WO2010017869A4 - Energy recovery device and method for design - Google Patents
Energy recovery device and method for design Download PDFInfo
- Publication number
- WO2010017869A4 WO2010017869A4 PCT/EP2009/005124 EP2009005124W WO2010017869A4 WO 2010017869 A4 WO2010017869 A4 WO 2010017869A4 EP 2009005124 W EP2009005124 W EP 2009005124W WO 2010017869 A4 WO2010017869 A4 WO 2010017869A4
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- propeller
- diameter
- suction tube
- designed
- flow
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/06—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
- F03B17/061—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/26—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
- F03B13/264—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B3/00—Machines or engines of reaction type; Parts or details peculiar thereto
- F03B3/04—Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/10—Stators
- F05B2240/12—Fluid guiding means, e.g. vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/10—Stators
- F05B2240/13—Stators to collect or cause flow towards or away from turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/10—Stators
- F05B2240/13—Stators to collect or cause flow towards or away from turbines
- F05B2240/133—Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/97—Mounting on supporting structures or systems on a submerged structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2250/00—Geometry
- F05B2250/10—Geometry two-dimensional
- F05B2250/14—Geometry two-dimensional elliptical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Oceanography (AREA)
- Power Engineering (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Hydraulic Turbines (AREA)
Abstract
The invention relates to an energy recovery device designed as a device disposed in freely flowing bodies of water for generating electrical energy. An axial flow-through channel is thereby designed in a housing in the manner of a venturi nozzle, having a propeller turbine connected to a generator disposed at the narrowing cross section thereof, wherein a nozzle-shaped inlet housing is placed upstream of the propeller and a suction tube comprising a diffuser-like outlet is placed downstream thereof, wherein the diameter of an entrance area of the inlet housing is greater than a diameter of the propeller. The suction tube comprises an inner contour configured to be free of separation over the length thereof, wherein an outlet area of the suction tube comprises a width in the horizontal plane that is greater than a height measurable in the vertical direction, and the outlet area corresponds to 3 to 5 times the area of the propeller area (AP = 3 to 5).
Claims
1. Verfahren zur Auslegung einer Energierückgewinnungseinrichtung, ausgebildet als eine in frei fließenden Gewässern untergetaucht angeordnete Vorrichtung zur Energieerzeugung, in deren Gehäuse ein axialer Durchströmkanal nach Art einer Venturidüse ausgebildet ist, wobei an deren Querschnittsverengung ein Propeller von einer einen Generator antreibenden Propeller-Turbine angeordnet ist, der Einlaufteil der Venturidüse als ein dem Propeller in Strömungsrichtung vorangestelltes, düsenförmiges Zulaufgehäuse und deren nachgeordnetes Auslaufteil als ein diffusorartiges Saugrohr ausgebildet ist, wobei der Durchmesser einer Eintrittsfläche in das Zulaufgehäuse größer als ein Durchmesser des Propellers ist, die Saugrohr-Austrittsfläche (AD) auf eine Höhe H analog zum maximalen Propeller-Durchmessers (Dmax pro) ausgelegt ist und in horizontaler Ebene auf eine Breite (B) ausgelegt ist, die größer ist als die in vertikaler Richtung messbare Höhe (H) und dass die Austrittsfläche (AD) des Saugrohres (2) als ein mehrfacher, insbesondere als ein 3- bis 5-facher Wert der Propellerfläche (AP) ausgewählt ist [AD = (3 bis 5) mal AP], dadurch gekennzeichnet, dass ein ; maximaler Propeller-Durchmesser (Dmax pro) in Abhängigkeit von einer minimal nutzbaren Wassertiefe (Tn) am Einsatzort und in Abhängigkeit von einer durch den Gehäuse- und Durchströmkanalaufbau bedingten Durchmesserreduzierung ausgewählt wird, dass das Saugrohr (2) hinsichtlich seiner Innenkontur ablösungsfrei gestaltet wird und dass die Eintrittsfläche (AE) des Zulaufgehäuse (4) für einen stoßfreien Strömungseintritt und einen gegen Null gehenden Eintrittsverlust (ζΕ) ausgelegt wird. 1. A method for designing an energy recovery device, designed as a submerged in free-flowing waters arranged device for power generation, in whose housing an axial flow channel is formed in the manner of a venturi, at the cross-sectional constriction of a propeller is driven by a generator driving a propeller turbine , the inlet part of the venturi as a propeller in the flow direction preceded, nozzle-shaped inlet housing and its downstream outlet part is designed as a diffuser-like suction tube, wherein the diameter of an inlet surface into the inlet housing is larger than a diameter of the propeller, the suction tube exit surface (A D ) is designed to a height H analogous to the maximum propeller diameter (D max p ro ) and in the horizontal plane to a width (B) is designed, which is greater than the height measurable in the vertical direction (H) and that the outlet Area (A D ) of the suction tube (2) as a multiple, in particular as a 3 to 5 times the value of the propeller surface (A P ) is selected [A D = (3 to 5) times A P ], characterized in that on ; maximum propeller diameter (D max p ro ) is selected as a function of a minimum usable water depth (T n ) at the site and in dependence on a diameter reduction caused by the housing and Durchströmkanalaufbau that the suction tube (2) designed free of detachment with respect to its inner contour is and that the inlet surface (A E ) of the inlet housing (4) for a shock-free flow entry and a zero entry loss (ζ Ε ) is designed.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein gewählter Propeller (3) mit dem Kennwert C nach der Formel 2. The method according to claim 1, characterized in that a selected propeller (3) with the characteristic value C according to the formula
3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass durch die Anwendung der Gleichungen (8) bis (10) sich die Eintrittsfäche (AE ) ergibt zu 3. The method according to any one of claims 1 to 2, characterized in that by the application of the equations (8) to (10), the Eintrittsfäche (A E ) results to
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass durch äußere Widerstandskörper (8) und damit in Wirkverbindung stehende Absaugöffnungen (9) die Strömung im Saugrohr (2) ablösungsfrei gehalten wird. 4. The method according to any one of claims 1 to 3, characterized in that by outer resistance body (8) and thus actively connected to suction openings (9), the flow in the suction pipe (2) is kept free of detachment.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein ablösungsfreies, in die Breite (B) entwickeltes Saugrohr (2) im Endbereich eine abrupte symmetrische Erweiterung aufweist und eine Sogwirkung durch die Injektorwirkung der Außenströmung nutzt. 5. The method according to any one of claims 1 to 4, characterized in that a separation-free, in the width (B) developed suction pipe (2) in the end region has an abrupt symmetrical extension and uses a suction effect by the injector effect of the outside flow.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass für einen maximalen Propellerdurchmesser (Dmax P) an einem Einsatzort mit einem nutzbaren, bekannten Wasserstand (Tn) und einer bekannten Außenströmung (VA) eine auf einen Propeller (5) bezogene Durchströmgeschwindigkeit vP mit einem gewählten Propellerdurchmesser (DP) angenommen wird, dass unter einer Annahme eines gewählten Propellerdruckbeiwertes die Propeller-Durchströmgeschwindigkeit vp abgeleitet Wird aus der Betrachtung einer Verlustbilanz für 6. The method according to any one of claims 1 to 5, characterized in that for a maximum propeller diameter (D max P) at a site with a usable, known water level (T n ) and a known outer flow (VA) on a propeller (5 assumed flow rate v P with a selected propeller diameter (D P ) is assumed that, assuming a selected Propellerdruckbeiwertes the propeller flow velocity v p is derived from the consideration of a loss balance for
GEÄNDERTES BLATT (ARTIKEL 19) einen Eintrittsverlust in die Energierückgewinnungseinrichtung und einem dem Propeller (3) nachgeordneten Saugrohrverlust gemäß der Formel MODIFIED SHEET (ARTICLE 19) a loss of entry into the energy recovery device and a Saugrohrverlust downstream of the propeller (3) according to the formula
und dass in einem Iterationsverfahren ein Kurvenverlauf für den Leistungsbeiwert des Propellers (3) ermittelt wird, wobei im Kurven-Maximum die Propellerwerte einer maximalen Leistungsausbeute der Energierückgewinnungseinrichtung entnommen werden. and that in an iteration method, a curve for the power coefficient of the propeller (3) is determined, wherein in the curve maximum, the propeller values of a maximum power output of the energy recovery device are taken.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ausgehend von einer Propellerfläche (AP) als Größe einer Saugrohr-Eintrittsfläche (AE), die nachfolgenden Saugrohr-Querschnitte derart dimensioniert werden, dass sich diese in eine elliptische oder durch Kreisbögen- oder/und eckige Flächenabschnitte zusammengesetzte, schmalflächig angeordnete Saugrohr-Austrittsfläche (AD) entwickeln. 7. The method according to any one of claims 1 to 6, characterized in that starting from a propeller surface (A P ) as the size of a suction inlet surface (A E ), the subsequent suction tube cross-sections are dimensioned such that they are in an elliptical or develop by arcuate or / and angular surface portions, narrow-surface arranged suction tube exit surface (A D ).
GEÄNDERTES BLATT (ARTIKEL 19) MODIFIED SHEET (ARTICLE 19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09777193A EP2318692A2 (en) | 2008-08-15 | 2009-07-15 | Energy recovery device and method for design |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008037896.8 | 2008-08-15 | ||
DE102008037896A DE102008037896A1 (en) | 2008-08-15 | 2008-08-15 | Energy recovery device and method of design |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2010017869A2 WO2010017869A2 (en) | 2010-02-18 |
WO2010017869A3 WO2010017869A3 (en) | 2011-01-13 |
WO2010017869A4 true WO2010017869A4 (en) | 2011-03-17 |
Family
ID=41528025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/005124 WO2010017869A2 (en) | 2008-08-15 | 2009-07-15 | Energy recovery device and method for design |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2318692A2 (en) |
DE (1) | DE102008037896A1 (en) |
WO (1) | WO2010017869A2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ603903A (en) * | 2010-04-30 | 2014-11-28 | Clean Current Ltd Partnership | Unidirectional hydro turbine with enhanced duct, blades and generator |
WO2012167060A2 (en) | 2011-06-03 | 2012-12-06 | Air Products And Chemicals, Inc. | Compositions and processes for depositing carbon-doped silicon-containing films |
DE102012025481A1 (en) | 2012-12-29 | 2014-07-03 | Günter Frank | Running water small water level turbine wheel for converting flow energy into technical useful energy, has leaves provided with wing profiles and with certain sector angle, where axis of wheel is directed parallel to flow direction |
CN103397975B (en) * | 2013-08-16 | 2016-10-19 | 重庆同利实业有限公司 | Standard type floating pipe type hydraulic generator |
CN105927458B (en) * | 2016-05-31 | 2018-07-13 | 河海大学 | A kind of extra low head backward flow type bell hydraulic turbine |
DE202018102634U1 (en) * | 2018-05-09 | 2019-08-13 | Rolf Rohden | Turbine for a water power plant |
AU2020208861A1 (en) | 2019-01-18 | 2021-08-12 | Telesystem Energy Ltd. | Passive magnetic bearing for rotating machineries and rotating machineries integrating said bearing, including energy production turbines |
FI3938646T3 (en) * | 2019-03-14 | 2024-05-03 | Telesysteme Energie Ltee | Multi-staged cowl for a hydrokinetic turbine |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE391129C (en) * | 1920-12-10 | 1924-03-05 | Eduard Suess | Vortex turbine |
AT97560B (en) * | 1921-05-05 | 1924-07-25 | Eduard Ing Suesz | Vortex turbine. |
US1476229A (en) * | 1922-05-18 | 1923-12-04 | Suess Eduard | Water turbine |
FR935673A (en) * | 1946-10-24 | 1948-06-28 | Wind motor | |
US4219303A (en) | 1977-10-27 | 1980-08-26 | Mouton William J Jr | Submarine turbine power plant |
US4422820A (en) * | 1982-09-29 | 1983-12-27 | Grumman Aerospace Corporation | Spoiler for fluid turbine diffuser |
US4868408A (en) | 1988-09-12 | 1989-09-19 | Frank Hesh | Portable water-powered electric generator |
GB0123802D0 (en) * | 2001-10-04 | 2001-11-21 | Rotech Holdings Ltd | Power generator and turbine unit |
AT413868B (en) | 2004-02-17 | 2006-06-15 | Mondl Fritz | POWER BUOY |
GB0510417D0 (en) * | 2005-05-21 | 2005-06-29 | Rotech Holdings Ltd | Improved turbine |
DE102005040807A1 (en) | 2005-08-29 | 2007-03-08 | Schopf, Walter, Dipl.-Ing. | Axial flow through water turbine for application in free water flow, has housing, taper, diffuser and mantle that are formed in such a manner that external flow to flow that emerges from tube exerts injector effect to execute suction |
EP2435695A2 (en) * | 2008-05-22 | 2012-04-04 | Hermann Rich. POPPE | Energy generation device comprising rotors |
-
2008
- 2008-08-15 DE DE102008037896A patent/DE102008037896A1/en not_active Withdrawn
-
2009
- 2009-07-15 EP EP09777193A patent/EP2318692A2/en not_active Withdrawn
- 2009-07-15 WO PCT/EP2009/005124 patent/WO2010017869A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2010017869A2 (en) | 2010-02-18 |
WO2010017869A3 (en) | 2011-01-13 |
EP2318692A2 (en) | 2011-05-11 |
DE102008037896A1 (en) | 2010-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010017869A4 (en) | Energy recovery device and method for design | |
WO1997021931A1 (en) | Process for forming a surface for contact with a flowing fluid and body with such surface regions | |
DE602004005618T2 (en) | FLUID INJECTION AND MIXING DEVICE | |
DE3402810A1 (en) | METHOD AND DEVICE FOR REMOVING CONDENSATE FROM THE EXHAUST SYSTEM OF AN INTERNAL COMBUSTION ENGINE | |
DE102007021213A1 (en) | Blade mold for well turbine, has guide part running diagonally downwards to blade side that is turned away from pressure, and is adjacent to end of front curve of turbine blade, and consisting of rotatable guide blade | |
CH655249A5 (en) | DEVICE FOR DEGASSING A LIQUID CIRCUIT. | |
EP1496240A2 (en) | Separation system | |
DE1503271B2 (en) | METHOD OF REDUCING FLOW FRICTION IN A HYDRAULIC TURBINE SYSTEM | |
EP1988216B1 (en) | Fish upstream/downstream migration device | |
DE4330856A1 (en) | Apparatuses for the introduction as fine bubbles of a pressurised gas and a process for operating these apparatuses | |
DE10343999B3 (en) | Flow circuit with noise damping | |
DE1054791B (en) | Boundary layer suction device for walls flowed by condensable steam | |
CH660770A5 (en) | Turbine | |
EP3299611B1 (en) | Low pressure hydroelectric power plant with an ejector ramp for a surplus water jet | |
WO2012143004A4 (en) | Wind turbine | |
DE3718971C2 (en) | ||
DE202007002188U1 (en) | Device for the restricted guidance of an air stream used on roofs comprises springs arranged on or close to a surface | |
DE102019133198A1 (en) | Flow device for the treatment of drinking water | |
DE102014116775A1 (en) | Façade element, façade device, structure and method for using a fluid flowing on a facade of a building | |
DE102004027398A1 (en) | Unit introducing liquid or gas into liquid, e.g. in wastewater treatment plant, includes supply discharging into section of pipe at angle, to set up helical flow with cavitation | |
AT512418A1 (en) | FREE FLOW TURBINE PLANT | |
DE3428540A1 (en) | DEVICE FOR GENERATING CAVITATION | |
DE168964C (en) | ||
DE1503271C3 (en) | ||
Ashour et al. | Impact of curved shaped energy dissipaters downstream diversion head structures to the dissolved oxygen content in irrigation canals and enhancement of irrigation water quality |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09777193 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009777193 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |