIMLFl probe) is Mrev3 and the primer of FIG. IE (FaIMLRl probe) is Mfor.
  • the Mecalf probe of FIG. IG uses a conserved region of the genome of the Staphylococcus aureus bacterium (GenBank Access # AB236888) as substrate DNA It confers resistance to antibiotics derived from methicillin and its corresponding primer is Mecar2.
  • the substrate DNA of the probe of FIG. IH the substrate DNA of the probe of FIG. IH
  • BHIVLF is a control plasmid (pHIV-Control) that has cloned a cDNA fragment preserved in the genome of HIV type I virus (Acrometrix Panel HIV-I) and its primer is RTR-BIV.
  • Tm melting temperature
  • FaIMLFl 5 '6FAM AGGCAGCAGGCGC 3' SEQ ID NO: 6
  • Mrev3 5 'TCCCACCAT TCCAAT TACA 3' SEQ ID NO: 7
  • FaIMLRl 5 '6FAM TCCCACCATTCCAATTACA 3' (SEQ ID NO: 8)
  • BHIVLF 5 '6FAM AAAGAAAAGGGGGGATTGGGGGGTCA 3' (SEQ ID NO: 14)
  • the amplification mixtures in each case were carried out with the Biotools Pfu DNA polymerase kit (Bio-tools B&M Labs, Madrid, Spain), including in the O 'lU / ⁇ l mixture of Pfu DNA polymerase, reaction buffers, 200 ⁇ M dNTPs, 4mM MgCl 2 , probe (0.2 ⁇ M ) and primer (0'3 ⁇ M) being the final reaction volume of 20 ⁇ l.
  • the amplification of the corresponding substrate DNA with an amount of approximately 50,000 copies was tested with each amplification mixture and the specific probe and primer pair, as well as a control without
  • the Real-Time amplification equipment that was used was the Gene 3000 Rotor.
  • the amplification cycles and subsequent melting curve programmed in the equipment were the same in all amplification mixtures except in the step where the probe and the primer hybridize with the DNA substrate (in English called step of "annealing"), which was different according to the Tm of the probe and the primer used in the amplification.
  • the amplification cycles and the melting curve cycles are as follows:
  • FALMLFl (FIG.2D) AGGCAGC 5 1,2,3,5,6 ++
  • FALMLRl (FIG.2E) TCCCACC 5 1,2,3,5,6 + rpoMLF2 (FIG.2F) AGCCAGC 5 1,2,3,5,6 +
  • the temperature peak of the Melting curve, represented in Figures 2A-2H, of each PCR product amplified with the probe-primer pair corresponds approximately (the composition of the buffer and the use of possible PCR additives in the mixture of amplification vary the Tm of the product) with the Tm of the amplified product predicted with specialized programs such as Aliele ID 2.0 and Primer Express 1.0. (Table 3).
  • the substrate DNA was a conserved region of the Plasmodium species: P. falciparum (GenBank Access # M 19172).
  • the first probe carries a simple fluorescent marking (5'6FAM), acts as a primer in the amplification reaction and has a 100% homology with the conserved region of Plasmodium falciparum. Within the six nucleotides that follow the nucleotide that carries the reporter together, there are three guanines in positions 2,3 and 6. In this way as the nucleic acid is generated in the amplification, through the probe, a increase in fluorescence signal. In addition, the generated nucleic acid can undergo a negative change in fluorescence signal by double Strand to single strand.
  • the probe designed as described below was FaIMLFl (SEQ ID NO: 6).
  • the reverse primer in the opposite direction to the FaIMLFl probe) that hybridizes perfectly (100% homogenous) with the conserved region of Plasmodium falciparum was Mrev3 (SEQ ID NO: 7).
  • the second probe carries a simple fluorescent marking (5'6FAM), acts as a primer in the amplification reaction and has a 100% homology with the conserved region of Plasmodium falciparum.
  • 5'6FAM simple fluorescent marking
  • cytosines in positions 2,3,4 and 6.
  • the forward primer (in the direction set to the FaIMLRl probe) that hybridizes perfectly (100% homology) with the conserved region of Plasmodium falciparum was Mfor (SEQ ID NO: 9).
  • the amplification mixtures both for the FaIMLFl probe (0.3 ⁇ M ) - Mfor primer (0.3 ⁇ M ) and for the FaIMLRl probe (0.3 ⁇ M ) - Mrev3 primer (0.3 ⁇ M ), were performed with the Biotools Pfu DNA Polymerase II kit
  • the Real Time amplification equipment used was the Gene 3000 Rotor.
  • the amplification cycles and subsequent melting curve were as follows:
  • Figure 3B shows the melting curve and Figure 3C shows the temperature peaks of The four samples tested only in the samples with substrate DNA show a temperature peak that corresponds to the Tm of the amplified product (Table 4).
  • the melting curve shows a decrease in fluorescence when the nucleic acid is denatured because the reporter fluorophore is bound to a sequence of 6 guanines at positions 2,3 and 6.
  • Figure 3E shows the melting curve and Figure 3F shows the temperature peaks of The four samples tested. Mues ⁇ only in DNA substrate after a peak temperature corresponding to the Tm of the amplified product appears. (Table 5).
  • the results of the amplification fluorescence curves and melting curves match the expected behavior of the reporter fluorophore (in this case 6FAM).
  • the fluorophore followed by a Guanine sequence is in single strand mode, the fluorescence intensity is blocked, unlike if the fluorophore is followed by a cytosine sequence.
  • double strand mode the fluorescence intensity increases in the case of the fluorophore followed by a Guanine sequence while with a cytosine sequence the fluorescence intensity decreases.
  • the substrate DNAs were different types of
  • Human papillomavirus type 6 (GenBank Access # AF092932.1), type 52 (GenBank Access # X74481.1), type 11 (GenBank Access # M14119.1), type 44 (GenBank Access # U31788.1), type 45 ( GenBank Access # X74479.1), type 31 (GenBank Access # J04353.1), type 39 (GenBank Access # M62849.1), type 56 (GenBank Access # X74483.1), type 16 (GenBank Access # K02718.1 ), type 59 (GenBank Access # X77858.1), type 33 (GenBank Access # M12732.1), type 70 (GenBank Access # U21941.1), type 18 (GenBank Access # AY262282.1), type 35 (Access GenBank # M74117.1), type 58 (GenBank Access # D90400.1) and human DNA (GenBank Access # AC104389.8).
  • the human Papillomavirus detection probe was designed with a double fluorescent marking (5'6FAM - 3'TAMRA), acts as a primer in the amplification reaction and has a tail of 5 nucleotide bases at its 5 'end with 4 cytosines in positions 1,2,3 and 5 that are not complementary to the substrate DNA sequence but are incorporated into the DNA fragment amplified by the DNA polymerase enzyme activity.
  • the probe also shows mismatches in the last two nucleotides of its 3 'end. In this way, the nucleic acid generated in the amplification, through the probe, can undergo a change in fluorescence signal from double strand to single strand, which allows a melting curve to be obtained and an increase in fluorescence when denatured. the specific product amplified.
  • the probe designed as described above was ONlLA (SEQ ID NO: 16, 5 '6FAM-CCCGCTGTCAAAAACCGTTGTGTCCCT-3' TAMRA).
  • the reverse primer (in the opposite direction to the ONlLA probe) that hybridizes with a conserved region of the most widespread human Papillomavirus types in the world population, was 0N2RA (SEQ ID NO: 0N2RA (SEQ ID NO: 0N2RA (SEQ ID NO: 0N2RA (SEQ ID NO: 0N2RA (SEQ ID NO: 0N2RA (SEQ ID NO: 0N2RA (SEQ ID NO: 0N2RA
  • the detection probe of a region of the human ⁇ -globin gene carries a double fluorescent tide
  • 5'6FAM-3'TAMRA acts as a primer in the amplification reaction and shows mismatches in the last two nucleotides of its 3 'end.
  • nucleotides that follow the nucleotide that carries the reporter fluorophore and that hybridize perfectly with the substrate DNA there are four guanines in positions 1,2,3 and 6.
  • the nucleic acid generated in the amplification by means of the probe, you can experience a change in fluorescence signal from double strand to single strand, which allows you to perform a melting curve and obtain a decrease in the fluorescence signal when the specific PCR product is denatured.
  • the probe designed as described above was SGlob (SEQ ID NO: 18, 5'6FAM-GGGCAGTCATTAAGTCAG GCA-3 'TAMRA).
  • the reverse primer (in the opposite direction to the SGlob probe) that hybridizes perfectly (100% homology) with the conserved region of the human ⁇ -globin gene was GlobRev (SEQ ID NO: 19, 5 'CATATTCCAAGTTTACTAAG AGC 3') •
  • the mixture detection- amplification for quantification and identification of Human Papillomavirus oncogenic was performed with the kit Biotools Pfu DNA polymerase III (Biotools), including in O'lU / .mu.l Pfu DNA polymerase mixture of, 0'025U / ⁇ l Tth DNA polymerase, reaction buffers, 200 ⁇ M dNTPs, 4mM MgCl2, 0.5M Betaine (adjuvant to increase specificity), 1% Tween, ONlLA probe (0.2 ⁇ M ) and ON2RA primer (0 ' 2um) with a final volume of 20 ⁇ l reaction.
  • Biotools Biotools
  • the amplification mixture for the detection-quantification and identification of ⁇ -globin was performed with the Biotools Pfu DNA polymerase IV kit (Biotools), including in the O'lU / ⁇ l mixture of Pfu DNA polymerase, 0.025U / ⁇ l of Tth DNA polymerase, reaction buffers, 200 ⁇ M dNTPs, 4mM MgCl 2.5 0.5M, 1% Tween, SGlob probe (0.3 ⁇ M ) and GlobRev primer (0.4 ⁇ M ) being the final volume of the reaction of 20 ⁇ l.
  • Biotools Biotools
  • the Real-Time amplification equipment used was the Gene 3000 Rotor, the Gene 6000 Rotor and the 7500 Real Time.
  • the homology of the ONlLA probe and the reverse ON2RA primer with the types of human Papillomavirus necessary for specific amplification by PCR is only fulfilled by the following oncogenic types (indicated from highest to lowest homology): 33 (I), 31 (J), 58 (K), 16 (L), 35 (M), 18 (N) and 52 (0). (Table 6).
  • HPV Human Papilloma Virus
  • the melting curve is shown in Figure 4B and the temperature peaks of the twenty-two samples tested are shown in Figure 4C. In the positive control and in the HPC ONC samples that amplify a temperature peak appears that corresponds to the Tm of the specific amplified product. (Table 8).
  • Figure 4D shows the amplification of a region of the ⁇ -globin gene of the same substrate DNA that includes the different types of human Papillomavirus that in turn contain cellular genomic DNA from the extraction-purification of each sample and where its amplifications are similar to the amplification of the Positive Control 5 x 10e4 copies ( ⁇ G2). (Table 9). TABLE 9
  • the melting curve is observed in Figure 4E and the temperature peaks after amplification of the ⁇ -globin gene region of the human Papillomavirus substrate DNAs are shown in Figure 4F. In all the samples a temperature peak appears like that of the Positive Control.
  • results of the amplification of human Papillomavirus types 33, 31, 58, 16, 35, 18 and 52 are consistent with the highest homology percentages of the ONlLA probe and the ON2RA primer.
  • results of the amplification of a conserved region of the ⁇ -globin gene in each substrate DNA indicates that the extraction from the same volume of blood was very homogeneous because they had similar quantifications all the samples.
  • results obtained indicate that with the new probe design it is possible to quantify nucleic acids and specifically discriminate similar DNA substrate by the homology of the hybridization sequence. In turn, the analysis is improved to rule out false positives due to amplification of non-specific products or possible contamination.
  • LIONPROBRES TM designed as described in the present invention in order to identify possible nonspecific products generated in the amplification, by means of a melting curve.
  • the Lion probe tested carries a double fluorescent tide (5 '6FAM-3' TAMRA), acts as a primer in the amplification reaction and has mismatches in the last two nucleotides of its 3 'end. Within the six nucleotides that follow the nuleotide that has the reporter attached, there are three Gs in positions 1,2,5 and two Cs in positions 3,6. In this way the nucleic acid generated in the amplification, by means of the Lion probe I tested, you can experience a change in fluorescence signal from double strand to single strand.
  • the substrate DNA was the same conserved region of three Plasmodium species: P. falciparum (Access GenBank # M19172), P.malariae (Access GenBank # M54897) and P. ovale (Access GenBank # L48987)
  • Plasm-rev2 (SEQ ID NO: 2).
  • the LIONPROBRES TM probe designed as described above was Plasmprobe (SEQ ID NO: 1).
  • the amplification mixture was performed with the Biotools Pfu DNA polymerase kit (Biotools), including in the O'lU / ⁇ l mixture of Pfu DNA polymerase, reaction buffers, 200 ⁇ M dNTPs, 4mM MgCl2, Plasmprobe probe (0.2 ⁇ M) and Plasmrev2 primer (0.3 ⁇ M) being the final reaction volume of 20 ⁇ l.
  • Biotools Biotools
  • the amplification mixture was performed with the Biotools Pfu DNA polymerase kit (Biotools), including in the O'lU / ⁇ l mixture of Pfu DNA polymerase, reaction buffers, 200 ⁇ M dNTPs, 4mM MgCl2, Plasmprobe probe (0.2 ⁇ M) and Plasmrev2 primer (0.3 ⁇ M) being the final reaction volume of 20 ⁇ l.
  • the Real-Time amplification equipment used was the Gene 3000 Rotor.
  • the amplification cycles and subsequent melting curve cycles were as follows:
  • samples with the substrate DNA of each Plasmodium species begin to amplify between cycles 15 and 25 (Ct), while samples without substrate DNA amplify unspecific products or contamination from cycle 40. (Table 11).
  • Control without DNA3 42 '66 U The melting curve converted to temperature peaks of the six samples tested is shown in Figure 5B. In samples without DNA a peak of lower temperature appears than in samples with substrate DNA corresponding to the amplified nonspecific nucleic acid.
  • the Control without DNA3 (represented by dashed line in FIG. 5B) has the two temperature peaks which means that it has suffered contamination by the substrate DNA.
  • the Tm of the specific nucleic acid amplified from the substrate DNA is approximately 3 ° C greater than the Tm of the non-specific product. (Table 12).
  • the results of the melting curve are consistent with the analysis of the 2% agarose gel stained with Ethidium Bromide as seen in FIG. 5A.
  • the presence in the gel of the amplification bands of ll ⁇ pb in the first three samples with substrate DNA (P, Q, R) is consistent with the size expected in the amplification.
  • the amplification bands of approximately 80 bp in the gel belong to the nonspecific products of the Control samples without DNA (S, T).
  • the last lane of the gel corresponds to the Control without DNA3 (U) and two amplification bands can be observed, one corresponding to the nonspecific product and the other band to contamination with the substrate DNA. This confirms the results shown in the melting curve.
  • the substrate DNAs were two species of Plasmodium: P. falciparum (Access GenBank # M19172) and P.malariae (Access GenBank # M54897).
  • the LIONPROBES TM probe was the same as in the
  • the primer was Malrev2 (SEQ ID NO: 20, 5'-TGCTGGC ACCAGACTTGCCCTCCA-3 ').
  • the primer (with polarity opposite the probe) hybridizes perfectly (100% homology) with the two Plasmodium species.
  • the amplification mixture was performed with the Biotools Pfu DNA polymerase kit (Biotools), including in the O'lU / ⁇ l mixture of Pfu DNA polymerase, reaction buffers, 200 ⁇ M dNTPs, 4mM MgCl2, Plasmprobe probe (0.2 ⁇ M) and Malrev2 primer (0.3 ⁇ M), the final reaction volume being 20 ⁇ l.
  • Biotools Biotools Pfu DNA polymerase kit
  • the Real Time amplification equipment used was the Gene 3000 Rotor.
  • the amplification cycles and subsequent melting curve were as follows:
  • Figure 6B shows the melting curve converted to temperature peaks of the three samples tested.
  • the peak temperature of the sample with P substrate DNA. falciparum is approximately 1 ° C less than the sample with DNA substrate of P.malariae. These results are due to the different content of G + C and the size amplified with each Plasmodium species.
  • the Control without DNZ sample has no temperature peak that matches the amplification results. (Table 13).
  • the substrate DNAs were three species of Plasmodium: P. falciparum (Access GenBank # 1419172), P.malariae (Access GenBank # M54897) and P. ovale (Access GenBank # L48987).
  • the Lion probe used in the first amplification for the quantification and detection of the conserved area of Plasmodium was Pprobe2 (SEQ ID NO: 21, 5'VIC-GGGTATTGGCCTAACATGGCTATGACGGGCT-S 'TAMRA).
  • the last two bases of the 3 'end of the probe are not homologous to the substrate DNA so the enzyme with 3' -5 'error-correcting exonuclease activity releases the mismatched bases and the quencher (TAMRA) so that the reporter (VIC) can emit fluorescence in each amplification cycle at the same time that the nucleic acid is generated in the PCR.
  • Plasmodium was Malrev2. This primer has 100% homology with the substrate DNA.
  • the substrate DNAs were those produced in the first amplification.
  • a labeled oligonucleotide and a primer with opposite polarity were used for amplification.
  • the labeled oligonucleotide was FaIMLFl (SEQ ID NO: 6) which has the 6FAM molecule labeled at its 5 'end and has a 100% homology with the substrate DNAs produced in the first amplification that come from the three Plasmodium species.
  • the primer was Mrev3 (SEQ ID NO: 7) which is only 100% homologous with the P substrate DNA.
  • the Tm of the probes and primers are different so that the two amplifications can develop consecutively with different temperature cycles. Also the sizes of the nucleic acids obtained in each amplification are different, the product of the second amplification being smaller than that of the first amplification, which allows the incubation times at the temperatures of the steps of the second amplification to be minors (Table 14)
  • the amplification mixture was performed with the Biotools Pfu DNA polymerase II kit (Biotools), including in the O'lU / ⁇ l mixture of Pfu DNA polymerase, reaction buffers, 200 ⁇ M dNTPs, 4mM MgCl 2 , 1 '25M Betaine (adjuvant to increase specificity), Pprobe2 probe (0.2 ⁇ M ), Malrev2 primer (0.3 ⁇ M ), FaIMLFl probe (0.3 ⁇ M ) and Mrev3 primer (0.3 ⁇ M) being the final volume of the reaction of 20 ⁇ l.
  • Biotools Biotools
  • the Real Time amplification equipment used was the Gene 3000 Rotor.
  • the amplification cycles and subsequent melting curve were as follows:
  • the Melting curve is shown in Figure 7B converted to temperature peaks after the second amplification of the four samples tested. Only in the sample with DNA substrate of P. falciparum ( ⁇ ) a temperature peak appears confirming the specificity of the Mrev3 primer with P. falciparum and not with the other Plasmodium species.
  • the expected Tm of the lOlpb product generated in the second amplification from P DNA. falciparum is 81.9 ° C and the Tm obtained from the melting curve is 77.6 ° C.
  • results obtained indicate that it is possible to detect and quantify different substrate DNAs that have common conserved regions in their genome by means of a LIONPROBES TM probe and a primer.
  • labeled oligonucleotides designed as described in the present invention and an additional primer, it is possible to identify a substrate DNA specifically from the amplification of a common conserved region of different substrate DNAs by A second amplification and a melting curve.
  • the substrate DNAs were five species of Mycobacterium tuberculosis: plasmid with unmodified rpo ⁇ gene (prpo-WT), plasmid with Asp516Val mutation within the rpo ⁇ gene (prpo-516), plasmid with His526Asp mutation within the rpo ⁇ gene (prpo-526A), His526Tyr mutation plasmid within the rpo ⁇ gene (prpo-526T) and Ser531Leu mutation plasmid (prpo-531) within the rpo ⁇ gene. Fragments of the rpo ⁇ gene inserted in the PCR 2.1 TOPO vector (Invitrogen) in each case are shown in Figures 8.
  • FIG. 8A represents the sequence of the prpo-WT insert (SEQ ID NO. 31).
  • FIG. 8B shows the mutation of an adenine (A) by a thymine (T) in the prpo-516 insert (SEQ ID NO. 32).
  • FIG. 8C SEQ ID NO. 33
  • there are two mutations a change of a T for a cytosine (C) corresponding to the insert of prpo-526T and a change of a guanine (G) for a C which is the insert of prpo-526A.
  • FIG. 8D contains a mutation of a T by a C belonging to the insert of prpo-531.
  • the LIONPROBES TM probe used in the first amplification for the quantification and detection of the rpo ⁇ gene fragment of all the plasmids described above was TBS (SEQ ID NO: 22.5 'VIC-AGGAGTTCTTCGG CACCAGCCCA-3' TAMRA).
  • the penultimate base of the 3 'end of the probe is not homologous to the substrate DNAs, so the enzyme with 3' -5 'error-correcting exonuclease activity releases the mismatched bases and the quencher (TAMRA) with which the reporter (VIC) it can emit fluorescence in each amplification cycle at the same time that the nucleic acid is generated in the PCR.
  • TAMRA quencher
  • VIC reporter
  • the primer with polarity opposite to the LIONPROBES TM TBS probe used in the first amplification for quantification and detection of the rpo ⁇ gene fragment was TBR (SEQ ID NO: 23.5 '-TGCACGTCGCGGACCTCCA-3'). This primer has 100% homology with the substrate DNAs.
  • the substrate DNAs were those produced in the first amplification.
  • a labeled oligonucleotide and primers with opposite polarity were used for amplification.
  • the labeled oligonucleotide was rpoMLF2 (SEQ ID NO: 10) which has the 6FAM molecule labeled at its 5 'end and has a 100% homology with the substrate DNAs produced in the first amplification that come from the five plasmids.
  • the primers were: 516R (SEQ ID NO: 24, 5'- GGTTGTTCTGGACCATG-3 ') which is only 100% homologous with the prpo-516 plasmid, 526Rl (SEQ ID NO: 25, 5'- CGCTTGTAGGTCAACC-3' ) that it is only 100% homologous with plasmid prpo-526T, 526R2 (SEQ ID NO: 26, 5'-CGCTTGTCGGTC AACC-3 ') that is only 100% homologous with plasmid prpo-526A and 531R (SEQ ID NO: 11) which is only 100% homologous with the prpo-531 plasmid.
  • Mutations with other substrate DNAs are located in the middle or near the 5 'end of the primer sequence, in this way the enzyme with 3'-5' error-correcting exonuclease activity cannot release the unpaired base and there is no amplification unless there is DNA substrate with sequence complementary to the primer with 100% homology.
  • the Tm of the probes and primers are different so that the two amplifications can develop consecutively with different temperature cycles. Also the sizes of the nucleic acids obtained in each amplification are different, the products of the second amplification being smaller than that of the first amplification which allows the incubation times at the temperatures of the second amplification steps to be smaller. . (Table 15).
  • the amplification mixture was performed with the Biotools Pfu DNA polymerase II kit (Biotools), including in the 0'lU / ⁇ l mixture of Pfu DNA polymerase, reaction buffers, 200 ⁇ M dNTPs, 4mM MgCl 2 , 1 '25M Betaine, TBS probe (0.2 ⁇ M ), TBR primer (0.3 ⁇ M ), rpoMLF2 probe (0.3 ⁇ M ), 516R primer (0.3 ⁇ M ), 526Rl primer (0' 3 ⁇ M), primer 526R2 (0.3 ⁇ M) and primer 531R (0.3 ⁇ M) with a final volume of 20 ⁇ l reaction.
  • Biotools Biotools
  • the amplifications of the five plasmids (prpo) with an amount of approximately 50,000 copies were tested, as well as a control without substrate DNA.
  • the Real Time amplification equipment used was the Gene 3000 Rotor.
  • the amplification cycles and subsequent melting curve were as follows:
  • Amplification II 5 sec at 97 ° C, 5 sec at 52 ° C,
  • the results of the melting curve agree with the specific identification of the samples tested.
  • the primers only amplify the specific plasmid whose sequence is completely complementary to the primer sequence. In this way each primer amplifies only in the presence of the specific plasmid generating different PCR products according to the plasmid used as substrate DNA. These PCR products and consequently the plasmids tested can be identified by their Tm.
  • the results obtained indicate that by amplifying a specific region of several substrate DNAs that contain common external sequences, it is possible to identify internal mutations, point changes or SNPs (single nucleotide polymorphisms) in the sequence, specific to each substrate DNA , through a second amplification and a melting curve using labeled oligonucleotides designed as described in the present invention, and primers homologous in sequence to each mutation to be identified.
  • Each amplified substrate DNA that has a mutation recognized by one of the primers can be differentiated according to the temperature peak obtained in the melting curve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method of detection-quantification and analysis of nucleic acids having at least one primer labelled at its 5’ extremity with a fluorophore. Said primer presents, in the bases adjacent to the label, at least three guanines or three cytosines. These bases modify the fluorescent signal and said modification is utilised for detection of the nucleic acid. The method of the invention may provide a stage of analysis of denaturation curves such as to permit identification of a specific sequence of nucleic acids, its application consequently being indicated in analysis, genotyping and detection of pathogens, among others.

Description

MÉTODO PARA LA DETECCIÓN Y/O CUANTIFICACION DE UN ÁCIDO METHOD FOR DETECTION AND / OR QUANTIFICATION OF AN ACID
NUCLEICO SUBSTRATONUCLEICO SUBSTRATO
DESCRIPCIÓNDESCRIPTION
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención se refiere a un método de detección-cuantificación y análisis de ácidos nucleicos con al menos un cebador marcado en su extremo 5' con un fluoróforo. Dicho cebador presenta, en las bases adyacentes al marcador, al menos tres guaninas o tres cito- sinas.The present invention relates to a method of detection-quantification and analysis of nucleic acids with at least one primer labeled at its 5 'end with a fluorophore. Said primer has, at the bases adjacent to the marker, at least three guanines or three cytosinases.
Estas bases, al incorporarse al ácido nucleico generado en la amplificación, modificarán la señal de fluorescencia y dicha modificación será utilizada para la detección del ácido nucleico.These bases, when incorporated into the nucleic acid generated in the amplification, will modify the fluorescence signal and said modification will be used for the detection of the nucleic acid.
El método de la invención puede presentar una etapa de análisis de curvas de desnaturalización, de manera que permite la identificación de una secuencia especifica de ácidos nucleicos, indicándose asi su aplicación entre otras, en análisis, genotipado y detección de patógenos.The method of the invention can present a stage of analysis of denaturation curves, so that it allows the identification of a specific nucleic acid sequence, thus indicating its application among others, in analysis, genotyping and detection of pathogens.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
La hibridación con oligonucleótidos marcados es un método comúnmente utilizado para la detección, análisis y cuantificación de secuencias de ácidos nucleicos. Entre las técnicas clásicas de hibridación destacan "Southern hibridization", "dot blotting", ensayos de retardo en gel ("gel-shift assays") e incubaciones en fase liquida.Hybridization with labeled oligonucleotides is a method commonly used for the detection, analysis and quantification of nucleic acid sequences. Classic hybridization techniques include "Southern hybridization", "dot blotting", trials of gel delay ("gel-shift assays") and liquid phase incubations.
Frecuentemente la hibridación es seguida o pre- cedida por la reacción de PCR ("polymerase chain reac- tion") . La técnica de la PCR (Saiki et al, Science, 230, 1350-1354, 1985, Mullís et al, patentes norteamericanas US 4, 683, 195, US 4, 683, 202 y US 4, 800, 159) permite la amplificación exponencial de ácidos nucleicos utili- zando: un par de cebadores complementarios, a dos regiones enfrentadas del ácido nucleico que se desea amplificar; una mezcla de dNTPs y una enzima con actividad ADN polimerasa 5' -3' . Gracias al empleo de oligonucleótidos marcados en la reacción de PCR es posible llevar a cabo el mareaje de una secuencia específica de ácidos nucleicos y su posterior detección debido a la emisión de la señal generada por el mareaje.Frequently hybridization is followed or preceded by the PCR reaction ("polymerase chain reaction"). The PCR technique (Saiki et al, Science, 230, 1350-1354, 1985, Mullís et al, US patents US 4, 683, 195, US 4, 683, 202 and US 4, 800, 159) allows amplification Exponential nucleic acids using: a pair of complementary primers, to two opposite regions of the nucleic acid to be amplified; a mixture of dNTPs and an enzyme with 5'-3 'DNA polymerase activity. Thanks to the use of labeled oligonucleotides in the PCR reaction it is possible to carry out the marking of a specific nucleic acid sequence and its subsequent detection due to the emission of the signal generated by the marking.
La mayoría de los equipos asociados a la tecno- logia de PCR a Tiempo Real incorporan al termociclador un lector de fluorescencia. Estos equipos están diseñados para medir, en cualquier momento, la fluorescencia emitida en cada uno de los viales donde se realice la PCR. Se han desarrollado y patentado numerosas tecnolo- gías que hacen posible la detección, cuantificación y análisis de ácidos nucleicos en PCR a Tiempo Real. Atendiendo a su especificidad las estrategias desarrolladas se pueden clasificar en dos grupos: agentes intercalantes fluorescentes no específicos y sondas específicas para una secuencia determinada de ácidos nucleicos .Most of the equipment associated with Real Time PCR technology incorporates a fluorescence reader into the thermal cycler. These devices are designed to measure, at any time, the fluorescence emitted in each of the vials where the PCR is performed. Numerous technologies have been developed and patented that make it possible to detect, quantify and analyze nucleic acids in Real Time PCR. According to their specificity, the strategies developed can be classified into two groups: non-specific fluorescent intercalating agents and specific probes for a given nucleic acid sequence.
Los compuestos conocidos como Sybr Green ICompounds known as Sybr Green I
(Pat.No. US 6, 174, 670), Bebo (TATAA) y Bromuro de Etidio (Pat. No. US 5, 944, 056) son agentes intercalan- tes fluorescentes que se unen al ácido nucleico de doble hebra, generando una señal fluorescente que aumenta de forma proporcional a la amplificación de los ácidos nucleicos en la reacción de PCR. Dichos compuestos pueden unirse al ácido nucleico especifico amplificado en la reacción de PCR, a los dimeros de los cebadores y a otros productos inespecificos generados en el transcurso de la reacción de PCR. La existencia de señales inespecificas de amplificación en la reacción de PCR conlleva una sobreestimación de la concentración de partida del ácido nucleico especifico presente en la muestra. Para identificar y diferenciar los ácidos nucleicos amplificados en la reacción de PCR se somete a la muestra a un tratamiento térmico (reacción de "mel- ting") . La temperatura donde decae o se pierde la señal de fluorescencia (Tm) por disociación del ácido nucleico de doble cadena permite la identificación del ácido nucleico amplificado en la reacción de PCR (Schütz etal, 1999, BioTechniques 27:1218-1224) . Es posible determinar la Tm de un amplicón mediante programas informáticos o experimentalmente con muestras de referencia.(Pat.No. US 6, 174, 670), Bebo (TATAA) and Bromide of Ethidium (Pat. No. US 5, 944, 056) are intercalating agents fluorescent tes that bind to the double stranded nucleic acid, generating a fluorescent signal that increases proportionally to the amplification of the nucleic acids in the PCR reaction. Said compounds may bind to the specific nucleic acid amplified in the PCR reaction, to the dimer of the primers and to other nonspecific products generated in the course of the PCR reaction. The existence of nonspecific amplification signals in the PCR reaction leads to an overestimation of the starting concentration of the specific nucleic acid present in the sample. In order to identify and differentiate the amplified nucleic acids in the PCR reaction, the sample is subjected to a heat treatment ("melting" reaction). The temperature where the fluorescence signal (Tm) decays or is lost by dissociation of the double stranded nucleic acid allows the identification of the amplified nucleic acid in the PCR reaction (Schütz et al, 1999, BioTechniques 27: 1218-1224). It is possible to determine the Tm of an amplicon by computer programs or experimentally with reference samples.
Las sondas FRET (U.S. Pat . No. 6, 174, 670) son sondas especificas de hibridación. Este sistema consiste en dos ologinucleótidos lineales marcados con diferentes fluoróforos y una ADN polimerasa sin actividad exonu- cleasa. Al hibridar con la secuencia diana de ácido nucleico los oligonucleótidos marcados quedan enfrentados y próximos, lo cual desencadena una transferencia energética de resonancia (FRET) entre un fluoróforo y otro. La señal de fluorescencia resultante es directamente proporcional a la cantidad de ácido nucleico especifico amplificado. El sistema además permite identificar mutaciones en las secuencias diana pues estas generan distintas Tm. - A -FRET probes (US Pat. No. 6, 174, 670) are specific hybridization probes. This system consists of two linear ologinucleotides labeled with different fluorophores and a DNA polymerase without exonuclease activity. By hybridizing with the target nucleic acid sequence, the labeled oligonucleotides are faced and close, which triggers an energy resonance transfer (FRET) between one fluorophore and another. The resulting fluorescence signal is directly proportional to the amount of amplified specific nucleic acid. The system also allows to identify mutations in the target sequences because they generate different Tm. - TO -
Otro tipo de sondas de hibridación son las sondas horquilla, llamadas asi porque poseen secuencias repetidas invertidas en sus extremos permitiendo que formen una estructura de horquilla por complementaridad de las regiones invertidas. Un ejemplo de este tipo son las sondas Molecular Beacon cuyo fundamento reside en un oligonucleótido con doble mareaje un fluoróforo emisor en uno de sus extremos y un fluoróforo bloqueante apan- tallador en el otro extremo. La estructura del oligonucleótido sin hibridar apantalla la fluorescencia emitida por el fluoróforo, pero cuando la sonda hibrida con la diana del ácido nucleico el oligonucleótido cambia su conformación, permitiendo que se distancien el fluorófo- ro del apantallador . Esta separación fisica entre ambos da lugar a la emisión de una señal de fluorescencia por parte del fluoróforo. Al igual que las sondas FRET, en las sondas horquilla la ADN polimerasa empleada no presenta actividad 5' -3' ni 3' -5' exonucleasa. Otra variante de esta tecnología son las sondas primer Scor- pion (Withcombe et al, 1999 Nature Biotechnology 17:804- 807), en las que el oligonucleótido marcado al cambiar de conformación actúa como sonda y cebador de la reacción de amplificación.Another type of hybridization probes are hairpin probes, so called because they have repeated sequences inverted at their ends allowing them to form a hairpin structure by complementing the inverted regions. An example of this type is the Molecular Beacon probes whose foundation resides in an oligonucleotide with double marking a emitting fluorophore at one of its ends and a blocking fluorophore blocking at the other end. The structure of the unhybridized oligonucleotide shields the fluorescence emitted by the fluorophore, but when the probe hybridizes with the nucleic acid target the oligonucleotide changes its conformation, allowing the fluorophore to be distanced from the shield. This physical separation between the two results in the emission of a fluorescence signal by the fluorophore. Like the FRET probes, in the hairpin probes the DNA polymerase used does not show 5 '-3' or 3 '-5' exonuclease activity. Another variant of this technology is the first Scorpion probes (Withcombe et al, 1999 Nature Biotechnology 17: 804-807), in which the oligonucleotide labeled when changing conformation acts as a probe and primer for the amplification reaction.
Dentro de las sondas de hibridación pero con un funcionamiento ligeramente diferente a las anteriormente descritas se encuentran las sondas Simpleprobe (U.S. Pat . No. 6, 635, 427 B2) . En este caso el análisis e identificación de ácidos nucleicos se realiza tras la reacción de amplificación, mediante una curva de mel- ting. Su diseño implica el uso de un oligonucleótido marcado mediante un linker en su extremo 5' o 3' con un fluoróforo. Las características físicas del linker permiten que solamente se emita fluorescencia cuando la sonda esté hibridada con la secuencia diana del ácido nucleico previamente amplificado. (Nazarenko et al, 2002, Nucleic Acids Research 30:2089-2195) . Al someter al heteroduplex formado por el amplicón-sonda a un tratamiento térmico la sonda se desnaturaliza y consecuentemente disminuye la fluorescencia. Un simple desapareamiento en el heteroduplex formado implica un cambio en la temperatura de melting) lo cual permite el genotipado de diferentes secuencias una vez amplifica- das. Un factor a tener en cuenta a la hora de diseñar estas sondas es que la proximidad de determinadas bases nucleotidicas (el efecto G) en la secuencia diana inhiben la emisión de señal de fluorescencia (U.S. Pat . No. 2005/0042666 Al) .Within the hybridization probes but with a slightly different operation from those described above are the Simpleprobe probes (US Pat. No. 6, 635, 427 B2). In this case, the analysis and identification of nucleic acids is carried out after the amplification reaction, by means of a melting curve. Its design involves the use of an oligonucleotide labeled by a linker at its 5 'or 3' end with a fluorophore. The physical characteristics of the linker allow fluorescence to be emitted only when the probe is hybridized with the target sequence of the previously amplified nucleic acid. (Nazarenko et al, 2002, Nucleic Acids Research 30: 2089-2195). By subjecting the heteroduplex formed by the amplicon-probe to a heat treatment the probe is denatured and consequently the fluorescence decreases. A simple mismatch in the formed heteroduplex implies a change in the melting temperature) which allows the genotyping of different sequences once amplified. One factor to consider when designing these probes is that the proximity of certain nucleotide bases (the G effect) in the target sequence inhibits the emission of fluorescence signal (US Pat. No. 2005/0042666 Al).
Otras sondas especificas son las sondas TaqmanOther specific probes are Taqman probes
(U.S. Pat. No. 5,691,146), estas se definen como sondas de hidrólisis pues requieren la excisión de uno de los mareajes de la sonda para su funcionamiento. La sonda Taqman consiste en un oligonucleótido lineal con un fluoróforo en su extremo 5' y con un apantallador en el extremo 3' . La emisión de fluorescencia se produce tras la hibridación de la sonda con la secuencia diana, cuando el fluoróforo en el extremo 5' es hidrolizado por la actividad 5' -3' exonucleasa de la ADN polimerasa empleada en la amplificación.(U.S. Pat. No. 5,691,146), these are defined as hydrolysis probes as they require the excision of one of the probe dips for operation. The Taqman probe consists of a linear oligonucleotide with a fluorophore at its 5 'end and a shield at the 3' end. Fluorescence emission occurs after hybridization of the probe with the target sequence, when the fluorophore at the 5 'end is hydrolyzed by the 5'-3' exonuclease activity of the DNA polymerase used in the amplification.
Existen otro tipo de sondas de hidrólisis las sondas LIONPROBES™, protegidas en la patente con número de publicación WO2006136621, en estas la propia sonda actúa como sonda y cebador a la vez. Su originalidad reside en el empleo de una ADN polimerasa con actividad 3' -5' exonucleasa correctora de errores. Como en las sondas TAQMAN en las sondas LIONPROBES™ existe un oligo- nucleótido lineal con un doble mareaje en sus extremos. Para el funcionamiento de las sondas LIONPROBES™ se requiere que una o más bases del extremo 3' estén desapareadas respecto a la secuencia diana del ácido nucleico a amplificar. Cuando la sonda hibrida con la diana del ácido nucleico la enzima corrige las bases degeneradas de la sonda, de manera que se libera el mareaje del extremo 3' . Al separarse el apantallador del fluoróforo la señal de fluorescencia puede recogerse y el extremo 3' del oligonucleótido esta libre para su extensión actuando asi como cebador.There are other types of hydrolysis probes LIONPROBES ™ probes, protected in the patent with publication number WO2006136621, in these the probe itself acts as a probe and primer at the same time. Its originality lies in the use of a DNA polymerase with 3 '-5' exonuclease error corrective activity. As in the TAQMAN probes in the LIONPROBES ™ probes, there is a linear oligo-nucleotide with a double marking at its ends. For the operation of the LIONPROBES ™ probes, it is required that one or more bases of the 3 'end be unpaired with respect to the target sequence of the nucleic acid to be amplified. When the probe hybridizes with the nucleic acid target, the enzyme corrects the degenerate bases of the probe, so that the 3 'end mareaje is released. When the fluorophore shield is separated, the fluorescence signal can be collected and the 3 'end of the oligonucleotide is free for extension, thus acting as a primer.
En la presente invención se proporciona un nuevo método de detección-cuantificación e identificación de ácidos nucleicos mediante una amplificación con oligonu- cleótidos marcados al menos en 5' y con bases G o C adyacentes al marcador. El presente método puede presentar un análisis posterior de curvas de melting. Este nuevo sistema proporcionará ventajas tales, como mayor especificidad y ampliación de las aplicaciones de uso, sobre algunas técnicas ya conocidas de amplificación, detección y cuantificación de ácidos nucleicos.In the present invention a new method of detection-quantification and identification of nucleic acids is provided by an amplification with oligonucleotides labeled at least 5 'and with G or C bases adjacent to the label. The present method may present a subsequent analysis of melting curves. This new system will provide advantages such as greater specificity and extension of the applications of use, over some known techniques of amplification, detection and quantification of nucleic acids.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
La presente invención se refiere a un método para la detección y/o cuantificación de al menos un ácido nucleico substrato, diana, en una muestra, que comprende : o La puesta en contacto en un soporte el/los ácido/s nucleico/s substrato/s con al menos:The present invention relates to a method for the detection and / or quantification of at least one target nucleic acid, in a sample, comprising: o Contacting on a support the substrate nucleic acid / s / s with at least:
un cebador, forward o reverse, marcado con un fluoróforo emisor en el extremo 5' , y que presenta al menos tres bases G o tres bases C en los seis nucleótidos que siguen a la base marcada con el fluoróforo emi- sor, a primer, forward or reverse, marked with a emitting fluorophore at the 5 'end, and having at least three G bases or three C bases at the six nucleotides that follow the base marked with the emitted fluorophore Sr.
un cebador con polaridad opuesta a primer with opposite polarity
una enzima con actividad DNA polimerasa an enzyme with DNA polymerase activity
o la amplificación de la mezcla anterioror the amplification of the previous mixture
o la detección y/o medida del cambio en la señal de fluorescencia debido a la acumulación de fragmentos de ácidos nucleicos amplificados en estado de doble cadena donde ha quedado incorporado el fluoróforo emisor y la secuencia de G o C, la diferencia de fluorescencia será positiva, incremento, cuando los fragmentos de ácidos nucleicos amplificados de doble cadena incluyan la secuencia de guaninas; y la diferencia de fluorescencia será negativa, un descenso, cuando los fragmentos de ácidos nucleicos amplificados de doble cadena incluyan la secuencia de citosinas.or the detection and / or measurement of the change in the fluorescence signal due to the accumulation of amplified nucleic acid fragments in a double-chain state where the emitting fluorophore and the sequence of G or C have been incorporated, the difference in fluorescence will be positive , increase, when the double stranded amplified nucleic acid fragments include the guanine sequence; and the fluorescence difference will be negative, a decrease, when the double stranded amplified nucleic acid fragments include the cytosine sequence.
La diferencia de fluorescencia detectada y/o medida es directamente proporcional a la cantidad de ADN substrato amplificado.The difference in fluorescence detected and / or measured is directly proportional to the amount of amplified substrate DNA.
El ácido nucleico substrato, diana en una mues- tra, puede provenir de una amplificación previa que ocurre de manera consecutiva o secuencial en el mismo soporte de detección y/o cuantificación y donde los cebadores utilizados en la amplificación previa serán de mayor longitud de bases nucleotidicas y/o mayor conteni- do en bases G/C.The substrate nucleic acid, target in a sample, may come from a previous amplification that occurs consecutively or sequentially on the same detection and / or quantification support and where the primers used in the previous amplification will be of greater base length nucleotide and / or higher content in G / C bases.
El/los ácidos nucleicos substrato puede/n tener origen en muestras biológicas animales o vegetales, cultivos celulares, alimentos, muestras de aguas, suelos o aire.The substrate nucleic acid / n may have origin in animal or plant biological samples, cell cultures, food, water, soil or air samples.
Los cebadores de la invención marcados van a ac- tuar como sonda y cebador de la reacción de amplificación. Su diseño debe permitir que el mareaje correspondiente al extremo 5' y las guaninas o citosinas adyacentes sean incorporadas en el ácido nucleico producido y que las bases desapareadas al igual que el mareaje 3' si existiesen se corrijan y se escindan. La emisión de señal por parte del mareaje en 5' dependerá de la cantidad de ácido nucleico formado y del paso de doble hebra a hebra sencilla al desnaturalizarse.The primers of the invention labeled are going to Tuar as a probe and primer of the amplification reaction. Its design must allow the corresponding 5 'end marking and the adjacent guanines or cytosines to be incorporated into the produced nucleic acid and that the mismatched bases as well as the 3' marking if they exist are corrected and cleaved. The signal emission by the 5 'marking will depend on the amount of nucleic acid formed and the passage from double strand to single strand when denatured.
La secuencia del cebador puede incluir o no, bases desapareadas en su extremo 3' respecto a la secuencia diana del ácido nucleico. En cuanto al mareaje del cebador este podrá ser sencillo o doble. El extremo 5' del cebador o sus proximidades estará siempre marcado, mientras que el segundo mareaje es alternativo pero si existe estará situado en las bases desapareadas del extremo 3' del cebador para que sea escindido por una enzima con actividad 3' -5' exonucleasa (correctora de errores) .The primer sequence may or may not include mismatched bases at its 3 'end with respect to the target nucleic acid sequence. As for the mareaje of the primer this may be single or double. The 5 'end of the primer or its proximities will always be marked, while the second marking is alternative but if it exists it will be located in the mismatched bases of the 3' end of the primer so that it is cleaved by an enzyme with 3 '-5' exonuclease activity (error corrector).
En la presente invención el término mareaje sencillo se refiere a una molécula fluorescente (fluorófo- ro) que puede ser utilizada para dar una señal detecta- ble o cuantificable . El doble mareaje consiste en un fluoróforo y un bloqueante de la fluorescencia llamado apantallador . El fluoróforo podrá situarse en el extremo 5' o como mareaje interno, en las proximidades del extremo 5' . El apantallador si existe se encuentra en las bases desapareadas del extremo 3' o en el extremo 3' de la sonda complementaria a las bases desapareadas del cebador marcado.In the present invention the term "simple marking" refers to a fluorescent molecule (fluorophore) that can be used to give a detectable or quantifiable signal. The double marking consists of a fluorophore and a fluorescence blocker called a screener. The fluorophore may be located at the 5 'end or as internal marking, in the vicinity of the 5' end. The shield, if present, is located at the mismatched bases of the 3 'end or at the 3' end of the probe complementary to the mismatched bases of the labeled primer.
La metodología de la invención hace referencia a los cambios de eficiencia en la emisión de fluorescencia durante la acumulación o disociación/unión de las dos cadenas de los ácidos nucleicos previamente marcados. Se ha observado que la emisión de fluorescencia por un cebador marcado con un fluoróforo depende en gran medida de la secuencia nucleotidica adyacente al fluoróforo.The methodology of the invention refers to changes in efficiency in fluorescence emission during the accumulation or dissociation / binding of the two chains of the previously labeled nucleic acids. It has been observed that fluorescence emission by a fluorophore-labeled primer depends largely on the nucleotide sequence adjacent to the fluorophore.
Los residuos de guanina (G) , o los residuos de citosinaGuanine residues (G), or cytosine residues
(C) generan importantes cambios en la emisión de señal de fluorescencia: a) cuando el ácido nucleico marcado se encuentra con al menos tres guaninas adyacentes al fluoróforo y se encuentra en cadena simple, estos nu- cleótidos son capaces de bloquear la emisión de fluorescencia, pero pierden esa propiedad una vez que el ácido nucleico de cadena simple hibrida con su cadena complementaria. Esta característica permite monotorizar el incremento de fluorescencia en cada ciclo de amplificación a medida que se acumula el ácido nucleico de doble cadena, b) cuando el ácido nucleico marcado se encuentra con al menos tres citosinas adyacentes al fluoróforo y se encuentra en cadena simple, estos nucleótidos no son capaces de bloquear la emisión de fluorescencia, pero pierden esa propiedad una vez que el ácido nucleico de cadena simple hibrida con su cadena complementaria. Esta característica permite monotorizar la disminución de fluorescencia en cada ciclo de amplificación a medida que se acumula el ácido nucleico de doble cadena. Las características de los apartados a) y b) pueden ser explotada durante la reacción de melting en la cual se somete al ácido nucleico obtenido a un tratamiento térmico que produce su desnaturalización.(C) generate significant changes in the fluorescence signal emission: a) when the labeled nucleic acid meets at least three guanines adjacent to the fluorophore and is in a single chain, these nucleotides are capable of blocking the fluorescence emission , but they lose that property once the single chain nucleic acid hybridizes with its complementary chain. This characteristic allows the increase in fluorescence in each amplification cycle to be monitored as the double stranded nucleic acid accumulates, b) when the labeled nucleic acid encounters at least three cytosines adjacent to the fluorophore and is in a single strand, these Nucleotides are not able to block fluorescence emission, but they lose that property once the single chain nucleic acid hybridizes with its complementary chain. This feature allows the fluorescence decrease to be monitored in each amplification cycle as the double stranded nucleic acid accumulates. The characteristics of sections a) and b) can be exploited during the melting reaction in which the nucleic acid obtained is subjected to a heat treatment that produces its denaturation.
La fluorescencia de una gran mayoría de fluoró- foros comerciales puede ser inhibida o modificada por la secuencia nucleotidica del cebador marcado. Entre estos fluoróforos se encuentran los que incluyen fluoresceina como FAM, JOE, TET y VIC; los conjugados de fluorescei- na-cianina; los derivados de bispirrometano-boro-difluor (BODIPY) ; las rodaminas como ROX y HEX; el fluoróforo Alexa Fluor 488; los fluoróforos del tipo Oregon Green; las eritrosinas y las eosinas.The fluorescence of a large majority of commercial fluorophores can be inhibited or modified by the nucleotide sequence of the labeled primer. Among these fluorophores are those that include fluorescein such as FAM, JOE, TET and VIC; fluorescein conjugates na-cyanine; bispyrromethane-boron-difluor derivatives (BODIPY); rhodamines such as ROX and HEX; Alexa Fluor 488 fluorophore; Oregon Green fluorophores; Erythrosins and eosins.
En cuanto a las enzimas que intervienen en la invención se menciona una enzima con actividad 3' -5' exonucleasa-correctora de errores, además de una enzima con actividad polimerasa 5' -3' en cebadores con mareaje sencillo o doble mareaje y bases desapareadas en sus extremos 3' y en el caso de cebadores con mareaje sencillo y sin bases desapareadas únicamente seria necesario el concurso de una enzima con actividad de polimerización 5' -3' . Existen en el mercado enzimas termoestables que acoplan la actividad 3' -5' exonucleasa-correctora de errores a una actividad polimerasa (ADN polimerasas proofreading, Pfu) .As for the enzymes involved in the invention, an enzyme with 3'-5'-exonuclease error-correcting activity is mentioned, in addition to an enzyme with 5'-3 'polymerase activity in primers with single or double-headed dizzying and mismatched bases at its 3 'ends and in the case of primers with simple dyeing and without mismatched bases, only the competition of an enzyme with 5' -3 'polymerization activity would be necessary. There are thermostable enzymes on the market that couple the 3 '-5' exonuclease-corrective error activity to a polymerase activity (DNA polymerase proofreading, Pfu).
Los componentes básicos necesarios para la apli- cación de la invención son el ácido nucleico substrato, uno o más cebadores marcados, una mezcla de dNTPs necesarios para la reacción de extensión del ácido nucleico, al menos una enzima con actividad ADN polimerasa, una enzima con actividad 3' -5' exonucleasa-correctora de errores o una enzima que acople ambas actividades, bufferes adecuados para el funcionamiento de la enzima o enzimas y cebadores con polaridad opuesta a los cebadores marcados.The basic components necessary for the application of the invention are the substrate nucleic acid, one or more labeled primers, a mixture of dNTPs necessary for the nucleic acid extension reaction, at least one enzyme with DNA polymerase activity, an enzyme with 3'-5 'exonuclease-corrective error activity or an enzyme that couples both activities, buffers suitable for the functioning of the enzyme or enzymes and primers with polarity opposite to the labeled primers.
Para impedir la formación de dimeros de primer y mejorar la especificidad del sistema se puede marcar el extremo 3' desapareado de los cebadores con bloqueantes que reaccionen con el grupo OH como el fosfato o proteger los enlaces de las bases no desapareadas de los cebadores (enlaces no fosfodiester) para que no actúe la actividad exonucleasa de la enzima.To prevent the formation of primer dimeros and improve the specificity of the system, the 3 'missing end of the primers can be labeled with blockers that react with the OH group such as phosphate or protect the bonds of the unpaired bases of the primers (bonds not phosphodiester) so that the enzyme exonuclease activity.
Se pueden marcar los cebadores con diferentes fluoróforos permitiendo asi distinguir la señal genera- da. La reacción de amplificación se realiza acoplada a un equipo de tiempo real que permite monitorizar la emisión de fluorescencia en cada ciclo de amplificación y de esta manera puede observarse las amplificaciones de los ácidos nucleicos en cada ciclo de amplificación. El equipo también puede ser programado para hacer una curva de Melting donde aumenta o disminuye la temperatura cada medio segundo aproximadamente dependiendo como se haya programado, y que recoge los cambios en la intensidad de fluorescencia. Una vez que la temperatura de melting del ácido nucleico es alcanzada la fluorescencia rápidamente varia lo que permite identificar el ADN amplificado.The primers can be labeled with different fluorophores thus allowing to distinguish the generated signal. The amplification reaction is carried out coupled to a real-time device that allows monitoring the fluorescence emission in each amplification cycle and in this way the amplifications of the nucleic acids in each amplification cycle can be observed. The equipment can also be programmed to make a Melting curve where the temperature increases or decreases every half second approximately depending on how it has been programmed, and which reflects the changes in fluorescence intensity. Once the melting temperature of the nucleic acid is reached, the fluorescence rapidly varies which allows the amplified DNA to be identified.
Una aplicación de la invención es la detección- cuantificación e identificación de ácidos nucleicos mediante la utilización de uno o varios cebadores marcados con un mismo fluoróforo o con distintos fluoróforos. Las estrategias utilizadas implicarían el uso alternativo de cebadores específicamente diseñados.An application of the invention is the detection-quantification and identification of nucleic acids by using one or more primers labeled with the same fluorophore or with different fluorophores. The strategies used would involve the alternative use of specifically designed primers.
Una primera estrategia consiste en el diseño de un cebador marcado con un fluoróforo emisor en 5' con al menos tres guaninas (la fluorescencia del mareaje disminuirá cuando el ácido nucleico amplificado se desnaturalice) o tres citosinas (la fluorescencia del mareaje aumentará cuando el ácido nucleico amplificado se desnaturalice) adyacentes al fluoróforo y sin bases desapareadas en su extremo 3' . Un cebador con polaridad opuesta y una enzima con actividad ADN polimerasa o una mezcla de enzimas que pueden incluir o no la actividad 3' -5' exonucleasa-correctora de errores. La segunda estrategia consiste en un cebador marcado con un fluoroforo emisor en 5' con al menos tres guaninas (la fluorescencia del mareaje disminuirá cuando el ácido nucleico amplificado se desnaturalice) o tres citosinas (la fluorescencia del mareaje aumentará cuando el ácido nucleico amplificado se desnaturalice) adyacentes al fluoroforo y con bases desapareadas en su extremo 3' o bases adyacentes con respecto al DNA substrato con el que hibrida, y que estas bases son escindidas y corregidas por una enzima con actividad 3' -5' nuclea- sa.Un cebador con polaridad opuesta. Y una enzima ADN polimerasa o una mezcla de enzimas que incluyan la actividad 3' -5' exonucleasa-correctora de errores.A first strategy consists in the design of a primer labeled with a 5 'emitting fluorophore with at least three guanines (the fluorescence of the tide will decrease when the amplified nucleic acid is denatured) or three cytosines (the fluorescence of the tide will increase when the nucleic acid amplified is denatured) adjacent to the fluorophore and without mismatched bases at its 3 'end. A primer with opposite polarity and an enzyme with DNA polymerase activity or a mixture of enzymes that may or may not include the 3'-5 'exonuclease-corrective error activity. The second strategy consists of a primer labeled with a 5 'emitting fluorophore with at least three guanines (the fluorescence of the marking will decrease when the amplified nucleic acid is denatured) or three cytosines (the fluorescence of the marking will increase when the amplified nucleic acid is denatured ) adjacent to the fluorophore and with bases mismatched at its 3 'end or adjacent bases with respect to the substrate DNA with which it hybridizes, and that these bases are cleaved and corrected by an enzyme with 3'-5' nuclease activity. With opposite polarity. And a DNA polymerase enzyme or a mixture of enzymes that include the 3'-5 'exonuclease-corrective error activity.
Una tercera estrategia similar a las anteriores consiste en un cebador marcado en 5' con un fluoroforo emisor junto a una secuencia de guaninas y/o citosinas y con bases desapareadas y un mareaje que actúa como apantallador (quencher) , de la fluorescencia del fluoroforo emisor en el extremo 3' . Un cebador con polaridad opuesta. Y una enzima ADN polimerasa o una mezcla de enzimas que incluyan la actividad 3' -5' exonucleasa- correctora de errores.A third strategy similar to the previous ones consists of a 5'-labeled primer with an emitting fluorophore together with a sequence of guanines and / or cytosines and with mismatched bases and a mating that acts as a shield (quencher), of the fluorescence of the emitting fluorophore at the 3 'end. A primer with opposite polarity. And a DNA polymerase enzyme or a mixture of enzymes that include the 3 '-5' exonuclease-corrective error activity.
Por último una cuarta estrategia que consiste en un cebador marcado en 5' con al menos tres guaninas o citosinas adyacentes al fluoroforo y con bases desapareadas en su extremo 3' . Una sonda marcada en su extremo 3' con un apantallador de la fluorescencia del mareaje del cebador anterior y en su secuencia presenta comple- mentaridad perfecta con el extremo 3' del cebador marcado lo que evita su degradación por la actividad 3' -5' exonucleasa-correctora de errores de al menos una ADN polimerasa requerida en este sistema y a la vez apanta- lia la fluorescencia del mareaje del cebador. Y un cebador con polaridad opuesta.Finally, a fourth strategy that consists of a 5 'labeled primer with at least three guanines or cytosines adjacent to the fluorophore and with mismatched bases at its 3' end. A probe labeled at its 3 'end with a fluorescence shielding agent from the previous primer mating and in its sequence exhibits perfect complementarity with the 3' end of the labeled primer which prevents its degradation by the 3 '-5' exonuclease activity -corrector of errors of at least one DNA polymerase required in this system and at the same time Lia fluorescence of primer primer. And a primer with opposite polarity.
El cebador marcado con un fluoróforo en el ex- tremo 5' y/o el oligonucleótido marcado con un quencher en el extremo 3' y de complementariedad perfecta pueden presentar modificaciones en la unión de sus bases por enlaces no fosfodiester y/o inclusión de bases análogos y/o espaciadores.The primer labeled with a fluorophore at the 5 'end and / or the oligonucleotide labeled with a quencher at the 3' end and of perfect complementarity may have modifications in the binding of their bases by non-phosphodiester bonds and / or inclusion of bases analogs and / or spacers.
También, el cebador marcado con un fluoróforo emisor en el extremo 5' puede tener una cola de bases G o C en su extremo 5' que no son complementarias a la secuencia de ADN substrato pero que son incorporadas al fragmento de ADN amplificado por la actividad DNA poli- merasa .Also, the primer labeled with a emitting fluorophore at the 5 'end may have a tail of G or C bases at its 5' end that are not complementary to the substrate DNA sequence but that are incorporated into the DNA fragment amplified by the activity DNA polymerase.
En cada una de las estrategias utilizadas, la secuencia de guaninas o citosinas adyacentes al fluoró- foro del cebador marcado pueden ser o no complementarias al ácido nucleico substrato lo que facilita su diseño.In each of the strategies used, the sequence of guanines or cytosines adjacent to the fluorophore of the labeled primer may or may not be complementary to the substrate nucleic acid which facilitates its design.
El otro aspecto de la invención el método incluye una etapa tras la etapa de amplificación de análisis de curvas de desnaturalización, "melting curves", de los ácidos nucleicos amplificados, o del ácido nucleico amplificado, este análisis se lleva a cabo midiendo el cambio de la señal de fluorescencia proveniente del fluoróforo emisor incorporado en los distin- tos fragmentos de ADN amplificados previamente, cuando pasan de doble cadena a cadena simple o viceversa.The other aspect of the invention includes a step after the stage of amplification of denaturation curve analysis, "melting curves", of amplified nucleic acids, or of amplified nucleic acid, this analysis is carried out by measuring the change in the fluorescence signal from the emitting fluorophore incorporated in the different previously amplified DNA fragments, when they pass from double strands to single strands or vice versa.
Si los ácidos nucleicos substratos son múltiples se puede realizar un análisis de forma simultánea me- diante la selección de los correspondientes cebadores donde al menos uno de ellos por cada ácido nucleico diana está marcado en el extremo 5' con fluoróforos emisores que emiten en distintas longitudes de onda.If the substrate nucleic acids are multiple, an analysis can be performed simultaneously by selecting the corresponding primers where at least one of them for each target nucleic acid is labeled at the 5 'end with emitting fluorophores that emit at different wavelengths.
En otro aspecto de la invención uno de los cebadores es común para al menos dos ácidos nucleicos diana y está marcado con un fluoróforo emisor en su extremo 5' .In another aspect of the invention one of the primers is common for at least two target nucleic acids and is labeled with a 5'-end emitting fluorophore.
En otro aspecto al menos uno de los cebadores por cada ácido nucleico diana puede estar marcado en el extremo 5' con el mismo fluoróforo.In another aspect at least one of the primers for each target nucleic acid may be labeled at the 5 'end with the same fluorophore.
En un último aspecto cada uno de los cebadores marcados en el extremo 5' con el mismo fluoróforo tiene secuencias de G o C adyacentes al extremo 5' , las curvas de desnaturalización de los fragmentos de ADN amplificados donde haya quedado incorporado la secuencia de G será negativa y en el caso de las citosinas será positivaIn a final aspect each of the primers labeled at the 5 'end with the same fluorophore has G or C sequences adjacent to the 5' end, the denaturation curves of the amplified DNA fragments where the G sequence has been incorporated will be negative and in the case of cytosines it will be positive
Otra mejora de la invención es que el nuevo diseño permite amplificar e identificar secuencias dentro de una zona conservada de ácidos nucleicos que previa- mente haya sido amplificada. En esta aplicación se realizará una segunda amplificación utilizando como substrato el amplicón obtenido en la primera amplificación. Esta segunda amplificación es llevada a cabo por uno o más cebadores con mareaje sencillo en su extremo 5' , o internamente, con los fluoróforos ya mencionados y con cebadores de polaridad opuesta. También podrá utilizarse cebadores con mareaje doble; un fluoróforo el extremo 5' y el extremo 3' posee bases desapareadas marcadas con el apantallador . La Tm de los cebadores marcados y cebadores con polaridad opuesta de la segunda amplificación tiene que diferir al menos 100C por encima o por debajo de la Tm de los cebadores de la primera amplificación .Another improvement of the invention is that the new design allows amplifying and identifying sequences within a conserved nucleic acid zone that has previously been amplified. In this application a second amplification will be carried out using as a substrate the amplicon obtained in the first amplification. This second amplification is carried out by one or more primers with simple marking at its 5 'end, or internally, with the fluorophores already mentioned and with primers of opposite polarity. Primers with double marking may also be used; A fluorophore end 5 'and end 3' has mismatched bases marked with the shield. The Tm of the primers marked and primers with opposite polarity of the second amplification must differ at least 10 0 C above or below the Tm of the primers of the first amplification.
Las aplicaciones de este último aspecto de la invención son muy amplias, desde el genotipaje de diferentes especies hasta la detección de SNPs (polimorfismos de un solo nucleótido) . Esta aplicación de la invención permite una cuantificación de la primera reacción llamada reacción genérica. La segunda reacción es especifica, es posible emplear en esta reacción cebadores marcados con el mismo fluoróforo o con diferentes fluo- róforos. En el primer caso se diferenciarán genotipos o SNPs mediante diferencias en la Tm según la longitud- contenido G+C o la secuencia de guaninas/citosinas adyacentes al fluoróforo, mientras que en el segundo caso a cada genotipo o SNP le corresponderá un fluoróforo, detectándose cambios de fluorescencia con cada fluoróforo en particular.The applications of this last aspect of the invention are very wide, from genotyping of different species to the detection of SNPs (single nucleotide polymorphisms). This application of the invention allows a quantification of the first reaction called generic reaction. The second reaction is specific, it is possible to use primers labeled with the same fluorophore or with different fluorophores in this reaction. In the first case, genotypes or SNPs will be differentiated by differences in the Tm according to the length - G + C content or the guanine / cytosine sequence adjacent to the fluorophore, while in the second case, each genotype or SNP will correspond to a fluorophore, detecting Fluorescence changes with each particular fluorophore.
Para la detección de SNPs se necesita que el cebador marcado de la segunda amplificación hibride perfectamente en la zona donde aparece el cambio de base del ácido nucleico. Si se utiliza una enzima con activi- dad 3' -5' correctora de errores la mutación debe situarse en las proximidades del extremo 5' del cebador marcado para impedir su actividad correctora de errores.For the detection of SNPs it is necessary that the labeled primer of the second amplification hybridizes perfectly in the area where the nucleic acid base change appears. If an enzyme with error corrective activity 3 '-5' is used, the mutation should be located in the vicinity of the 5 'end of the labeled primer to prevent its error correction activity.
En todas las aplicaciones de esta invención los cambios de fluorescencia debidos al paso de doble hebra a hebra sencilla o viceversa del ADN marcado, son más acusados según el número y posición de residuos de guaninas y citosinas próximas al fluoróforo. En el caso de presentar residuos de guanina, cuando se desnaturali- za el ácido nucleico amplificado la intensidad del fluoróforo adyacente disminuye, mientras que si próximo al fluoróforo existen residuos de citosina cuando se desnaturaliza el ácido nucleico amplificado la intensidad de fluorescencia aumenta. Factor que se debe de tener en cuenta a la hora de su diseño.In all applications of this invention, fluorescence changes due to the passage of double strands to single strands or vice versa of the labeled DNA are more pronounced according to the number and position of guanine and cytosine residues near fluorophore. In the case of guanine residues, when the amplified nucleic acid is denatured, the intensity of the Adjacent fluorophore decreases, while if near the fluorophore there are cytosine residues when the amplified nucleic acid is denatured the fluorescence intensity increases. Factor that must be taken into account when designing.
Los kits desarrollados con la presente invención se podrán emplear para la detección, cuantificación e identificación de ácidos nucleicos. Su diseño incluirá cebadores marcados según la presente invención y una apropiada ADN polimerasa o mezcla de enzimas. Podrán también existir kits en los que se aplique la invención de forma indirecta, con la participación de otras técnicas como sondas Taqman, Molecular Beacon, agentes inter- calantes (Sybr Green, Bebo, Boxto...) y las sondas LIONPROBES™. En estos casos el kit se empleará para el análisis e identificación de ácidos nucleicos.The kits developed with the present invention may be used for the detection, quantification and identification of nucleic acids. Its design will include primers labeled according to the present invention and an appropriate DNA polymerase or enzyme mixture. There may also be kits in which the invention is applied indirectly, with the participation of other techniques such as Taqman probes, Molecular Beacon, interfering agents (Sybr Green, Bebo, Boxto ...) and LIONPROBES ™ probes. In these cases the kit will be used for the analysis and identification of nucleic acids.
Los kits desarrollados incluyen cebadores marca- dos, cebadores de polaridad opuesta a la sonda, una enzima ADN polimerasas o mezcla de enzimas que incluyan o no actividad 3' -5' exonucleasa-correctora de errores y los reactivos necesarios para realizar la amplificación (buffer, dNTPs, iones magnesio, coadyuvantes de la PCR) .The kits developed include labeled primers, primers of opposite polarity to the probe, an enzyme DNA polymerases or mixture of enzymes that include or not 3 '-5' exonuclease-corrective error activity and the reagents necessary to perform amplification (buffer , dNTPs, magnesium ions, PCR adjuvants).
Los kit de la presente invención presentan cebadores detectan ácidos nucleicos diana virales, y preferentemente el ácido nucleico diana viral es un Papillo- mavirus oncogénico humano.The kits of the present invention have primers detect viral target nucleic acids, and preferably the viral target nucleic acid is a human oncogenic Papillomavirus.
DESCRIPCIÓN DE LOS DIBUJOSDESCRIPTION OF THE DRAWINGS
FIGS.1A, 1B,1C,1D,1E,1F,1G y IH muestran la hibridación de los oligonucleótidos marcados con el ADN substrato. FIG. IA sonda Plasmprobe, FIG. IB sonda 531ML, FIG. IC sonda 531ML3, FIG. ID sonda FaIMFl, FIG. IE sonda FaIMRl, FIG. IF sonda rpoMLF2, FIG. IG sonda Mecalf y FIG. IH sonda BHIVLF. Los desapareamientos de los oligo- nucleótidos marcados (parte superior) se señalan en cursiva respecto al ADN substrato (parte inferior) .FIGS.1A, 1B, 1C, 1D, 1E, 1F, 1G and IH show the hybridization of the oligonucleotides labeled with the substrate DNA. FIG. IA Plasmprobe probe, FIG. IB probe 531ML, FIG. Probe IC 531ML3, FIG. FaIMFl probe ID, FIG. IE FaIMRl probe, FIG. IF probe rpoMLF2, FIG. IG probe Mecalf and FIG. IH BHIVLF probe. The mismatches of the labeled oligo-nucleotides (upper part) are indicated in italics with respect to the substrate DNA (lower part).
FIGS.2A,2B,2C,2D,2E,2F,2G y 2H corresponden a las curvas de Melting convertidas a picos de temperatura (canal FAM) de las FIGS.1.FIGS.2A, 2B, 2C, 2D, 2E, 2F, 2G and 2H correspond to the Melting curves converted to temperature peaks (FAM channel) of FIGS.1.
FIGS.3A,3B y 3C muestran los resultados de amplificación, la curva de melting y los picos de temperatura en gráficas de fluorescencia (canal FAM) en el caso de utilizar como ADN substrato Plasmodium falciparum y una sonda marcada en su extremo 5' con 6FAM seguido de una secuencia de guaninas. FIGS.3D,3E y 3F muestran los resultados de amplificación, la curva de melting y los picos de temperatura en gráficas de fluorescencia (canal FAM) en el caso de utilizar como ADN substrato Plasmo- dium falciparum y una sonda marcada en su extremo 5' con 6FAM seguido de una secuencia de citosinas.FIGS.3A, 3B and 3C show the amplification results, the melting curve and the temperature peaks in fluorescence graphs (FAM channel) in the case of using Plasmodium falciparum as substrate DNA and a probe labeled at its 5 'end with 6FAM followed by a sequence of guanines. FIGS.3D, 3E and 3F show the amplification results, the melting curve and the temperature peaks in fluorescence graphs (FAM channel) in the case of using Plasmidium falciparum as substrate DNA and a probe marked at its end 5 'with 6FAM followed by a cytosine sequence.
FIGS.4A, 4B y 4C muestran los resultados de amplificación, la curva de melting y los picos de tempera- tura en gráficas de fluorescencia (canal FAM) en el caso de utilizar como ADN substrato distintos tipos de Papi- llomavirus humano y una sonda marcada en su extremo 5' con 6FAM y en su extremo 3' con TAMRA seguido de una secuencia de citosinas. FIGS.4D,4E y 4F muestran los resultados de amplificación, la curva de melting y los picos de temperatura en gráficas de fluorescencia (canal FAM) en el caso de utilizar como ADN substrato ADN humano total y una sonda marcada en su extremo 5' con 6FAM y en su extremo 3' con TAMRA seguido de una secuen- cia de guaninas. FIG.5A son los resultados de amplificación en Tiempo Real de una región conservada de diferentes ADN substrato en gráficas de fluorescencia (canal FAM) frente a un número de ciclos en diferentes casos. En lineas discontinuas se representa el negativo que ha amplificado un producto inespecifico . En la parte derecha de la figura se muestra el análisis en gel de agaro- sa de los productos amplificados. FIG.5B corres- ponde a la curva de Melting con los picos de temperatura (canal FAM) de la FIG.5A.FIGS.4A, 4B and 4C show the amplification results, the melting curve and the temperature peaks in fluorescence graphs (FAM channel) in the case of using different types of human papillomavirus and a probe as substrate DNA marked at its 5 'end with 6FAM and at its 3' end with TAMRA followed by a sequence of cytosines. FIGS.4D, 4E and 4F show the amplification results, melting curve and temperature peaks in fluorescence graphs (FAM channel) in the case of using total human DNA and a probe labeled at its 5 'end as substrate DNA with 6FAM and at its 3 'end with TAMRA followed by a guanine sequence. FIG.5A are the results of Real-time amplification of a conserved region of different substrate DNA in fluorescence graphs (FAM channel) versus a number of cycles in different cases. In dashed lines, the negative that has amplified an unspecified product is represented. On the right side of the figure, the analysis of the agaseous gel of the amplified products is shown. FIG. 5B corresponds to the Melting curve with the temperature peaks (FAM channel) of FIG. 5A.
FIG.6A muestra la amplificación en tiempo real en gráficas de fluorescencia (canal FAM) respecto a número de ciclos de dos ADNs que pertenecen a dos especies de Plasmodium que son P . falciparum (represen- tado con linea continua) y P .malariae (representado con linea discontinua) . FIG.6B es la gráfica de la curva de Melting con los picos de temperatura (canal FAM) de la FIG.6A.FIG.6A shows the real-time amplification in fluorescence graphs (FAM channel) with respect to the number of cycles of two DNAs that belong to two Plasmodium species that are P. falciparum (represented by a continuous line) and P. malariae (represented by a broken line). FIG.6B is the graph of the Melting curve with the temperature peaks (FAM channel) of FIG.6A.
FIG.7A es la gráfica de fluorescencia (canal JOE) frente a número de ciclos de la amplificación de una región conservada del genoma de Plasmodium con cuatro tipos de especies (P . falciparum, P .malariae, P. ovale y P.vivax) . FIG.7B corresponde a las curvas de Melting convertidas a picos de temperatura (canal FAM) de la segunda amplificación que habia utilizado como substrato la primera amplificación de la FIG.7A. En la parte derecha de la FIG.7B se muestra el análisis en gel de agarosa de los productos obtenidos en la segunda amplificación .FIG. 7A is the fluorescence plot (JOE channel) versus number of amplification cycles of a conserved region of the Plasmodium genome with four types of species (P. falciparum, P. malariae, P. ovale and P. vivax) . FIG.7B corresponds to the Melting curves converted to temperature peaks (FAM channel) of the second amplification that the first amplification of FIG.7A had used as a substrate. The agarose gel analysis of the products obtained in the second amplification is shown on the right side of FIG. 7B.
FIG.8A muestra un fragmento de la secuencia sal- vaje del gen rpoβ de Mycobacterium tuberculosis (MTB) . FIG.8B es la secuencia del gen rpoβ de MTB con la mutación en el codón 516 (representadas en la parte superior) . FIG.8C son las posibles mutaciones en el codón 526. FIG.8D son las mutaciones en el codón 531. En negrita se representan los cebadores específicos de MTB.FIG. 8A shows a fragment of the wild-type sequence of the rpoβ gene of Mycobacterium tuberculosis (MTB). FIG. 8B is the sequence of the rpoβ gene of MTB with the mutation in codon 516 (depicted at the top). FIG.8C are possible mutations in codon 526. FIG.8D are mutations in codon 531. Bold specific MTB primers are shown in bold.
FIG.9A muestra los resultados de amplificación en tiempo real de un fragmento del gen rpoβ especifico de MTB en gráficas de fluorescencia (canal JOE) frente a número de ciclos. Los ADNs substrato utilizados fueron un plásmido con ADN de MTB sin mutaciones en el gen rpoβFIG. 9A shows the results of real-time amplification of a fragment of the rpoβ gene specific to MTB in fluorescence plots (JOE channel) versus number of cycles. The substrate DNAs used were a plasmid with MTB DNA without mutations in the rpoβ gene
(prpo-WT) , un plásmido con ADN de MTB con la mutación en el codón 516 (prpo-516), otro plásmido con ADN de MTB con la mutación en el codón 526 (prpo-526T), otro plás- mido con ADN de MTB con la mutación en el codón 526 (prpo-526A) y un plásmido con ADN de MTB con la mutación en el codón 531 (prpo-531) . FIG.9B son los picos de temperatura (canal FAM) de los productos obtenidos en la segunda amplificación que han utilizado como substrato los productos obtenidos en la primera amplificación de la FIG.9A.(prpo-WT), a plasmid with MTB DNA with the mutation in codon 516 (prpo-516), another plasmid with MTB DNA with the mutation in codon 526 (prpo-526T), another plasmid with DNA MTB with the mutation in codon 526 (prpo-526A) and a plasmid with MTB DNA with the mutation in codon 531 (prpo-531). FIG. 9B are the temperature peaks (FAM channel) of the products obtained in the second amplification that have used as a substrate the products obtained in the first amplification of FIG. 9A.
REALIZACIÓN PREFERENTE DE LA INVENCIÓNPREFERRED EMBODIMENT OF THE INVENTION
EJEMPLO 1.EXAMPLE 1.
Ensayo de amplificación en Tiempo Real seguido de una curva de melting utilizando oligonucleótidos marcados fluorescentemente como cebadores para comprobar el efecto de la secuencia nucleotidica y su posición que originan un cambio de fluorescencia cuando el ácido nucleico amplificado se disocia y pasa de cadena doble a cadena sencilla.Real-time amplification test followed by a melting curve using fluorescently labeled oligonucleotides as primers to check the effect of the nucleotide sequence and its position that give rise to a change in fluorescence when the amplified nucleic acid dissociates and passes from double strands to single strands. .
Los oligonucleótidos marcados (sondas) mostrados en las Figuras 1 fueron sintetizados por Applied Biosys- tems (doble mareaje) y DNA-Technology A/S (mareaje simple) . Las sondas son de tamaños variables, distinta secuencia nucleotidica, mareajes simples o dobles y orientaciones diferentes. El repórter en todas las sondas se localiza en sus extremos 5' y la molécula fluorescente es 6FAM ( 6-carboxifluoresceina) . En el caso en el que la sonda está marcada doblemente con un repórter en su extremo 5' y un quencher en su extremo 3' , su secuencia presenta desapareamientos de bases en el extremo 3' o bases adyacentes al hibridar con el ácido nucleico substrato (nucleótidos representados en cursiva en las Figuras 1) y en consecuencia la actividad 3' -5' nucleasa de la Pfu polimerasa, utilizada en todos los experimentos, libera el quencher de la sonda.The labeled oligonucleotides (probes) shown in Figures 1 they were synthesized by Applied Biosystems (double tide) and DNA-Technology A / S (single tide). The probes are of varying sizes, different nucleotide sequence, single or double tides and different orientations. The reporter in all probes is located at its 5 'ends and the fluorescent molecule is 6FAM (6-carboxyfluorescein). In the case where the probe is doubly labeled with a 5 'end and a 3' end quencher, its sequence has mismatches of bases at the 3 'end or adjacent bases when hybridizing with the substrate nucleic acid ( Nucleotides shown in italics in Figures 1) and consequently the 3'-5 'nuclease activity of the Pfu polymerase, used in all experiments, releases the quencher from the probe.
Los ADNs substrato varian según la sonda utilizada. La sonda de la FIG. IA (Plasmprobe) utiliza como ADN molde una región conservada del genoma de Plasmodium falciparum (Acceso GenBank #M19172) y se apoya en un cebador (Plasmrev2) para el desarrollo de la amplificación en Tiempo Real. El ADN substrato de las sondas de la FIG. IB (531ML), FIG. IC (531ML3) y FIG. IF (rpoMLF2) es una especie de Mycobacterium tuberculosis con una muta- ción en su genoma localizada en el codón 531 que le confiere resistencia frente al antibiótico rifampicina (Acceso GenBank #EF628318) . El cebador con polaridad opuesta a las sondas es en el caso de 531ML y 531ML3, Trev y para la sonda rpoMLF2 es 531R. En las FIG. ID y IE el ADN molde es el mismo que en la FIG. IA pero el cebador es distinto. El cebador de la FIG. ID (sonda FaIMLFl) es Mrev3 y el cebador de la FIG. IE (sonda FaIMLRl) es Mfor. La sonda Mecalf de la FIG. IG utiliza como ADN substrato una región conservada del genoma de la bacte- ria Staphylococcus aureus (Acceso GenBank #AB236888) que le confiere resistencia a antibióticos derivados de la meticilina y su cebador correspondiente es Mecar2. Por último, el ADN substrato de la sonda de la FIG. IHSubstrate DNAs vary according to the probe used. The probe of FIG. IA (Plasmprobe) uses a conserved region of the genome of Plasmodium falciparum (GenBank Access # M19172) as template DNA and relies on a primer (Plasmrev2) for the development of Real-Time amplification. The substrate DNA of the probes of FIG. IB (531ML), FIG. IC (531ML3) and FIG. IF (rpoMLF2) is a species of Mycobacterium tuberculosis with a mutation in its genome located on codon 531 that confers resistance to the antibiotic rifampicin (GenBank Access # EF628318). The primer with polarity opposite to the probes is in the case of 531ML and 531ML3, Trev and for the rpoMLF2 probe it is 531R. In FIG. ID and IE the template DNA is the same as in FIG. AI but the primer is different. The primer of FIG. ID (FaIMLFl probe) is Mrev3 and the primer of FIG. IE (FaIMLRl probe) is Mfor. The Mecalf probe of FIG. IG uses a conserved region of the genome of the Staphylococcus aureus bacterium (GenBank Access # AB236888) as substrate DNA It confers resistance to antibiotics derived from methicillin and its corresponding primer is Mecar2. Finally, the substrate DNA of the probe of FIG. IH
(BHIVLF) es un plásmido control (pHIV-Control) que lleva clonado un fragmento de ADNc conservado en el genoma del virus HIV tipo I (Acrometrix Panel HIV-I) y su cebador es RTR-BIV.(BHIVLF) is a control plasmid (pHIV-Control) that has cloned a cDNA fragment preserved in the genome of HIV type I virus (Acrometrix Panel HIV-I) and its primer is RTR-BIV.
Las secuencias de las sondas junto con sus ceba- dores específicos que se describen a continuación, presentan una temperatura de melting (Tm) muy parecida para una correcta amplificación en Tiempo Real.The sequences of the probes, together with their specific primers, described below, have a very similar melting temperature (Tm) for correct real-time amplification.
Plasmprobe 5' 6FAM AGGCAGCAGGCGCGTAAATTACCCAATGA 3' TR (SEQ ID NO:1) Plasmrev2 5' TGGGAAGGTTTTAAATTCCCA 3' (SEQ ID NO:2)Plasmprobe 5 '6FAM AGGCAGCAGGCGCGTAAATTACCCAATGA 3' TR (SEQ ID NO: 1) Plasmrev2 5 'TGGGAAGGTTTTAAATTCCCA 3' (SEQ ID NO: 2)
531ML 5' 6FAM TGGCGCTGGGGCC 3' (SEQ ID NO:3)531ML 5 '6FAM TGGCGCTGGGGCC 3' (SEQ ID NO: 3)
531ML3 5' 6FAM TGTTGGCGCTGGGG 3' (SEQ ID NO:4)531ML3 5 '6FAM TGTTGGCGCTGGGG 3' (SEQ ID NO: 4)
Trev 5' TGCACGTCGCGGAC 3' (SEQ ID NO:5)Trev 5 'TGCACGTCGCGGAC 3' (SEQ ID NO: 5)
FaIMLFl 5 ' 6FAM AGGCAGCAGGCGC 3' (SEQ ID NO:6) Mrev3 5' TCCCACCAT TCCAAT TACA 3' (SEQ ID NO:7)FaIMLFl 5 '6FAM AGGCAGCAGGCGC 3' (SEQ ID NO: 6) Mrev3 5 'TCCCACCAT TCCAAT TACA 3' (SEQ ID NO: 7)
FaIMLRl 5' 6FAM TCCCACCATTCCAATTACA 3' (SEQ ID NO:8)FaIMLRl 5 '6FAM TCCCACCATTCCAATTACA 3' (SEQ ID NO: 8)
Mf or 5' CCCAATTCTAAAGAAGAGAGG 3' (SEQ ID NO:9) rpoMLF2 5' 6FAM AGCCAGCTGAGCCAAT 3' (SEQ ID NO:10)Mf or 5 'CCCAATTCTAAAGAAGAGAGG 3' (SEQ ID NO: 9) rpoMLF2 5 '6FAM AGCCAGCTGAGCCAAT 3' (SEQ ID NO: 10)
53 IR 5' CCAGCGCCAACAGTC 3' (SEQ ID NO:11) Mecalf 5' 6FAM ACGATCCTGAATGTTTATATCTTTAACGCCCA 3' TR (SEQ ID NO:12)53 IR 5 'CCAGCGCCAACAGTC 3' (SEQ ID NO: 11) Mecalf 5 '6FAM ACGATCCTGAATGTTTATATCTTTAACGCCCA 3' TR (SEQ ID NO: 12)
Mecar2 5' CGATAATGGTGAAGTAGAAATGACTGAAC 3' (SEQ ID NO:13)Mecar2 5 'CGATAATGGTGAAGTAGAAATGACTGAAC 3' (SEQ ID NO: 13)
BHIVLF 5' 6FAM AAAGAAAAGGGGGGATTGGGGGGTCA 3' (SEQ ID NO:14)BHIVLF 5 '6FAM AAAGAAAAGGGGGGATTGGGGGGTCA 3' (SEQ ID NO: 14)
RTR-BIV 5' GTCTATTATTCTTTCCCCTGCACTGT 3' (SEQ ID NO:15)RTR-BIV 5 'GTCTATTATTCTTTCCCCTGCACTGT 3' (SEQ ID NO: 15)
Las mezclas de amplificación en cada caso fueron realizadas con el kit Biotools Pfu DNA polimerasa (Bio- tools B&M Labs, Madrid, Spain) , incluyendo en la mezcla O' lU/μl de Pfu DNA polimerasa, bufferes de reacción, 200μM de dNTPs, 4mM de MgCl2, sonda (0'2μM) y cebador (0' 3μM) siendo el volumen final de la reacción de 20μl. Con cada mezcla de amplificación y la pareja de sonda y cebador especifico se ensayo la amplificación del ADN substrato correspondiente con una cantidad de 50.000 copias aproximadamente, asi como un control sinThe amplification mixtures in each case were carried out with the Biotools Pfu DNA polymerase kit (Bio-tools B&M Labs, Madrid, Spain), including in the O 'lU / μl mixture of Pfu DNA polymerase, reaction buffers, 200 μM dNTPs, 4mM MgCl 2 , probe (0.2 µM ) and primer (0'3μM) being the final reaction volume of 20μl. The amplification of the corresponding substrate DNA with an amount of approximately 50,000 copies was tested with each amplification mixture and the specific probe and primer pair, as well as a control without
ADN substrato.Substrate DNA.
El equipo de amplificación en Tiempo Real que se utilizó fue el Rotor Gene 3000. Los ciclos de amplifi- cación y posterior curva de melting programadas en el equipo fueron iguales en todas las mezclas de amplificación excepto en el paso donde la sonda y el cebador hibridan con el ADN substrato (en inglés paso llamado de "annealing") , que fue diferente según la Tm de la sonda y el cebador utilizados en la amplificación. Los ciclos de amplificación y los ciclos de la la curva de melting son los siguientes:The Real-Time amplification equipment that was used was the Gene 3000 Rotor. The amplification cycles and subsequent melting curve programmed in the equipment were the same in all amplification mixtures except in the step where the probe and the primer hybridize with the DNA substrate (in English called step of "annealing"), which was different according to the Tm of the probe and the primer used in the amplification. The amplification cycles and the melting curve cycles are as follows:
Desnaturalización: 4 min a 95°C. 1 ciclo. Amplificación: 5 seg a 97°C, 5 seg a la Tra de annealing correspondiente a la pareja sonda-cebador (Tabla 1), 30 seg a 62°C (captura de fluorescencia) . 35 ciclos. Melting: 30 seg a 65°C y rampa de Tra deDenaturation: 4 min at 95 ° C. 1 cycle Amplification: 5 sec at 97 ° C, 5 sec at annealing Tra corresponding to the probe-primer pair (Table 1), 30 sec at 62 ° C (fluorescence capture). 35 cycles Melting: 30 sec at 65 ° C and Tra ramp
0'4°C/seg desde 65°C hasta 95°C capturando fluorescencia en cada incremento de Tra.0.4 ° C / sec from 65 ° C to 95 ° C capturing fluorescence at each increase in Tra.
TABLA 1TABLE 1
Pareja Sonda - Cebador Tra de annealingCouple Probe - Tra primer by Annealing
Plasmprobe Plasmrev2 58°C 531ML Trev 52°C Continuación-TABLA 1Plasmprobe Plasmrev2 58 ° C 531ML Trev 52 ° C Continuation-TABLE 1
Pareja Sonda - Cebador Tra de annealingCouple Probe - Tra primer by Annealing
531ML3 Trev 54°C531ML3 Trev 54 ° C
FaIMLFl Mrev3 52°CFaIMLFl Mrev3 52 ° C
FaIMLRl Mfor 52°C rpoMLF2 531R 52°CFaIMLRl Mfor 52 ° C rpoMLF2 531R 52 ° C
Mecalf Mecar2 61°CMecalf Mecar2 61 ° C
BHIVLF RTR-BIV 61°CBHIVLF RTR-BIV 61 ° C
Las gráficas de las curvas de melting llevadas a cabo por cada pareja sonda-cebador de la Tabla 1, se muestran en las Figuras 2A-2H. Con algunas sondas se observan picos de temperatura (Figuras 2A-2F) y con otras no (Figuras 2G y 2H) . También la intensidad de la señal de fluorescencia de los picos de temperatura varia de una sonda a otra. El posicionamiento y el número de nucleótidos con residuos de guanina (G) y citosina (C) es muy importante en el diseño de la sonda. Los seis nucleótidos que siguen a la base que lleva unido el fluoróforo tienen que ser como minimo 3G o 3C y preferiblemente deben situarse justo a continuación de la base que lleva unido el repórter. Los residuos de G absorben más la fluorescencia de emisión del repórter que los residuos de C . De esta manera se puede ver un cambio de fluorescencia en la curva de Melting cuando pasa el producto de doble hebra a hebra sencilla. (Tabla 2) . TABLA 2The graphs of the melting curves carried out by each probe-primer pair in Table 1 are shown in Figures 2A-2H. With some probes, temperature peaks are observed (Figures 2A-2F) and with others not (Figures 2G and 2H). Also the intensity of the fluorescence signal of the temperature peaks varies from one probe to another. The positioning and number of nucleotides with guanine (G) and cytosine (C) residues is very important in the design of the probe. The six nucleotides that follow the base that the fluorophore is attached must be at least 3G or 3C and preferably should be located just after the base that holds the reporter together. G residues absorb the emission fluorescence of the reporter more than C residues. In this way you can see a change in fluorescence in the Melting curve when you pass the product from double strand to single strand. (Table 2). TABLE 2
Cambio deChange of
Fluorescencia al pasar de dsDNA a £ 3sDNAFluorescence when moving from dsDNA to £ 3sDNA
Diseño de Sondas Número Posición (+++ alto,++ medioProbe Design Position Number (+++ high, ++ medium
(5' 6FAM ...) de G/C de G/C ++ bajo, - sin cambio)(5 '6FAM ...) G / C G / C ++ low, - no change)
Plasmprobe (FIG.2A) AGGCAGC 5 1,2,3,5,6 +++Plasmprobe (FIG. 2A) AGGCAGC 5 1,2,3,5,6 +++
531ML (FIG.2B) TGGCGCT 5 1,2,3,4,5 ++531ML (FIG.2B) TGGCGCT 5 1,2,3,4,5 ++
531ML3 (FIG.2C) TGTTGGC 4 1,4,5,6 ++531ML3 (FIG.2C) TGTTGGC 4 1,4,5,6 ++
FALMLFl (FIG.2D) AGGCAGC 5 1,2,3,5,6 ++FALMLFl (FIG.2D) AGGCAGC 5 1,2,3,5,6 ++
FALMLRl (FIG.2E) TCCCACC 5 1,2,3,5,6 + rpoMLF2 (FIG.2F) AGCCAGC 5 1,2,3,5,6 +FALMLRl (FIG.2E) TCCCACC 5 1,2,3,5,6 + rpoMLF2 (FIG.2F) AGCCAGC 5 1,2,3,5,6 +
Mecalf (FIG.2G) ACGATCC 4 1,2,5,6 -Mecalf (FIG.2G) ACGATCC 4 1,2,5,6 -
BHIVLF (FIG.2H) AAAGAAA 1 3 -BHIVLF (FIG.2H) AAAGAAA 1 3 -
ADN de doble cadena (dsDNA) , ADN de cadena simple (ssDNA)Double stranded DNA (dsDNA), single stranded DNA (ssDNA)
El pico de temperatura de la curva de Melting, representado en las Figuras 2A-2H, de cada producto de PCR amplificado con la pareja sonda-cebador corresponde aproximadamente (la composición del buffer y el uso de posibles aditivos para la PCR en la mezcla de amplificación varian la Tm del producto) con la Tm del producto amplificado predecido con programas especializados como por ejemplo Alíele ID 2.0 y Primer Express 1.0. (Tabla 3) .The temperature peak of the Melting curve, represented in Figures 2A-2H, of each PCR product amplified with the probe-primer pair corresponds approximately (the composition of the buffer and the use of possible PCR additives in the mixture of amplification vary the Tm of the product) with the Tm of the amplified product predicted with specialized programs such as Aliele ID 2.0 and Primer Express 1.0. (Table 3).
TABLA 3TABLE 3
Tamaño producto Tm predecida Tm picoProduct size Tm predicted Tm peak
Pareja Sonda - Cebador amplificado AlIeIeID 2.0 de TraProbe Pair - Tra AlIeIeID 2.0 amplified primer
Plasmprobe Plasmrev2 llβpb 82'1°C 79°CPlasmprobe Plasmrev2 llβpb 82'1 ° C 79 ° C
531ML Trev 62pb 92'9°C 87°C531ML Trev 62pb 92'9 ° C 87 ° C
531ML3 Trev 64pb 92'4°C 86°C531ML3 Trev 64pb 92'4 ° C 86 ° C
FaIMLFl Mrev3 lOlpb 81'9°C 78°C Continuación-TABLA 3FaIMLFl Mrev3 lOlpb 81'9 ° C 78 ° C Continuation-TABLE 3
Tamaño producto Tm predecida Tm picoProduct size Tm predicted Tm peak
Pareja Sonda - Cebador amplificado AlIeIeID 2.0 de TraProbe Pair - Tra AlIeIeID 2.0 amplified primer
FaIMLRl Mfor 80pb 78°C 75°C rpoMLF2 531R 76pb 88'8°C 86°CFaIMLRl Mfor 80pb 78 ° C 75 ° C rpoMLF2 531R 76pb 88'8 ° C 86 ° C
Mecalf Mecar2 85pb IA1I0C --°cMecalf Mecar2 85pb IA 1 I 0 C - ° c
BHIVLF RTR-BIV 49pb 76'1°C --°cBHIVLF RTR-BIV 49pb 76'1 ° C - ° c
Pares de bases (pb)Base pairs (bp)
EJEMPLO 2EXAMPLE 2
Ensayo de amplificación en tiempo real seguido de una curva de melting con dos sondas con mareaje sencillo (un fluoróforo en el extremo 5') y dos cebadores, para identificar el mismo ADN substrato mediante análisis de señales de fluorescencia opuestas según cual sonda se utilice.Real-time amplification test followed by a melting curve with two probes with simple marking (a fluorophore at the 5 'end) and two primers, to identify the same substrate DNA by analysis of opposite fluorescence signals according to which probe is used.
El ADN substrato fue una región conservada de la especie Plasmodium: P. falciparum (Acceso GenBank # M 19172) .The substrate DNA was a conserved region of the Plasmodium species: P. falciparum (GenBank Access # M 19172).
La primera sonda lleva un mareaje fluorescente sencillo (5' 6FAM) , actúa como cebador en la reacción de amplificación y presenta un 100% de homologia con la región conservada de Plasmodium falciparum. Dentro de los seis nucleótidos que siguen al nucleótido que lleva unido el repórter, hay tres guaninas en posiciones 2,3 y 6. De esta forma a medida que se genera el ácido nucleico en la amplificación, por medio de la sonda, se obtiene un incremento en la señal de fluorescencia. Además el ácido nucleico generado puede experimentar un cambio negativo de señal de fluorescencia al pasar de doble hebra a hebra sencilla. La sonda diseñada como se describe a continuación fue FaIMLFl (SEQ ID NO: 6) .The first probe carries a simple fluorescent marking (5'6FAM), acts as a primer in the amplification reaction and has a 100% homology with the conserved region of Plasmodium falciparum. Within the six nucleotides that follow the nucleotide that carries the reporter together, there are three guanines in positions 2,3 and 6. In this way as the nucleic acid is generated in the amplification, through the probe, a increase in fluorescence signal. In addition, the generated nucleic acid can undergo a negative change in fluorescence signal by double Strand to single strand. The probe designed as described below was FaIMLFl (SEQ ID NO: 6).
El cebador reverse (en sentido opuesto a la son- da FaIMLFl) que hibrida perfectamente (100% de homo logia) con la región conservada de Plasmodium falciparum fue Mrev3 (SEQ ID NO:7) .The reverse primer (in the opposite direction to the FaIMLFl probe) that hybridizes perfectly (100% homogenous) with the conserved region of Plasmodium falciparum was Mrev3 (SEQ ID NO: 7).
La segunda sonda lleva un mareaje fluorescente sencillo (5' 6FAM) , actúa como cebador en la reacción de amplificación y presenta un 100% de homología con la región conservada de Plasmodium falciparum. Dentro de los seis nucleótidos que siguen al nucleótido que lleva unido el repórter, hay 4 citosinas en posiciones 2,3,4 y 6. De esta forma a medida que se genera el ácido nucleico en la amplificación, por medio de la sonda, se obtiene un descenso en la señal de fluorescencia. Además el ácido nucleico generado, puede experimentar un cambio positivo de señal de fluorescencia al pasar de doble hebra a hebra sencilla. La sonda diseñada como se describe a continuación fue FaIMLRl (SEQ ID NO: 8) .The second probe carries a simple fluorescent marking (5'6FAM), acts as a primer in the amplification reaction and has a 100% homology with the conserved region of Plasmodium falciparum. Within the six nucleotides that follow the nucleotide that carries the reporter together, there are 4 cytosines in positions 2,3,4 and 6. In this way as the nucleic acid is generated in the amplification, by means of the probe, gets a decrease in the fluorescence signal. In addition to the generated nucleic acid, you can experience a positive change in fluorescence signal from double strand to single strand. The probe designed as described below was FaIMLRl (SEQ ID NO: 8).
El cebador forward (en sentido puesto a la sonda FaIMLRl) que hibrida perfectamente (100% de homología) con la región conservada de Plasmodium falciparum fue Mfor (SEQ ID NO: 9) .The forward primer (in the direction set to the FaIMLRl probe) that hybridizes perfectly (100% homology) with the conserved region of Plasmodium falciparum was Mfor (SEQ ID NO: 9).
Las mezclas de amplificación, tanto para la sonda FaIMLFl (0,3 μM) - cebador Mfor (0.3 μM) como para la sonda FaIMLRl (0,3 μM) - cebador Mrev3 (0,3 μM) , fueron realizadas con el kit Biotools Pfu DNA Polimerasa IIThe amplification mixtures, both for the FaIMLFl probe (0.3 μM ) - Mfor primer (0.3 μM ) and for the FaIMLRl probe (0.3 μM ) - Mrev3 primer (0.3 μM ), were performed with the Biotools Pfu DNA Polymerase II kit
(Biotools) , incluyendo en la mezcla 0,1 U/μl de Pfu DNA polimerasa, bufferes de reacción, 200 μM de dNTPs, 4 mM de MgCl2 y 1,25 M de Betaina (coadyuvante para aumentar especificidad) siendo el volumen final de la reacción de 20 μl .(Biotools), including in the mixture 0.1 U / μ l Pfu polymerase DNA, reaction buffers, 200 μ M dNTP, 4 mM MgCl2 and 1.25 M Betaine (adjuvant to increase specificity) being the volume end of the reaction of 20 μ l.
El equipo de amplificación en Tiempo Real que se utilizó fue el Rotor Gene 3000. Los ciclos de amplifica- ción y posterior curva de melting fueron los siguientes:The Real Time amplification equipment used was the Gene 3000 Rotor. The amplification cycles and subsequent melting curve were as follows:
Desnaturalización: 4 min a 95°C. 1 ciclo Amplificación: 5 seg a 97°C, 5 seg a 52°C,Denaturation: 4 min at 95 ° C. 1 cycle Amplification: 5 sec at 97 ° C, 5 sec at 52 ° C,
30 seg a 62°C (captura de Fluorescencia en el canal FAM) .30 sec at 62 ° C (Fluorescence capture in the FAM channel).
40 ciclos.40 cycles
Melting: 30 seg a 65°C y rampa de temperatura de 0,4°C/seg desde 65°C hasta 900C captu rando fluorescencia en el canal FAM en cada incremento de temperatura.Melting: 30 sec at 65 ° C and temperature ramp of 0.4 ° C / sec from 65 ° C to 90 0 C capturing fluorescence in the FAM channel at each temperature increase.
Las gráficas de amplificación donde se representa la señal de fluorescencia en el canal de FAM frente al número de ciclos y las gráficas de la curva de mel- ting posterior a la amplificación se muestran en las figuras 3A, 3B, 3C, 3D, 3E y 3F.The amplification graphs where the fluorescence signal in the FAM channel is plotted against the number of cycles and the graphs of the post-amplification melting curve are shown in Figures 3A, 3B, 3C, 3D, 3E and 3F.
Como se observa en la Figura 3A, las muestras con distintas concentraciones del ADN substrato de Plasmodium falciparum (A, B, C) , y utilizando la sonda FaIMLFl y el cebador Mrev3, amplifican en una cadencia proporcional a la cantidad inicial de ADN substrato mientras que las muestras sin ADN substrato (D) no amplifican. Las curvas de fluorescencia de la amplifica- ción son positivas por llevar unido al fluoróforo de la sonda una secuencia de Guaninas en posiciones 2,3 y 6. (Tabla 4) .As seen in Figure 3A, samples with different concentrations of Plasmodium falciparum substrate DNA (A, B, C), and using the FaIMLFl probe and the Mrev3 primer, amplify at a rate proportional to the initial amount of substrate DNA while that samples without substrate DNA (D) do not amplify. The fluorescence curves of the amplification are positive for having a Guanine sequence attached to the probe fluorophore in positions 2,3 and 6. (Table 4).
En la Figura 3B se observa la curva de melting y en el Figura 3C se muestran los picos de temperatura de las cuatro muestras ensayadas sólo en las muestras con ADN substrato aparece un pico de temperatura que se corresponde con la Tm del producto amplificado (Tabla 4) . La curva de melting, como se observa en la Figura 3B, presenta un descenso de fluorescencia cuando se desnaturaliza el ácido nucleico por quedar unido el fluoróforo repórter a una secuencia de 6 guaninas en posiciones 2,3 y 6.Figure 3B shows the melting curve and Figure 3C shows the temperature peaks of The four samples tested only in the samples with substrate DNA show a temperature peak that corresponds to the Tm of the amplified product (Table 4). The melting curve, as seen in Figure 3B, shows a decrease in fluorescence when the nucleic acid is denatured because the reporter fluorophore is bound to a sequence of 6 guanines at positions 2,3 and 6.
TABLA 4TABLE 4
Muestra Ct Concentración Tm picoSample Ct Peak Tm Concentration
Calculada (copias) de Tra r i _ -, η (-0,207Ct + 10,389)Calculated (copies) of Tra r i _ -, η (-0,207Ct + 10,389)
P. falciparum 27 ,26 57005,87 copias 78, 200C AP. falciparum 27, 26 57005.87 copies 78, 20 0 CA
(5xlO4 copias)(5xlO 4 copies)
P. falciparum 32 ,68 3846,54 copias 78, 050C BP. falciparum 32, 68 3846.54 copies 78, 05 0 CB
(5x10 copias)(5x10 copies)
P. falciparum 27 ,26 570, 06 copias 77, 900C CP. falciparum 27, 26 570, 06 copies 77, 90 0 CC
(5xlO2 copias)(5xlO 2 copies)
Control sin ADN -- -- - - DControl without DNA - - - - D
En la Figura 3D se observan las muestras a distintas concentraciones del ADN substrato de P. falcipa- rum (E, F, G) y utilizando la sonda FaIMLRl y el cebador Mfor, amplifican en una cadencia proporcional a la cantidad inicial de ADN substrato mientras que las muestras (H) sin ADN substrato no amplifican. Las curvas de fluorescencia de la amplificación son negativas por llevar unido al fluoróforo de la sonda una secuencia de citosinas en posiciones 2,3,4 y 6. (Tabla 5) .In Figure 3D the samples are observed at different concentrations of the P. falciparum substrate DNA (E, F, G) and using the FaIMLRl probe and the Mfor primer, they amplify in a cadence proportional to the initial amount of substrate DNA while that samples (H) without substrate DNA do not amplify. The fluorescence curves of the amplification are negative because a cytosine sequence is attached to the probe fluorophore in positions 2,3,4 and 6. (Table 5).
En la Figura 3E se observa la curva de melting y en la Figura 3F se muestran los picos de temperatura de las cuatro muestras ensayadas. Únicamente en las mues¬ tras con ADN substrato aparece un pico de temperatura que se corresponde con la Tm del producto amplificado. (Tabla 5) . La curva de melting, como se observa en la Figura 3E, presenta un incremento de fluorescencia cuando se desnaturaliza el ácido nucleico por quedar unido el fluoróforo repórter a una secuencia de citosi- nas en posiciones 2, 3, 4 y 6.Figure 3E shows the melting curve and Figure 3F shows the temperature peaks of The four samples tested. Mues ¬ only in DNA substrate after a peak temperature corresponding to the Tm of the amplified product appears. (Table 5). The melting curve, as seen in Figure 3E, shows an increase in fluorescence when the nucleic acid is denatured because the reporter fluorophore is bound to a sequence of cytosines at positions 2, 3, 4 and 6.
TABLA 5TABLE 5
Muestra Ct Concentración Tm picoSample Ct Peak Tm Concentration
Calculada (copias) de TraCalculated (copies) of Tra
P. falciparum 23, 57005, 87 copias 74,47°CP. falciparum 23, 57005, 87 copies 74.47 ° C
(5xlO4 copias) P. falciparum 29, 12 3846, 54 copias 74,32°C(5xlO 4 copies) P. falciparum 29, 12 3846, 54 copies 74.32 ° C
(5x10 copias) P. falciparum 32,83 570, 06 copias 73,81°C(5x10 copies) P. falciparum 32.83 570, 06 copies 73.81 ° C
(5xlO2 copias) Control sin ADN(5xlO 2 copies) Control without DNA
Los resultados de las curvas de fluorescencia de amplificación y de las curvas de melting concuerdan con el comportamiento esperado del fluoróforo repórter (en este caso 6FAM) . Cuando el fluoróforo seguido de una secuencia de Guaninas se encuentra en modo de hebra sencilla, la intensidad de fluorescencia se ve bloqueada, al contrario de si el fluoróforo se encontrara seguido de una secuencia de citosinas. Del mismo modo, en modo de hebra doble la intensidad de fluorescencia aumenta en el caso del fluoróforo seguido de una secuencia de Guaninas mientras que con una secuencia de cito- sinas la intensidad de fluorescencia disminuye.The results of the amplification fluorescence curves and melting curves match the expected behavior of the reporter fluorophore (in this case 6FAM). When the fluorophore followed by a Guanine sequence is in single strand mode, the fluorescence intensity is blocked, unlike if the fluorophore is followed by a cytosine sequence. Similarly, in double strand mode the fluorescence intensity increases in the case of the fluorophore followed by a Guanine sequence while with a cytosine sequence the fluorescence intensity decreases.
Los resultados obtenidos indican que con este nuevo diseño de sondas es posible cuantificar ácidos nucleicos e identificar distintos ADNs substrato mediante una curva de melting con un mismo o con distinto fluoróforo sin necesidad de marcar la sonda con una molécula apantalladora de la fluorescencia (quencher) .The results obtained indicate that with this With a new probe design, it is possible to quantify nucleic acids and identify different substrate DNAs by means of a melting curve with the same or a different fluorophore without the need to label the probe with a fluorescence shielding molecule (quencher).
EJEMPLO 3.EXAMPLE 3
Ensayo de amplificación en tiempo real seguido de una curva de melting con dos sondas con mareaje dobleReal-time amplification test followed by a melting curve with two double-headed probes
(un fluoróforo o repórter en el extremo 5' y un apanta- llador o quencher en el extremo 3' ) y dos cebadores para identificar dos ADNs substrato diferentes.(a fluorophore or reporter at the 5 'end and a quencher or quencher at the 3' end) and two primers to identify two different substrate DNAs.
Los ADNs substrato fueron distintos tipos deThe substrate DNAs were different types of
Papillomavirus humano: tipo 6 (Acceso GenBank #AF092932.1) , tipo 52 (Acceso GenBank #X74481.1) , tipo 11 (Acceso GenBank #M14119.1) , tipo 44 (Acceso GenBank #U31788.1), tipo 45 (Acceso GenBank #X74479.1), tipo 31 (Acceso GenBank #J04353.1), tipo 39 (Acceso GenBank #M62849.1), tipo 56 (Acceso GenBank #X74483.1), tipo 16 (Acceso GenBank #K02718.1) , tipo 59 (Acceso GenBank #X77858.1), tipo 33 (Acceso GenBank #M12732.1) , tipo 70 (Acceso GenBank #U21941.1) , tipo 18 (Acceso GenBank #AY262282.1) , tipo 35 (Acceso GenBank #M74117.1) , tipo 58 (Acceso GenBank #D90400.1) y ADN humano (Acceso GenBank #AC104389.8) .Human papillomavirus: type 6 (GenBank Access # AF092932.1), type 52 (GenBank Access # X74481.1), type 11 (GenBank Access # M14119.1), type 44 (GenBank Access # U31788.1), type 45 ( GenBank Access # X74479.1), type 31 (GenBank Access # J04353.1), type 39 (GenBank Access # M62849.1), type 56 (GenBank Access # X74483.1), type 16 (GenBank Access # K02718.1 ), type 59 (GenBank Access # X77858.1), type 33 (GenBank Access # M12732.1), type 70 (GenBank Access # U21941.1), type 18 (GenBank Access # AY262282.1), type 35 (Access GenBank # M74117.1), type 58 (GenBank Access # D90400.1) and human DNA (GenBank Access # AC104389.8).
La sonda de detección de Papillomavirus humano fue diseñada con un doble mareaje fluorescente (5' 6FAM - 3'TAMRA), actúa como cebador en la reacción de amplificación y presenta una cola de 5 bases nucleotidicas en su extremo 5' con 4 citosinas en posiciones 1,2,3 y 5 que no son complementarias a la secuencia de ADN subs- trato pero que son incorporadas al fragmento de ADN amplificado por la actividad enzimática ADN polimerasa. La sonda también presenta desapareamientos en los dos últimos nucleótidos de su extremo 3' . De esta forma el ácido nucleico generado en la amplificación, por medio de la sonda, puede experimentar un cambio de señal de fluorescencia al pasar de doble hebra a hebra sencilla lo que permite realizar una curva de melting y obtener un incremento de fluorescencia cuando se desnaturaliza el producto especifico amplificado. La sonda diseñada como se describe anteriormente fue ONlLA (SEQ ID NO: 16, 5' 6FAM-CCCGCTGTCAAAAACCGTTGTGTCCCT-3' TAMRA) .The human Papillomavirus detection probe was designed with a double fluorescent marking (5'6FAM - 3'TAMRA), acts as a primer in the amplification reaction and has a tail of 5 nucleotide bases at its 5 'end with 4 cytosines in positions 1,2,3 and 5 that are not complementary to the substrate DNA sequence but are incorporated into the DNA fragment amplified by the DNA polymerase enzyme activity. The probe also shows mismatches in the last two nucleotides of its 3 'end. In this way, the nucleic acid generated in the amplification, through the probe, can undergo a change in fluorescence signal from double strand to single strand, which allows a melting curve to be obtained and an increase in fluorescence when denatured. the specific product amplified. The probe designed as described above was ONlLA (SEQ ID NO: 16, 5 '6FAM-CCCGCTGTCAAAAACCGTTGTGTCCCT-3' TAMRA).
El cebador reverse (en sentido opuesto a la sonda ONlLA) que hibrida con una región conservada de los tipos de Papillomavirus oncogénicos humanos más extendidos en la población mundial, fue 0N2RA (SEQ IDThe reverse primer (in the opposite direction to the ONlLA probe) that hybridizes with a conserved region of the most widespread human Papillomavirus types in the world population, was 0N2RA (SEQ ID
NO: 17, 5' -CCCGCGAGCTGTCGCTTAATTGCTC-3' ) .NO: 17, 5 '-CCCGCGAGCTGTCGCTTAATTGCTC-3').
La sonda de detección de una región del gen de β-globina humano lleva un doble mareaje fluorescenteThe detection probe of a region of the human β-globin gene carries a double fluorescent tide
(5'6FAM - 3'TAMRA), actúa como cebador en la reacción de amplificación y presenta desapareamientos en los dos últimos nucleótidos de su extremo 3' . Dentro de los seis nucleótidos que siguen al nucleótido que lleva unido el fluoróforo repórter y que hibridan perfectamente con el ADN substrato, hay cuatro guaninas en posiciones 1,2,3 y 6. De esta forma el ácido nucleico generado en la amplificación, por medio de la sonda, puede experimentar un cambio de señal de fluorescencia al pasar de doble hebra a hebra sencilla, lo que permite realizar una curva de melting y obtener una disminución de la señal de fluorescencia cuando se desnaturaliza el producto de PCR especifico. La sonda diseñada como se describe anteriormente fue SGlob (SEQ ID NO: 18, 5'6FAM-GGGCAGTCATTAAGTCAG GCA-3 'TAMRA) . El cebador reverse (en sentido opuesto a la sonda SGlob) que hibrida perfectamente (100% de homología) con la región conservada del gen de β-globina humano fue GlobRev (SEQ ID NO: 19, 5' CATATTCCAAGTTTACTAAG AGC 3 ' ) •(5'6FAM-3'TAMRA), acts as a primer in the amplification reaction and shows mismatches in the last two nucleotides of its 3 'end. Within the six nucleotides that follow the nucleotide that carries the reporter fluorophore and that hybridize perfectly with the substrate DNA, there are four guanines in positions 1,2,3 and 6. In this way the nucleic acid generated in the amplification, by means of the probe, you can experience a change in fluorescence signal from double strand to single strand, which allows you to perform a melting curve and obtain a decrease in the fluorescence signal when the specific PCR product is denatured. The probe designed as described above was SGlob (SEQ ID NO: 18, 5'6FAM-GGGCAGTCATTAAGTCAG GCA-3 'TAMRA). The reverse primer (in the opposite direction to the SGlob probe) that hybridizes perfectly (100% homology) with the conserved region of the human β-globin gene was GlobRev (SEQ ID NO: 19, 5 'CATATTCCAAGTTTACTAAG AGC 3') •
La mezcla de amplificación para la detección- cuantificación e identificación de Papillomavirus oncogénico humano fue realizada con el kit Biotools Pfu DNA polimerasa III (Biotools) , incluyendo en la mezcla O'lU/μl de Pfu DNA polimerasa, 0'025U/μl de Tth DNA polimerasa, bufferes de reacción, 200μM de dNTPs, 4mM de MgCl2, 0'5M de Betaina (coadyuvante para aumentar especi- ficidad) , 1% de Tween, sonda ONlLA (0'2μM) y cebador ON2RA (0'2μM) siendo el volumen final de la reacción de 20μl.The mixture detection- amplification for quantification and identification of Human Papillomavirus oncogenic was performed with the kit Biotools Pfu DNA polymerase III (Biotools), including in O'lU / .mu.l Pfu DNA polymerase mixture of, 0'025U / μ l Tth DNA polymerase, reaction buffers, 200μM dNTPs, 4mM MgCl2, 0.5M Betaine (adjuvant to increase specificity), 1% Tween, ONlLA probe (0.2 μM ) and ON2RA primer (0 ' 2um) with a final volume of 20 μ l reaction.
La mezcla de amplificación para la detección- cuantificación e identificación de β-globina fue realizada con el kit Biotools Pfu DNA polimerasa IV (Biotools) , incluyendo en la mezcla O'lU/μl de Pfu DNA polimerasa, 0'025U/μl de Tth DNA polimerasa, bufferes de reacción, 200μM de dNTPs, 4mM de MgCl2, 0'5M, 1% de Tween, sonda SGlob (0'3μM) y cebador GlobRev (0'4μM) siendo el volumen final de la reacción de 20μl.The amplification mixture for the detection-quantification and identification of β-globin was performed with the Biotools Pfu DNA polymerase IV kit (Biotools), including in the O'lU / μl mixture of Pfu DNA polymerase, 0.025U / μl of Tth DNA polymerase, reaction buffers, 200 μM dNTPs, 4mM MgCl 2.5 0.5M, 1% Tween, SGlob probe (0.3 μM ) and GlobRev primer (0.4 μM ) being the final volume of the reaction of 20μl.
Los equipos de amplificación en Tiempo Real que se utilizaron fueron el Rotor Gene 3000, el Rotor Gene 6000 y el 7500 Real Time. Los ciclos de amplificación para las dos mezclas y posteriores ciclos de la curva deThe Real-Time amplification equipment used was the Gene 3000 Rotor, the Gene 6000 Rotor and the 7500 Real Time. The amplification cycles for the two mixtures and subsequent cycles of the curve of
Melting fueron los siguientes:Melting were the following:
Desnaturalización: 4 min a 95°C. 1 ciclo. Amplificación: 5 seg a 97°C, 1 seg a 52°C, 35 seg a 66°C (captura de fluorescencia canal FAM/Green) . 45 ciclos.Denaturation: 4 min at 95 ° C. 1 cycle Amplification: 5 sec at 97 ° C, 1 sec at 52 ° C, 35 sec at 66 ° C (fluorescence capture channel FAM / Green). 45 cycles
Melting: 20 seg a 700C y rampa de Tra de 0'3°C/seg desde 700C hasta 880C captu- rando fluorescencia en el canal de FAM en cada incremento de Tra.Melting: 20 sec at 70 0 C and Tra ramp at 0.3 ° C / sec from 70 0 C to 88 0 C capturing fluorescence in the FAM channel at each Tra increase.
Las gráficas de amplificación donde se representa la señal de fluorescencia en el canal de FAM/Green frente al número de ciclos, y las gráficas de la curva de melting posterior a la amplificación se muestran en las Figuras 4A, 4B, 4C, 4D, 4E Y 4F.The amplification graphs where the fluorescence signal in the FAM / Green channel is plotted against the number of cycles, and the graphs of the post-amplification melting curve are shown in Figures 4A, 4B, 4C, 4D, 4E And 4F.
La homología de la sonda ONlLA y el cebador reverse ON2RA con los tipos de Papillomavirus humano necesaria para la amplificación especifica por PCR (>75% de homología) , únicamente es cumplida por los tipos oncogénicos siguientes (indicados de mayor a menor homología) : 33 (I), 31(J), 58(K), 16 (L), 35 (M), 18 (N) y 52 (0) . (Tabla 6) .The homology of the ONlLA probe and the reverse ON2RA primer with the types of human Papillomavirus necessary for specific amplification by PCR (> 75% homology), is only fulfilled by the following oncogenic types (indicated from highest to lowest homology): 33 (I), 31 (J), 58 (K), 16 (L), 35 (M), 18 (N) and 52 (0). (Table 6).
TABLA 6TABLE 6
% de homología % de homología % de homología% homology% homology% homology
Muestra sonda ONlLA cebador ON2RA ON1LA/ON2RASample probe ONlLA primer ON2RA ON1LA / ON2RA
HPV16 Oncogénico 70'5% 87'7% 79'1% LHPV16 Oncogenic 70'5% 87'7% 79'1% L
HPV18 Oncogénico 67'5% 85'6% 76'5% NHPV18 Oncogenic 67'5% 85'6% 76'5% N
HPV31 Oncogénico 78'9% 86'6% 82'7% JHPV31 Oncogenic 78'9% 86'6% 82'7% J
HPV33 Oncogénico 74'3% 91'8% 83'1% IHPV33 Oncogenic 74'3% 91'8% 83'1% I
HPV35 Oncogénico 77'5% 82'1% 79'8% MHPV35 Oncogenic 77'5% 82'1% 79'8% M
HPV39 Oncogénico 73% 72'3% 72'6%HPV39 Oncogenic 73% 72'3% 72'6%
HPV45 Oncogénico 56'8% 82'7% 69'7%HPV45 Oncogenic 56'8% 82'7% 69'7%
HPV51 Oncogénico 53'4% 77'4% 65'4%HPV51 Oncogenic 53'4% 77'4% 65'4%
HPV52 Oncogénico 65'3% 86'9% 76'1% OHPV52 Oncogenic 65'3% 86'9% 76'1% O
HPV56 Oncogénico 59'7% 58'9% 59'3%HPV56 Oncogenic 59'7% 58'9% 59'3%
HPV58 Oncogénico 74'3% 86'9% 80'6% K Continuacion-TABLA 6HPV58 Oncogenic 74'3% 86'9% 80'6% K Continuation-TABLE 6
% de homología % de homología % de homología% homology% homology% homology
Muestra sonda ONlLA cebador 0N2RA 0N1LA/0N2RASample probe ONlLA primer 0N2RA 0N1LA / 0N2RA
HPV59 Oncogenico 63'9% 50'6% 57'2%HPV59 Oncogenic 63'9% 50'6% 57'2%
HPV68 Oncogenico 71'2% 46'5% 58'8%HPV68 Oncogenic 71'2% 46'5% 58'8%
HPV69 Oncogenico 61'4% 61'3% 61'3%HPV69 Oncogenic 61'4% 61'3% 61'3%
HPV73 Oncogenico 70'4% 48'3% 59'3%HPV73 Oncogenic 70'4% 48'3% 59'3%
HPV82 Oncogenico 54'6% 59'8% 57'2%HPV82 Oncogenic 54'6% 59'8% 57'2%
HPV 6 No Oncogenico 60'2% 82'2% 71'2%HPV 6 Non-Oncogenic 60'2% 82'2% 71'2%
HPVIl No Oncogenico 63'6% 82'2% 72'9%Non-Oncogenic HPVl 63'6% 82'2% 72'9%
HPV42 No Oncogenico 55% 58'1% 56'5%HPV42 Non-Oncogenic 55% 58'1% 56'5%
HPV43 No Oncogenico 51'7% 58'7% 55'2%HPV43 Non-Oncogenic 51'7% 58'7% 55'2%
HPV44 No Oncogenico 66'9% 82'2% 74'5%HPV44 Non-Oncogenic 66'9% 82'2% 74'5%
HPV54 No Oncogenico 59'9% 42'2% 51'1%HPV54 Non-Oncogenic 59'9% 42'2% 51'1%
HPV61 No Oncogenico 48'2% 77'6% 62'9%HPV61 Non-Oncogenic 48'2% 77'6% 62'9%
HPV70 No Oncogenico 71'2% 67% 69'1%HPV70 Non-Oncogenic 71'2% 67% 69'1%
HPV72 No Oncogenico 55'5% 76'3% 65'9%HPV72 Non-Oncogenic 55'5% 76'3% 65'9%
HPV81 No Oncogenico 52,3% 77'4% 64'8%HPV81 Non-Oncogenic 52.3% 77'4% 64'8%
HPV (Human Papilloma Virus)HPV (Human Papilloma Virus)
Como se observa en la Figura 4A, sólo las muestras con el ADN substrato de los tipos de Papilloma- virus humano oncogémcos (HPV ONC) 33 (1) , 31 (J) , 58 (K) , 16 (L) , 35 (M) , 18 (N) y 52 (0) amplifican, mientras que las muestras con el ADN substrato de otros tipos de Papillomavirus humano no oncogenico (HPV NONC) o mues¬ tras sin ADN substrato (NTC) no llegan a amplificar. (Tabla 7) .As seen in Figure 4A, only samples with the substrate DNA of human Papillomavirus (HPV ONC) types 33 (1), 31 (J), 58 (K), 16 (L), 35 ( M), 18 (N) and 52 (0) amplified, while samples with DNA substrate other non - oncogenic human Papillomavirus (HPV NONC) or without DNA after Mues ¬ substrate (NTC) fail to be amplified. (Table 7).
TABLA 7TABLE 7
Muestra Ct ConcentraciónSample Ct Concentration
Calculada (copias)Calculated (copies)
N= 10 ("°'247ct + H-603) N = 10 (" ° ' 247ct + H - 603)
Control Positivo 5xl0e5 copias 23,52 638378,52 Control Positivo 5xl0e4 copias 28,6 35588,72 Continuacion-TABLA 7Positive Control 5xl0e5 copies 23.52 638378.52 Positive Control 5xl0e4 copies 28.6 35588.72 Continuation-TABLE 7
Muestra Ct ConcentraciónSample Ct Concentration
Calculada ( copias )Calculated (copies)
Control Positivo 5xl0e3 copias 32 5160,71Positive Control 5xl0e3 copies 32 5160.71
Control Positivo 5xl0e2 copias 36,15 489,81Positive Control 5xl0e2 copies 36.15 489.81
Control Positivo 5xl0el copias 40,02 54,42Positive Control 5xl0 copies 40.02 54.42
Control sin ADNlControl without DNA
Control sin ADN2Control without DNA2
HPV 6 No OncogemcoHPV 6 No Oncogemco
HPV52 Oncogemco 44,76 3,69 OHPV52 Oncogemco 44.76 3.69 O
HPVIl No OncogemcoHPVIl No Oncogemco
HPV44 No OncogemcoHPV44 No Oncogemco
HPV45 OncogemcoHPV45 Oncogemco
HPV31 Oncogemco 37,23 264,76 JHPV31 Oncogemco 37.23 264.76 J
HPV39 OncogemcoHPV39 Oncogemco
HPV56 OncogemcoHPV56 Oncogemco
HPV16 Oncogemco 42,34 14,56 LHPV16 Oncogemco 42.34 14.56 L
HPV59 OncogemcoHPV59 Oncogemco
HPV33 Oncogemco 31,51 6816,33 IHPV33 Oncogemco 31.51 6816.33 I
HPV70 OncogemcoHPV70 Oncogemco
HPV18 Oncogemco 43 , 62 7,04 NHPV18 Oncogemco 43, 62 7.04 N
HPV35 Oncogemco 43 , 23 8,79 MHPV35 Oncogemco 43, 23 8.79 M
HPV58 Oncogemco 37 ' 84 187,45 KHPV58 Oncogemco 37 '84 187.45 K
En la Figura 4B se muestra la curva de melting y en la Figura 4C se muestran los picos de temperatura de las veintidós muestras ensayadas. En el control positivo y en las muestras de HPV ONC que amplifican aparece un pico de temperatura que se corresponde con la Tm del producto específico amplificado. (Tabla 8) . La curva de melting, como se observa en la Figura 4C presenta un incremento de fluorescencia cuando se desnaturaliza el ácido nucleico por quedar unido el fluoróforo repórter a una cola de citosinas en posiciones 1,2,3 y 5.The melting curve is shown in Figure 4B and the temperature peaks of the twenty-two samples tested are shown in Figure 4C. In the positive control and in the HPC ONC samples that amplify a temperature peak appears that corresponds to the Tm of the specific amplified product. (Table 8). The melting curve, as seen in Figure 4C, shows an increase in fluorescence when the nucleic acid is denatured because the reporter fluorophore is bound to a cytosine tail at positions 1,2,3 and 5.
TABLATABLE
Muestra Tm pico de Tra Control Positivo 5xl0e5 copias 81' 18°CSample Tm peak of Tra Positive Control 5xl0e5 copies 81 '18 ° C
Control Positivo 5xl0e4 copias 81' 12°C Control Positivo 5xl0e3 copias 81' 18°C Control Positivo 5xl0e2 copias 81' 18°C Control Positivo 5xl0el copias 81'24°C HPV52 Oncogenico 81' 090C OPositive Control 5xl0e4 copies 81 '12 ° C Positive Control 5xl0e3 copies 81' 18 ° C Positive Control 5xl0e2 copies 81 '18 ° C Positive Control 5xl0the copies 81'24 ° C HPV52 Oncogenic 81' 09 0 CO
HPV31 Oncogenico 81'33°C J HPV16 Oncogenico 81' 6°C L HPV33 Oncogenico 81'39°C I HPV18 Oncogenico 81'39°C N HPV35 Oncogenico 81'47°C MHPV31 Oncogenic 81'33 ° C J HPV16 Oncogenic 81 '6 ° C L HPV33 Oncogenic 81'39 ° C I HPV18 Oncogenic 81'39 ° C N HPV35 Oncogenic 81'47 ° C M
HPV58 Oncogenico 81'57°C KHPV58 Oncogenic 81'57 ° C K
En la Figura 4D se muestra la amplificación de una región del gen de β-globina de los mismos ADN subs- trato que incluyen los diferentes tipos de Papillomavi- rus humano que a su vez contienen ADN genómico celular proveniente de la extracción-purificación de cada muestra y donde sus amplificaciones son similares a la amplificación del Control Positivo 5 x 10e4 copias (βG2) . (Tabla 9) . TABLA 9Figure 4D shows the amplification of a region of the β-globin gene of the same substrate DNA that includes the different types of human Papillomavirus that in turn contain cellular genomic DNA from the extraction-purification of each sample and where its amplifications are similar to the amplification of the Positive Control 5 x 10e4 copies (βG2). (Table 9). TABLE 9
Muestra Ct ConcentraciónSample Ct Concentration
Calculada (copias) r 1 _ 20 <-°-247ct + H.603) Control Positivo 5xl0e5 copias 28, 77 595950,93 βGlCalculated (copies) r 1 _ 20 <- ° - 247ct + H.603 ) Positive Control 5xl0e5 copies 28, 77 595950.93 βGl
Control Positivo 5xl0e4 copias 35 ,3 33671,71 βG2Positive Control 5xl0e4 copies 35, 3 33671.71 βG2
Control Positivo 5xl0e3 copias 39, 03 6511,16 βG3Positive Control 5xl0e3 copies 39, 03 6511.16 βG3
Control Positivo 5xl0e2 copias 44, 95 478,35 βG4 Control sin ADNl -- -- βG5 Continuacion-TABLA 9Positive Control 5xl0e2 copies 44, 95 478.35 βG4 Control without DNA - - βG5 Continuation-TABLE 9
Muestra Ct ConcentraciónSample Ct Concentration
Calculada (copias) r i _ -, η (-0,247Ct + 11, 603) Control sin ADN2 βG6Calculated (copies) r i _ -, η (-0.247Ct + 11, 603) Control without DNA2 βG6
En la Figura 4E se observa la curva de melting y en la Figura 4F se muestran los picos de temperatura posterior a la amplificación de la región del gen de β- globina de los ADNs substrato de Papillomavirus humano. En todas las muestras aparece un pico de temperatura igual que el del Control Positivo. La curva de melting, como se observa en la Figura 4E, presenta un descenso de fluorescencia cuando se desnaturaliza el ácido nucleico debido a que el fluoróforo repórter queda unido a una secuencia de guaninas en posiciones 1,2,3 y 6. (Tabla 10) . TABLA 10The melting curve is observed in Figure 4E and the temperature peaks after amplification of the β-globin gene region of the human Papillomavirus substrate DNAs are shown in Figure 4F. In all the samples a temperature peak appears like that of the Positive Control. The melting curve, as seen in Figure 4E, shows a decrease in fluorescence when the nucleic acid is denatured because the reporter fluorophore is attached to a guanine sequence at positions 1,2,3 and 6. (Table 10 ). TABLE 10
Muestra Tm pico de Tra Control Positivo 5xl0e5 copias 79' 060C βGlSample Tm peak of Tra Positive Control 5xl0e5 copies 79 '06 0 C βGl
Control Positivo 5xl0e4 copias 79' 060C βG2Positive Control 5xl0e4 copies 79 '06 0 C βG2
Control Positivo 5xl0e3 copias 79' 060C βG3Positive Control 5xl0e3 copies 79 '06 0 C βG3
Control Positivo 5xl0e2 copias 79°C βG4Positive Control 5xl0e2 copies 79 ° C βG4
Control sin ADNl βG5 Control sin ADN2 βG6Control without βG5 DNA Control without DNA2 βG6
Los resultados de la amplificación de los tipos de Papillomavirus humano: 33, 31, 58, 16, 35, 18 y 52 concuerdan con los mayores porcentajes de homología de la sonda ONlLA y el cebador ON2RA. A su vez, los resultados de la amplificación de una región conservada del gen de β-globina en cada ADN substrato nos indica que la extracción a partir de un mismo volumen de sangre fue muy homogénea por tener cuantif icaciones similares todas las muestras.The results of the amplification of human Papillomavirus types: 33, 31, 58, 16, 35, 18 and 52 are consistent with the highest homology percentages of the ONlLA probe and the ON2RA primer. In turn, the results of the amplification of a conserved region of the β-globin gene in each substrate DNA indicates that the extraction from the same volume of blood was very homogeneous because they had similar quantifications all the samples.
Los resultados de la curva de melting en ambas amplificaciones concuerdan perfectamente con los produc- tos específicos obtenidos. También se observa el diferente comportamiento de la señal de fluorescencia de las curvas de melting según si el fluoróforo repórter (en este caso 6FAM) , el cual queda incorporado al producto amplificado, le sigue una secuencia de guaninas (β- globina - curva negativa) o una secuencia de citosinas (HPV - curva positiva) .The results of the melting curve in both amplifications agree perfectly with the specific products obtained. It is also observed the different behavior of the fluorescence signal of the melting curves according to whether the reporter fluorophore (in this case 6FAM), which is incorporated into the amplified product, is followed by a guanine sequence (β-globin - negative curve) or a cytosine sequence (HPV - positive curve).
Los resultados obtenidos indican que con el nuevo diseño de sonda es posible cuantificar ácidos nucleicos y discriminar específicamente similares ADN substrato por la homología de la secuencia de hibridación. A su vez mejora el análisis para descartar falsos positivos por amplificación de productos inespecificos o posibles contaminaciones.The results obtained indicate that with the new probe design it is possible to quantify nucleic acids and specifically discriminate similar DNA substrate by the homology of the hybridization sequence. In turn, the analysis is improved to rule out false positives due to amplification of non-specific products or possible contamination.
EJEMPLO 4.EXAMPLE 4
Ensayo de amplificación a Tiempo Real con sondasReal-time amplification test with probes
LIONPROBRES™ diseñadas según se describe en la presente invención para poder identificar posibles productos inespecificos generados en la amplificación, mediante una curva de melting.LIONPROBRES ™ designed as described in the present invention in order to identify possible nonspecific products generated in the amplification, by means of a melting curve.
La sonda Lion probé lleva un doble mareaje fluo- rescente (5' 6FAM-3' TAMRA) , actúa como cebador en la reacción de amplificación y presenta desapareamientos en los dos últimos nucleótidos de su extremo 3' . Dentro de los seis nucleótidos que siguen al nuleótido que lleva unido el repórter, hay tres G en posiciones 1,2,5 y dos C en posiciones 3,6. De esta forma el ácido nucleico generado en la amplificación, por medio de la sonda Lion probé, puede experimentar un cambio de señal de fluorescencia al pasar de doble hebra a hebra sencilla.The Lion probe tested carries a double fluorescent tide (5 '6FAM-3' TAMRA), acts as a primer in the amplification reaction and has mismatches in the last two nucleotides of its 3 'end. Within the six nucleotides that follow the nuleotide that has the reporter attached, there are three Gs in positions 1,2,5 and two Cs in positions 3,6. In this way the nucleic acid generated in the amplification, by means of the Lion probe I tested, you can experience a change in fluorescence signal from double strand to single strand.
El ADN substrato fue la misma región conservada de tres especies de Plasmodium: P . falciparum (Acceso GenBank #M19172), P.malariae (Acceso GenBank #M54897) y P. ovale (Acceso GenBank #L48987)The substrate DNA was the same conserved region of three Plasmodium species: P. falciparum (Access GenBank # M19172), P.malariae (Access GenBank # M54897) and P. ovale (Access GenBank # L48987)
El cebador reverse (en sentido opuesto) que hibrida perfectamente (100% de homología) con la región conservada de las tres especies de Plasmodium fue Plasm- rev2 (SEQ ID NO : 2 ) .The reverse primer (in the opposite direction) that hybridizes perfectly (100% homology) with the conserved region of the three Plasmodium species was Plasm-rev2 (SEQ ID NO: 2).
La sonda LIONPROBRES™ diseñada como se describe anteriormente fue Plasmprobe (SEQ ID NO: 1) .The LIONPROBRES ™ probe designed as described above was Plasmprobe (SEQ ID NO: 1).
La mezcla de amplificación fue realizada con el kit Biotools Pfu DNA polimerasa (Biotools) , incluyendo en la mezcla O'lU/μl de Pfu DNA polimerasa, bufferes de reacción, 200μM de dNTPs, 4mM de MgCl2, sonda Plasmprobe (0'2μM) y cebador Plasmrev2 (0'3μM) siendo el volumen final de la reacción de 20μl.The amplification mixture was performed with the Biotools Pfu DNA polymerase kit (Biotools), including in the O'lU / μl mixture of Pfu DNA polymerase, reaction buffers, 200μM dNTPs, 4mM MgCl2, Plasmprobe probe (0.2μM) and Plasmrev2 primer (0.3 µM) being the final reaction volume of 20μl.
Con la misma mezcla se ensayo la amplificación de las tres especies de Plasmodium con una cantidad de 500.000 copias aproximadamente, asi como tres controles sin ADN substrato.The amplification of the three Plasmodium species with an amount of approximately 500,000 copies was tested with the same mixture, as well as three controls without substrate DNA.
El equipo de amplificación en Tiempo Real que se utilizó fue el Rotor Gene 3000. Los ciclos de amplificación y posteriores ciclos de la curva de melting fueron los siguientes:The Real-Time amplification equipment used was the Gene 3000 Rotor. The amplification cycles and subsequent melting curve cycles were as follows:
Desnaturalización: 4 min a 95°C. 1 ciclo. Amplificación: 5 seg a 97°C, 30 seg a 58°C (captura de fluorescencia canal FAM) , 50 seg a 72°C. 55 ciclos, (el número de ciclos es alto para provo- car la amplificación de productos inespecificos o cotami- naciones)Denaturation: 4 min at 95 ° C. 1 cycle Amplification: 5 sec at 97 ° C, 30 sec at 58 ° C (fluorescence capture FAM channel), 50 sec at 72 ° C. 55 cycles, (the number of cycles is high to cause the amplification of nonspecific products or commodities)
Melting: 30 seg a 65°C y rampa de Tra de 0'4°C/seg desde 65°C hasta 99°C capturando fluorescencia en el canal de FAM en cada incremento de Tra.Melting: 30 sec at 65 ° C and Tra ramp of 0.4 ° C / sec from 65 ° C to 99 ° C capturing fluorescence in the FAM channel at each Tra increase.
Las gráficas de amplificación donde se representa la señal de fluorescencia en el canal de FAM frente al número de ciclos, la gráfica de la curva de melting posterior a la amplificación y los resultados de los productos amplificados analizados en un gel de agarosa al 2% teñido con Bromuro de Etidio se muestran en las Figuras 5A y 5B.The amplification graphs where the fluorescence signal in the FAM channel is plotted against the number of cycles, the graph of the melting curve after amplification and the results of the amplified products analyzed in a stained 2% agarose gel with Ethidium Bromide are shown in Figures 5A and 5B.
Como se observa en la Figura 5A, las muestras con el ADN substrato de cada especie de Plasmodium empiezan a amplificar entre los ciclos 15 y 25 (Ct) , mientras que las muestras sin ADN substrato amplifican productos inespecificos o contaminación a partir del ciclo 40. (Tabla 11) .As seen in Figure 5A, samples with the substrate DNA of each Plasmodium species begin to amplify between cycles 15 and 25 (Ct), while samples without substrate DNA amplify unspecific products or contamination from cycle 40. (Table 11).
TABLA 11TABLE 11
Muestra CtSample Ct
Plasmodium falciparum 22' 88 P Plasmodium malaπae 17' 7 QPlasmodium falciparum 22 '88 P Plasmodium malaπae 17' 7 Q
Plasmodium ovale 15' 56 RPlasmodium ovale 15 '56 R
Control sin ADNl 45' 72 SControl without DNA 45 '72 S
Control sin ADN2 45' 23 TControl without DNA2 45 '23 T
Control sin ADN3 42' 66 U En la Figura 5B se muestra la curva de melting convertida a picos de temperatura de las seis muestras ensayadas. En las muestras sin ADN aparece un pico de menor temperatura que en las muestras con ADN substrato que corresponde con el ácido nucleico inespecífico amplificado. El Control sin ADN3 (representado con línea discontinua en la FIG.5B) tiene los dos picos de temperatura que significa entonces que ha sufrido una contaminación por el ADN substrato. La Tm del ácido nucleico específico amplificado a partir del ADN substrato es aproximadamente 3°C mayor que la Tm del producto ínespe- cífico. (Tabla 12) .Control without DNA3 42 '66 U The melting curve converted to temperature peaks of the six samples tested is shown in Figure 5B. In samples without DNA a peak of lower temperature appears than in samples with substrate DNA corresponding to the amplified nonspecific nucleic acid. The Control without DNA3 (represented by dashed line in FIG. 5B) has the two temperature peaks which means that it has suffered contamination by the substrate DNA. The Tm of the specific nucleic acid amplified from the substrate DNA is approximately 3 ° C greater than the Tm of the non-specific product. (Table 12).
TABLA 12TABLE 12
Tamaño producto Tm predecida Tm picoProduct size Tm predicted Tm peak
Muestra amplificado AlIeIeID 2.0 de TraTra AlIeIeID 2.0 amplified sample
Plasmodium falciparum llδpb 82 '1 0C 79' 12 0CPlasmodium falciparum llδpb 82 '1 0 C 79' 12 0 C
Plasmodium malaπae llδpb 82 '1 0C 79' 68 0CPlasmodium malaπae llδpb 82 '1 0 C 79' 68 0 C
Plasmodium ovale llδpb 82 '1 0C 79 '4 0CPlasmodium ovale llδpb 82 '1 0 C 79' 4 0 C
Control sin ADNl - -- 76' 08 0CControl without cDNA - - 76 '08 0 C
Control sin ADN2 - -- 76' 08 0CControl without DNA2 - - 76 '08 0 C
Control sin ADN3 - -- 76O8/79' 68 0CControl without DNA3 - - 76O8 / 79 '68 0 C
Pares de bases (pb)Base pairs (bp)
Los resultados de la curva de melting concuerdan con el análisis del gel de agarosa al 2% teñido con Bromuro de Etidio como se observa en la FIG.5A. La presencia en el gel de las bandas de amplificación de llβpb en las tres primeras muestras con ADN substrato (P, Q, R) concuerda con el tamaño esperado en la amplificación. Las bandas de amplificación de aproximadamente 80pb en el gel pertenecen a los productos inespecíficos de las muestras Control sin ADN (S, T) . El último carril del gel corresponde con el Control sin ADN3 (U) y pueden observarse dos bandas de amplificación, una que corresponde con el producto inespecifico y la otra banda a la contaminación con el ADN substrato. De esta manera se confirman los resultados mostrados en la curva de mel- ting.The results of the melting curve are consistent with the analysis of the 2% agarose gel stained with Ethidium Bromide as seen in FIG. 5A. The presence in the gel of the amplification bands of llβpb in the first three samples with substrate DNA (P, Q, R) is consistent with the size expected in the amplification. The amplification bands of approximately 80 bp in the gel belong to the nonspecific products of the Control samples without DNA (S, T). The last lane of the gel corresponds to the Control without DNA3 (U) and two amplification bands can be observed, one corresponding to the nonspecific product and the other band to contamination with the substrate DNA. This confirms the results shown in the melting curve.
Los resultados obtenidos indican que el nuevo diseño de las sondas LIONPROBES™ mejora el análisis para descartar falsos positivos por amplificación de productos inespecificos o posibles contaminaciones.The results obtained indicate that the new design of the LIONPROBES ™ probes improves the analysis to rule out false positives due to amplification of non-specific products or possible contamination.
EJEMPLO 5.EXAMPLE 5
Ensayo de amplificación en tiempo real seguido de una curva de melting con una sonda LIONPROBES™ y un cebador para identificar dos ADNs substrato cuyas secuencias internas amplificadas son distintasReal-time amplification assay followed by a melting curve with a LIONPROBES ™ probe and a primer to identify two substrate DNAs whose internal amplified sequences are different
Los ADNs substrato fueron dos especies de Plas- modium: P . falciparum (Acceso GenBank #M19172) y P.malariae (Acceso GenBank #M54897) .The substrate DNAs were two species of Plasmodium: P. falciparum (Access GenBank # M19172) and P.malariae (Access GenBank # M54897).
La sonda LIONPROBES™ fue la misma que en elThe LIONPROBES ™ probe was the same as in the
Ejemplo 2 (Plasmprobe) con todas sus propiedades descritas anteriormente.Example 2 (Plasmprobe) with all its properties described above.
El cebador fue Malrev2 (SEQ ID NO: 20, 5'-TGCTGGC ACCAGACTTGCCCTCCA-3' ) . El cebador (con polaridad opuesta a la sonda) hibrida perfectamente (100% de homologia) con las dos especies de Plasmodium.The primer was Malrev2 (SEQ ID NO: 20, 5'-TGCTGGC ACCAGACTTGCCCTCCA-3 '). The primer (with polarity opposite the probe) hybridizes perfectly (100% homology) with the two Plasmodium species.
La mezcla de amplficación fue realizada con el kit Biotools Pfu DNA polimerasa (Biotools) , incluyendo en la mezcla O'lU/μl de Pfu DNA polimerasa, bufferes de reacción, 200μM de dNTPs, 4mM de MgCl2, sonda Plasmprobe (0'2μM) y cebador Malrev2 (0'3μM) siendo el volumen final de la reacción de 20μl.The amplification mixture was performed with the Biotools Pfu DNA polymerase kit (Biotools), including in the O'lU / μl mixture of Pfu DNA polymerase, reaction buffers, 200μM dNTPs, 4mM MgCl2, Plasmprobe probe (0.2μM) and Malrev2 primer (0.3μM), the final reaction volume being 20μl.
Con la misma mezcla se ensayo la amplificación de las dos especies de Plasmodium con una cantidad de 500.000 copias aproximadamente, asi como un control sin ADN substrato.The amplification of the two Plasmodium species with an amount of approximately 500,000 copies was tested with the same mixture, as well as a control without substrate DNA.
El equipo de amplificación en Tiempo Real que se utilizó fue el Rotor Gene 3000. Los ciclos de amplificación y posterior curva de melting fueron los siguientes :The Real Time amplification equipment used was the Gene 3000 Rotor. The amplification cycles and subsequent melting curve were as follows:
Desnaturalización: 4 min a 95°C. 1 ciclo. Amplificación: 5 seg a 97°C, 80 seg a 67°C (captura de fluorescencia canal FAM) . 30 ciclos. Melting: 30 seg a 75°C y rampa de Tra deDenaturation: 4 min at 95 ° C. 1 cycle Amplification: 5 sec at 97 ° C, 80 sec at 67 ° C (fluorescence capture FAM channel). 30 cycles Melting: 30 sec at 75 ° C and Tra ramp
0'4°C/seg desde 75°C hasta 900C capturando fluorescencia en el canal de FAM en cada incremento de Tra.0.4 ° C / sec from 75 ° C to 90 0 C capturing fluorescence in the FAM channel in each increment of Tra.
Las gráficas de amplificación donde se representa la señal de fluorescencia en el canal de FAM frente al número de ciclos y la gráfica de la curva de melting posterior a la amplificación se muestran en las Figuras 6A y 6B respectivamente.The amplification graphs where the fluorescence signal in the FAM channel is plotted against the number of cycles and the graph of the post-amplification melting curve are shown in Figures 6A and 6B respectively.
Como se observa en la Figura 6A, las muestras con los ADN substrato de cada especie de Plasmodium empiezan a amplificar entre los ciclos 10 y 20: P.falciparum (Ct : 16' 45) (W) y P.malariae (Ct:13'22) (V) . La muestra Control sin ADN (X) no presenta incremento de fluorescencia en la amplificaciónAs seen in Figure 6A, samples with the substrate DNA of each Plasmodium species begin to amplify between cycles 10 and 20: P.falciparum (Ct: 16 '45) (W) and P.malariae (Ct: 13 '22) (V). The Control without DNA (X) sample does not show an increase in amplification fluorescence
En la Figura 6B se muestra la curva de melting convertida a picos de temperatura de las tres muestras ensayadas. El pico de temperatura de la muestra con ADN substrato de P . falciparum es 1°C aproximadamente menor que la muestra con ADN substrato de P .malariae . Estos resultados son debidos al contenido diferente de G+C y al tamaño amplificado con cada especie de Plasmodium. La muestra Control sin ADNZ no tiene pico de temperatura que concuerda con los resultados de la amplificación. (Tabla 13) .Figure 6B shows the melting curve converted to temperature peaks of the three samples tested. The peak temperature of the sample with P substrate DNA. falciparum is approximately 1 ° C less than the sample with DNA substrate of P.malariae. These results are due to the different content of G + C and the size amplified with each Plasmodium species. The Control without DNZ sample has no temperature peak that matches the amplification results. (Table 13).
TABLA 13TABLE 13
Tamaño producto Contenido Tm predecida Tm picoProduct size Content Tm predicted Tm peak
Muestra amplificado G+C AlIeIeID 2.0 de TraAmplified sample G + C AlIeIeID 2.0 from Tra
P . falciparum 151pb 42'76% 85'2°C 81 '15 0C W P .malariae 150pb 43'33% 85'8°C 82 '140C V Control sin ADN XP. falciparum 151pb 42'76% 85'2 ° C 81 '15 0 CWP .malariae 150pb 43'33% 85'8 ° C 82'14 0 CV Control without DNA X
Pares de bases (pb)Base pairs (bp)
Los resultados obtenidos indican que con el nuevo diseño de las sondas LIONPROBRES™ es posible identificar ADNs substrato que difieren en tamaño y/o en contenido G+C de una manera directa (una sola amplificación con una sonda LIONPROBES™ y un cebador) .The results obtained indicate that with the new design of the LIONPROBRES ™ probes it is possible to identify substrate DNAs that differ in size and / or in G + C content in a direct way (a single amplification with a LIONPROBES ™ probe and a primer).
EJEMPLO 6.EXAMPLE 6
Ensayo de amplificación en Tiempo Real de una región conservada de varios ADNs substrato seguida de una segunda amplificación y una curva de melting para la identificación de un ADN substrato específico. Los ADNs substrato fueron tres especies de Plas- modium: P . falciparum (Acceso GenBank #1419172), P.malariae (Acceso GenBank #M54897) y P. ovale (Acceso GenBank #L48987) .Real-time amplification assay of a conserved region of several substrate DNAs followed by a second amplification and a melting curve for the identification of a specific substrate DNA. The substrate DNAs were three species of Plasmodium: P. falciparum (Access GenBank # 1419172), P.malariae (Access GenBank # M54897) and P. ovale (Access GenBank # L48987).
La sonda Lion probé utilizada en la primera amplificación para la cuantificación y detección de la zona conservada de Plasmodium fue Pprobe2 (SEQ ID NO: 21, 5'VIC-GGGTATTGGCCTAACATGGCTATGACGGGCT-S' TAMRA) .The Lion probe used in the first amplification for the quantification and detection of the conserved area of Plasmodium was Pprobe2 (SEQ ID NO: 21, 5'VIC-GGGTATTGGCCTAACATGGCTATGACGGGCT-S 'TAMRA).
Las últimas dos bases del extremo 3' de la sonda no son homologas al ADN substrato asi la enzima con actividad 3' -5' exonucleasa correctora de errores libera las bases desapareadas y el quencher (TAMRA) con lo que el repórter (VIC) puede emitir fluorescencia en cada ciclo de amplificación a la vez que se genera el ácido nucleico en la PCR.The last two bases of the 3 'end of the probe are not homologous to the substrate DNA so the enzyme with 3' -5 'error-correcting exonuclease activity releases the mismatched bases and the quencher (TAMRA) so that the reporter (VIC) can emit fluorescence in each amplification cycle at the same time that the nucleic acid is generated in the PCR.
El cebador con polaridad opuesta a la sonda Lion probé Pprobe2 utilizada en la primera amplificación para la cuantificación y detección de la zona conservada deThe primer with polarity opposite to the Lion probe tested Pprobe2 used in the first amplification for the quantification and detection of the conserved zone of
Plasmodium, fue Malrev2. Este cebador presenta un 100% de homologia con el ADN substrato.Plasmodium, was Malrev2. This primer has 100% homology with the substrate DNA.
En la segunda amplificación los ADNs substrato fueron los producidos en la primera amplificación. Un oligonucleótido marcado y un cebador con polaridad opuesta se usaron para la amplificación. El oligonucleótido marcado fue FaIMLFl (SEQ ID NO: 6) que lleva marcado en su extremo 5' la molécula 6FAM y presenta un 100% de homologia con los ADNs substrato producidos en la primera amplificación que provienen de las tres especies de Plasmodium. El cebador fue Mrev3 (SEQ ID NO: 7) el cual es únicamente homólogo al 100% con el ADN substrato de P . falciparum. Las mutaciones del cebador con los otros ADNs substrato se sitúan en medio o cerca del extremo 5' de la secuencia del cebador con lo que de esta forma la enzima con actividad 3' -5' exonucleasa correctora de errores no puede liberar las bases desapareadas y no existe amplificación de esta forma a menos que haya ADN substrato de P . falciparum.In the second amplification the substrate DNAs were those produced in the first amplification. A labeled oligonucleotide and a primer with opposite polarity were used for amplification. The labeled oligonucleotide was FaIMLFl (SEQ ID NO: 6) which has the 6FAM molecule labeled at its 5 'end and has a 100% homology with the substrate DNAs produced in the first amplification that come from the three Plasmodium species. The primer was Mrev3 (SEQ ID NO: 7) which is only 100% homologous with the P substrate DNA. falciparum The mutations of the primer with the others Substrate DNAs are located in the middle or near the 5 'end of the primer sequence so that the enzyme with 3'-5' error-correcting exonuclease activity cannot release the mismatched bases and there is no amplification in this way to unless there is substrate DNA of P. falciparum
Las Tm de las sondas y cebadores son diferentes para que las dos amplificaciones puedan desarrollarse consecutivamente con ciclos de temperatura diferentes. También los tamaños de los ácidos nucleicos obtenidos en cada amplificación son distintos, siendo el producto de la segunda amplificación menor que el de la primera amplificación, lo que permite que los tiempos de incu- bación en las temperaturas de los pasos de la segunda amplificación sean menores. (Tabla 14)The Tm of the probes and primers are different so that the two amplifications can develop consecutively with different temperature cycles. Also the sizes of the nucleic acids obtained in each amplification are different, the product of the second amplification being smaller than that of the first amplification, which allows the incubation times at the temperatures of the steps of the second amplification to be minors (Table 14)
TABLA 14TABLE 14
Sonda Cebador Tm Sonda - Tm Cebador Tamaño esperadoTm Primer Probe - Tm Primer Expected Size
Pprobe2 Malrev2 67'1°C 68'1°C 243pb FaIMLFl Mrev3 49'8°C 50'10C lOlpbPprobe2 Malrev2 67'1 ° C 68'1 ° C 243pb FaIMLFl Mrev3 49'8 ° C 50'1 0 C lOlpb
Pares de bases (pb)Base pairs (bp)
La mezcla de amplificación fue realizada con el kit Biotools Pfu DNA polimerasa II (Biotools) , incluyendo en la mezcla O'lU/μl de Pfu DNA polimerasa, buffe- res de reacción, 200μM de dNTPs, 4mM de MgCl2, 1'25M de Betaina (coadyuvante para aumentar especificidad) , sonda Pprobe2 (0'2μM), cebador Malrev2 (0'3μM), sonda FaIMLFl (0'3μM) y cebador Mrev3 (0'3μM) siendo el volumen final de la reacción de 20μl.The amplification mixture was performed with the Biotools Pfu DNA polymerase II kit (Biotools), including in the O'lU / μl mixture of Pfu DNA polymerase, reaction buffers, 200 μM dNTPs, 4mM MgCl 2 , 1 '25M Betaine (adjuvant to increase specificity), Pprobe2 probe (0.2 μM ), Malrev2 primer (0.3 μM ), FaIMLFl probe (0.3 μM ) and Mrev3 primer (0.3 μM) being the final volume of the reaction of 20μl.
Con la misma mezcla se ensayo la amplificación de las tres especies de Plasmodium con una cantidad de 500.000 copias aproximadamente, asi como un control sin ADN substrato.With the same mixture, the amplification of the three Plasmodium species was tested with a quantity of Approximately 500,000 copies, as well as a control without substrate DNA.
El equipo de amplificación en Tiempo Real que se utilizó fue el Rotor Gene 3000. Los ciclos de amplificación y posterior curva de melting fueron los siguientes :The Real Time amplification equipment used was the Gene 3000 Rotor. The amplification cycles and subsequent melting curve were as follows:
Desnaturalización: 5 min a 95°C. 1 ciclo. Amplificación I: 5 seg a 97°C, 60 seg a 68°CDenaturation: 5 min at 95 ° C. 1 cycle Amplification I: 5 sec at 97 ° C, 60 sec at 68 ° C
(captura de fluorescencia canal JOE) . 30 ciclos. Amplificación II: 5 seg a 900C, 5 seg a 53°C,(fluorescence capture JOE channel). 30 cycles Amplification II: 5 sec at 90 0 C, 5 sec at 53 ° C,
20 seg a 62°C. 10 ciclos. Melting: 30 seg a 700C y rampa de Tra de20 sec at 62 ° C. 10 cycles Melting: 30 sec at 70 0 C and Tra ramp
0'4°C/seg desde 700C hasta 99°C capturando fluorescencia en el canal de FAM en cada incremento de Tra.0.4 ° C / sec from 70 0 C to 99 ° C capturing fluorescence in the FAM channel in each increment of Tra.
La gráfica de la primera amplificación donde se representa la señal de fluorescencia en el canal de JOE frente al número de ciclos y la gráfica de la curva de melting en el canal de FAM posterior a la segunda amplificación se muestran en las Figuras 7A y 7B respec- tivamente.The graph of the first amplification where the fluorescence signal in the JOE channel is plotted against the number of cycles and the graph of the melting curve in the FAM channel after the second amplification are shown in Figures 7A and 7B regarding - tively.
Como se observa en la Figura 7A, las muestras con los tres ADN substrato de cada especie de Plasmodium empiezan a amplificar entre los ciclos 10 y 20 de la primera amplificación: P . falciparum (Ct: 18' 81) (α) , P.malariae (Ct:13'42) (Z) y P. ovale (Ct : 11' 32) (Y) . La muestra Control sin ADN (β) no presenta incremento de fluorescencia en la amplificación.As seen in Figure 7A, samples with the three substrate DNAs of each Plasmodium species begin to amplify between cycles 10 and 20 of the first amplification: P. falciparum (Ct: 18 '81) (α), P.malariae (Ct: 13'42) (Z) and P. ovale (Ct: 11' 32) (Y). The Control sample without DNA (β) does not show an increase in fluorescence in the amplification.
En la Figura 7B se muestra la curva de Melting convertida a picos de temperatura después de la segunda amplificación de las cuatro muestras ensayadas. Únicamente en la muestra con ADN substrato de P . falciparum (α) aparece un pico de temperatura confirmando la espe- cificidad del cebador Mrev3 con P . falciparum y no con las otrs especies de Plasmodium. La Tm esperada del producto de lOlpb generado en la segunda amplificación a partir de ADN de P . falciparum es de 81'9°C y la Tm obtenida de la curva de melting es de 77'6°C.The Melting curve is shown in Figure 7B converted to temperature peaks after the second amplification of the four samples tested. Only in the sample with DNA substrate of P. falciparum (α) a temperature peak appears confirming the specificity of the Mrev3 primer with P. falciparum and not with the other Plasmodium species. The expected Tm of the lOlpb product generated in the second amplification from P DNA. falciparum is 81.9 ° C and the Tm obtained from the melting curve is 77.6 ° C.
Los resultados de la amplificación a Tiempo Real y de la curva de melting concuerdan con el análisis el gel de agarosa al 2% teñido con Bromuro de Etidio como se observa a la derecha de la Figura 7B. La presencia en el gel de la banda de 243pb con los tres ADNs substrato de Plasmodium concuerda con el tamaño esperado en la primera amplificación de una región conservada de Plasmodium. La banda de lOlpb que sólo aparece en la muestra con ADN substrato de P . falciparum (primer carril del gel después del marcador de lOOpb) coincide con el tamaño esperado en la segunda amplificación de una región especifica de P . falciparum y con los resultados de la curva de melting. El último carril corresponde con el Control sin ADN donde no ha ocurrido amplificación asi que no se observan bandas en el gel.The results of the Real-time amplification and the melting curve agree with the analysis of the 2% agarose gel stained with Ethidium Bromide as seen on the right of Figure 7B. The presence in the gel of the 243 bp band with the three Plasmodium substrate DNAs is consistent with the expected size at the first amplification of a conserved Plasmodium region. The lOlpb band that only appears in the sample with P substrate DNA. falciparum (first lane of the gel after the lOOpb marker) matches the expected size in the second amplification of a specific region of P. falciparum and with the results of the melting curve. The last lane corresponds to the Control without DNA where amplification has not occurred so no bands are observed in the gel.
Los resultados obtenidos indican que es posible detectar y cuantificar diferentes ADNs substrato que tengan regiones conservadas comunes en su genoma median- te una sonda LIONPROBES™ y un cebador. Además, también con el uso de oligonucleótidos marcados, diseñados según se describe en la presente invención y un cebador adicional, es posible identificar un ADN substrato específicamente a partir de la amplificación de una región conservada común de diferentes ADNs substrato mediante una segunda amplificación y una curva de melting.The results obtained indicate that it is possible to detect and quantify different substrate DNAs that have common conserved regions in their genome by means of a LIONPROBES ™ probe and a primer. In addition, also with the use of labeled oligonucleotides, designed as described in the present invention and an additional primer, it is possible to identify a substrate DNA specifically from the amplification of a common conserved region of different substrate DNAs by A second amplification and a melting curve.
EJEMPLO 7.EXAMPLE 7
Ensayo de amplificación en Tiempo Real de un gen común de varios ADNs substrato con mutaciones internas especificas en la secuencia de cada uno, seguido de una segunda amplificación y una curva de melting para la identificación de cada mutación especifica y su posi- ción.Real-time amplification assay of a common gene of several substrate DNAs with specific internal mutations in the sequence of each, followed by a second amplification and a melting curve for the identification of each specific mutation and its position.
Los ADNs substrato fueron cinco especies de Mycobacterium tuberculosis : plásmido con gen rpoβ sin mutar (prpo-WT) , plásmido con mutación Asp516Val dentro el gen rpoβ (prpo-516), plásmido con mutación His526Asp dentro del gen rpoβ (prpo-526A), plásmido con mutación His526Tyr dentro el gen rpoβ (prpo-526T) y plásmido con mutación Ser531Leu (prpo-531) dentro el gen rpoβ. Los fragmentos del gen rpoβ insertados en el vector PCR 2.1 TOPO (Invitrogen) en cada caso, se muestran en las Figuras 8. La FIG.8A representa la secuencia del inserto del prpo-WT (SEQ ID NO. 31) . En la FIG.8B se observa la mutación de una adenina (A) por una timina (T) en el inserto del prpo-516 (SEQ ID NO. 32) . En la secuencia de la FIG.8C (SEQ ID NO. 33) hay dos mutaciones, un cambio de una T por una citosina (C) que corresponde con el inserto del prpo-526T y un cambio de una guanina (G) por una C que es el inserto del prpo-526A. Por último, la secuencia de la FIG.8D (SEQ ID NO. 34) contiene una mutación de una T por una C que pertenece al inserto del prpo-531. Estas mutaciones dentro del genoma de la bacteria de Mycobacterium tuberculosis, la confieren resistencia frente a un antibiótico denominado rifampi- cina . La sonda LIONPROBES™ utilizada en la primera amplificación para la cuantificación y detección del fragmento del gen rpoβ de todos los plásmidos descritos anteriormente fue TBS (SEQ ID NO:22, 5' VIC-AGGAGTTCTTCGG CACCAGCCCA-3' TAMRA) . La penúltima base del extremo 3' de la sonda no es homologa a los ADNs substrato, asi la enzima con actividad 3' -5' exonucleasa correctora de errores libera las bases desapareadas y el quencher (TAMRA) con lo que el repórter (VIC) puede emitir fluo- rescencia en cada ciclo de amplificación a la vez que se genera el ácido nucleico en la PCR.The substrate DNAs were five species of Mycobacterium tuberculosis: plasmid with unmodified rpoβ gene (prpo-WT), plasmid with Asp516Val mutation within the rpoβ gene (prpo-516), plasmid with His526Asp mutation within the rpoβ gene (prpo-526A), His526Tyr mutation plasmid within the rpoβ gene (prpo-526T) and Ser531Leu mutation plasmid (prpo-531) within the rpoβ gene. Fragments of the rpoβ gene inserted in the PCR 2.1 TOPO vector (Invitrogen) in each case are shown in Figures 8. FIG. 8A represents the sequence of the prpo-WT insert (SEQ ID NO. 31). FIG. 8B shows the mutation of an adenine (A) by a thymine (T) in the prpo-516 insert (SEQ ID NO. 32). In the sequence of FIG. 8C (SEQ ID NO. 33) there are two mutations, a change of a T for a cytosine (C) corresponding to the insert of prpo-526T and a change of a guanine (G) for a C which is the insert of prpo-526A. Finally, the sequence of FIG. 8D (SEQ ID NO. 34) contains a mutation of a T by a C belonging to the insert of prpo-531. These mutations within the genome of the Mycobacterium tuberculosis bacterium confer resistance against an antibiotic called rifampin. The LIONPROBES ™ probe used in the first amplification for the quantification and detection of the rpoβ gene fragment of all the plasmids described above was TBS (SEQ ID NO: 22.5 'VIC-AGGAGTTCTTCGG CACCAGCCCA-3' TAMRA). The penultimate base of the 3 'end of the probe is not homologous to the substrate DNAs, so the enzyme with 3' -5 'error-correcting exonuclease activity releases the mismatched bases and the quencher (TAMRA) with which the reporter (VIC) it can emit fluorescence in each amplification cycle at the same time that the nucleic acid is generated in the PCR.
El cebador con polaridad opuesta a la sonda LIONPROBES™ TBS utilizado en la primera amplificación para la cuantificación y detección del fragmento del gen rpoβ fue TBR (SEQ ID NO:23, 5' -TGCACGTCGCGGACCTCCA-3' ) . Este cebador presenta un 100% de homologia con los ADNs substrato .The primer with polarity opposite to the LIONPROBES ™ TBS probe used in the first amplification for quantification and detection of the rpoβ gene fragment was TBR (SEQ ID NO: 23.5 '-TGCACGTCGCGGACCTCCA-3'). This primer has 100% homology with the substrate DNAs.
En la segunda amplificación los ADNs substrato fueron los producidos en la primera amplificación. Un oligonucleótido marcado y cebadores con polaridad opuesta se usaron para la amplificación. El oligonucleótido marcado fue rpoMLF2 (SEQ ID NO: 10) que lleva marcado en su extremo 5' la molécula 6FAM y presenta un 100% de homologia con los ADNs substrato producidos en la primera amplificación que provienen de los cinco plásmidos. Los cebadores fueron: 516R (SEQ ID NO:24, 5'- GGTTGTTCTGGACCATG-3' ) el cual es únicamente homólogo al 100% con el plásmido prpo-516, 526Rl (SEQ ID NO:25, 5'- CGCTTGTAGGTCAACC-3' ) que sólo es homólogo al 100% con el plásmido prpo-526T, 526R2 (SEQ ID NO:26, 5'-CGCTTGTCGGTC AACC-3' ) que sólo es homólogo al 100% con el plásmido prpo-526A y 531R (SEQ ID NO: 11) el cual es sólo homólogo al 100% con el plásmido prpo-531. Las mutaciones con los otros ADNs substrato se sitúan en medio o cerca del extremo 5' de la secuencia del cebador, de esta forma la enzima con actividad 3' -5' exonucleasa correctora de errores no puede liberar la base desapareada y no existe amplificación a menos que haya ADN substrato con secuencia complementaria al cebador con 100% de homología.In the second amplification the substrate DNAs were those produced in the first amplification. A labeled oligonucleotide and primers with opposite polarity were used for amplification. The labeled oligonucleotide was rpoMLF2 (SEQ ID NO: 10) which has the 6FAM molecule labeled at its 5 'end and has a 100% homology with the substrate DNAs produced in the first amplification that come from the five plasmids. The primers were: 516R (SEQ ID NO: 24, 5'- GGTTGTTCTGGACCATG-3 ') which is only 100% homologous with the prpo-516 plasmid, 526Rl (SEQ ID NO: 25, 5'- CGCTTGTAGGTCAACC-3' ) that it is only 100% homologous with plasmid prpo-526T, 526R2 (SEQ ID NO: 26, 5'-CGCTTGTCGGTC AACC-3 ') that is only 100% homologous with plasmid prpo-526A and 531R (SEQ ID NO: 11) which is only 100% homologous with the prpo-531 plasmid. Mutations with other substrate DNAs are located in the middle or near the 5 'end of the primer sequence, in this way the enzyme with 3'-5' error-correcting exonuclease activity cannot release the unpaired base and there is no amplification unless there is DNA substrate with sequence complementary to the primer with 100% homology.
Las Tm de las sondas y cebadores son diferentes para que las dos amplificaciones puedan desarrollarse consecutivamente con ciclos de temperatura diferentes. También los tamaños de los ácidos nucleicos obtenidos en cada amplificación son distintos, siendo los productos de la segunda amplificación menores que el de la primera amplificación lo que permite que los tiempos de incuba- ción en las temperaturas de los pasos de la segunda amplificación sean menores. (Tabla 15) .The Tm of the probes and primers are different so that the two amplifications can develop consecutively with different temperature cycles. Also the sizes of the nucleic acids obtained in each amplification are different, the products of the second amplification being smaller than that of the first amplification which allows the incubation times at the temperatures of the second amplification steps to be smaller. . (Table 15).
TABLA 15TABLE 15
Sonda Cebador Tm Sonda - Tm Cebador Tamaño esperadoTm Primer Probe - Tm Primer Expected Size
TBS TBR 63' 5°C 63'3°C 145pb rpoMLF2 516R 50' 8°C 48'2°C 34pb rpoMLF2 526Rl 50' 8°C 47'3°C 59pb rpoMLF2 526R2 50' 8°C 48'5°C 59pb rpoMLF2 531 50' 8°C 500C 76pbTBS TBR 63 '5 ° C 63'3 ° C 145pb rpoMLF2 516R 50' 8 ° C 48'2 ° C 34pb rpoMLF2 526Rl 50 '8 ° C 47'3 ° C 59pb rpoMLF2 526R2 50' 8 ° C 48'5 ° C 59pb rpoMLF2 531 50 '8 ° C 50 0 C 76pb
Pares de bases (pb)Base pairs (bp)
La mezcla de amplificación fue realizada con el kit Biotools Pfu DNA polimerasa II (Biotools) , incluyendo en la mezcla 0'lU/μl de Pfu DNA polimerasa, buffe- res de reacción, 200μM de dNTPs, 4mM de MgCl2, 1'25M de Betaina, sonda TBS (0'2μM), cebador TBR (0'3μM), sonda rpoMLF2 (0'3μM), cebador 516R (0'3μM), cebador 526Rl (0'3μM), cebador 526R2 (0'3μM) y cebador 531R (0'3μM) siendo el volumen final de la reacción de 20μl. Con la misma mezcla se ensayaron las amplificaciones de los cinco plásmidos (prpo) con una cantidad de 50.000 copias aproximadamente, asi como un control sin ADN substrato.The amplification mixture was performed with the Biotools Pfu DNA polymerase II kit (Biotools), including in the 0'lU / μl mixture of Pfu DNA polymerase, reaction buffers, 200 μM dNTPs, 4mM MgCl 2 , 1 '25M Betaine, TBS probe (0.2 μM ), TBR primer (0.3 μM ), rpoMLF2 probe (0.3 μM ), 516R primer (0.3 μM ), 526Rl primer (0' 3 μ M), primer 526R2 (0.3 μ M) and primer 531R (0.3 μ M) with a final volume of 20 μ l reaction. With the same mixture the amplifications of the five plasmids (prpo) with an amount of approximately 50,000 copies were tested, as well as a control without substrate DNA.
El equipo de amplificación en Tiempo Real que se utilizó fue el Rotor Gene 3000. Los ciclos de amplificación y posterior curva de melting fueron los siguien- tes:The Real Time amplification equipment used was the Gene 3000 Rotor. The amplification cycles and subsequent melting curve were as follows:
Desnaturalización: 4 min a 95°C. 1 ciclo. Amplificación I: 5 seg a 97°C, 20 seg a 62°C, 40 seg a 700C (captura de fluores- cencia en canal JOE) . 35 ciclos.Denaturation: 4 min at 95 ° C. 1 cycle Amplification I: 5 sec at 97 ° C, 20 sec at 62 ° C, 40 sec at 70 0 C (fluorescence capture in JOE channel). 35 cycles
Amplificación II: 5 seg a 97°C, 5 seg a 52°C,Amplification II: 5 sec at 97 ° C, 5 sec at 52 ° C,
25 seg a 62°C. 10 ciclos.25 sec at 62 ° C. 10 cycles
Melting: 30 seg a 65°C y rampa de Tra de 0'4°C/seg desde 65°C hasta 99°C captu- rando fluorescencia en el canal de FAM en cada incremento de Tra.Melting: 30 sec at 65 ° C and Tra ramp of 0.4 ° C / sec from 65 ° C to 99 ° C capturing fluorescence in the FAM channel at each Tra increase.
La gráfica de la primera amplificación donde se representa la señal de fluorescencia en el canal de JOE frente al número de ciclos y la gráfica de la curva de melting en el canal de FAM posterior a la segunda amplificación se muestran en las Figuras 9A y 9B respectivamente .The graph of the first amplification where the fluorescence signal in the JOE channel is plotted against the number of cycles and the graph of the melting curve in the FAM channel after the second amplification are shown in Figures 9A and 9B respectively .
Como se observa en la Figura 9A, las muestras con los cinco ADNs substrato de cada plásmido correspondiente empiezan a amplificar entre los ciclos 10 y 27. La muestra Control sin ADN no presenta incremento de fluorescencia en la amplificación. (Tabla 16) . TABLA 16As seen in Figure 9A, samples with the five substrate DNAs of each corresponding plasmid begin to amplify between cycles 10 and 27. The Control sample without DNA does not show increased fluorescence in amplification. (Table 16). TABLE 16
Muestra Ct prpo-516 22 ' 6 ( ζ ) prpo-526T 15 ' 39 ( ε ) prpo-526A 26 ' 37 ( η ) prpo-531 10 ' 15 ( Y) prpo-WT 10 ' 64 ( δ )Sample Ct prpo-516 22 '6 (ζ) prpo-526T 15' 39 (ε) prpo-526A 26 '37 (η) prpo-531 10' 15 (Y) prpo-WT 10 '64 (δ)
Control sin ADN --- ( θ )Control without DNA --- (θ)
En la Figura 9B se muestra la curva de melting convertida a picos de temperatura después de la segunda amplificación de las seis muestras ensayadas. Aparecen tres picos de temperatura diferentes a consecuencia de la amplificación de ácidos nucleicos de tamaños distintos y contenido en G+C variables según el ADN substrato (plásmido) utilizado. (Tabla 17) .The melting curve converted to temperature peaks after the second amplification of the six samples tested is shown in Figure 9B. Three different temperature peaks appear as a result of the amplification of nucleic acids of different sizes and variable G + C content according to the substrate DNA (plasmid) used. (Table 17).
TABLA 17TABLE 17
Tamaño producto Contenido Tm predecida Tm picoProduct size Content Tm predicted Tm peak
Muestra amplificado G+C AlIeIeID 2.0 de Tra prpo-516 34pb 52'94% 80'20C 78 '82 0C ζ prpo-526T 59pb 57'63% 86'1°C 83 '02 0C ε prpo-526A 59pb 59'32% 86'6°C 83 '08 0C η prpo-531 76pb 61'84% 88'8°C 85 '48 0C y prpo-WT - -- δAmplified sample G + C AlIeID 2.0 of Tra prpo-516 34pb 52'94% 80'2 0 C 78 '82 0 C ζ prpo-526T 59pb 57'63% 86'1 ° C 83 '02 0 C ε prpo-526A 59pb 59'32% 86'6 ° C 83'08 0 C η prpo-531 76pb 61'84% 88'8 ° C 85 '48 0 C and prpo-WT - - δ
Pares de bases (pb)Base pairs (bp)
Los resultados de la curva de melting concuerdan con la identificación especifica de las muestras ensayadas. Los cebadores únicamente amplifican el plásmido especifico cuya secuencia es totalmente complementaria a la secuencia del cebador. De esta forma cada cebador amplifica sólo en presencia del plásmido especifico generándose productos de PCR diferentes según el plásmi- do usado como ADN substrato. Estos productos de PCR y en consecuencia los plásmidos ensayados es posible identificarlos mediante su Tm.The results of the melting curve agree with the specific identification of the samples tested. The primers only amplify the specific plasmid whose sequence is completely complementary to the primer sequence. In this way each primer amplifies only in the presence of the specific plasmid generating different PCR products according to the plasmid used as substrate DNA. These PCR products and consequently the plasmids tested can be identified by their Tm.
Los resultados obtenidos indican que mediante la amplificación de una región concreta de varios ADNs substrato que contienen secuencias externas comunes, es posible identificar mutaciones internas, cambios puntua- les o SNPs (polimorfismos de un solo nucleótido) en la secuencia, específicos de cada ADN substrato, a través de una segunda amplificación y una curva de melting utilizando oligonucleótidos marcados diseñados según se describe en la presente invención, y cebadores homólogos en su secuencia a cada mutación que se quiere identificar. Cada ADN substrato amplificado que tenga una mutación reconocida por uno de los cebadores puede ser diferenciado según el pico de temperatura obtenido en la curva de melting. The results obtained indicate that by amplifying a specific region of several substrate DNAs that contain common external sequences, it is possible to identify internal mutations, point changes or SNPs (single nucleotide polymorphisms) in the sequence, specific to each substrate DNA , through a second amplification and a melting curve using labeled oligonucleotides designed as described in the present invention, and primers homologous in sequence to each mutation to be identified. Each amplified substrate DNA that has a mutation recognized by one of the primers can be differentiated according to the temperature peak obtained in the melting curve.

Claims

REIVINDICACIONES
Ia.- Método para la detección y/o cuantificación de al menos un ácido nucleico substrato, diana, en una muestra, que se caracteriza porque: o se pone en contacto en un soporte el/los ácido/s nucleico/s substrato/s con al menos:I a .- Method for the detection and / or quantification of at least one substrate nucleic acid, target, in a sample, characterized in that: or the substrate nucleic acid (s) is contacted on a support / s with at least:
un cebador, forward o reverse, marcado con un fluoróforo emisor en el extremo 5', y que presenta al menos tres bases G o tres bases C en los seis nucleótidos que siguen a la base marcada con el fluoróforo emisor, a primer, forward or reverse, marked with a emitting fluorophore at the 5 'end, and having at least three G bases or three C bases at the six nucleotides that follow the base marked with the emitting fluorophore,
un cebador con polaridad opuesta • una enzima con actividad DNA polimerasa a primer with opposite polarity • an enzyme with DNA polymerase activity
o se amplifica la mezcla anterioror the previous mixture is amplified
o se detecta y/o mide el cambio en la señal de fluorescencia debido a la acumulación de fragmentos de ácidos nucleicos amplificados en estado de doble cadena donde ha quedado incorporado el fluoróforo emisor y la secuencia de G o C, la diferencia de fluorescencia será positiva, incremento, cuando los fragmentos de ácidos nucleicos amplificados de doble cadena incluyan la secuencia de guaninas; y la diferencia de fluorescencia será negativa, un descenso, cuando los fragmentos de ácidos nucleicos amplificados de doble cadena incluyan la secuencia de citosinasor the change in the fluorescence signal is detected and / or measured due to the accumulation of amplified nucleic acid fragments in a double-chain state where the emitting fluorophore and the sequence of G or C have been incorporated, the difference in fluorescence will be positive , increase, when the double stranded amplified nucleic acid fragments include the guanine sequence; and the fluorescence difference will be negative, a decrease, when the double stranded amplified nucleic acid fragments include the cytosine sequence
2a.- Método según reivindicación Ia caracterizado porque el ácido nucleico substrato, diana en una muestra, proviene de una amplificación previa que ocurre de manera consecutiva o secuencial en el mismo soporte de detección y/o cuantificación y donde los cebadores utilizados en la amplificación previa serán de mayor longitud de bases nucleotídicas y/o mayor contenido en bases G/C2 .- A method according to claim I wherein the nucleic acid substrate target in a sample comes from a previous amplification occurs consecutively or sequentially in the same carrier detection and / or quantification and wherein the primers used in prior amplification will be of longer length of nucleotide bases and / or greater content in G / C bases
3a.- Método según reivindicación Ia a 2a carac- terizado porque el cebador marcado con un fluoróforo emisor en el extremo 5' tiene una o más bases desapareadas en el extremo 3' de la cadena, o bases adyacentes con respecto al DNA substrato con el que hibrida, y que estas bases son escindidas y corregidas por una enzima con actividad 3 '-5' nucleasa3 .- A method according to claim I charac- terized to 2 because the labeled primer an emitter fluorophore on the 5 'end has one or more bases unpaired at the 3' end of the chain, or adjacent bases relative to DNA substrate with which it hybridizes, and that these bases are cleaved and corrected by an enzyme with 3'-5 'nuclease activity
4a.- Método según reivindicación 3a caracterizado porque el cebador marcado con un fluoróforo emisor en el extremo 5', está marcado en el extremo 3' con un apantallador de fluorescencia, quencher4 .- A method according to claim 3 wherein the labeled primer an emitter fluorophore on the 5 'end is labeled at the 3' end with a quencher fluorescence quencher
5a.- Método según reivindicación 3a caracterizado porque la etapa de puesta en contacto incluye adicio- nalmente un oligonucleótido marcado con un quencher en el extremo 3' y que presenta complementariedad perfecta con el extremo 3 ' del cebador marcado con el fluoróforo emisor en el extremo 5' lo que evita la degradación de este último por la actividad 3 '-5' nucleasa y apantalla la fluorescencia del fluoróforo emisor5 .- A method according to claim 3 wherein the step of contacting includes additionally an oligonucleotide labeled with a quencher at the 3 'end and having perfect complementarity to the 3' end of primer labeled with the fluorophore emitter the 5 'end which prevents degradation of the latter by the 3' -5 'nuclease activity and shields the fluorescence of the emitting fluorophore
6a.- Método según reivindicación 5a caracterizado porque el cebador marcado con un fluoróforo en el extremo 5' y/o el oligonucleótido marcado con un quencher en el extremo 3 ' y de complementariedad perfecta presentan modificaciones en la unión de sus bases por enlaces no fosfodiester y/o inclusión de bases análogos y/o espaciadores6 .- method according to claim 5 wherein the primer labeled with a fluorophore at the 5 'and / or a quencher labeled oligonucleotide at the 3' and perfect complementarity modifications at the junction of its bases by links non-phosphodiester and / or inclusion of analog bases and / or spacers
7a.- Método según reivindicación Ia a 6a, ca- racterizado porque el cebador marcado con un fluoróforo emisor en el extremo 5' tiene una cola de bases G o C en su extremo 5' que no son complementarias a la secuencia de ADN substrato pero que son incorporadas al fragmento de ADN amplificado por la actividad DNA polimerasa.7 a .- Method according to claim I a to 6 a , characterized in that the fluorophore labeled primer The emitter at the 5 'end has a tail of G or C bases at its 5' end that are not complementary to the substrate DNA sequence but are incorporated into the DNA fragment amplified by the DNA polymerase activity.
8a.- Método según reivindicación Ia a 7a caracterizado porque la diferencia de fluorescencia detectada y/o medida es directamente proporcional a la cantidad de ADN substrato amplificado8 .- method according to claim I to 7 wherein the difference of fluorescence detected and / or measured is directly proportional to the amount of amplified DNA substrate
9a.- Método según reivindicación 8a caracterizado porque se incluye una etapa tras la etapa de amplificación de análisis de curvas de desnaturalización, "melting curves", de los ácidos nucleicos amplificados, o del ácido nucleico amplificado, este análisis se lleva a cabo midiendo el cambio de la señal de fluorescencia proveniente del fluoróforo emisor incorporado en los distintos fragmentos de ADN amplificados previamente, cuando pasan de doble cadena a cadena simple o viceversa9 .- method according claim 8 characterized in that it includes a step after the amplification step of analysis of denaturation curves, "melting curves" of the amplified nucleic acids or amplified nucleic acid, this analysis is performed measuring the change of the fluorescence signal from the emitting fluorophore incorporated in the different previously amplified DNA fragments, when they pass from double stranded to single stranded or vice versa
10a.- Método según reivindicación 9a caracterizado porque un número múltiple de ácidos nucleicos substrato, diana, son detectados, cuantificados e identificados por análisis de las curvas de desnaturaliza- ción de forma simultánea mediante la selección de los correspondientes cebadores donde al menos uno de ellos por cada ácido nucleico diana está marcado en el extremo 5' con fluoróforos emisores que emiten en distintas longitudes de onda10 .- Method according to claim 9 wherein a plural number of nucleic acid substrate target are detected, quantified and identified by analysis of denaturation curves simultaneously by selection of corresponding primers wherein at least one of them for each target nucleic acid is labeled at the 5 'end with emitting fluorophores that emit at different wavelengths
11a.- Método según reivindicación 9a caracterizado porque un número múltiple de ácidos nucleicos substrato (diana) son detectados e identificados por análisis de las curvas de desnaturalización de forma simultánea mediante la selección de los correspondientes cebadores donde al menos uno de ellos por cada ácido nucleico diana está marcado en el extremo 5' con el mismo fluoróforo11 .- Method according to claim 9 wherein a plural number of nucleic acid substrate (target) are detected and identified by analysis of the denaturation curves simultaneously by selecting the corresponding primers where at least one of them for each target nucleic acid is labeled at the 5 'end with the same fluorophore
12a.- Método según reivindicación 11a caracterizado porque cada uno de los cebadores marcados en el extremo 5' con el mismo fluoróforo tiene secuencias de G o C adyacentes al extremo 5', las curvas de desnaturalización de los fragmentos de ADN amplificados donde haya quedado incorporado la secuencia de G será negativa y en el caso de las citosinas será positiva12 .- Method according to claim 11 wherein each of the primers labeled at the 5'end with the same fluorophore have sequences G or C adjacent the 5 'end, the denaturation curves of amplified DNA fragments where there Once the G sequence is incorporated, it will be negative and in the case of cytosines it will be positive
13a.- Método según reivindicación 9a caracterizado porque un número múltiple de ácidos nucleicos substrato, diana, son detectados e identificados por análisis de las curvas de desnaturalización de forma simultánea mediante la selección de los correspondientes cebadores donde uno de ellos es común para al menos dos ácidos nucleicos diana y está marcado con un fluoróforo emisor en su extremo 5'13 .- Method according to claim 9 wherein a plural number of nucleic acid substrate target are detected and identified by analysis of the denaturation curves simultaneously by selection of corresponding primers where one of them is common for the minus two target nucleic acids and is labeled with a emitting fluorophore at its 5 'end
14a.- Método según reivindicación Ia a 13a donde el/los ácidos nucleicos substrato tiene/n origen en muestras biológicas animales o vegetales, cultivos celulares, alimentos, muestras de aguas, suelos o aire14 .- Method according to claim I to 13 wherein the / the substrate nucleic acid is / origin in biological samples animal or vegetable cell cultures, food, water samples, soil or air
15a.- Un kit para la detección, cuantificación e identificación de uno o más ácidos nucleicos en una muestra que comprende los cebadores usados en los méto- dos de las reivindicaciones Ia a 14a y una actividad DNA polimerasa o una mezcla de enzimas teniendo tal actividad mas actividad 3 '-5' nucleasa15 .- A kit for the detection, quantitation and identification of one or more nucleic acids in a sample comprising the primers used in the two method- of claims I to 14 and a DNA polymerase to activity or enzyme mixture having such activity plus 3 '-5' nuclease activity
16a.- Un kit según reivindicación 15a donde los cebadores detectan ácidos nucleicos diana virales 17a.- Kit según reivindicación 16a caracterizado porque el ácido nucleico diana viral es un Papillomavi- rus oncogénico humano. 16 .- A kit according to claim 15 wherein the primers detect target viral nucleic acids 17 .- The kit according to claim 16 wherein the viral target nucleic acid is a human oncogenic Papillomavi- rus.
PCT/ES2008/070161 2008-08-12 2008-08-12 Method for detection and/or quantification of a nucleic acid substrate WO2010018245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2008/070161 WO2010018245A1 (en) 2008-08-12 2008-08-12 Method for detection and/or quantification of a nucleic acid substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2008/070161 WO2010018245A1 (en) 2008-08-12 2008-08-12 Method for detection and/or quantification of a nucleic acid substrate

Publications (1)

Publication Number Publication Date
WO2010018245A1 true WO2010018245A1 (en) 2010-02-18

Family

ID=40220114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070161 WO2010018245A1 (en) 2008-08-12 2008-08-12 Method for detection and/or quantification of a nucleic acid substrate

Country Status (1)

Country Link
WO (1) WO2010018245A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012024642A1 (en) * 2010-08-20 2012-02-23 Life Technologies Corporation Quantitative real-time pcr assay using fret dual-labeled primers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073118A2 (en) * 2000-03-29 2001-10-04 Lgc (Teddington) Limited Hybridisation beacon and method of rapid sequence detection and discrimination
WO2002014555A2 (en) * 2000-08-11 2002-02-21 University Of Utah Research Foundation Single-labeled oligonucleotide probes
US20030003486A1 (en) * 1999-11-16 2003-01-02 Atto-Tec Gmbh Dye-labeled oligonucleotide for labeling a nucleic acid molecule
WO2004050917A1 (en) * 2002-11-29 2004-06-17 Cha Wellbeings Co., Ltd. General primers and process for detecting diverse genotypes of human papillomavirus by pcr
WO2005047468A2 (en) * 2003-11-06 2005-05-26 University Of Nevada, Reno Improved methods for detecting and measuring specific nucleic acid sequences
WO2006074222A2 (en) * 2005-01-03 2006-07-13 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Primer for nucleic acid detection
US20070292868A1 (en) * 2005-06-16 2007-12-20 Biotools Biotechnological & Medical Laboratories, S.A. Nucleic Acid Detection Method Involving the Direct Generation of a Measurable Signal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030003486A1 (en) * 1999-11-16 2003-01-02 Atto-Tec Gmbh Dye-labeled oligonucleotide for labeling a nucleic acid molecule
WO2001073118A2 (en) * 2000-03-29 2001-10-04 Lgc (Teddington) Limited Hybridisation beacon and method of rapid sequence detection and discrimination
WO2002014555A2 (en) * 2000-08-11 2002-02-21 University Of Utah Research Foundation Single-labeled oligonucleotide probes
WO2004050917A1 (en) * 2002-11-29 2004-06-17 Cha Wellbeings Co., Ltd. General primers and process for detecting diverse genotypes of human papillomavirus by pcr
WO2005047468A2 (en) * 2003-11-06 2005-05-26 University Of Nevada, Reno Improved methods for detecting and measuring specific nucleic acid sequences
WO2006074222A2 (en) * 2005-01-03 2006-07-13 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Primer for nucleic acid detection
US20070292868A1 (en) * 2005-06-16 2007-12-20 Biotools Biotechnological & Medical Laboratories, S.A. Nucleic Acid Detection Method Involving the Direct Generation of a Measurable Signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CROCKETT ANDREW O ET AL: "Fluorescein-labeled oligonucleotides for real-time PCR: Using the inherent quenching of deoxyguanosine nucleotides", ANALYTICAL BIOCHEMISTRY, ACADEMIC PRESS INC. NEW YORK, vol. 290, no. 1, 1 March 2001 (2001-03-01), pages 89 - 97, XP002200212, ISSN: 0003-2697 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012024642A1 (en) * 2010-08-20 2012-02-23 Life Technologies Corporation Quantitative real-time pcr assay using fret dual-labeled primers

Similar Documents

Publication Publication Date Title
Li et al. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA
US10590474B2 (en) Methods for true isothermal strand displacement amplification
JP2011514163A5 (en)
US20240229169A1 (en) Assay for detecting closely-related serotypes of human papillomavirus (hpv)
KR101961642B1 (en) A method for detecting target nucleic acid sequence using cleaved complementary tag fragment and a composition therefor
CN104805218A (en) LAMP-and-molecular-beacon-based reaction system and method for detecting HPV16 and HPV18
US20140017692A1 (en) Method and kit for detecting target nucleic acid
CA2479045A1 (en) Amplification-hybridisation method for detecting and typing human papillomavirus
Oh et al. Polymerase chain reaction‐based fluorescent Luminex assay to detect the presence of human papillomavirus types
WO2012009813A1 (en) Methods of detecting genetic polymorphisms using melting temperature of probe-amplicon complexes
CN110945140A (en) Molecular fingerprinting of target DNA by polymerase chain reaction
US10975423B2 (en) Methods for true isothermal strand displacement amplification
WO2010018245A1 (en) Method for detection and/or quantification of a nucleic acid substrate
EP4118232A1 (en) Molecular fingerprinting methods to detect and genotype different rna targets through reverse transcription polymerase chain reaction in a single reaction
CN115491435A (en) Rapid and sample-specific mixing and detection methods for screening of viral pathogens in large-scale populations
Kuo et al. Identification of pan-orthopoxvirus, monkeypox-specific and smallpox-specific DNAs by real-time PCR assay
JP6999645B2 (en) Helper oligonucleotides to improve the efficiency of nucleic acid amplification and detection / quantification
JP2007282512A (en) Method for inhibiting self-annealing formation and use thereof
CN107447048B (en) Primer, probe and kit for DVE strong and weak toxin Real time PCR differential diagnosis
JP2009533063A5 (en)
KR101170442B1 (en) Primers and probes of polymerase chain reactions for the detection of water-borne protozoa, and detection kits and methods thereof
MX2009007788A (en) Initiators and probes for the molecular amplification and detection of arn of the influenza ah1n1 virus outbreak 2009.
BR112012020470B1 (en) MULTIPLEX ASSAY, PROBE GROUP AND KIT TO DETECT THE PRESENCE OR ABSENCE OF MULTIPLE SEROTYPES OF A HUMAN PAPILLOMAVIRUS (HPV) ORGANISM IN A BIOLOGICAL SAMPLE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08875582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08875582

Country of ref document: EP

Kind code of ref document: A1